
IEEE FLOATING-POINT EXTENSION FOR MANAGING ERROR

USING RESIDUAL REGISTERS

By

ALEX UNDERWOOD

Bachelor of Science in Computer Engineering
Oklahoma State University

Stillwater, Oklahoma
2018

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 2019

IEEE FLOATING-POINT EXTENSION FOR MANAGING ERROR

USING RESIDUAL REGISTERS

Thesis Approved:

Dr. James E. Stine, Jr.

Thesis Adviser

Dr. Keith Teague

Dr. Weili Zhang

ii

ACKNOWLEDGMENTS

I would like to sincerely thanks my adviser Dr. James E. Stine, Jr., for the

tremendous amount of time and support he has given me during this research.

I would like to thank Dr. Keith Teague and Dr. Weili Zhang for serving as my

committee members and always being available for assistance when I needed it.

I would like to express my thanks and appreciation to my parents, Michael and

Deborah Underwood, for their love and support through all these years.

I would like to extend my sincere thanks to my brother, Tristan Underwood, who

has been there to help and encourage me throughout my entire academic journey.

Acknowledgments reflect the views of the author and are not endorsed by com-

mittee members or Oklahoma State University.

iii

Name: ALEX UNDERWOOD

Date of Degree: DECEMBER, 2019

Title of Study: IEEE FLOATING-POINT EXTENSION FOR MANAGING ER-
ROR USING RESIDUAL REGISTERS

Major Field: ELECTRICAL ENGINEERING

Abstract: This thesis discusses modifications to IEEE 754 floating-point units to
help researchers and scientists monitor and control errors in scientific applications
as well as provide faster method for extending precision compared to modern purely
software solutions. To accomplish this, support is added to the RISC-V simulation
environment through gem5 architecture simulator to give the ability to identify pos-
sible elements lost during rounding and experiment with extended precision. The
use of the SoftFloat arithmetic validation suite is utilized and added to gem5 for
better floating-point simulations. Simulation results are presented indication good
performance and the ability to monitor arbitrary precision. Results are also given
on implementation in System on Chip designs using the Global Foundries cmos32soi
technology along with ARM standard-cells. The results indicate an approximate
5% increase in area with less than 3% increase in energy over traditional IEEE 754
floating-point multipliers.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.0.1 Software Implementations . 3

1.0.2 Using Native-Pairs for Computing 3

1.1 Contributions of this Research . 4

1.2 Organization . 5

II. BACKGROUND . 6

III. NATIVE PAIR IMPLEMENTATION 12

3.1 Explanation of Native Pairs . 13

3.2 Example Use of Residual Register and MOVRR Instruction 16

IV. BENCHMARKING . 20

V. CONCLUSION AND FUTURE RESEARCH 24

REFERENCES . 27

APPENDICIES . 33

APPENDIX A: SINGLE PRECISION C++ CODE EXAMPLE 33

APPENDIX B: DOUBLE PRECISION C++ CODE EXAMPLE 43

v

LIST OF TABLES

Table Page

4.1 gem5 Simulation Specifications . 21

4.2 Results of SPEC06 RISC-V gem5 simulations 22

4.3 Results of SPEC17 RISC-V gem5 simulations 23

vi

LIST OF FIGURES

Figure Page

2.1 Data formats for the IEEE 754-2008 floating-point 7

2.2 Block diagram of IEEE 754 multiplier architecture 8

2.3 Previously Proposed Architecture for Residual Register in IEEE 754

Floating-Point Multiplier [1] . 10

3.1 Rounding architecture for all IEEE 754 rounding modes (Adapted

from [2]) . 14

3.2 Proposed Architecture for Residual Register in IEEE 754 Floating-

Point Multiplier . 15

vii

CHAPTER I

INTRODUCTION

Multiplication has long been an important part in most computer architectures and

it has usually been seen as a common case and as an design decision to include in any

microarchitecture. However, the difficulty in creating hardware for multiplication

because of the inherent shifting of the radix point during calculations has been a

cogent reason for well-developed floating-point hardware in scientific applications. To

aid common usage for floating-point in computer architectures, the IEEE standardized

floating-point in 1985 and subsequently re-ratified it in 2008 with the IEEE 754.

Although IEEE 754 floating-point implementations have made tremendous pro-

gress in making computations simpler and concise, it has an inherent problem within

its structure. There is a limit to the precision of a single floating-point number

based on the exponent of that number. This is known as the number’s dynamic

range. Since the dynamic range is much larger than normal integer and fractional

implementations while constrained to the same space, information can be lost when

numbers are rounded to fit within the possible dynamic range of floating-point during

the final steps of calculations. The IEEE 754 standard, by default, rounds floating-

point numbers using round-to-nearest even or RNE and has a total of four rounding

modes to help contain error. Good hardware for rounding in floating-point arithmetic

is key to expanding algorithms, numerical methods, and applications that exploit

techniques to control validation due to loss of precision.

In addition, correct rounding of both normal and denormal results further exac-

erbates the growing complexity of an IEEE 754 multiplier. Due to the importance

1

of high precision in scientific applications, the precision must be preserved or at the

very least accessible in some other way. Simply truncating denormal results to zero

is unacceptable and could result in a loss of precision data that contaminates results.

Consequently, having floating-point units that can handle normalized and denormal-

ized numbers is essential, especially for scientific computing.

While most general-purpose CPU/GPU use double-precision floating point units,

in deep learning, single-precision floating-point is widely used as the default format

because its smaller dynamic range results in faster calculations and smaller or more

parallel application-specific hardware. However, recent research shows that, in many

applications, single-precision floating-point multipliers can be replaced by half pre-

cision floating-point multipliers in training deep neural networks, which have little

to no impact on the network accuracy. Therefore, there is a need for a new type of

multiplier that can switch between different precisions for deep learning tasks using

information about the loss of precision in previous steps. Moreover, it is important

that the ability to monitor error during larger chains of computations exist and be

available to programs that use this hardware.

To overcome the numerical limitations of existing computer systems, several soft-

ware tools and hardware modifications have been developed. Each of these tools

or hardware designs use additional code or digital logic to extend the precision of

floating-point arithmetic or improve the ability to monitor numerical errors. Although

these methods are useful, many of these implementations impose lengthy cycle times

or additional hardware that complicates their usage. This paper discusses a method

that does not incur extra delays during regular use of the hardware while implement-

ing a system called native-pair computations. This extension to the standard IEEE

754 multiplier is added to the RISC-V ISA for demonstration and testing. The ideas

presented in this paper are based on the concepts presented in [3], in which the idea

was originally proposed. Moreover, this paper also discusses architectural changes to

2

support this new extension as well as the effectiveness of the new system using the

gem5 architectural simulator.

1.0.1 Software Implementations

Variable-precision software packages give the programmer explicit control over the

precision of computations [4], [5]. Typically, fixed-point or floating-point hardware is

used to simulate the variable-precision calculations and subroutine calls are required

for each operation. A variety of applications using variable-precision software pack-

ages has been successfully developed. These include finding roots of polynomials and

evaluating elementary functions [6].

To give the programmer more power and flexibility in developing numerical soft-

ware, several scientific programming languages have been developed [7] [8], [9], [10].

These languages are extensions to existing programming languages that typically

provide variable-precision arithmetic, interval arithmetic, and data types for vector

and matrix operations. Several applications using scientific programming languages

have also been successfully developed such as inverting and multiplying matrices and

solving a system of nonlinear equations [11].

Another class of designs involve variable-precision processors, which are capa-

ble of performing arithmetic operations on variable-precision floating-point num-

bers [12] [13]. These processors extend the available precision through larger registers

and memory support. Additional hardware is also available for rounding control,

exception handling, and specifying the arithmetic operations.

1.0.2 Using Native-Pairs for Computing

This thesis will investigate support for native pairs in floating-point multiplier units.

Instead of using dedicated functional units or coprocessors, this dissertation will fo-

cus on modifications that can be made to conventional processors to enable them to

3

efficiently support native pairs for floating-point multiplication. It is anticipated that

these modifications can also be extended for other floating-point computations, such

as addition and division. This approach offers the performance benefits of dedicated

hardware with only a marginal increase in area. It also lets the floating-point multi-

plier hardware take advantage of improvements in floating-point hardware and Very

Large Scale Integration (VLSI) technology and eliminates the overhead of transferring

data between the main processor and a native-pair processor or functional unit.

For this thesis, algorithms and hardware designs for a combined native-pair and

floating-point multiplier will be developed. This will include the design and evaluation

of functional units that can perform both extended floating-point and IEEE 754

floating-point computations, as well as datapath and control modifications needed

to efficiently support native-pair data. Combining both types of operations on the

same hardware will limit delay and need for complex interface hardware. The goal is

to incorporate support in the design of conventional processor hardware with only a

minor increase in area and little or no increase in cycle time.

