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Major Field: VETERINARY BIOMEDICAL SCIENCES 
 
Abstract: Pregnancy Toxemia is a common peri-parturient disease of negative energy 
balance seen in sheep and goats in the last trimester of pregnancy. Although several 
studies have evaluated outcomes for dams with pregnancy toxemia, there is a gap in 
knowledge for its effects on the lambs and kids after parturition. The aim of this study 
was to characterize the short- and long-term morbidity and mortality of kids born to 
pregnancy toxemia does. A secondary aim was to evaluate common biochemical and 
hematologic parameters to find a difference between perinatal adaptation in kids from 
pregnancy toxemia dams (PT) and control kids (CON) from healthy dams. Serial 
measurements of blood L-lactate, glucose, beta-hydroxybutyrate, arterial blood gases, 
hematocrit, total protein, non-esterified fatty acids, and body weight were compared 
across groups over the first 72 hours of life. Long-term follow up was performed at 3 
months. PT kids had a higher short- and long-term mortality compared to CON kids. PT 
kids were more likely to have a difficult birth, and more likely to require tube feeding due 
to abnormal nursing behavior. PT kids were much more acidemic and lactatemic at birth, 
and were less able to maintain their blood glucose compared to CON kids. PT kids were 
more likely to lose weight in the first 72 hours of life and this was associated with an 
increased risk of non-survival at 3 months. Overall PT kids showed a decreased ability to 
ventilate, mobilize energy substrates and adequately perfuse tissues in the peri-natal 
period which may contribute to their overall weakness and increased mortality. 
Clinically, these kids would benefit from prolonged oxygen supplementation and need to 
be monitored for weight gain and milk intake in the first few days of life. Weight loss in 
the first few days could be a useful predictor of future poor performance.  
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CHAPTER I 
 

 

INTRODUCTION 

 

Pregnancy toxemia in sheep and goats 

Pregnancy toxemia (PT) represents one of the most important metabolic diseases 

affecting all sheep and goat populations, whether they are meat, dairy, or fiber breeds. PT 

typically occurs in the last 50 days of gestation, with highest incidence within the 14 days prior to 

parturition, when fetal growth rate (and thus energy demand) is at its peak. PT is most commonly 

seen in multiparous does/ewes carrying multiple fetuses1. With the increasing amount of 

abdominal space being occupied by the gravid uterus (and fat; if obese), the rumen fill becomes 

restricted and overall feed intake is significantly reduced. Consequently, when does/ewes cannot 

consume enough feed to meet the demands of fetal growth and their own homeostasis they are put 

into a state of negative energy balance. As a response, energy will be derived through rapid 

mobilization of the dam’s fat stores, increasing the level of glycerol and non-esterified fatty acid 

(NEFA) in the circulation 2. Rapid fat mobilization may overwhelm the capacity of the liver 

resulting in hepatic lipidosis. Concurrent depletion of liver glycogen stores eventually results in 

formation of ketone bodies: beta-hydroxybutyrate (BHB), acetoacetate, and acetone, which 

accumulates to a pathologic level, leading to PT (summarized in Figure 1). 
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Figure 1: Metabolic pathways involved in energy metabolism when there is an adequate (green) or inadequate (red) 
supply of glucose or glucose precursors. TCA: tricarboxylic acid cycle (Krebs cycle) 

 

In addition, in the last 2 to 3 weeks of gestation, progesterone level is high, causing 

immune suppression and a periparturient rise in internal parasites, particularly Haemonchus 

contortus and coccidia oocysts3 as well as exacerbation of other common diseases such as 

pneumonia. These further increase energy requirements of the doe/ewe, which contributes to PT, 

and often lead to severe debilitation, premature labor, or even death of the dam and/or fetuses if 

not recognized and addressed promptly. Clinically, offspring of these does/ewes appear to be 

weak and unthrifty in the perinatal period. The prognosis is thought to be poor for these offspring. 

Although not much is known about the factors associated with this poor prognosis, it is suspected 

that the key difference may be in how they adapt to extra-uterine life. 
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Perinatal adaptation 

 At parturition several structural and physiological changes occur in fetal circulation to 

allow for adequate gas exchange and metabolism in the newborn goat kid. Failure of the neonate 

to adapt to the extra-uterine environment will result in an increased risk of failure of passive 

transfer of immunoglobulin from maternal colostrum, a higher likelihood of hypothermia and 

increased morbidity and mortality secondary to infectious diseases4. Dystocia and neonatal 

hypoxia are known to compromise such adaptations4, however, the role that PT and poor 

placental nutrient transport play during late gestation are unknown at this time.  

While in utero, the placenta is the major organ for exchange of both carbon dioxide (CO2) 

from the fetal circulation and oxygen (O2) from the maternal circulation. Oxygenated blood is 

carried in the umbilical vein to the fetal portal vein and shunted to the caudal vena cava through 

the ductus venosus. After being emptied into the right atrium of the fetal heart, about half of the 

blood is shunted through the foramen ovale into the left atrium where it is transported to the 

tissues to provide them oxygen and nutrients. Due to the relative hypoxic intra-uterine 

environment, the pulmonary vessels remain constricted. This increase in pulmonary vascular 

resistance contributes to further shunting of oxygenated blood away from the non-functional fetal 

lungs via the ductus arteriosus from the pulmonary artery. Two umbilical arteries carry venous 

blood from the fetal circulation to the placenta for exchange of waste products4. 

At the time of birth, when the umbilical cord ruptures hypoxia of the neonate triggers a 

gasping reflex. Mechanical ventilation encourages opening of collapsed alveoli and absorption of 

fluid across the respiratory epithelium. The opening of aveoli causes a decrease in pulmonary 

vascular resistance. Increased oxygen saturation of the blood in the pulmonary artery stimulates 

closure of the ductus arteriosus within 4-5 minutes of birth. Increased pressure within the left 

atrium will stimulate closure of the foramen ovale within 5-20 minutes. There is a mild, transient 
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metabolic and respiratory acidosis seen in healthy calves following rupture of the umbilical cord 

due to anaerobic glycolysis in the tissues and poor tissue perfusion5. Normal arterial blood gas 

values for newborn calves and foals can be seen in Table 1. 

 

Species Age pH pO2  (mmHg) pCO2 

(mmHg) 

HCO3 

(mmol/L) 

Bovine 6 1 hour 7.3 ± 0.05 58.43 ± 11.61 50.4 ± 5.27 23.52 ± 2.78 

Equine 7 0-1 hour 7.2-7.3 40-50 52-60 24-26 

Equine 7 Premature (1hr) 7.33 52 ± 4 48 ± 3 25 ± 1 

Equine 7 2 hours 7.37 ± 0.01 68 ± 10 49 ± 2 26 ± 2 

Table 1: Arterial blood gas in newborn calves and foals. Adapted from Smith4. All subjects were in lateral recumbency.  
Values expressed as mean ± standard deviation where available.  

