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Major Field: INTEGRATIVE BIOLOGY 

 
Abstract: Life history theory examines how individuals should make trade-offs between current 

reproductive effort and survival to achieve future reproductive gains. A prediction is that as future 

life expectancy decreases, individuals should invest more in current reproduction at the cost of 

lower survival and future reproduction. Although P. acuta have been shown to display a 

relatively high tolerance to anthropogenic contaminants and pollutants, research regarding sub-

lethal chronic exposure to contaminants and reproductive effort is limited. However, it has been 

shown that higher zinc concentrations lower P. acuta survival rates. Therefore, the objective of 

this study was to determine if chronic sub-lethal exposure to zinc has the potential to alter an 

individual’s reproductive life history decisions, and if the magnitudes of these decisions are 

dependent upon a site’s historic zinc exposure. Snails were collected from 3 sites within the 

Grand Lake watershed that have different zinc concentrations. Their offspring were then exposed 

to one of 5 zinc concentrations over the course of ~18 weeks. Individuals from these sites showed 

differences in response to zinc treatments. Individuals from historically moderate zinc 

concentrations followed life history predictions most closely, as an increase in zinc treatment 

resulted in earlier timing of reproductive events and growth. However, individuals from 

historically low zinc exposure showed delayed growth and reproduction as zinc concentration 

increased. Individuals from high historic zinc exposure in general displayed few negative effects 

from the zinc treatments, likely due to a high zinc tolerance among these individuals. Overall, 

results showed evidence of a gradient of local adaptation and tolerance of zinc. Tolerance seemed 

to be a key factor in whether individuals make life history changes in response to metal 

contamination. 
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CHAPTER I 
 

 

INTRODUCTION 

Grand Lake and Life History Theory 

The Tri-State Lead-Zinc Mining District is a significant source of heavy metal 

contamination within the Grand Lake watershed. Studies have shown heightened levels of metals 

in the area, such as lead, zinc, and cadmium, within lake sediments (Burks and Wilhm 1995; 

Ingersoll et al. 2009, Hickey 2019, Morrison 2019). Although concentrations of these metals are 

high in some areas, the threat of critical or fatal toxicity to organisms residing within these 

contaminated locations remains low (Ingersoll et al. 2009). However, chronic exposure to this 

metal contamination could affect the life histories and reproductive success of resident organisms. 

Life history theory is an ecological framework used to better understand the diversity of survival 

and reproductive strategies, and why some strategies are utilized over others. In general, 

individuals make trade-offs between current reproductive effort and survival to achieve future 

reproductive gains (Krebs and Davies 1983). When adult future life expectancy is low, 

individuals will generally reproduce earlier and produce a greater number of offspring earlier in 

their lifetime (Stearns 1976). As the probability of future survival decreases, so does the number 

of potential reproductive events an individual may have in their lifetime. As individual survival is 

reduced, the window of time in which reproduction can occur shrinks. Therefore, to raise net 

reproductive fitness it is advantageous for individuals to invest more in reproductive efforts, thus 

reproducing earlier and with increased clutch sizes, but at a cost of decreased life expectancy. 

Therefore, it is hypothesized that in an unfavorable environment, an environment that decreases 



2 

 

an individual’s probability of survival, individuals will increase reproductive efforts in order to 

raise net reproductive fitness. 

 

Metals Contamination and Freshwater Invertebrates 

Although Physa typically display a moderately high tolerance to acute anthropogenic 

contaminants and pollutants (Goodnight 1973), studies have also shown many sub-lethal effects 

due to anthropogenic contaminant exposure in freshwater macroinvertebrates (Herricks & 

Buikema 1977, Kunce 2018). Studies have shown that a few heavy metals, for example, have a 

tendency to bioaccumulate in the soft body tissue of gastropods (Zadory 1984), which in turn can 

catalyze other physiological complications, such as inhibition of movement and growth (Lefcort 

et al 2013, Wadaan 2007). Heavy metals may also provide neurological challenges, as they have 

been shown to interfere with memory formation and kairomone reception in several freshwater 

invertebrate species (Byzitter et al 2012, Lefcort et al 2013). In addition to physical 

complications, heavy metals present behavioral difficulties as well. Inhibited kairomone reception 

due to heavy metal exposure has, for example, been linked to a decrease in predator avoidance 

responses and responses to conspecific odors in Physa and Lymnaea snails (Lefcort et al 2013). 

 

Physa Reproduction 

Although, the physical and behavioral responses of freshwater invertebrates, particularly 

Physa spp., have been studied in regards to heavy metal contamination, effects on life history and 

reproduction among freshwater macroinvertebrates have remained under-examined. The 

reproductive characteristics of the study species, Physa acuta, make them an ideal 
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model system in regards to life history decisions. Physa acuta are a common freshwater 

gastropod found throughout much of the United States and the Grand Lake drainage. These snails 

are hermaphroditic and also have the ability to store sperm from a partner for long periods of 

time, in some cases up to sixty days or more (Wethington & Dillon 1991). These combined traits 

essentially allow the snails to reproduce whenever and in whatever environment they choose. 

