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Abstract: Non-native species introductions often have unintentional consequences. This 

has led to a gradual philosophical shift where aquatic management agencies now either 

consider the consequences of adding a new species prior to full-scale introduction or limit 

introductions to highly altered stream segments. Rainbow Trout Oncorhynchus mykiss is 

an emblematic non-native species regularly stocked to increase sport fishing 

opportunities. Understanding how Rainbow Trout introduction influences native species 

is limited by region-specific conditions, the spatial and temporal extent of investigation, 

and the limited mechanisms examined. Introduced Rainbow Trout at southern latitudes 

may seek critical thermal resources, along with other habitat characteristics, creating 

possible interspecific competition with native species. The goal of my thesis was to 

evaluate environmental conditions related to possible interactions between non-native 

Rainbow Trout and native warmwater fishes. My first objective determined habitat 

selection at two spatial scales by several native fishes to determine if the presence of 

Rainbow Trout altered their selection of important physicochemical resources. To 

evaluate the spatial extent of possible interactions between Rainbow Trout and native 

species, my second objective evaluated movement and dispersal patterns of Rainbow 

Trout following stocking. In addition, I quantified Rainbow Trout survival to assess 

persistence of this non-native fish over time. Collectively, my work provides key 

information on the spatial extent and possible interactions with native species over a 2-

year period.  

 

 



v 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION ......................................................................................................1 

 

 Study area and project background ..........................................................................5 

  

 

 

II.  IDENTIFYING HABITAT SELECTION SHIFTS BY STREAM FISHES IN 

RESPONSE TO RAINBOW TROUT………………………………………….....8 

  

      Abstract ....................................................................................................................9 

 Introduction ............................................................................................................10 

 Methods..................................................................................................................12 

 Results ....................................................................................................................26 

 Discussion ..............................................................................................................30 

 Tables .....................................................................................................................39 

 Figures....................................................................................................................54 

  

 

 

III. MOVEMENT AND SURVIVAL OF STOCKED RAINBOW TROUT IN      

LOWER SPAVINAW CREEK .............................................................................71 

 

      Abstract ..................................................................................................................72 

 Introduction ............................................................................................................73 

 Methods..................................................................................................................76 

 Results ....................................................................................................................87 

 Discussion ..............................................................................................................91 

      Tables ...................................................................................................................101 

      Figures..................................................................................................................116 

 



vi 
 

Chapter                                                                                                                       Page 

 

REFERENCES  .........................................................................................................125 

 

 REFERENCES FOR CHAPTER I ......................................................................125 

 REFERENCES FOR CHAPTER II .....................................................................129 

 REFERENCES FOR CHAPTER III ...................................................................146 

 

 

 

APPENDICES  ..........................................................................................................163 

 

 APPENDIX A ......................................................................................................164 

 APPENDIX B ......................................................................................................180 

 APPENDIX C ......................................................................................................192 



vii 
 

LIST OF TABLES 

 

 

Table           Page 

 

   2.1: Study species used for habitat evaluation ..........................................................39 

   2.2: Microhabitat sampling events by season and site ..............................................41 

   2.3: Reach locations and dates sampled in summer 2018 and 2019 .........................43 

   2.4: Predictor variables used in microhabitat and reach-scale analysis ....................45 

   2.5: Pearson’s correlation coefficient for microhabitat predictors ............................47 

   2.6: Pearson’s correlation coefficient for reach-scale predictors ..............................48 

   2.7: Interaction and main effects from microhabitat analysis ...................................49 

   2.8: Odds ratios of cover use for five species of native species ...............................51 

   2.9: Model parameters and 95% confidence intervals for reach-scale analysis .......52 

   3.1: Active tracking occasions for survival analysis ...............................................101 

   3.2: Predictors used for survival and detection in CJS modeling ...........................102 

   3.3: Parameter lists for CJS models ........................................................................103 

   3.4: Candidate model set for directional movement analysis .................................105 

   3.5: Detections by tracking occasion and date ........................................................108 

   3.6: Top-ranked CJS model for first and second tracking period ...........................109 

   3.7: Coefficient estimates and standard error top-ranked CJS models ...................110 

   3.8: Weekly apparent survival rate adjustments .....................................................111 

   3.9: Model estimates for top-ranked directional movement models .......................113 

   3.10: Summary statistics for Rainbow Trout movement in Spavinaw Creek .........114 

 



viii 
 

LIST OF FIGURES 

 

Figure           Page 

 

   2.1: Location of microhabitat sites sampled .............................................................54 

   2.2: Location of reaches sampled ..............................................................................55 

   2.3: Relative selection trends of depth by native fishes in winter ............................56 

   2.4: Relative selection trends of depth by native fishes in summer ..........................58 

   2.5: Relative selection trends of velocity by natives fishes in winter .......................60 

   2.6: Relative selection trends of velocity by native fishes in summer ......................62 

   2.7: Relative selection trends of substrate by native fishes ......................................64 

   2.8: Relative selection trends of temperature by native fishes ..................................66 

   2.9: Residual plot for final model in reach-scale analysis ........................................68 

   2.10: Relationship between predictor variables and native fish density ...................69 

   3.1: Study segment used for tracking Rainbow Trout in Spavinaw Creek .............116 

   3.2: Fixed and floating antenna arrays used in Spavinaw Creek ............................117 

   3.3: Size distribution of tagged Rainbow Trout stocked in Spavinaw Creek .........118 

   3.4: Discharge and temperature in Spavinaw Creek during survival study ............119 

   3.5: Weekly apparent survival rates for autumn-stocked Rainbow Trout ..............120 

   3.6: Weekly apparent survival rates for spring-stocked Rainbow Trout ................121 

   3.7: Drivers of directional movement for Rainbow Trout in Spavinaw Creek .......122 

   3.8: Detections of Rainbow Trout throughout study segment ................................124 



1 
 

CHAPTER I 
 

 

INTRODUCTION 

 



2 
 

INTRODUCTION 

 The introduction of non-native species often results in both ecological and economic 

consequences. When non-native species become established, they may disrupt proper ecosystem 

function. For example, the accidental introduction of Asian carp Hypophthalmichthys spp. led to 

their range expansion throughout much of the Mississippi River catchment (Sampson et al. 2009). 

These filter-feeding species target the base of the food web, thereby altering energy flow 

throughout the system (Sampson et al. 2009). In addition to ecological effects, invasive species 

result in billions of dollars in damage annually (Pimentel et al. 2005; Lovell et al. 2006). For 

example, substantial infrastructure damages have resulted from the introduction of Zebra Mussel 

Dreissena polymorpha to the Great Lakes (Drake and Bossenbroek 2004), Sea Lamprey 

Petromyzon marinus to the St. Mary’s River (Lupi et al. 2003), and the European Green Crab 

Carcinus maenas to the Pacific Northwest (Lafferty and Kuris 1996).  Despite the documentation 

of negative outcomes related to non-native species introductions, the purposeful introduction of 

non-native species is also common. 

 Globally, introductions of non-native fishes are often driven by economics, and 

commonly associated with unintentional ecological consequences. In the United States, 

approximately 50,000 foreign species are estimated to have been purposely introduced (Pimentel 

et al. 2005). Aquatic species are often introduced as food sources (e.g., Common Carp Cyprinus 

carpio; Weber and Brown 2009) or to provide recreational opportunities (e.g., Brook Trout 

Salvelinus fontinalis; Dunham et al. 2002). For example, Common Carp was introduced from 

Europe to the United States during the 1800’s as a food fish (National Park Service 2015). The 

Common Carp quickly expanded its range across North America, degrading water quality and 

negatively affecting native species (Weber and Brown 2009). Both Blue Catfish Ictalurus 

furcatus and Flathead Catfish Pylodictis olivaris were introduced into Virginia tidal rivers to 

create new sport fishing opportunities for anglers (Moran et al. 2016). Both of these top predators 

are now well established and comprise much of the total biomass in these systems (Schloesser et 
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al. 2011). Salmonids are perhaps the best example of a group of species with consistent non-

native introductions (Halverson 2008). Rainbow Trout Oncorhynchus mykiss is the most widely 

stocked fish species in the United States and has been introduced to every state outside its native 

range (Fuller et al. 1999). Today, most state agencies maintain some form of a trout-stocking 

program, excluding only Florida, Louisiana, and Mississippi (Halverson 2008). Collectively, 

these introductions bring billions of dollars to states via fishing opportunities, but the ecological 

consequences to other native fishes are sometimes unknown. 

 Stocking Rainbow Trout in the United States provides both economic incentives and the 

ability to maintain fisheries in areas where native species have been reduced. Rainbow Trout 

anglers provide substantial financial support to state and federal fishery agencies through the 

purchase of licenses and associated fees (Hyman et al. 2016). In addition, Rainbow Trout anglers 

spend an estimated 3.6 billion dollars on fishing gear, travel, and other associated expenses 

(USFWS 2011). This translates to an estimated 8.6 billion dollars in total economic benefit 

(USFWS 2011). In areas where native species have been negatively affected or eliminated by 

human activity (e.g., impoundments), Rainbow Trout can provide a mitigation fishery. Rainbow 

Trout are commonly stocked in tailwaters of the southern United States to supplement the 

reduction in native species as a result of altered thermal conditions (Bettinger and Bettoli 2002; 

Runge et al. 2008; McManamay et al. 2015). Despite the economic benefits and recreational 

opportunities, there is some evidence to suggest there may be negative interactions between trout 

and native fishes under some circumstances. 

 Introducing Rainbow Trout and other salmonids may result in negative consequences to 

the native species. For example, Rainbow Trout influence both the feeding position and habitat 

selection of the threatened Little Colorado Spinedace Lepidomeda vittata (Blinn et al. 1993; 

Bryan et al. 2002). In laboratory studies, Brown Trout Salmo trutta influence individual forage 

and thermoregulation behavior of native Brook Trout (Hitt et al. 2017). At the population level, 

non-native Brook Trout replaced native Cutthroat Trout Oncorhynchus clarkii in Rocky 
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Mountain headwater streams (Peterson and Fausch 2003). Rainbow Trout introductions have led 

to site-specific declines (i.e., stocking site) in the relative abundance of native fish assemblages 

such as Smallmouth Bass Micropterus dolomieu, Bluegill Lepomis macrochirus, Southern 

Redbelly Dace Chrosomus erythrogaster, and Central Stoneroller Campostoma anomalum 

(Walsh and Winkelman 2004b). There is also evidence of some diet overlap between Rainbow 

Trout and native fishes (Metcalf et al. 1997; Fenner et al. 2004; Oklahoma Department of 

Wildlife Conservation, unpublished data). The presence of Rainbow Trout can disrupt food webs, 

causing native species to switch forage behavior to seek out alternate prey. For example, Baxter 

et al. (2004) showed that Rainbow Trout preyed upon the majority of terrestrial insects that 

dropped into a stream, causing the native Dolly Varden Char Salvelinus malma to switch from 

this food source to benthic invertebrates. In general, investigation into the effects of stocked 

salmonids has focused on native and non-native salmonid interactions (Turek et al. 2013), 

providing little insight to possible interactions with non-salmonid fishes (but see Walsh and 

Winkelman 2004b and Weaver and Kwak 2013).  

 Evaluations of interactions between introduced Rainbow Trout and non-salmonid native 

species reveal few patterns but have been limited in scope. The geographic extent of introductions 

make it difficult to make large generalizations about the possible ecological consequences 

(Fausch et al. 2001; Turek et al. 2013). Rainbow Trout have been introduced in warmwater 

streams (Walsh and Winkelman 2004a), coldwater lakes (Koenig et al. 2011), and in dam 

tailwaters (Bettinger and Bettoli 2002) to provide seasonal or year-round fishing opportunities. In 

some instances, no ecological effect has been related to trout introductions. For example, Weaver 

and Kwak (2013) found no measurable difference in native species richness, diversity, and 

microhabitat use following the introduction of three salmonid species including Rainbow Trout in 

coldwater Appalachian Mountain streams. The authors hypothesized that either these hatchery-

raised trout were poor competitors in the natural stream landscape or that negative effects caused 

by trout were masked by environmental variability (Weaver and Kwak 2013). In addition, 
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existing studies have been both spatially and temporally limited (e.g., 1 – 2 years, Weaver and 

Kwak 2013), lacked reference sites (i.e., not accounting for environmental variation, Walsh and 

Winkelman 2004b), and evaluated only a few mechanisms (Turek et al. 2013). Lastly, Fausch et 

al. (2001) highlight that both invasion success and interactions among Rainbow Trout and native 

species may largely depend on the suitability of coarse-scale environmental factors in various 

ecosystems (e.g., flow regime).  

 The overarching goal of my thesis was to increase our understanding of interactions 

between non-native Rainbow Trout and native fishes with emphasis on spring-fed, warmwater 

streams. I accomplished this goal via two primary objectives. The first objective of my thesis was 

to examine the relationship between the presence of Rainbow Trout and shifts in spatio-temporal 

habitat selection by native fishes. I addressed this question at two spatial scales, microhabitat and 

channel unit complexes. Additionally, my study addressed seasonal differences at the 

microhabitat scale. To infer the spatial and temporal extent of changes in habitat selection related 

to Rainbow Trout presence, it was also important to evaluate Rainbow Trout movement extent 

and their ability to persist in this stream. Consequently, the second objective of my thesis was to 

determine the movement and survival of Rainbow Trout stocked in the lower portion of Spavinaw 

Creek. This allowed me to infer the temporal extent of any stressors caused by the presence of 

Rainbow Trout. Collectively, my thesis provides important baseline data to develop hypotheses 

about mechanisms related to observed patterns in resource use at multiple spatial scales.  

 

STUDY AREA AND PROJECT BACKGROUND 

 Spavinaw Creek is emblematic of many streams of the Ozark Highlands ecoregion. The 

climate of this region is moderate and most streams are classified as warmwater. However, the 

ecoregion is characterized by karst geology with notable groundwater contribution (i.e., seepage 

of groundwater into the stream) and subsequent thermal patchiness in many streams. The 

influence of groundwater on the thermal regime of Spavinaw Creek and similar streams in the 
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Ozark region has resulted in stocking of coldwater species including Rainbow Trout to increasing 

angling opportunities. Spavinaw Creek also supports healthy populations of native fishes that are 

recreationally important and of conservation value.  

 Historic stocking in Spavinaw Creek has provided limited information on possible 

ecological interactions with other fishes. Spavinaw Creek has been stocked with both Rainbow 

Trout and to a lesser degree, Brown Trout, in Arkansas. Some stocking occurred in the 1950’s 

(Baker 1954), and the last legal stocking was in 2013. Rainbow Trout continue to be observed in 

Spavinaw Creek on occasion, but it is unknown if the thermal characteristics allow persistence or 

if illegal stockings result in the current presence of Rainbow Trout (Brown and Moore 2008). 

Previous efforts characterized possible diet overlap between Rainbow Trout and native species 

and determined trout density at select locations (Brown and Moore 2008; Williams et al. 2011). 

These investigations provided little insight due to limited access to private lands, short sampling 

duration, and evaluations only considered Rainbow Trout, Brown Trout, and the adult life stage 

of two sport fishes (Smallmouth Bass and Shadow Bass Ambloplites ariommus). Our limited 

understanding of the interactions between existing Rainbow Trout and native species in this 

spring-fed system, combined with pressure to allow stocking at additional locations have 

emphasized the need to examine this system in more detail.  

 An application to stock Rainbow Trout in the lower portion of Spavinaw Creek 

(Oklahoma) was granted to a private angling group by the Oklahoma Department of Wildlife 

Conservation in October 2018. Since then, stocking has occurred in autumn 2018 and spring 2019 

at a single stream reach (see Chapter 3). The stocked portion of Spavinaw Creek contains one of 

the highest densities of Neosho Smallmouth Bass in the region, an important native sport fish 

(Brewer, unpublished data). Additionally, Spavinaw Creek supports populations of several 

species of conservation concern. For example, the Redspot Chub Nocomis asper is listed by both 

the Oklahoma Department of Wildlife Conservation and the Arkansas Game and Fish 

Commission as a Species of Greatest Conservation Need under their respective Wildlife Action 
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Plans. Consequently, the situation presented an opportunity to expand our understanding of how 

non-native salmonid introductions affect native fishes of recreation and conservation value. 
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CHAPTER II 
 

 

IDENTIFYING HABITAT SELECTION SHIFTS BY STREAM FISHES IN RESPONSE TO 

RAINBOW TROUT  
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ABSTRACT 

Fishes select habitat at multiple spatial and temporal scales to maximize forage efficiency, 

reproductive success, and to seek cover from predators or harsh physiochemical conditions. 

Habitat shifts by some species may also be driven by the presence of non-native fishes, 

particularly under conditions where key resources are limited. My objectives were to 1) determine 

microhabitat selection by five native fishes (Smallmouth Bass Micropterus dolomieu, Redspot 

Chub Nocomis asper, Creek Chub Semotilus atromaculatus, Redhorse Moxostoma spp. and 

Northern Hogsucker Hypentelium nigricans) in the presence and absence of non-native Rainbow 

Trout Oncorhynchus mykiss and 2) determine the relationship between native fishes, the presence 

of Rainbow Trout, and reach-scale habitat factors. I conducted seasonal microhabitat surveys 

throughout my two-year study period. I found Rainbow Trout present within my study reaches 

were related to several native fishes shifting their seasonal microhabitat selection patterns: depth 

(e.g., shifted to greater depth), velocity (e.g., shifted to lower velocity), temperature (e.g., shifted 

to less use of unique thermal patches), and cover (e.g., used more cover); however, seasonal and 

site-specific differences in habitat availability are important considerations when interpreting 

these relationships. Reach-scale snorkel surveys over two years were conducted during summer, 

base flow conditions. I found little relationship between Rainbow Trout density and native fish 

densities at the reach scale with only Creek Chub having a significant relationship Rainbow 

Trout. However, residual pool depth, percent riffle, and maximum weekly maximum temperature 

were strong predictors of native fish density. If the conservation of native species is the 

management goal, then eliminating or reducing stocking to seasons where minimal perceived 

interactions occur with native fishes would seem warranted (see Chapter 3). Future efforts 

examining additional changes in habitat selection would be helpful if Rainbow Trout stocking is 

continued and may provide more clarity on potential interactions.  
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INTRODUCTION 

 Physicochemical habitat use and selection patterns (i.e., where use exceeds available 

conditions, Johnson 1980; Boyce et al. 2002) confer benefits to stream fishes and aid in 

developing conservation and restoration strategies. Fishes select physical factors (e.g., cover and 

substrate, Todd and Rabeni 1989), hydraulics (e.g., depth and velocity; Fore et al. 2007) and 

water-quality constituents (e.g., pH, temperature, and dissolved oxygen, Snucins et al. 1995) to 

increase survival and fitness. Selection of physicochemical factors increases feeding success (e.g., 

Bluegill Lepomis macrochirus, Mittelbach 1981), provides cover from predators (e.g., Bluegill, 

Shoup et al. 2003), and minimizes energy loss (e.g., salmonids, Fausch 1984). Understanding 

how fishes select habitat elements is useful for developing management strategies (Guthery et al. 

2005). For example, Nislow et al. (1999) determined the most profitable feeding position for age-

0 Atlantic Salmon Salmo salar and recommended large woody debris be incorporated into stream 

restoration activities to provide velocity refuge for age-0 fish. Habitat selection has served as a 

foundation for instream flow recommendations (Moyle and Baltz 1985), stream restoration 

guidelines (Bond and Lake 2003), and is a useful way to assess possible species interactions 

(Weaver and Kwak 2013). However, the relationships that underlie these conservation and 

management strategies are often scale dependent.   

 The population dynamics of stream fishes (growth, mortality, and recruitment) may 

benefit from physiochemical selection at multiple spatial and temporal scales. At coarse scales, 

climate (e.g., Ficke et al. 2007; Comte et al. 2013; Carlson et al. 2014), land use (e.g., Harding et 

al. 1998; Meador and Goldstein 2003; Brewer and Rabeni 2011), and geology (e.g., Esselman et 

al. 2006; Neff and Jackson 2012) relate to population functions often via secondary production 

(Stevenson 1997). For example, longitudinal differences in temperature (Rieman et al. 2006) and 

production (Vannote et al. 1980) relate to both changes in elevation and fish assemblage structure 

(Schlosser 1982; Rahel and Hubert 1991; de la Hoz Franco and Budy 2005). At a finer spatial 

scale, individual habitat selection can also relate to population dynamics via predation rates (e.g., 
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predator avoidance, Grossman et al. 1987), reproductive benefits (e.g., suitable nesting habitat or 

associations, Peoples et al. 2014), and benefit fish bioenergetics (e.g., thermal refuge, Ebersole et 

al. 2003a). Selection patterns across multiple spatial scales are an important consideration 

(Frissell et al. 1986) and can provide a more-complete picture of habitat selection (e.g., see 

Torgersen et al. 1999). For example, adult Smallmouth Bass Micropterus dolomieu select pool 

habitats but population density is associated with increasing amounts of riffle habitat at the reach 

scale, presumably due to prey production (Sowa and Rabeni 1995; Brewer 2013a). In addition, 

habitat selection may vary temporally due to seasonal (e.g., cover use, Todd and Rabeni 1989; 

temperature, Wolf et al. 2019) or daily needs (cover, Cook et al. 2001; and depth, Salas and 

Snyder 2010). Examining habitat selection among scales is a useful strategy for both improving 

native fish conservation and management, but also for assessing possible limiting resources that 

benefit both native and non-native fishes. 

 Interactions between native and non-native species may be scale or condition dependent 

when a resource becomes limiting (Taniguchi and Nakano 2000). For example, Hitt et al. (2017) 

showed competition for patchy thermal resources between non-native Brown Trout Salmo trutta 

and native Brook Trout Salvelinus fontinalis. Native Warpaint Shiners Luxilus coccogenis shifted 

to higher-velocity environments and their home range size increased in response to the presence 

of Rainbow Trout (Elkins et al. 2019). Likewise, Baxter et al. (2004) showed shifts in forage 

behavior by native species following the introduction of non-native Rainbow Trout 

Oncorhynchus mykiss. At coarser scales, shifts in fish assemblage structure (Walsh and 

Winkelman 2004) and declines in native species abundance have been related to non-native 

species introductions (e.g., see Peterson et al. 2004). Although multi-scale investigations of 

habitat use or selection are relatively common (e.g., Torgersen et al. 1999; Bean et al. 2015), 

multiscale studies examining resource overlap between native and non-native species are rare (but 

see Weaver and Kwak 2013). Consequently, an important consideration when examining 

resource overlap among species in to consider seasonal shifts in selection. For example, many 
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fishes select coolwater habitat during the summer (e.g., Chinook Salmon Oncorhynchus 

tshawytscha, Ebersole et al. 2003a; Smallmouth Bass, Whitledge et al. 2006; Southern Redbelly 

Dace Chrosomus erythrogaster, Walker et al. 2013), suggesting competition among species could 

be possible if these resources are limited. Consequently, multiscale evaluations examining 

resource overlap or shifts by native fishes in the presence of non-native fishes may identify 

seasonal or scale-specific interactions.  

 My first thesis objective was to determine habitat selection patterns by several native 

fishes at both microhabitat and reach scales. Specific to my overarching research question, I 

sought to identify selection patterns under both reference (i.e., no Rainbow Trout) and stocked 

(i.e., with Rainbow Trout) conditions. This allowed me to determine if the introduction of 

Rainbow Trout related to habitat selection shifts by native fishes. This information will be 

informative to agency stocking decisions assuming native fish conservation is the management 

goal. 

 

METHODS 

Study area  

 My study area was located in eastern Oklahoma and western Arkansas in the Ozark 

Highlands ecoregion. The Ozark Highland ecoregion has a moderate climate with average high 

temperatures of 9˚C and 33˚C in January and July, respectively. The average annual rainfall is 

approximately 120 cm (Woods et al. 2005). The western portion of the ecoregion is characterized 

by cherty clay soils and underlying karst geology (Woods et al. 2005). Vegetation is typically 

oak-hickory forest, though much of the lowland area has been converted to agricultural land uses 

(e.g., pasture). Within this ecoregion, I sampled sites on both Spavinaw and Spring creeks 

(Figures 1 and 2). Spavinaw and Spring Creeks are third- and fourth-order (Strahler 1952) 

streams, respectively (upstream drainage areas from the nearest USGS stream flow gauge 297 

km2 and 422 km2) and have similar fish assemblage structure (Brewer, Unpublished data). In 
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addition, both streams are classified by relatively high groundwater contributions (Mollenhauer et 

al. 2019). 

 

Species and life stages 

 I determined habitat selection by five native fish species because of their hypothesized 

resource overlap with Rainbow Trout, recreation value, and conservation need (Table 1). All 

species chosen occupy pool and run habitats that are also used by stocked Rainbow Trout in 

warmwater streams (Walsh and Winkelman 2004). Some species including the Creek Chub 

Semotilus atromaculatus have relationships with cooler water which I hypothesized would create 

resource overlap with Rainbow Trout. Additionally, Smallmouth Bass, Northern Hogsucker 

Hypentelium nigricans, and fishes of the genus Moxostoma spp. provide important recreational 

fisheries in the Ozark Highlands ecoregion. The Redspot Chub Nocomis asper and Shorthead 

Redhorse Moxostoma macrolepidotum are listed as species of conservation concern by both 

Arkansas Game and Fish Commission (AGFC) and the Oklahoma Department of Wildlife 

Conservation (ODWC). In Spavinaw and Spring Creeks, “Redhorse” consisted of Golden 

Redhorse Moxostoma erythrurum, Black Redhorse Moxostoma duquesni, and Shorthead 

Redhorse. These species could not be identified from one another using snorkel surveys but 

sampling data associated with unpublished studies indicate the majority are Blackhorse (Zentner, 

unpublished data).     

 I considered juvenile and age-1+ Smallmouth Bass separately in my surveys. I considered 

“juvenile” Smallmouth Bass to be fish beyond the black fry stage (approximately 35 mm total 

length [TL]) but ≤ 85 mm TL. Juveniles were both Smallmouth Bass that survived their first 

winter (i.e., age 1 fish) but also young-of-year Smallmouth Bass that were sampled during 

autumn and winter microhabitat assessments. I did not consider young-of-year Smallmouth Bass 

in my reach-scale surveys because their numbers decline rapidly throughout their first summer 

due to natural mortality (Lukas and Orth 1995; Brewer and Orth 2015); thus, differences among 
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sites would not necessarily relate to the presence of Rainbow Trout. I considered Smallmouth 

Bass > 85 mm to be age-1+ (Reed and Rabeni 1989; Brewer and Ellersieck 2011). For all other 

species, I enumerated only the adult life stage using species-specific length criteria (Table 1). 

 

Site selection 

 Microhabitat. – I sampled four sites (i.e., pool-run complexes 100 – 200 m long consisting of 

heterogeneous microhabitat conditions) seasonally 2017 – 2019 to determine microhabitat 

selection by native fishes (Figure 1). Each site was visited several times during my study (Table 

2) and observations between visits were assumed to be independent given the dynamic nature of 

stream habitat conditions across fine spatial scales (Frissell et al. 1986). I selected sites based on 

Rainbow Trout distribution and microhabitat heterogeneity. Three of my study sites were located 

on Spavinaw Creek because of the proximity to previously (AR) and currently (OK) known 

Rainbow Trout stocking locations. I chose sites in both AR and OK to account for differences in 

thermal microhabitat because colder water is available in AR. My fourth site was located on 

Spring Creek (OK). The Spring Creek site was my control (i.e., no Rainbow Trout throughout my 

study) and sampled seasonally (Table 2). I sampled the upstream site of Spavinaw Creek (AR) in 

winter and summer, and the downstream sites (OK sites) in spring, summer, and autumn (Table 

2).  The site in AR had higher groundwater contribution compared to the Oklahoma sites 

(Bowman et al. 1996; Brewer unpublished data); thus, I hypothesized habitat conditions in the 

Arkansas site would be more favorable for some stream fishes including Rainbow Trout during 

seasons of thermal stress (i.e., summer and winter).  

 

Reach. – I sampled reaches (length approximately 20x average wetted width) throughout the 

summer and autumn 2018 and 2019 (Figure 2). I chose reaches that appeared to have different 

Rainbow Trout densities and heterogeneous habitat characteristics. I sampled 13 reaches on 

Spawinaw Creek and 5 reaches on Spring Creek over the 2018 – 2019 sample seasons (Table 3). I 
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sampled each reach on multiple occasions during each sample season. Similar to microhabitat 

sites, I assumed fish counts (i.e., sampling visits) to be independent of one another during each 

survey.  