 

Neonatal energy substrates 

 In utero, energy must be derived through placental transport. The placenta utilizes 50-

70% of the glucose and oxygen delivered to the uterus and transfers the remainder to the fetal 

tissues8. Placental transport efficiency of glucose to the fetus is influenced by placental size, 

number of placentomes, vascularization, and abundance of GLUT 1 and 3 transporters. These 

characteristics are mediated by both maternal and fetal genomic regulation8. The placenta also 

produces lactate for fetal energy use as well as gluconeogenic amino acids through 

transamination and deamination processes8. Although the enzymes for gluconeogenesis are 

present early in fetal development, the fetus will only produce its own glucose under extreme 

conditions such as maternal starvation9. 
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In the post-partum neonate, energy is derived by the metabolism of brown fat. Normal 

blood glucose concentrations in calves at birth are lower than juvenile reference values (80-120 

mg/dL), but rise to >100 mg/dL within the first 24 hours10. Newborn human infants also 

experience low blood glucose levels as they adapt to extra-uterine life, but rise and stabilize by 2-

3 hours post-partum9. In normal foals, baseline blood glucose values immediately post-partum 

were approximately half of the maternal blood glucose value, and continues to decline while the 

foal transitions to extra-uterine life, reaching a low around 2 hours of age11. Any delay in 

colostrum consumption, due to neonatal weakness or ill health of the dam, decreases the 

availability of energy substrates and can lead to potentially fatal hypoglycemia. The main sources 

of energy available to the neonate are glycogen, lactate, brown adipose fat, and proteins. 

 Neonatal production of glucose is achieved primarily by glycogenolysis in the liver and is 

under hormonal control. This process is stimulated by increases in catecholamines and glucagon, 

and decreases in insulin which occur during delivery12. There are limited stores of glycogen 

within the neonatal liver, however, and once exhausted the neonate must rely upon lactate, 

pyruvate, glycerols, and alanine for gluconeogenesis. The rate-limiting enzyme for 

gluconeogenesis is phosphoenolpyruvate carboxykinase (PEPCK) which has limited activity in 

the fetus but shows marked increases soon after birth possibly in response to a decrease in the 

insulin:glucagon ratio13. Neonates are also capable of converting lactate into glucose rather 

efficiently through the hepatic Cori cycle. Lactate accounts for up to 30% of hepatic glucose 

production in the first day of life, whereas alanine and glycerol typically represent 5-10% each. 

Additionally, lactate can serve as an energy substrate for the brain and thus has a glucose-sparing 

effect in the neonatal metabolism14. Although the neonate has a tremendous ability to produce its 

own glucose, this alone is not sufficient for energy production, particularly if nursing is delayed.  

 The second major energy source for neonates is brown adipose tissue, comprised of 

triacylglycerols (TAGs). The fat stores are primarily formed during the latter third of gestation 
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and in a full-term human neonate correlates to about 15% of its birthweight9. Neonates have a 

temperature dependent increase in thyroid stimulating hormone immediately post-partum which 

causes a high rate of lipolysis15. The hydrolysis of TAGs results in an increase in the circulating 

NEFAs and glycerol. Glycerol can be used for gluconeogenesis and NEFAs are converted to 

ketone bodies via β-oxidation in the liver. Ketone bodies can cross the blood-brain barrier and act 

as an additional energy source for the brain. In human infants, ketone body formation and 

metabolism has been shown to be an active process16. The effective use of both lactate and ketone 

bodies as alternate energy sources could explain why some neonates have low blood glucose 

concentrations but do not display classical signs of hypoglycemia such as weakness, depression, 

and neurologic dysfunction. 

 Protein catabolism can also provide energy for the neonate. Studies of human infants 

have shown that protein metabolism is particularly important in extremely low birthweight 

infants17. This could be, in part, due to a lack of significant fat depots. Regardless of birthweight, 

proteins can provide substrates for gluconeogenesis and the turnover of the essential amino acid, 

leucine, has been shown to be much higher in infants when compared to adults 17.  

 

 



7 
 

CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

Fetal programming and maternal undernutrition 

Fetal programming relates to how the uterine environment impacts the development and 

physiology of  the fetus resulting in different outcomes, positive or negative, for offspring later in 

life9. In a study of ewes with experimentally induced PT, nutrition was steadily decreased 

between each trimester of gestation. Clinical signs associated with PT, as well as increased blood 

BHB levels, were seen in 16/28 (57%) ewes. In this study, they found a significantly higher lamb 

mortality from PT ewes than non-PT ewes and a negative correlation between blood BHB 

concentrations and lamb birth weight3. They hypothesized that the higher mortality of lambs due 

to PT was attributed to growth retardation in the uterus from poor nutrition of the dam18. While 

many studies have shown that clinical PT does can be hyper- or normoglycemic,1,19-21 others have 

shown that PT does tend to be hypoglycemic compared to controls.22,23 One study found that 

hyperglycemia may be a sign that the fetuses are no longer viable in advanced PT does.24 A study 

that looked at pregnant ewes with 1-4 fetuses saw that blood glucose decreased with increased 

fetal number and this relationship began before the study period of 5 weeks prior to lambing. This 

suggests that the alterations in maternal glucose appear earlier than clinical disease, and that by 

the time clinical PT is present the blood glucose is more variable depending on the degree of 

glucose dysregulation. In times of short-term maternal hypoglycemia, 
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the placenta will decrease its glucose utilization to maintain the same proportion of glucose 

transport to the fetal tissues25,26. However, when the maternal hypoglycemia is prolonged (>3 

weeks), the placenta will increase utilization of glucose for itself and proportionally decrease 

glucose transport to the fetal tissues27. Maternal hypoglycemia will also decrease placental 

production of lactate and the metabolism of amino acids for fetal gluconeogenesis8. A study that 

explored gene expression of the uterus and placenta in subclinical PT ewes found that there was a 

significant decrease in the expression of genes responsible for vascularization of the placenta and 

an increase in the genes that respond to placental hypoxia28. These hemodynamic changes affect 

the rate of transplacental nutrient exchange, decrease fetal growth, and impact health of the dam. 

Other studies have correlated poor nutrition to altered development of the heart29,30, lungs31, and 

the pancreas32. The dysfunction of these organs in newborns and fetuses can result in death, a 

failure to thrive, and an increased susceptibility to infections33.  

It has also been shown in animal and human models that the glucose-insulin homeostasis 

of the dam can have both short- and long-term effects on the energy metabolism of the neonate. 