 

Objectives and Hypotheses 

The objective of this study was to evaluate how P. acuta’s reproductive life history 

decisions were affected by exposure to sub-lethal concentrations of zinc and by the site's historic 

exposure to zinc.  Zinc, lead, and cadmium can regularly contaminate waterways and wetlands in 

close proximity to mining and agricultural operations and is abundant in portions of the Grand 

Lake region in northeastern Oklahoma. Because zinc, in particular, is present at high and 

frequently toxic concentrations in this region, it was chosen and used as the contaminant of 

interest for this study. Given that higher zinc concentrations lower future survival and decrease 

reproduction, I predicted the following responses:  

1. Length. Across sites, individual shell length would increase as historic zinc concentration 

increased across sites. Across zinc treatments, I expected individual length to increase as 

zinc treatments increase. 

2. Egg Masses and Egg Production. Across sites, I expected greater reproductive effort 

earlier in life as historic zinc concentration increased across sites. Reproductive effort is 

quantified in this study in terms of egg and egg mass production. I predicted that 

individuals would produce a higher proportion of their total eggs and egg masses earlier 

in their life as historic zinc concentration increased across sites. Across zinc treatments, I 

expected the same trend to occur. 
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3. Hatching Success. Across sites, I expected the hatching success of eggs to decrease as 

historic zinc concentration increased across sites. Across treatments, I expected hatching 

success of F1 offspring to decrease among all F1 individuals as F1 treatment concentration 

increased. 

4. Effect of Tolerance. While I expected all individuals to follow the predictions of life 

history theory, I also expected physical zinc tolerance to disrupt these predictions for 

individuals of very low zinc tolerance. I predicted that intolerant individuals originating 

from historically lower zinc concentrations than their treatment would be physically 

incapable to adhere to the predictions of life history theory due to the adverse effects of 

the zinc treatment itself. For intolerant individuals, I expected stunted growth, and 

consequently later reproductive maturity (Hickey 2019).
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CHAPTER II 
 

 

METHODS 

General Design 

I chose three sites of varying zinc concentrations within the Tar Creek Superfund site 

watershed: Rock Creek, Twin Bridges, and Tar Creek, henceforth referred to as the low zinc 

(LZ), medium zinc (MZ), and high zinc (HZ) sites respectively. I collected snails (F0) on July 25, 

2018 from each site, brought them back to the lab, and allowed them to reproduce in laboratory 

conditions in clean, dechlorinated water without the presence of zinc. I collected egg masses from 

the F0 snails and allowed them to hatch. F1 hatchlings emerged on approximately August 3, 2018. 

Ten days post-hatching, I exposed F1 individuals to one of five zinc treatments: 0, 125, 250, 375, 

or 500 μg/L of zinc. Eight replicates were created for each site-by-treatment cross, resulting in a 

total of 120 experimental units (Figure 1). Each experimental unit consisted of one individual 

snail housed in 300ml of water within a plastic deli cup. F1 water was changed twice per week, 

during which zinc treatments were reapplied and each snail received ~0.03g of Hikari brand algae 

wafers. F1 individuals remained exposed to their treatments throughout the remainder of the 

experiment. I terminated the study on December 14, 2018, approximately 19 weeks after F1 snails 

hatched. Thus, zinc treatments were administered for approximately 18 weeks.
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Mating 

On even weeks of the study, starting on week 4 until the termination of the study, each 

individual Physa was provided a mating opportunity. For each treatment snail, I counted and 

removed egg masses from the snail’s cup, and then added three marked conspecifics to the cup. 

Each introduced conspecific was of the same age and originated from the same site as the focal 

snail, but was not a treatment snail. Before introduction, conspecifics’ shells were painted with 

colored nail polish to distinguish them from focal individuals. I left the conspecific snails in the 

cups for two hours. I removed and disposed of any egg masses laid during the two-hour mating 

period, because I could not know which snail laid the eggs. 

 

Length and Egg Masses 

On odd weeks of the study, beginning week 3 until the termination of the study, I 

measured the aperture lengths of the snails using digital calipers. As soon as individuals reached 

reproductive age (~ 4 weeks), I counted the number of egg masses in an individual's cup. Three 

times per week, egg masses from each snail’s cup were counted, and then removed from the cup. 

Egg masses that were not used in the hatching success analysis (discussed below) were disposed 

of. 

