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Abstract: Wastewater epidemiology is a noninvasive tool that uses wastewater as a means 

to gather nondiscriminatory information about the exposure of a group of people to drugs, 

toxins, and diseases, which is accomplished by analyzing the wastewater for the analytes 

of interest.  This study aimed to develop an analytical method for the simultaneous 

detection of 57 prescription and illicit drugs and their metabolites in wastewater obtained 

during sporting events. The epidemiological data obtained from this study can be used to 

inform public health and safety entities about the current use of prescription and illicit 

drugs in the community.  Wastewater samples were obtained from a football stadium 

several days prior to and during a game day, extracted via solid-phase extraction, and 

analyzed with liquid chromatography-tandem mass spectrometry. The analytes of interest 

spanned several drug classes, including stimulants, opioids, benzodiazepines, and illicit 

drugs such as cocaine and PCP. Of the 33 samples analyzed, 28 of the 57 compounds of 

interest were present in at least 1 sample, with 100% of samples containing at least 1 

stimulant, opioid, and illicit drug, and 24% at least 1 benzodiazepine. The findings are 

generally consistent with self-reporting from the community where the samples came 

from, and future work will include cannabinoids to detect cannabis use. 
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CHAPTER I 
 

INTRODUCTION 

Pharmaceutical and illicit substance abuse is an ongoing issue within the United States. 

The “opioid epidemic”, a colloquial term for the recent rise in opioid overdoses, is currently the 

focus of nationwide media attention, lawsuits against pharmaceutical companies, and proposed 

public policy changes. According to the Centers for Disease Control and Prevention’s National 

Center for Health Statistics, more than 45,000 Americans died in 2017 from opioid overdoses1. 

Current methods for obtaining statistics like these are largely based on indirect estimations 

obtained from national surveys, police arrest and hospital records, and drug testing program 

reports2,3. One of the major sources of drug abuse statistics comes from the Substance Abuse and 

Mental Health Administration (SAMHSA). SAMHSA issues an annual drug abuse report 

containing self-reported drug use data obtained from the National Survey on Drug Use and Health 

and the United States Census4.  

Unfortunately, each of the aforementioned methodologies for measuring drug use is 

accompanied by underlying flaws, potentially leading experts to underestimate the severity of the 

problem. National surveys such as those used by SAMHSA, often have large gaps between 

successive measurements and rely on self-reporting. Personal drug use is a socially stigmatized, 

private activity and as such, drug abusers cannot be relied upon to accurately report their drug 

usage. Additionally, knowing the identity or purity of illicit substances cannot be reasonable 

expected of drug abusers. Hospital and police arrest records are more reliable sources of data, but 

only account for the small fraction of the population they encounter. 
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Drug testing reports, such as those issued by Quest Diagnostics, only report on the portion of 

individuals from which tests were obtained, are subject to manipulation by individuals being 

tested, and present data obtained at different intervals5. 

Thus, the complexity associated with obtaining accurate public drug abuse data has lead 

researchers to explore innovative techniques. For decades, environmental scientists have been 

aware of pharmaceutical drug contamination in our watersheds, originating from sewage 

networks. These trace chemicals are deposited into waste water when drugs and their metabolites 

are excreted from their user’s bodies via urine and feces. Using well established methodologies 

within analytical chemistry to detect drug contamination in waste water lead researchers to 

develop a concept referred to as waste water-based epidemiology (WWBE).  

The purpose of this work was to develop a WWBE analytical method to detect drugs of 

abuse and their metabolites in waste water. Waste water samples were obtained near a football 

stadium during a home game and 3 days prior to the game. The hypothesis being tested is that 

drugs detected in waste water will be elevated when stadiums are in use for a special event with a 

larger population present. The data obtained from analyzing these samples was used to determine 

whether drug concentrations in waste water are elevated during football games when compared to 

times when the stadium is not in use. Additionally, this study serves a proof of concept for the 

single extraction and analysis of waste water for various drugs abuse spanning multiple drug 

classes.  
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CHAPTER II 
 

REVIEW OF LITERATURE 

 

2.1 History 

While the presence of pharmaceutical drugs in waste water treatment plants (WWTP) and 

surface waters was established in the 1990s, the presence of illicit drugs and their metabolites was 

not seriously considered until 2001 when Christian G. Daughton first proposed monitoring waste 

water as a method for obtaining insight on the public’s use of controlled substances2,6–8. Daughton 

argued that monitoring WWTP offered an “unobtrusive, non-invasive” approach to surveying a 

communities controlled substance intake and eventually provide social scientists with real-time 

data2. Zuccato et al., the first researchers who attempted Daughton’s waste water analysis 

approach, analyzed composite waste water samples collected from multiple Italian WWTP for 

cocaine and its metabolite, benzoylecgonine9. The results of this initial study were promising, 

with estimates revealing a far larger incidence of cocaine use than traditional methods9. After 

receiving worldwide attention for the initial study, Zuccato et al. published a follow-up study in 

2006 looking for amphetamines, cannabinoids, and opioids in waste water collected from Italian 

and Swiss WWTP, with similar results10.  

These initial successes spawned thousands of additional studies across the globe. In April 

2007, the European Monitoring Center for Drugs and Drug Addiction (EMCDDA) held the first 

major conference among experts in drug epidemiology and WWBE to encourage collaboration11.
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Soon after in 2010, an international European research group, Sewage Analysis Core Group 

Europe (SCORE), was formed between institutions in Belgium, Switzerland, Spain, Italy, the 

Netherlands, Norway, and the United Kingdom12. Since its inception, SCORE has organized 

several large scale case studies in an attempt to develop standardized techniques, making it easier 

to compare relevant data and identify common issues3. An important aspect of SCORE is their 

publication of ethical guidelines related to using WWBE. The most recently published of these 

studies targeted 7 illicit drug residues and spanned 6 years, 4 continents, and 25 countries12.  

Following the formation of SCORE and subsequent groundbreaking studies, the 

EMCDDA held a second interdisciplinary conference in October 2015 to highlight the 

exponential growth and progress being made within WWBE3. Unlike the 2007 conference, which 

focused mainly on the development of the still novel WWBE approach, the 2015 conference’s 

mainly focused on the various issues plaguing WWBE3,11. Sampling and analysis technique, 

fluctuations in water flow, drug stability in waste water, back-calculation of drug use, and 

population size estimates were among the main uncertainties outlined in the 2015 conference3. As 

a result, many researchers are now focused on identifying and addressing these uncertainties. 

2.2 Waste Water Analysis During Special Events 

The most common application of WWBE has been to estimate local illicit drug use 

within the larger community3. Recently, the focus of many researchers has narrowed to smaller, 

controlled populations. Traditional epidemiological techniques have identified trends of increased 

substance abuse during weekends, seasonal changes, and special events. Understanding these 

temporary fluctuations in analyte concentration is a crucial factor in translating epidemiological 

data obtainable from large composite samples13. Additionally, using WWBE to further explore 

the impacts of these events can provide information that self-reporting cannot reliably predict, 
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such as the presence of emerging illicit psychoactive substances like mephedrone and 

benzylpiperazine14. 

One of the first major publications to explore these temporal variations, conducted over 

several years in Spain by Huerta-Fontela et al., revealed elevated concentrations of cocaine and 

amphetamine-type stimulants during weekends and the summer and winter seasons15. Later 

Metcalfe et al. conducted the first WWBE study in Canada, finding further evidence of a trend of 

increased cocaine consumption on weekends16. Lai et al. provided a more detailed profile of illicit 

substance variations in Austrian waste waters during Christmas and New Year’s, finding elevated 

cocaine and MDMA concentrations but baseline cannabis and methamphetamine excretion17. 

The first example of WWBE being applied at special events was in 2009 when Bijlsma et 

al. analyzed waste water effluent collected from an “important rock event”, finding elevated 

levels of Methylenedioxy-methamphetamine (MDMA) and the cocaine metabolite 

benzoylecgonine18. A similar trend of drug abuse at festivals was identified earlier in Australia by 

a cross-sectional survey correlating attendance of a music festival in Melbourne and higher illicit 

drug use than the general population19. Lai et al. later confirmed this trend in Australia by 

analyzing waste water obtained at an annual Australian music festival, finding a steady increase 

in cannabis, MDMA, methamphetamine, and cocaine use over several days in two separate 

years14. 