 

Habitat availability 

Microhabitat. – I systematically quantified microhabitat availability across each of my sites. I 

established transects perpendicular to stream flow at 5-m increments. I recorded habitat 

measurements at four locations along each transect. Two points were measured 1 m from each 

streambank to encompass near-bank habitat. The two inner measurements were equally spaced 

along each transect between these outer points. At each point, I measured water depth (0.05 m), 

approximate water-column velocity (0.1 m/s, at approx. 0.6 depth) and benthic water velocity (0.1 

m/s, just above substrate), dominant substrate, presence of cover, and water temperature (0.5 °C, 

1-h resolution; see below). Water velocity was measured using Marsh McBirney Flo-Mate 2000 

flow meter (Marsh-McBirney Inc., Fredrick, MD) or a Global Water Flow Probe (Global Water, 

College Station, TX). I measured the water velocity at two points in the water column because of 

differences in water-column use among my study species. Specifically, I measured benthic 

velocity to quantify both use and available velocities associated with Northern Hogsucker due to 

the species’ benthic ecology (Miller and Robison 2004). I visually estimated the dominant 

substrate within a 1-m2 patch (Brewer and Ellersieck 2011) using classifications of McMahon et 

al. (1996): 0) unbroken, 1) silt (< 0.06 mm), 2) sand (≥ 0.06 – 2 mm), 3) gravel (> 2 – 16 mm), 4) 

pebble (> 16 – 64 mm), 5) cobble (> 64 – 256 mm), and 6) boulder (> 256 mm). I considered 

cover present if any of the following habitat elements were located in a microhabitat patch: 1) 

coarse wood (>10 cm in diameter and 3 m in length; Wohl et al. (2010), 2) smaller wood ≤ 10-cm 

diameter (e.g., fallen tree limbs), 3) rootwads, or 4) boulders. Consequently, boulders contributed 

to both cover and substrate classifications. Lastly, I measured water temperature at each patch 

using multiple methods as described below. 
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 I used a combination of temperature loggers (iButton, Maxim, San Jose, CA) and a fiber-

optic distributed temperature sensing (DTS) system to measure temperature availability across 

each site. I waterproofed iButton loggers in plastic (Plasti Dip International; Blaine, Minnesota) 

following the methods of Roznik and Alford (2012). Each iButton logger was placed in white 

PVC pipe and anchored to the substrate to limit the effects of solar radiation on water temperature 

measurements. A detailed explanation of the theory and application of DTS is provided in Selker 

et al. (2006). Briefly, DTS systems consist of fiber-optic cable that transmits light from a 

connected control box. Temperature along the cable is determined by measuring the scattering 

effect of light at different wavelengths along the cable. I deployed the fiber-optic cable along the 

stream bed and allowed it to pass through each habitat patch. The fiber-optic cable was connected 

to the box located on the stream bank that recorded temperature along the cable at fine spatial (~ 

1 m) and temporal (~ 1 min) resolutions. I spatially referenced each patch to a cable location; 

thus, providing a continuous measurement of temperature across each site. Comparisons between 

iButton and DTS temperature measurements from multiple sites indicated solar radiation did not 

influence DTS measurements (< 0.5 ˚C difference; Wolf, unpublished data; see also Neilson et al. 

(2010). 

 

Habitat use 

Microhabitat. – I quantified the same habitat measurements measured during habitat availability 

surveys at each marked fish location to provide microhabitat use data. For depth, substrate, and 

cover, habitat use variables at each fish location were measured using the aforementioned 

methods (i.e., see Microhabitat availability). However, I did not measure velocity or temperature 

at each fish location. Instead, I spatially referenced each fish observation to the nearest transect-

point measurement. The spatially-referenced locations were later used to obtain both temperature 

(i.e., matched to the time of the survey, 1-hr resolution) and velocity measurements.  
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Reach. – I recorded physicochemical characteristics that I hypothesized would influence fish 

counts at the reach scale. Habitat measurements were quantified on one or more occasions 

depending on the variation in conditions over time. For example, groundwater during the summer 

base flow period would be expected to decline slowly (Adamski et al. 1995); thus, repeat 

measurements during each survey were not necessary. I used either an Acoustic Doppler Current 

Profiler (Sontek RiverSurveyor S5, San Diego, CA) or a flow meter and wading rod (Marsh 

McBirney, Flo-mate 2000, Fredrick, MD) to measure fine-resolution discharge at the upstream 

and downstream extent of each reach one time. I used the difference in these measurements to 

classify each reach as gaining or losing groundwater (i.e., seepage measurements, Zhou et al 

2018; Mollenhauer et al. 2019). I quantified channel unit area across each reach for two purposes. 

First, I was able to quantify what proportion of each reach consisted of riffle habitat. I 

hypothesized that differences in the proportion of riffle habitat at each reach would be related to 

fish counts because secondary production of macroinvertebrates in riffles can provide important 

food sources (e.g., crayfishes, Brewer et al. 2009) for stream-dwelling fishes (Sowa and Rabeni 

1995; Brewer 2013a). Second, having channel unit area quantified also allowed me to offset my 

counts (i.e., events) by the total reach area (exposer) so that model estimates were treated as a rate 

(fish/m2) during Poisson regression (see analysis). This was important because the length of each 

reach was determined by the average wetted width and consequently, each reach did not comprise 

the same surface area. I measured residual pool depth (RPD; 0.05 m) of all pools at each reach by 

subtracting the downstream riffle crest from the deepest point of the upstream pool (Lisle 1987). I 

used RPD measurements from each pool at a reach to calculate the average RPD at each reach. 

RPD is more informative of channel depth independent of water level at the time of sampling 

(Lisle 1987; Mollenhauer et al. 2013). During each survey, I visually estimated the percentage of 

instream cover at each reach consisting of both boulders and coarse wood structure. These forms 

of cover are important to stream fishes (Todd and Rabeni 1989; Fore et al. 2007) and typically did 

not change in proportion at each reach during summer conditions. I deployed temperature loggers 
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(HOBO ProV2, Onset, Bourne, MA) in white PVC and cemented them to bedrock located in a 

run (i.e., areas of well mixed water) at a depth of approximately 0.5 m. I used hourly temperature 

measurements to calculate thermal metrics relevant to warmwater stream fishes (i.e., MWMT, see 

data analysis). 

 

Snorkel Surveys 

 I used multiple-pass snorkel surveys to both quantify microhabitat use and enumerate 

fishes because the conditions in Spavinaw and Spring creeks were ideal for effectively using this 

approach. Snorkeling is an efficient method for habitat-use and fish-count observations in 

moderate depths and high water clarity (Dunham et al. 2009; Brewer and Ellersieck 2011). 

Visibility during snorkel surveys was ideal for counting fish (average horizontal water clarity 6.3 

m; range 2.1 – 11.5 m, horizontal distance of fish silhouette, Dunham et al. 2009). I limited 

snorkel surveys to 2 h after sunrise and 2 h prior to sunset to optimize light conditions for each 

snorkel pass (Thurow et al. 2012). Each site or reach remained undisturbed for at least 1 h 

between snorkel passes following recommendations of Brewer and Ellersieck (2011) to allow 

disturbed fishes to redistribute.  

 During each snorkel pass, two snorkelers surveyed designated lanes based on habitat 

complexity. The more-complex lane tended to be narrower and deeper with more cover (Dunham 

et al. 2009). Observers slowly swam in an upstream direction to minimize fright responses by 

fishes. When an individual was encountered, observers tallied that individual on a writing cuff. 

For microhabitat assessments, I placed a weighted flag with unique identification on the substrate 

at the approximate focal location of the observed fish (Fore et al. 2007; Brewer 2013b; Weaver 

and Kwak 2013). The snorkel team maintained communication when fishes were observed near 

lane boundaries to minimize double counting or marking. During reach-scale assessments, I 

conducted two snorkel passes during each survey to estimate count precision. During 

microhabitat assessments, I conducted two to three snorkel passes daily over two to four days. 
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Data Analyses 

Microhabitat. – I adjusted my data prior to analyses to improve interpretation of the results and 

meet generalized linear mixed model assumptions. To create relative temperature values for 

seasonal comparisons, I calculated the median temperature across all habitat patches during the 

time period (typically 1 h) that a snorkel pass took place. I subtracted the median value from each 

individual temperature measurement (i.e., from the temperature of each “habitat patch”) during 

the same time period. For example, if the median temperature across all thermal patches was 21 ֯C 

(minimum – maximum: 19 – 22 ˚C) for a given snorkel pass, then the resulting values were -2 ˚C, 

-1.5 ˚C, -1 ˚C, -0.5 ˚C, 0 ˚C, 0.5 ˚C, and 1 ˚C which corresponded to the original measurements of 

19 ˚C, 19.5 ˚C, 20 ˚C, 20.5 ˚C, 21 ˚C, 21.5 ˚C, and 22 ˚C. Negative values represented cooler 

patches relative to the median water temperature, whereas positive values reflected warmer 

patches. I natural-log transformed water depth and velocity due to a right-skewed distribution. I 

standardized all continuous variables to a mean of zero and a standard deviation of one to 

improve model interpretation and promote parameter convergence (Gelman and Hill 2007).  

 I developed a resource selection function (RSF) to determine if Rainbow Trout 

influenced microhabitat selection patterns of native fishes. An important aspect of developing a 

RSF is identifying a reasonable ratio of use-available data points (hereafter, sampling ratio). RSFs 

differ from resource selection probability functions generated from use and non-use study designs 

because they measure the probability of use with respect to other predicted values rather than a 

true probability (Manly et al. 2002; Johnson et al. 2006). However, varying sampling ratios may 

still influence predicted relationships and subsequent ecological inferences under a use-

availability framework (e.g., Northrup et al. 2013; Nad’o and Kanuch 2018). For the purpose of 

my study, I evaluated subsets of availability points to determine a logical sampling ratio that 

allowed meaningful selection relationships to be interpreted while maintaining reasonable 

computation time and species comparisons. I determined that a 1:5 sampling ratio would be 
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appropriate for my analysis (see Appendix A). Consequently, I standardized this ratio across my 

dataset for each species and by each sampling event.  

 I used a generalized linear mixed model with a binomial distribution to develop my RSF. 

These models determine the probability of use (i.e., a fish being present) using a binomial 

response variable where a vector of habitat measurements associated with fish observations are 

coded as one, and a vector of measurements associated with habitat availability (i.e., transect) 

points are coded as zero. Binomial model assumptions are: 1) the response variable is binary, 2) 

observations are independent of each other, 3) predictor variables have little to no 

multicollinearity with each other, and 4) each independent variable is linearly related to the log 

odds.  

 I fitted a global model with the highest-order interactions I hypothesized to describe how 

the presence of Rainbow Trout related to seasonal habitat selection by native species while also 

accounting for nested observations. The global model contained four-way interactions between 

each microhabitat variable, species, my Rainbow Trout indicator variable, and sampling day 

(Table 4). This allowed me to determine if Rainbow Trout presence was related to microhabitat 

shifts and whether these shifts were species specific, habitat specific, and/or seasonally specific. I 

included species as a factor with six levels reflecting my study species or life stages (i.e., 

Smallmouth Bass). The number of Rainbow Trout at each site was represented using an indicator 

variable where high density (≥ 5 fish) was indicated by 1 and < 5 Rainbow Trout was indicated 

by 0. The limited distribution of Rainbow Trout counts among each of my study sites prevented 

me from including Rainbow Trout density as a continuous variable. Lastly, I included sampling 

day as a continuous time variable where values either increased by one each day from zero 

(December 21) to 182 (June 21) or decreased by one each day from 182 (June 22) to 0 (December 

21). I checked correlation among my predictor variables using Pearson’s pairwise correlation 

coefficient (r) and none exceeded |0.37| (Table 5). I also included three grouping factors to 

account for nested (i.e., non-independent) observations within each sampling day (N = 44), 
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sampling visit (N = 12), and sampling site (N = 4; Wagner et al. 2006; Gelman and Hill 2007). 

The global model I fit can be expressed as: 

Model: probability (logit) ~ L(μ, 2) 

μ = α0[i] + ∑ 𝛼𝑗[𝑖]
 𝐽

𝑗=1        intercept and species deflections 

+ β9j[i]{ ∑ 𝛼𝑗[𝑖]
 𝐽

𝑗=1 * ∑ 𝛽1𝑗[𝑖]𝑋1
𝐽
𝑗=1  }  species deflections by season 

+ β10j[i]{ ∑ 𝛼𝑗[𝑖]
  𝐽

𝑗=1 ∗ ∑ 𝛽2𝑗[𝑖]𝑋2
𝐽
𝑗=1  } species deflections by trout interaction  

+ β11j[i]{ ∑ 𝛼𝑗[𝑖]
  𝐽

𝑗=1 ∗  [∑ 𝛽3𝑗[𝑖]𝑋3
𝐽
𝑗=1 +  ∑ 𝛽4𝑗[𝑖]𝑋4

𝐽
𝑗=1 +  ∑ 𝛽5𝑗[𝑖]𝑋5

𝐽
𝑗=1 +  ∑ 𝛽6𝑗[𝑖]𝑋6

𝐽
𝑗=1 +

 ∑ 𝛽7𝑗[𝑖]𝑋7
𝐽
𝑗=1 +  ∑ 𝛽8𝑗[𝑖]𝑋8 

𝐽
𝑗=1 ]} species deflections by habitat interaction 

+ β12j[i]{ ∑ 𝛼𝑗[𝑖]
 𝐽

𝑗=1 * ∑ 𝛽1𝑗[𝑖]𝑋1
𝐽
𝑗=1 ∗ ∑ 𝛽2𝑗[𝑖]𝑋2

𝐽
𝑗=1  } species deflections by season and trout 

interaction 

+ β13j[i] {∑ 𝛼𝑗[𝑖]
 𝐽

𝑗=1 * ∑ 𝛽1𝑗[𝑖]𝑋1
𝐽
𝑗=1 ∗ [∑ 𝛽3𝑗[𝑖]𝑋3

𝐽
𝑗=1 +  ∑ 𝛽4𝑗[𝑖]𝑋4

𝐽
𝑗=1 +  ∑ 𝛽5𝑗[𝑖]𝑋5

𝐽
𝑗=1 +

 ∑ 𝛽6𝑗[𝑖]𝑋6
𝐽
𝑗=1 +  ∑ 𝛽7𝑗[𝑖]𝑋7

𝐽
𝑗=1 + ∑ 𝛽8𝑗[𝑖]𝑋8 𝐽

𝑗=1 ]} species deflections by habitat and season 

interaction 

+ β14j[i] {∑ 𝛼𝑗[𝑖]
 𝐽

𝑗=1 * ∑ 𝛽2𝑗[𝑖]𝑋2
𝐽
𝑗=1 ∗ [∑ 𝛽3𝑗[𝑖]𝑋3

𝐽
𝑗=1 + ∑ 𝛽4𝑗[𝑖]𝑋4

𝐽
𝑗=1 +  ∑ 𝛽5𝑗[𝑖]𝑋5

𝐽
𝑗=1 +

 ∑ 𝛽6𝑗[𝑖]𝑋6
𝐽
𝑗=1 +  ∑ 𝛽7𝑗[𝑖]𝑋7

𝐽
𝑗=1 + ∑ 𝛽8𝑗[𝑖]𝑋8 𝐽

𝑗=1 ]} species deflection by habitat and trout 

interaction 

+ β15j[i]{ ∑ 𝛼𝑗[𝑖]
 𝐽

𝑗=1 * ∑ 𝛽1𝑗[𝑖]𝑋1
𝐽
𝑗=1 * ∑ 𝛽2𝑗[𝑖]𝑋2

𝐽
𝑗=1  * [ ∑ 𝛽3𝑗[𝑖]𝑋3

𝐽
𝑗=1 +  ∑ 𝛽4𝑗[𝑖]𝑋4

𝐽
𝑗=1 +

 ∑ 𝛽5𝑗[𝑖]𝑋5
𝐽
𝑗=1 +  ∑ 𝛽6𝑗[𝑖]𝑋6

𝐽
𝑗=1 + ∑ 𝛽7𝑗[𝑖]𝑋7

𝐽
𝑗=1 +  ∑ 𝛽8𝑗[𝑖]𝑋8 ]𝐽

𝑗=1 } species deflections by 

season, habitat, and trout interaction 

+  d   + Ρz + ɛr   grouping factors 

α0[i] ~ N(0, 2), for k = 1, 2, ….. I 

αj ~ N(0, 2), for j = 1, 2, ….. J 

β1j – βxj ~ N(0, 2), for j = 1, 2, ….. J 
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d~ N(0, 𝜎
2), for k = 1, 2, …..D (day) 

Ρz ~ N(0, 𝜎
2), for z = 1, 2, …..Z (visit) 

ɛr ~ N(0, 𝜎ɛ
2), for r = 1,2, …. R (site) 

Where i are observations 1, 2… I, j is species 1, 2 … J, α0 is the grand intercept, αj are species j 

deflections from the group-mean intercept,  β1j – β8j are the species j deflections from the group-

mean predictor variable coefficient (all main effects), β9j – β15j are the species-specific deflections 

from interactions between main effects, X1 = time,  X2 = trout (factor with two levels - yes/no), X3 

= depth (continuous), X4 = quadratic depth (continuous), X5 = velocity (continuous), X6 = 

temperature (continuous), X7 = substrate (continuous), X8 = cover (factor with two levels - yes/no). 

 I fitted the model using program JAGS (Plummer 2003) via the package jagsUI (Kellner 

2018) in the statistical software R (version 3.4.2, R Core Team 2017). I used broad normal priors 

for all model parameters and vague gamma priors for each associated standard deviation 

(Kruschke 2015). I estimated each posterior distribution using a Markov chain Monte Carlo 

method with 10,000 burn-in iterations, a thin rate of 10, and 50,000 final iterations. I assessed 

parameter convergence using the Brooks-Gelman-Rubin statistic (�̂�; Gelman and Rubin 1992) 

where values ≤ 1.1 indicate convergence.  

  After fitting my global (i.e., most complex) model, I selected my final model using a 

backward-selection process to retain only important predictor variables and interactions (Fore et 

al. 2007; Mollenhauer et al. 2019). I assessed the importance of interactions and main effects 

using 95% highest density intervals (HDIs), beginning with terms for the highest-order 

interactions. I retained interactions if at least one of the HDIs for a species-specific deflection did 

not overlap 0. I also eliminated interactions that came with 0.01 of overlapping zero to account 

for differences in estimates after rerunning the model (i.e., I was more conservative in my 

retention of interactions). In cases where only the group mean (i.e., species mean) for an 

interaction was deemed important by my HDI criteria, I eliminated the species-specific 
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deflections but retained the interaction with the group mean. I eliminated all four-way interactions 

that overlapped zero in the same step. After eliminating four-way interactions, I re-fitted the 

model and eliminated three-way interactions using the same approach. The process was repeated 

for two-way interactions and main effects (unless they were included in an interaction). I retained 

all grouping factors throughout model selection and in the final model.   

 

Reach-scale. – I made several adjustments and transformations to my data prior to analysis. I 

used hourly temperature data collected from each reach to calculate the maximum weekly 

maximum temperature (MWMT) for each survey. MWMT was calculated by averaging the 

maximum daily water temperature across the 7 days prior to each survey. The MWMT is better 

suited for characterizing the relationship between thermal patterns and fish count data because it 

can be considered a measure of both chronic and acute thermal stress. Additionally, MWMT 

captures diel fluctuation of water temperature in warmwater streams better than the thermal 

metric maximum weekly average temperature (Shelton et al. 2018). In some cases, I did not have 

temperature data for the week prior to a survey. In 2018, all temperature loggers were deployed 

during the first survey (i.e., not 7 days prior). In these cases, I used the average of the MWMT 

values for the other surveys within the same reach. Similar to Mollenhauer et al. (2019), I 

classified groundwater contribution using an indicator variable where “losing” were reaches with 

no change or loss of discharge and “gaining” were reaches with discharge increase. Losing 

reaches were more common than gaining reaches and consequently, served as the reference 

category. Reaches without seepage measurements due to equipment malfunctions were classified 

at the reference level (i.e., losing). I used channel unit measurements to calculate riffle area (m2) 

and total area (m2) of each reach. I used these measurements to determine the percent riffle at 

each site (percent riffle = riffle area/total area). I log transformed total reach area to serve as a 

count offset for reach area sampled in the model (Gelman and Hill 2007). I also divided the 

Rainbow Trout count during each survey by the log-transformed area to account for count 
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differences in area sampled. I added a constant of 1 and log-transformed percent riffle and 

Rainbow Trout predictor variables due to right-skewed distributions. I standardized RPD, percent 

cover, percent riffle, and MWMT to a mean of zero and standard deviation of one to improve 

model interpretation.  I did not standardize the Rainbow Trout predictor variable so model 

estimates were interpreted at reference (i.e., no trout) conditions. Lastly, I calculated the 

Pearson’s pairwise correlation coefficient (r) for all predictor variables and it did not exceed 

|0.39| for any combination (Table 6).  

 I built a global model (i.e., a starting model for backward selection process) using a 

generalized linear mixed model with a log link and Poisson distribution. The model allowed me 

to determine how relationships between native fishes and habitat variables related to Rainbow 

Trout density. The assumptions of Poisson regression are: 1) the response variable is count data, 

2) counts must be positive integers, 3) the response variable must follow a Poisson distribution, 

and 4) each observation is independent. To account for the uncertainty in counts, I used count 

data from each snorkel pass and nested these data within each survey (i.e., two snorkel passes per 

survey (Barker et al. 2018). In addition, I included a random effect for each reach to account for 

differences in reaches that related to factors not measured (e.g., land use). I also included the 

model offset (log area) to account for correlation between counts and reach size (Gelman and Hill 

2007). Consequently, the response variable was scaled to represent fish/m2. For simplicity, I refer 

to the response variable as “density” hereafter. I fitted the global model with an interaction 

between each species (i.e., factor) and each predictor variable. I chose Redspot Chub to serve as 

the reference species for all interactive effects. Redspot Chub raw counts (unadjusted for area) 

were highest relative to other species during almost all of my surveys. My hypothesis was that 

Redspot Chub was a “generalist” species in Spavinaw and Spring Creek, thereby allowing 

identification of stronger habitat selection patterns for other species. The complex model 

contained six predictor variables and interactions with each species/life stage (Table 4). The 

model contained 42 terms and can be expressed as:  
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Model: probability (log) ~ P (μ, 2) 

log(𝜇𝑖) = log(𝑡)𝑖 +   ∑ 𝛼1𝑗[𝑖]

𝐽

𝑗=1
+ 𝛽1[𝑖]𝑋1 +  𝛽2[𝑖]𝑋2 +  𝛽3[𝑖]𝑋3 + 𝛽4[𝑖]𝑋4 +  𝛽5[𝑖]𝑋5 + 𝛽6[𝑖]𝑋6

+ ∑ 𝛼1𝑗[𝑖]

𝐽

𝑗=1
∗ [∑ 𝛽7𝑗[𝑖]𝑋1

𝐽

𝑗=1
+ ∑ 𝛽8𝑗[𝑖]𝑋2

𝐽

𝑗=1
+  ∑ 𝛽9𝑗[𝑖]𝑋3 

𝐽

𝑗=1
 

+ ∑ 𝛽10𝑗[𝑖]𝑋4

𝐽

𝑗=1
+ ∑ 𝛽11𝑗[𝑖]𝑋5

𝐽

𝑗=1
+  ∑ 𝛽12𝑗[𝑖]𝑋6 

𝐽

𝑗=1
 ]  +  𝜌𝑘 + 𝛾𝑙   

αj ~ N(0, 2), for j = 1, 2, ….. J 

β1j – βxj ~ N(0, 2), for j = 1, 2, ….. J 

𝜌𝑘~ N(0, 𝜎
2), for k = 1, 2, …..K (survey) 

𝛾𝑙  ~ N(0, 𝜎
2), for z = 1, 2, …..L (reach) 

where i are counts, t is the reach area (m2), α are species j specific intercepts, β1 through β6 are 

slopes associated with habitat variables X1 through X6 (RPD, trout, riffle, cover, discharge, and 

temperature), β7 through β12 are species-specific interactive slopes with habitat variables X1 

through X6, and ρ and γ are grouping factors for survey k, and reach l, respectively. 

 I fitted the model using the package lme4 (Bates et al 2015) in the statistical software R 

(version 3.4.2, R Core Team 2017). After fitting my complex model, I used a two-step backward-

selection process to retain only important habitat variables and interactions. I assessed variable 

importance using 95% confidence intervals (CIs). I estimated CIs by bootstrapping model 

coefficients and standard error using the “bootMer” function in the R package lme4 (n = 1,000 

simulations). At the first step of the backward selection, I retained all two-way interaction terms 

with confidence intervals that did not overlap zero and all associated lower-order main effects. I 

repeated this process and eliminated main effects with CIs that overlapped zero and were not 

associated with retained higher-order interactions.  

 I assessed model fit and residual error using a combination of diagnostic tests. I 

calculated both the conditional R2 (variation explained by both predictor variables and random 
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intercepts) and marginal R2 (variation explained by predictor variables; Nakagawa and Schielzeth 

2013) for my final model using the R package MuMIn (Barton 2018). I assessed the residual error 

by plotting the standardized residuals of the final model against the expected values (Gelman and 

Hill 2007).  

 

RESULTS 

Microhabitat. – Habitat availability was variable among my sites, surveys and differed seasonally 

(Appendix B, Table 1). The maximum depth differed between sites on Spavinaw Creek and 

Spring Creek. The maximum depth on Spring Creek was greater than sites on Spavinaw Creek, 

regardless of season. The greatest maximum recorded depth was over 5 m during the last survey 

of Spring Creek (June 2019). Velocity was lower during winter and summer and higher during 

spring surveys. Substrate was generally comparable among seasons, streams, and sites where size 

“4” was most common. As expected, ambient water temperatures differed among surveys, but the 

deviation in temperature was comparable between surveys conducted during the same season. A 

greater range of temperature deviations were encountered during surveys conducted in the spring 

and summer.  

 I conducted 12 microhabitat surveys across my four fixed sites during 2017 – 2019. Nine 

surveys served as references (i.e., no Rainbow Trout present) and three surveys were conducted 

with Rainbow Trout present. After adjusting to the correct use:availability ratio (Appendix A), 

the final data set contained use observations for 540 Creek Chub, 992 Redhorse, 492 Northern 

Hogsucker, 1,434 Redspot Chub, 1,032 Age-1+ Smallmouth Bass, and 1,168 Juvenile 

Smallmouth Bass. Using a 1:5 ratio of use to availability points, the final dataset contained 

33,752 total observations.  

 I recorded microhabitat observations for 278 Rainbow Trout. Microhabitat data were not 

collected on Rainbow Trout during one survey (i.e., Cisco 1, December 2017) because of high 

densities of Rainbow Trout (i.e., a focal location for each fish could not be determined). Raw data 
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indicated Rainbow Trout used shallow to moderate depths (average ± SD: 1.00 ± 0.25 m), 

moderate velocities (0.4 ± 0.3 m/s), average available substrate (4 ± 1) and were associated with 

cover 23% of the time. During seasonal extremes, use of discrete thermal patches (temperature 

deviations) appeared minimal (winter: 0.0 ± 0.0 ˚C) and summer (0.0 ± 1.0 ˚C). However, these 

data represent only the use of habitat resources by Rainbow Trout and inference on habitat 

selection cannot be made on use data alone. Microhabitat use data for Rainbow Trout were not 

included in my microhabitat selection model because the species was represented as a factored 

predictor (i.e., trout or no trout) for other species; thus, it would have been inappropriate to model 

selection by Rainbow Trout habitat selection under trout vs no trout conditions.  

 The final model retained all of the highest-order interactions and subsequent lower-order 

interactions and main effects. The final model contained 224 terms (six species/life stage 

intercepts and 27 habitat interactions for each intercept, plus group mean and error estimates for 

each beta, Appendix B, Table 2). However, not all species-specific deflections were important for 

each interaction; thus, some relationships between native species, habitat, and the presence of 

Rainbow Trout were time specific whereas others were independent of time (Table 7). All �̂� 

values were less than 1.1, indicating successful model convergence (Gelman and Rubin 1992). 

 My model results indicate reach-scale presence of Rainbow Trout was significantly 

related to microhabitat selection for all six species and life stages. For all species and life stages, 

habitat selection of at least one variable changed in the presence of Rainbow Trout over time 

(Table 7). Depth was related to patch selection by all native fishes studied and had relationships 

with both time (i.e., season) and the presence of Rainbow Trout. For all species, I retained 

significant interactions with depth and time under reference conditions (i.e., no trout) in the final 

model. Juvenile Smallmouth Bass, Redspot Chub and Creek Chub were related to shallow and 

moderate depths (1 – 2 m) during winter, and these relationships did not change over time. Age-

1+ Smallmouth Bass, Northern Hogsucker, and Redhorse selected greater depths during winter 

(Figure 3). As the time of year progressed towards summer, age-1+ Smallmouth Bass shifted to 
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having the greatest relationship with moderate depths (~ 2 m, Figure 4). Rainbow Trout presence 

was significantly related to changes in depth selection by Creek Chub, Redspot Chub, and age-1+ 

Smallmouth Bass and the relationships were time specific (Figures 3 and 4). The relationship 

between Rainbow Trout, depth selection and native fishes was strongest during summer. For 

example, there was no relation between depth selection of age-1+ Smallmouth Bass and Rainbow 

Trout during winter but an apparent relationship between Rainbow Trout and continued use of 

deeper habitats by age-1+ Smallmouth Bass during summer (Figure 4).  

 The relationship between native species and velocity was also related to Rainbow Trout 

presence and was a function of time. Under reference conditions (i.e., no Rainbow Trout), the 

interaction between velocity and time was significant for all species/life stages (Table 7). In 

general, velocity selection was minimal in winter (i.e., slope of the line was less steep, Figure 5). 

As the time of year progressed towards summer, the strength of the relationship between velocity 

and several species increased (Figure 6). For example, Redhorse selected higher velocity habitats 

whereas Creek Chub, Northern Hogsucker and juvenile Smallmouth Bass selected lower velocity 

microhabitats. The interaction between Rainbow Trout presence and time was related to all 

species except the Northern Hogsucker. In winter, Creek Chub shifted to lower-velocity habitats 

in the presence of Rainbow Trout whereas Redhorse shifted to higher-velocity habitats (Figure 5). 

Redhorse, Redspot Chub, and age-1+ Smallmouth Bass shifted to lower-velocity habitats during 

summer when Rainbow Trout were present (i.e., Figure 6).  