These functional units will be designed, simulated, and verified using System Ver-

ilog and synthesized into a System on Chip (SoC) standard-cell implementation. Area

and delay estimates for each of the designs will also be made and compared to esti-

mates for conventional floating-point units. To investigate the performance benefits

achieved by hardware support for native-pair multiplications, the gem5 toolset [14] is

used to measure the performance of dedicated benchmarks that incorporate native-

pairs within an IEEE 754 floating-point multiplication hardware.

1.1 Contributions of this Research

The designs that have been and will be developed will help to improve upon the

numerical accuracy and reliability of computer systems. This has a potential of

impacting a large number of fields in engineering and applied sciences that depend on

4

computer simulation and modeling. The following are potential contributions from

this research:

1. Hardware designs for interval arithmetic with minimal impact on area and delay.

2. Efficient algorithms and designs for extending precision within normal IEEE

754 floating-point multiplication computations.

3. Architecture support for combined native-pair and IEEE 754 floating-point

multiplications targeted at Reduced-Instruction Set Computer (RISC) archi-

tectures.

4. A better understanding of the design of instruction set and hardware designs

for computer systems that are targeted toward scientific applications.

1.2 Organization

The organization of this thesis is as follows: Chapter II will cover IEEE 754 floating-

point and past architectures that implemented native pairs and their pitfalls. Chap-

ter III explains this paper’s implementation of native pairs, how it solves previous

designs’ problems, and how it can be used beyond just monitoring error. Chap-

ter IV showcases SPEC benchmarks and their functional unit performance metrics in

a gem5 execution environment using the SoftFloat library extension. Finally, Chap-

ter V presents the conclusion to the work in addition to possible future research on

the topic.

5

CHAPTER II

BACKGROUND

The expansion of hardware to allow an increased amount of precision or more accu-

rate results is important for scientific computing. Although IEEE 754 floating-point

arithmetic is powerful, it can consume a large amount of space in a design as well as

have an impact on the cycle time and overall performance of the system. Over the

years there has been many attempts to leverage hardware against simplicity while

continuing to maintain good performance.

One class of designs involves the computation of accurate dot products. Accu-

rate dot product coprocessors produce dot products that are mathematically exact,

but have a single rounding at the end. The ability to allow floating-point numbers

to be accumulated without roundoff error is accomplished using a long fixed-point

accumulator. A long fixed-point accumulator (LA) that ensures exact accumulation

requires

L = g + 2 · Emax + 2 · |Emin|+ 2 · l + 1

digits, where the input floating-point format in terms of the base numbers have a

mantissa of length l and exponent range from Emin to Emax. The g additional bits,

called guard bits, are used for catching intermediate overflows. After the accumula-

tion, the exact dot product in the LA is rounded once to the desired floating-point

format using one of the four rounding modes specified by the IEEE 754 standard [15].

Dot product coprocessors use memory to load and store the accumulator, a barrel

shifter to find the correct point to add new numbers to the accumulator, and an adder

or subtractor. Designs are presented in [16], [17], and an overview of accurate vector

6

31 30 2223

09101415

F[9:0]E[4:0]S

S E[7:0] F[22:0]

Single−Precision (bin32)

Half−Precision (bin16)

Double Precision (bin64)

E[10:0]S F[51:0]

516263 0

0

111112126127

S E[14:0] F[111:0]

Quad−Precision (bin128)

0

52

Figure 2.1: Data formats for the IEEE 754-2008 floating-point

arithmetic units is given in [18]. In addition, [17] presents carry-skip logic to determine

if a carry-chain can be bypassed in the accumulator, based on a solution previously

implemented in software [19]. A two-bit wide register is attached to each accumulator

word, where one bit indicates all digits of the corresponding LA word are zero, and

the other bit indicates all digits are (b− 1). The carry skips over word boundaries is

based on this two-bit flag. Unfortunately, LA and other validated-arithmetic imple-

mentations require additional software support and can easily complicate hardware

arithmetic units.

The IEEE 754 floating-point standard, originally ratified in 1985 [15] and later

amended in 2008 [20], defines the floating-point format that consists of three parts:

sign (S), exponent (E), and mantissa or significand (M). Figure 2.1 shows four IEEE

754 formats including half-precision, single-precision, double-precision and quadruple-

precision formats. IEEE 754 floating-point arithmetic provides a modest increase in

hardware while providing user-accessible support for increased precision that can-

not be easily handled through integer arithmetic. Floating-point support within the

RISC-V architecture is handled through the “F”, “D”, and “Q” standard extension

for single, double, and quadruple precision, respectively.

Figure 2.2 shows a block diagram detailing the overall architecture. The design

consists of several stages: unpack (hidden bit and other exception and bit testing),

7

UOVXI

S_X E_X S_Y E_Y

S_X S_Y E_X E_Y

S_Z E_Z M_Z

ovf

S_Z E_Z M_Z

$E_X+E_Y−Bias$

Normalization
Round

Addition
Exponent

Packing/Exceptions

Unpack/Check Inputs

XOR

Multiplier

Exponent
Update

M_X M_Y

M_X M_Y

Figure 2.2: Block diagram of IEEE 754 multiplier architecture

sign, exponent and mantissa logic blocks and final result packing. As per the IEEE

754 standard, five flags are produced: Infinite or Divide by 0 (I), Inexact (X), Invalid

(V), Overflow (O) and Underflow (U). Some flags, such as Divide by 0, are not

appropriate for floating-point multiplication as it is not possible.

As stated previously, although IEEE 754 arithmetic is now standardized and com-

monplace in most general-purpose and application-specific processors, it does suffer

from loss of information due to rounding the final result to its IEEE 754 representa-

tion. This error, although small, can possibly compromise applications where error in

precision is a critical element in its use (e.g., conversion between integers and IEEE

754 arithmetic). Therefore, the need for architectures to be able to analyze error

during use is important for high-performance computing and their applications.

8

A more pragmatic solution to this problem is utilizing something called native-pair

arithmetic [1]. A pair of native floating-point numbers are used to represent a base

result and a residual term which is used to increase accuracy by storing normally-

discarded precision. The original idea [1] adds a few simple microarchitectural fea-

tures so that acceptable accuracy can be obtained with a relatively little performance

penalty. To reduce the cost of native-pair arithmetic, a residual register is used to

hold information that would normally have been discarded after each floating-point

computation.

The main idea here is to balance hardware and software by providing a sequence

of numbers that can be used for arbitrary precision [21]. In theory, this could allow

a group of several numbers to approximately double the amount of precision for a

computation without the inclusion of additional hardware [22]. As pointed out in [1],

one issue with native-pair arithmetic, or sometimes called double-double when used

with IEEE 754 double-precision floating-point numbers, is that it can take up to ten

or more native operations for each native pair operation.

To accomplish this task, a residual register [1] is suggested that takes in the

discarded values saved by the IEEE 754 floating-point units (FPUs). This residual

register stores unnormalized results, but utilizes the same IEEE 754 floating-point

hardware that exists for computing the residual register. After computation, the

new instruction MOVRR that has been added to the Instruction Set Architecture (ISA)

is used to handle moving the residual register’s value into the register file. The

overall architecture looks like the architecture in Figure 2.3. The residual register is

a floating-point register with a sign bit, ne exponent bits, nm + 2 mantissa bits, and

a complement flag bit, where ne and nm are the number of exponent and mantissa

bits in a native floating-point number, respectively, not including the leading one

bit in the mantissa implied by the IEEE 754 format [1]. Programs that do not use

the residual register get the usual result defined by the IEEE 754 standard. Most

9

AS AE AM

CS CE CM

n
m

BS BE BM

CF RS RE RM

MOVRR round

complement

packing/multiplication

Rounder/Exception

ExpAdj

Figure 2.3: Previously Proposed Architecture for Residual Register in IEEE 754

Floating-Point Multiplier [1]

importantly, results stored in the residual register (prefixed by R) can be used to speed

up extended-precision floating-point algorithms by replacing sequences of instructions

that compute equivalent results with a single residual register access [1].

This architectural design allows a good compromise between the complexity and

rest of the system’s architecture needs. The MOVRR reg, K instruction in the ISA

allows the compiler to easily control scheduling and possibly remove any hazards when

multiplier instructions produce residual results, especially in out-of-order systems [1].

Although the design in Figure 2.3 shows the change for IEEE 754 multiplication, the

original idea in [1] can be applied to other IEEE 754 floating-point operations, as

well.

The difficulty in rounding is due to the IEEE 754 standard’s format for the man-

tissa being in the correct range. This typically means that logic has to check whether

the 106-bit product (i.e., P [105 : 0]) of the multiplication for the correct values of l,

g, and t. This means that if v = 0 (no overflow), l = P [52], g = P [51] and t is the

logical OR of P [50 : 0], however, if v = 1 (overflow), l = P [53], g = P [52] and t is

10

the logical OR of P [51 : 0]. The rounding bit r is then added to the least-significant

bit (LSB) (which is P [52] if there is no overflow and is P [53] if overflow) by a 54-bit

carry-propagate adder (CPA).

Multiplication is basically adding the multiplicand multiple times based on val-

ues of the multiplier [23]. To speed this process up, parallel multipliers, typically

found in IEEE 754 multipliers, use a carry-save format so that it can avoid the slow

106-bit CPA until later in the process [24]. This carry-save format allows the prod-

uct to be computed optimally by paralleling the addition of each partial product.