Women with gestational diabetes typically experience hyperglycemia, with decreased insulin 

sensitivity and decreased pancreatic β cell function. As a result of the hyperglycemia, the infant is 

born with increased levels of insulin and a tendency towards hypoglycemia9. Even in well-

controlled diabetes, the infant is born with a lower glucose production and a higher insulin 

concentration compared with normal full-term infants. Interestingly, the insulin in these infants 

does not inhibit their rate of lipolysis9. Ewes/does with PT have similar alterations in their 

glucose-insulin homeostasis. Ewes with PT, or at high risk for PT, have been shown to have a 

relative insulin resistance, higher baseline lipolysis, and impaired insulin:glucagon ratios34. In 

another study, dairy goats with PT had a marked glucose intolerance after an oral glucose 

challenge when compared to high producing pregnant and non-pregnant does35. Neither study 

looked into the metabolism of the offspring born to these dams and whether their glucose 
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regulation was altered as seen for human infants. In cattle, nutrient restriction of the cow in late 

gestation has been shown to alter glucose tolerance and clearance of her offspring36. Likewise, 

lambs born to ewes fed 50% of energy and protein requirements during late gestation had 

permanently depressed insulin sensitivity. Although the ewes in this study did not have clinical 

PT, it exemplifies how pre-natal undernutrition, a significant component of PT pathogenesis, had 

a significant influence on metabolic processes of the offspring later in life37. 

 In human infants, birthweight and gestational age have also been associated with altered 

energy metabolism. Low birthweight infants have a decreased insulin sensitivity in their livers 

and an increased insulin sensitivity in their peripheral tissues38,39. In pre-term infants, the capacity 

for ketone body production is lower making them more dependent on glucose production for their 

energy needs, particularly as an energy source for the brain9. Gluconeogenesis occurs with the 

same efficiency in both full-term and pre-term human infants39. However, immature infants have 

lower stores of energy substrate and are at a higher risk for hypoglycemia. The dysregulation of 

glucose in this group of infants also makes them susceptible to hyperglycemia40.  

 

Neonatal Maladjustment Syndromes 

 Maladjustment to extra-uterine life can be brought about by hypoxic-ischemic injury 

during the peri-parturient period. In foals, the clinical syndrome of neonatal maladjustment or 

perinatal asphyxia can cause dysfunction of the nervous system, kidneys, gastrointestinal tract, or 

cardiopulmonary systems. Neonatal encephalopathy (NE) is the most commonly recognized 

consequence of neonatal maladjustment in foals4. NE occurs in animals and humans and is 

believed to be a result of hypoxemia of the cerebral tissues during any of the ante-partum, peri-

partum, or postnatal periods. Specific risk factors recognized for peri-natal hypoxemia in infants 

include many causes of decreased placental blood flow and nutrient exchange such as maternal 
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systemic hypotension, maternal cardiac arrest, clotting of the placental arteries, placental 

abruption, uterine rupture, and inflammation41. In horses, the condition is often related to either 

acute or chronic hypoxia and associated with dystocia, cesarean section, premature placental 

separation, or placentitis42 as well as conditions causing poor tissue oxygenation such as sepsis, 

prematurity, and dysmaturity43. There are no specific clinicopathologic abnormalities associated 

with neonatal maladjustment syndromes in foals, however a low pre-suckle blood glucose (<35-

30 mg/dL) has been shown to be associated with placental insufficiency and increased incidence 

of NE in foals44. Additionally, there may be acidosis with a pH <7.3 and bicarbonate <20 

mmol/L, and respiratory depression can cause hypoxemia (PaO2 < 60 mmHg) and hypercapnia 

(PaCO2  > 65 mmHg)45. 

Offspring of PT dams share several clinical signs and risk factors with foals and infants 

that have NE. PT offspring are commonly weak and dull, with poor nursing or udder seeking 

behavior. Dams with PT have an increased incidence of dystocia and other peri-partum disorders 

which creates an increased risk of perinatal hypoxia in PT offspring18. Furthermore, changes to 

the gene expression of the uteroplacental unit of subclinical PT ewes point to a chronic in utero 

hypoxia brought about by improper vascularization and decreased placental gas and nutrient 

exchange28. The only biochemical and hematologic study of PT offspring was performed in utero 

examining the oxygen-poor blood returning to the placenta from the fetus. They found that PT 

fetuses were significantly more acidemic, with lower red blood cell count, hemoglobin 

concentration, partial pressure of oxygen and oxygen saturation, and higher CO2 and lactate 

concentrations compared to fetuses from healthy does. Additionally, the PT fetuses had 

significantly lower glucose and higher BHB concentrations in their cord blood. They postulated 

that PT fetuses could have issues with hemoglobin oxygen transport as well as lactate 

metabolism20. To date, no study has reported on whether these specific hematologic and 

biochemical differences continue after birth.  
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Morbidity and mortality 

 Morbidity and mortality in PT offspring is scarcely reported in the literature. Barbagianni 

described an increase in perinatal mortality for PT lambs (37.5%) compared to control lambs 

(8.3%)18. However, this study only looked at mortality up to 2 days of age, and no further 

assessment of the lambs or therapeutic interventions were performed. The same study showed an 

increase in dystocia for PT ewes (50%) compared to controls (8.3%). When outcomes of PT were 

studied in dairy goats a high dam case fatality was found, and there was an increase in kid 

survival if induction of parturition or cesarean section was performed24. The maternal mortality 

described throughout the literature is variable but can be as high as 100%21,24 (See Table 2). 
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Author Group Dam Mortality Kid/lamb Mortality 

Barbaggiani, et al 2015  - 37.5% 

Duehlmeier, et al 2013  4/5 (80%) - 

Lima, et al 2012  19/22 (86%) - 

Lima, et al 2012a 
 All dams 

Hypoglycemia 
Hyperglycemia 

9/10 (90%)  
0/14 (0%) 

13/14 (93%)  
Lima, et al 2016b 
  

C-section 
Induced 

 
10/10 (100%) 
14/22 (64%) 

 
2/5 (4%) 

16/26 (61.5%) 
    
Tharwat, et al 2014  18/30 (60%) 20/74 (27%) 
Kotb, et al 2015  6/9 (67%) - 
Balikci, et al 2009c 

     
 

Subclinical 
Clinical 

 
0/11 (0%) 

4/15 (27%) 

 
- 
- 

Zamir, et al 2009d 

     
 

2000-2004 
2005-2008 

 
47/60 (78%) 
10/83 (12%) 

 
50% 
31% 

Simpson, et al 2019  17/56 (30.4%) 50/137 (36.5%) 
Wagner, 2017e   11/49 (22.4%) 61/132 (53.8%) 

Table 2 Summary of referenced literature reporting mortality of PT dams/offspring. Data expressed as proportions 
where available and percentages.  
aHypoglycemia group includes clinical PT does with blood glucose between 1.27-2.37 mmol/L and hyperglycemia 
group includes clinical PT does with blood glucose between 6.16 – 21 mmol/L. 
bGroups denote clinical PT dams that either had a cesarean section performed or were induced on presentation. 
cGroups were classified as subclinical and clinical based on blood BHB levels. 
dDams grouped by study years where dams from 2005-2008 received flunixin meglumine as part of treatment 
protocols and dams from 2000-2004 did not. 
eUnpublished data from a medical records review at Oklahoma State University Veterinary Teaching Hospital of all PT 
cases treated during 2012-2017.  