Sports tournaments such as the annual American football championship, the Super Bowl, 

have also been shown to influence illicit substance consumption13. In 2010 Gerrity et al. 

compared WWTP samples collected near a major United States city during Super Bowl weekend 

and a normal weekend13. They found that cocaine use increased during the Super Bowl while 

methamphetamine use slightly decreased13. Football stadiums provide the unique opportunity to 

observe the influence of tourism from the opposing team, previously identified weekend 
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increases, and the impact of special event attendance. Furthermore, there are less unknown 

variables involved since population can be determined by ticket sales and increases in flow rates 

are more predictable (e.g. half-time). Gul et al. were the first to analyze effluent from a football 

stadium located at the University of Mississippi in a groundbreaking four part study20. Each part 

of the study focused on developing a method to analyze the same wastewater samples for the 

different classes of commonly abused substances: stimulants, opiates, benzodiazepines, and 

miscellaneous drugs20–23. In each study, increases in drug concentrations were observed during 

games and variations occurred depending on which away team was playing20–23. 

2.3 Laboratory Techniques 

 The majority of WWBE studies use solid phase extraction (SPE) to isolate and 

concentrate compounds prior to analysis via liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). Another common method of analysis is gas chromatography-mass spectrometry 

(GC-MS). However, GC-MS is quickly being replaced as the gold standard for toxicological 

analysis due to recent advances in LC-MS/MS technology.  

2.3.1 Solid Phase Extraction 

 Waste water by nature contains several contaminants that can interfere with the detection 

of any drugs and metabolites that might be present. Additionally, the volume of water present in 

sewage systems dilutes the analytes of interest significantly, making them difficult to detect. SPE 

is a multi-step process by which sample is passed through a column containing a sorbent bed of 

micro-particles, 20-40 microns in size24. These micro-particles are typically composed of 

hydrocarbon chains, phenyl rings, and positively and negatively charged sites bound to silica24. 

As the aqueous sample passes through the sorbent bed, polar organic compounds suspended in 

solution such as drugs and metabolites bind to micro-particles, allowing water and undesirable 

compounds to flow through as waste24. The sorbent can then be washed to remove any unwanted 
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materials caught in the sorbent and dried to remove excess water. The sorbent-bound analytes can 

then be eluted using an appropriate organic solvent24. Lastly, to further concentrate the elution, 

organic solvent can be evaporated off by applying pressure via an inert gas such as argon or 

nitrogen, and the eluent can be resuspended in a smaller volume of solvent that is appropriate to 

the method of analysis. 

2.3.2 Liquid Chromatography 

 The principles of liquid chromatography (LC) are similar to SPE in that a column 

containing micro-particles is used to separate chemical compounds. However, in the case of LC, 

micro-particles referred to as the stationary phase are packed throughout a temperature controlled 

column in which a pressurized liquid mobile phase flows through24,25. Modern LC columns use 

far smaller particle sizes than SPE, less than 10 microns, to achieved greater analyte separation25. 

The use of such small particles generates immense pressure to achieve desirable mobile phase 

flow rates, thus most modern LC is high pressure liquid chromatography (HPLC)25. 

Analyte separation is achieved based on a chemical’s polarity and subsequent affinity to 

the stationary phase. For sample matrices in which analytes have very different affinities, 

isocratic elution can be used to achieve separation25. However, for screens containing analytes 

with similar polarities, a gradient elution is necessary for adequate separation. Gradient elutions 

are the most widely used HPLC method for WWBE, as researchers are often interested in a wide 

range of compounds. 

In a gradient elution the mobile phase is composed of a mixture of solvents that’s 

composition changes throughout the run, such as methanol and water25. During sample injection 

onto the column, the mobile phase is kept at a low elution strength, allowing analytes to become 

trapped by the stationary phase25. Once loaded, the gradient will change to begin eluting 

compounds with the least affinity toward the stationary phase first, followed by more strongly 
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retained analytes25. The time it takes for an analyte to move through the column is referred to as 

the compound’s retention time 25. Retention times are useful in determining if a suspected analyte 

is present but cannot be used for absolute identification, as multiple compounds can have the 

same or very similar retention times25.  

2.3.3 Tandem Mass Spectrometry 

 Mass spectrometry (MS) is an analysis technique used to identify chemicals according to 

their mass-to-charge ratios (m/z)26. This is achieved by ionizing compounds in their gaseous 

phase, typically by either adding (M+H+) or removing a proton (M-H+)24,26. Molecules are ionized 

so they can be easily manipulated by electrostatic and magnetic fields, allowing them to be 

isolated and measured24. Ions then enter the mass analyzer, a vacuum chamber containing four 

parallel metal rods in which radio frequency (RF) and direct current (DC) voltages are applied, 

called a quadrupole24,26. These RF and DC potentials are used to filter ions by their m/z, allowing 

only ions within a specific m/z range to reach the detector and produce a signal24,26.  

 Tandem mass spectrometry (MS/MS) is a form of multistage MS analysis that allows for 

better analyte identification24,26. The most common form of MS/MS used for WWBE is multiple 

reaction monitoring (MRM). In MRM, three mass analyzers are aligned in sequence with the first 

and last acting as mass filters and the central analyzer functioning as a collision cell24. The first 

quadrupole, Q1, functions just like a traditional MS, filtering ionized compounds by their m/z. 

These ions, referred to as precursor ions, then pass into the collision cell, Q2. The Q2 consists of 

a quadrupole, hexapole, octapole, or other design filled with an inert collision gas, typically argon 

or nitrogen24. Precursor ions collide with collision gas molecules and fragment into product ions 

with different m/z. The third analyzer, Q3, filters the product ions within a specified m/z range. 

MS/MS allows for more accurate analyte identification than traditional MS because precursor 

ions of similar m/z are not likely to fragment in exactly the same way, thus producing easily 
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identified product ions. Additionally, even if similar product ions are produced, the ratio in which 

they are produced is likely to be different for different precursor ions. For example, morphine and 

hydromorphone both have a m/z of 286 but morphine’s product ions are 165 and 152 whereas 

hydromorphone’s product ions are 184 and 157. Isolating these ions would be difficult on a 

traditional single quadrupole MS, but is far easier after fragmentation on MS/MS.  

2.4 Compounds of Interest 

 The LC-MS/MS method developed for this study screens for the following 56 drugs and 

metabolites: 6-monoacetylmorphine (6-MAM), 7-aminoclonazepam, 7-aminoflunitrazepam, α-

hydroxyalprazolam, α-hydroxytriazolam, alprazolam, amphetamine, benzoylecgonine, 

buprenorphine, carfentanil, carisoprodol, cocaine, codeine, cyclobenzaprine, desalkylflurazepam, 

diazepam, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), fentanyl, flunitrazepam, 

flurazepam, hydrocodone, hydromorphone, ketamine, lorazepam, MDMA, meperidine, 

meprobamate, methadone, methamphetamine, methylphenidate, midazolam, morphine, naloxone, 

naltrexone, norbuprenorphine, norcarfentanil, nordiazepam, norfentanyl, norhydrocodone, 

normeperidine, noroxycodone, O-desmethyltramadol, oxazepam, oxycodone, oxymorphone, 

phencyclidine (PCP), phentermine, propoxyphene, pseudoephedrine, sufentanil, tapentadol, 

temazepam, tramadol, trazodone, triazolam, and zolpidem. Δ⁹-Tetrahydrocannabinol (THC), and 

11-nor-9-carboxy-Δ⁹-THC (THCA) were originally included in the study but were not 

successfully extracted from wastewater and thus excluded in the final results.  

2.4.1 Opioids 

 Opioid is an overarching term referring to naturally occurring alkaloid analgesics derived 

from the opium poppy, semisynthetic alkaloids derived from naturally occurring opiates, and 

synthetic compounds that mimic the pharmacological effects of opiates24. The pharmacological 

effects of opioids are generally shared across all subclasses and impact the central nervous system 
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(CNS)24. While most opioids are used clinically for their analgesic effects, they have a high abuse 

potential due to their euphoric and sedative psychoactive effects24. Overdoses ending in death are 

often the result of respiratory failure24.  

Two of the three naturally occurring opiates, morphine and codeine, are included in this 

studies analysis panel in addition to the semisynthetic opioids hydrocodone, norhydrocodone, 

hydromorphone, oxycodone, noroxycodone, and oxymorphone27. 6-MAM, the metabolite of the 

semisynthetic opioid heroin has been reserved for the illicit section, 2.4.4, as the United States 

Drug Enforcement Agency (DEA) classifies it as a schedule I substance, meaning it has no 

accepted medical use28. The following synthetic opioids and their metabolites are also included in 

the panel: buprenorphine, norbuprenorphine, carfentanil, norcarfentanil, fentanyl, norfentanyl, 

sufentanil, methadone, EDDP, meperidine, normeperidine, naloxone, naltrexone, propoxyphene, 

tapentadol, tramadol, and O-desmethyltramadol.  