Consequently, the mantissa multiplication within IEEE 754 multipliers generates the

partial products and then reduces it to a carry-save format that includes 106-bit carry

C[105 : 0] and a 106-bit sum S[105 : 0] vectors.

11

CHAPTER III

NATIVE PAIR IMPLEMENTATION

Due to the multiplier presenting its product in carry-save format to the rounder,

it is difficult to determine if there is an overflow (i.e., P >= 2) [25]. In order to

help optimize the hardware, parallel additions are performed and additional logic is

utilized to determine which additions are utilized for the final product. These parallel

additions are combined together to form one adder, typically called a compound adder

(CA). Compound adders take advantage of utilizing redundant hardware and its use

is critical in optimizing hardware for any implementation [24]. Normally, compound

adders use the same hardware except for critical components, such as the carry-chain

logic [25].

Round to Nearest (RN) is arguably the most complicated mode compared to

Round to Zero (RZ) and Round to Infinity (RI) modes. The method within [25]

smartly designs for round-to-nearest/up (RNU) mode (roundTiesToAway mode in

IEEE 754 standard) and then modifies the design to produce RN mode. The RNU

mode utilizes RN mode except in the case of a tie (x.rem = 0.5) where the RNU mode

always rounds up. In terms of implementation, RNU can be implemented by simply

adding a 1 to the guard bit (g) position. This introduced error, although small, can

build over time and eventually cause problems [26].

Native-pair computations can be utilized to essentially build on top of current

operations to create multi-precision computations [27, 22]. Essentially, for multipli-

cation this is done as a straightforward multiplication followed by accumulation of

the results. Luckily, this process does not have problems associated with catastrophic

12

cancellation or the subtracting of two closely related values [27]. Accumulation can

be sped up by having architectures that have fused-multiply and add (FMA) or some-

times called multiply and accumulate (MAC) units, however, most common ISAs do

not have this instruction. For multiplication, the most important operation is guar-

anteeing that no significant digits are lost when the product of two components is

computed with its limited precision [21].

3.1 Explanation of Native Pairs

As specified in [22], using multiple components and splitting their computations and

accumulating them later is called native-pair floating-point computations in this pa-

per, similar to [1]. It is argued in this paper that simpler architectural changes are

needed that do not strangle other operations or more specifically that make the com-

mon case fast. Although it is conceivable to perform this native-pair operation for

any floating-point computation, this work makes the argument that this architec-

ture modification can be done if a user wants to examine more information about

a given floating-point computation and uses multiplication as the basis. Granted,

this operation, would consume more execution time than a normal non-native-pair

floating-point program, however, the ability to save the extra bits of precision by the

floating-point unit can be significant in power to a user who might be concerned with

very small or large numbers or, worse, possible loss in precision. Therefore, using the

native-pair computations, as suggested by [1], is a good trade-off between complexity

and simplicity.

What makes this modification challenging is the post-normalization step or the

rounded product needs to be normalized (divided by 2) for the mantissa domain

[1, 2) by a right shift if it is equal to or larger than 2. The current implementation

in [1] does not use current architectures that well known for IEEE 754 floating-point

architectures [25, 28, 29]. This research has shown good architectures to optimize

13

0G0G

2G

3G 4G

6G

20G21G

20G

24G

13G 16G 13G

24G

27G

18G
17G

19G

19G

27G

19G

21G20G

18G

24G24G
23G

22G

53 52105 104 103 50 051

FARow of 53 HAs

Shifter Shifter

1

01

SL

prediction

StickyCarry, Guard

(53) Compound Adder
Select

Result

fixL
(v=0)

fixL
(v=1)

10

0 1

0 1 0 1

$M_Z[0]$
$M_Z[52:1]$

P1[52]
P1[52:0] P0[52:0]

P0[52]

M_Z

P0[52]

RN,RI,RZ

$lp$$cp$XS[52:0] XC[52:1]

XC
XS

SH
CH CL

SH[53:1] CH[53:1]
RN,RI

p

rs rc

CL[50:0]SL[50:0]

$t$$g$$c$

$f0$ $f1$
P1[0]P0[0]

mux
$sel0_{novf}$

P0[52] P1[52]
mux mux

mux

$sel1$

(53) mux

SumSum+1

RN

RN

Figure 3.1: Rounding architecture for all IEEE 754 rounding modes (Adapted

from [2])

one of the main delay issues within IEEE 754 multiplication, the rounder. Recent

research [30, 2] has given further optimizations into this critical part by analyzing

each design. This optimized rounder can be seen in Figure 3.1.

Figure 3.1 shows an optimized rounder unit that starts with inputs from the 106-

bit carry-save output (i.e., CL[105:0] and SL[105:0]) from the multiplication unit.

The upper 54 most-significant bits (MSBs) from or SH, CH and the 52 least-significant

bits (LSBs) for SL, CL (PL = SL + CL), respectively, are separated to speed up the

critical path within this unit. The left-hand portion of the block in Figure 3.1 utilizes

a row of 53 HAs to add SH and CH (except the LSBs) and one FA to add the prediction

bit p and two LSBs of SH, CH. The sum bit lp is used to compute the correct LSB of

final product on the right while the carry bit cp is added into the LSB of the carry

vector XC on the left. A 53 bit compound adder is then used to pre-compute two

14

AS AE AM

CS CE CM

n
m

RS RE RM

BS BE BM

MOVRR

packing/multiplication

Rounder/Exception Rounder Residual

Figure 3.2: Proposed Architecture for Residual Register in IEEE 754 Floating-Point

Multiplier

possible outputs P0, P1 [2]. Both P0 and P1 are normalized before the final selection

logic. On the right side of Figure 3.1, the carry c, guard g, and sticky t bits are

computed based on SL and CL bits [2]. Based on the last bit of lp and c, g, t bits and

the overflow bit v0 = P0[52], the Select Result module generates sel1 and sel0

signals to select the correct output from the CA based on the correct value of INC.

In Figure 3.1 annotated linear-delay numbers to give a theoretical idea of the

delay encountered by this unit. Linear-delay analysis is a useful technique to analyze

Boolean logic [24]. Typically, a set amount of delay is universally set for each gate

within a module and each implementation uses only those gates in the library to

perform a comparison. This way, a design can be compared individually and without

bias. In this figure, delays are annotated with the letter G to signify “gate delays”

as an arbitrary delay unit. As seen in Figure 3.1, the normalization signal, sel1 set

by the Select Result unit, consumes 24G delays. This signifies that the logic in

Figure 2.3 requires a significant amount of delay before the residual register can be

15

computed. As seen in Figure 3.1, once the sel1 signal is asserted or de-asserted, it

would require an additional 27G to be re-introduced through the rounder unit before

even producing an answer in Figure 2.3. Unfortunately, this would be prohibitive for

most high-performance computing applications and a better solution is needed.

One potential solution is to replicate the rounder unit within the IEEE 754 multi-

plication unit. The secondary rounder is utilized to separately compute the residual

value. This architecture has the advantage in not having to wait for the normaliza-

tion signal. The MOVRR control signal is still needed to signal the final result to select

the residual register through a multiplexor (not shown in Figure 3.2) as an output

instead of a normalized IEEE 754 floating-point result. Theoretically, this unit could

also supply this information as an additional output, however, this would require an

infrastructural change within the microarchitecture to handle the additional outputs

from IEEE 754 FPUs.

3.2 Example Use of Residual Register and MOVRR Instruction

To demonstrate how this implementation works, an example is given for native-pair

multiplication based on the work in [21]. C++ programs were written to prove that

the production of native-pair computations can provide precision much larger that

is needed if this extra information is available to a user. The source code for both

of these programs are in appendix A for single precision and appendix B for double

precision.

After a floating-point multiplication instruction is completed within a system us-

ing a residual register, the value within that register can be accessed and moved

to a general purpose floating-point register with the MOVRR instruction, similar to

the instruction originally proposed in [1]. For example, given two single precision

floating-point values x and y, the resulting product of the two along with using MOVRR

to recover the lost precision finishes with two registers that contain the full product.

16

x = 4.00000095367431640625

= 0x4080_0002

y = 2.0000002384185791015625

= 0x4000_0001

z = x * y

z[1] = 8.00000286102294921875

= 0x4100_0003

z[2] = 0.000000000000227373675443232059478759765625

= 0x2a80_0000

The result of multiplying the same two values x and y but with double precision

gets the same product but with the entire answer in a single register.

z = (double) x * y

z = 8.000002861023176592425443232059478759765625

= 0x4020_0000_6000_0080

The C++ code used to generate these outputs can be found in appendix A.

This can be extended further with a double precision multiplier and multiplicand,

demonstrating the ability to go beyond what most hardware IEEE 754 multipliers

naively.

x = 4.0000000000000017763568394002504646778106689453125

= 0x4010_0000_0000_0002

y = 2.000000000000000444089209850062616169452667236328125

= 0x4000_0000_0000_0001

17

z = x * y

z[1] = 8.0000000000000053290705182007513940334320068359375

= 0x4020_0000_0000_0003

z[2] = 0.00000000000000000000000000000078886090522101180541 ...