 

Egg Counts and Hatching Success 

At the beginning of each week, I collected a sample of egg masses from each individual to be 

counted and used to measure hatching success. 24 hours prior to sampling, cups were cleared of 

any current egg masses to ensure that all masses collected for the sample were no more than 24 

hours apart in age. I placed each sampled egg mass under a dissecting counted the number of egg 

inside using a clicker. I then set aside the sampled egg masses for 10 days to allow them to hatch, 

and then counted successful hatchlings using a clicker. Since I was measuring hatching success, 
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all hatchlings found outside of the egg mass were counted as successful, even if they appeared to 

no longer be alive. 

 

Analyses 

Egg Mass Production 

I used egg mass production as a measure of reproductive decision making. I analyzed the 

weekly number of egg masses using negative binomial generalized mixed effects models 

(GLMMs) (Zuur et al. 2010). Models were dredged using the following model in order to ensure 

every possible model combination was present: 

 

Number of egg masses ~ Age + Age2 + Concentration + Site + Age:Concentration + Age:Site +  

Age2:Concentration + Age2:Site + Concentration:Site + Age:Concentration:Site + 

Age2:Concentration:Site + (1|ID)) 

 

Descriptions of model terms are displayed in Table 1. To compare these models, I used Akaike's 

Information Criterion (Burnham & Anderson 2002) with an adjustment for relatively small 

sample sizes (AICc) within the bblme package in RStudio to quantify the evidence for each of the 

alternative models from the data. The best supported model was used to make data predictions by 

utilizing the “predict” function in RStudio. Model predictions were created for expected number 

of egg masses to be produced each week across all weeks of the study in which individuals were 

reproductive (weeks 4-17). 

 

Egg Production 

Egg production measures were used as a measure of age-specific snail fertility. Egg 

counts taken within the same 24-hour period each week were used as a measure of weekly egg 
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production. I used the same methods as the egg mass analysis to make prediction models 

describing egg production. Model predictions were created to estimate the expected hatching 

success rate of each site-by-treatment combination across all weeks on the study in which 

individual egg counts were conducted (weeks 5-17).   

To determine whether the timing of egg production was shaped directly by zinc 

concentrations or indirectly by zinc effects on snail size, weekly egg count data was then 

analyzed by creating models that used treatment and size as explanatory variables. Since length 

measurements were taken biweekly, and egg count data was collected weekly, only egg count 

data that corresponded to the biweekly length data was used in this analysis. I created alternative 

models examining whether egg production was explained by snail length and zinc treatment. 

Analyses were done separately for the three sites using AIC. 

 

Hatching Success  

Hatching success data was analyzed as binomial data within generalized mixed effects 

models (GLMMs). I used the same methods as the egg mass analysis to create hatching success 

prediction models. Model predictions were created to predict the expected hatching success rate 

of each site-by-treatment combination across all weeks on the study in which individuals were 

reproductive (weeks 4-17). 

 

Age of First Reproduction and Survival 

First reproduction events and mortality events were analyzed by performing a survival 

analysis in RStudio using the survival package. To examine timing of reproductive events, I 

created survival models using a logistic distribution. To examine timing of reproductive events, I 

created survival models using a logistic distribution. To compare these models, I used the AIC 
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function within the bblme package in R Studio. To examine the timing of individual deaths over 

the course of the study, I created survival models using a Gaussian distribution.
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CHAPTER III 
 

 

RESULTS 

Length 

Across sites, average shell length over the course of the study did not differ drastically 

within each control group (Figure 2A). The most substantial increase in length occurred between 

weeks 4 and 8. Within the MZ and HZ sites (Figures 2C & 2D), shell length generally seemed to 

increase as concentration increased, however, differences between treatments did not seem to be 

consistent. Conversely, individuals from LZ displayed the opposite trend, with shell length 

decreasing as zinc concentration increased (Figure 2B). 

The best supported model had length depending on age, age squared, zinc concentration, 

site, concentration pairwise interacting with age, age squared, and site, age and site interacting, 

and the three-way interaction of age, concentration, and site (Table 2). Based upon this best 

supported model, HZ individuals were predicted to have the longest shell length of the three sites, 

regardless of week (Figure 3D). Shell length predictions did not seem to differ between LZ and 

MZ sites (Figure 3B & 3C). The most substantial increase in length was predicted to occur 

between weeks 4 and 9. The model showed that as zinc concentration increased shell length 

increased in MZ and HZ sites and decreased in the LZ site. 

 

Weekly Egg Mass Production 

For each control group, egg mass production typically peaked at ~7-8 weeks after which 

point egg mass production began to steadily decline (Figure 4A). Individuals originating from HZ 
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generally produced more egg masses per week on average than MZ and LZ individuals across 

control groups. Among LZ individuals, egg mass production peaked between weeks 7-9 when 

individuals were exposed to lower zinc concentrations (0, 125, and 250μg/L zinc), while egg 

mass production peaked between weeks 10-12 during higher concentration zinc treatments. MZ 

and HZ individuals generally displayed higher egg mass production as zinc concentration 

increased. 