 Substrate and cover were also important predictors of microhabitat selection. Substrate 

selection by species was time specific except for selection by Redspot Chub. In general, substrate 

selection was greater with coarser substrates (Figure 7). However, Creek Chub and Redhorse 

selected finer substrates. Substrate selection by Creek Chub, Northern Hogsucker, and juvenile 

Smallmouth Bass depended on the presence of Rainbow Trout, but the magnitude of the effect 

(i.e., change in slope) was relatively small compared to selection of other microhabitat variables 

(Figure 7). Creek Chub, Northern Hogsucker, Redspot Chub, age-1+ Smallmouth Bass and 



29 
 

juvenile Smallmouth Bass had significant relationships with cover. All species were more likely 

to use cover over no cover except for Northern Hogsucker (Table 8). All five species used cover 

more when Rainbow Trout were present relative to reference levels (Table 8). The shift was 

greatest for juvenile Smallmouth Bass which were 2 times as likely to use cover under references 

conditions and 8.5 times as likely to use cover when Rainbow Trout were present.  

 Temperature selection was variable among species and depended on the presence of 

Rainbow Trout. Significant interactions between temperature, time, and Rainbow Trout presence 

were related to Redspot Chub and juvenile Smallmouth Bass. Without Rainbow Trout present, 

both species selected warmer water in the winter and cooler than average water in the summer 

(Figure 8). With Rainbow Trout present, juvenile Smallmouth Bass selected cooler patches in the 

winter. Both Redspot Chub and juvenile Smallmouth Bass selected warmer microhabitat patches 

during the summer when Rainbow Trout were present (Figure 8). Redhorse and age-1+ 

Smallmouth Bass selected cooler patches, regardless of time. Creek Chub and Northern 

Hogsucker were not significantly associated with temperature.   

 

Reach-scale surveys. – I conducted 82 reach-scale surveys over 18 reaches during summer 2018 

and 2019. More surveys were conducted in 2018 than 2019 due to high water (Table 3). Habitat 

availability was variable among reaches (Table 4). The average RPD across reaches was 1.50 m 

and the maximum RPD was 2.95 m. Percent riffle represented, on average, 10% of each reach 

(range 0% to 36%). MWMT ranged 20.5 ˚C to 26.2 ˚C among reaches. Percent cover at each site 

was, on average, 28% but was as high as 50% at some reaches.  

 There was considerable variation in fish counts between species and among reaches. 

Redspot Chub was the most common native species (average snorkel pass count ± SD = 82 ± 41). 

Creek Chub and Northern Hogsucker were least common (20 ± 19; 20 ± 15, respectively). 

Smallmouth Bass counts were higher for age-1+ (65 ± 45) compared to juveniles (26 ± 14). 
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Redhorse counts were the most variable among my species counts (46 ± 40). Counts of Rainbow 

Trout ranged 0 to 74 across my study reaches. 

 My final model relating fish density to reach-scale factors showed proper fit and model 

structure and explained reasonable variation in my data. The residual plot based on my final 

model indicated adequate model structure (Figure 9) and overdispersion was minimal (Pearson c-

hat = 1.11). The amount of variation explained by my predictor variables was reasonable 

(marginal R2 = 0.48).  The inclusion of survey and reach as random effects accounted for 

unexplained variation and improved model fit (condition R2 = 0.96). 

 My final model relating variation in fish density to reach-scale variables had 25 terms 

(Table 8). As expected, there were density differences between species that were independent of 

habitat variables and were retained in my model. Some habitat relationships were common to all 

species, whereas others were species specific (Figure 10). All species were positively correlated 

with increasing RPD. Relative to reference conditions, increasing percent riffle was related to 

decreasing densities of Creek Chub, Northern Hogsucker, and Redhorse. Though not statistically 

significant, Redspot Chub and juvenile Smallmouth Bass densities increased with percent riffle. 

The MWMT was significantly related to both Creek Chub (negative) and Redhorse densities 

(positive) relative to the reference relationship. Lastly, Creek Chub were significantly related to 

increasing Rainbow Trout density. 

 

DISCUSSION 

 Although inferring competition from field-based studies is difficult (Fausch 1988; 

Thibault and Dodson 2013), my results indicate microhabitat shifts by several warmwater fishes 

in the presence of introduced Rainbow Trout. Behavioral adjustments by native fishes would be 

more likely observed at the microhabitat scale if either patch resources are limited (Baltz et al. 

1991; Brown and Moyle 1991) or species aggressions prevent use of energetically-profitable 

stream habitats (Mason and Chapman 1965; Fausch 1984; Hitt et al. 2017). For example, native 
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Mottled Sculpin Cottus bairdi reduced time spent in refuge habitat in the presence of non-native 

Round Gobie Neogobius melanostomus (Dubs and Corkum 1996). In general, shifts in 

microhabitat by native fishes related to salmonids have been thoroughly examined within 

coldwater fishes (Baxter et al. 2004; Hasegawa and Maekawa 2006; Leunda 2010; Hitt et al. 

2017), but my findings build on our knowledge of potential interactions in warmwater systems 

(but see Blinn et al. 1993; Penaluna et al. 2009; Weaver and Kwak 2013; Elkins et al. 2019).  

 Microhabitat shifts by native fishes in the presence of Rainbow Trout were species and 

often season specific. Shifts in depth selection in response to Rainbow Trout were most apparent 

for age-1+ Smallmouth Bass and Redspot Chub during summer. Both species selected a greater 

range of depths when Rainbow Trout were present. Displacement from important foraging habitat 

(e.g., Sabo et al. 1996; Piccolo et al. 2008) and reproductive habitat during warmer periods 

(Maurakis et al. 1991) could be problematic for both species, particularly following harsh cold-

weather periods (Suski and Ridgway 2009). Shifts to lower-velocity habitat by Redspot Chub, 

Redhorse, and age-1+ Smallmouth Bass during the summer may reflect displacement from ideal 

foraging habitat. For example, Redspot Chub and sub adult Smallmouth Bass drift feed or seek 

prey in riffle habitats that are typified by higher current velocities (Simonson and Swenson 1990; 

Orth and Newcomb 2002; Miller and Robinson 2004). Rainbow Trout also seek higher-velocity 

habitats to drift feed (O’Brien and Showalter 1993; Guensch et al. 2001); thus, overlap in feeding 

position may have resulted in interspecific competition (Fausch 1984; Fausch and White 1986). I 

also found Rainbow Trout related to thermal patch shifts by juvenile Smallmouth Bass and 

Redspot Chub in the two harshest seasons (i.e., summer and winter). Small or juvenile fish may 

continue foraging during winter months to maintain baseline activity rates (Shuter et al. 2012; 

Suski and Ridgway 2009); thus, winter selection of warmer thermal patches may have been 

energetically profitable (Peterson and Rabeni 1996). Redspot Chub and juvenile Smallmouth 

Bass selected warmer patches during summer in the presence of trout. Use of warmer water may 

result in decreased growth (Whitledge et al. 2006). Use of thermal refuge is common by salmonid 
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species during warmer periods (Torgersen et al. 1999; Ebersole et al. 2003a; Hitt et al. 2017); 

thus, the availability of cool-water patches may be limiting to both non-native trout, juvenile 

Smallmouth Bass, and Redspot Chub. Examining short-term growth responses by these species 

when occupying the selected thermal environments would be necessary to confirm the 

hypothesized mechanisms.   

 Shifts in cover selection by native fishes in the presence of trout may relate to perceived 

predation risk. Rainbow Trout alter cover selection by several species including native salmonids 

(e.g., Brook Trout, Thibault and Dodson 2013) and Little Colorado Spinedace Lepidomeda vittata 

(Robinson et al. 2003). In some instances, naturalized Rainbow Trout populations have become 

conditioned to stream environments (Thibault and Dodson 2013) and learn the tradeoffs of 

residing in or defending certain habitats (Grant 1990; Johnson et al. 1999). In these instances, 

native species may be displaced from using cover as a resource (e.g., Robinson et al. 2003). 

However, Rainbow Trout may also be perceived as a threat by native species and cause them to 

tightly associate with cover (Tabor and Wurtsbaugh 1991; Alvarez and Nicieza 2003).  

 Unlike cover, shifts in substrate selection in response to Rainbow Trout presence was 

weak and likely not ecologically significant; however, substrate selection by native species was 

evident without trout present. Given the availability of different substrates at the microhabitat 

scale (Appendix B, Table 1), it is not surprising Rainbow Trout did not substantially relate to 

substrate selection patterns by native species. Across seasons, use of coarse substrate may provide 

velocity refuge to some fishes (e.g., Chubs, Lobb and Orth 1988; salmonids, Baltz et al. 1991; 

and Smallmouth Bass, Orth and Newcomb 2002; Wolf et al. 2019) or serve as cover (juvenile 

Smallmouth Bass, Sabo and Orth 1994). Alternately, Redhorse were associated with fine 

substrates where feeding efficiency may have been improved (Kwak and Skelly 1992).  

  Interestingly, temperature selection was not seasonally specific for some species. Creek 

Chub, Redhorse, Northern Hogsucker, and adult Smallmouth Bass each selected cooler patches 

regardless of season. It is possible that during cold periods, species are more strongly associated 
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with other microhabitat factors (see Wolf et al. 2019). Selection of thermal conditions are evident 

during winter by some warmwater fishes (Peterson and Rabeni 1996; Westhoff et al. 2016) and 

may be a function of availability or scale; thus, selection may be restricted to years with extreme 

temperatures or simply occur at coarser spatial scales than I examined.  

 In some instances, the strong selection patterns observed may relate to microhabitat 

availability differences at locations with or without trout. The most extreme example of 

availability discrepancies relates to differences in available water depths at sites with and without 

Rainbow Trout. The greatest depth encountered during my study was approximately 5 m, 

whereas the maximum depth at sites containing Rainbow Trout was only 2 m. Though grouping 

factors can help account for site-specific differences (Wagner et al. 2006; Gelman and Hill 2007), 

the uncertainty around predictions beyond encountered values (e.g., predictions of depth use 

beyond 2 m with trout present; Appendix B, Table 2) should be considered when interpreting 

possible interactions between trout and native species in the field. Although the results represent 

field observations, uncertainty increases in predictions associated with deeper water.  

 The same stocking rate of 1,360 kg per stocking occasion was used throughout my study, 

and it is unknown how habitat selection might differ depending on different stocking densities. 

Reported stocking density or rates (e.g., trout/area or trout/time) are often variable (e.g., 200 

trout/ha, Hartman et. 2012; 4,000/month, Flowers et al. 2019) and often depend on available fish, 

season of stocking, and the management objective (Miko et al. 1995; Wiley 2006). I cannot 

speculate on how changing stocked numbers of Rainbow Trout would alter microhabitat selection 

by native species in Spavinaw Creek. However, habitat selection interactions may relate to fish 

density (e.g., Urabe and Nakano 1999) and higher densities of non-native species often related to 

greater interactions with native species (e.g., Robison et al. 2003). The experimental manipulation 

and controlled conditions required to elicit a clear density-driven response are typically reserved 

for lab studies (Fausch 1988), and would be difficult or impossible to achieve during my field 
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efforts. It would be beneficial if future efforts in a laboratory setting could examine resource 

selection in response to altered densities of non-native fishes.  

 In addition to examining behavioral responses to an introduced predatory fish, my 

findings of seasonal microhabitat shifts not related to trout presence are informative to 

conservation and management actions. My findings build on others who report seasonal shifts in 

microhabitat for a variety of warmwater, stream-dwelling species (e.g., Smallmouth Bass, Todd 

and Rabeni 1989; Wolf et al. 2019), Redhorse (Grabowski and Isely 2006; Butler and Wahl 2017) 

and minnows (e.g., Santos et al. 2004; Lapointe et al. 2007). An understanding of resource use 

across multiple seasons is needed to ensure critical habitats are protected throughout the year. 

Broadly, my results suggest maintaining heterogeneous habitat in streams would ensure key 

microhabitats were available across seasons. For example, natural (Poff et al. 1997) and semi-

natural (Poff and Zimmerman 2010) flows maintain channel-unit diversity that provide 

heterogeneous depth, velocity, and substrate resources to stream fishes (Gordon et al. 2004; 

Brewer 2013a). More specifically, seasonal temperature selection by some species highlight the 

importance of groundwater interactions (Peterson and Rabeni 1996; Chu et al. 2008; Middaugh et 

al. 2016) and riparian shading (Ebersole et al. 2003b; Whitledge et al. 2006) at fine spatial scales. 

Groundwater restoration is becoming more common as temperatures warm due to climate and 

land-use changes (Hancock 2002; Anderson et al. 2010). Protecting these critical resources would 

be beneficial given the cost associated with restoration of these habitats. Protection of the habitat 

elements that benefit microhabitat refugia also relate to maintenance of factors important to 

native fishes at the reach scale.  

 Changes in fish densities at the reach scale may be related to microhabitat-scale shifts in 

selection (Robson and Barmuta 1998; Lamouroux and Cattaneo 2006) but may take longer to 

realize because of differences in temporal response (Weins 1989). Additionally, the inexperience 

of introduced fish and the time needed to locate habitats further from the stocking site may also 

contribute to temporal differences between microhabitat and reach scale relationships. For 
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example, percent riffle may relate to high prey densities (e.g., Brewer et al. 2009) but prey 

availability might not be realized for many years by a novel predator due to lack of experience 

(i.e., spatial learning, Braithwaite and Salvanes 2005) or an abundance of food at the time of 

stocking (Beauchamp 1990). Likewise, Rainbow Trout in novel environments explore habitat 

patches and their knowledge of patches increases with time. A time lag between fish persistence 

in an environment and ability to hone in on habitats further from the stocking area are expected 

(e.g., advantage of resident fish in intra-salmonid studies, Glova and Field-Dodgson 1995; less 

dispersal from hatchery fish due to inexperience with social structure, Weber and Fausch 2003). 

Interannual variation in densities are also expected to be high and thus, many years of data may 

be necessary to examine questions at coarser spatial scales (Wiens 1989). 

 Increasing RPD is often positively associated with stream fish density including non-

game species in headwater streams (e.g., several dace and chub species, Danehy et al. 1998), 

salmonids (Mollenhauer et al. 2013), and fish assemblages in the Great Plains (Rowe et al. 2009). 

All of the native fishes I examined were positively associated with RPD. At finer spatial scales 

(e.g., microhabitat), depth may serve as cover for stream-dwelling fishes (Fore et al. 2007; Wolf 

et al. 2019); thus, greater availability of deep habitats may have attracted individuals to these 

reaches. Greater RPD may also be correlated with other habitat elements (e.g., woody debris and 

limited siltation, Shields et al. 1994) including hyporheic flow (May and Lee 2004).  

 My non-significant relationships between Redspot Chub and both life stages of 

Smallmouth Bass and percent riffle were surprising but may relate availability due to the length 

of my reaches. Riffles provide habitat for many fish-prey items such as crayfish (e.g., for 

Smallmouth Bass, Sowa and Rabeni 1995; Brewer 2013a). Most of my reaches had relatively low 

percentage of riffle habitat (mean ± SD: 10.5 ± 7.7) compared to other studies that used longer 

reach lengths and reported greater riffle percentages (e.g., reaches with low pool percentage (~ 

20%) corresponded to high riffle percentage, Brewer 2013a). It is possible that low percent riffle 

across my sites would prevent the establishment of a relationship. However, the streams I 
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sampled are also located at the western edge of the Ozark Highlands; thus, availability of riffles 

may simply be lower. Further, my study examined the Neosho subspecies of Smallmouth Bass 

whereas previous reports examined interior Highland intergrades (Brewer 2013a). The Neosho 

subspecies of Smallmouth Bass may have underlying ecological differences when compared to 

the nominal subspecies or intergrades (Brewer and Long 2015).  

 Creek Chub, Northern Hogsucker, and Redhorse were associated with reaches with 

limited riffle habitat. Adults of these three species may not benefit from riffles as a source of food 

like other species/life stages. The Northern Hogsucker and several Redhorse species including the 

Black and Golden Redhorse feed on detritus, algae, and terrestrial insects that settle in pools 

(Kwak et al. 1992; Miller and Robinson 2004). However, feeding juveniles target benthic 

invertebrates typically associated with riffle habitats (Reid 2009); thus, riffle habitat may be 

important to young of year and other juvenile life stages that were not the focus of my study. 

 Although the mechanisms are unclear, Creek Chub was the only native fish where density 

was positively related to Rainbow Trout density. Both Creek Chub and Rainbow Trout were 

associated with MWMT (Table 6). I did not attempt to characterize habitat selection by Rainbow 

Trout, but salmonids commonly select coolwater resources at multiple spatial scales (e.g., 

Torgersen et al. 1999; Ebersole et al. 2003a; Shelton et al. 2018). Consequently, the selection of 

coolwater at the reach scale likely led to the positive relationship between Creek Chub and 

Rainbow Trout density.  

 The majority of species I examined had positive relationships with cooler water 

temperatures except Redhorse. Creek Chub were significantly related to cooler MWMT and have 

the lowest optimal growth temperature (21 ˚C, Moshenko and Gee 1973). Creek Chub do not 

grow at temperatures above 24 ˚C (Miller 1964; Moshenko and Gee 1973); thus, warmer reaches 

were likely not suitable for summer growth. Other species including Smallmouth Bass also have 

optimal growth thresholds below average temperatures encountered at my reaches (22 ˚C, Shuter 

and Post 1990; Whitledge et al. 2002). Redhorse were very weakly associated with increasing 



37 
 

MWMT suggesting the relationship is either minor compared to other habitat factors or may not 

be ecologically significant. Other Redhorse species (e.g., Greater Redhorse Moxostoma 

valenciennesi, Bunt and Cooke 2001; Robust Redhorse Moxostoma robustum, Grabowski et al. 

2016) are mobile throughout the year but have seasonally important habitats (e.g., spawning 

habitat, Curry and Spacie 1984). Redhorse in Spavinaw and Spring creeks may also be highly 

mobile (Zentner, unpublished data); thus, their apparent relationship with warmer sites may have 

been an artifact of movements lower in the watershed where there is less groundwater 

contribution.  

   

Management implications. – If conservation of native species is a management objective, it 

would be beneficial for agencies to consider the potential implications of the microhabitat shifts 

observed during my study. I found that both sport fish (e.g., Smallmouth Bass and Redhorse) and 

non-game species of conservation concern (e.g., Redspot Chub) seasonally shifted their selection 

of depth, velocity, cover and temperature following the addition of Rainbow Trout to Spavinaw 

Creek. Selection of microhabitat reflects energetic benefits (Mittelbach 1981) and predator 

avoidance (Shoup et al. 2003) at the individual level but may have population-level consequences 

over a greater temporal scale (Grossman and Ratajczack 1998). The relationship between shifts in 

depth and velocity selection and Rainbow Trout may result in decreased feeding efficiency for 

native species (Crowder 1984; Sabo et al. 1996; Piccolo et al. 2008) and exclusion from key 

spawning habitats (Maurakis et al. 1991). Additionally, shifts to greater cover use may inhibit the 

ability of native species to forage successfully (Pritcher et al. 1988) and decrease overall fitness 

thereby reducing survival (e.g., over winter, Suski and Ridgway 2009). These interactions may 

become more alarming over time as Rainbow Trout that successfully over summer (see Chapter 

3) may become more conditioned to the stream environment (Mesa 1991; Glova and Field-

Dodgson 1995); thus, becoming better competitors with native species over habitat resources.  

 Several possible strategies may be considered for future stocking of Rainbow Trout in 
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Spavinaw Creek. Given the high summer survival rates of stocked Rainbow Trout and fidelity to 

the stocking location (see Chapter 3), one possibility is to stop stocking or reduce stocking 

intervals until laboratory studies can be completed and longer-term data collected. Limiting 

stocking to the current location may be helpful in reducing effects across stream reaches while 

monitoring is continued. However, even with continued stocking at a single site, annual survival 

(Chapter 3) may increase dispersal of Rainbow Trout over time and increase the density of 

Rainbow Trout in other portions of the catchment. A third consideration is to limit stocking to 

autumn (November), given microhabitat shifts are much more substantial during the warmer, 

spring and summer conditions. However, my study was limited to a single year post stocking and 

differing seasonal conditions (e.g., a harsher winter) may also have important implications for the 

response of native fish at the microhabitat scale. Continued sampling will be important if stocking 

continues, particularly at the reach scale where the effects from stocking may not be realized for 

several years or only be evident under specific conditions (e.g., drought years, Elliot 2006).
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TABLES 

Table 1. Study species chosen to evaluate changes in microhabitat and reach-scale habitat use. Species were chosen because of suspected habitat 

overlap with introduced Rainbow Trout and conservation status within each state. The Oklahoma Department of Wildlife Conservation lists 

species from Tier I to Tier III with Tier I having the highest conservation priority. The Arkansas Game and Fish Commission lists species from S1 

to S5 with S1 having the highest conservation priority. 

Common Name Scientific Name Age and identification Source Listing status 

Smallmouth Bass  Micropterus dolomieu velox Juvenile: 35 mm – 85 mm, tri-

colored tail 

Brewer and Ellersieck (2011) Stable 

Smallmouth Bass Micropterus dolomieu velox 1+: > 85 mm, olive-colored body 

with vertical bands, loss of tri-

colored tail 

Robison and Buchanan (1988); 

Pflieger (1997) 

Stable 

Creek Chub Semotilus atromaculatus Adult: > 100 mm, dark spot at base 

of dorsal fin, dusky stripe along 

midline 

Robison and Buchanan (1988); 

Pflieger (1997) 

Stable 
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Redspot Chub Nocomis asper Adult: > 100 mm, red spot behind 

head is developed in both mature 

males and females 

Robison and Buchanan (1988); 

Pflieger (1997) 

Tier II* 

S3● 

Northern Hogsucker Hypentelium nigricans Adult: > 200 mm, Sucker-like body 

characterized by dark saddles on 

body 

Robison and Buchanan (1988); 

Pflieger (1997) 

Stable 

Redhorse** Moxostoma spp. Adult: > 200 mm, easily 

differentiated from Northern 

Hogsucker with by of mottling on 

body 

Robison and Buchanan (1988); 

Pflieger (1997) 

Tier III* 

*Status under Oklahoma Department of Wildlife Conservation Comprehensive Wildlife Conservation Strategy 

wildlifedepartment.com/cwcs/ApprovedOKCWCSAppendices.pdf 

●Status under the Arkansas Game and Fish Commission Arkansas Wildlife Action Plan 

https://www.wildlifearkansas.com/materials/2017/02%20Section%201_Wildlife%20Action%20Plan.pdf 

**Listing status refers to Shorthead Redhorse Moxostoma macrolepidotum 

 

 

https://www.wildlifearkansas.com/materials/2017/02%20Section%201_Wildlife%20Action%20Plan.pdf
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Table 2. Microhabitat sampling events by season and site. Condition refers to the presence or absence of Rainbow Trout at the time of sampling. 

Latitude (Lat) and longitude (Long) are in NAD83 format.  

Season Site Dates Condition (Lat) (Long) 

Autumn Middle Spavinaw 10/20/2017 – 10/24/2017 Pre-stock (no trout) 36.326227 -94.670346 

      

Winter 
Upper Spavinaw 12/16/2017 – 12/19/2017 Previously stocked trout* 36.344460 -94.576210 

Spring 1/8/2018 – 1/11/2018 Reference (no trout) 36.089339 -95.027646 

      

Spring 
Spring 5/18/2018 – 5/21/2018 Reference (no trout) 36.089339 -95.027646 

Lower Spavinaw 6/12/2018 – 6/14/2018 Pre-stock (no trout)** 36.324543 -94.705999 

      

Summer 

Upper Spavinaw 9/9/2018 – 9/11/2018 No trout** 36.344460 -94.576210 

Lower Spavinaw 9/19/2018 – 9/20/2018 Pre-stock (no trout) 36.324543 -94.705999 

Spring 9/28/2018 – 9/30/2018 Reference (no trout) 36.089339 -95.027646 

      

Winter 
Middle Spavinaw 2/8/2019 – 2/11/2019 Post-stock (trout) 36.326227 -94.670346 

Spring 2/15/2019 – 2/17/2019 Reference (no trout) 36.089339 -95.027646 

      

Spring/Summer 
Middle Spavinaw 6/14/2019 – 6/17/2019 Post-stock (trout) 36.326227 -94.670346 

Spring 6/19/2019 – 6/22/2019 Reference (no trout) 36.089339 -95.027646 
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*Rainbow Trout were present in higher numbers but stocking had not taken place in Oklahoma yet. It is unknown whether the fish observed 

during this survey were holdovers from previous stocking efforts in Arkansas or the result of more recent, illegal stocking. 

**Rainbow Trout were encountered in limited numbers (< 5). Data were collected on Rainbow Trout habitat use but these sites were considered 

absent of Rainbow Trout in terms of my factored variable “trout” during microhabitat analysis.  
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Table 3. Reach locations and dates where fish were enumerated in summer of 2018 and 2019. Reaches locations include site name, stream, state, 

and latitude (lat) and longitude (long) in NAD83 format. Surveys indicate temporally-replicated sites. NAs indicate reaches either not sampled 

because of low flow, insufficient clarity, or denied access by a private landowner, or when a sample reach was added after the 2018 field season.  

Reach information 2018 2019 Coordinates 

Reach name  Stream State Survey 1 Survey 2 Survey 3 Survey 4 Survey 5 Survey 6 (Lat) (Long) 

Colston  Spavinaw OK 6/1/2018 7/13/2018 NA NA NA NA 36.32328 -94.68178 

Mill Dam  Spavinaw AR 5/31/2018 7/11/2018 8/6/2018 9/27/2018 7/2/2019 8/16/2019 36.36531 -94.55071 

Goldstein1 Spavinaw OK 6/22/2018 7/9/2018 8/11/2018 9/12/2018 7/13/2019 8/18/2019 36.32662 -94.69395 

Goldstein2* Spavinaw OK NA NA NA NA 8/1/2019 8/18/2019 36.32562 -94.68997 

Harrison  Spavinaw OK 6/2/2018 7/10/2018 8/8/2018 NA 7/12/2019 8/17/2019 36.33211 -94.63127 

Lavern  Spavinaw OK 6/3/2018 7/9/2018 8/6/2018 9/14/2018 7/12/2019 8/17/2019 36.32450 -94.70643 

Maris1  Spavinaw OK 6/2/2018 7/9/2018 8/6/2018 10/6/2018 7/13/2019 8/19/2019 36.32632 -94.67139 

Maris2* Spavinaw OK NA NA NA NA 8/1/2019 8/19/2019 36.32357 -94.67760 

Sisco  Spavinaw AR 6/21/2018 7/11/2018 8/6/2018 9/12/2018 7/1/2019 8/16/2019 36.34500 -94.57555 

Walker1 Spavinaw OK 6/3/2018 7/10/2018 8/7/2018 9/13/2018 NA NA 36.32917 -94.65370 

Walker2  Spavinaw OK 6/22/2018 7/10/2018 8/7/2018 9/13/2018 NA NA 36.33389 -94.63908 

Wilkins* Spavinaw AR NA NA NA NA 7/14/2019 NA 36.38020 -94.50054 

Wilson  Spavinaw AR 6/21/2018 7/11/2018 8/8/2018 9/12/2018 NA 8/20/2019 36.35242 -94.56732 

Moss  Spring OK 6/23/2018 7/14/2018 8/10/2018 9/30/2018 7/31/2019 NA 36.08929 -95.02629 

Neal  Spring OK 6/26/2018 7/12/2018 8/9/2018 10/5/2018 7/16/2019 8/15/2019 36.14963 -95.14296 

Rogers  Spring OK 6/26/2018 7/12/2018 8/10/2018 10/6/2018 7/15/2019 NA 36.08653 -95.06931 
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Ross  Spring OK 6/23/2018 7/14/2018 8/10/2018 10/6/2018 7/15/2019 NA 36.09133 -95.01084 

Torrey  Spring OK 6/25/2018 7/13/2018 8/9/2018 10/5/2018 7/16/2019 8/15/2019 36.14303 -95.17440 
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Table 4. Predictor variables used to determine microhabitat and reach-scale habitat selection by five species and two life stages of fishes (Table 1). 

For my microhabitat objective, calendar day corresponded to an increasing daily value from 0 (December 21) to 182 (June 21), and substrate was 

measured using a modified Wentworth Scale: 0) unbroken, 1) silt (< 0.06 mm), 2) sand (≥ 0.06 – 2 mm), 3) gravel (>2 – 16 mm), 4) pebble (> 16 – 

64 mm), 5) cobble (> 64 – 256 mm), and 6) boulder (> 256 mm) (Mahon et al. 1996). Other microhabitat variables quantified were depth (0.05 m), 

velocity (0.1 m/s), temperature (± 0.5 ˚C deviation from the median site temperature), cover (present or absent), and Rainbow Trout (Trout were 

present or absent). Snorkel day, site visit, and site were grouping factors where snorkel passes were repeated within a day, multiple days 

comprised each site visit, and multiple site visits took place at the same site over my study period. Reach-scale variables were: average residual 

pool depth (RPD) (0.05 m), percent riffle (1%), maximum weekly maximum temperature (MWMT) (0.1 ˚C), percent cover (1 %), groundwater 

(losing or gaining), and Rainbow Trout (trout was continuous and scaled by reach area). Both survey and reach were nested grouping factors 

where survey accounted for repeated snorkel passes per survey and reach accounted for repeated surveys per reach.  