2.4.2 Benzodiazepines 

 Benzodiazepines are one of the most commonly prescribed drug classes in the United 

States and act as a CNS depressant24. First synthesized from an accidental reaction between 

quinazoline N-oxide and methylamine in the 1930’s, benzodiazepines were approved for clinical 

use by the FDA in 1960 and have largely replaced another CNS-depressant drug class, 

barbiturates, due to a reduced risk of adverse side effects and overdose24. One of the most 

common therapeutic uses of these drugs is as an anxiolytic, or to treat anxiety disorders24. The 

benzodiazepines included in this study are alprazolam, α-hydroxyalprazolam, 7-

aminoclonazepam, diazepam, nordiazepam, oxazepam, temazepam, flurazepam, lorazepam, 

midazolam, triazolam, and α-hydroxytriazolam. The benzodiazepine flunitrazepam and its 

metabolite are not included in this section since they are classified as schedule IV substances in 

the United Stated and will instead be discussed under section 2.4.428.  
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2.4.3 CNS Stimulants 

CNS stimulants, as the name would imply are compounds that bind to endogenous 

neurotransmitters to stimulate the central nervous system. CNS stimulants act through raising 

dopamine and norepinephrine levels within the body which elevates blood pressure, stimulates 

respiratory action, and at therapeutic doses raises the heart rate24,29. Many CNS stimulants have 

been identified as dangerous due to their potential for abuse and addiction due to their euphoric 

effects24. The most common cause of death by CNS stimulants are cardiac complications brought 

on by consumption of high doses24.  

The CNS stimulants of interest to this study are all amphetamines with the exception of 

methylphenidate, a drug commonly prescribed for attention deficit disorder under the brand name 

Ritalin. Cocaine, MDMA, and methamphetamine are also CNS stimulants of interest to this study 

but will be discussed in section 2.4.5 since MDMA is a schedule I substance and cocaine and 

methamphetamine are schedule II substances24,28. Amphetamine, phentermine, and 

pseudoephedrine (a decongestant and methamphetamine precursor) are the stimulants of interest 

to this study.  

2.4.4 Illicit Drugs 

For the purposes of this study, illicit drugs are compounds listed as schedule I controlled 

substances by the DEA or schedule II substances rarely used therapeutically such as cocaine, 

ketamine, and methamphetamine. The illicit substances of interest to this study are cocaine, 

flunitrazepam, ketamine, MDMA, methamphetamine, and PCP. The metabolite of the schedule I 

opioid heroin, 6-MAM, was included in this study while the parent compound was left out since it 

is typically quickly and entirely metabolized. The metabolites of cocaine (benzoylecgonine) and 

flunitrazepam (7-aminoflunitrazepam) are also included in this study. 
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2.4.5 Miscellaneous Drugs 

 The miscellaneous drugs of interest to this study are compounds which do not fall under 

any of the other drug classes listed above. They include the muscle relaxants carisoprodol and 

cyclobenzaprine, the tricyclic antidepressant trazodone, and the hypnotic zolpidem. The 

metabolite of carisoprodol that is also sold as a drug, meprobamate, is also included in this study. 

The effects of each of these drugs is most similar to that of a benzodiazepine. 

2.5 Conclusion 

 The focus of this research is to develop a LC-MS/MS method for analyzing wastewater 

samples taken during football games. Specifically, the analysis method in question will screen for 

a panel of both prescription and illicit drugs and their metabolites from a wide range of drug 

classes. Previous studies have mainly focused on only one drug class or category at a time, 

developing relatively small analysis panels. Those studies which chose to screen for a large panel 

of substances did not apply them to special events. This study intends to provide a proof of 

concept for both the ability to detect numerous compounds in a single analysis and apply those 

findings to establishing drug trends within a population attending special events. 
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CHAPTER III 
 

METHODOLOGY 

3.1 Sampling Strategy 

Thirty-three (33) wastewater samples, listed in Table 1, were manually collected by the 

University of Florida (UF) collaborators during the football game between the Florida Gators and 

Kentucky Wildcats on Saturday, September 8, 2018 (game day population of 80,651). Samples 

were collected near the Ben Hill Griffith Stadium at three discrete locations to examine the 

variability in drug concentrations according to sub-populations (home, away, student, etc.) that 

attended the game. Samples per site were collected every half hour beginning approximately an 

hour before kickoff to 30 minutes after kickoff. Each sample was collected and placed into three 

different tubes: one 50 mL tube, and two 15 mL tubes. The continuous sampling strategy was 

designed to ensure comprehensive collection throughout the entire game, as well as enable the 

tracking of concentrations of drugs throughout the game. Four (4) additional samples were 

collected from the same locations and a wastewater station on Wednesday, September 5, 2018 to 

serve as background specimens. Once collected, samples were placed into a freezer for storage 

and mailed to the Oklahoma State University Forensic Toxicology and Trace Laboratory (OSU-

FTTL) for analysis.  
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Table 1. A complete list of the wastewater samples obtained by the University of Florida. Each sample was 

assigned a number for ease of reference. The date, time, and location of collection are listed in each column. The time 

of collection for the background samples was not provided. 

Sample # 
Date 

(Month/Day/Year) 
Time Location 

Background 1 09/05/2018 Unknown University Ave 

Background 2 09/05/2018 Unknown Wastewater Station 

Background 3 09/05/2018 Unknown Pump Station 

Background 4 09/05/2018 Unknown Gale Lemerand Ave 

1 09/08/2018 6:30 University Ave 

2 09/08/2018 6:30 Pump Station 

3 09/08/2018 6:30 Gale Lemerand Ave 

4 09/08/2018 7:00 University Ave 

5 09/08/2018 7:00 Pump Station 

6 09/08/2018 7:00 Gale Lemerand Ave 

7 09/08/2018 7:30 University Ave 

8 09/08/2018 7:30 Pump Station 

9 09/08/2018 7:30 Gale Lemerand Ave 

10 09/08/2018 8:00 University Ave 

11 09/08/2018 8:00 Pump Station 

12 09/08/2018 8:00 Gale Lemerand Ave 

13 09/08/2018 8:30 University Ave 

14 09/08/2018 8:30 Pump Station 

15 09/08/2018 8:30 Gale Lemerand Ave 

16 09/08/2018 9:00 University Ave 

17 09/08/2018 9:00 Pump Station 

18 09/08/2018 9:00 Gale Lemerand Ave 

19 09/08/2018 9:30 University Ave 

20 09/08/2018 9:30 Pump Station 

21 09/08/2018 9:30 Gale Lemerand Ave 

22 09/08/2018 10:00 University Ave 

23 09/08/2018 10:00 Pump Station 

24 09/08/2018 10:00 Gale Lemerand Ave 

25 09/08/2018 10:30 University Ave 

26 09/08/2018 10:30 Pump Station 

27 09/08/2018 10:30 Gale Lemerand Ave 

28 09/08/2018 11:00 University Ave 

29 09/08/2018 11:00 Pump Station 

30 09/08/2018 11:00 Gale Lemerand Ave 

31 09/08/2018 11:30 University Ave 

32 09/08/2018 11:30 Pump Station 

33 09/08/2018 11:30 Gale Lemerand Ave 
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3.2 Chemicals and reagents 

All materials were purchased from commercial suppliers except Nanopure water, which 

was obtained using a Barnstead Nanopure Diamond laboratory water system (Thermo Scientific, 

Waltham, MA). ACS-grade 37% hydrochloric acid was purchased from BDH (BDH Scientific, 

Radnor, PA).  LC-MS grade methanol and ACS-grade ammonium hydroxide were purchased 

from Fisher Scientific (Thermo Fisher Scientific, Waltham, MA). ACS-grade isopropyl alcohol 

was purchased from EM Science (EM Science, Gibbstown, NJ).  HPLC grade dichloromethane 

was purchased from VWR (VWR Analytical, Sugar Land, TX). HPLC grade 98% formic acid 

was purchased from EMD (EMD Millipore Corporation, Billerica, MA).  Crystalline ammonium 

formate (99%) was purchased from Alfa Aesar (Alfa Aesar, Ward Hill, MA). 