Based upon the AIC comparison of the egg mass production models, the model best 

supported by the data (Table 3) had egg mass number depending on age, age squared, zinc 

concentration, site, site pairwise interacting with age, age squared and concentration, age 

interacting with concentration, and the three-way interaction of age, concentration, and site. 

Based upon this best supported model, egg mass production predictions among control 

individuals indicated that those originating from HZ and LZ were predicted to peak in egg mass 

production at 9 weeks of age, approximately 3-4 weeks before individuals originating from the 

MZ site (Figure 5A). 

Among LZ individuals, snails were predicted to produce less egg masses per week as 

zinc concentration increased. Additionally, across all treatments among LZ individuals, peak egg 

mass production seemed to be delayed as zinc treatment increased. MZ individuals were 

predicted to peak in egg mass production between weeks 10 and 12. MZ individuals also 

displayed the opposite trend in egg mass production across treatments, as there was an increase in 

egg mass production as zinc concentration increased. HZ individuals also showed an increase in 

egg mass production as the zinc levels were increased. Among HZ snails, egg mass production 

peaked at approximately 10 weeks across all treatments. 
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Lifetime Egg Mass Production 

Upon analyzing total lifetime egg mass production using AICc, the model containing Site 

and Concentration received the most support from the data (Table 4). The model containing Site 

alone as an explanatory variable was also well supported. For the top model, site and 

concentration were both shown to have a positive effect on total egg production for LZ and HZ 

individuals (Table 5). Among MZ individuals, concentration was shown to have a positive effect, 

while site displayed a negative effect. The model containing site alone showed similar effects of 

site on total egg masses. 

 

Egg Production 

Overall, egg production decreased with age across all individuals. LZ individuals 

generally showed similar egg production across the 0, 375, and 500μg/L zinc treatments, while 

the 125 and 250μg/L zinc treatments showed significantly higher egg production around weeks 7-

9 (Figure 6B). Among HZ individuals, egg production seemed to increase as the treatment 

concentration increased (Figure 6D).  There was little difference in egg production overall across 

treatments among MZ individuals (Figure 6C). Egg production did not seem to differ among 

control individuals (Figure 6A). 

The model receiving the most support had egg production depending on age, age squared, 

zinc concentration, site, concentration pairwise interacting with age, age squared, and site, age 

and site interacting, and the three-way interaction of age, concentration, and site (Table 6). For 

LZ individuals, egg production decreased as zinc concentration increased (Figure 7B). However, 

for MZ and HZ individuals egg production increased as zinc concentration increased (Figure 7C 

& 7D). HZ individuals were predicted to produce the most eggs overall. 
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Analyses that used treatment and length as explanatory variables for egg production 

showed that for the LZ, egg production was best explained by snail length and zinc 

concentrations (Table 7). For MZ and HZ site, the best explanation also included the interaction 

between length and concentration. For all of the sites, the supported models showed a positive 

effect of zinc concentration and snail length on egg production (Table 8). However, a larger effect 

size was found for length in LZ individuals, while concentration was shown to have a larger 

positive effect size in MZ and HZ models. 

 

Hatching Success 

For each control group, there did not appear to be a significant difference in hatching 

success rate across the three sites (Figure 8A). Among LZ individuals, there did seem to be a 

significant difference in hatching success across treatment groups (Figure 8B). Hatching success 

remained constant and relatively high for individuals receiving the 375 and 500μg/L zinc 

treatments. However, individuals who received the 0, 125, and 250μg/L treatments saw a decline 

in offspring hatching success over the course of the study. 

 The full model received the most support from the data (Table 9). Control individuals 

from HZ and LZ were both predicted to show a decline in hatching success throughout their 

lifetime, while MZ individuals’ hatching success was predicted to increase over time by ~20% 

(Figure 9A). 

LZ individuals displayed a positive trend in hatching success as zinc concentration 

increased (Figure 9B). This trend intensified with age. The opposite trends were displayed among 

HZ individuals, as percent hatching success was shown to decrease as zinc concentration 

increased (Figure 9D). MZ individuals displayed some fluctuation in hatching success over time. 
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Among MZ individuals, hatching success of offspring was predicted to increased towards the end 

of their life when individuals received a low zinc treatment, and a decreased hatching success 

when higher zinc treatments were received (Figure 9C). 

 

Age at First Reproduction and Survival 

Upon comparison of the first reproduction models, the full model, which contained a site-

by-concentration interaction, was best supported by the data (Table 10). 

 During control treatments, individuals from the HZ and MZ sites appeared to start 

reproduction earlier than LZ individuals (Figure 10A). Among LZ individuals, the time of first 

reproduction occurred earlier for individuals in lower concentration zinc treatments (Figure 10B). 