Objectives 

 The objectives of this study was to measure the morbidity and mortality of offspring 

associated with PT in both the short- and long-term. A secondary objective was to measure key 

biochemical parameters reflective of energy metabolism and neonatal adjustment to extra-uterine 

life (blood glucose, BHB, L-lactate, NEFA, arterial blood gases) within the first 3 days after birth 

to understand the effects PT might have on offspring. 
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CHAPTER III 
 

 

METHODOLOGY 

 

Animal Selection 

This study was performed using kids born to does with clinical PT (defined as a blood 

BHB >1.2 mg/dL) being treated at the Oklahoma State University Veterinary Teaching Hospital 

in Stillwater, Oklahoma. Control (CON) kids were provided by healthy, multiparous late pregnant 

does, defined as a blood BHB <1.2 mg/dL and normal physical exam findings. PT kids were 

enrolled from January 2018 through November 2018 and CON kids were enrolled October 2018 

through May 2019. Prior to parturition all PT does were medically managed as each clinician saw 

fit based on severity of clinical signs, ketonemia, and glycemic status. All parturition events, for 

PT and control does, occurred at the teaching hospital and were attended by at least one of the 

authors (LW). Parturition was characterized as a normal vaginal delivery (no assistance needed), 

assisted vaginal delivery (one of more kids required manual traction for delivery), or cesarean 

section by the attending clinician. The birthing was considered a dystocia if either an assisted 

vaginal delivery or cesarean section were required for the birth of that particular kid. All live kids 

were enrolled separately into the study at the time of parturition. Immediately thereafter, the 

dam’s health status (PT or CON), whether the dam was induced, days from expected due date (if 

known to be premature), delivery type, breed, gender, total number of kids delivered, number of 

kids born alive, stillborn, or with birth defects were all recorded for each parturition event.
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Sample Collection and Analysis 

At time 0 hours, approximately 3 ml of venous blood was collected from the jugular vein of each 

goat kid and placed into a tube containing no anticoagulant. The blood was allowed to clot, 

centrifuged at 3500 RPM for 5 minutes, and the serum (1 ml) separated off into a cryo-vial to be 

stored at -20°C until analysis for NEFAs could be performed by colorimetric enzymatic method 

using a commercially available assay (Cornell University Animal Health Diagnostic Center, 

Ithaca, NY). Arterial blood was collected at time 0 and 72 hours from the median artery while the 

kid was restrained in an upright position using a 1 ml reduced heparin arterial blood gas 

collection kit (Carefusion). Arterial blood was capped after collection and immediately analyzed 

using a commercially available handheld blood analyzer (VetScan i-STAT 1). Venous blood (2 

ml) was collected from the jugular vein at times 0, 12, 24, 48, and 72 hours and divided equally 

into 1 ml tubes containing heparin and potassium EDTA. Blood glucose and L-lactate were 

analyzed using point-of-care meters (Precision Xtra, Abbott Diabetes Care, and Lactate Pro, 

Arkray) at times 0, 12, 24, 48, and 72 hours. The point-of-care meters were used according to 

manufacturer instructions, and no specific calibrations were performed. The rate of change in 

lactate was calculated as the difference between the blood lactate at 0 hours and 12, 24, 48, or 72 

hours divided by the number of hours between measurements. Blood BHB was analyzed using a 

point-of-care meter previously validated for use in goats (Precision Xtra, Abbott Diabetes Care)46. 

Packed cell volume (PCV) and total protein (TP) was measured by filling a microhematocrit tube 

with blood from the EDTA tube and centrifuging at 9500 rpm for 7 minutes. The plasma TP was 

measured by optical refractometry. PCV and TP were performed at times 0, 24, 48, and 72 hours. 

Failure of passive transfer was defined as a TP less than 5.4 g/dL at 48 hours of age47. Weights 

for each kid were collected at times 0, 24,48, and 72 hours using an electronic scale. Daily gain 

(DG) was calculated as the difference between weights at time 0 and 24, 24 and 48, and 48 and 
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72 hours. The average daily gain (ADG) was calculated by dividing the difference between 

weights at time 0 and 72 hours by 3.  

Morbidity and Mortality 

Goat kids were monitored each hour for nursing activity. If colostrum was unable to be obtained 

from the dam, a commercial bovine immunoglobulin colostrum replacer (Calf’s Choice Total 

HiCal, Alta Genetics Inc.) was given by bottle or orogastric intubation at 10% body weight over 

the first 12 hours. At times 0 and 12 hours, it was recorded whether colostrum was readily nursed 

off the dam, tube fed, or bottle fed. The source of colostrum was recorded as either all from the 

dam, supplemented with colostrum replacer (mixed), or entirely provided by colostrum replacer. 

Nursing behavior was evaluated by one of the investigators (LW) and recorded at times 0 and 12 

hours. Abnormal nursing behavior was defined as the inability or lack of desire to latch onto and 

suckle either the dam’s teat or the nipple of a bottle after 30 minutes of assistance, subsequently 

requiring orogastric intubation for the administration of colostrum. Short-term morbidity and 

mortality were evaluated at times 0, 12, 24, 48, and 72 hours. Short-term morbidity was defined 

by three categories: normal (independently active and nursing well), moderate (weak/poor suckle, 

assistance needed to nurse the dam or a bottle), or severe (unable to stand, no suckle, tube feeding 

required, unable to regulate body temperature). If death occurred within the first 72 hours, 

mortality was recorded at the next measurement time point (0, 12, 24, 48, or 72 hours). Long-

term morbidity and mortality was obtained by follow up phone conversations with the owners at 

3 months of age. Long-term morbidity was defined as either successful fulfillment of the animal’s 

purpose (kept or sold as a breeding animal or as an exhibition animal) or early culling due to poor 

performance. 
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Statistical Methods  

Power calculations were performed with the following assumptions: alpha =0.05, 

ratio of approximately one control kid for each kid born to a PT doe; beta of 0.2 (power 

of 80%). The anticipated number of enrollees provides a greater than 90% probability of 

detecting significant differences of 0.1 in blood pH, base excess, and PaCO2 (assuming 

standard deviations within each population of 0.1 for each parameter). All data was  

analyzed using JMP Pro 14 (SAS Institute Inc., Cary, NC). All descriptive statistics were reported 

as mean ± SEM. All continuous variables were tested for normality using the Shapiro Wilk test. 