Drug standards at a concentration of 1 mg/mL in methanol were mostly purchased from 

Lipomed (Lipomed Inc, Cambridge, MA). EDDP, fentanyl, and norbuprenorphine drug stocks 

were also purchased from Lipomed at a concentration of 100 µg/mL. Methylphenidate and 

nordiazepam drug standards were purchased from Cerilliant (Cerilliant Corp, Round Rock, TX) at 

1 mg/mL and sufentanil was purchased from Cerilliant at 100 µg/mL in methanol.  Carfentanil 

and norcarfentanil were purchased from Cayman (Cayman Chemical, Ann Arbor, MI) at a 

concentration of 100 µg/mL in methanol. 7-Aminoclonazepam-D4, buorenorphine-D4, 

carisoprodol-D7, cocaine-D3, morphine-D6, nordiazepam-D5, and normeperidine-D4 deuterated 

internal standards were purchased from Cerilliant at a concentration of 1 mg/mL in methanol. All 

other deuterated internal standards were purchased from Cerilliant at a concentration of 100 

µg/mL in methanol. 
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3.3 Solution Preparation 

 Separate calibration stock solution and quality control (QC) stock solution containing all 

of the analytes of interest at a concentration of 2500 ng/mL were prepared in methanol using the 

drug standards described in section 3.3. The details of this preparation are seen in Table 2. An 

additional internal standard stock solution containing 2500 ng/mL of each deuterated compound 

was prepared as seen in Table 3. All 3 stock solutions were created by spiking methanol with an 

aliquot of each certified drug standard.  

 

Table 2. Preparation for 2 mL of calibration and QC stock solution from certified drug standards. Spike volumes were 

calculated according to the µg/mL drug standard concentration in order to reach a final concentration of 2500 ng/mL.  

Analyte Name Standard  

Concentration (µg/mL) 

Spike 

Volume (µL) 

Final Concentration 

(ng/mL) 

6-MAM 1000 5 2500 

7-Aminoclonazepam 1000 5 2500 

7-Aminoflunitrazepam 1000 5 2500 

A-Hydroxyalprazolam 1000 5 2500 

A-Hydroxytriazolam 1000 5 2500 

Alprazolam 1000 5 2500 

Amphetamine 1000 5 2500 

Benzoylecgonine 1000 5 2500 

Buprenorphine 1000 5 2500 

Carfentanil 100 50 2500 

Carisoprodol 1000 5 2500 

Cocaine 1000 5 2500 

Codeine 1000 5 2500 

Cyclobenzaprine 1000 5 2500 

Desalkylflurazepam 1000 5 2500 

Diazepam 1000 5 2500 

EDDP 100 50 2500 

Fentanyl 100 50 2500 

Flunitrazepam 1000 5 2500 

Flurazepam 1000 5 2500 

Hydrocodone 1000 5 2500 

Hydromorphone 1000 5 2500 

Ketamine 1000 5 2500 

Lorazepam 1000 5 2500 
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Analyte Name Standard  

Concentration (µg/mL) 

Spike 

Volume (µL) 

Final Concentration 

(ng/mL) 

MDMA 1000 5 2500 

Meperidine 1000 5 2500 

Meprobamate 1000 5 2500 

Methadone 1000 5 2500 

Methamphetamine 1000 5 2500 

Methylphenidate 1000 5 2500 

Midazolam 1000 5 2500 

Morphine 1000 5 2500 

Naloxone 1000 5 2500 

Naltrexone 1000 5 2500 

Norbuprenorphine 100 50 2500 

Norcarfentanil 100 50 2500 

Nordiazepam 1000 5 2500 

Norfentanyl 1000 5 2500 

Norhydrocodone 1000 5 2500 

Normeperidine 100 50 2500 

Noroxycodone 1000 5 2500 

O-Desmethyltramadol 1000 5 2500 

Oxazepam 1000 5 2500 

Oxycodone 1000 5 2500 

Oxymorphone 1000 5 2500 

PCP 1000 5 2500 

Phentermine 1000 5 2500 

Propoxyphene 1000 5 2500 

R, R Pseudoephedrine 1000 5 2500 

Sufentanil 100 50 2500 

Tapentadol 1000 5 2500 

Temazepam 1000 5 2500 

THCA 1000 5 2500 

Tramadol 1000 5 2500 

Trazodone 1000 5 2500 

Triazolam 1000 5 2500 

Zolpidem 1000 5 2500 

THC 1000 5 2500 

 
Total Spike Volume (µL) = 605 

Methanol Volume (µL) = 1395 

Total Solution Volume (µL) = 2000 
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Table 3. Preparation for 2 mL of deuterated internal standard stock solution from certified deuterated drug standards. 

Spike volumes were calculated according to the µg/mL internal standard concentration in order to reach a final 

concentration of 2500 ng/mL.  

Analyte Name Internal Standard 
Concentration (µg/mL) 

Spike 

Volume (µL) 

Final Concentration 

(ng/mL) 

7-Aminoclonazepam-D4 1000 5 2500 

7-Aminoflunitrazepam-D7 100 50 2500 

A-Hydroxytriazolam-D4 100 50 2500 

Amphetamine-D5 1000 5 2500 

Benzoylecgonine-D3 100 50 2500 

Buorenorphine-D4 1000 5 2500 

Carisoprodol-D7 1000 5 2500 

Cocaine-D3 100 50 2500 

Codeine-D6 1000 5 2500 

Cyclobenzaprine-D3 100 50 2500 

Diazepam-D5 100 50 2500 

Fentanyl-D5 100 50 2500 

Flunitrazepam-D7 100 50 2500 

Hydromorphone-D3 1000 5 2500 

Meperidine-D4 1000 5 2500 

Methadone-D3 1000 5 2500 

Methamphetamine-D5 1000 5 2500 

Methylphenidate-D9 100 50 2500 

Morphine-D6 1000 5 2500 

Nordiazepam-D5 1000 5 2500 

Normeperidine-D4 100 50 2500 

Oxycodone-D6 1000 5 2500 

PCP-D5 1000 5 2500 

Propoxyphene-D5 100 50 2500 

Pseudoephedrine-D3 1000 5 2500 

THCA-D3 1000 5 2500 

 
Total Spike Volume (µL) = 625 

Methanol Volume (µL) = 1375 

Total Solution Volume (µL) = 2000 

 

From the 2500 ng/mL calibration stock solution, eight (8) calibrators of the 

concentrations outlined in Table 4 were prepared in nanopure water via serial dilution using the 
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steps outlined in Table 5. 2 QCs were also prepared in a similar fashion using the 2500 ng/mL 

QC stock solution, outlined in Table 6.  

Table 4. Name and concentration of the 8 calibrators prepared via serial dilution from the 2500 ng/mL calibration 

stock.   

Pre-SPE 

Concentration (ng/mL) 

Calibrator 

Name 

20 400c 

10 200c 

5 100c 

2.5 50c 

1.25 25c 

0.75 15c 

0.50 10c 

0.05 1c 

 

Table 5. Serial dilution preparation of 8 calibration solutions in water from a 2500 ng/mL calibration stock.   

Cal. 
Name 

Stock 

(µL) 

400c 
(µL) 

200c 
(µL) 

100c 
(µL) 

50c 
(µL) 

25c 
(µL) 

15c 
(µL) 

10c 
(µL) 

Water 

(uL) 

Total 

(µL) 

Final 
(uL) 

400c 104 
       

12896 13000 6470 

200c   6530             6530 13060 6515 

100c     6545           6545 13090 6505 

50c     
 

6585         6585 13170 6500 

25c         6670       6670 13340 6560 

15c           6780     4520 11300 6500 

10c             4800   2400 7200 6550 

1c               650 5850 6500 6500 

 

Table 6. Serial dilution preparation of 2 QCs in water from a 2500 ng/mL QC stock.   