17285652827862296732064351090230047702789306640625

= 0x39b0_0000_0000_0000

The result when using a system that supports quad precision or using software

libraries to make up for the lack of quad precision support again results in the same

answer to contained within a single register instead of being split into a native pair.

z = (quad) x * y

z = 8.00000000000000532907051820075218289433722784774291172 ...

85652827862296732064351090230047702789306640625

= 0x4002_0000_0000_0000_3000_0000_0000_0200

The C++ code used to generate these outputs can be found in appendix B.

The solution using the residual register and MOVRR contains the same numeric

value, but the representation is split between two double precision floating-point regis-

ters and thus can be used in systems that do not have support for IEEE 754 quadruple

precision at the hardware level. Even though RISC-V has quadruple-precision sup-

port, this technique can be utilized for larger precisions, if needed. Existing IEEE

754 floating-point implementations remove or erase this extra information within most

floating-point units (FPUs), thus, this modification provides good support for those

pursuing areas of accuracy within a given amount of precision.

As documented in [26], there are many numerical packages that can examine ex-

tra information about a specific computation. In addition, existing GNU repositories

utilize libraries for possible multiple-precision floating-point computation (e.g., GNU

MPFR). On the other hand, all of these software tools consume large amounts of

18

execution time and do not utilize hardware to help alleviate execution times. It is

suggested within this work that utilizing more information within FPUs can help

optimize and examine numerical issues that exist with computer arithmetic compu-

tations.

19

CHAPTER IV

BENCHMARKING

To demonstrate the effects the residual register has on runtime performance, a modi-

fied version of the RISC-V instruction set architecture that contained the new register

was used in the gem5 simulator. This particular RISC-V setup used the RV64I base

as well as the G subset of extensions. The simulator is set up in system call emulation

mode, allowing for benchmarks and example programs to be run without setting up an

operating system. Typical setup values utilized within gem5 are shown in Table 4.1.

For benchmarking, a series of SPEC benchmarks that emphasized floating-point in-

structions are used to gauge system performance with the new register in place. A

total of six SPEC benchmarks are used from both the 2006 and the 2017 edition of

SPEC CPU benchmarks, as shown in Table 4.2 and Table 4.3.

The system model in gem5 uses an out-of-order CPU with one processor. Each

benchmark was run single-threaded on their own instance and had 64kB of L1 instruc-

tion cache and 32Kb of L1 data cache. Each instance was given 16GB of simulated

memory simulating DDR4 2400MHz timing and performance. Only one memory

channel was used for these particular benchmarks. In order to simulate floating-point

performance within the gem5 simulation, proven floating-point software routines are

added to the gem5 simulator. These routines, called SoftFloat [31], are routines

utilized for testing floating-point implementations as well as testing them against

hardware. SoftFloat is efficiently written in C and can be integrated within the

gem5 simulator. The SoftFloat routines are based on routines originally devised

within the PARANOIA program written by W. Kahan [32]. An additional instruc-

20

CPU Architecture RISC-V

CPU Type DerivO3CPU

L1d Cache Size 64kB

L1i Cache Size 32kB

Memory Type DDR4 2400 8x8

Memory Size 16GB

Memory Channels 1

Table 4.1: gem5 Simulation Specifications

tion is also integrated, MOVRR, to allow extra information to be presented to a user, if

needed. Although the SPEC CPU benchmarks do not employ this extra instruction,

the idea is that this capability can be employed to examine specific precision. Sim-

ulations through gem5 indicate no foreseeable negative consequence to a simulation

other than adding an additional instruction through the Instruction Set Architecture

(ISA).

As seen by the results of the SPEC06 benchmarks in Table 4.2 and the SPEC17

benchmarks in Table 4.3, demanding floating-point computations can be a significant

amount of a program’s execution time. Moreover, any additional program that uses

accurate, self-validating arithmetic potentially could consume much more execution

time as it utilizes libraries that are typically slower and have high amounts of overhead.

For example, specific software packages that employ computations, such as interval

arithmetic, typically use directed roundings or round-to-positive and negative infinity.

These directed roundings, although part of the IEEE 754 standard [15, 20], typically

are controlled by the Floating-Point Status and Control Register within the RISC-

V architecture. And, if any changes are required during a complicated floating-

point pipeline, many architectures flush the pipeline to avoid issues with complicated

changes in the rounding mode.

21

SPEC06 Benchmark 444.namd 470.lbm 508.namd r 519.lbm r

Runtime Information

Simulated Seconds 17.55132 10.259652 10.034215 1,482.954635

Real Seconds Elapsed 101,470.81 28,745.83 67,628.68 4,778,013.15

of Simulated Cycles 35,102,640,085 20,519,304,925 20,068,429,170 2,965,909,270,356

Function Frequency

Total Function Calls 47,413,825,438 6,610,717,022 34,198,662,665 1,595,256,157,701

FloatADD 5,917,003,819 2,273,240,080 3,743,658,184 541,500,665,712

FloatMULT 4,414,971,460 1,273,446,080 3,294,084,157 326,750,716,512

% of Runtime

FloatADD 12.48% 34.39% 10.95% 33.94%

FloatMULT 9.31% 19.26% 9.63% 20.48%

Table 4.2: Results of SPEC06 RISC-V gem5 simulations

The modifications provided in this work do not incur any extra architectural

changes other than more area within the FPU. Synthesis was performed on the two

IEEE 754 multiplier designs, one with MOVRR support, and one traditional. Results

were obtained with the cmos32soi 32nm technology using ARM standard-cells and

synthesis was performed using topographical synthesis. Topographical synthesis, pro-

vided by Synopsys R© DC
TM

(DC) ensures synthesis that accurately predicts timing,

area and power by including information from the standard-cell layouts and underly-

ing interconnect. Results indicate a 6.48% (17.755 mm2 traditional vs. 18.907 mm2

with MOVRR) increase in area with no delay addition. The energy consumption also

increases due to more area utilized for the architecture modification. The average

power estimation is achieved by running the simulation with over 46, 464 random

test vectors generated by TestFloat [31] utilizing an annotated Value Change Dump

(VCD) and subsequently converted to a Switching Active Interchange Format (SAIF)

for analysis through DC topographical. Results indicate a 2.32% increase in energy

(30.59 mW traditional vs 31.30 mW with MOVRR). This increase is very small and in

22

SPEC17 Benchmark 619.lbm s 644.nab s

Runtime Information

Simulated Seconds 75.938858 2.635289

Real Seconds Elapsed 220,672.45 17,830.05

of Simulated Cycles 151,877,716,470 5,270,577,837

Function Frequency

Total Function Calls 5,225,632,9490 8,446,078,443

FloatADD 15,594,087,856 990,094,464

FloatMULT 9,024,897,856 1,192,676,971

% of Runtime

FloatADD 29.84% 11.72%

FloatMULT 17.27% 14.12%

Table 4.3: Results of SPEC17 RISC-V gem5 simulations

the situation that users take advantage of the residual register, power can be saved in

other ways such as not using the high precision functionality of a given architecture

or using software to make up extra precision through multiple successive operations.

23

CHAPTER V

CONCLUSION AND FUTURE RESEARCH

This paper demonstrates an add-on to IEEE 754 floating-point that adds functionality

for capturing and measuring error in floating-point operations during normal use

of those operations without incurring any additional delay. Those captured error

values are then made available for use through a newly-added instruction movrr that

only requires the delay delay a single register read and write. Having access to

this additional error information as presented in this paper through an IEEE 754

multiplier opens many possibilities in both software extensions and further hardware

expansion. Not only is it possible to verify the results of floating-point operations

that take place and make sure rounding during those operations has not compromised

the overall precision of the final result, these error measurements can be used in

software libraries to increase the precision even when the native hardware including

this error-managing architectural change does not have support for higher precision.

Verification of this change at the hardware level through Verilog HDL shows only

slight increases in power consumption and logic area with no change in delay, meaning

the proposed architectural modification does not impose any new delays or decrease

the performance of already-existent hardware. Further testing was performed to

show the usefulness of such an operation through C++ programs that demonstrate

the potential for accelerated native pair floating-point operations using the residual

register and the movrr instruction.

In addition to the ideas presented on the residual register, changes to the RISC-V

gem5 architecture simulator to support the new residual register and movrr instruc-

24

tion. This required changes to the method that gem5 uses to handle floating-point

operations which up until now involved using the hardware’s native floating-point

operations for simulation results. By adding the SoftFloat library to gem5, which

supports full IEEE 754 operations in a manner that makes their internals visible for

further use, floating-point operations become much easier to modify and expand -

a necessity for this particular modification with the residual register. The RISC-V

toolchain used to compile programs that run on processors that use the RISC-V ar-

chitecture was also modified to support the new movrr instruction at the assembly

level, allowing the use of inline assembly calls in C and C++ programs in order to

use the instruction within a standard program.