Additionally, lower concentration zinc treatments (0, 125, and 250μg/L zinc) obtained higher 

proportions of reproductive individuals, than higher zinc treatments, and achieved these higher 

proportions earlier in life. MZ individuals however showed the opposite trend. As zinc 

concentrations increased, individuals generally reproduced earlier and attained higher proportions 

of reproductive individuals (Figure 10C). HZ individuals generally completed their first 

reproductive event at approximately 5 weeks of age, regardless of treatment. The proportion of 

reproductive individuals increased at approximately the same rate across all treatment groups 

among HZ snails (Figure 10D). 

Over the course of the 18-week study, 37 deaths occurred which accounted for roughly 

~30% of the focal individuals (N=120). After performing a survival analysis on survival models, 

the null model was best supported by the data (Table 11).
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CHAPTER IV 
 

 

DISCUSSION 

Length 

The zinc treatment ultimately seemed to have an impact within sites, but not necessarily 

across sites. I predicted that individual shell length would increase as historic zinc concentration 

increased across sites with the logic that individuals from those sites would be locally adapted for 

a quicker lifecycle to withstand the accumulated adverse effects of the zinc contamination. I 

found this prediction to be unsupported by the data. Average length did not seem to differ much 

across control groups (Figure 2A). Model predictions also showed no difference between LZ and 

HZ control individuals in regards to average weekly shell length (Figure 3A).  

Across zinc treatments, I expected individual length to increase as zinc treatments 

increased. This prediction only seemed to be supported within the HZ site, since average shell for 

these individuals seemed to increase as zinc concentration increased (Figure 2D). However, this 

trend did not appear in MZ and LZ sites (Figure 2B & 2C), likely due to the ill physical effects of 

the zinc treatments, such as reduced growth rate (Wadaan 2007). LZ and MZ individuals’ have 

been exposed to a lower historic zinc exposure in comparison to HZ individuals, likely resulting 

in a lower zinc tolerance among individuals of these sites (Hickey 2019). This low zinc tolerance 

may explain the exaggerated difference in individual length across LZ zinc treatments in 

comparison to MZ individuals, since LZ individuals historically have the least zinc exposure of 

the three sites. 
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Zinc treatment did not seem to have an adverse effect on average length among HZ 

individuals, since average weekly shell length increased as zinc treatment increased among HZ 

individuals. This trend persisted in the length model predictions for HZ individuals as well as MZ 

individuals, though was more exaggerated in the HZ site (Figure 3C & 3D). This lack of zinc 

aversion among HZ individuals may be attributed to the site's high historic zinc exposure, and 

consequent high tolerance of zinc (Hickey 2019). High historic zinc exposure within the Tar 

Creek watershed may have prompted individuals to make necessary life history decisions in these 

unfavorable environments to increase survival (Krebs and Davies 1983), such as increasing 

investment in growth, rather than reproduction to increase current fitness (Reznick 1983). 

Furthermore, in some studies, tolerant individuals in fact fair better in a moderately contaminated 

environment, rather than a completely clean environment due to the unnecessary energy 

expenditure of regulatory or excretion mechanisms operating in a clean environment (Hamilton et 

al. 2017, Hickey 2019). 

 

Egg Masses and Egg Production 

Overall, reproductive timing across and within sites did not seem to adhere to life history 

predictions. Across sites, I expected greater reproductive effort earlier in life in individuals from 

sites with greater historic zinc concentrations. This hypothesis did not appear to be supported. 

Across all sites’ control groups, the timing of peak egg mass and egg production did not seem to 

differ greatly (Figure 4A & 6A). However, model predictions did suggest that MZ individuals 

would peak in egg mass production approximately 3 weeks later than individuals form the LZ and 

HZ sites (Figure 5A).  
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I also predicted that across zinc treatments, greater reproductive effort would occur 

earlier in an individual’s life as zinc concentration increased. This hypothesis also seemed 

unsupported. Interestingly, LZ individuals seemed to show the reverse of this prediction, as peak 

egg mass and egg production seemed to become increasingly delayed as zinc treatment increased 

(Figure 4B and 6B). This is likely attributed to a delay in reproductive maturity due to slowed 

growth instigated by exposure to the zinc treatments (Wadaan 2007). These results suggest that 

among LZ individuals, zinc treatment had an indirect, rather than direct effect on the timing of 

egg production via a physical delay in reproductive maturity. This delay in maturity seemed to be 

absent in the MZ and HZ sites, which is likely due an increased zinc tolerance among individuals 

from these sites (Hickey 2019). 

The age at first reproduction analysis most clearly showed how zinc tolerance and life 

history decisions within individual sites affected the timing of reproduction within these groups. 

MZ individuals seemed to match life history predictions in regards to the timing of reproduction 

(Figure 10C). As zinc treatment increased, MZ individuals reproduced earlier in their lifetime. 

Since zinc has been shown to have a negative impact on survival rate (Hickey 2019), individual 

survival probability likely decreased as zinc treatment increased. Following the assumptions of 

life history theory, as adult survival decreases, individuals reproduce earlier (Stearns 1976). 