Concentration 

(ng/mL) 

Stock 

(µL) 

5 ng/mL 

(µL) 

Water 

(uL) 

Total 

Volume (µL) 

Remaining 

(uL) 

5 15 
 

7485 7500 6525 

0.75   975 5525 6500 6500 
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3.4 Solid phase extraction 

SPE was performed on the wastewater samples, the 8 calibrators, and a blank consisting 

only of nanopure water using a SPEware Cerex 48 positive pressure manifold and sample 

concentrator, seen in Figure 1 (Tecan SP, Inc., Baldwin Park, CA). Tecan Cerex Trace-B, 6mL 

columns, 50mg cartridges (Tecan SP, Inc., Baldwin Park, CA) were conditioned with 2 mL of 

methanol, followed by 2 mL of Nanopure water, and then 2 mL of pH 5 Nanopure water. Prior to 

loading each sample onto the SPE cartridge, 10 µL of internal standard mix and 25 µL of 100 

mM HCl was added to 6 mL of sample and the mixture was vortexed. Following sample addition, 

the SPE cartridges were washed twice with 2 mL of pH 5 Nanopure water. The cartridges were 

then dried under 70 psi nitrogen for 20 min. Following the drying step, 2 mL of an elution 

solution containing 80:18:2 (dichloromethane: isopropyl alcohol: ammonium hydroxide) was 

added to each cartridge twice and collected in a test tube. The elution mixtures were dried to 

complete dryness under a stream of nitrogen at 40 °C and reconstituted in 100 µL of 98% mobile 

phase A and 2% mobile phase B, the starting conditions of the LC gradient, before being 

transferred to LC injection vials for instrumental analysis. An outline of this procedure is given in 

Table 7. 
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Figure 1. A picture of the SPEware Cerex 48 positive pressure manifold and sample concentrator used to perform SPE 

on the wastewater samples. On the left is the positive pressure manifold used to applying nitrogen gas for loading 

samples and drying the SPE cartridge sorbent. On the right is the sample concentrator used to accelerate the 

evaporation of the elution mixture.  

  



22 
 

Table 7. Outline of the solid phase extraction procedure. 

SPE Step Parameter 

Sample Preparation 6 mL wastewater 

 10 L 2500 ng/mL internal standard mix 

  25 L 100mM HCl 

Condition 2 mL LC-MS grade methanol 

  

2 mL Nanopure water 

2 mL pH 5 Nanopure water 

Sample Addition 6.035 mL sample 

Rinse 2 x 2 mL pH 5 Nanopure water 

Cartridge Dry Down 20 min at ~70 psi 

Elution 2 x 2 mL 80:18:2 dichloromethane:isopropanol:ammonium hydroxide 

Elution Dry Down Under nitrogen at 40ºC 

Reconstitution 100 L 98:2 mobile phase A:mobile phase B 

 

3.5 LC-MS/MS Analysis 

 The 4 background samples were extracted and analyzed once due to the sample volume 

available, while the other 33 samples were extracted on two separate occasions. The first 

extraction was analyzed on a Waters Acquity Classic UPLC-MS/MS system. During this initial 

analysis a number of QCs and calibrators were observed outside of acceptable parameters, and 

therefore the analysis was repeated on the Waters system, with similar results. These samples 

were then moved to a Shimadzu UFLC-MS/MS system in the OSU-FTTL for further analysis in 

order to rule out issues specifically related to the Waters method.  

 

3.5.1 Waters Acquity Classic UPLC-MS/MS 

Initially a method for instrumental analysis on a Waters Acquity Classic UPLC-MS/MS 

system, seen in Figure 2, was developed for this project. Separation was achieved using a Waters 

Cortecs C18 HPLC column (2.1 x 100 mm; 2.7 um; 90 Å) with an Acquity UPLC BEH C18 1.7 

µm guard cartridge (2.1 x 5mm) attached (Waters Corporation, Milford, MA). Mobile phase A 

consisted of 10mM ammonium formate and 0.1% formic acid in water and mobile phase B 
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consisted of 10 mM ammonium formate and 0.1% formic acid in methanol. The LC pumps were 

held at a flow rate of 0.400 mL/min and column temperature was maintained at 65 °C. Sample 

injections were set at 10 μL. LC-MS/MS methods were developed and chromatograms were 

observed using Mass Lynx (Waters Corporation, Milford, MA). Analyte quantification was done 

using Target Lynx (Waters Corporation, Milford, MA). 

 

 

Figure 2. A picture of the Waters Acquity Classic UPLC-MS/MS system used to analyze the wastewater samples in 

this study. On the right are the UPLC pumps, autosampler, and column oven. On the left is the tandem quadrupole 

detector (TQD). 

 

The gradient program used for chromatographic separation of the compounds of interest, 

visualized graphically in Figure 3, began at 2% mobile phase B and was maintained at 2% for 

1.25 min before increasing to 20% in 3.75 min. The mobile phase B concentration was then 

increased to 50% in 4 min, followed by a further increase to 90% mobile phase B in 1 min. The 
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gradient was then held at 90% for 0.5 minutes before being returned to 10% mobile phase B in 

1.5 min. The gradient was further decreased to 2% mobile phase B in 0.01 min and held for the 

last minute, resulting in a total run time of 13 minutes.  

 

 

Figure 3. A plot of the chromatographic gradient used to separate the compounds of interest presented as percentage of 

each mobile phase over time. The yellow color represents mobile phase A while the blue represents mobile phase B.  

 

MRM ion transitions and parameters were optimized using Mass Lynx Intellistart.  These 

parameters are summarized in Table 8 for the compounds of interest and Table 9 for the 

deuterated internal standards. Compound identity was confirmed by use of an MRM ratio, which 

compared the MRM transition with a smaller peak area to the MRM transition with a larger peak 

area.  An acceptable range for the MRM ratio was calculated by averaging the MRM ratios of 

each calibrator for a given compound. The MRM ratios had to be within 20% of this averaged 

MRM ratio. Identification was further established by relative retention times. Relative retention 

times were defined as the retention time of a compound of interest divided by the retention time 

of said compound’s internal standard. As with the MRM ratios, an acceptable range was 

determined by averaging the relative retention times of the calibrators for a given compound; all 

peaks were required to be within 2.5% of this averaged relative retention time. 
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Table 8. Retention times, MRM transitions, and optimized mass spectrometer parameters used to analyze for 

compounds of interest on the Waters Acquity Classic UPLC-MS/MS.  For each compound, the quantitative MRM 

transition is on the top row and the qualitative MRM transition is on the second row. 

Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

CE 

(V) 

Cone 

(V) 

6-MAM 4.39 328.16 165.01 36 17 

 328.16 57.97 30 17 

7-Aminoclonazepam 5.92 286.04 120.97 28 50 

 286.04 222.03 24 50 

7-Aminoflunitrazepam 6.90 284.08 135.11 30 48 

 284.08 226.39 34 48 

Alpha-Hydroxyalprazolam 9.62 325.03 297.19 24 51 

 325.03 216.05 40 51 

Alpha-Hydroxytriazolam 9.54 359.07 176.09 26 54 

 359.07 331.04 28 54 

Alprazolam 9.95 308.97 281.02 26 31 

 308.97 204.93 40 31 

Amphetamine 3.81 135.95 91.10 16 22 

 135.95 119.13 10 22 

Benzoylecgonine 5.39 290.23 168.10 18 39 

 290.23 105.02 28 39 

Buprenorphine 9.22 468.29 54.98 52 44 

 468.29 83.79 44 44 

Carfentanil 8.57 395.40 113.09 32 32 

 395.40 335.25 18 32 

Carisoprodol 9.90 261.17 176.12 8 24 

 261.17 55.04 26 24 

Cocaine 6.42 304.10 182.04 18 35 

 304.10 81.97 28 35 

Codeine 3.57 300.00 165.00 38 49 

 300.00 215.03 26 49 

Cyclobenzaprine 9.54 276.14 84.14 26 40 

 276.14 58.12 20 40 

Desalkylflurazepam 10.03 289.02 140.05 32 52 

 289.02 226.13 30 52 

Diazepam 10.32 285.26 154.06 26 48 

 285.26 193.15 30 48 

EDDP 8.51 278.28 234.11 30 56 

 278.28 249.07 24 56 

Fentanyl 8.17 337.19 105.13 40 46 

 337.19 188.23 24 46 

Flunitrazepam 9.43 314.05 268.21 28 48 
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Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

CE 

(V) 

Cone 

(V) 