Finally, the RISC-V gem5 simulator with support for the SoftFloat library was

used to benchmark many of the SPEC benchmarks commonly used in computer

architecture research to gauge performance of a system and compare that performance

with that of other systems. This shows off the huge potential that many of these

benchmarks have when it comes to improving floating-point performance that could

be done using the residual register hardware and software additions presented here.

Further work can be done by digging deeper into the benchmarks to measure the

individual error in each floating point operation and accumulate it over the course of

the benchmarks to see where unacceptable levels of precision are lost due to rounding

and potentially fix those errors using this proposed hardware.

Future work on this subject will entail adding the residual register functionality

to the floating-point add and divide operations to give complete coverage of main

IEEE 754 floating-point functionality. With all major operations fitted with this

architectural modification, its usefulness and flexibility drastically increase for almost

any workload. Also, more research into the software solutions that can take advantage

of this hardware change, such as real-time error feedback and on-the-fly precision

adjustments, along with their implementations in a simulator like gem5 will be helpful

25

in further use cases for this modification. The careful design of software libraries are

where much of this architecture’s abilities can be passed on to programmers who may

not even be aware of what the modification is doing at the low level but can benefit

from what the architecture provides.

26

REFERENCES

[1] W. R. Dieter, A. Kaveti, and H. G. Dietz, “Low-cost microarchitectural sup-

port for improved floating-point accuracy,” IEEE Computer Architecture Letters,

vol. 6, pp. 13–16, Jan 2007.

[2] T. D. Nguyen, S. R. Thompson, and J. E. Stine, “Architectural improvements in

IEEE-compliant floating-point multiplication,” submitted to IEEE Transactions

on Computers, 2018.

[3] A. Underwood and J. E. Stine, “IEEE floating-point extension for containing er-

ror in the RISC-V architecture,” in Proceedings of the Third Workshop on Com-

puter Architecture Research with RISC-V, CARRV’19, (New York, NY, USA),

ACM, 2019.

[4] R. P. Brent, “A FORTRAN Multiprecision Arithmetic Package,” ACM Trans-

actions on Mathematical Software, vol. 4, pp. 57–70, 1978.

[5] F. C. Motteler, “Arbitrary Precision Floating-point Arithmetic,” Dr. Dobb’s

Journal, pp. 28–34, September 1993.

[6] R. P. Brent, “Multiple-Precision Zero Finding Methods and the Complexity of

Elementary Function Evaluation,” in Analytic Computational Complexity (J. F.

Traub, ed.), pp. 151–176, Academic Press, Inc., 1976.

[7] J. H. Bleher, A. E. Roeder, and S. Rump, “ACRITH: High Accuracy Arithmetic

- An Advanced Tool for Numerical Computation,” in Proceedings of the 7th

Symposium on Computer Arithmetic, pp. 318–321, 1985.

27

[8] J. H. Bleher, S. M. Rump, U. Kulisch, and J. W. von Gudenberg, “FORTRAN-

SC: A Study of a FORTRAN Extension for Engineering Scientific Computation

with Access to ARITH,” Computing, vol. 39, pp. 93–110, 1987.

[9] C. Falco-Korn, S. Koenig, and S. Gutzwiller, “MODULA-SC: A Precompiler to

Modula-2,” in Contributions to Computer Arithmetic and Self-Validating Nu-

merical Methods (C. Ullrich, ed.), pp. 371–384, J.C. Baltzer, 1991.

[10] J. Wolff von Gudenberg, “PASCAL-SC: A PASCAL Extension for Scientific

Computation,” in Proceedings of the 10th IMACS World Congress on System

Simulation and Scientific Computation, pp. 402–408, 1982.

[11] G. F. Corliss, “Industrial Applications of Interval Techniques,” in Computer

Arithmetic and Self-Validating Numerical Methods (C. Ullrich, ed.), pp. 91–113,

Academic Press, 1990.

[12] T. E. Hull, M. S. Cohen, and C. B. Hull, “Specification for a Variable-Precision

Arithmetic Coprocessor,” in Proceedings of the 10th Symposium on Computer

Arithmetic, pp. 127–131, 1991.

[13] M. S. Cohen, T. E. Hull, and V. C. Hamacher, “CADAC: A Controlled-Precision

Decimal Arithmetic Unit,” IEEE Transactions on Computers, vol. C-32, pp. 370–

377, 1983.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Com-

put. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[15] “IEEE standard for binary floating-point arithmetic,” ANSI/IEEE Std 754-1985,

pp. 1–14, 1985.

28

[16] P. R. Capello and W. L. Miranker, “Systolic super summation,” IEEE Transac-

tions on Computers, vol. 37, pp. 657–677, June 1988.

[17] A. Knofel, “Fast hardware units for the computation of accurate dot products,”

in [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic, pp. 70–74,

June 1991.

[18] G. Bohlender, “What Do We Need Beyond IEEE Arithmetic?,” in Computer

Arithmetic and Self-Validating Numerical Methods (C. Ullrich, ed.), pp. 1–32,

Academic Press, 1990.

[19] M. Muller, C. Rub, and W. Rulling, “Exact accumulation of floating-point num-

bers,” in [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic,

pp. 64–69, June 1991.

[20] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70,

Aug 2008.

[21] D. M. Priest, “Algorithms for arbitrary precision floating point arithmetic,” in

[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic, pp. 132–143,

June 1991.

[22] T. Dekker, “A Floating-Point Technique for Extending the Available Precision,”

Numerische Mathematik, vol. 18, pp. 224–242, 1971.

[23] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware Software Interface ARM Edition. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1st ed., 2016.

[24] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1st ed., 2003.

29

[25] M. R. Santoro, G. Bewick, and M. A. Horowitz, “Rounding algorithms for IEEE

multipliers,” in Proceedings of 9th Symposium on Computer Arithmetic, pp. 176–

183, Sep 1989.

[26] M. J. Schulte and E. E. Swartzlander, Jr., Software and Hardware Techniques

for Accurate, Self-Validating Arithmetic. Kluwer Academic Publishers, 1996.

[27] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double precision

floating point arithmetic,” in Proceedings 15th IEEE Symposium on Computer

Arithmetic. ARITH-15 2001, pp. 155–162, June 2001.

[28] G. Even and P.-M. Seidel, “A comparison of three rounding algorithms for IEEE

floating-point multiplication,” IEEE Transactions on Computers, vol. 49, no. 7,

pp. 638–650, 2000.

[29] N. T. Quach, N. Takagi, and M. J. Flynn, “Systematic IEEE rounding method for

high-speed floating-point multipliers,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 12, no. 5, pp. 511–521, 2004.

[30] T. D. Nguyen, S. Bui, and J. E. Stine, “Clarifications and optimizations on

rounding for IEEE-compliant floating-point multiplication,” in 2018 IEEE 29th

International Conference on Application-specific Systems, Architectures and Pro-

cessors (ASAP), pp. 1–8, July 2018.

[31] J. Hauser, “The SoftFloat and TestFloat Validation Suite for Binary Floating-

Point Arithmetic,” tech. rep., University of California, Berkeley, 2018. Available

at http://www.jhauser.us/arithmetic/TestFloat.html.

[32] W. Kahan, “Lecture Notes on the Status of IEEE Standard 754 for Binary

Floating-Point Arithmetic,” tech. rep., University of California, Berkeley, 1996.

Available at http://www.cs.berkeley.edu/˜ wkahan.

30

[33] M. Daumas and D. W. Matula, “Validated roundings of dot products by sticky

accumulation,” IEEE Transactions on Computers, vol. 46, pp. 623–629, May

1997.

[34] J. Garland and D. Gregg, “Low complexity multiply accumulate unit for weight-

sharing convolutional neural networks,” IEEE Computer Architecture Letters,

vol. 16, pp. 132–135, July 2017.

[35] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Automatically

improving accuracy for floating point expressions,” SIGPLAN Not., vol. 50,

pp. 1–11, June 2015.

[36] G. L. Steele, Jr. and J. L. White, “How to print floating-point numbers accu-

rately,” SIGPLAN Not., vol. 25, pp. 112–126, June 1990.

[37] “IEEE standard for interval arithmetic,” IEEE Std 1788-2015, pp. 1–97, June

2015.

[38] N. J. Higham, Accuracy and Stability of Numerical Algorithms. Society for In-

dustrial and Applied Mathematics, second ed., 2002.

[39] N. Quach, N. Takagi, and M. Flynn, On fast IEEE rounding. Computer Systems

Laboratory, Stanford University, 1991.

[40] J. Dean, D. Patterson, and C. Young, “A new golden age in computer archi-

tecture: Empowering the machine-learning revolution,” IEEE Micro, vol. 38,

pp. 21–29, Mar 2018.

[41] M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic for deep

learning,” CoRR, vol. abs/1412.7024, 2014.

31

[42] G. Gerwig, H. Wetter, E. Schwarz, J. Haess, C. Krygowski, B. Fleischer, and

M. Kroener, “The IBM eserver z990 floating-point unit,” IBM Journal of Re-

search and Development, vol. 48, pp. 311–322, May 2004.