Although MZ individuals seemed to follow these predictions, LZ and HZ individuals did not. LZ 

individuals seemed to show the opposite trend; as zinc treatment increased across this site, 

reproduction was increasingly delayed (Figure 10B). This is likely due the low zinc tolerance of 

individuals from this site (Hickey 2019). Individuals were likely unable to follow these 

assumptions due to the direct adverse physical effects of the zinc treatment, most notably a delay 

in growth (Figure 3B), and consequently, a delay in reproductive maturity. Conversely, HZ 
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individuals did not differ between treatments in regards to timing of reproduction (Figure 10D). 

Because HZ individuals have a high zinc tolerance, the concentrations of zinc treatments used in 

this study presumably did not cause HZ individuals enough stress to produce a difference in 

survival rates across treatment groups. 

Although the timing of reproductive events over an individual’s lifetime did not differ 

greatly across and within sites, the quantity of offspring produced did seem to be affected by the 

zinc treatment. The number of egg masses and eggs that were produced varied across zinc 

treatment groups within each site. This could be an indication of the utilization of different life 

history strategies regarding the optimal number of offspring to produce in different environmental 

conditions. LZ individuals were predicted to reproduce more overall as zinc concentration 

decreased (Figure 5B & 7B). This trend in offspring quantity among LZ individuals seemed to 

coincide with David Lack’s clutch size principle (Lack 1954), which suggests that parents will 

produce as many offspring as the parent environment will allow them to produce. If zinc 

treatment has a negative effect on the health and fitness of LZ individuals, these high zinc 

environments would limit the amount of offspring that parent snails are able to produce. 

However, MZ and HZ snails seemed to exhibit the opposite trend, since treatment seemed to have 

a positive effect on reproductive efforts. If the snails from these sites are indeed more tolerant of 

zinc, these high zinc environments may not limit, or may at least lessen the limitations, on the 

amount of offspring the parent snails are able to produce. 

 

Hatching Success 

Across sites, I predicted that the hatching success of F1 offspring would decrease as 

historic zinc concentration increased across sites. However, there did not seem to be a noticeable 
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difference in offspring hatching success across control groups. Hatching success data seemed to 

be relatively unstable over the course of the 14-week period (Figure 8). This instability may be 

attributed to a low sample size and potential for human error throughout this particular data 

collection. Additionally, egg masses with fewer eggs yielded disproportionately more stochastic 

results, due to the binomial nature of the data. This stochasticity may have also played a role in 

the instability of the data, especially data collected towards the end of the study, when individuals 

were laying less eggs overall. 

In addition, I also predicted that hatching success would decrease as treatment zinc 

concentration increased. Among MZ and HZ sites, there did not appear to be a clear trend in 

hatching success of offspring related to the zinc treatment (Figure 8C & 8D). However, upon 

examination of the top statistical model, zinc treatment seemed to have a positive effect on 

hatching success early in life, and a negative effect as individuals aged (Figure 9C & 9D). 

However, among LZ individuals, the zinc treatment interestingly seemed to positively affect 

offspring hatching success (Figure 9B). This result could be due to reduced egg production in 

higher zinc treatments among individuals form the LZ site. Alternatively, higher hatching success 

from higher zinc treatment groups could indicate a reproductive decision to produce higher 

quality offspring, rather than a higher quantity of offspring in an unfavorable environment (Parker 

& Begon 1986, Fischer et al. 2011, Taborsky 2006). Parker and Begon (1986) suggested that if 

mothers can anticipate their offspring’s future environment, they can adjust their offspring 

investment accordingly. In an unfavorable environment, larger offspring are typically associated 

with higher survival rates (Taborsky 2006). However, larger, higher quality, offspring often mean 

fewer offspring (Parker & Begon 1986). LZ individuals may have altered their reproductive 

decisions regarding the quality of their offspring due to the quality of their current environment. 
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Alternatively, healthier, or more tolerant, LZ individuals may have been disproportionately alive 

towards the end of the study. This could produce a disproportionately high survival rate of 

offspring, if heartier LZ individuals are likely to produce heartier offspring. Future studies might 

investigate the hatching success of egg masses exposed directly to zinc treatments to fully 

measure the effect of zinc on offspring survivability. 

 

Conclusions  

This study has provided insights into how heavy metals toxicity and the tolerance of 

toxicity may impact the life history decisions of aquatic fauna. Zinc treatments mainly appeared 

to show site-specific effects on Physa growth and reproduction. That is, sites displayed a 

relatively unique trends regarding growth and reproduction in response to zinc. Maturity and 

timing of peak reproductive activity seemed to be increasingly delayed in LZ individuals as zinc 

treatment increased. Quantitatively, LZ individuals grew larger and produced more offspring 

overall as zinc treatment decreased. Alternatively, HZ and MZ individuals showed no delay in 

maturity or timing of peak reproductive activity when exposed to the zinc treatments. 