Scale Variable Type Mean ± SD Minimum - Maximum Levels 

Microhabitat Calendar day Continuous 96.74 ± 55.62 2.00 – 182.00 NA 

 Species Factor NA NA 6 

 Substrate Continuous 4.13 ± 1.23 0 – 6.00 NA 

 Depth Continuous 0.75 ± 0.68 0 – 5.10 NA 

 Velocity Continuous 0.13 ± 0.21 0 – 1.50 NA 

 Temperature Continuous 0.05 ± 0.47 -3.00 – 7.00 NA 

 Cover Factor NA NA 2 
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 Trout Factor NA NA 2 

 Snorkel day* Factor NA NA 44 

 Site visit* Factor NA NA 12 

 Site* Factor NA NA 4 

      

Reach Species Factor NA NA 6 

 Average RPD Continuous 1.5 ± 0.75 0.30 – 2.95 NA 

 Percent riffle Continuous 10.5 ± 7.70 0 – 36.00 NA 

 MWMT Continuous 23.75 ± 1.30 20.5 – 26.20 NA 

 Percent cover Continuous 27.56 ± 11.00 5 – 50 NA 

 Groundwater Factor NA NA 2 

 Trout Continuous 2.69 ± 4.94 0 – 19.65 NA 

 Survey* Factor NA NA 492 

 Reach* Factor NA NA 18 

*Grouping factors 

 

 

 

 

 



47 
 

Table 5. Pearson’s pairwise correlation coefficients for predictor variables associated with microhabitat selection of stream fishes in Ozark 

Highland streams. Calendar day increases from 0 (December 21) to 182 (June 21) and back towards 0 past June 21. Trout was classified as 0 (no 

trout) or 1 (trout present). Substrate was classified using a modified Wentworth Scale (McMahon et al. 1996) corresponding to 0) unbroken, 1) silt 

(< 0.06 mm), 2) sand (≥ 0.06 – 2 mm), 3) gravel (>2 – 16 mm), 4) pebble (> 16 – 64 mm), 5) cobble (> 64 – 256 mm), and 6) boulder (> 256 mm), 

depth (m), and velocity (m/s) and temperature (˚C) were continuous habitat variables. Temperature represented a deviation of each observation 

from the median temperature at the time of each snorkel survey. Cover was classified as 0 (absent) or 1 (present).  

 Variable  Calendar day Trout Substrate Depth Velocity Cover Temperature 

Calendar day 1.00       

Trout  -0.30 1.00      

Substrate 0.05 0.03 1.00     

Depth 0.04 -0.03 0.18 1.00    

Velocity 0.37 0.08 0.04 -0.10 1.00   

Cover -0.03 0.01 0.28 0.19 -0.11 1.00  

Temperature 0.01 -0.03 -0.05 -0.13 -0.02 0.03 1.00 
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Table 6. Pearson’s pairwise correlation coefficients for predictor variables associated with reach-scale count data for stream fishes in Ozark 

streams. Rainbow Trout data were scaled by the log area of each reach, residual pool depth (RPD; 0.05 m) was a measure of average reach depth, 

percent cover was visually estimated (1%), percent riffle was calculated using channel unit dimensions (1%), groundwater was classified as losing 

or gaining, and the maximum weekly maximum temperature (MWMT) represented trends in weekly temperature (˚C).   

Variable Rainbow Trout RPD Percent cover Percent riffle Groundwater MWMT 

Rainbow Trout  1.00      

RPD 0.10 1.00     

Percent cover 0.13 0.36 1.00    

Percent riffle 0.00 -0.39 0.20 1.00   

Groundwater  0.12 -0.17 0.02 0.16 1.00  

MWMT -0.28 0.09 0.15 -0.14 0.07 1.00 
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Table 7. Habitat variables and interactions associated with five species and two lifestages of native fishes. Significant interactions are denoted by 

Y and non-significant interactions are denoted by N. Significant was determined by 95% Highest Density Intervals that did not fall within 0.01 or 

overlap zero. Y* indicates importance because of a higher-order significant interaction (i.e., the estimate itself is not significant but should but is 

retained because of its contribution to a higher-order significant interaction). Appendix B, table 2 contains all coefficient estimates and associated 

95% high density intervals.  

Model interaction Beta CRC MOX NHS RSC AGE-1+ AGE 0 Species-specific significance 

Time 1 Y Y Y Y Y Y All species 

Depth 2 Y Y Y Y Y Y All species 

Depth2 3 Y Y Y Y Y Y All species 

Temperature 4 N Y N Y Y Y MOX, RSC, Age-1+, AGE 0 

Velocity 5 Y Y Y Y* Y* Y All species 

Substrate 6 Y Y Y Y Y Y* All species 

RBT 7 Y* Y* Y* Y* Y* Y* All species 

Cover  8 Y N Y Y Y Y CRC, NHS, RSC, AGE-1+, AGE 0 

RBT * time 9 Y* Y* Y* Y* Y* Y All species 

RBT * depth 10 Y Y Y Y* Y* Y All species 

RBT * depth2 11 Y N Y Y* Y Y CRC, NHS, RSC, AGE-1+, AGE 0 

RBT * temperature 12 N N N Y Y Y* RSC, AGE-1+, AGE 0 

RBT * velocity 13 Y Y* Y Y* Y Y* All species 

RBT * substrate 14 Y* N Y* N Y* N NHS, AGE-1+, AGE 0 

RBT * cover 15 Y N Y* Y Y Y CRC, NHS, RSC, AGE-1+, AGE 0 
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Time * RBT * cover 16 N N Y Y Y Y NHS, RSC, AGE-1+, AGE 0 

Time * depth 17 Y* Y Y Y Y* Y All species 

Time * depth2 18 Y Y Y Y* Y Y All species 

Time * temperature 19 N N N Y N Y* RSC, AGE 0 

Time * velocity 20 Y* Y Y Y* Y* Y* All species 

Time * substrate 21 Y* Y Y N Y Y CRC, MOX, NHS, Age-1+, Age 0 

Time * cover 22 N N Y Y Y* Y NHS, RSC, AGE-1+, AGE 0 

Time * RBT * depth  23 Y* N N Y* Y* N CRC, RSC, AGE-1+ 

Time * RBT * depth2 24 Y N N Y Y N CRC, RSC, AGE-1+ 

Time * RBT * temperature 25 N N N Y N Y RSC, AGE 0 

Time * RBT * velocity 26 Y Y N Y Y Y CRC, MOX, RSC, AGE-1+, AGE 0 

Time * RBT * substrate 27 Y N Y N N Y CRC, NHS, AGE 0 
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Table 8: Odds ratios of cover use for five species of native stream fishes that were significantly 

influenced by the presence of Rainbow Trout. For each species/trout/cover effect combination, 

the top row represents the odds of cover use and the bottom row indicates the odds of no cover 

use. The odds ratio is calculated by dividing the odds of cover by the odds of no cover and can be 

expressed at “X times as likely to use cover over no cover”. 

 Species Trout/cover factor Odds Odds ratio for cover use 

CRC Yes/yes 1.9 18.1 

 Yes/no 0.1  

 No/yes 0.9 6.1 

 No/no 0.1  

    

NHS Yes/yes 0.1 0.6 

 Yes/no 0.1  

 No/yes 0.1 0.5 

 No/no 0.2  

    

RSC Yes/yes 0.8 3.2 

 Yes/no 0.2  

 No/yes 0.3 1.1 

 No/no 0.3  

  

Age-1+ SMB Yes/yes 0.1 6.6 

 Yes/no 0  

 No/yes 0.1 2.1 

 No/no 0  

    

Juvenile SMB Yes/yes 2.5 8.5 

 Yes/no 0.3  

 No/yes 0.1 2.0 

  No/no 0  
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Table 9. Final model parameters and 95% Confidence intervals (CIs) for my reach-scale 

assessment of habitat selection and effect of Rainbow Trout on native species. The model 

intercept and main effects for each habitat variable are in reference to Redspot Chub. Percent 

riffle, residual pool depth (RPD) and maximum weekly maximum temperature (MWMT) 

represent standardized variables where the coefficient is the magnitude of the effect with a 1 SD 

change. Discharge gain is in reference to discharge loss. Each coefficient estimate is interpreted 

with all other variables held at mean, zero (Rainbow Trout), or reference levels.  

Parameter Coefficient 95% CI 

(Intercept) -4.52  ± 0.16 -5.01, -4.15 

Creek Chub -2.10 ± 0.13 -2.34, -1.83 

Redhorse -0.87 ± 0.12 -1.06, -0.64 

Northern Hogsucker -1.63 ± 0.12 -1.88, -1.45 

Juvenile Smallmouth Bass -1.36 ± 0.12 -1.71, -1.45 

Age-1+ Smallmouth Bass -0.28 ± 0.12 -0.56, -0.01 

Temperature (MWMT) -0.16 ± 0.09 -0.29, 0.06 

Percent riffle 0.06 ± 0.08 -0.14, 0.21 

Residual pool depth (RPD) 0.15 ± 0.06 0.07, 0.26 

Rainbow Trout 0.01 ± 0.08 -0.23, 0.20 

Creek Chub * MWMT -0.63 ± 0.11 -0.91, -0.45 

Redhorse * MWMT 0.22 ± 0.10 -0.14, -0.42 

Northern Hogsucker * MWMT -0.11 ± 0.11 -0.38, 0.03 

Juvenile Smallmouth Bass * MWMT 0.07 ± 0.11 -0.15, 0.22 

Age-1+ Smallmouth Bass * MWMT 0.12 ± 0.10 -0.09, 0.28 

Creek Chub * percent riffle -0.22 ± 0.11 -0.47, -0.04 

Redhorse * percent riffle -0.27 ± 0.11 -0.44, -0.12 

Northern Hogsucker * percent riffle -0.45 ± 0.11 -0.69, -0.28 

Juvenile Smallmouth Bass * percent riffle -0.01 ± 0.10 -0.22, 0.29 

Age-1+ Smallmouth Bass * percent riffle -0.08 ± 0.10 -0.32, 0.09 

Creek Chub * Rainbow Trout 0.32 ± 0.11 0.04, 0.54 

Redhorse * Rainbow Trout -0.02 ± 0.10 -0.29, 0.16 

Northern Hogsucker * Rainbow Trout 0.03 ± 0.11 -0.27, 0.19 
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Juvenile Smallmouth Bass * Rainbow Trout 0.18 ± 0.11 -0.06, 0.50 

Age-1+ Smallmouth Bass * Rainbow Trout 0.07 ± 0.10 -0.15, 0.35 
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FIGURES 

 

Figure 1. Location of microhabitat sites on Spavinaw and Spring creeks that I sampled seasonally 

2017 – 2019. The middle and lower Spavinaw sites were sampled in autumn, winter, and spring. 

The upper Spavinaw site was sampled in winter 2017 and summer 2018. Spring Creek was 

sampled seasonally and served as a reference with no trout present (Table 2). Gray shading 

indicates extent of Dissected Springfield Plateau (Level IV ecoregion) within the map frame.  
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Figure 2. Location of reaches sampled on Spavinaw and Spring creeks during summer 2018 and 

2019. Thirteen reaches were sampled on Spavinaw Creek and five reaches were sampled on 

Spring Creek. Not all reaches were sampled during both years (Table 3). Gray shading indicates 

extent of Dissected Springfield Plateau (Level IV ecoregion) within map frame. 

 

 

 

 



56 
 

 

Figure 3. 
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Figure 3. Relative selection trends of depth (m) for six species/life stages of stream fishes 

encountered during microhabitat assessments. Selection trends are plotted as an interaction with 

time held constant at day 30 (i.e., ~ January 31). All species/life stages had significant 

relationships with the interaction between depth (depth + depth2) and time (relationships shown 

as black lines). For three species (Creek Chub, Redspot Chub, and age-1+ Smallmouth Bass), 

there were also significant relationships between depth, time, and the presence of Rainbow Trout 

(relationships shown as gray lines). In all plots, the estimates are scaled by the highest probability 

(e.g., X/highest probability) so that the highest predicted probability becomes a value of 1 on the 

y axis. All plotted relationships are deemed significant using a 95% High Density Interval criteria 

(dotted lines).  
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Figure 4.  
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Figure 4. Relative selection trends of depth (m) for six species/life stages of stream fishes 

encountered during microhabitat assessments. Selection trends are plotted as an interaction with 

time held constant at day 180 (i.e., ~ June 20). All species/life stages had significant relationships 

with the interaction between depth (depth + depth2) and time (relationships shown as black lines). 

For three species (Creek Chub, Redspot Chub, and age-1+ Smallmouth Bass), there were also 

significant relationships between depth, time, and the presence of Rainbow Trout (relationships 

shown as gray lines). In all plots, the estimates are scaled by the highest probability (e.g., 

X/highest probability) so that the highest predicted probability becomes a value of 1 on the y axis. 

All plotted relationships are deemed significant using a 95% High Density Interval criteria 

(dotted lines).   
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Figure 5. 
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Figure 5. Relative selection trends of velocity (m/s) for six species/life stages of stream fishes 

encountered during microhabitat assessments. Selection trends are plotted as an interaction with 

time held constant at day 30 (i.e., ~ January 31). All species/life stages had significant 

relationships with the interaction between velocity and time (relationships shown as black lines). 

For five species (Creek Chub, Redhorse, Redspot Chub, age-1+ Smallmouth Bass and Juvenile 

Smallmouth Bass), there were also significant relationships between velocity, time, and the 

presence of Rainbow Trout (relationships shown as gray lines). In all plots, the estimates are 

scaled by the highest probability (e.g., X/highest probability) so that the highest predicted 

probability becomes a value of 1 on the y axis. All plotted relationships are deemed significant 

using a 95% High Density Interval criteria (dotted lines).  

 

 

 

 

 

 

 

 

 



62 
 

 

Figure 6.  
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Figure 6. Relative selection trends of velocity (m/s) for six species/life stages of stream fishes 

encountered during microhabitat assessments. Selection trends are plotted as an interaction with 

time held constant at day 180 (i.e., ~ June 20). All species/life stages had significant relationships 

with the interaction between velocity and time (relationships shown as black lines). For five 

species (Creek Chub, Redhorse, Redspot Chub, age-1+ Smallmouth Bass and Juvenile 

Smallmouth Bass), there were also significant relationships between velocity, time, and the 

presence of Rainbow Trout (relationships shown as gray lines). In all plots, the estimates are 

scaled by the highest probability (e.g., X/highest probability) so that the highest predicted 

probability becomes a value of 1 on the y axis. All plotted relationships are deemed significant 

using a 95% High Density Interval criteria (dotted lines).   
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Figure 7.  
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Figure 7. Relative selection trends of substrate for six species/life stages of stream fishes 

encountered during microhabitat assessments. All six species had significant relationships with 

substrate. For three species (Creek Chub, Northern Hogsucker and Juvenile Smallmouth Bass), 

there were also significant relationships between velocity and the presence of Rainbow Trout 

(relationships shown as gray lines). In all plots, the estimates are scaled by the highest probability 

(e.g., X/highest probability) so that the highest predicted probability becomes a value of 1 on the 

y axis. All plotted relationships are deemed significant using a 95% High Density Interval criteria 

(dotted lines).  
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Figure 8. 
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Figure 8. Temperature selection (deviation from the median site temperature) for Redspot Chub 

and juvenile Smallmouth Bass during winter (January 31) and summer (June 20). Black lines 

indicate selection patterns under reference (no trout) conditions and gray lines represent selection 

patterns with Rainbow Trout present. In all plots, the estimates are scaled by the highest 

probability (e.g., X/highest probability) so that the highest predicted probability becomes a value 

of 1 on the y axis. All plotted relationships are deemed significant using a 95% High Density 

Interval criteria (dotted lines).   
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Figure 9. Residual plot of my final reach-scale model (mD) where the x-axis is an index of 

expected values and the y-axis is the standardized residual values. Standardized residual values 

should have a mean of 0 and standard deviation of 1; thus, lines at ± 2 indicate approximate 95% 

error bounds (Gelman and Hill 2007).   

 

 

 

 

 



69 
 

 

Figure 10.  
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Figure 10. Relationship between fish density (i.e., fish/m2) of five fish species including two life 

stages of Smallmouth Bass (juvenile and age-1+) and four continuous reach-scale predictor 

variables (top left panel to bottom right): Rainbow Trout density, 2) residual pool depth (RPD), 3) 

percent riffle and 4) maximum weekly maximum temperature (MWMT). Species are: Redspot 

Chub (RSC), Creek Chub (CRC), Northern Hogsucker (NHS), Redhorse spp. (MOX), and 

Smallmouth Bass (SMB).  Redspot Chub served as the reference species for all interactions. 

Relationships are plotted with all other variables held at mean or reference levels. Solid lines 

represent significant species-specific differences from the reference (RSC) relationship. RPD was 

retained only as a main effect during model selection; thus, the plotted line represents the 

relationship for all species though the actual density (y-axis) would depend on the species-

specific intercept (i.e., higher vs lower density species).   
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CHAPTER III 
 

 

MOVEMENT AND SURVIVAL OF STOCKED RAINBOW TROUT IN LOWER SPAVINAW 

CREEK  
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ABSTRACT 

Stocking Rainbow Trout to create additional angling opportunities is not uncommon; however, 

these fishing opportunities necessitate evaluation in warmwater streams where the spatial and 

temporal implications of stocking non-native fish are unclear. My objectives were to determine 

Rainbow Trout dispersal from a stocking location on Spavinaw Creek, Oklahoma and quantify 

Rainbow Trout apparent survival by two cohorts stocked in autumn 2018 and spring 2019. 

Rainbow Trout were PIT tagged in November 2018 (n = 495) and February 2019 (n = 605) prior 

to stocking and actively and passively located following stocking using a floating array and two 

fixed arrays. Most stocked Rainbow Trout we detected remained within ~1 km of the stocking 

location but with notable individual variability (up to 4 km observed). Directional movement by 

stocked Rainbow Trout detected using fixed arrays was evident with upstream movements related 

to positive changes in daily discharge and downstream movements related to falling daily 

discharge. Estimated mortality was highest during the first two weeks post stocking. Apparent 

weekly survival rates for both autumn and spring stocked fish increased through winter and 

spring when water-temperatures were cool. Rainbow Trout persisted in Spavinaw Creek despite 

warm water temperatures during the summer; however, the weekly apparent survival rate during 

summer was reduced when maximum daily water temperatures exceeded 25 ˚C. My results 

suggest possible interactions with native warmwater fishes over the first year of initial stocking 

would be primarily concentrated in 1 km of the stocking location; however, cumulative effects 

due to repeated stockings and learning by individuals successfully over-summering are unknown. 

Additionally, warmer and drier conditions than experienced during my 1-year study could alter 

survival and increase possible interactions with native species, particularly when thermal 

resources are limiting.  
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INTRODUCTION 

 Salmonids are widely stocked to increase angling opportunities, increase license sales, 

and supplement existing fisheries where salmonids are native (Epifanio et al. 2000). In the United 

States, trout angling is estimated to provide 8.6 billion dollars in economic benefits each year 

(USFWS and U.S. Census Bureau 2011); thus, stocking efforts comprise an important component 

of fisheries management activities for many state and federal agencies. In a single year (2004), 

Halverson (2008) estimated state and federal agencies stocked 9.96 x 106 kg of Rainbow Trout 

Oncorhynchus mykiss. Forty-six state agencies currently maintain trout stocking programs 

throughout the country to increase angling opportunities and generate revenue from license sales 

(Epifanio 2000; Hyman et al. 2016). Trout stockings below impoundments provide valuable 

tailwater fishing opportunities where extirpation or reduction in native fishes result from human 

modifications (e.g., Bettinger and Bettoli 2002; Runge et al. 2008; Quinn and Kwak 2011). In 

addition to agency stockings, private stockings provide angling opportunities and generate 

additional economic revenue (e.g., angling clubs, see Rasemussen and Petersen 2018). 

Consequently, salmonid distributions extend well beyond their native range via stocking efforts 

(Halverson 2010).  

 Rainbow Trout is perhaps the most commonly-stocked trout in the United States 

(Halverson 2010) and globally (MacCrimmon 1971; Stankovic et al. 2015); however, possible 

interactions between Rainbow Trout and native fishes focus primarily on sympatric trout (e.g., 

Rainbow Trout and Brook Trout Salvelinus fontinalis, Larson and Moore 1985; Rainbow Trout 

and Cutthroat Trout Clarki lewisi, Hitt et al. 2003; and Rainbow Trout and Dolly Varden Charr 

Salvelinus malma, Baxter et al. 2004). Rainbow Trout is native to the western United States; 

however, 39 states currently manage non-native Rainbow Trout fisheries through a combination 

of hatchery stocking and naturalized populations (Epifano 2000). In areas where other salmonid 

species are native, stocking concerns are generally focused on genetic integrity (Hansen and 

Mensberg 2009; Karlsson et al. 2016; Perrier et al. 2013) and the spread of disease and parasites 
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(Johnsen and Jensen 1991; Hastein 1991). In non-impounded warmwater systems that lack 

sympatric trout, concerns expressed about the possible effects on native fishes are less clear 

(Turek et al. 2013). Possible interactions between introduced Rainbow Trout and native 

warmwater fishes have been addressed in field (Walsh and Winkelman 2004; Weaver and Kwak 

2013) and lab-based studies (Turek 2015; Elkins et al. 2019); however, these examinations have 

not resulted in a scientific consensus that would help guide agency policies. Consequently, 

additional studies examining the behavior and survival of Rainbow Trout introduced into 

warmwater streams would be a useful step to understanding possible ecological implications.  

 Stocked salmonid survival rates are variable and influenced by habitat, environmental 

conditions, genetic characteristics of the population stocked, and harvest by anglers. In some 

cases, low survival is reported in stocked Rainbow Trout populations outside the native range. 

Bettinger and Bettoli (2002) found < 10% of catchable-size Rainbow Trout survived more than 

six weeks in a Tennessee dam tailwater. Similarly, Baird et al. (2006) reported no persistence of 

Rainbow Trout after several years of stocking in a New York stream due to presumed poor 

habitat quality. In ecosystems that more closely match the natural habitat of Rainbow Trout, 

survival rates may be higher (Fausch 2008). For example, seasonal survival of Rainbow Trout 

stocked in the Bluestone River, WV ranged 35 – 90% depending on stocking season (Hartman et 

al. 2012). Similarly, Flowers et al. (2019) reported high survival rates (> 90%) for Rainbow Trout 

and other salmonid species stocked in several NC streams. The distinct population characteristics 

(i.e., strains) of Rainbow Trout stocked may also influence survival due to differences in growth 

(Brauhn and Kincaid 1982), disease resistance (Hedrick et al. 2003), and thermal tolerances 

(Rodnick et al. 2004; Hartman and Porto 2014). In systems where Rainbow Trout are stocked 

under high fishing pressure, survival is reduced through harvest (e.g., Fay and Pardue 1986; 

Bettinger and Bettoli 2002; Hyman et al. 2016). In addition to survival, other factors including 

movement may relate to interactions with native species.  
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 Studying movement patterns of stocked salmonids provides key information on their use 

of critical habitat (e.g., thermal refuge, Torgersen et al. 1999), overlap and subsequent ability to 

hybridize with native species (Muhlfeld et al. 2009) and allows us to draw inferences on possible 

reproductive success and subsequent dispersal into new areas of a catchment (Larson and Moore 

1985; Fausch 2008; Seiler and Keeley 2009). Thirty-eight state agencies responding to a survey 

indicated habitat-related factors were the greatest limitation in managing cold-water fisheries 

including Rainbow Trout (Epifano 2000). Spawning movements to key habitats are common 

among both anadromous salmon (Robards and Quinn 2002) and freshwater (i.e., landlocked) 

populations (e.g., Rainbow Trout, James and Kelso 1995). Additionally, understanding movement 

patterns may help guide stocking decisions by identifying the spatial extent of possible 

interactions with native species. For example, declines in Cutthroat Trout resulted from 

movement of non-native Brook Trout into Rocky Mountain headwater streams (Peterson and 

Fausch 2003). Movement patterns are also useful in determining if stocked fishes remain in areas 

accessible to anglers if creating a trout fishery is a management objective. For example, Hartman 

et al. (2012) evaluated site fidelity (i.e., the proportion of fish that remained within the study 

reach) and survival of Rainbow Trout in an Appalachian river to determine the effectiveness of 

stocking Rainbow Trout to increase angling opportunities. In some cases, emigration by stocked 

fish may account for a greater loss of individuals from an accessible population to anglers than 

actual mortality (e.g., Rainbow Trout, Flowers et al. 2019).  

 Understanding directional movements from stocking locations and movement distance 

have important implications for managing stocked fish populations. Most evaluations of stocked 

Rainbow Trout report downstream movement patterns (Cresswell 1981; Helfrich and Kendall 

1982) often related to high discharge events (e.g., hydroelectric power generation, Bettinger and 

Bettoli 2002; Cocherell et al. 2010). However, upstream movements are also reported and 

hypothesized to relate to environmental factors other than discharge (e.g., cooler upstream water 

temperatures, Runge et al. 2008). Like dispersal direction, movement distances by stocked 
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Rainbow Trout appear conditional with some populations being relatively sedentary (e.g., 1 – 3 

km of their stocking location, High and Meyer 2009; Hartman and Logan 2010; Flowers et al. 

2019), whereas others show greater dispersal potential over time. For example, a subset of 

stocked Rainbow Trout was reported to move > 100 km downstream in the Portneuf River, Idaho 

(Heimer et al. 1985). Although the management implications of dispersal vary depending on the 

stocking goal, dispersal may limit possible angling opportunities or altered densities spatially, 

allowing for different interactions (i.e., increased or decreased) with native fishes.  

 The objectives of my third chapter were to determine Rainbow Trout dispersal and 

movement direction and quantify Rainbow Trout apparent survival by two cohorts stocked in 

autumn 2018 and spring 2019 in Spavinaw Creek, OK. Quantifying these parameters provides 

information on how Rainbow Trout survived and dispersed in an unregulated, warmwater stream 

where harvest rates were not expected to substantially influence either survival or movement. The 

underlying karst geology and associated groundwater contribution in Spavinaw Creek creates 

patchy thermal habitats; therefore, I hypothesized Rainbow Trout summer survival rates would be 

higher than many other warmwater streams. Understanding the spatial (dispersal) and temporal 

(survival) dynamics of stocked Rainbow Trout in Spavinaw Creek are useful for guiding future 

stocking decisions given the native fish assemblage is diverse and includes other popular 

sportfish and species of conservation. 

 

METHODS 

Field methods 

Study segment and fixed antenna arrays. – I installed two fixed Passive Integrative Transponder 

(PIT) tag antenna arrays (hereafter, “fixed arrays”) near the upstream and downstream end of my 

~ 6-km study segment to determine directional movement and emigration by stocked Rainbow 

Trout (Figure 1). Each fixed array consisted of two antennas spaced ~2-m apart to determine the 

movement direction of tagged fish as they passed through. I constructed each antenna to form a 
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loop across the stream using 12 American Wire Gauge stranded wire that I strung through PVC 

along the stream bottom and back above the water column using t-posts (Figure 2). Each antenna 

was connected to a tuning box and then a multi-antenna reader box (Oregon RFID, Portland, 

Oregon) using 20 American Wire Gauge stranded wire. I housed the reader box in a bank-located 

plastic container. I powered the reader using a combination of two, 12-volt deep-cycle batteries 

and a solar panel. I attempted to switch reader batteries once every 2 wk to maintain constant 

operation. However, this was not always possible due to flooding events (e.g., flows above 28 

m3/s typically disabled arrays) and resulted in several outage periods.  

 

 Tagging and stocking. – I used PIT tags to individually mark a subset of Rainbow Trout prior to 

each stocking occasion in Spavinaw Creek. PIT tags are useful because of their small size, high 

retention rate, and negligible effects on survival or growth for many species (Cooke et al. 2011; 

Musselman et al. 2017) including salmonids (95% to 99% post-tagging survival, Gries and 

Letcher 2002; Dare 2003). I used large, half-duplex tags because of their greater detection 

distance (O’Donnell et al. 2010; Featherman et al. 2014; Hodge et al. 2015) and reduced 

susceptibility to environmental noise compared to full-duplex PIT tags (Oregon RFID, 

https://www.oregonrfid.com/resources/hdx-fdx/, accessed September 16, 2019). The size of the 

PIT tag (23 mm or 32 mm) used in my study was determined by the total length (TL, 1 mm) of 

each tagged fish. The smallest fish tagged with a 32 mm tag was 230 mm TL.  

 I tagged each cohort of Rainbow Trout during a single day at the hatchery (Crystal Lake 

Fisheries, Ava, MO) approximately 1 wk prior to each stocking date. A team of four people (the 

project PI, Oklahoma Department of Wildlife Conservation biologists, field technicians, and 

myself) carried out all tagging activities during each tagging occasion. Two people were 

responsible for netting and transporting each fish to and from the raceway. Two additional people 

injected PIT tags into the peritoneal cavity of each fish using a 3.9 mm diameter needle to make a 

small incision (Cooke et al. 2011). In addition, the tagging team measured and recorded the fish 
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total length (TL, 1 mm). Once tagged, fish were immediately placed back in raceway to recover. 

Tagged individuals were held at the hatchery for 1 wk after tagging to monitor survival prior to 

stocking.  

 Tagged and untagged Rainbow Trout (Emmerson strain) were stocked on November 6, 

2018 (autumn stocking cohort) and February 26, 2019 (spring stocking cohort) in the same reach 

of Spavinaw Creek, OK (Figure 1). Fish mortalities were inspected at the hatchery prior to 

loading fish on the hatchery truck. Fish were transported to the stocking site by hatchery 

personnel (Crystal Lake Fisheries, Ava, MO). During the autumn stocking, fish were distributed 

throughout the entire site (~1 km) using small transport containers and all-terrain vehicles. During 

the spring stocking, Rainbow Trout were stocked in a single pool using a tube attached to the 

stocking truck. During each stocking occasion, the project Principle Investigator and Oklahoma 

Department of Wildlife Conservation biologists checked fish condition and ensured tagged fish 

were distributed evenly among untagged fish.  

 

Detection of tagged fish. – I began actively tracking tagged Rainbow Trout approximately 3 wk 

after the autumn stocking in Spavinaw Creek. I actively tracked at 2 – 3-wk intervals throughout 

winter 2018 and spring 2019 as safe discharge conditions allowed (Table 1). From early May 

through early June 2019, excessive flooding prevented active tracking (Figure 4). Active tracking 

resumed at monthly intervals beginning in late June. Hereafter, I refer to tracking occasions prior 

to May flooding (tracking occasions 1 – 10) as the first tracking period and tracking occasions 

post flooding (tracking occasions 11 – 13) as the second tracking period.   