 314.05 239.21 40 48 

Flurazepam 8.63 388.18 315.16 26 40 

 388.18 100.13 28 40 

Hydrocodone 4.06 300.10 198.97 28 53 

 300.10 127.95 52 53 

Hydromorphone 2.00 286.10 184.97 30 55 

 286.10 157.01 44 55 

Ketamine 5.90 238.06 125.03 28 32 

 238.06 220.16 16 32 

Lorazepam 9.90 321.04 275.00 20 38 

 321.04 229.03 28 38 

MDMA 4.34 194.02 163.10 12 26 

 194.02 105.09 20 26 

Meperidine 6.94 248.13 70.03 32 46 

 248.13 174.16 24 46 

Meprobamate 7.51 219.28 158.17 8 20 

 219.28 55.06 24 20 

Methadone 9.82 310.48 265.27 16 8 

 310.48 105.08 28 8 

Methamphetamine 4.22 150.26 91.05 18 18 

 150.26 119.09 10 18 

Methylphenidate 6.56 234.11 84.13 22 34 

 234.11 56.04 50 34 

Midazolam 9.17 326.05 291.12 28 54 

 326.05 249.25 40 54 

Morphine 1.34 286.11 165.15 38 52 

 286.11 152.22 66 52 

Naloxone 3.57 328.18 310.23 20 40 

 328.18 212.17 42 40 

Naltrexone 4.09 342.20 324.18 22 42 

 342.20 55.06 44 42 

Norbuprenorphine 7.90 414.29 83.09 50 64 

 414.29 57.14 48 64 

Norcarfentanil 6.77 291.27 113.09 28 28 

 291.27 231.22 16 28 

Nordiazepam 10.20 271.03 139.92 28 49 

 271.03 90.95 36 49 

Norfentanyl 6.05 233.36 84.09 18 30 

 233.36 55.32 34 30 

Norhydrocodone 4.11 286.08 199.01 28 38 
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Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

CE 

(V) 

Cone 

(V) 

 286.08 127.94 52 38 

Normeperidine 7.12 234.05 160.16 18 36 

 234.05 42.06 32 36 

Noroxycodone 3.89 302.14 186.98 22 40 

 302.14 226.97 30 40 

O-Desmethyltramadol 4.58 250.14 58.06 18 26 

 250.14 42.22 60 26 

Oxazepam 9.81 286.97 241.00 20 35 

 286.97 103.94 34 35 

Oxycodone 3.88 316.16 241.07 28 35 

 316.16 256.03 24 35 

Oxymorphone 1.58 302.10 226.99 26 43 

 302.10 198.05 46 43 

PCP 7.71 244.17 86.14 10 22 

 244.17 91.09 30 22 

Phentermine 5.15 149.96 91.05 22 18 

 149.96 133.14 10 18 

Propoxyphene 9.66 340.19 58.12 16 20 

 340.19 266.26 8 20 

Pseudoephedrine 3.42 166.26 148.11 14 22 

 166.26 117.08 20 22 

Sufentanil 9.27 387.24 238.16 20 36 

 387.24 111.05 40 36 

9-THC 11.16 315.43 123.10 32 36 

 315.43 193.22 24 36 

11-nor-9-carboxy-9-THC 10.84 345.41 327.32 16 38 

 345.41 299.29 20 38 

Tapentadol 6.63 222.20 106.94 26 30 

 222.20 120.93 22 30 

Temazepam 10.06 301.03 254.94 20 35 

 301.03 176.97 36 35 

Tramadol 6.40 264.16 58.12 18 28 

 264.16 264.16 10 28 

Trazodone 7.61 372.18 176.14 26 46 

 372.18 148.12 38 46 

Triazolam 9.98 343.01 308.15 28 54 

 343.01 239.04 48 54 

Zolpidem 7.29 308.14 235.24 40 54 

 308.14 92.13 58 54 
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Table 9. Retention times, MRM transitions, and optimized mass spectrometer parameters for the deuterated internal 

standards. 

Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

CE 

(V) 

Cone 

(V) 

7-Aminoclonazepam-D6 5.87 290.16 121.00 32 50 

7-Aminoflunitrazepam-D7 6.83 291.20 138.08 30 50 

Alpha-Hydroxytriazolam-D4 9.51 363.04 176.09 30 52 

Amphetamine-D5 3.76 141.03 124.15 8 24 

Benzoylecgonine-D3 5.38 293.14 171.14 22 38 

Buprenorphine-D4 9.15 472.35 59.01 50 67 

Carisoprodol-D7 9.88 268.40 183.25 10 18 

Cocaine-D3 6.42 307.10 185.04 20 39 

Codeine-D6 3.53 306.20 61.11 34 54 

Cyclobenzaprine-D3 9.54 279.18 216.03 26 40 

Diazepam-D5 10.31 290.29 198.17 32 42 

Fentanyl-D5 8.14 342.29 104.98 38 49 

Flunitrazepam-D7 9.38 321.06 275.22 30 50 

Hydromorphone-D3 1.97 289.16 184.98 30 57 

Meperidine-D4 6.92 252.16 224.25 22 42 

Methadone-D3 9.80 313.43 105.09 26 44 

Methamphetamine-D5 4.19 155.05 91.94 18 26 

Methylphenidate-D9 6.52 243.17 93.18 24 32 

Morphine-D6 1.32 292.12 152.29 64 52 

Nordiazepam-D5 10.19 276.16 140.16 24 61 

Normeperidine-D4 7.11 238.08 164.19 18 38 

Oxycodone-D6 3.85 322.13 304.31 20 42 

PCP-D5 7.67 249.19 86.15 24 24 

Propoxyphene-D5 9.63 345.21 58.12 14 20 

Pseudoephedrine-D3 3.40 169.26 151.18 12 20 

11-nor-9-carboxy-9-THC-D3 10.83 348.36 330.28 16 30 

 

3.5.2 Shimadzu 8040 UFLC-MS/MS 

Due to inconsistencies observed during analysis using the Waters UPLC-MS/MS, the 

second extraction was also analyzed on a Shimadzu 8040 UFLC-MS/MS, seen in Figure 4 

(Shimadzu Corporation, Kyoto, Japan). Chromatographic separation was achieved using a Restek 

Raptor Biphenyl 2.7 µm column (50 x 2.1 mm) with a Raptor Biphenyl 2.7 µm guard cartridge (5 

x 3.0 mm) attached to it (Restek Corporation, Bellefonte, PA). Mobile phase A consisted of 2 
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mM ammonium formate and 0.1% formic acid in water, while mobile phase B consisted of 2 mM 

ammonium formate and 0.1% formic acid in methanol. The LC pumps were held at a flow rate of 

0.350 mL/min during analysis and raised to 0.500 mL/min for 1 minute between injections. The 

column oven was set to 30 °C during analysis and sample injections were set at 10 μL. This LC-

MS/MS method was developed and validated by OSU-FTTL for clinical urine analysis. 

 The gradient program used for chromatographic separation of analytes began at a 

concentration of 10% mobile phase B and was increased to 35% over 1.40 min. The 

concentration of mobile phase B was further increased to 100% over 1.50 min and held at this 

concentration for another 1.00 min. The concentration was then returned to 10% in 0.01 min and 

maintained at this concentration until the next injection, for a total run time of 5 minutes. 

 

Figure 4. A picture of the Shimadzu 8040 UFLC-MS/MS system used to analyze the wastewater samples in this study. 

On the left are the UFLC pumps, autosampler, communications bus module, UV-VIS detector, and column oven. On 

the right is the tandem mass spectrometer. 

 

 The MRM ion transitions used for analyte identification and quantification are 

summarized in Table 10 for the compounds of interest and Table 11 for the deuterated internal 
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standards. Compound identity was confirmed by use of the same parameters as the Waters 

Acquity Classic, described in section 3.5.1.  

 

Table 10. Retention times, MRM transitions, and optimized mass spectrometer parameters used to analyze for 

compounds of interest on the Shimadzu 8040 UFLC-MS/MS.  For each compound, the quantitative MRM transition is 

on the top row and the qualitative MRM transition is on the second row. 