Additionally, these MZ and HZ individuals grew larger and produced more offspring overall as 

zinc concentration increased. These site-specific differences are likely attributed to site-specific 

zinc tolerances. However, other possible site-specific factors may have played a role in the 

development of different life history patterns, such as the type of body of water (i.e. a flowing 

stream or stagnant lake) or the amount of predation risk in the area. Additionally, individuals with 

tolerance to high zinc concentrations may also have lower tolerance to low zinc concentrations 

(Hamilton et al. 2017). Utilizing a wider range of concentrations and environmental factors to 
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measure life history and toxicity responses is necessary in order to more fully grasp the 

implications of these responses. 

Knowing how different environmental changes and resilience can affect life history 

decision making within and across geographical locations can give us a more complete 

perspective into population dynamics and ecological change. Although snails within the Grand 

Lake watershed are subjected to physiological stressors (Hickey 2019), this study has provided 

evidence to support that life histories of individuals from these sites are also altered by chronic 

exposure to heavy metals.  However, due to the opposing effects of zinc exposure and zinc 

tolerance, these changes in life history may be complex. For individuals with low tolerance of 

zinc, the presence of a high concentration of zinc may physically affect the snail to such a degree 

that they are unable to increase reproductive effort. At the other end of the spectrum, an 

individual with high zinc tolerance might not experience much stress from elevated zinc levels, 

and would thus have no reason to alter their reproductive decision making. Only when the 

negative effects of zinc exposure and the positive effects of zinc tolerance reach a rough 

equilibrium does it seem that life history predictions fully take effect. Awareness of these 

opposing forces and their effects on ecological behavior have the potential to aid in the 

predictability of ecological and evolutionary change within and across populations.
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APPENDICIES 

 

Table 1. Model terms and descriptions. 

Model Term 

 

Variable Type Description 

Age Independent Age of focal snail (weeks) 

Age2 Independent Age squared 

Concentration Independent Concentration of zinc 

treatment 

Site Independent Collection site for F0 snails 

ID Random Effect Unique identification of 

individual focal snails  

Length Dependent Total shell length, 

measured bi-weekly 

Number of Egg Masses Dependent Number of egg masses 

produced per individual, 

measured weekly 

Number of Eggs Dependent Number of eggs produced 

within a single egg mass, 

measured weekly 

Hatching Success Dependent Successful hatchlings/eggs 

counted within an egg 

mass, measured weekly 
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Table 2. Alternative models for snail length. All possible model combinations were compared. 

Models containing AICc scores of lower than 7.0, the full model, and null model are displayed. 

Model AICc df 

 
Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Age2:Concentration + Concentration:Site +  

Age:Concentration:Site 

0.0 16 

Age + Age2 + Concentration + Site + Age:Concentration Age2:Concentration + 
Age2:Site + Concentration:Site + Age2:Concentration:Site 

2.5 16 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Age2:Concentration + Concentration:Site 
2.8 14 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Age2:Concentration + Age2:Site + Concentration:Site + Age2:Concentration:Site 
3.0 18 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Age2:Concentration + Age2:Site + Concentration:Site + Age:Concentration:Site 
3.2 18 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Age2:Concentration + Age2:Site + Concentration:Site + Age:Concentration:Site + 

Age2:Concentration:Site (Full model) 

5.2 20 

Age + Age2 + Concentration + Site + Age:Concentration + Age2:Concentration + 

Age2:Site + Concentration:Site 
5.5 14 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Age2:Concentration + Age2:Site + Concentration:Site 
6.0 16 

Null 1135.2 3 
 

Table 3. Alternative models for weekly egg mass production All possible model combinations 

were compared. Models containing AICc scores of lower than 7.0, the full model, and null 
model are displayed. 

Model 

 
AICc df 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + Age2:Site + 

Concentration:Site + Age:Concentration:Site 
0.0 17 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site  + 

Age2:Concentration + Age2:Site + Concentration:Site + Age:Concentration:Site + 

Age2:Concentration:Site (Full model) 

0.2 20 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + Age2:Site + 

Concentration:Site + Age:Concentration:Site 
0.7 18 

Age + Concentration + Site + Age:Concentration + Age:Site + Concentration:Site 

+ Age:Concentration:Site 
3.0 15 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Concentration:Site + Age:Concentration:Site 
4.0 16 

Null 462.1 3 
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Table 4. Alternative models describing total lifetime egg mass production. All models are shown. 

Model 

 
AICc df 

Site+Concentration 0.0 5 

Site 0.7 4 

Site*Concentration (Full) 1.6 7 

Concentration 8.4 3 

Null 9.2 2 

 

Table 5. Lifetime egg production top model summary. Site effects are relative to the LZ site. 