Normally distributed data were analyzed using a paired t test. Non-parametric continuous data 

were analyzed using the Wilcoxin Rank Sum Exact test. Categorical variables were analyzed 

using a Fisher’s Exact test. Relative risks were calculated where there were two levels of 

categorical data and were recorded with 95% confidence intervals. Comparisons were made for 

all variables between kids born to PT does and kids born to control does. Kaplan-Meier plots, 

with right-censored data, were used to show differences in survival between kids born to 

PT/Control does. The Wilcoxon test was applied to survival between groups in order to put 

emphasis on early survival times. All parameters were compared between the kids born to PT 

does surviving and non-surviving kids at 72 hours and 3 months using either a student’s t test or 

Wilcoxon Rank Sum Exact test as described earlier. Repeated measures were analyzed using a 

mixed model approach with time, doe PT status, and two and three way interactions  (time and 

PT status (time*PT), and time over time and doe PT status (time*time*PT)) as fixed effects and 

individual kid and dam as random effects. Values of p < 0.05 were considered significant with 

Holm-Bonferroni correction for multiple comparisons.   
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CHAPTER IV 
 

 

FINDINGS 

 

Dam BHB status and parturition factors 

 

A total of 16 kids were enrolled from 6 does with clinical PT, and 12 kids from 6 control 

(CON) does. All PT and CON does were multiparous. All does and kids were Boer, and there was 

no significant difference between the distribution of male (9/16 PT and 5/12 CON) and female 

(7/16 PT and 7/12 CON) kids between the two groups (p=0.7036). Parturition was induced with 

intramuscular injections of 10 mg of dexamethasone and 10 mg of dinoprost tromethamine in 4/6 

PT does and 0/6 CON does. PT does had a significantly higher BHB than CON does (4.44 ± 3.71 

and 0.6 ± 0.09 mmol/L, p < 0.0001). There was no significant difference in either total number of 

live or stillborn kids per parturition event, and none of the kids in the study had any congenital 

defects. The mean days before expected due date for the PT does was 8.8125 ± 1.89 days with a 

range of 2-21 days. PT does also had an increased incidence in assisted delivery and cesarean 

sections compared to CON does. (p = 0.152). The relative risk of dystocia given a doe had PT 

was 1.625 (95% CI [0.88,3.00]). 

Blood Lactate 

There was a significant interaction between doe PT status and time for serial 

measurements of blood L-lactate. L-lactate levels were significantly higher in PT kids compared 
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to CON kids at sampling times 0 and 12 hours (p = 0.018 and 0.0061, respectively). Mean ± SEM 

lactate levels for both groups of kids are presented in Figure 2. 

 

Figure 2: Mean blood L-lactate values time for PT versus CON groups. Each error bar represents 1 standard error from 
the mean. 
* denotes significant difference between groups at that time point (p<0.05) 

 

Blood Glucose 

In the mixed model, there was a significant interaction between doe PT status and time. 

There was a significant difference between PT and CON groups at sampling times 24 and 72 

hours (p = 0.0384 and 0.0063, respectively). Mean ± SEM for blood glucose are presented in 

Figure 3. 

* 

* 
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Figure 3: Mean blood glucose values graphed over time for PT versus CON kids. Each error bar represents 1 standard 
error from the mean 
* denotes significant difference between groups at that time point (p<0.05) 

Beta-hydroxybutyrate 

There was a significant interaction between time and PT status in the mixed model. The 

only time point where blood BHB differed between the two groups was at time 0 when PT was 

significantly greater than CON (0.93 ± 0.019 mmol/L and 0.008 ± 0.008 mmol/L, p = 0.0159) 

(Figure 4). 

* 

* 
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Figure 4: Mean blood BHB over time for PT versus CON. Each error bar is constructed using 1 standard error from the 
mean. 
* denotes significant difference between groups at that time point (p<0.05) 

Non-esterified fatty acids 

There was no significant difference between NEFA measurements in PT (0.318 ± 0.058 

mEq/L) and CON (0.328 ± 0.077 mEq/L) groups (p = 0.32).  

 Arterial Blood Gases 

There was a significant interaction between time and PT status for repeated 

measurements of arterial pH, base excess (BE), bicarbonate (HCO3), and total carbon dioxide 

(TCO2). The partial pressures of carbon dioxide (PaCO2) and partial pressure of oxygen (PaO2) 

decreased over time, but there was no significant effect of PT status for either variable. Oxygen 

* 
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saturation (SO2) increased over time in both groups, but the sO2 for PT kids was significantly 

lower across the study period (p = 0.0490).  

Mean pH for PT and CON kids were significantly different for both 0 and 72 hours. 

However, they differed in how they were related at each time. The PT group showed an increase 

in blood pH from time 0 and 72 hours. The CON group also showed an increase from time 0 and 

time 72 hours. However, the PT group was initially significantly more acidemic than the CON 

group immediately after birth but, by 72 hours of age, tended to be more alkaline than the CON 

kids (Figure 5). 

 

Figure 5: Blood pH at 0 and 72 hours for PT versus CON. 
* denotes significant difference between groups at that time point. 

Values for BE, HCO3, and TCO2 were all significantly decreased in PT vs CON kids at time 0. 

After 72 hours of age, all variables were significantly increased in PT as compared to CON 

* 
* 
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group. Sodium levels were significantly higher in CON compared to PT at time 0, but not 

significantly different at 72 hrs. All arterial blood gas and electrolyte values are presented in 

Table 3. 

 Time = 0 hrs Time = 72 hrs 

 PT CON p-value PT CON p-value 

pH 7.26 ± 0.019 7.34 ± 0.023 0.0027* 7.45 ± 0.008 7.42 ± 0.008 0.0456* 

Base Excess -5.8 ± 0.99 -1.8 ± 1.07 0.0114* 3 ± 1.11 -1.7 ± 1.03 0.0025* 

HCO3
- (mmol/L) 22 ± 0.77 24 ± 0.81 0.016* 27 ± 1.02 23 ± 1 0.0049* 

TCO2 (mmol/L) 23 ± 0.79 25 ± 0.8 0.024* 28 ± 1.03 24 ± 1.07 0.0060* 

Table 3: Arterial blood gas and values for PT and CON kids at times 0 and 72 hours. All values expressed as mean ± 
SEM. 
*p<0.05 

 

 

 

Figure 6 Mean sO2 over time for PT vs CON kids. Both groups trended up during the study period, however, PT kids had 
significantly lower values  in the mixed model. 
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Figure 7 Mean Partial pressures over time for pCO2 (dashed lines) and pO2 (solid lines) for PT kids (red) vs CON kids 
(blue). There was a significant but opposite effect of time for both of these variables, but PT status did not show a 
significant effect. 