 I used two floating PIT-tag antennas (hereafter “floating array”) to actively located 

tagged Rainbow Trout throughout my study segment. My floating array design was similar to the 

raft-based design outlined in Fetherman et al. (2014) except I towed my floating array using 

kayaks. Briefly, my floating array consisted of two antennas made using 12 American Wire 

Gauge stranded wire that I ran through an approximately 1 x 1.5 m2 PVC frame (Figure 2). Each 
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antenna was connected to the same multi-antenna reader (Oregon RFID, Portland, Oregon) 

housed in one of the two kayaks along with a 12-volt deep-cycle battery to provide power to the 

reader box. A floating array was advantageous in Spavinaw Creek because sampling substantial 

stream distances using other gears (i.e., electrofishing) would be difficult due to heterogeneous 

habitat characteristics (e.g., alternating deep bluff pools and shallow riffles). In addition, I was 

able to tow my floating array across the entire study segment under varying discharge conditions 

which would not have been possible using other gears. I attempted to cover the entire width of 

Spavinaw Creek using my floating array on each tracking occasion. In wider areas, I focused on 

each bank separately (i.e., would do repeat passes in wider pools) and prioritized time in areas of 

structure (e.g., boulders, rootwads, and logs).   

 

Analysis  

Apparent survival analysis. – I considered two model designs to estimate apparent survival of 

Rainbow Trout in Spavinaw Creek. I considered both the Robust Design (Pollock 1982) and the 

Cormack-Jolly-Seber (CJS) model to analyze my mark-recapture data. I chose to use the CJS 

model (i.e., only the open-population component of the Robust Design) because survival of each 

stocking cohort was my primary interest (i.e., births and immigration did not contribute to the 

study population). Consequently, abundance estimates could be derived from survival rates 

without estimating additional model parameters (O’Donnell et al. 2010). Using a Robust Design 

can help partition apparent survival into mortality and emigration but only with extension of the 

model using additional data like dead-tag recoveries (Kendall 2007). These data were not 

available during my study; thus, I proceeded with the CJS model.  

 I used a CJS Model (Cormack 1964; Jolly 1965; Seber 1965) with both time-varying (i.e., 

changing environmental conditions) and individual-level (i.e., fish TL) covariates (Lebreton et al 

1992; Pledger et al. 2003) to estimate weekly apparent survival rates of Rainbow Trout stocked in 

Spavinaw Creek. The CJS model is commonly used to estimate apparent survival and detection 
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probability of animals under the open population assumptions. The model framework is robust to 

bias via random temporary emigration (Kendall et al. 1997) but true mortality and permanent 

emigration are confounded; thus, estimates are subsequently reported as apparent survival. 

  I estimated emigration effects on apparent survival during the first tracking period using 

the both a fixed array installed at the upstream end of my study segment and additional tracking 

efforts upstream of my study segment. Using my fixed array, I classified individuals as permanent 

emigrants if they were detected leaving the study segment (i.e., moving upstream through the 

antennas) and were not detected again in any subsequent active tracking occasion. I followed 

methods in Spurgeon et al. (2015) to account for fish permanently leaving the study area and 

adjusted apparent survival rates accordingly. I calculated the number of tagged fish estimated 

living on each tracking occasion by multiplying the previous occasion’s estimate by the weekly 

survival rate for the following time interval, raised to the exponent of the interval length. I then 

removed the number of emigrated fish from my estimate of remaining stocked fish. Lastly, 

adjusted survival rates were calculated using the following equation:  

(predicted No. at occasion(x) ) / (predicted No. at occasion(x-1) - No. leaving) ^ (1 /interval length) 

I did not use detections from the downstream fixed array to adjust my survival estimates because 

this array was installed only for the collection of movement data (i.e., was not installed at the 

downstream extent of the tracking segment). In addition to accounting for emigration using 

detections at my upstream fixed array, I investigated upstream dispersal by conducting additional 

active tracking efforts in an upstream portion of Spavinaw Creek, Arkansas. I actively tracked 

July 1st – 3rd, 2019 on an additional ~2.5-km segment located 9 km upstream of the stocking 

location.  

 The CJS model has six assumptions: 

1)  each marked individual in the segment at time i has the same probability of being detected,  

2)  each marked individual at time i has the same chance of survival to time i + 1,  

3)  marks are neither lost nor overlooked and are recorded correctly, 
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4)  sampling periods are instantaneous, relative to the sampling intervals,  

5)  all emigration from the segment area is permanent, and   

6)  the fate of each animal (i.e., survival) is independent from any other animal. 

 Violation of assumption one was my primary concern given I suspected varying habitat 

contributed to unequal detectability among individuals during sampling occasions. For example, 

detection efficiency using my floating array was lower in deeper pools compared to shallow 

water. Consequently, I hypothesized fish using deeper-water habitat would be less likely to be 

detected. Like temporary emigration, open models such as the CJS are robust to random unequal 

detectability (Pollock 1982; Kendall 2007). I included a “trap-happy effect” (hereafter, trap 

effect) to account for possible unequal detection probability among individuals that had and had 

not been detected on the previous tracking occasion (Pledger and Efford 1998). I hypothesized 

that if heterogeneous habitat influenced individual fish detections, then an individual detected on 

occasion t would have a higher detection probability on occasion t+1 if continuing to use the same 

habitat (e.g., using shallow water where array detection efficiency was high). My trap effect was 

treated as a dummy variable (i.e., indicator variable) where a 1 assigned at tracking occasion X 

for fish i reflected an individual detected on the previous occasion (Laake and Rexstad 2017). 

 In addition to a trap happy effect, I hypothesized three additional variables related to 

variable detection during different tracking occasions (Table 2). I considered “effort” in my 

model as a measure of the number of days (range 2 – 4) that contributed to each tracking 

occasion. I also used hourly discharge data from the nearest USGS gauge (USGS stream gauge 

071912213, Colcord, OK) to calculate the average discharge during each tracking occasion. I 

used hourly discharge data from 12:00 am on the first day of tracking through 11:00 pm on the 

last day of tracking to estimate average discharge on each tracking occasion. Discharge may 

influence tag detection when using floating arrays (O’Donnell et al. 2010). I also allowed 

detection to vary over time by treating time as a factor with ten levels for the first survival model 

and three levels for the second survival model (see below). My hypothesis was the relationship 
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between time and detection was not linear; instead, I treated time as an indicator variable where 

each level was interpreted with respect to the reference (i.e., the first detection event for each 

tracking period). Lastly, I included a fixed parameter (i.e., non-varying detection) that allowed me 

to test if detection changed over each tracking occasion or remained constant.  

 The inclusion of predictor variables for survival is an important consideration when 

designing mark-recapture models (Table 2). The variables I hypothesized would be relevant to 

Rainbow Trout survival were stocking cohort (i.e., season when fish were stocked), TL, and time 

since stocking (tracking occasion). The timing (i.e., season) of fish stocking is often an important 

consideration when examining post-stocking survival because conditions may be variable among 

seasons (e.g., Carlson and Letcher 2003; Hartman et al. 2012). In addition, individual variation 

such as TL may contribute to differences in post-stocking survival. For example, Carlson and 

Letcher (2003) found larger, recently stocked Rainbow Trout had greater survival during winter 

months when compared to smaller Rainbow Trout. Lastly, survival rates may vary with time so I 

included time as a continuous variable where I hypothesized the relationship would be linear and 

survival would increase or decrease over time. Bettinger and Bettoli (2002) found survival rates 

of stocked Rainbow Trout were lowest immediately following stocking in the Clinch River, 

Tennessee, and generally increased thereafter. Like detection, I also considered a fixed survival 

coefficient in my parameter set to determine if survival rates were constant during my study. I 

created parameter sets using all variable combinations for each tracking period (Table 3).  

 I developed two CJS models to quantify weekly Rainbow Trout survival. The two models 

were developed to quantify survival during the two tracking periods (i.e., tracking periods 1 and 

2). I constructed separate CJS models for the two tracking periods because I hypothesized 

apparent survival would increase through the first period following autumn stocking but decrease 

through time during the second tracking period as summer water temperatures increased. 

Additionally, the flooding during May and June presented a logical breakpoint in the dataset. I 

was able to maintain separate apparent survival estimates of the two stocking cohorts (autumn 
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and spring) within each of the two models. For both models, I adjusted time intervals 

appropriately between sampling occasions following guidelines outlined in Cooch and White 

(2007) and Laake and Rexstad (2017) so that model estimates represented weekly survival rates. 

 I fitted each model using program MARK (White and Burnham 1999) through the Rmark 

interface (version 2.2.6, Laake 2013) in the statistical program R (version 3.6.0, R core team 

2019). I standardized all continuous variables to a mean of zero and a standard deviation of one 

for easier interpretation of model estimates. I used all possible combinations of my parameters 

(Table 3) to generate my candidate model set (N = 81) because sub-setting variables can bias the 

relative importance of specific predictors (Doherty et al. 2012). I used Akaike’s Information 

Criterion adjusted for small sample size (AICc, Burnham and Anderson 2002) to rank my 

candidate models. I accounted for over dispersion in my data by calculating Fletcher’s c-hat 

(Fletcher 2012) for the most parameterized model. Fletcher’s c-hat is better-suited for mark-

recapture data because it allows for dispersion of observations across a large number of encounter 

histories like those generated in mark-recapture studies (Cooch and White 2007; Laake and 

Rexstad 2017; Bond et al. 2019). I determined over dispersion to be 1.05 and 2.74 for the first and 

second tracking dataset, respectively. I applied the c-hat value to the entire candidate model set 

(i.e., applied to each model AICc). Consequently, I determined the model with the most support 

using QAICc which accounts for the effect of over dispersion by adjusting the AICc values 

associated with each model.  

    

Directional movement analysis. – I characterized daily directional movement using data collected 

at my two fixed arrays throughout my study duration. These data represent point-in-time 

detections of tagged Rainbow Trout as they passed through each array location. Directionality 

was determined by the order a fish passed through the two antennas at each array during a 24-h 

period. Based on an initial evaluation of my data, I found that Rainbow Trout movements were 

most common from dusk to dawn. Consequently, I defined a 24-h period as 12:00 pm to 11:59 
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am of the following day so that the period of highest movement was encompassed in the same 24-

h interval. I coded detections over each 24-h period as one of the following 1) an upstream 

movement, 2) a downstream movement, 3) a non-directional movement (i.e., detected at both 

antennas but with the first and last detection by the same antenna), and 4) single detections 

(detected at only one antenna). However, I did not incorporate single detections into my dataset 

because I could not determine if these were directional movements not captured due antenna 

malfunction or tag interference (i.e., multiple tagged fish crossing the antenna at the same time). 

 I developed separate generalized linear mixed models (GLMM) for upstream and 

downstream movement because these models assume each variable is linearly related to the 

response variable. For example, some predictor variables may drive increased movement 

probability in either direction (i.e., upstream or downstream) and this relationship would not be 

captured using a single model. I coded movements as a binary response where movement in the 

direction of interest was coded as one and movement in either the opposite direction or a non-

directional movement was coded as zero (Spurgeon et al. 2015). The resulting models estimated 

the probability of an upstream or downstream movement related to several predictor variables I 

hypothesized related to directional movement. 

 I considered temperature, discharge, and TL as fixed effects and fish identification (PIT 

tag number) and array location as random effects in both GLMMs examining directional 

movement. I included both stream temperature and stream discharge as environmental predictors 

given their influence on fish movement patterns (Hartman et al. 2012). For example, both 

seasonally increasing discharge (Bettinger and Bettoli 2002; Mellina et al. 2005) and daily 

discharge fluctuation (Ovidio et al. 1998; Heim et al. 2016) drive directional movement in stream 

fishes including salmonids. I averaged hourly discharge (USGS stream gauge 071912213, 

Colcord, OK) over each 24-h period (i.e., average discharge), and calculated discharge change 

over each 24-h period. Discharge change represented either a decrease (i.e., negative values) or 

increase (i.e., positive values) in discharge over 24 h. I also calculated the discharge change for 
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the 24-h period following each fish detection (discharge changet+1) because fishes may move 

prior to discharge fluctuation by responding to changes in barometric pressure and rainfall (Guy 

et al. 1992; Dedual and Jowett 1999). Temperature also drives fish movement patterns, 

particularly in marginally suitable habitat where water temperature may approach lethal 

thresholds (Baird et al. 2006; Runge et al. 2008). I calculated maximum water temperature 

(tempMAX) for each 24-h period because maximum temperature, rather than average temperature, 

may better explain movement and survival in warmwater streams where diel temperature 

fluctuation is highly variable (Shelton et al. 2018). All environmental predictors were calculated 

using hourly data from 12:00 pm to 11:00 am of the following day. Lastly, I included TL as an 

individual-level covariate because fish size can be positively correlated with salmonid 

movements (e.g., Brown Trout, Quinn and Kwak 2011). I included fish (i.e., PIT tag number) and 

the location of the fixed array (upstream or downstream) as random effects in each movement 

model to control for unexplained variation and the effects of nested observations (Wagner et al. 

2006; Gelman and Hill 2007). The random effect of fish accounted for multiple observations on 

the same individual over time (i.e., temporal pseudoreplication), and the array location accounted 

for site-specific differences at the two arrays that may have contributed to directional movements.  

 I fitted two GLMMs (upstream and downstream movement) with a logit link and 

binomial error distribution using the package lme4 (Bates et al. 2015) in the statistical software R 

(version 3.6.0, R Core Team 2019). The models predicted the probability of upstream or 

downstream movement. I standardized all continuous predictor variables to a mean of zero and 

standard deviation of one prior to analysis to facilitate model convergence and interpretation 

(Gelman and Hill 2007). I tested for correlation among all predictor variables using Pearson’s 

correlation coefficient and omitted multicollinear predictor variables (r > |0.28|; Graham 2003) 

from the same model (Appendix C, Table 1). I generated an a priori candidate set of models 

using combinations of the remaining uncorrelated predictor variables (N=16 for each model, 

Table 4). 



86 
 

 Once I fit each candidate model set, I ranked my models and used binned residuals to 

assess top model fit. I ranked models using AICc and selected my top model based on the lowest 

AICc value (Burnham and Anderson 2002). I used binned residuals generated with the R package 

Arm (Gelman and Su 2016) to assess the fit of my top-ranked model. I expected approximately 

95% of generated points to fall within the theoretical error bounds if model fit was appropriate 

using a binomial distribution (Gelman and Hill 2007). I calculated both the conditional R2 

(variation explained by both predictor variables and random intercepts) and marginal R2 (variation 

explained by predictor variables; Nakagawa and Schielzeth 2013) for my final model using the R 

package MuMIn (Barton 2018). 

 

Movement distance and dispersal. – I characterized the coarse distances moved by tagged 

Rainbow Trout and overall dispersal of each stocked Rainbow Trout cohort. I established GPS 

points along the thalweg of my study segment at 100-m increments (i.e., bins) and recorded the 

time (1 sec) each bin was passed during active tracking occasions (Fetherman et al. 2014). I 

spaced the GPS locations 100-m apart to characterized coarse movement patterns while avoiding 

movements due to a behavioral response to my tracking activities (e.g., displacement within the 

same pool). I related the detection times of tagged fish obtained during my active tracking 

occasions to the times associated with the GPS points taken at each 100-m bin to place detected 

fish within the appropriate bin. Detection times associated with each tagged fish (1 sec) were 

recorded by the multi-antenna reader I used during each active tracking occasion. I used the bin 

location of each fish’s first detection rather than the stocking bin location as a starting point for 

movement and dispersal estimates because fish were stocked in different channel units across ~1 

km of stream during autumn. I used the first fish detection on each tracking occasion for my 

movement analysis because it was possible to detect the same fish over consecutive days during 

each occasion. I scaled movements between detections so that distances were comparable 

between tracking occasions. Most tracking occasions occurred at 2-wk intervals, but some 
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intervals were longer (e.g., tracking occasions during the second tracking period were at monthly 

intervals). To facilitate comparisons of movement distance between tracking occasions during my 

entire study period, I scaled movements to a rate of 2-week intervals (i.e., distances moved 

between detections during the second tracking period were divided by two). Using these data, I 

calculated the following metrics for each stocking cohort and each tracking occasion: 1) the 

percent of detected fish that moved up, down, or remained in the same bin, 2) the average bin 

movement (100 m) in each direction and 3) the maximum bin movement in each direction (100 

m). 

 

RESULTS 

Tagging and stocking. – I PIT tagged a subset of Rainbow Trout from the autumn and spring 

stocking cohorts, and there were differences in the overall size structure and condition of the two 

stocked cohorts. There were 1,360 kg of Rainbow Trout stocked in both autumn and spring. I 

tagged 495 Rainbow Trout in autumn and 605 in spring. The average TL of fish tagged during the 

spring was larger than those fish tagged in autumn (Figure 3); consequently, 32-mm tags were 

used almost exclusively for marking fish during the spring. I used 200 23-mm tags and 295-32 

mm tags to tag the autumn stocking cohort. I used five 23-mm tags and 600 32-mm tags to tag the 

spring stocking cohort. The average TL of the autumn stocking cohort was 292 mm (minimum – 

maximum: 100 mm – 530 mm). The average TL of the spring stocking cohort was 380 mm 

(minimum – maximum: 220 mm – 490 mm). Based on the size distribution of each stocking 

cohort, the estimated number of fish stocked was 4,492 during autumn and 2,000 during spring. 

Consequently, PIT-tagged fish represented 10% and 30% of the estimated total number of fish 

stocked in both autumn and spring, respectively. Tagged Rainbow Trout stocked in autumn 

appeared in better condition than those tagged and stocked in the spring (i.e., more instances of 

fin rot and missing fins in spring cohort fish).  
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 I had low mortalities associated with my PIT tagged Rainbow Trout. Both tagged cohorts 

were held at the hatchery 1-week post tagging. There were two mortalities associated with my 

autumn fish tagging. No mortalities of tagged Rainbow Trout were found following spring 

tagging. 

 

Detection of tagged fish. – I detected 715 tagged fish at least once over 13 active tracking 

occasions (Table 5). For each cohort, the number of detections was highest immediately 

following each stocking date. During the first tracking period (occasions 1 – 10), I detected 313 

(63%) of the autumn stocking cohort and 284 (54%) of the spring stocking cohort at least one 

time. During the second tracking period (occasions 11 – 13), I detected 82 and 169 individuals 

from the autumn and spring stocking cohorts, respectively. Of fish detected in the second tracking 

period, nine autumn-stocked fish and 65 spring-stocked fish were not previously detected in the 

first tracking period.   

 Several tagged fish emigrated from my study segment but none of these tagged fish were 

detected in Arkansas. I detected 134 uniquely tagged fish using my fixed arrays (~late December 

2018 through August 2019). Of these fish, 28 individuals were not detected on any active 

tracking occasions. Prolonged periods of flooding limited the temporal coverage of my fixed 

arrays (Appendix C, Table 2). At the upstream array, 40 fish from the autumn cohort and 15 fish 

from the spring cohort were last detected moving upstream (i.e., out of the study segment) and 

were not detected again during subsequent active tracking. These fish were considered 

permanently emigrated from the study segment and were not included in my analyses. I did not 

detect any tagged Rainbow Trout in Arkansas during the additional active tracking effort in July.  

 

Apparent survival analysis. – Covariates for the best-fit model describing apparent survival 

differed between the first and second tracking period. The top model for the first tracking period 

(model weight = 0.64; Table 6) had interactive survival terms for Phi(Time) and Phi(cohort) and for 
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Phi(cohort) and Phi(TL) and for the respective main effects (Table 7). Detection coefficients were 

p(time) and the trap effect p(D) (Table 7). For the second tracking period, the top model (model 

weight = 0.15; Table 6) had the fixed parameters Phi(.) and p(.) for survival and detection, 

respectively.  

 The trend in apparent survival rates over the first tracking period were similar among 

stocking cohorts and were close to adjusted survival estimates that accounted for emigrated 

individuals. Weekly-survival rates for both stocking cohorts were lowest following stocking and 

increased steadily over time (Figures 5 and 6). However, the initial apparent survival rate was 

lower for the spring stocking cohort (0.77 weekly survival rate, 0.68 – 0.84 95% CI) compared to 

the autumn stocking cohort (0.90 weekly survival rate, 0.88 – 0.92 95% CI). Increasing TL was 

positively related to higher apparent survival though only for the spring stocking cohort (i.e., 

weekly survival was essentially the same regardless of fish TL in the autumn stocking cohort). 

Detections using the fixed arrays indicated emigration did not substantially contribute to apparent 

mortality for either the autumn or spring stocking cohorts during the first tracking period (Table 

8). All adjusted survival rates fell within the 95% CI intervals of survival rates from the 

unadjusted CJS model. Using apparent survival rates from my CJS model, I calculated 44% and 

56% Rainbow Trout from the autumn and spring cohorts, respectively, were still alive within my 

study segment at the end of the first tracking period (end of April).  

 During the second tracking period, apparent survival rates were constant over time and 

did not vary by stocking cohort or TL. The top model indicated a fixed weekly survival rate of 

0.93 (95% CI: 0.89 – 0.95) over the second tracking period (June 30th through September 22nd, 

2019). This suggests that cumulative summer survival was 39% and did not differ by cohort.  

Detection was also estimated to be constant during this period (0.70, 95% CI: 0.55 – 0.83).  

 

Directional movement. – The top models examining both upstream and downstream movements 

by Rainbow Trout had an interaction between average discharge and the discharge change during 
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the same 24-h period (Table 4 and Table 9). The following 24-h discharge change (discharge 

changet+1) was not included in either model. As expected, the response to each variable (increased 

or decreased probability) differed between upstream and downstream movement with the 

interaction effect having the strongest relationship with movement in both models (Table 9 and 

Figure 7). The upstream movement probability increased with increasing 24 h discharge change 

at all by the highest average 24 h discharge levels (Figure 7). Conversely, the downstream 

movement probably increased with decreasing 24 h discharge change (Figure 7). Despite these 

relationships, both models explained little variation in directional movement (marginal R2: 0.07 

and 0.08 for downstream and upstream, respectively). The inclusion of random effects in each 

model increased model fit (conditional R2: 0.11 and 0.21 for downstream and upstream, 

respectively). I evaluated the residuals of each model and determined the fit was reasonable using 

a binned plot and theoretical error bounds (Appendix C, Figure 1).    

 

Movement distance and dispersal. – Movement distances by the majority of tagged Rainbow 

Trout were limited and consistent throughout my study period. Most Rainbow Trout remained 

within the same bin between tracking occasions (Table 10). Of individuals that did move between 

bins, movement distances ranged 1 to 3 bins (i.e., 100 to 300 m) when scaled to a rate of 2-week 

intervals (Table 10). Average downstream movements between bins were slightly greater than 

average upstream movements and maximum downstream movements were on average, much 

higher than upstream movements. The maximum downstream movement rate was 27 bins (i.e., 

2,700 m) per 2 weeks, and the maximum upstream movement rate was 8 bins (i.e., 800 m) per 2 

weeks.   

 Binned detection results indicated overall dispersal from the stocking location was 

minimal over time but with much individual variation. By the end of the first tracking period (i.e., 

end of April), most remaining tagged fish (93%) still occurred within ~ 1 km of the stocking site 

(Figure 8). Even after the prolonged period of high flows in May and June, clustering around the 
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stocking location was still apparent (Figure 8). During my active tracking, the greatest 

downstream detection distances were 4.1 km (autumn stocking cohort, 4/10/2019) and 4.3 km 

(spring stocking cohort, 8/5/2019) from the stocking location. 

 

DISCUSSION 

 I found Rainbow Trout had relatively high survival throughout the summer in a relatively 

unaltered warmwater stream with patchy groundwater contribution. Summer survival rates of 

stocked salmonids are often improved through their use of resources like groundwater seeps or 

springs in lotic systems (Baird and Krueger 2006; Runge et al. 2008) and thermal stratification in 

lentic systems (Barwick et al. 2004). Summer survival rates may be reduced for Rainbow Trout 

stocked in warmwater streams at similar latitudes but with minimal or no groundwater 

contribution (Ray et al. 2012; Erskine et al. 2017; Flowers et al. 2019), highlighting the 

importance of these resources for coldwater species stocked in warmwater environments 

(Ebersole et al. 2003). Additionally, high rainfall in spring and summer during my study would 

result in higher than average groundwater contributions to Spavinaw Creek throughout the 

summer. Years with higher groundwater contributions would be expected to relate to higher 

survival rates of Rainbow Trout compared to years of average or below-average rainfall.  

 Lower survival rates are common for recently stocked salmonids and may be related to 

predation and lack of adaptation to natural stream conditions. I found apparent survival was lower 

in Spavinaw Creek following stocking but was relatively high thereafter. Bettinger and Bettoli 

(2002) reported high mortality rates in the 2-wk period following Rainbow Trout stocking in a 

Tennessee tailwater. Similarly, High and Meyer (2009) observed high mortality for catchable size 

Rainbow Trout following stocking in an Idaho stream. Similar patterns of low post-stocking 

survival among other salmonid species are common (e.g., Brook Trout, Ersbak and Haase 1983; 

Brown Trout Salmo trutta, Berg and Jorgensen 1991). Predation from birds often contributes to 

mortality of both stocked and wild salmonids (Kennedy and Greek 1988; Evans et al. 2016; 
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Evans et al. 2019) and may have contributed to increased mortality following my stocking events. 

Rainbow Trout are more susceptible to bird predation than many other salmonid species (e.g., 

Brook Trout and Splake Salvelinus fontinalis × Salvelinus namaycush, Matkowski 1989). Evans 

et al. (2019) estimated avian predation accounted for 42 – 70% of total mortality in Steelhead 

(i.e., anadromous Rainbow Trout) released in the Columbia River and Modde et al. (1996) 

reported that up to 32% of recently stocked Rainbow Trout were consumed by Cormorants 

Phalacrocorax auritus and Grebes Aechmophorus occidentalis in southern Utah. Large numbers 

of Bald Eagles Haliaeetus leucocephalus overwinter in eastern Oklahoma including Spavinaw 

Creek where they target prey including fishes (Lish 1973; Oklahoma Department of Wildlife 

Conservation). Additional species in this region may also consume stocked trout (e.g., Great Blue 

Heron Ardea Herodias, Hodgens et al. 2004 and River Otter Lontra Canadensis, Harvey et al. 

2005). In addition to predation, delays in transitioning from hatchery to natural food (Ebert and 

Filipek 1991; Fenner et al. 2005) and a lack of natural stream-fish behavior (e.g., not using cover 

and velocity refuge) may decrease survival of Rainbow Trout and other salmonids immediately 

following stocking (Dickson and McCrimmon 1982; Brown and Laland 2001; Weber and Fausch 

2003; Orlov et al. 2006). Recently stocked salmonids may occupy unfavorable microhabitats 

(Pollard and Bjornn 1973), feed less (Bachman 1984) and avoid cover (Mesa 1991), resulting in 

reduced survival. In addition, Ebert and Filipek (1991) noted the relationship between low post-

stocking survival and a lack of natural prey in the diets of Rainbow Trout. Consequently, higher 

post-stocking mortality was expected due to predation risk and ability of newly stocked fish to 

successfully navigate the stream environment.   

 Increased apparent survival over time by both stocking cohorts may relate to adaptation 

of habitat use and natural feeding and to reduced competition among trout as fish densities 

decreased. Hatchery-raised fishes are typically not well adjusted to feeding or antipredator 

behaviors (Ebert and Filipek 1991; Brown and Laland 2001) and it is possible stocked Rainbow 

Trout became better adapted to the natural stream environment over time. Orlov et al. (2006) 
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found stocked Atlantic Salmon Salmo salar transitioned to natural feeding behaviors and had diet 

compositions similar to wild Atlantic Salmon after approximately one month. Hatchery rearing is 

related to behavioral changes in fishes (Berejikian et al. 1996). Interjecting predatory experience 

in the hatchery can quickly improve a fish’s response (Olla and Davis 1989; Olla et al. 1998); 

however, fish were not conditioned at the hatchery during my study. Possible density-driven 

competition over food and habitat resources may also decline after the initial high mortality rate 

and dispersal of stocked Rainbow Trout (Ellis et al. 2005; Flowers et al. 2019). I speculate 

suitable water temperatures (< 25 ˚ C, Matthews and Berg 1997) and time to adjust to living in a 

lotic environment (Mesa 1991) contributed to higher survival of stocked Rainbow Trout over 

time. 