Thus, if zinc concentration was 0, expected egg production would be 45.9 and 67.3 for the MZ 
and HZ sites respectively. 

Variables 

 

Estimate Std. Error 

Site (LZ) (Intercept) 49.4 4.4 

Site (MZ) -3.5 6.3 

Site (HZ) 17.9 6.3 

Concentration 4.4 2.5 
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Table 6. Alternative models for egg production. All possible model combinations were compared. 

Models containing AICc scores of lower than 7.0, the full model, and null model are displayed. 

Model 

 
AICc df 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site +  

Age2:Concentration + Concentration:Site + Age:Concentration:Site 
0.0 16 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site + 

Concentration:Site + Age:Concentration:Site 
1.6 15 

Age + Age2 + Concentration + Site + Age:Concentration + Age2:Concentration 

+ Age2:Site + Concentration:Site + Age2:Concentration:Site 
2.5 16 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site  + 

Age2:Concentration + Age2:Site + Concentration:Site + 

Age:Concentration:Site 

3.2 18 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site  + 
Age2:Concentration + Age2:Site + Concentration:Site + 

Age2:Concentration:Site 

3.7 18 

Age + Age2 + Concentration + Site + Age2:Concentration + Age2:Site + 

Concentration:Site + Age2:Concentration:Site 
4.1 15 

Age + Age2 + Concentration + Site + + Age:Concentration + Age:Site + 

Age2:Site + Concentration:Site + Age:Concentration:Site 
4.8 17 

Age + Age2 + Concentration + Site + Age:Concentration + Age2:Concentration 

+ Age2:Site + Concentration:Site + Age2:Concentration:Site 
5.4 17 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site  + 

Age2:Concentration + Age2:Site + Concentration:Site + 

Age:Concentration:Site + Age2:Concentration:Site (Full model) 

7.0 20 

Null 174.5 3 

 

Table 7. Models describing effects of size and treatment concentration on egg production. Each 
site was analyzed separately. All models are shown. 

 LZ MZ HZ 

Model 

 
AICc df AICc df AICc df 

Null 30.0 3 28.4 3 13.0 3 

Concentration 27.3 4 25.8 4 4.1 4 

Length 1.6 4 1.8 4 8.6 4 

Concentration+Length 0.0 5 0.5 5 1.3 5 

Concentration*Length 

(Full model) 

0.4 6 0.0 6 0.0 6 
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Table 8. Summaries of the size and zinc treatment effects on egg production according to the top 

model. Bolded values indicate y-intercept value. 

 LZ MZ HZ 

Variable 

 

Estimate Std. 

Error 

Estimate Std. 

Error 

Estimate Std. 

Error 

Concentration 1.0 2.3 7.5 8.2 20.1 14.5 

Length 4.7 0.8 4.5 0.9 2.3 1.3 

Concentration+Length -19.9 7.1 -19.9 8.5 5.5 14.3 

Concentration*Length - - -0.9 0.9 -1.3 1.4 

 

Table 9. Alternative models describing hatching success rates. All possible model combinations 

were compared. Models containing AICc scores of lower than 7.0, the full model, and null 
model are displayed. 

Model 

 
AICc df 

Age + Age2 + Concentration + Site + Age:Concentration + Age:Site  +  

Age2:Concentration + Age2:Site + Concentration:Site +  

Age:Concentration:Site + Age2:Concentration:Site (Full model) 

0.0 19 

Null 1127.0 5 

 

Table 10. AIC scores of models describing age of first reproduction. All models are shown. 

Model 

 
AIC df 

Site:Concentration (Full model) 0.0 7 

Site 9.6 4 

Site+Concentration 11.6 5 

Null 16.9 2 

Concentration 18.8 3 

 

Table 11. AIC scores of mortality models. All models are shown. 

Model AIC df 

Null 0.0 2 

Concentration 2.0 3 

Site 3.7 4 

Site+Concentration 5.7 5 

Site:Concentration (Full model) 9.0 7 
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Figure 1. Experimental Design. 

 

 

Figure 2. Average shell length (aperture to spire) of experimental individuals. Error bars indicate 

standard error. 
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Figure 3. Weekly shell length as predicted from the best supported model. 

 

 
Figure 4.  Average number of egg masses produced per week. Error bars indicate standard error. 
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Figure 5. Predicted number of egg masses produced per week. 

 

 
Figure 6. Number of eggs produced over a 24-hour time span each week. Error bars indicate 

standard error. 
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Figure 7. Predicted number of eggs to be produced within 24-hour time span by age (weeks). 

 

 

 
Figure 8. Average hatching success rates of F1 offspring. Error bars indicate standard error. 
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Figure 9. Predicted hatching success rates of offspring throughout a parental reproductive 

lifetime. 

 

 
Figure 10. Proportion of reproductive F1 individuals throughout the course of the study. 
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