[43] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-gpu:

A heterogeneous CPU-GPU simulator,” IEEE Computer Architecture Letters,

vol. 14, pp. 34–36, Jan 2015.

[44] Cohen, Hull, and Hamacher, “CADAC: A controlled-precision decimal arithmetic

unit,” IEEE Transactions on Computers, vol. C-32, pp. 370–377, April 1983.

[45] T. E. Hull, M. S. Cohen, and C. B. Hall, “Specifications for a variable-precision

arithmetic coprocessor,” in [1991] Proceedings 10th IEEE Symposium on Com-

puter Arithmetic, pp. 127–131, June 1991.

[46] T. E. Hull and M. S. Cohen, “Toward an ideal computer arithmetic,” in 1987

IEEE 8th Symposium on Computer Arithmetic (ARITH), pp. 131–138, May

1987.

[47] A. Peleg and U. Weiser, “MMX technology extension to the intel architecture,”

IEEE Micro, vol. 16, pp. 42–50, Aug 1996.

[48] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! technology: architecture

and implementations,” IEEE Micro, vol. 19, pp. 37–48, March 1999.

[49] T. M. Carter, “Cascade: hardware for high/variable precision arithmetic,” in

Proceedings of 9th Symposium on Computer Arithmetic, pp. 184–191, Sep. 1989.

[50] E. E. Swartzlander, Jr., “Merged arithmetic,” IEEE Transactions on Computers,

vol. C-29, pp. 946–950, Oct 1980.

32

APPENDICES

APPENDIX A: SINGLE PRECISION C++ CODE EXAMPLE

/*
* Algorithms for each function in this program were taken
* from the paper: "Algorithms for Arbitrary Precision
* Floating Point Arithmetic" by Douglas M. Priest.
*
* It is important to note that the original algorithms
* are defined using a 1-base indexing system. For this
* implementation , they have been adjusted to use 0-base
* indexing to match how C++ arrays work.
*
* Author: Alex Underwood
* alexander.underwood@okstate.edu
*/

// Remove this define to simply see the outputs and no
intermediate steps.

//#define LIST_STEPS

#include <iostream >
#include <cstring >
#include <cmath >
#include <vector >
#include <algorithm >
#include <tuple >

/*
* procedure sum_err ()
*
* Calculates the sum of 2 floating point numbers and
* returns the bits that exceed the size of the mantissa
* as a second , normalized floating -point number.
*/

std::tuple <float , float > sum_err(float a, float b)
{

if(std::abs(a) < std::abs(b))
{
float temp = a;
a = b;
b = temp;
}

float c = a + b;

33

float e = c - a;
float g = c - e;
float h = g - a;
float f = b - h;
float d = f - e;

if((d + e) != f)
{
c = a;
d = b;
}

return {c, d};
}

/*
* procedure add()
*
* Adds 2 floating -point numbers in the form of 2 vectors
* each containing multiple floating -point numbers. The
* result is a new vector containing multiple floating -
* point numbers representing the sum of the inputs.
*/

std::vector <float > add(std::vector <float > &x, std::vector <
float > &y)

{
int i = x.size() - 1;
int j = y.size() - 1;
std::vector <float > e(x.size() + y.size());

if(std::abs(x[i]) < std::abs(y[j]))
{

while((i > 0) && (std::abs(x[i - 1]) <= std::abs(y[j])
))

{
e[i + j + 1] = x[i];
i = i - 1;

}
}
else if(std::abs(x[i]) > std::abs(y[j]))
{

while((j > 0) && (std::abs(y[j - 1]) <= std::abs(x[i])
))

{
e[i + j + 1] = y[j];
j = j - 1;

}
}

float a = x[i];
float b = y[j];
float c;

34

while((i > 0) || (j > 0))
{

std::tie(c, e[i + j + 1]) = sum_err(a, b);
a = c;

if((i == 0) || ((j > 1) && (std::abs(y[j - 1]) < std::
abs(x[i - 1]))))

{
b = y[j - 1];
j = j - 1;

}
else
{

b = x[i - 1];
i = i - 1;

}
}

std::tie(c, e[1]) = sum_err(a, b);
e[0] = c;

return e;
}

/*
* procedure renorm ()
*
* Normalizes a floating -point number that is split into
* multiple floating -point numbers contained in a vector.
* This will compact the multiple floating -point numbers
* as much as possible and return them in a new ,
* potentially smaller vector.
*/

std::vector <float > renorm(std::vector <float > &e)
{

float c = e.back();
std::vector <float > f(e.size());
std::vector <float > s(e.size());

for(int i = e.size() - 2; i >= 0; --i)
{

std::tie(c, f[i + 1]) = sum_err(c, e[i]);
}

f[0] = c;
s[0] = f[0];
int k = 0;
float d;

for(int j = 1; j < e.size(); ++j)
{

35

std::tie(c, d) = sum_err(s[k], f[j]);
s[k] = c;

if(d != 0.0)
{

k = k + 1;

s[k] = d;
}

}

s.erase(std:: remove(s.begin (), s.end(), 0.0), s.end());
if(s.empty())
{

s.push_back (0.0);
}

return s;
}

/*
* procedure split ()
*
* Splits a single floating -point number into 2 smaller ,
* normalized floating -point numbers that represent the
* same numerical value as the original input when added
* together. The t argument represents the digit -count of
* the input number and is generally the number of bits in
* the mantissa (23 in the case of IEEE -754 single
* precision). The k argument represents the number of
* ’nonzero digits ’ the first number returned should
* contain. For an near -even split (the usually -desired
* case), this value should be t / 2 + 1.
*/

std::tuple <float , float > split(float x, int t, int k)
{

float ak = std::pow(2, (t - k)) + 1;
float y = ak * x;
float z = y - x;
float xp = y - z;
float xpp = x - xp;

return {xp, xpp};
}

/*
* procedure multiply ()
*
* Multiplies 2 floating -point numbers in the form of 2
* vectors each containing multiple floating -point numbers

.
* The result is a new vector containing multiple

36

* floating - * point numbers representing the product of
* the inputs.
*/

std::vector <float > multiply(std::vector <float > &x, std::
vector <float > &y)

{
#ifdef LIST_STEPS

std::cout << "Starting (x * y) multiply with the
following x and y values:" << std::endl;

for(std::vector <float >:: size_type i = 0; i < x.size();
++i)

{
std::cout << "\tx[" << i << "]: " << x[i] << std::

endl;
}
for(std::vector <float >:: size_type i = 0; i < y.size();

++i)
{
std::cout << "\ty[" << i << "]: " << y[i] << std::

endl;
}

#endif

std::vector <float > xp(x.size());
std::vector <float > xpp(x.size());
std::vector <float > yp(y.size());
std::vector <float > ypp(y.size());
std::vector <float > yppp(y.size());
std::vector <float > p(x.size() * y.size());

for(int i = 0; i < x.size(); ++i)
{

std::tie(xp[i], xpp[i]) = split(x[i], 23, 23 / 2 + 1);

#ifdef LIST_STEPS
std::cout << "Splitting x[" << i << "] into 2 parts:"

<< std::endl;
std::cout << "\tx[" << i << "]: " << x[i] << " ->"

<< std::endl;
std::cout << "\txp[" << i << "]: " << xp[i] << ","

<< std::endl;
std::cout << "\txpp[" << i << "]: " << xpp[i] << std

::endl;
#endif

}
for(int i = 0; i < y.size(); ++i)
{

float z;
std::tie(yp[i], z) = split(y[i], 23, 23 / 3 + 1);
std::tie(ypp[i], yppp[i]) = split(z, 23, 23 / 3 + 1);

37

#ifdef LIST_STEPS
std::cout << "Splitting y[" << i << "] into 3 parts:"

<< std::endl;
std::cout << "\ty[" << i << "]: " << y[i] << " ->"

<< std::endl;
std::cout << "\typ[" << i << "]: " << yp[i] << ","

<< std::endl;
std::cout << "\typp[" << i << "]: " << ypp[i] << ","

<< std::endl;
std::cout << "\typpp[" << i << "]: " << yppp[i] << std

::endl;
#endif

}

p[0] = 0;

for(int i = 0; i < x.size(); ++i)
{

#ifdef LIST_STEPS
std::cout << "Iteration [" << i << "] of

multiplication by parts:" << std::endl;
std::cout << "\tMultiplication of individual parts:"

<< std::endl;
#endif

std::vector <float > a1(y.size());
std::vector <float > a2(y.size());
std::vector <float > a3(y.size());
std::vector <float > a4(y.size());
std::vector <float > a5(y.size());
std::vector <float > a6(y.size());

for(int j = 0; j < y.size(); ++j)
{

a1[j] = xp[i] * yp[j];
a2[j] = xp[i] * ypp[j];
a3[j] = xp[i] * yppp[j];
a4[j] = xpp[i] * yp[j];
a5[j] = xpp[i] * ypp[j];
a6[j] = xpp[i] * yppp[j];