 Weekly survival rates varied among stocking cohorts (autumn and spring) after initial 

stocking and may relate to fish condition, physicochemical conditions, stocking protocol, or 

individual heterogeneity. The first weekly survival estimate was higher for Rainbow Trout 

stocked in autumn compared to those stocked in the spring. The general condition of individuals 

in the spring cohort was poor compared to those stocked in autumn. I observed fish in the spring 

cohort with lesions, missing or eroded fins, and other signs of stress at the hatchery. The general 

condition of stocked fish relates to initial survival following stocking (Heimer et al. 1985; Cowx 

1994; Hyvarin et al. 2004). Fish hauled in tanks and immediately released in their new 

environment are already stressed, increasing fish vulnerability to changes in physicochemical 

conditions (Strange et al. 1978; Mock and Peters 1990). Specifically, stress can alter social 

behaviors (Cresswell and Williams 1983; Olla et al. 1992) and make fish more vulnerable to 

infection (Shepherd and Bromoage 1992). Stocking protocol is also a factor that relates to trout 

survival (Dexter and O’Neal 2004). The Rainbow Trout stocked in autumn were distributed 

throughout ~ 1 km of stream, whereas Rainbow Trout stocked in the spring were introduced to a 

single large pool. It is possible that stocking in a single location increased susceptibility to avian 

predators (see previous paragraph) and higher fish densities increased fish stress and aggression 
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(Olla et al. 1992). It is also possible autumn-stocked Rainbow Trout experienced a period of 

learning to acquire stream resources and were competing with the newly introduced fish (Dickson 

and McCrimmon 1982; Weber and Fausch 2003; Orlov et al. 2006). Mesa (1991) showed lower 

survival rates in recently stocked Cutthroat Trout via wasted energy through aggressions towards 

resident Cutthroat Trout and were often displaced to higher-velocity habitat. Interestingly, larger 

Rainbow Trout in the spring cohort (> 450 mm TL) had similar post-stocking survival rates 

compared to fish in the autumn cohort. If intraspecific habitat interactions were a contributing 

factor for spring stocked fish (e.g., Mesa 1991), then larger fish from the spring cohort may have 

held higher hierarchical social positions and successfully competed with autumn stocked fish 

(Abbot et al. 1985; Huntingford et al. 1990; Hughes 1992).  

 Summer survival rates were relatively low and constant across both cohorts of Rainbow 

Trout and may have resulted from increased water temperature during the second tracking period 

(Dickerson and Vinyard. 1999; Xu et al. 2010). The average water temperature during the second 

tracking period was 22 ˚C and maximum daily water temperatures commonly exceeded 25 ˚C. 

General guidelines for Rainbow Trout management and conservation indicate 19 ˚C and 24 ˚C as 

chronic and acute thermal thresholds, respectfully (Nevada Department of Environmental 

Protection; Shelton et al. 2018). Despite the reduced survival rates, apparent summer survival 

remained surprisingly high given available water temperatures in Spavinaw Creek. Thermal 

tolerances vary with strain of Rainbow Trout and can improve summer survival in warmwater 

streams (Hartman and Porto 2014). The Emmerson strain of Rainbow Trout has a higher thermal 

tolerance compared to many other strains (Brewer, unpublished data), making it popular for 

stocking at southern latitudes. In addition, selected habitat that serves as thermal refuge is 

common among salmonids in warmer climates (e.g., Torgersen et al. 1999; Ebersole et al. 2003; 

Brewitt et al. 2014, see also Chapter 2) and may have increased summer Rainbow Trout survival 

in Spavinaw Creek. The Ozark Highlands ecoregion is emblematic of karst topography and has 

various levels of groundwater contribution (Gore 1952; Czarnecki et al. 2009; Zhou et al. 2019). 
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Groundwater contribution likely created thermal refugia for Rainbow Trout and native 

warmwater species during summer (see Chapter 2). Thermal refugia available during the wet-year 

conditions encountered during my study (195 cm of rainfall since Jan. 1, 2019, Oklahoma 

Climatological Survey, https://climate.ok.gov/index.php/climate/rainfall_table/local_data, 

accessed 10/31/2019) would be expected to be higher than average; consequently, the Rainbow 

Trout summer survival rates I reported may be higher-than-average for even this study system. 

Future efforts would benefit from examining survival across multiple years to determine cyclical 

patterns of survival.  

 Angler harvest was likely not a substantial contributor to mortality of stocked Rainbow 

Trout in Spavinaw Creek. In most warmwater streams, Rainbow Trout are stocked as put-and-

take fisheries where harvest is high (Patterson et al. 2016; Hyman et al. 2016) and subsequent 

survival (i.e., persistence) is low (Bettinger and Bettoli 2002; Flowers et al. 2019). For example, 

harvest contributed substantially to the total mortality rate across a range of environmental 

conditions (e.g., Heimer et al. 1985; Bettinger and Bettoli 2002; Flowers et al. 2019). Fishing 

within the immediate stocking area of Spavinaw Creek was restricted to catch and release (per 

angling group regulations). Additionally, private land ownership outside the immediate stocking 

area limited public angling. Although it is unlikely many Rainbow Trout were removed from the 

study segment via angling, catch and release efforts may have reduced survival rates via hooking 

and handling mortality. Schisler and Bergersen (1996) reported an average mortality rate of 3.9% 

for released Rainbow Trout caught with artificial flies. Angling related mortality may also relate 

to other factors I did not consider including bait type (Schill 1992), angler experience (Meka 

2004), fish size (Huhfer and Alexander 1989; Meka 2004), and hook type (Schisler and Bergersen 

1996; Meka 2004).  

 I found a time effect and a trap effect contributed to variable detection between tracking 

occasions and among individuals during my first tracking period. I hypothesize that the majority 

of detection variation over time was due to discharge fluctuation between tracking occasions 
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(O’Donnel et al. 2010); however, a time effect was indicated as a better predictor of detection 

compared to discharge alone using my model ranking approach and likely accounted for 

additional detection variation beyond discharge. For example, high concentrations of fish near the 

stocking location after initial stocking may have increased detection probability during initial 

tracking occasions (Ivasauskas and Bettoli 2011). The retention of the trap effect was interesting 

and suggests that fish detected on a previous tracking occasions had a greater detection 

probability on the subsequent tracking occasion. Differing water depths influences PIT-tag 

detections using floating arrays (O’Donnel et al. 2010; Zentner and Wolf unpublished data); thus, 

fish that occupied deeper habitats (e.g., bluff pools 2 – 3-m deep) were likely not detected. Fish 

associated with shallower habitat may have been easier to detect on initial occasions and on 

subsequent tracking occasions if they remained in the same area.  

 The effect of emigration should be considered in open population models where apparent 

survival is reported (Pledger et al. 2003). Emigration can affect apparent survival estimates (e.g., 

Pine et al. 2003; Spurgeon et al. 2015), though my analysis did not suggest substantial emigration 

to be a major contributor to perceived mortality. Without continuous operation of either fixed 

array or estimates of downstream emigration from my study segment, I cannot report survival 

estimates as true survival. Instead, I suggest that unadjusted estimates from apparent survival 

analysis are good approximates of true survival in Spavinaw Creek.   

 Tag fate is also an important consideration when analyzing mark-recapture data relying 

on tag detections. Tags lost from a fish (i.e., sheds) that remain in the study system are 

problematic because they may continue to be detected and incorrectly classified as living fish 

(O’Donnell et al. 2010). Shed tags are most likely to occur immediately following tagging or 

during spawning activities (Bateman et al. 2011). High tag retention rates for salmonids are well 

established (e.g., 99% retention in Rainbow Trout, Meyer et al. 2011; Flowers et al. 2019) and 

other coldwater species (Cutthroat Trout, Bateman and Gresswell 2009; Brook Trout and Brown 

Trout, Dieterman and Hoxmeier 2009). I did not observe any spawning activity among Rainbow 
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Trout; thus, spawning activity is unlikely to be a contributing factor to lost tags. However, tags 

may accumulate in the study segment as fish die (i.e., “ghost tags”, see Bond et al. 2019). In some 

systems, it may be possible to actively check each detection while tracking and recover shed or 

ghost tags (O’Donnel et al. 2010; Hodge et al. 2015). Given the size of my floating array, width 

and depth of Spavinaw Creek, and the behavior and density of Rainbow Trout (i.e., multiple 

detections occurring simultaneously), it was not possible to pinpoint ghost tags in the substrate. In 

rare instances (< 5) where a detection could be attributed to a lost tag (e.g., detection in a clear, 

shallow riffle without cover), the tag ID was removed from the entire dataset because the fate of 

the fish was unknown. Additionally, all detections were indicated by a Piezo Buzzer (Oregon 

RFID, Portland, Oregon), and I was often able to visually confirm the presence of trout (but not 

necessarily individuals in groups) during detections. Based on the habitats selected (see Chapter 

2), shed tags within the stream would be most likely in deeper pools out of my detection range. 

Because I speculated avian predation was relatively high, it is also likely that shed tags were 

deposited outside of the stream channel (Frechette et al. 2012; Teuscher et al. 2015).  

 Upstream and downstream movements were related to discharge changes during my 

study, but additional factors I did not consider may also affect fish movement. Upstream 

movements may result from spawning cues in more-natural systems (Dedual and Jowett 1999; 

Venman and Dedual 2005); thus, Rainbow Trout in my study may have had some evolutionary 

trait to move upstream in response to increasing flows. More often, movements of stocked 

salmonids are in the downstream direction (Cresswell 1981; Helfrich and Kendall 1982; Bettinger 

and Bettoli 2002, Flowers et al. 2019). For example, a synthesis of post-stocking movements of 

Brook Trout and Rainbow Trout showed overall downstream movements (Cresswell 1981). Many 

studies only examine stocked fish over larger temporal scales (e.g., weekly or monthly, Helfrich 

and Kendall 1982; Betinger and Betolli 2002) and are unable to capture event-specific 

phenomena that my fixed arrays allowed. Some fish were detected moving both upstream and 

downstream during my study. Consequently, it is possible that stocked Rainbow Trout typically 
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move and disperse in a downstream direction (Cresswell 1981) but move upstream due to key 

environmental cues (e.g., changing discharge). Given the low amount of variation my data 

explained (marginal R2), it is possible that other unmeasured environmental drivers (e.g., seasonal 

cues outside of temperature like photoperiod, Mellina et al. 2005; Falke et al. 2017) also 

contributed to directional movements. It is also possible that individual heterogeneity contributed 

to movement patterns with some fish moving upstream and some moving downstream 

irrespective of environmental conditions. Future studies that include additional fixed arrays to 

increase detections may provide additional information of factors related to directional 

movement.   

  Movement distance and subsequent dispersal patterns of Rainbow Trout from the 

stocking location were typically minimal with some individual heterogeneity. Flowers et al. 

(2019) reported movement rates of 0.03 – 0.13 km/day for Rainbow Trout in three unregulated 

North Carolina streams. When scaled to the interval length of my study, their reported movement 

rates were similar to my findings (42 m – 182 m over two weeks). Little to no movement in 

salmonid populations is not uncommon (e.g., Bettinger and Bettoli 2002; High and Meyer 2011) 

and hatchery-reared fishes may not be conditioned to move substantial distances (Helfrich and 

Kendall 1982). Minimal movements over each two-week period resulted in the majority of my 

fish remaining within 1 km of the stocking location during the entire study. However, greater 

dispersal distances by some individuals during my study (> 14 km) and other studies (> 12 km, 

Bettinger and Bettoli 2002; > 10 km, High and Meyer 2009; > 11 km Flowers et al. 2019) 

highlights individual heterogeneity in dispersing populations and supports the idea of leptokurtic 

dispersal patterns (Radinger and Wolter 2013). Continued monitoring at a greater spatial scale 

would benefit our understanding of how dispersing individuals interact with native species 

outside of the immediate stocking area. The temporal scale of tracking efforts should also be 

considered as small, frequent movements (e.g., daily movements within a fish’s home range) may 

not be captured over greater (e.g., weekly) monitoring intervals. For example, Bunnell et al. 
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(1998) used hourly measurements and found Brown Trout moved over 80 m each day but 

displacement between the start and end of each 24-h period was typically less than 10 m. 

Consequently, inferences on movement distance are limited by the tracking intervals during my 

study and highlight how movement distance may differ from overall dispersal over time. 

 

Management implications. – If a management objective is to protect native species in Spavinaw 

Creek, then managers may consider the implications of potential interactions between Rainbow 

Trout and native species over thermal resources. My results suggest that under the environmental 

conditions encountered in my approximately 1-year study, Rainbow Trout had the ability to 

persist throughout warm summer months. Their persistence may relate to use of distinct habitat 

resources (i.e., groundwater seepage areas) to survive these warm periods (see Chapter 2). 

Several native fishes of the Ozark Highlands seek similar thermal resources during the summer 

(Wolf, unpublished data; Whitledge et al. 2006; Walker et al. 2013). For example, the growth 

scope of Smallmouth Bass is optimal at 22˚ C (Shuter and Post 1990; Whitledge et al. 2006). 

During most summers, this is exceeded, and fish are likely to seek cooler refuges (Whitledge et 

al. 2002; Brewer 2013). Other fishes occupying Spavinaw Creek are considered spring associates 

and tend to seek cooler waters (e.g., Southern Redbelly Dace, Walker et al. 2013). Use of similar 

resources due to weather patterns may increase the likelihood of species interactions (see Chapter 

2). If conservation of native species is a goal, one management consideration may be to limit 

stocking to autumn. Despite relatively high survival rates throughout the winter and early spring, 

approximately half (56%) the autumn-stocked Rainbow Trout died by the beginning of the 

second (i.e., summer) tracking period. However, more work is needed to quantify behavior and 

diets by stocked Rainbow Trout during winter and early spring when native fish are less active or 

preparing for the critical spawning period.   

 My findings from two seasons during a wet year suggest most potential interactions with 

native fishes would occur within about 1 km of the stocking site. Although a single trout can 
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show aggressive behaviors toward and consume native species (Turek et al. 2015; Hitt et al. 

2017; Elkins et al. 2019), it is unknown what densities are needed to create a population-level 

effect. The Arkansas portion of Spavinaw Creek has cooler water temperatures and is more likely 

to favor some reproduction (Bowman 1995; Williams et al. 2011); however, recent surveys 

suggest persistence at these locations without stocking is also unlikely given the greatly reduced 

numbers of fish observed over time (Brewer, unpublished data). My data suggests over-summer 

survival is likely during some years (i.e., high groundwater due to excess rainfall) but it is 

unlikely that persistence over many years would be supported without additional stockings given 

the frequency of hot and dry years within this basin (5 of the 10 most-recent years received 

below-average rainfall, Oklahoma Mesonet, https://www.mesonet.org/index.php/ 

weather/monthly_rainfall_table/jayx, accessed 11/1/2019). Future studies would benefit from 

long-term survival estimates (e.g., multiple years to capture wet and dry cycles)

https://www.mesonet.org/index.php/%20weather/monthly_rainfall_table/jayx
https://www.mesonet.org/index.php/%20weather/monthly_rainfall_table/jayx
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TABLES 

Table 1. Active tracking occasions throughout my study period. Rainbow Trout were stocked prior to tracking occasion one (autumn stocking 

cohort, 11/6/2018) and tracking occasion six (spring stocking cohort, 2/26/2019). Effort represents the number of days spent attempting to detect 

tagged fish on each tracking occasion. Discharge was calculated by averaging hourly discharge data over the time interval of each tracking 

occasion (i.e., 12:00 am on day one through 11:00 pm on last day). Discharge data were obtained by the U.S. Geological Survey stream gauge 

located nearest to the stocking site (USGS stream gauge 071912213, Colcord, OK). 

Tracking occasion Dates Effort (days) Discharge (m3/s) 

Occasion 1 11/29/2019 – 12/2/2019 4 1.02 

Occasion 2 12/17/2019 – 12/19/2019 3 1.16 

Occasion 3 1/9/2019 – 1/11/2019 3 5.21 

Occasion 4 1/24/2019 – 1/26/2019 3 6.17 

Occasion 5 2/8/2019 – 2/10/2019 3 5.13 

Occasion 6 2/27/2019 – 3/1/2019 3 4.70 

Occasion 7 3/14/2019 – 3/16/2019 3 6.51 

Occasion 8 3/27/2019 – 3/29/2019 3 5.38 

Occasion 9 4/10/2019 – 4/12/2019 3 5.10 

Occasion 10 4/24/2019 – 4/25/2019 2 5.32 

Occasion 11 6/28/2019 – 6/30/2019 3 8.46 

Occasion 12 8/5/2019 – 8/7/2019 3 4.33 

Occasion 13 9/21/2019 – 9/22/2019 2 2.41 
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Table 2. Predictor variables used for apparent survival (Phi) and detection (p) components of the Cormack-Jolly-Seber apparent survival model.  

Abbreviation  Explanation 

Survival 

~ Phi (.) Fixed parameter (survival rate constant across time). 

~ Phi (Time) Continuous variable where survival increased, decreased, or was constant across each tracking occasion. 

~ Phi (TL) Standardized continuous variable (mean of zero, standard deviation of one) for total length of each fish (mm). 

~ Phi (cohort) Grouping factor for each stocked cohort, autumn and spring. 

  

Detection 

~ p (.) Fixed parameter (detection was constant across time). 

~ p (time) 

Factored variable allowing detection to vary as a unique intercept for each tracking occasion (i.e., N = 10 for first tracking 

period, N = 2 for second tracking period). 

~ p (effort) 

Standardized continuous variable (mean of zero, standard deviation of one) for effort (range 2 – 4 days) associated with 

each tracking occasion. 

~ p (discharge) 

Standardized continuous variable (mean of zero, standard deviation of one) for discharge associated with each tracking 

occasion. 

~ p (D) Coded "trap effect" (1 or 0) where 1 represented a detection on the most-previous tracking occasion. 
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Table 3. Combinations (i.e., parameter lists) of survival (Phi) and detection (p) parameters used 

for two Cormack-Jolly-Seber apparent survival models used in my analysis. The survival 

parameter lists differed between the first (top) and second (bottom) tracking period models. All 

possible combinations of the survival and detection parameter lists were evaluated which resulted 

in 81 candidate models for each tracking period.  

Name Formula 

Survival (first tracking period) 

Phi.dot ~ Phi(.) 

Phi.1 ~ Phi(cohort) 

Phi.2 ~Phi(cohort)+ Phi(TL) 

Phi.3 ~ Phi(cohort) + Phi(Time) 

Phi.4 ~ Phi(cohort) + Phi(TL) + Phi(Time) 

Phi.5 ~ Phi(Cohort) *  Phi(time) 

Phi.6 ~ (Phi(cohort) * Phi(Time)) + (Phi(cohort) * Phi(TL)) 

Phi.7 ~ Phi(cohort) * Phi(Time) + Phi(TL) 

Phi.8 ~ Phi(cohort) * Phi(TL) * Phi(Time) 

  

Survival (second tracking period) 

Phi.dot ~ Phi(.) 

Phi.1 ~ Phi(Time) 

Phi.2 ~ Phi(Time) + Phi(TL) 

Phi.3 ~ Phi(Time) + Phi(cohort) 

Phi.4 ~ Phi(cohort) 

Phi.5 ~ Phi(TL) 

Phi.6 ~ Phi(cohort) + Phi(TL) 

Phi.7 ~ Phi(Time) + Phi(cohort) + Phi(TL) 

Phi.8 ~Phi(cohort) * Phi(TL) 

  

Detection 

p.dot ~ p(.) 

p.1 ~ p(time) 
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p.2 ~ p(time) + p(effort) 

p.3 ~ p(discharge) 

p.4 ~ p(discharge) + p(effort) 

p.5 ~ p(discharge) + p(D) 

p.6 ~ p(time) + p(D) 

p.7 ~ p(time) + p(D) + p(effort) 

p.8 ~ p(discharge) + p(effort) + p(D) 
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Table 4. Results from 16 candidate generalized linear mixed models of upstream and downstream directional movement where Y(ijl) is the relative 

probability of a directional movement, β0 is the grand intercept, β1 to βx are slopes associated with the predictor variables average discharge over 24 

h (Dischargeavg; m3/s), discharge change over 24 h (Dischargechange; m3/s), the next day (i.e., following 24 h) discharge change (DischargechangeT1; 

m3/s), fish total length (TL; mm), and the daily maximum temperature (Tempmax; ˚C). All discharge and temperature metrics were calculated from 

12:00 pm to 11:00 am of the following day to match of interval length that fish movements were investigated. Two random effects were included 

for each model, array location (ρ) for location j, and fish ID (ε) for fish l. The number of parameters (K) is reported for each model considered. 

Models were ranked using Akaike’s information criterion adjusted for small sample size (AICc) and ΔAICc represents the difference between the 

given model and the top model in terms of AICc. Likelihood and Akaike weight (wi) indicate the relative support for each model. For models with 

(ΔAICc < 2), the marginal (R2
m; variance explained by fixed effects) and condition (R2

c; variance explained by fixed and random effects) R2 are 

reported.  

Model K AICc ΔAICc Likelihood Wi R2
m R2

c 

Upstream        

Y(ijl) = β0 + β1Dischargeavg(i) * β2Dischargechange(i) + ρ(j)  +  ε(l) 4 474.78 0.00 1.00 0.32 0.08 0.21 

Y(ijl) = β0 + β1Dischargeavg(i) * β2Dischargechange(i) + β3Dischargechange
2

(i) + ρ(j) + ε(l) 6 475.15 0.37 0.83 0.26 0.09 0.21 

Y(ijl) = β0 + β1Dischargeavg(i) * β2DischargechangeT1(i) + β3DischargechangeT1
2
(i) + ρ(j) +  ε(l) 6 476.91 2.14 0.34 0.11   

Y(ijl) = β0 + β1TL(i) + ρ(j) +  ε(l) 2 477.86 3.09 0.21 0.07   

Y(ijl) = β0 + β1Dischargechange(i) + β2Dischargechange
2

(i) + ρ(j) + ε(l) 3 479.16 4.38 0.11 0.04   

Y(ijl) = β0 + β1Dischargeavg(i) + ρ(j) + ε(l) 2 479.35 4.57 0.10 0.03   
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Y(ijl) = β0 + β1DischargechangeT1(i) + ρ(j) + ε(l) 2 479.35 4.57 0.10 0.03   

Y(ijl) = β0 + β1Tempmax(i) + ρ(j) + ε(l) 2 479.61 4.83 0.09 0.03   

Y(ijl) = β0 + β1Dischargechange(i) + ρ(j) + ε(l) 2 479.71 4.93 0.08 0.03   

Y(ijl) = β0 + β1DischargechangeT1(i) + β2DischargechangeT1
2

(i) + ρ(j) +  ε(l) 3 480.66 5.88 0.05 0.02   

Y(ijl) = β0 + β1Dischargeavg(i)  + β2Dischargechange(i) + β3Dischargechange
2

(i) + ρ(j) + ε(l) 4 481.24 6.46 0.04 0.01   

Y(ijl) = β0 + β1Dischargeavg(i) +  β2Tempmax(i) + ρ(j) +  ε(l) 3 481.29 6.51 0.04 0.01   

Y(ijl) = β0 + β1Tempmax(i) +  β2Dischargechange(i) + ρ(j) + ε(l) 3 481.31 6.53 0.04 0.01   

Y(ijl) = β0 + β1Dischargeavg(i) + β2Dischargechange(i) + ρ(j) + ε(l) 3 481.4 6.62 0.04 0.01   

Y(ijl) = β0 + β1Tempmax(i) + β2Dischargechange(i) + ρ(j) + ε(l) 3 481.68 6.9 0.03 0.01   

Y(ijl) = β0 + β1Dischargeavg(i)  + β2DischargechangeT1(i) + β3DischargechangeT1
2

(i) + ρ(j) + ε(l) 4 482.38 7.6 0.02 0.01   

        

Downstream        

Y(ijl) = β0 + β1Dischargeavg(i) * β2Dischargechange(i) + ρ(j) +  ε(l) 4 390.56 0.00 1.00 0.51 0.07 0.11 

Y(ijl) = β0 + β1Dischargeavg(i) * β2DischargechangeT1(i) + β3DischargechangeT1
2

(i) + ρ(j) +  ε(l) 6 393.46 2.90 0.23 0.12   

Y(ijl) = β0 + β1Dischargeavg(i) * β2Dischargechange(i) + β3Dischargechange
2

(i) + ρ(j) + ε(l) 6 394.72 4.17 0.12 0.06   

Y(ijl) = β0 + β1Dischargechange(i) + β2Dischargechange
2

(i) + ρ(j) + ε(l) 3 394.79 4.23 0.12 0.06   

Y(ijl) = β0 + β1Dischargeavg(i) + ρ(j) + ε(l) 2 394.82 4.26 0.12 0.06   

Y(ijl) = β0 + β1Dischargeavg(i)  + β2Dischargechange(i) + β3Dischargechange
2
(i) + ρ(j) + ε(l) 4 396.18 5.62 0.06 0.03   

Y(ijl) = β0 + β1DischargechangeT1(i) + β2DischargechangeT1
2

(i) + ρ(j) + ε(l) 3 396.21 5.65 0.06 0.03   

Y(ijl) = β0 + β1Dischargeavg(i) +  β2Tempmax(i) + ρ(j) + ε(l) 3 396.59 6.04 0.05 0.02   

Y(ijl) = β0 + β1Dischargeavg(i) + β2Dischargechange(i) + ρ(j) + ε(l) 3 396.69 6.14 0.05 0.02   

Y(ijl) = β0 + β1Dischargeavg(i)  + β2DischargechangeT1(i) + β3DischargechangeT1
2

(i) + ρ(j) +  ε(l) 4 396.94 6.39 0.04 0.02   
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Y(ijl) = β0 + β1Dischargechange(i) + ρ(j) + ε(l) 2 397.54 6.99 0.03 0.02   

Y(ijl) = β0 + β1TL(i) + ρ(j) + ε(l) 3 397.82 7.27 0.03 0.01   

Y(ijl) = β0 + β1Tempmax(i) + ρ(j) + ε(l) 2 398.32 7.76 0.02 0.01   

Y(ijl) = β0 + β1DischargechangeT1(i) + ρ(j) + ε(l) 2 398.39 7.83 0.02 0.01   

Y(ijl) = β0 + β1Tempmax(i) + β2Dischargechange(i) + ρ(j) + ε(l) 3 399.56 9.01 0.01 0.01   

Y(ijl) = β0 + β1Tempmax(i) +  β2DischargechangeT1(i) + ρ(j) + ε(l) 3 400.37 9.82 0.01 0.00   
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Table 5. Detections by tracking occasion and date for autumn 2018 and spring 2019 stocking cohorts of tagged Rainbow Trout. The number (No.) 

detected represents the total number of Rainbow Trout from each cohort that were detected on each tracking occasion. Cumulative indicates the 

number of Rainbow Trout from each cohort that were detected at least one time up until that tracking occasion. New column represents Rainbow 

Trout from each cohort that were not previously detected but were detected on that tracking occasion.  

   Autumn cohort Spring cohort 

Tracking occasion Dates No. detected Cumulative New No. detected Cumulative New 

Occasion 1  11/29/2018 – 12/2/2018 213 213 213 NA NA NA 

Occasion 2  12/17/2018 – 12/19/2018 213 246 33 NA NA NA 

Occasion 3  1/9/2019 – 1/11/2019 47 260 14 NA NA NA 

Occasion 4 1/24/2019 – 1/26/2019 61 272 16 NA NA NA 

Occasion 5  2/8/2019 – 2/10/2019 77 280 8 NA NA NA 

Occasion 6  2/27/2019 – 3/1/2019 129 297 17 167 167 167 

Occasion 7  3/14/2019 – 3/16/2019 73 298 1 114 214 47 

Occasion 8  3/27/2019 – 3/29/2019 96 305 7 134 252 38 

Occasion 9  4/10/2019 – 4/12/2019 106 311 6 157 293 41 

Occasion 10  4/24/2019 – 4/25/2019 84 313 2 153 328 35 

Occasion 11  6/28/2019 – 6/30/2019 23 317 4 62 351 23 

Occasion 12  8/5/2019 – 8/7/2019 29 321 4 115 382 31 

Occasion 13 9/21/2019 – 9/22/2019 25 322 1 79 393 11 
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Table 6. Comparison of top-ranked Cormack-Jolly-Seber models (i.e., a subset of all models) for apparent survival of Rainbow Trout during the 

first (top) and second (bottom) tracking periods in Spavinaw Creek, Oklahoma. QAICc is the quasi-Akaike’s information criterion adjusted for 

small sample size and variation using the inflation factor (c-hat; 1.05 and 2.74 for the first and second tracking period, respectively). ΔQAICc is the 

difference in QAICc between the given model and the top-ranked model where values less than two indicate substantial support for the given 

model (Burnham and Anderson 2002). Wi is the QAICc weight and can be considered as the probability that a given model is the best 

approximating model among those in the candidate model set (Symonds and Moussalli 2011).  

Rank Model K QAICc ΔQAICc Wi 

First tracking period     

1 ~{[Phi(Time)* Phi(cohort) + Phi(cohort)* Phi(TL)][p(time)+ p(D)]} 17 5876.01 0.00 0.64 

2 ~{[Phi(Time)* Phi(cohort) + Phi(cohort)* Phi(TL)][p(time)+ p(effort) + p(D)]} 18 5878.00 1.99 0.23 

      

Second tracking period     

1 ~{Phi(.)p(.)} 2 135.44 0.00 0.15 

2 ~{Phi(Time)p(.)} 3 137.11 1.67 0.06 

3 ~{Phi(.)p(time)} 3 137.11 1.67 0.06 

4 ~{Phi(.)p(discharge)} 3 137.11 1.67 0.06 
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Table 7. Coefficient estimates (logit scale) and standard error (SE) for apparent survival (Phi) 

and detection (p) for top-ranked Cormack-Jolly-Seber models during the first (tracking occasions 

1 – 10) and second (occasions 11 – 13) tracking occasions in Spavinaw Creek, Oklahoma.  