 

Packed Cell Volume and Total Protein 

In the mixed models for PCV and TP, there was a three-way interaction of time*time*PT 

status. There was a significant maternal effect on PCV (p = 0.0492). PCV was significantly lower 

for PT vs CON kids at all time points it was measured (Figure 6). Total protein was also 

significantly lower for PT vs CON kids at 24 and 72 hours (p = 0.0005 and 0.0206, respectively) 

(Figure 7). 
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Figure 8: Mean packed cell volume over time for PT versus CON. Each error bar represents 1 standard error from the 
mean. 
* denotes significant difference between groups at that time point (p<0.05). 

* 

* * 

* 
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Figure 9: Mean total plasma protein over time for PT versus CON. Each error bar represents 1 standard error from the 
mean 
* denotes significant difference between groups at that time point (p<0.05). 

 

Weight and Average Daily Gain 

There was a significant interaction between time and PT status in the mixed model. There 

was no significant difference in weights at birth or 24 and 48 hours of age. By 72 hours of age, 

CON kids had a significantly higher mean weight compared to PT kids (3.95 ± 0.29 kg vs 2.98 ± 

0.31 kg, p = 0.0452). In addition, the average daily gain over the first 72 hours was significantly 

higher in CON kids compared to PT kids with PT actually having a net loss of weight over the 

first 72 hours (0.082 ± 0.05 kg and -0.12 ± 0.075 kg, respectively, p = 0.0196) (Figure 10). 

* 

* 
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Figure 10: Mean body weight (kgs) over time for PT versus CON. Each error bar represents one standard error from the 
mean. 
* denotes significant difference between groups at that time point (p<0.05). 

 

Short-term Morbidity and Mortality 

CON kids were 1.3 times more likely to survive to discharge than PT kids (95% CI = 

1.01,1.77). There was a significant difference in morbidity for the first 12 hours of age. 

Significantly more PT kids displayed abnormal nursing behavior and weakness shortly after birth 

compared to CON kids (p = 0.0377). PT kids were 1.45 (95% CI [1.05,2.02]) times more likely to 

not nurse soon after birth and 1.72 (95% CI [1.04,2.84]) times more likely to exhibit abnormal 

nursing behavior by 12 hours. More PT kids required tube feedings at 0 and 12 hours of age (p = 

0.0053 and 0.0006, respectively) and more CON kids were successfully nursing the dam on their 

* 
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own at 0 and 12 hours of age (p = 0.0073 and 0.0002). PT kids were 7.7 (95% CI [1.13,52.45] 

times more likely to need to be tube fed at birth and 2.8 (95% CI [1.39,5.65]) times more likely to 

need to be tube fed at 12 hours of age. CON kids were 2.92 (95% CI [1.23,6.93]) times more 

likely to nurse from the dam at birth and 3.5 (95% CI [1.53,8.01]) times more likely to nurse from 

the dam at 12 hours. There was no significant difference in the number of kids requiring bottle 

feeding at either 0 or 12 hours of age.  

The source for colostrum was significantly different between the PT and CON groups 

(p=0.0052). All of the CON kids received colostrum sourced solely from the dam. Of the PT kids, 

4/16 required colostrum sourced solely from replacer, and 3/16 received a mixture of the dam’s 

colostrum and replacer. This data is summarized in table 4. Kids that received only colostrum 

replacer were 3.9 (95% CI [1.38-11.23]) times more likely to be classified as failure of passive 

transfer (total protein < 5.4 g/dL47) than kids that received either mixed or dam’s colostrum alone. 

When this was analyzed amongst only the PT kids, there was no significant difference in FPT 

between kids who received colostrum replacer and those that received only the dam’s colostrum 

(p = 0.238).  

 
Colostrum 

Administration 
Colostrum Source 

 Dam Bottle Tube Dam Replacer Mixed 

PT 4/16 7/16 9/16 8/15 4/15 3/15 

CON 12/12 3/12 0/12 12/12 0/12 0/12 

Table 4: Summary of colostrum administration and source for PT and CON groups. Some kids required more than one 
method of administration. One PT kid died prior to administration of colostrum. 

When survivors and non-survivors were compared within the PT group, there were 

significantly more non-survivors with abnormal nursing behavior and weakness at 0 and 12 hours 

(p = 0.011 and 0.033, respectively). PT kids with normal nursing behavior were 5 (95% CI 



28 
 

[0.866,28.86]) times more likely to survive to discharge than those that were not exhibiting 

normal nursing behavior by 12 hours. The following variables were significantly higher in 

survivors: weight at birth (3.26 ±0.12 vs 2.46 ± 0.08, p <0.0001), blood pH at birth (7.28 ± 0.064 

vs 7.18 ± 0.0095, p = 0.0326), PCV at birth (37% ± 0.58 vs 30% ± 1.33, p = 0.0003), blood L-

lactate at 12 hours (5.2 ± 0.52 vs 1.9 ± 0.35  mmol/L, p = 0.00007) and blood glucose at 12 hours 

(117 ± 18.19 vs 32 ± 32 mg/dL, p = 0.0011). 

Long-term Morbidity and Mortality 

Long-term follow up was available for 12/12 CON kids and 11/16 PT kids. There was a 

significant difference in long-term survival between CON and PT groups at 3 months (p = 

0.0239) with the Kaplan Meier graph between CON and PT shown in figure 9. CON kids were 

2.2 (95% CI [1.152,4.20]) times more likely to survive to 3 months than PT kids. 

 

Figure 11: Kaplan-Meier survival graph for PT (red line) versus CON (blue line). Right censored data at 120 days.  
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When survivors were compared to non-survivors within the PT group, survivors were 

significantly closer to dam’s expected due date at time of birth compared to non-survivors (6.6 ± 

0.24 vs 16.33 ± 2.95 days, p = 0.216). Significantly fewer survivors required assistance during 

kidding compared to non-survivors (p = 0.0105). PT kids were 4 (95% CI [1.20,13.28]) times 

more likely to survive if they had unassisted birth than if they required manual traction or 

delivered by c-section. Additionally, survivors had a significantly higher ADG with a net weight 

gain of 0.16 ± 0.033 kg compared to the net weight loss of -0.003 ± 0.013 kg for non-survivors (p 

= 0.0476). 
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CHAPTER V 
 

 

CONCLUSIONS 

 

The findings of this study show there is an effect of PT on the short- and long-term 

morbidity and mortality in goat kids. PT affected not only the survival of the kids but also had 

significant effects on blood L-lactate, blood glucose regulation, and acid-base balance of kids in 

the first 72 hours of life.   