 

Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

Q1 Pre 

Bias (V) 

CE 

(V) 

Q3 Pre 

Bias (V) 

6-MAM 2.38 328.20 165.05 -10 -40 -30 
  

328.20 58.10 -10 -29 -20 

7-Aminoclonazepam 2.98 286.00 121.10 -45 -32 -45 
  

286.00 222.10 -45 -24 -45 

Alpha-Hydroxyalprazolam 3.49 324.90 297.05 -16 -27 -32 
  

324.90 216.00 -16 -42 -42 

Alprazolam 3.62 309.30 281.00 -20 -27 -30 
  

309.30 205.00 -20 -45 -38 

Amphetamine 1.88 136.00 91.10 -20 -17 -15 
  

136.00 119.15 -20 -14 -45 

Benzoylecgonine 2.89 289.95 168.05 -14 -19 -30 
  

289.95 104.95 -20 -29 -18 

Buprenorphine 3.12 468.10 55.10 -30 -55 -20 
  

468.30 84.05 -30 -49 -30 

Carisoprodol 3.15 261.00 176.00 -30 -8 -18 
  

261.20 55.05 -28 -30 -20 

Clonazepam 3.43 316.20 270.00 -50 -35 -30 
  

316.20 214.00 -50 -35 -45 

Codeine 2.35 299.90 165.00 -35 -43 -30 
  

299.90 215.00 -35 -28 -20 

Desipramine 3.25 267.00 44.10 -30 -35 -46 
  

267.00 72.15 -42 -25 -28 

Diazepam 3.71 284.90 153.95 -36 -28 -28 
  

284.90 193.00 -46 -34 -34 

EDDP 3.24 278.10 234.00 -15 -32 -45 
  

278.10 249.05 -35 -23 -25 

Fentanyl 3.13 337.25 188.10 -22 -24 -18 
  

337.25 105.10 -22 -39 -38 

Hydrocodone 2.58 299.90 199.00 -35 -40 -35 
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Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

Q1 Pre 

Bias (V) 

CE 

(V) 

Q3 Pre 

Bias (V)   
300.30 171.10 -50 -40 -30 

Hydromorphone 1.79 285.90 185.00 -32 -32 -34 
  

285.90 157.00 -32 -42 -26 

JWH-018 Metabolite 3.70 358.00 154.95 -18 -25 -28 
  

358.00 126.95 -18 -52 -48 

JWH-073 Metabolite 3.64 343.90 154.95 -40 -35 -28 
  

344.40 126.95 -12 -40 -48 

Ketamine 2.89 238.20 125.00 -40 -27 -45 
  

238.20 207.10 -40 -14 -20 

Lorazepam 3.36 320.80 274.90 -40 -23 -50 
  

320.80 229.00 -40 -30 -45 

MDMA 2.47 194.05 163.10 -30 -14 -30 
  

194.05 105.05 -30 -26 -40 

Meperidine 2.90 247.80 174.00 -44 -19 -32 
  

247.80 70.05 -40 -29 -26 

Meprobamate 2.92 218.90 55.00 -24 -24 -20 
  

218.90 97.05 -24 -15 -36 

Methadone 3.37 309.85 265.10 -40 -25 -28 
  

309.85 105.00 -36 -28 -38 

Methamphetamine 2.20 149.75 91.00 -16 -10 -16 
  

149.75 119.05 -16 -15 -44 

Morphine 1.57 286.10 165.00 -45 -42 -30 
  

286.10 155.10 -45 -35 -15 

Norbuprenorphine 2.99 414.30 83.10 -25 -54 -15 
  

414.30 101.20 -25 -40 -40 

Nordiazepam 3.52 271.20 139.90 -18 -29 -24 
  

271.20 208.10 -18 -30 -40 

Norfentanyl 2.71 233.10 84.05 -40 -19 -30 
  

233.10 55.05 -15 -35 -20 

Norhydrocodone 2.38 285.90 198.95 -32 -30 -36 
  

286.00 127.95 -14 -55 -46 

Normeperidine 2.89 233.80 160.00 -26 -16 -28 
  

233.90 42.10 -26 -32 -14 

Noroxycodone 2.29 302.10 187.00 -20 -26 -35 
  

302.10 227.00 -20 -31 -45 

Nortriptyline 3.28 263.85 233.05 -50 -14 -24 
  

263.85 91.10 -50 -24 -36 

Oxazepam 3.42 287.20 241.00 -50 -23 -25 
  

287.20 104.00 -15 -34 -40 

Oxycodone 2.54 315.70 298.15 -35 -19 -30 
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Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

Q1 Pre 

Bias (V) 

CE 

(V) 

Q3 Pre 

Bias (V)   
315.90 241.10 -40 -31 -50 

Oxymorphone 1.64 301.90 227.00 -34 -30 -40 
  

301.90 198.00 -34 -48 -36 

PCP 3.16 243.85 86.05 -44 -11 -14 
  

243.85 158.95 -44 -13 -28 

Propoxyphene 3.15 340.40 266.20 -10 -17 -30 
  

266.30 58.00 -45 -14 -20 

Tapentadol 2.77 222.10 107.05 -30 -27 -40 
  

222.10 121.05 -35 -21 -20 

Temazepam 3.59 301.10 255.00 -20 -40 -25 
  

301.20 176.90 -20 -40 -30 

THCA 3.68 345.10 299.10 -20 -20 -20 
  

345.10 192.90 -40 -27 -35 

Tramadol 2.82 263.60 264.10 -30 -7 -30 
  

264.20 58.05 -10 -10 -20 

 

 

Table 11. Retention times, MRM transitions, and optimized mass spectrometer parameters for the deuterated internal 

standards on the Shimadzu 8040 UFLC-MS/MS. For each compound, the quantitative MRM transition is on the top 

row and the qualitative MRM transition is on the second row. 

Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

Q1 Pre 

Bias (V) 

CE 

(V) 

Q3 Pre 

Bias (V) 

7-Aminoclonazepam-D4 2.97 289.90 121.00 -34 -31 -46 
  

289.90 226.00 -34 -26 -42 

Amphetamine-D5 1.85 140.80 93.00 -15 -19 -35 
  

140.80 66.00 -15 -40 -25 

Benzoylecgonine-D3 2.89 292.80 171.05 -38 -19 -30 
  

292.80 105.00 -38 -33 -40 

Codeine-D6 2.33 305.90 165.10 -40 -45 -30 
  

306.10 218.10 -15 -26 -45 

Desipramine-D3 3.25 269.80 75.10 -32 -16 -28 
  

269.80 47.05 -32 -40 -50 

Diazepam-D5 3.71 289.90 153.95 -50 -29 -28 
  

289.90 227.10 -50 -28 -24 

Fentanyl-D5 3.13 341.85 105.10 -46 -42 -38 
  

341.85 137.10 -46 -35 -50 

Hydromorphone-D3 1.79 288.90 184.95 -50 -31 -34 
  

288.90 156.95 -50 -44 -28 

JWH-018 Metabolite-D5 3.69 363.60 155.00 -26 -24 -28 
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Compound Name Retention 

Time (min) 

Precursor 

Ion (m/z) 

Product 

Ion (m/z) 

Q1 Pre 

Bias (V) 

CE 

(V) 

Q3 Pre 

Bias (V)   
363.60 127.00 -26 -52 -48 

Meperidine-D4 2.89 251.80 224.10 -42 -22 -22 
  

251.80 178.05 -42 -20 -32 

Methadone-D3 3.33 312.85 268.15 -48 -15 -28 
  

312.85 104.95 -48 -30 -42 

Methamphetamine-D5 2.18 154.95 92.10 -16 -20 -34 
  

154.90 66.10 -16 -42 -24 

Morphine-D6 1.55 292.20 152.00 -20 -54 -50 
  

292.20 181.10 -20 -38 -35 

Normeperidine-D4 2.89 238.00 164.10 -12 -16 -16 
  

238.00 42.05 -12 -35 -44 

Nortryptyline-D3 3.27 266.95 233.10 -50 -15 -24 
  

266.95 91.00 -50 -24 -34 

Oxycodone-D6 2.53 321.90 304.15 -38 -20 -32 
  

321.90 247.10 -38 -33 -42 

PCP-D5 3.15 248.85 86.10 -30 -12 -34 
  

248.85 96.00 -30 -32 -34 

Propoxyphene-D5 3.15 345.10 58.15 -22 -23 -22 
  

345.10 271.20 -22 -10 -18 

THC-D3 3.70 348.10 331.00 -20 -8 -35 
  

348.10 313.00 -50 -12 -30 

 

3.5.3 LC-MS/MS Lower Limit of Quantitation 

The lower limit of quantitation (LLOQ) for each compound of interest varied between analyses 

when using Waters UPLC-MS/MS method. The first set of wastewater samples, calibration 

curve, QCs, and blank was only analyzed on the Waters. The second set of extracted samples, 

calibrators, QCs, and blank was analyzed on both the Waters and Shimadzu. The LLOQ 

concentrations for each analysis are given in Table 12. 

Table 12. LLOQ Concentrations for each analyte of interest across the 3 different wastewater analyses. 