#ifdef LIST_STEPS
std::cout << "\ta1[" << j << "] = xp[" << i << "] *

yp[" << j << "]: " << a1[j] << std::endl;
std::cout << "\ta2[" << j << "] = xp[" << i << "] *

ypp[" << j << "]: " << a2[j] << std::endl;
std::cout << "\ta3[" << j << "] = xp[" << i << "] *

yppp[" << j << "]: " << a3[j] << std::endl;
std::cout << "\ta4[" << j << "] = xpp[" << i << "] *

yp[" << j << "]: " << a4[j] << std::endl;
std::cout << "\ta5[" << j << "] = xpp[" << i << "] *

ypp[" << j << "]: " << a5[j] << std::endl;
std::cout << "\ta6[" << j << "] = xpp[" << i << "] *

38

yppp[" << j << "]: " << a6[j] << std::endl;
#endif

}

std::vector <float > b;
std::vector <float > c;
std::vector <float > d;

b = renorm(a1);
c = renorm(a2);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = a1 + a2 = (renormalized)" << std::

endl;
for(std::vector <float >:: size_type k = 0; k < b.size();

++k)
{
std::cout << "\tb[" << k << "]: " << b[k] << std::

endl;
}

#endif

c = renorm(a3);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a3 = (renormalized)" << std::

endl;
for(std::vector <float >:: size_type k = 0; k < b.size();

++k)
{
std::cout << "\tb[" << k << "]: " << b[k] << std::

endl;
}

#endif

c = renorm(a4);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a4 = (renormalized)" << std::

endl;
for(std::vector <float >:: size_type k = 0; k < b.size();

++k)
{
std::cout << "\tb[" << k << "]: " << b[k] << std::

endl;
}

#endif

39

c = renorm(a5);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a5 = (renormalized)" << std::

endl;
for(std::vector <float >:: size_type k = 0; k < b.size();

++k)
{
std::cout << "\tb[" << k << "]: " << b[k] << std::

endl;
}

#endif

c = renorm(a6);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a6 = (renormalized)" << std::

endl;
for(std::vector <float >:: size_type k = 0; k < b.size();

++k)
{
std::cout << "\tb[" << k << "]: " << b[k] << std::

endl;
}

#endif

d = add(b, p);
p = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tp = b + p = (renormalized)" << std::

endl;
for(std::vector <float >:: size_type k = 0; k < p.size();

++k)
{
std::cout << "\tp[" << k << "]: " << p[k] << std::

endl;
}

#endif
}

return p;
}

/*
* Main function for testing.
*/

40

int main()
{

std::cout.precision (200);
std::cout << std::fixed;

std::vector <float > x;
std::vector <float > y;
std::vector <float > e;
double ans;
int x_bits;
int y_bits;
std::vector <int > e_bits;
long ans_bits;

// Print out single x value

x.push_back (4.00000095367431640625);

std::cout << "x value: " << std::endl;
if(x[0] >= 0.0)
{

std::cout << " ";
}
std::cout << x[0] << std::endl;

// Print hex of x value

std:: memcpy (&x_bits , &x[0], sizeof x[0]);
std::cout << " 0x" << std::hex << x_bits << std::dec <<

std::endl << std::endl;

// Print out single y value

y.push_back (2.0000002384185791015625);

std::cout << "y value: " << std::endl;
if(y[0] >= 0.0)
{

std::cout << " ";
}
std::cout << y[0] << std::endl;

// Print hex of y value

std:: memcpy (&y_bits , &y[0], sizeof y[0]);
std::cout << " 0x" << std::hex << y_bits << std::dec <<

std::endl << std::endl;

// Multiply and print result

e = multiply(x, y);

std::cout << "Result of (x * y) in parts:" << std::endl;
for(const auto &val : e)

41

{
if(val >= 0.0)

{
std::cout << " ";

}
std::cout << val << std::endl;

int val_bits;
std:: memcpy (&val_bits , &val , sizeof val);
e_bits.push_back(val_bits);

}

// Print hex of result

for(const auto &val : e_bits)
{

std::cout << " 0x" << std::hex << val << std::dec <<
std::endl;

}
std::cout << std::endl;

// Show solution found using double precision

ans = (double) x[0] * y[0];
std::cout << "Result from double -precision calculation (

x * y):" << std::endl;
if(ans >= 0.0)
{

std::cout << " ";
}
std::cout << ans << std::endl;

// Show hex of double precision solution

std:: memcpy (&ans_bits , &ans , sizeof ans);
std::cout << " 0x" << std::hex << ans_bits << std::dec

<< std::endl;

return EXIT_SUCCESS;
}

42

APPENDIX B: DOUBLE PRECISION C++ CODE EXAMPLE

/*
* Algorithms for each function in this program were taken
* from the paper: "Algorithms for Arbitrary Precision
* Floating Point Arithmetic" by Douglas M. Priest.
*
* It is important to note that the original algorithms
* are defined using a 1-base indexing system. For this
* implementation , they have been adjusted to use 0-base
* indexing to match how C++ arrays work.
*
* Author: Alex Underwood
* alexander.underwood@okstate.edu
*/

// Remove this define to simply see the outputs and no
intermediate steps.

//#define LIST_STEPS

#include <iostream >
#include <cstring >
#include <cmath >
#include <vector >
#include <algorithm >
#include <tuple >
#include <iomanip >
#include <quadmath.h>

/*
* procedure sum_err ()
*
* Calculates the sum of 2 floating point numbers and
* returns the bits that exceed the size of the mantissa
* as a second , normalized floating -point number.
*/

std::tuple <double , double > sum_err(double a, double b)
{

if(std::abs(a) < std::abs(b))
{

double temp = a;
a = b;
b = temp;

}

double c = a + b;
double e = c - a;
double g = c - e;

43

double h = g - a;
double f = b - h;
double d = f - e;

if((d + e) != f)
{

c = a;
d = b;

}

return {c, d};
}

/*
* procedure add()
*
* Adds 2 floating -point numbers in the form of 2 vectors
* each containing multiple floating -point numbers. The
* result is a new vector containing multiple floating -
* point numbers representing the sum of the inputs.
*/

std::vector <double > add(std::vector <double > &x, std::
vector <double > &y)

{
int i = x.size() - 1;
int j = y.size() - 1;
std::vector <double > e(x.size() + y.size());

if(std::abs(x[i]) < std::abs(y[j]))
{

while((i > 0) && (std::abs(x[i - 1]) <= std::abs(y[j])
))

{
e[i + j + 1] = x[i];
i = i - 1;

}
}
else if(std::abs(x[i]) > std::abs(y[j]))
{

while((j > 0) && (std::abs(y[j - 1]) <= std::abs(x[i])
))

{
e[i + j + 1] = y[j];
j = j - 1;

}
}

double a = x[i];
double b = y[j];
double c;

44

while((i > 0) || (j > 0))
{

std::tie(c, e[i + j + 1]) = sum_err(a, b);
a = c;

if((i == 0) || ((j > 1) && (std::abs(y[j - 1]) < std::
abs(x[i - 1]))))

{
b = y[j - 1];
j = j - 1;

}
else
{

b = x[i - 1];
i = i - 1;

}
}

std::tie(c, e[1]) = sum_err(a, b);
e[0] = c;

return e;
}

/*
* procedure renorm ()
*
* Normalizes a floating -point number that is split into
* multiple floating -point numbers contained in a vector.
* This will compact the multiple floating -point numbers
* as much as possible and return them in a new ,
* potentially smaller vector.
*/

std::vector <double > renorm(std::vector <double > &e)
{

double c = e.back();
std::vector <double > f(e.size());
std::vector <double > s(e.size());

for(int i = e.size() - 2; i >= 0; --i)
{

std::tie(c, f[i + 1]) = sum_err(c, e[i]);
}

f[0] = c;
s[0] = f[0];
int k = 0;
double d;

for(int j = 1; j < e.size(); ++j)
{

std::tie(c, d) = sum_err(s[k], f[j]);

45

s[k] = c;

if(d != 0.0)
{

k = k + 1;

s[k] = d;
}

}

s.erase(std:: remove(s.begin (), s.end(), 0.0), s.end());
if(s.empty())
{

s.push_back (0.0);
}

return s;
}

/*
* procedure split ()
*
* Splits a single floating -point number into 2 smaller ,
* normalized floating -point numbers that represent the
* same numerical value as the original input when added
* together. The t argument represents the digit -count of
* the input number and is generally the number of bits in
* the mantissa (23 in the case of IEEE -754 single
* precision). The k argument represents the number of
* ’nonzero digits ’ the first number returned should
* contain. For an near -even split (the usually -desired
* case), this value should be t / 2 + 1.
*/

std::tuple <double , double > split(double x, int t, int k)
{

double ak = std::pow(2, (t - k)) + 1;
double y = ak * x;
double z = y - x;
double xp = y - z;
double xpp = x - xp;