 In the peri-partum period, does with PT were more likely to require assistance during 

parturition than CON does. This corresponds to previous findings of increased incidence of 

dystocia in ewes with PT18.  PT kids in this study were more likely to exhibit abnormal nursing 

behavior and weakness than CON kids, and PT kids that were not nursing by 12 hours had an 

increased risk of non-survival. Similarly to PT kids in this study, calves that experience dystocia 

have been shown to be much more likely to be weak, recumbent, and have a poor suckle than 

calves from normal births48. Another study found that perinatal mortality (<12 hours) and general 

neonatal mortality (12 hours to 45 days) were greater in calves that experienced dystocia49. These 

calves were also shown to be at an increased risk of neonatal disease in the first 45 days of life49.   

 The increase in dystocia associated with PT could also help explain the differences seen 

in arterial blood gas values for this study. Dystocia is associated with prolonged hypoxia and 

acidosis which favors a continuation of right-to-left vascular shunts4. PT kids were significantly 

more acidemic than CON kids. All kids in this study were sampled within 1 hour of birth after 
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they were considered stable and breathing well on their own. They were maintained in sternal 

recumbency as it has been shown that lateral recumbency can reduce the PaO2 by as much as 30 

mmHg4. All kids were placed on supplemental oxygen immediately post-partum, this oxygen was 

removed for at least 5 minutes prior to sampling so as not to falsely increase PaO2 values50. 

Tharwart, et al20 found that PT kids were also significantly more acidemic in utero when 

comparing umbilical cord blood with fetuses in non-PT does. The degree of acidemia seen in this 

study was not as low as seen in the cord blood of PT kids (7.26 ± 0.019 vs 6.94 ± 0.29). This 

difference could reflect the introduction of alveolar ventilation and less hypoxic extra-uterine 

environment or a difference in sample types as the cord blood samples were oxygen-poor 

(venous-like) samples and the current study were arterial samples. However, the CON kids from 

the current study do not show the same disparity as the in utero control measurements performed 

by Tharwart, et al (7.34 ± 0.023 vs 7.35 ± 0.12). Another possibility for the difference is that the 

does in Tharwart, et al’s study were more severely affected by PT than the current study with 

likely more significant compromise of placental gas exchange and nutrient transport. The 

differences seen in BE, HCO3, and TCO2 were all consistent with the differences seen between 

CON and PT kids in the current study. At birth, the PT kids had significantly lower values for 

those parameters than CON kids, which characterizes a metabolic component to the relative 

acidosis of PT kids both pre- and post-partum. However, there is not a significant difference seen 

in the current study between PT and CON for PaCO2 and PaO2, as was seen in Tharwat et al’s 

study. L-lactate was significantly increased in PT kids in the current study and in the previous in 

utero study20. This strong ion is likely to contribute to the metabolic acidosis of PT kids. 

 Blood L-lactate concentrations are reflective of poor tissue perfusion and tissue 

oxygenation. It has been shown in foals that venous lactate is normally greater than the adult 

reference range at birth but decreases over the first 24-48 hours51. In the current study, both 

groups had an elevated mean blood L-lactate at birth and both groups showed a decrease in L-
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lactate over the first 48 hours. The PT kids had significantly higher blood L-lactate values up 

until 24 hours of age. This difference could reflect a poor oxygenation due to hypoventilation in 

PT kids versus CON kids or a decrease in lactate clearance by the kidney and liver. PT kids were 

more likely to be premature, which has been suggested to result in higher lactate concentrations in 

foals52, however that study only looked at sampling of lactate once, upon admittance to the 

hospital rather than serially from birth to 72 hours. In sick foals, a decrease in lactate in response 

to treatment, at 24 hours after hospitalization, correlated to increased survival51. Interestingly, in 

the current study, PT kid non-survivors had a lower blood L-lactate at 12 hours old when 

compared to survivors. This could possibly reflect over all depletion of glycogen and adipose 

tissue stores and an increased use of lactate as an energy substrate in non-surviving kids.  

 Blood glucose values were significantly lower in CON kids compared to PT kids at birth. 

The relative hyperglycemia in PT kids could reflect a transient insulin-resistance as a result of 

maternal glucose-insulin imbalance as seen with lambs born to ewes undernourished in late 

gestation37 and with human infants born to women with gestational diabetes40. Additionally, the 

increase in blood BHB levels in PT kids immediately post-partum could reflect an increase in the 

rate of lipolysis. Increased lipolysis would be expected to also increase NEFAs, but there was no 

significant difference in NEFAs between the two groups in the current study. In a study of 

maternal feed restriction in late gestation does, male kids born to undernourished dams actually 

had a decreased NEFA concentration compared to controls, suggesting they mobilized their body 

reserves less at birth53. The increase in BHB at birth may simply reflect the increased maternal 

BHB. As discussed earlier, foals and calves normally have a blood glucose that is lower than the 

juvenile reference range immediately post-partum. However, it appears that PT kids were not able 

to raise their blood glucose to the level of CON kids in the subsequent 72 hours. With the 

exception of time 0 samples, which were all pre-suckle, there was no standardization of when 

feeding occurred prior to sampling for blood glucose in the current study. This could explain why 



33 
 

there was such a large variation in blood glucose values collected amongst the kids in the PT 

group. Most PT kids were being bottle or tube fed for the first 12 hours to ensure adequate 

passive transfer of immunity. Most CON kids were nursing their dam vigorously and controlling 

for feeding would have possibly been detrimental to their health.  

 The respiratory system of PT kids at 72 hours of life does not appear to be as 

well adapted to extra-uterine life as it is with CON kids. The SO2 was significantly decreased in 

PT kids compared to CON kids pointing to a relative hypoxemia and likely hypoventilation. The 

only arterial blood gas value outside of reference intervals for the PT kids at 72 hours were the 

SO2 and PaO2. SO2 is a measure of the oxygen saturation of hemoglobin and PaO2 which reflects 

how efficiently oxygen can move from the lungs to the blood. The relationship between these two 

values is not linear, and the decline seen with the PT kids at 72 hours is predictable using the 

oxygen-hemoglobin dissociation curve where a PaO2 of 60 mmHg and SO2 of 90% represents the 

shoulder of the curve. This would suggest that the decrease in both values has to do with an 

inefficient transfer of oxygen from the alveoli to the blood. This could be from a structural or 

functional immaturity of the lung, surfactant deficiency, acute lung injury (respiratory distress 

syndrome), atelectasis of the lung, or altered pulmonary vascular reactivity. Most likely, this 

points to a relative immaturity in lung function between PT and CON kids or a tendency for PT 

kids to be recumbent and have more atelectic lung. A similar pattern of hypoxemia can occur 

with continued right-to-left shunting of blood, however we would expect to see cyanosis and 

marked dyspnea in such patients. The increases in BE, HCO3, and TCO2 compared to CON kids 

at 72 hours indicate that the relative hypercapnia of PT kids is of a chronic nature. This could 

explain why they had a significantly higher pH at 72 hours despite the fact that PT kids were 

significantly more acidemic at birth compared to CON kids. 