Beta Estimate SE 

First tracking period  

Phi (Intercept) 2.25 0.13 

Phi(Time) 0.12 0.03 

Phi(cohort)  -13.80 6.18 

Phi(TL) 0.03 0.10 

Phi(Time*cohort) 0.79 0.44 

Phi(cohort*TL) 0.50 0.19 

p(Intercept) 0.41 0.12 

p(time2) -0.53 0.18 

p(time3) -3.01 0.22 

p(time4) -1.87 0.20 

p(time5) -1.56 0.19 

p(time6) -0.52 0.21 

p(time7) -1.60 0.17 

p(time8) -1.34 0.18 

p(time9) -1.17 0.19 

p(time10) -1.46 0.19 

p(D)  1.39 0.10 

   

Second tracking period  

Phi (Intercept) 2.58 0.24 

p(Intercept) 0.87 0.39 
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Table 8. Weekly apparent survival rate and rate adjustments during the first tracking period for the autumn and spring stocking cohorts of 

Rainbow Trout using both active and fixed array detections at the upstream location. Tracking occasions represent the interval corresponding to 

each survival rate. Interval start date is the date each interval begins and the interval week (wk) describes the length of each interval. “Predicted 

No.” represents the number of Rainbow Trout estimated to remain in the segment during each tracking occasion as calculated using the equation 

{predicted No. at occasion(x-1) X (weekly survival rate(x) ^ interval length)}. To calculated “the adjusted weekly survival rates”, I incorporated emigrating fish “Leaving 

No.” using the equation {[predicted No. at occasion(x) / (predicted No. at occasion(x-1) - No. leaving)] ^ (1 /interval length)}. “Adjusted No.” reflects the remaining Rainbow 

Trout in the system using the adjusted weekly survival rate.  

Tracking occasion 

Interval 

(start date) 

Interval  

(wk) 

Weekly survival rate 

(95% CI) 

Predicted 

No. 

Leaving 

No. 

Adjusted weekly 

survival rate 

Adjusted 

No. 

Autumn stocking 11/6/2018       

    495*   495* 

Stocking to occasion 1 11/7/2018 3.1 0.90 (0.88 – 0.92) 361 NA** NA** NA** 

Occasion 1 to 2 12/3/2018 2 0.93 (0.92 – 0.95) 316 NA** NA** NA** 

Occasion 2 to 3 12/20/2018 2.9 0.95 (0.94 – 0.96) 273 10 0.96 282 

Occasion 3 to 4 1/12/2019 1.7 0.97 (.95 – 0.98) 258 8 0.98 275 

Occasion 4 to 5 1/27/2019 1.7 0.97 (0.96 – 0.98) 247 3 0.98 266 

Occasion 5 to 6 2/11/2019 2.3 0.98 (0.96 – 0.99) 236 0 0.98 254 

Occasion 6 to 7 3/2/2019 1.7 0.99 (0.97 – 0.99) 230 4 1 252 

Occasion 7 to 8 3/17/2019 1.4 0.99 (0.98 – 0.99) 226 2 0.99 250 



112 
 

Occasion 8 to 9 3/30/2019 1.6 0.99 (0.98 – 1.00) 223 6 1 250 

Occasion 9 to 10 4/13/2019 1.6 0.99 (0.98 – 1.00) 220 6 1 250 

        

Spring stocking 2/26/2019       

    605*   605* 

Occasion 6 to 7 3/2/2019 1.7 0.77 (0.68 – 0.84) 388 0 0.77 388 

Occasion 7 to 8 3/17/2019 1.4 0.94 (0.80 – 0.98) 354 1 0.94 355 

Occasion 8 to 9 3/30/2019 1.6 0.98 (0.80 – 0.99) 343 8 0.99 352 

Occasion 9 to 10 4/13/2019 1.6 1.00 (0.79 – 1.00) 341 4 1 352 
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Table 9. Model parameters (Beta), estimates (Estimate), and standard error (SE) associated with 

my top-ranked upstream (top) and downstream (bottom) directional-movement models. All 

estimates are on logit scale. The average discharge (Dischargeavg) was calculated using hourly 

discharge data (USGS 071912213 Spavinaw Creek near Colcord, OK) over each 24-h period 

(12:00 pm to 11:00 am of the following day). The change in discharge (Dischargechange) was also 

calculated over each 24-h period (12:00 pm to 11:00 am of the following day) using data from the 

same gauging station. Asterisks between terms indicate an interactive effect between the two 

terms.   

Beta  Estimate SE 

Upstream movement   

(Intercept) -0.29 0.23 

Dischargeavg -0.09 0.14 

Dischargechange 0.64 0.25 

Dischargeavg * dischargechange -0.42 0.17 

   

Downstream movement    

(Intercept) -1.15 0.33 

Dischargeavg 0.17 0.14 

Dischargechange -0.71 0.36 

Dischargeavg * dischargechange 0.36 0.14 
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Table 10. Summary statistics associated with Rainbow Trout movement in Spavinaw Creek, Oklahoma. From December 2018 through August 

2019. Percent values are in reference to all fish detected during that tracking occasion with actual number (N) reported for clarity. Fish that 

remained within the same bin between detections (i.e., moved less than 100 m) were classified as “non-movement”.  For each fish, average (avg) 

and maximum (max) distance (m) is in reference to the previous detection scaled by two-week increments. Negative values represent downstream 

movement. Positive values represent upstream movement. All average movements have been rounded to the nearest 100 m to match the spatial 

scale of the study. 

Metric  

Dec 

17 

Jan 

9 

Jan 

24 

Feb 

8 

Feb 

27 

Mar 

14 

Mar 

27 

Apr 

10 

Apr 

24 

Jun 

28 

Aug 

5 

Autumn  stocking cohort 

 

Non movement percent 35 (63) 42 (14) 53 (26) 59 (41) 45 (46) 49 (35) 67 (99) 66 (65) 65 (53) 26 (0) 24 (6) 

Downstream movement percent 6 (11) 39 (13) 43 (21) 23 (16) 15 (15) 44 (32) 29 (42) 11 (11) 14 (11) 16 (3) 72 (18) 

Upstream movement percent 59 (106) 18 (6) 4 (2) 17 (12) 40 (41) 7 (5) 4 (6) 23 (23) 21 (17) 58 (11) 4 (1) 

Avg. downstream movement(m) -200 -200 -200 -300 -200 -200 -100 -200 -500 -200 -200 

Max. downstream movement(m) -500 -600 1,200 -1,400 -900 -700 -500 -700 -2,700 -500 -400 

Avg. upstream movement (m) 200 100 100 100 100 200 200 100 200 200 100 

Max. upstream movement (m) 300 300 100 100 200 400 500 100 500 500 100 

Avg. movement (m) 100 0 100 0 0 -100 0 0 0 100 -100 
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Spring stocking cohort 

 

Non movement percent NA NA NA NA NA 22 (14) 49 (46) 34 (38) 42 (50) 18 (7) 24 (7) 

Downstream movement percent NA NA NA NA NA 75 (47) 33 (31) 10 (11) 41 (48) 51 (20) 64 (20) 

Upstream movement percent NA NA NA NA NA 3 (2) 18 (17) 57 (64) 17 (20) 31 (12) 12 (12) 

Avg. downstream movement (m) NA NA NA NA NA -200 -200 -100 -200 -400 -300 

Max. downstream movement (m) NA NA NA NA NA -400 -900 -200 -600 -1,000 -2,100 

Avg. upstream movement (m) NA NA NA NA NA 200 200 100 200 200 300 

Max. upstream movement (m) NA NA NA NA NA 400 800 400 500 500 800 

Avg. movement (m) NA NA NA NA NA -100 0 100 -100 -100 -100 
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FIGURES 

 

Figure 1. Upstream and downstream tracking extent (stars) of my study segment (gray box) on 

Spavinaw Creek, Oklahoma. I actively tracked Rainbow Trout tagged with passive integrated 

transponder tags using floating arrays (see Figure 2). Fixed arrays (triangles) were place near the 

upstream and downstream tracking extent to determine Rainbow Trout emigration (see Figure 2). 

Rainbow Trout were stocked (circle) in autumn 2018 and spring 2019. The U.S. Geological 

Survey stream gauge (USGS stream gauge 071912213) near Colcord, OK was used to obtain 

daily discharge data during the study period. 
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Figure 2. Fixed array constructed at upper end of study segment (left) and floating array used for active tracking (right) in Spavinaw Creek. At 

fixed array sites, two antennas were place parallel to one another to determine directional movement of each fish passing through the antenna. The 

floating array consisted of two antennas housed in floating PVC towed behind kayaks. Both fixed and floating arrays were connected to a multi-

antenna reader (Oregon RFID; Portland, Oregon) and powered using a 12-volt deep-cycle battery. 
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Figure 3. Size distribution (total length of passive integrated transponder (PIT) tagged Rainbow 

Trout stocked in autumn 2018 (N = 495) and spring 2019 (N = 605). Fish were tagged using 23 

mm and 32 mm PIT tags. 
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Figure 4. Discharge (black) and water temperature (blue) during my study period on Spavinaw Creek, Oklahoma. High discharge peaks (> 35 

m3/s) are not shown for scaling purposes. Active tracking occasions did not take place during the period of early May to mid-June due to high-flow 

events. Maximum flows during May and June reached 148 m3/s. All data were retrieved from the U.S. Geological Survey stream gauge (USGS 

stream gauge 071912213) near Colcord, OK.      
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Figure 5. Weekly apparent survival rate estimates (black circles) and 95% confidence intervals 

(lines) for the autumn cohort of stocked Rainbow Trout in Spavinaw Creek, Oklahoma. Rainbow 

Trout were stocked on November 6, 2018 (week 0). The x-axis represents weekly intervals from 

the stocking date. For reference, week 10 is 1/30/2019 and week 20 is 4/30/2019.  
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Figure 6. Weekly apparent survival rate estimates (black circles) and 95% confidence intervals 

(lines) for spring cohort of stocked Rainbow Trout in Spavinaw Creek, Oklahoma. Stocking date 

for spring cohort was 2/26/2019 (week 0) and x-axis represents weekly intervals from that date. 

For reference, week six is 4/30/2019. 
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Figure 7 (next page). 
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Figure 7. Interaction between changes in 24-h discharge (plotted lines) and average 24-h 

discharge (rows) in relation to upstream (left column) and downstream (right column) movement 

probability. The x-axis of each plot represents how much discharge changed over each 24-h 

period where negative values represent decreasing discharge and positive values represent 

increasing discharge from 12:00 pm to 11:00 am of the following day. The y-axis of each plot 

represents the movement probability where a probability of 1 indicates all directional movements 

were in the direction of interest (i.e., upstream or downstream depending on left or right column). 

The average 24-h discharge is calculated during 12:00 pm to 11:00 am of the following day and 

each row represents relationships plotted at different levels of average 24-h discharge. The top 

row is the relationship between the change in 24-h discharge and movement probability at 14.7 

m3/s of average discharge, the middle row is relationship between the change in 24-h discharge 

and movement probability at 6.6 m3/s of average discharge (mean levels) and the bottom row is 

the relationship between the change in 24-h discharge and movement probability at 3.0 m3/s of 

average discharge. All data were retrieved from the U.S. Geological Survey stream gauge (USGS 

stream gauge 071912213) near Colcord, OK. 
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Figure 8. Distribution of tagged Rainbow Trout detections (frequency) on April 30 (top) and 

August 5 (bottom), 2019 in relation to stocking site. In each plot, 0 (km) represents the stocking 

location and negative values represent downstream locations from the stocking site while positive 

locations represent upstream locations from the stocking site. 
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APPENDIX A 

Methods 

 To determine what proportion of available data were needed in my analyses, I examined 

use-availability data from two of my study species under various use-availability ratios. 

Smallmouth Bass was the most commonly encountered species, whereas I chose Creek Chub to 

represent a rarer species. For each species evaluation, I paired all used points with either all or 

some number of randomly selected availability. This resulted in four datasets which were a full 

dataset (i.e., all available points), a 1:5 ratio, a 1:3 ratio, and a 1:1 ratio for both Creek Chub 

(Table 1) and Smallmouth Bass (Table 2). Consequently, the full dataset ratio of used to available 

points differed between Smallmouth Bass and Creek Chub because Smallmouth Bass were more 

common (i.e., more used points) whereas the same number of availability points were collected 

for each species using my transect method in the field (see Chapter 2 methods).  

 I developed a generalized linear mixed model using the package lme4 (Bates et al. 2015) 

in the statistical software R (version 3.4.2, R Core Team 2017) for each species-ratio combination 

(eight models in total). I fit a global model to each dataset using interactions between the species 

of interest (Smallmouth Bass or Creek Chub), two seasons (autumn and winter) and five habitat 

variables (cover, depth, velocity, substrate, and temperature).  

 To understand the effects of various use-availability ratios, I compared model estimates 

between datasets in terms of significance (α ≤ 0.10). This was important because it allowed me to 

investigate if the final model for each dataset (i.e., the variables retained following a model-

selection) would differ as a result of the dataset used. For example, non-significant variables (as 

determined by alpha) are eliminated first at the interaction level followed by main effects using a 
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backward-selection process (e.g., Wolf et al. 2019). In this particular analysis, I did not complete 

a formal selection process for each model. I chose, instead, to stop after fitting the global model 

to each dataset. I did this because it was already clear that the variables retained in the final model 

after a backward-selection approach would depend on the ratio of data used (see results). 

Additionally, I felt it important to use the same model to compare trends in predicated values of 

microhabitat use as opposed to models that differed in complexity as a result of a selection 

process. I plotted the predicted relative probability values for a continuous significant variable 

(substrate) and evaluated likelihood ratios of a significant factor variable (cover) using the global 

model generated from each dataset. I chose substrate as a continuous variable because I knew 

from a previous analysis that both species showed strong selection patterns for coarse (i.e., larger) 

substrate size using the full dataset. This provided a meaningful reference for how differing ratios 

would influence perceived selection patterns. Both substrate and cover were deemed significant 

(P ≤ 0.10) in all eight model described above.  

 

Results 

Model Comparison. – Significant coefficients varied among models using the four Creek Chub 

datasets. Using the full dataset (~1:10 use-available ratio), all main effects and interactions were 

significant. However, the interaction winter x cover occurred near the cutoff (P = 0.09) and 

contained substantial error relative to the coefficient estimate (Table 3). The winter x cover 

interaction was estimated as non-significant using the 1:5 dataset. Using the 1:3 dataset, the 

winter x depth and winter x quadratic depth term were dropped in addition to the winter x cover 

interaction in terms of significance (Table 3). Lastly, the 1:1 dataset resulted in a model that 

would have dropped the winter x cover interaction and the winter x velocity interaction.  

 The Smallmouth Bass data resulted in more-robust estimates across varying use-

availability ratios relative to the less common Creek Chub. The model that I generated using the 

full dataset contained the same significant terms as those that I generated using subsets of 1:5 and 
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1:3 (Table 4). Only in the 1:1 dataset was an additional interaction (winter x velocity) estimated 

as non-significant (Table 4).  

 

Variable Comparison – Substrate selection trends were relatively consistent regardless of the use-

availability ratio used. Both Creek Chub (Figure 1) and Smallmouth Bass (Figure 3) selected 

coarser substrate during autumn and less so in winter.  As expected, the predicted probability of 

use increases for estimates derived from more-even ratios of use-availability points (see 

discussion). Regardless, the conclusion that both species were selecting coarse substrate during 

autumn could be drawn from models I created using the full, 1:5, and 1:3 datasets. However, the 

selection of coarse substrates using a 1:1 ratio was less evident and differed substantially from 

other ratios in terms of predicted probabilities and associated error (Figures 2 and 4).  

  For both species, my analysis using each dataset indicated that there was a shift in 

selection towards greater association with cover during winter months (Tables 5 and 6). However, 

the magnitude of this effect was reduced in conjunction with the sampling ratio. I found that the 

degree of change (differences in estimates) was less between ratios for the more-common 

Smallmouth Bass.  

 

Discussion 

 My findings are similar to others (e.g., Northrup et al. 2013; Nad’o and Kanuch 2018) 

who have suggested that differences in sampling ratios have the potential to influence model 

estimates and associated ecological inferences on habitat selection. In addition, I noted other 

differences between ratios like changes in the value of predictions (i.e., relative probability) and 

variation between ratios that resulted from rare vs common species. For example, it appears that 

reduced datasets produce higher predicted probabilities of use. Additionally, the number of used 

points resulting from differences in the relative abundance among different species also 

influences the robustness of estimates when ratios are changed.  
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 I found that differing ratios of use-availability points may either increase or decrease the 

predicted probability of use for a given resource. For example, I found that the predicted 

probability of use for a 1:3 ratio at substrate class 6 (i.e., boulders) was substantially higher than 

the predicted probability of use at substrate class 6 using the full dataset for both species (Figures 

1 and 3). This is logical because as available points are reduced, the species of interest appears to 

become “more common” in the dataset (i.e., use observations are offset by less available points). 

This is perhaps only an issue in studies attempting to implement an occupied – unoccupied 

habitat framework where true probabilities are attempted to be estimated as oppose to only a 

strength of selection response as in use-availability studies (Nad’o and Kanuch 2018). However, 

as the ratio of use to available points approaches one, available points are likely also serving as 

used points (often referred to as contamination, see Johnson et al. 2006). This likely prevents 

valid inferences of selection and introduces substantial error to estimates (e.g., substrate selection 

constructed with 1:1 ratio; Figures 2 and 4). Additionally, differing use-availability ratios among 

species may lead to incorrect interpretation of results during species comparisons if the goal is to 

compare multiple species using the same model. This is because more-common species would be 

associated with higher predicted probabilities. If this point was not well understood, the result 

could be that these estimates would incorrectly be interpreted as greater selection for the resource 

relative to the less-common species.  

   Comparing model estimates from the two species I examined suggested that coefficient 

estimates are more robust to changes in use-availability ratios when a greater number of used 

observations are included. For example, Smallmouth Bass estimates of cover use were less 

affected compared to those of Creek Chub under varying use-availability ratios. This suggests 

that the greater number of used points within the Smallmouth dataset preserved the estimated 

selection patterns within the reduced datasets. It seems that with less used points to compare with, 

the reduction in available points creates potential to miss ecological relationships that may be 

apparent using only a full dataset (e.g., the winter x cover interaction that was estimated as 
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significant only in the full Creek Chub dataset). However, increased data points beyond a 

necessary amount can increase computation time immensely. In addition (as mentioned above), it 

may also confound comparisons between species should their ratios of use-available points differ 

within the same model. Consequently, a compromise would be beneficial to facilitate meaningful 

model estimates while allowing for realistic computation time and model interpretation.  

 I found that a reduced dataset of 1:5 produced essentially the same coefficient estimates 

as those produced using the full Smallmouth Bass dataset. This was not surprising given the full 

dataset was near a 1:5 ratio naturally (though differed seasonally as described above). The Creek 

Chub dataset that was reduced to a 1:5 ratio dropped only a weakly significant interaction term 

(winter x cover) from what would have been included in the full dataset. Given that Creek Chub 

are the rarest species within my microhabitat dataset (i.e., fewest used observations relative to 

available points), I concluded that my other species would be less prone to dropping significant 

terms using a reduced dataset of 1:5 given my findings of robustness from more used points. 

Additionally, this preliminary analysis consisted of only two seasons. Consequently, the inclusion 

of more data (e.g., my final dataset) would add robustness to estimates including the Creek Chub 

and other rare species if I were to use a reduced dataset. Lastly, I was interested in preserving the 

same use-availability ratios across all species and seasons under a single model to facilitate 

comparison. As a result, I was somewhat confined to using the ratio of the most abundant species 

in the dataset for all other species. In my case, Smallmouth Bass (~1:5 ratio) is most common. 

Consequently, I chose to move forward with my microhabitat analysis using a 1:5 use-availability 

ratio applied to all species in each season. 
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Appendix A: Tables 

Table 1. Distribution of use (N use) and availability (N avail) habitat points contributing to the total number of observations (Model data points) in 

each dataset used for Creek Chub models. Data were collected in October of 2017 (Spavinaw Creek, Oklahoma), December of 2017 (Spavinaw 

Creek, Arkansas), and January of 2018 (Spring Creek, Oklahoma). The full dataset consists of all availability points collected. Consequently, used-

availably ratios are not proportional between seasons using the full dataset. Reduced datasets (1:5, 1:3, 1:1) were generated by pairing all use 

observations with a randomly selected subset of availability points to achieve the desired ratio in both seasons.  

Dataset (ratio use:avail) Season N use N avail Final ratio Model data points 

Full 
Autumn 85 840 0.10 

2643 Winter 118 1600 0.07 

1:5 
Autumn 85 425 0.20 

1218 Winter 118 590 0.20 

1:3 
Autumn 85 255 0.33 

812 Winter 118 354 0.33 

1:1 
Autumn 85 85 1.00 

406 Winter 118 118 1.00 
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Table 2. Distribution of use (N use) and availability (N avail) habitat points contributing to the total number of observations (Model data points) in 

each dataset used for Smallmouth Bass models. Data were collected in October of 2017 (Spavinaw Creek, Oklahoma), December of 2017 

(Spavinaw Creek, Arkansas), and January of 2018 (Spring Creek, Oklahoma). The full dataset consists of all availability points collected. 

Consequently, used-availably ratios are not proportional between seasons using the full dataset. Reduced datasets (1:5, 1:3, 1:1) were generated by 

pairing all use observations with a randomly selected subset of availability points to achieve the desired ratio in both seasons.  

Dataset (ratio use:avail) Season N use N avail Final ratio Model data points 

Full 
Autumn 159 840 0.19 

2852 Winter 253 1600 0.16 

1:5 
Autumn 159 795 0.20 

2472 Winter 253 1265 0.20 

1:3 
Autumn 159 477 0.33 

1648 Winter 253 759 0.33 

1:1 
Autumn 159 159 1.00 

824 Winter 253 253 1.00 
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Table 3. Model estimates for the Creek Chub complete (Full) dataset and varying use-availability ratios (1:5, 1:3, 1:1). The same global model 

(M1) is used to facilitate comparison across datasets (i.e., no selection process was carried out). M1 contains interaction terms between season 

(autumn or winter) and environmental covariates, along with main effects for each environmental parameter. “Velocity” is in reference to no 

velocity and “cover” is in reference to no cover. Interaction terms containing winter are in reference to autumn conditions.  

Parameter Full 1:5 1:3 1:1 

 Estimate Error Pr(>|z|) Estimate Error Pr(>|z|) Estimate Error Pr(>|z|) Estimate Error Pr(>|z|) 

Season - autumn -2.53 0.37 0.00* -1.79 0.40 0.00* -1.23 0.35 0.00* 0.24 0.41 0.56 

Season - winter -4.51 0.42 0.00* -3.28 0.43 0.00* -2.44 0.41 0.00* -0.77 0.47 0.10* 

Depth 4.65 1.04 0.00* 3.97 0.94 0.00* 3.42 0.90 0.00* 2.75 0.74 0.00* 

Depth2 -4.17 0.93 0.00* -4.08 0.93 0.00* -3.45 0.91 0.00* -4.25 1.05 0.00* 

Velocity  -0.36 0.28 0.19 -0.04 0.31 0.91 -0.18 0.32 0.59 0.64 0.49 0.19 

Temperature 0.47 0.11 0.00* 0.55 0.13 0.00* 0.40 0.14 0.00* 0.70 0.22 0.00* 

Substrate 0.84 0.19 0.00* 0.81 0.21 0.00* 0.92 0.23 0.00* 1.24 0.36 0.00* 

Cover 1.01 0.30 0.00* 1.01 0.35 0.00* 0.98 0.38 0.01* 0.95 0.61 0.12 

Winter x depth 0.22 1.36 0.87 0.75 1.29 0.56 0.19 1.18 0.87 -0.20 0.99 0.84 

Winter x depth2 0.38 1.17 0.75 0.23 1.18 0.84 0.63 1.12 0.57 2.05 1.21 0.09* 

Winter x velocity  1.28 0.41 0.00* 1.08 0.46 0.02* 1.11 0.48 0.02* 0.41 0.66 0.54 

Winter x temp -0.56 0.19 0.00* -0.60 0.22 0.01* -0.42 0.23 0.07* -0.90 0.32 0.01* 

Winter x substrate -1.70 0.22 0.00* -1.73 0.25 0.00* -1.69 0.28 0.00* -2.25 0.43 0.00* 

Winter x cover 0.65 0.38 0.09* 0.41 0.45 0.36 0.34 0.48 0.47 -0.30 0.71 0.67 

*indicates significance (cutoff: α ≤ 0.10).  
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Table 4. Model estimates for the Smallmouth Bass complete (full) dataset and varying use-availability ratios (1:5, 1:3, 1:1). The same global 

model (M1) is used to facilitate comparison across datasets (i.e., no selection process was carried out). M1 contains interaction terms between 

season (autumn or winter) and environmental covariates, along with main effects for each environmental parameter. “Velocity” is in reference to 

no velocity and “cover” is in reference to no cover. Interaction terms containing winter are in reference to autumn conditions.  

Parameter Full 1:5 1:3 1:1 

 Estimate Error Pr(>|z|) Estimate Error Pr(>|z|) Estimate Error Pr(>|z|) Estimate Error Pr(>|z|) 

Season - autumn -2.36 0.55 0.00* -2.31 0.56 0.00* -1.54 0.56 0.01* 0.10 0.60 0.86 

Season - winter -2.83 0.40 0.00* -2.57 0.41 0.00* -2.00 0.41 0.00* -0.89 0.43 0.04* 

Depth 3.53 0.71 0.00* 3.48 0.70 0.00* 2.76 0.60 0.00* 1.09 0.44 0.01* 

Depth2 -4.22 0.68 0.00* -4.17 0.68 0.00* -3.88 0.65 0.00* -3.07 0.60 0.00* 

Velocity 1.04 0.27 0.00* 1.04 0.28 0.00* 1.12 0.30 0.00* 0.78 0.37 0.03* 

Temperature 0.29 0.08 0.00* 0.29 0.09 0.00* 0.31 0.10 0.00* 0.33 0.13 0.01* 

Substrate 1.13 0.15 0.00* 1.14 0.16 0.00* 1.17 0.18 0.00* 0.72 0.24 0.00* 

Cover 1.80 0.25 0.00* 1.79 0.25 0.00* 1.83 0.28 0.00* 1.92 0.38 0.00* 

Winter x depth -1.31 0.84 0.12 -1.33 0.85 0.12 -1.11 0.73 0.13 -0.42 0.51 0.41 

Winter x depth2 1.65 0.80 0.04* 1.64 0.80 0.04* 1.94 0.75 0.01* 1.87 0.67 0.01* 

Winter x velocity  -0.68 0.33 0.04* -0.67 0.34 0.05* -0.82 0.37 0.02* -0.30 0.46 0.52 

Winter x temp -0.54 0.14 0.00* -0.58 0.14 0.00* -0.58 0.16 0.00* -0.42 0.21 0.04* 

Winter x substrate -1.13 0.18 0.00* -1.09 0.19 0.00* -1.12 0.21 0.00* -0.90 0.29 0.00* 

Winter x cover 0.17 0.31 0.59 0.13 0.32 0.67 -0.05 0.35 0.88 0.15 0.48 0.75 

*indicates significance (cutoff: α ≤ 0.10).  
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Table 5. Relative importance of cover to Creek Chub during autumn and winter. Odds of use are relative to the reference condition (i.e., likelihood 

of using cover versus no cover) for each season. Shift represents likelihood of using cover in winter, relative to using cover in autumn (i.e., values 

greater than one indicate relative higher use of cover in winter).  

Ratio Autumn Winter Shift 

Full 2.9 4.9 1.7 

1:5 2.9 4.2 1.4 

1:3 2.1 3.4 1.6 

1:1 1.3 2.1 1.6 
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Table 6. Relative importance of categorical cover variable to Smallmouth Bass during autumn and winter. Odds of use are relative to the reference 

condition (i.e., likelihood of using cover versus no cover) for each season. Shift represents likelihood of using cover in winter, relative to using 

cover in autumn (i.e., winter/autumn, values greater than one indicate relative higher use of cover in winter).  

Ratio Autumn Winter Shift 

Full 2.6 4.8 1.8 

1:5 2.2 3.1 1.4 

1:3 2.1 2.5 1.2 

1:1 1.2 1.3 1.1 
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Appendix A: Figures 

 

 

 

Figure 1. Relative probability of selection of substrate for Creek Chub in autumn using the same 

model (M1) across the four datasets of varying use-availability ratios (full, 1:5, 1:3, and 1:1 use-

available). For simplicity, I show predicted probabilities without confidence intervals. Substrate 

class (1 – 6) corresponds to modified Wentworth scale (McMahon et al. 1996) consisting of 1) 

silt (< 0.06mm), 2) sand (≥ 0.06 - 2mm), 3) gravel (> 2 - 16mm), 4) pebble (> 16 - 64mm), 5) 

cobble (> 64 - 256mm), and 6) boulder (> 256mm). 
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Figure 2. Relative probability of selection of substrate by Creek Chub in autumn from full dataset 

and most restrictive (1:1 use-available ratio) with associated 95% confidence intervals plotted as 

dashed lines around each predicted probability. Substrate class (1 – 6) corresponds to modified 

Wentworth scale (McMahon et al. 1996) consisting of 1) silt (< 0.06mm), 2) sand (≥ 0.06 - 2mm), 

3) gravel (> 2 - 16mm), 4) pebble (> 16 - 64mm), 5) cobble (> 64 - 256mm), and 6) boulder (> 

256mm). 
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Figure 3. Relative probability of selection of substrate for Smallmouth Bass in autumn using the 

same model (M1) across the four datasets of varying use-availability ratios (full, 1:5, 1:3, and 1:1 

use-available). For simplicity, I show predicted probabilities without confidence intervals. 