#ifdef LIST_STEPS
std::cout << "\t\tsplit () function steps" << std::endl;
std::cout << "\t\tak: " << ak << std::endl;
std::cout << "\t\ty: " << y << std::endl;
std::cout << "\t\tz: " << z << std::endl;
std::cout << "\t\txp: " << xp << std::endl;
std::cout << "\t\txpp: " << xpp << std::endl;

#endif

return {xp, xpp};
}

46

/*
* procedure multiply ()
*
* Multiplies 2 floating -point numbers in the form of 2
* vectors each containing multiple floating -point
* numbers. The result is a new vector containing
* multiple floating -point numbers representing the
* product of the inputs.
*/

std::vector <double > multiply(std::vector <double > &x, std::
vector <double > &y)

{
#ifdef LIST_STEPS

std::cout << "Starting (x * y) multiply with the
following x and y values:" << std::endl;

for(std::vector <double >:: size_type i = 0; i < x.size();
++i)

{
std::cout << "\tx[" << i << "]: " << x[i] << std::

endl;
}
for(std::vector <double >:: size_type i = 0; i < y.size();

++i)
{

std::cout << "\ty[" << i << "]: " << y[i] << std::
endl;

}
#endif

std::vector <double > xp(x.size());
std::vector <double > xpp(x.size());
std::vector <double > yp(y.size());
std::vector <double > ypp(y.size());
std::vector <double > yppp(y.size());
std::vector <double > p(x.size() * y.size());

for(int i = 0; i < x.size(); ++i)
{

std::tie(xp[i], xpp[i]) = split(x[i], 23, 23 / 2 + 1);

#ifdef LIST_STEPS
std::cout << "Splitting x[" << i << "] into 2 parts:"

<< std::endl;
std::cout << "\tx[" << i << "]: " << x[i] << " ->"

<< std::endl;
std::cout << "\txp[" << i << "]: " << xp[i] << ","

<< std::endl;
std::cout << "\txpp[" << i << "]: " << xpp[i] << std

::endl;
#endif

}

47

for(int i = 0; i < y.size(); ++i)
{

double z;
std::tie(yp[i], z) = split(y[i], 23, 23 / 3 + 1);
std::tie(ypp[i], yppp[i]) = split(z, 23, 23 / 3 + 1);

#ifdef LIST_STEPS
std::cout << "Splitting y[" << i << "] into 3 parts:"

<< std::endl;
std::cout << "\ty[" << i << "]: " << y[i] << " ->"

<< std::endl;
std::cout << "\typ[" << i << "]: " << yp[i] << ","

<< std::endl;
std::cout << "\typp[" << i << "]: " << ypp[i] << ","

<< std::endl;
std::cout << "\typpp[" << i << "]: " << yppp[i] << std

::endl;
#endif

}

p[0] = 0;

for(int i = 0; i < x.size(); ++i)
{

#ifdef LIST_STEPS
std::cout << "Iteration [" << i << "] of

multiplication by parts:" << std::endl;
std::cout << "\tMultiplication of individual parts:"

<< std::endl;
#endif

std::vector <double > a1(y.size());
std::vector <double > a2(y.size());
std::vector <double > a3(y.size());
std::vector <double > a4(y.size());
std::vector <double > a5(y.size());
std::vector <double > a6(y.size());

for(int j = 0; j < y.size(); ++j)
{

a1[j] = xp[i] * yp[j];
a2[j] = xp[i] * ypp[j];
a3[j] = xp[i] * yppp[j];
a4[j] = xpp[i] * yp[j];
a5[j] = xpp[i] * ypp[j];
a6[j] = xpp[i] * yppp[j];

#ifdef LIST_STEPS
std::cout << "\ta1[" << j << "] = xp[" << i << "] *

yp[" << j << "]: " << a1[j] << std::endl;
std::cout << "\ta2[" << j << "] = xp[" << i << "] *

ypp[" << j << "]: " << a2[j] << std::endl;
std::cout << "\ta3[" << j << "] = xp[" << i << "] *

48

yppp[" << j << "]: " << a3[j] << std::endl;
std::cout << "\ta4[" << j << "] = xpp[" << i << "] *

yp[" << j << "]: " << a4[j] << std::endl;
std::cout << "\ta5[" << j << "] = xpp[" << i << "] *

ypp[" << j << "]: " << a5[j] << std::endl;
std::cout << "\ta6[" << j << "] = xpp[" << i << "] *

yppp[" << j << "]: " << a6[j] << std::endl;
#endif

}

std::vector <double > b;
std::vector <double > c;
std::vector <double > d;

b = renorm(a1);
c = renorm(a2);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = a1 + a2 = (renormalized)" << std::

endl;
for(std::vector <double >:: size_type k = 0; k < b.size()

; ++k)
{

std::cout << "\tb[" << k << "]: " << b[k] << std::
endl;

}
#endif

c = renorm(a3);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a3 = (renormalized)" << std::

endl;
for(std::vector <double >:: size_type k = 0; k < b.size()

; ++k)
{

std::cout << "\tb[" << k << "]: " << b[k] << std::
endl;

}
#endif

c = renorm(a4);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a4 = (renormalized)" << std::

endl;
for(std::vector <double >:: size_type k = 0; k < b.size()

49

; ++k)
{

std::cout << "\tb[" << k << "]: " << b[k] << std::
endl;

}
#endif

c = renorm(a5);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a5 = (renormalized)" << std::

endl;
for(std::vector <double >:: size_type k = 0; k < b.size()

; ++k)
{

std::cout << "\tb[" << k << "]: " << b[k] << std::
endl;

}
#endif

c = renorm(a6);
d = add(c, b);
b = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tb = b + a6 = (renormalized)" << std::

endl;
for(std::vector <double >:: size_type k = 0; k < b.size()

; ++k)
{

std::cout << "\tb[" << k << "]: " << b[k] << std::
endl;

}
#endif

d = add(b, p);
p = renorm(d);

#ifdef LIST_STEPS
std::cout << "\tp = b + p = (renormalized)" << std::

endl;
for(std::vector <double >:: size_type k = 0; k < p.size()

; ++k)
{

std::cout << "\tp[" << k << "]: " << p[k] << std::
endl;

}
#endif

}

return p;

50

}

/*
* Main function for testing.
*/

int main()
{

std::cout.precision (110);
std::cout << std::fixed;

std::vector <double > x;
std::vector <double > y;
std::vector <double > e;
__float128 ans;
long x_bits;
long y_bits;
std::vector <long > e_bits;
__int128 ans_bits;

// Print out single x value

x.push_back (2.00000000000000044408920985006 E0);

std::cout << "x value: " << std::endl;
if(x[0] >= 0.0)
{

std::cout << " ";
}
std::cout << x[0] << std::endl;

// Print hex of x value

std:: memcpy (&x_bits , &x[0], sizeof x[0]);
std::cout << " 0x" << std::hex << x_bits << std::dec <<

std::endl << std::endl;

// Print out single y value

y.push_back (4.00000000000000177635683940025 E0);

std::cout << "y value: " << std::endl;
if(y[0] >= 0.0)
{

std::cout << " ";
}
std::cout << y[0] << std::endl;

// Print hex of y value

std:: memcpy (&y_bits , &y[0], sizeof y[0]);
std::cout << " 0x" << std::hex << y_bits << std::dec <<

std::endl << std::endl;

51

// Multiply and print result

e = multiply(x, y);

std::cout << "Result of (x * y) in parts:" << std::endl;
for(const auto &val : e)
{

if(val >= 0.0)
{

std::cout << " ";
}
std::cout << val << std::endl;

long val_bits;
std:: memcpy (&val_bits , &val , sizeof val);
e_bits.push_back(val_bits);

}

// Print hex of result

for(const auto &val : e_bits)
{

std::cout << " 0x" << std::hex << val << std::dec <<
std::endl;

}
std::cout << std::endl;

// Show solution found using double precision

ans = (__float128) x[0] * y[0];
std::cout << "Result from double -precision calculation (

x * y):" << std::endl;

char buff [120];
// Use Qe instead of Qg to get exponential output.
quadmath_snprintf(buff , sizeof buff , "%*.110 Qg", 46, ans

);
printf(" %s\n", buff);

// Show hex of double precision solution

long ans_parts [2];

std:: memcpy (&ans_parts , &ans , sizeof ans);
std::cout << " 0x";
std::cout << std::hex << std:: setfill(’0’) << std::setw

(16) << ans_parts [1] << std::dec;
std::cout << std::hex << std:: setfill(’0’) << std::setw

(16) << ans_parts [0] << std::dec;
std::cout << std::endl;

return EXIT_SUCCESS;
}

52

VITA

Alex Underwood

Candidate for the Degree of

Master of Science

Thesis: IEEE FLOATING-POINT EXTENSION FOR MANAGING ERROR
USING RESIDUAL REGISTERS

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical Engineering
at Oklahoma State University, Stillwater, Oklahoma in December, 2019.

Completed the requirements for the Bachelor of Science in Computer Engineer-
ing at Oklahoma State University, Stillwater, Oklahoma in 2018.

Experience:

Graduate Research Assistant - VLSI Computer Architecture Research Group
OSU
June 2018 - December 2019