 The PCV of PT kids were significantly lower compared to CON kids throughout the 

study. Kids in both groups showed a decrease in PCV throughout the study period, which may be 
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attributable to blood loss for sampling purposes. This seems unlikely, as cumulative sample 

volume was approximately 13 ml from each kid. When presented as a percent of blood volume 

for the average weight of each group the amount of blood drawn at 72 hours represents <1% in 

each group (0.73% in the PT group and 0.55% in the CON group). This amount of blood loss is 

unlikely to cause an appreciable affect on the PCV. Furthermore, the difference between the two 

groups occurs prior to any blood samples being taken, and the two groups show a similar trend in 

their PCV values over time in figure 6. The dam had a significant statistical effect on PCV in the 

multiple measures model and it is likely that PT dams were simply more anemic than CON dams. 

The average PCV of the PT dams in this study, based on their medical records from admission, 

was 22.8% but there were inconsistent records on whether these measurements were falsely 

elevated based on hydration. There was no blood work performed on the CON dams to determine 

whether or not they were anemic at parturition. The pathologic link of PT and parasitism would 

support the claim that PT dams have a lower PCV3. This decrease in PCV likely contributed to 

hypoxia in PT kids by decreasing the oxygen carrying capacity in the blood, but hypoxia should 

result in polycythemia rather than anemia in the kids. PT might have a role in decreased 

production of red blood cells, and perhaps other cell lines are involved although this was not 

looked at in the current study or noted in previous literature. Decreased PCV in PT kids was 

associated with an increased risk of non-survival. 

 TP was also significantly lower in PT kids than CON kids after 24 hours. A previously 

published cut off for goat serum total protein via refractometry found that 5.4 g/dL correlated to a 

serum immunoglobulin level of 12 g/dL which is indicative of adequate passive transfer at 48 

hours of age47. Although there was no difference in the rate of failure of passive transfer between 

groups, PT kids did show a decrease in TP at 24 and 72 hours. Studies of passive transfer in 

calves have found that regardless of the cut-off for passive transfer, a higher total protein 

correlates with more positive health and performance outcomes later in life.54-56 In this study, kids 



35 
 

were either tube fed or bottle fed 10% of their body weight with the dam’s colostrum or 

colostrum replacer as to avoid failure of passive transfer. All of CON kids received colostrum 

from their dam, either by direct nursing or through bottle or tube feeding. Colostrum replacer was 

given when the dam failed to produce enough milk for her kids. Parity can affect the quality and 

quantity of colostrum made by the dam, however in this study all does were multiparous.57,58 It is 

likely that the lack of colostrum production is related to the PT status of the doe. PT has also been 

correlated to a decrease in milk and colostrum production by the dam.18,59 The PT kids in this 

study were more likely to receive colostrum replacer, with 3/15 receiving a mixture of colostrum 

replacer and the dam’s colostrum and 4/15 only receiving the replacer. There was no significant 

difference in FPT for PT kids receiving either colostrum replacer or the dam’s colostrum. One 

study showed that total protein measurements by refractometry did not accurately assess IgG 

levels in calves being fed either colostrum substitutes or replacers.60 PT kids were at an increased 

risk of abnormal nursing behavior and more frequently needed to be tube fed versus nursing a 

bottle or nursing off the dam. Had this intervention not been performed the failure of passive 

transfer rate would have likely been increased in PT kids versus CON kids. The lower plasma TP 

could reflect a lower efficiency of absorption of immunoglobulins due to acidemia and tube-

feeding. In calves, studies have shown that hypoxia, acidosis, and tube-feeding can have a 

variable but sometimes negative effect on timing and efficiency of absorption of 

immunoglobulins.61-63 A lack of colostrum production by PT dams increases the likelihood that 

PT kids needed colostrum replacer, which may not be as efficient a source of immunoglobulins as 

compared to natural colostrum. 

 In the current study, there was no significant difference between weights of PT and CON 

kids until 72 hours. This could be due to the fact that most of the CON does were carrying twins 

and triplets, and only one CON doe had a singleton. We would expect the birthweights to 

decrease with an increased number of kids per doe. PT kids were much more likely to lose weight 
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over the first 72 hours of life, and this was also seen to be associated with non-survival at 3 

months of age. In a study of late- term feed restriction in goats, kids born to undernourished dams 

had a smaller abdominal girth, body mass index, and density index when compared to control 

kids. Male kids had a smaller birthweight but no significant differences were seen for weight or 

morphometric measurements thereafter.53  

 Short- and long-term morbidity and mortality was significantly greater for PT kids 

compared to CON kids in the current study. Increased short-term morbidity was characterized by 

an increased risk of abnormal nursing behavior and weakness and an increased risk of needing to 

be tube-fed. Short-term non-survival was associated with lower birthweights, more severe 

acidemia at birth, lower PCV, and lower blood L-lactate and blood glucose levels at 12 hours of 

age. Premature kids were not at an increased risk of short-term mortality but were at an increased 

risk of non-survival to 3 months. Although there was a significant loss of follow up for PT kids 

(5/16), it was still shown that dystocia and a net weight loss in the first 72 hours were risk factors 

for non-survival to 3 months.  

 In summary, the current study has shown that PT creates several risk factors for unthrifty 

kids with an increase in difficult births, increased risk of abnormal nursing and weakness, and a 

decrease in cardiopulmonary efficiency. There may also be some effect on insulin-glucose 

regulation, warranting further investigation. The sample size in the current study was rather small. 

There was significant variation in the severity of disease in the PT does of the current study and 

there was no way to control for different treatments, such as induction of parturition or dextrose 

and insulin infusions, and their potential effects on these results. Despite these limitations, several 

important conclusions were seen. Overall, this study shows that the difference in PT kids 

compared to CON kids to be attributed to altered respiratory function and poor energy reserves 

and energy mobilization in the peri-partum period. Most abnormalities in blood L-lactate, blood 

glucose, and arterial blood gases were resolved by 48-72 hours, but PT kids remained inferior in 
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their ventilatory capabilities by 72 hours. Clinically, PT kids may benefit from prolonged oxygen 

supplementation, even if they do not show signs of dyspnea. Additionally, these kids require 

more rigorous monitoring and intervention for abnormal nursing behavior and weight loss via 

bottle or tube feedings. More research comparing PT kids and CON kids born as a result of 

dystocia should be performed to eliminate dystocia as a confounding variable.  
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