Substrate class (1 – 6) corresponds to modified Wentworth scale (McMahon et al. 1996) 

consisting of 1) silt (< 0.06mm), 2) sand (≥ 0.06 - 2mm), 3) gravel (> 2 - 16mm), 4) pebble (> 16 

- 64mm), 5) cobble (> 64 - 256mm), and 6) boulder (> 256mm). 
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Figure 4. Relative probability of selection of substrate by Smallmouth Bass in autumn from full 

dataset and most restrictive (1:1 use-available ratio) with associated 95% confidence intervals 

plotted as dashed lines around each predicted probability.  Substrate class (1 – 6) consisting of 1) 

silt (< 0.06mm), 2) sand (≥ 0.06 - 2mm), 3) gravel (> 2 - 16mm), 4) pebble (> 16 - 64mm), 5) 

cobble (> 64 - 256mm), and 6) boulder (> 256mm). 
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APPENDIX B 

Table 1. Habitat availability by survey. Day is scaled from 0 – 182 where day 0 is 

December 21 and day 182 is June 21/22 and is used to represent season. Depth (0.05 m), 

velocity (0.1 m/s), substrate (class 0 – 6) and deviation temperature (0.05 ˚C) were 

continuous variables used in the model. Cover percent was calculated using the percent of 

total patches that contained cover. Median temperature was not used for analysis but is 

included as an indicator of ambient water temperature during each survey.  
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Table 1 

Variable Maris 1 Moss 1 Moss 2 

Date (start – end) 10/20/2017 – 10/24/2017 1/9/2018 – 1/11/2018 5/19/2018 – 5/21/2018 

Day (start – end) 66 – 70 18 – 21 148 – 151 

Depth (mean ± SD) 0.5 ± 0.45 m 0.65 ± 0.60 m 1.05 ± 0.90 m 

Depth (min – max) 0.05 – 1.70 m 0.05 – 2.70 m 0.05 – 4.00 m 

Velocity (mean ± SD) 0.0 ± 0.1 m/s 0.0 ± 0.0 m/s 0.1 ± 0.2 m/s 

Velocity  (min – max) 0.0 – 0.3 m/s 0.0 – 0.2 m/s 0.0 – 0.8 m/s 

Substrate (mean ± SD) 3 ± 1 4 ± 1 4 ± 1 

Substrate (min – max) 1 – 4 1 – 6 2 – 6 

Median temp. (mean ± SD) 19.5 ± 0.5 ˚C 10.5 ± 0.5 ˚C 18.5 ± 1.0 ˚C 

Median temp. (min – max) 18.5 – 20.0 ˚C 10.0 – 11.5 ˚C 17.0 – 19.5 ˚C 

Deviation temp. (mean ± SD) 0.0 ± 0.5 ˚C 0.0 ± 0.5 ˚C 0.0 ± 0.5 ˚C 

Deviation temp. (min – max) -1.0 – 1.5 ˚C -1.0 – 1.0 ˚C -3.0 – 2.0 ˚C 

Cover percent 40% 20% 29% 
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Table 1 (cont.) 

Variable Lavern 1 Cisco 2 Lavern 2 

Date (start – end) 6/12/2018 – 6/14/2018 9/9/2018 – 9/11/2018 9/19/2018 – 9/20/2018 

Day (start – end) 173 – 175  100 – 102 91 – 92 

Depth (mean ± SD) 0.40 ± 0.35 0.50 ± 0.50  0.35 ± 3.00 

Depth (min – max) 0.05 – 1.60  0.05 – 2.05 0.05 – 1.65 

Velocity (mean ± SD) 0.3 ± 0.3 0.1 ± 0.2 0.3 ± 0.3 

Velocity  (min – max) 0 – 1.3 0 – 1.1 0 – 1.5 

Substrate (mean ± SD) 4 ± 2 4 ± 1 4 ± 1 

Substrate (min – max) 0 – 6 0 – 6 0 – 6 

Median temp. (mean ± SD) 21.5 ± 1.0 ˚C 21.0 ± 0.5 ˚C 24.5 ± 0.5 ˚C 

Median temp. (min – max) 20.5 – 23.0 ˚C 19.5 – 25.0 ˚C 24.0 – 25.0 ˚C 

Deviation temp. (mean ± SD) 0.0 ± 0.5 ˚C 0.0 ± 0.5 ˚C 0.0 ± 0.5 ˚C 

Deviation temp. (min – max) -2.0 – 1.0 ˚C -2.0 – 3.5 ˚C -1.5 – 4.5 ˚C 

Cover percent 18% 32% 17% 
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Table 1 (cont.) 

Variable Moss 3 Moss 4 Moss 5 

Date (start – end) 9/28/2018 – 9/30/2018 2/15/2019 – 2/17/2019 6/20/2019 – 6/22/2019 

Day (start – end) 81 – 83 56 – 58 181 – 182 

Depth (mean ± SD) 0.95 ± 0.80 0.9 ± 0.85 0.85 ± 0.9 

Depth (min – max) 0.10 – 4.00 0.05 – 4.50 0.05 – 5.10 

Velocity (mean ± SD) 0.0 ± 1.0 0.2 ± 0.3 0.2 ± 0.2 

Velocity  (min – max) 0.0 – 0.4 0.0 – 1.1 0.0 – 0.9 

Substrate (mean ± SD) 4 ± 1 4 ± 1 4 ± 1 

Substrate (min – max) 0 – 6 2 – 6 0 – 6 

Median temp. (mean ± SD) 22.5 ± 0.5 ˚C 8.0 ± 1.0 ˚C 21.5 ± 1.0 ˚C 

Median temp. (min – max) 22.0 – 23.0 ˚C 6.0 – 9.0 ˚C 20.5 – 22.5 ˚C 

Deviation temp. (mean ± SD) 0.0 ± 0.5 ˚C 0.0 ± 0.0 ˚C 0.0 ± 0.5 ˚C 

Deviation temp. (min – max) -1.5 – 3.0 ˚C -1.5 – 0.5 ˚C -3.0 – 4.0 ˚C 

Cover percent 32% 28% 47% 
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Table 1 (cont.) 

Variable Cisco 1* Maris 2* Maris 3* 

Date (start -  end) 12/16/2017 – 12/19/2017 2/8/2019 – 2/11/2019 6/14/2019 – 6/15/2019 

Day (start – end) 2 – 5 49 – 52 175 – 176 

Depth (mean ± SD) 0.70 ± 0.55 m 0.35 ± 0.20 m 0.60 ± 0.30 m 

Depth (min – max) 0.05 – 1.90 m 0.05 – 1.30 m 0.10 – 1.30 m 

Velocity (mean ± SD) 0 ± 0.1 m/s 0.3 ± 0.30 m/s 0.5 ± 0.3 m/s 

Velocity  (min – max) 0.0 – 0.3 m/s 0.0 – 1.1 m/s 0.0 – 1.2 m/s 

Substrate (mean ± SD) 4 ± 1 4 ± 1 4 ± 1 

Substrate (min – max) 2 – 6 2 – 5 0 – 6 

Median temp. (mean ± SD) 12.5 ± 0.5 ˚C 9.0 ± 1.0 ˚C 19.0 ± 1.0 ˚C 

Median temp. (min – max) 10.0 – 14.0 ˚C 8.0 – 10.5 ˚C 17.5 – 20.5 ˚C 

Deviation temp. (mean ± SD) 0.0 ± 0.5 ˚C 0.0 ± 0.5 ˚C 0 ± 1 ˚C 

Deviation temp. (min – max) -1.0 – 0.5 ˚C -2.5 – 0.5 ˚C -1.5 – 7.0 ˚C 

Cover percent 37% 23% 13% 

 

*Rainbow Trout present 
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Table 2. Final model estimates for microhabitat model. Count is the number estimates (N = 224). 

For parameter estimates, alpha estimates (count 1 – 6) reference to species specific intercepts for 

[1] Creek Chub, [2] Redhorse, [3] Northern Hogsucker, [4] Redspot Chub, [5] Age-1+ 

Smallmouth Bass, and [6] Juvenile Smallmouth Bass. In the model, each beta (1 – 27) represents 

a main effect or interaction as defined by “variable”. For each beta, there are six estimates, 

corresponding to species-specific deflections from the group mean (BetaXmu). The estimate 

mean and SD were used to calculate 95% High Density Intervals (2.5% - 97.5%) where estimates 

that had intervals that did come within 0.01 or overlap zero were considered significant. Rhat is a 

measure of convergence for each parameter where values less than or equal to 1.1 indicate 

successful convergence.  

Count Parameter Variable Mean SD 2.50% 97.50% Rhat 

1 alpha[1] Creek Chub -1.925 0.304 -2.531 -1.365 0.998 

2 alpha[2] Redhorse -4.23 0.328 -4.859 -3.614 1 

3 alpha[3] Northern Hogsucker -1.806 0.305 -2.36 -1.253 1.009 

4 alpha[4] Redspot Chub -1.302 0.263 -1.81 -0.749 1.001 

5 alpha[5] Age-1+ Smallmouth Bass -3.253 0.299 -3.806 -2.637 1.015 

6 alpha[6] Juvenile Smallmouth Bass -1.365 0.271 -1.893 -0.821 1.019 

7 alphamu Species group mean -2.295 0.668 -3.582 -1.057 1.018 

8 alphasig Species group error 1.532 0.662 0.736 3.347 1.023 

9 beta1[1] Time 0.131 0.16 -0.187 0.44 1.003 

10 beta1[2] Time 0.78 0.188 0.423 1.117 1 

11 beta1[3] Time -0.931 0.246 -1.398 -0.446 1.005 

12 beta1[4] Time -0.212 0.087 -0.38 -0.035 1.01 

13 beta1[5] Time 0.265 0.154 -0.057 0.589 1.015 

14 beta1[6] Time 0.19 0.109 -0.013 0.416 0.999 

15 beta1mu Time group mean 0.064 0.326 -0.596 0.791 1.007 

16 beta1sig Time group error 0.802 0.411 0.354 1.707 1.057 

17 beta2[1] Depth 1.655 0.169 1.361 1.989 1.007 

18 beta2[2] Depth 5.799 0.333 5.162 6.419 1.01 

19 beta2[3] Depth 3.954 0.281 3.361 4.49 1.026 
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20 beta2[4] Depth 2.202 0.11 1.998 2.404 1.002 

21 beta2[5] Depth 4.019 0.244 3.52 4.472 1.014 

22 beta2[6] Depth 1.324 0.087 1.162 1.492 1.006 

23 beta2mu Depth group mean 3.166 1.027 1.184 5.207 1.013 

24 beta2sig Depth group error 2.22 0.871 1.173 4.643 0.998 

25 beta3[1] Depth2 -2.33 0.224 -2.77 -1.949 1.002 

26 beta3[2] Depth2 -1.766 0.135 -2.026 -1.521 1.011 

27 beta3[3] Depth2 -1.639 0.17 -1.966 -1.306 1.027 

28 beta3[4] Depth2 -1.748 0.095 -1.947 -1.559 1.012 

29 beta3[5] Depth2 -1.288 0.119 -1.52 -1.06 1.009 

30 beta3[6] Depth2 -1.366 0.085 -1.524 -1.202 1.002 

31 beta3mu Depth2 group mean -1.717 0.25 -2.225 -1.273 1 

32 beta3sig Depth2 group error 0.548 0.282 0.214 1.364 1.004 

33 beta4[1] Temperature 0.134 0.173 -0.198 0.476 0.999 

34 beta4[2] Temperature -0.38 0.127 -0.632 -0.161 0.999 

35 beta4[3] Temperature -0.278 0.153 -0.591 -0.002 0.997 

36 beta4[4] Temperature -0.214 0.093 -0.381 -0.04 1.002 

37 beta4[5] Temperature -0.267 0.132 -0.558 -0.02 1.003 

38 beta4[6] Temperature -0.242 0.098 -0.456 -0.046 0.997 

39 beta4mu Temperature group mean -0.208 0.141 -0.521 0.09 1.006 

40 beta4sig Temperature group error 0.287 0.195 0.036 0.775 1.013 

41 beta5[1] Velocity -0.159 0.077 -0.306 -0.014 1.005 

42 beta5[2] Velocity 0.199 0.075 0.057 0.34 0.997 

43 beta5[3] Velocity 0.711 0.137 0.464 0.986 1.009 

44 beta5[4] Velocity 0.03 0.046 -0.058 0.118 1.001 

45 beta5[5] Velocity 0.151 0.079 -0.003 0.305 0.998 

46 beta5[6] Velocity -0.54 0.061 -0.655 -0.423 0.998 

47 beta5mu Velocity group mean 0.061 0.322 -0.495 0.683 1.032 

48 beta5sig Velocity group error 0.595 0.31 0.255 1.277 1.029 

49 beta6[1] Substrate -0.359 0.059 -0.467 -0.244 1.011 

50 beta6[2] Substrate -0.212 0.053 -0.324 -0.112 1.003 

51 beta6[3] Substrate 0.314 0.09 0.148 0.519 1.004 

52 beta6[4] Substrate 0.107 0.041 0.026 0.188 0.998 

53 beta6[5] Substrate 0.203 0.061 0.098 0.336 1.006 
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54 beta6[6] Substrate -0.026 0.04 -0.104 0.048 0.998 

55 beta6mu Substrate group mean 0.007 0.178 -0.299 0.392 1.003 

56 beta6sig Substrate group error 0.357 0.204 0.162 0.898 1.022 

57 beta7[1] Trout -0.3 0.378 -1.013 0.452 0.999 

58 beta7[2] Trout 0.023 0.56 -1.046 1.376 1.008 

59 beta7[3] Trout -0.506 0.412 -1.382 0.167 1.022 

60 beta7[4] Trout -0.076 0.242 -0.559 0.372 1.004 

61 beta7[5] Trout -0.84 0.561 -2.038 0.084 1.006 

62 beta7[6] Trout 0.122 0.386 -0.522 0.931 0.999 

63 beta7mu Trout group mean -0.248 0.398 -1.112 0.581 1.003 

64 beta7sig Trout group error 0.672 0.519 0.043 1.891 1.015 

65 beta8[1] Cover 1.812 0.142 1.559 2.112 1.001 

66 beta8[2] Cover 0.163 0.094 -0.029 0.338 1.002 

67 beta8[3] Cover -0.7 0.152 -1.009 -0.416 1.004 

68 beta8[4] Cover 0.168 0.074 0.02 0.298 0.999 

69 beta8[5] Cover 0.749 0.116 0.527 0.973 1.002 

70 beta8[6] Cover 0.64 0.084 0.482 0.805 1.006 

71 beta8mu Cover group mean 0.482 0.54 -0.54 1.614 1.012 

72 beta8sig Cover group error 1.123 0.557 0.545 2.697 1.01 

73 beta9[1] Trout * time 0.347 0.256 -0.076 0.934 1.007 

74 beta9[2] Trout * time 0.393 0.324 -0.193 1.104 1.003 

75 beta9[3] Trout * time 0.175 0.272 -0.408 0.595 1.018 

76 beta9[4] Trout * time 0.19 0.171 -0.164 0.492 1.007 

77 beta9[5] Trout * time 0.449 0.276 -0.024 1.036 1.002 

78 beta9[6] Trout * time 0.475 0.25 0.033 0.992 1.013 

79 beta9mu Trout * time group mean 0.341 0.238 -0.139 0.811 1.015 

80 beta9sig Trout * time group error 0.334 0.27 0.029 1.181 1.004 

81 beta10[1] Trout * depth 2.448 0.801 1.073 4.128 1.007 

82 beta10[2] Trout * depth 3.09 1.558 0.82 6.961 1.007 

83 beta10[3] Trout * depth 2.278 0.976 0.585 4.581 1.034 

84 beta10[4] Trout * depth 0.423 0.326 -0.157 1.059 0.999 

85 beta10[5] Trout * depth -0.606 0.717 -1.869 0.93 1.008 

86 beta10[6] Trout * depth 1.756 0.644 0.66 3.115 1.002 

87 beta10mu Trout * depth group mean 1.567 1.045 -0.148 3.871 1.019 
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88 beta10sig Trout * depth group error 2.039 1.186 0.634 5.077 1.009 

89 beta11[1] Trout * depth2 -2.482 1.107 -4.939 -0.647 1.002 

90 beta11[2] Trout * depth2 -1.133 1.518 -4.2 1.628 1.007 

91 beta11[3] Trout * depth2 -2.387 1.129 -4.876 -0.431 1.011 

92 beta11[4] Trout * depth2 -0.068 0.356 -0.732 0.638 1.005 

93 beta11[5] Trout * depth2 2.194 0.539 1.141 3.268 1.006 

94 beta11[6] Trout * depth2 -3.448 1.256 -6.401 -1.336 0.998 

95 beta11mu Trout * depth2 group mean -1.246 1.372 -4.194 1.166 1.014 

96 beta11sig Trout * depth2 group error 2.927 1.253 1.286 6.059 1.007 

97 beta12[1] Trout * temperature 0.234 0.519 -1.038 1.123 1.025 

98 beta12[2] Trout * temperature 0.168 0.713 -1.594 1.428 1.008 

99 beta12[3] Trout * temperature 0.524 0.563 -0.69 1.608 1.005 

100 beta12[4] Trout * temperature 0.721 0.223 0.294 1.239 1.001 

101 beta12[5] Trout * temperature 0.932 0.32 0.383 1.661 1.001 

102 beta12[6] Trout * temperature -0.02 0.294 -0.562 0.59 0.999 

103 beta12mu Trout * temperature group mean 0.424 0.399 -0.452 1.17 1.008 

104 beta12sig Trout * temperature group error 0.718 0.424 0.144 1.853 1.003 

105 beta13[1] Trout * velocity -1.536 0.372 -2.285 -0.887 1.005 

106 beta13[2] Trout * velocity 0.147 0.386 -0.586 0.912 1.004 

107 beta13[3] Trout * velocity -1.009 0.372 -1.723 -0.345 1.014 

108 beta13[4] Trout * velocity -0.241 0.121 -0.464 0.001 0.997 

109 beta13[5] Trout * velocity -0.528 0.252 -1.016 -0.044 0.995 

110 beta13[6] Trout * velocity -0.059 0.231 -0.533 0.363 1 

111 beta13mu Trout * velocity group mean -0.553 0.432 -1.426 0.332 1.003 

112 beta13sig Trout * velocity group error 0.955 0.578 0.381 2.296 1.001 

113 beta14[1] Trout * substrate 0.027 0.148 -0.261 0.339 1.018 

114 beta14[2] Trout * substrate -0.002 0.183 -0.419 0.368 1.018 

115 beta14[3] Trout * substrate 0.034 0.212 -0.335 0.539 1.01 

116 beta14[4] Trout * substrate -0.02 0.108 -0.242 0.177 1.001 

117 beta14[5] Trout * substrate -0.021 0.137 -0.315 0.209 1.006 

118 beta14[6] Trout * substrate 0.07 0.156 -0.188 0.459 1.007 

119 beta14mu Trout * substrate group mean 0.016 0.142 -0.242 0.353 1.02 

120 beta14sig Trout * substrate group error 0.15 0.146 0.005 0.505 1.025 

121 beta15[1] Trout * cover 1.084 0.392 0.323 1.863 1.001 
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122 beta15[2] Trout * cover 0.138 0.607 -1.03 1.237 1.002 

123 beta15[3] Trout * cover 0.155 0.577 -0.995 1.157 1.001 

124 beta15[4] Trout * cover 1.006 0.211 0.611 1.423 1.001 

125 beta15[5] Trout * cover 1.161 0.353 0.553 1.866 1.007 

126 beta15[6] Trout * cover 1.501 0.35 0.873 2.26 0.995 

127 beta15mu Trout * cover group mean 0.888 0.51 -0.035 1.881 1.032 

128 beta15sig Trout * cover group error 0.912 0.628 0.112 2.402 1.02 

129 beta16[1] Trout * cover * time 0.31 0.247 -0.209 0.715 1.009 

130 beta16[2] Trout * cover * time 0.319 0.362 -0.561 0.828 1.013 

131 beta16[3] Trout * cover * time 0.586 0.291 0.105 1.244 1.008 

132 beta16[4] Trout * cover * time 0.54 0.139 0.272 0.823 1.008 

133 beta16[5] Trout * cover * time 0.561 0.216 0.162 1.024 1.002 

134 beta16[6] Trout * cover * time 0.5 0.191 0.12 0.925 1.002 

135 beta16mu Trout * cover * time group mean 0.48 0.202 0.087 0.901 1.005 

136 beta16sig Trout * cover * time group error 0.292 0.27 0.01 0.983 1.021 

137 beta17[1] Depth * time 0.313 0.202 -0.079 0.721 1 

138 beta17[2] Depth * time -1.269 0.28 -1.815 -0.738 1.024 

139 beta17[3] Depth * time 1.49 0.444 0.534 2.378 1.007 

140 beta17[4] Depth * time 0.248 0.114 0.017 0.473 1.016 

141 beta17[5] Depth * time 0.215 0.245 -0.266 0.721 1.007 

142 beta17[6] Depth * time 0.75 0.129 0.503 0.989 1.005 

143 beta17mu Depth * time group mean 0.293 0.585 -0.763 1.308 1.006 

144 beta17sig Depth * time group error 1.265 0.669 0.569 2.666 1.023 

145 beta18[1] Depth2 * time -1.069 0.237 -1.561 -0.568 1 

146 beta18[2] Depth2 * time 0.375 0.118 0.137 0.599 1.027 

147 beta18[3] Depth2 * time -0.551 0.247 -1.04 -0.053 1.008 

148 beta18[4] Depth2 * time 0.091 0.098 -0.114 0.288 1.012 

149 beta18[5] Depth2 * time -0.335 0.119 -0.591 -0.103 1.003 

150 beta18[6] Depth2 * time -0.249 0.113 -0.465 -0.02 0.996 

151 beta18mu Depth2 * time group mean -0.311 0.367 -0.986 0.399 1.043 

152 beta18sig Depth2 * time group error 0.721 0.432 0.304 1.608 1.03 

153 beta19[1] Temperature * time -0.154 0.194 -0.546 0.252 1.006 

154 beta19[2] Temperature * time 0.075 0.144 -0.19 0.352 1.001 

155 beta19[3] Temperature * time -0.075 0.238 -0.509 0.417 0.997 
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156 beta19[4] Temperature * time -0.374 0.103 -0.571 -0.164 1.009 

157 beta19[5] Temperature * time 0.203 0.164 -0.114 0.548 1 

158 beta19[6] Temperature * time -0.215 0.122 -0.458 0.008 1.002 

159 beta19mu Temperature * time group mean -0.096 0.177 -0.474 0.252 1.003 

160 beta19sig Temperature * time group error 0.337 0.181 0.117 0.777 1.023 

161 beta20[1] Velocity * time -0.133 0.099 -0.33 0.053 1.004 

162 beta20[2] Velocity * time 0.141 0.07 0.008 0.267 0.998 

163 beta20[3] Velocity * time -0.786 0.162 -1.109 -0.473 1.006 

164 beta20[4] Velocity * time 0.048 0.047 -0.045 0.132 1.002 

165 beta20[5] Velocity * time -0.082 0.076 -0.228 0.059 1.003 

166 beta20[6] Velocity * time 0.129 0.072 -0.017 0.268 1.008 

167 beta20mu Velocity * time group mean -0.132 0.214 -0.579 0.266 1.005 

168 beta20sig Velocity * time group error 0.488 0.267 0.196 1.228 1.011 

169 beta21[1] Substrate * time 0.119 0.068 -0.027 0.252 1.001 

170 beta21[2] Substrate * time -0.125 0.047 -0.217 -0.036 0.998 

171 beta21[3] Substrate * time -0.235 0.105 -0.436 -0.043 1.006 

172 beta21[4] Substrate * time -0.057 0.037 -0.127 0.013 0.999 

173 beta21[5] Substrate * time -0.168 0.055 -0.277 -0.062 0.999 

174 beta21[6] Substrate * time -0.225 0.047 -0.313 -0.131 0.998 

175 beta21mu Substrate * time group mean -0.116 0.101 -0.295 0.08 1.011 

176 beta21sig Substrate * time group error 0.196 0.116 0.074 0.499 1.039 

177 beta22[1] Cover * time 0.142 0.166 -0.151 0.476 1.005 

178 beta22[2] Cover * time 0.041 0.099 -0.147 0.234 1 

179 beta22[3] Cover * time -0.625 0.251 -1.121 -0.197 1.002 

180 beta22[4] Cover * time -0.191 0.083 -0.358 -0.037 0.999 

181 beta22[5] Cover * time -0.18 0.112 -0.391 0.043 1.013 

182 beta22[6] Cover * time -0.4 0.108 -0.6 -0.182 1.003 

183 beta22mu Cover * time group mean -0.189 0.206 -0.642 0.197 0.999 

184 beta22sig Cover * time group error 0.44 0.258 0.134 1.166 1.006 

185 beta23[1] Trout * depth * time -0.212 0.326 -0.909 0.485 1.004 

186 beta23[2] Trout * depth * time -0.162 0.435 -0.957 0.746 1.018 

187 beta23[3] Trout * depth * time -0.233 0.466 -1.15 0.572 1.027 

188 beta23[4] Trout * depth * time -0.212 0.216 -0.67 0.181 0.999 

189 beta23[5] Trout * depth * time -0.286 0.351 -1.186 0.284 1.011 
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190 beta23[6] Trout * depth * time -0.133 0.346 -0.722 0.589 1.001 

191 beta23mu Trout * depth * time group mean -0.195 0.308 -0.803 0.46 1.006 

192 beta23sig Trout * depth * time group error 0.315 0.324 0.015 1.27 1.038 

193 beta24[1] Trout * depth2 * time 1.933 0.662 0.637 3.226 1.005 

194 beta24[2] Trout * depth2 * time 0.141 0.623 -1.151 1.332 1.001 

195 beta24[3] Trout * depth2 * time 0.443 0.607 -0.674 1.598 1.001 

196 beta24[4] Trout * depth2 * time 0.532 0.219 0.141 0.981 1.003 

197 beta24[5] Trout * depth2 * time 0.844 0.323 0.252 1.484 0.998 

198 beta24[6] Trout * depth2 * time -1.217 0.725 -2.916 0 0.998 

199 beta24mu Trout * depth2 * time group mean 0.445 0.808 -1.139 1.957 1.001 

200 beta24sig Trout * depth2 * time group error 1.564 1.133 0.51 4.537 1.015 

201 beta25[1] Trout * temperature * time -0.151 0.369 -0.86 0.508 1.009 

202 beta25[2] Trout * temperature * time -0.296 0.551 -1.405 0.74 1.004 

203 beta25[3] Trout * temperature * time -0.299 0.457 -1.241 0.602 1.004 

204 beta25[4] Trout * temperature * time 0.444 0.179 0.086 0.818 1.011 

205 beta25[5] Trout * temperature * time -0.443 0.269 -1.001 0.046 1.009 

206 beta25[6] Trout * temperature * time 0.523 0.213 0.1 0.958 1.023 

207 beta25mu Trout * temp. * time group mean -0.081 0.44 -0.856 0.582 1.044 

208 beta25sig Trout * temp. * time group mean 0.75 0.492 0.213 1.72 1.026 

209 beta26[1] Trout * velocity 0.631 0.251 0.084 1.104 0.998 

210 beta26[2] Trout * velocity -1.232 0.272 -1.778 -0.714 1 

211 beta26[3] Trout * velocity 0.62 0.305 -0.006 1.2 0.999 

212 beta26[4] Trout * velocity -0.399 0.092 -0.591 -0.226 1 

213 beta26[5] Trout * velocity -0.47 0.193 -0.874 -0.072 1.003 

214 beta26[6] Trout * velocity -0.551 0.163 -0.885 -0.251 1.005 

215 beta26mu Trout * velocity group mean -0.261 0.486 -1.275 0.689 1.007 

216 beta26sig Trout * velocity group error 1.047 0.576 0.44 2.624 1.004 

217 beta27[1] Trout * substrate 0.391 0.183 0.128 0.83 1 

218 beta27[2] Trout * substrate 0.232 0.138 -0.054 0.517 1.011 

219 beta27[3] Trout * substrate 0.355 0.189 0.083 0.79 0.997 

220 beta27[4] Trout * substrate 0.148 0.092 -0.033 0.306 1 

221 beta27[5] Trout * substrate 0.209 0.109 -0.008 0.428 1.005 

222 beta27[6] Trout * substrate 0.277 0.1 0.107 0.509 1.003 

223 beta27mu Trout * substrate group mean 0.271 0.135 0.044 0.574 1.007 
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APPENDIX C 

Table 1. Pairwise Pearson correlation matrix five continuous environmental predictor variables 

used to build directional movement models. Asterisks represents correlation above a 0.28 

threshold and these variables were not included in the same model following the guidelines of 

Graham (2003).   

  TempMax 

Average 

discharge 

Discharge 

change 

Discharge 

changet+1 

TL   

TempMax 1.00       

Average discharge 0.25 1.00      

Discharge change -0.15 0.19 1.00     

Discharge changet+1 0.06 -0.42* -0.33* 1.00    

TL 0.28 0.12 -0.10 0.003 1.00   

*Excluded from the same model due to multicollinearity.  
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Table 2. Installation dates and suspected outage periods of fixed arrays on Spavinaw Creek. Loss 

of power was common during winter when cold temperatures and lack of sunlight prevented 

prolonged periods of battery charge. These outage periods were recorded in the reader file. 

However, outage due to broken antennas could only be inferred using a combination of flow data, 

periods of no recorded detections, and encountering broken antennas upon field visits (i.e., the 

exact date that the outage began was not known during this period).  

 

 

 

 

 

 

 

 

 

Interval Upstream array Downstream array 

Installed 12/21/2018 2/6/2019 

1 1/1/2019 – 1/9/2019 2/9/2019 – 2/16/2019 

2 1/13/2019 – 2/2/2019 3/5/2019 – 3/29/2019 

3 2/9/2019 – 2/15/2019 3/31/2019 – 4/7/2019 

4 4/14/2019 – 4/19/2019 4/29/2019 – 5/15/2019 

5 4/29/2019 – 5/14/2019 5/19/2019 – 6/19/2019 

6 5/19/2019 – 6/7/2019 NA 

7 6/7/2019 – 6/15/2019 NA 

8 6/19/2019 – 6/29/2019 NA 
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Figure 1. Binned residual plots for the downstream (top) and upstream (bottom) directional 

movement models. The gray lines indicate approximate 95% confidence intervals which 95% of 

the residuals (black dots) should fall within if model fit was appropriate.  
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