Analyte Name 1st Waters Analysis 

LLOQ (ng/mL) 

2nd Waters Analysis 

LLOQ (ng/mL) 

 Shimadzu Analysis 

LLOQ (ng/mL) 

6-MAM 0.05 0.05 0.05 

7-Aminoclonazepam 0.05 0.05 0.05 

7-Aminoflunitrazepam 0.05 0.05 N/A 
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Analyte Name 1st Waters Analysis 

LLOQ (ng/mL) 

2nd Waters Analysis 

LLOQ (ng/mL) 

 Shimadzu Analysis 

LLOQ (ng/mL) 

α-Hydroxyalprazolam 0.05 0.05 0.05 

α-Hydroxytriazolam 0.05 0.05 N/A 

Alprazolam 0.05 0.05 0.05 

Amphetamine 0.5 0.05 0.05 

Benzoylecgonine 0.05 0.05 0.05 

Buprenorphine 0.05 0.75 0.75 

Carfentanil 0.05 0.75 N/A 

Carisoprodol 0.5 0.05 0.05 

Cocaine 0.05 0.15* N/A 

Codeine 0.05 0.05 0.05 

Cyclobenzaprine 0.5 1.25 N/A 

Desalkylflurazepam 0.5 0.05 N/A 

Diazepam 0.05 0.05 0.05 

EDDP 0.05 0.75 0.75 

Fentanyl 0.05 0.5 0.5 

Flunitrazepam 0.05 0.05 N/A 

Flurazepam 0.05 1.25 N/A 

Hydrocodone 0.05 0.05 0.05 

Hydromorphone 0.05 0.5 0.05 

Ketamine 0.05 0.05 0.05 

Lorazepam 0.05 0.05 0.5 

MDMA 0.05 0.05 0.05 

Meperidine 0.05 0.5 0.5 

Meprobamate 0.5 0.5 0.5 

Methadone 0.5 2.5 2.5 

Methamphetamine 0.5 0.15* 0.5* 

Methylphenidate 0.05 0.05 N/A 

Midazolam 0.05 0.5 N/A 

Morphine 0.05 0.05 0.05 

Naloxone 0.05 0.05 N/A 

Naltrexone 0.05 0.05 N/A 

Norbuprenorphine 0.05 0.05 0.5 

Norcarfentanil 0.05 0.05 N/A 

Nordiazepam 0.05 0.05 0.05 

Norfentanyl 0.05 0.05 0.05 

Norhydrocodone 0.05 0.05 0.05 

Normeperidine 0.05 0.5 0.5 

Noroxycodone 0.05 0.05 0.05 

O-Desmethyltramadol 0.5 0.05 N/A 
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Analyte Name 1st Waters Analysis 

LLOQ (ng/mL) 

2nd Waters Analysis 

LLOQ (ng/mL) 

 Shimadzu Analysis 

LLOQ (ng/mL) 

Oxazepam 0.05 0.05 0.5 

Oxycodone 0.5 0.05 0.05 

Oxymorphone 0.05 0.05 0.05 

PCP 0.05 0.5 0.5 

Phentermine 0.05 0.05 N/A 

Propoxyphene 0.05 0.5 0.5 

Pseudoephedrine 0.05 0.05 N/A 

Sufentanil 0.05 0.5 N/A 

Tapentadol 0.05 0.05 0.5 

Temazepam 0.05 0.05 0.05 

Tramadol 0.05 0.05 0.5 

Trazodone 0.05 0.5 N/A 

Triazolam 0.05 0.5 N/A 

Zolpidem 0.05 0.5 N/A 

  
* LLOQ between 1c (0.05 ng/mL) and 10c (0.5 ng/mL) calibrators due to analyte contamination observed in the blank. 

 

3.6 Summary 

 Wastewater samples collected by UF were extracted via SPE and analyzed at OSU-FTTL 

using two different LC-MS/MS systems. If a compound of interest was able to be quantified 

above the lowest calibrator, lower limit of quantitation (LLOQ), and was within a 20% range of 

the averaged MRM ratio, it was considered to be present in the sample.  
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CHAPTER IV 
 

RESULTS 

4.1 LC-MS/MS Results 

 Concentrations of the compounds of interest were obtained using the methods described 

in Chapter III. The results each LC-MS/MS analysis are summarized in their own subsections for 

clarity.  

4.1.1 Initial Extraction Analysis on the Waters UPLC-MS/MS 

 The results of the 4 background samples obtained on September 5, 2018 are given in 

Table 13. The results of the first batch of samples extracted and analyzed on the Waters system 

are given in Table 14.  

Table 13. Concentrations of compounds observed in the 4 background waste water samples collected before the UF 

game. Compounds that were not observed as being present in any of the samples were removed from the table for 

clarity. Concentrations are reported in ng/mL.  

Compound Name Background 1 Background 2 Background 3 Background 4 

Benzoylecgonine 0.2 0.3 - 0.3 

Cocaine - 0.1 - - 

Ketamine - - - 0.1 

Morphine - 0.1 - 0.1 

Phentermine - - - 0.2 

Pseudoephedrine - 0.4 0.2 1.2 

Tramadol - 0.1 - 0.2 

Trazodone - - 0.1 0.1 
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Table 14. Concentrations of compounds observed in the initially extracted 33 wastewater samples collected during the 

game. Compounds that were not observed as being present in any of the samples were removed from the table for 

clarity. Concentrations are reported in ng/mL.  

Sample # 7-Aminoclonazepam Amphetamine Benzoylecgonine Cocaine 

1 * †† 0.8 0.3 

2 - †† 1.9 0.4 

3 - †† 2.0 1.9 

4 - 0.7 0.8 0.7 

5 - †† 6.3 1.8 

6 - 1.0 0.8 0.4 

7 - †† 2.1 1.3 

8 - 1.0 2.0 0.4 

9 - 5.2 1.0 1.2 

10 - * 3.9 5.0 

11 - 1.1 1.9 1.1 

12 - †† 2.5 2.2 

13 - 0.7 1.3 1.2 

14 - 3.5 2.0 1.0 

15 - 4.6 7.2 5.1 

16 - 4.2 20 0.9 

17 - 0.8 1.8 1.2 

18 - 1.5 2.1 0.9 

19 - 0.8 4.0 1.1 

20 - 4.0 5.9 0.8 

21 - 2.4 3.7 2.2 

22 - 2.1 0.5 0.6 

23 - 5.2 0.5 0.5 

24 - †† 0.9 2.3 

25 - †† 3.1 10 

26 - 1.9 0.1 0.1 

27 † † † † 

28 - 2.3 0.1 0.1 

29 - †† 0.6 0.2 

30 - †† 10 2.6 

31 - 3.7 * - 

32 - †† 0.2 0.1 

33 - †† 0.3 0.7 

* Detected below the lower limit of quantitation, ** Detected outside the allowed 20% ratio range, *** 

Detected below the lower limit of quantitation and outside of 20% ratio range, † Sample 27 Omitted due to 

suspected contamination, †† No quantitative data available due to nearby unknown interfering peak resulting 

in a ratio outside of the 20% range 

 
Table 14. (continued) 

Sample # Codeine Cyclobenzaprine EDDP Hydrocodone 

1 - - - 0.2 

2 - - - 0.2 

3 - 0.6 - 0.1 
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4 - - - * 

5 * - - - 

6 - - - 0.1 

7 - - - - 

8 - - 0.3 0.1 

9 0.3 - - 0.1 

10 - - - - 

11 - - - 0.1 

12 - - - *  

13 - - 0.1 - 

14 * - - 0.1 

15 - - - - 

16 - - - - 

17 - - - 0.1 

18 - - - - 

19 *** - - - 

20 *** - - 0.6 

21 - - - 0.6 

22 - - - 0.2 

23 - - - 0.3 

24 - - - 0.1 

25 0.2 - - * 

26 - - 0.1 0.2 

27 † † † † 

28 - - - - 

29 0.2 - - 0.1 

30 - - - 0.2 

31 - - - 0.1 

32 - - - 0.2 

33 - - - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

† Sample 27 Omitted due to suspected contamination 

†† No quantitative data available due to nearby unknown interfering peak resulting in a ratio outside of the 

20% range 
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Table 14. (continued) 
Sample # Hydromorphone Ketamine MDMA Methadone 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

5 - - - - 

6 - - - - 

7 - - - - 

8 * 0.3 - 1.1 

9 - - - - 

10 - - - - 

11 - - - - 

12 - - - - 

13 - - - - 

14 - - 0.1 - 

15 - - - - 

16 - - - - 

17 - - - - 

18 - - - - 

19 - - - - 

20 * - - - 

21 - - - - 

22 - - - - 

23 - 0.3 2.6 - 

24 - - - - 

25 - - - - 

26 - - 0.1 - 

27 † † † † 

28 - - - - 

29 - - - - 

30 - - - - 

31 - - - - 

32 - - - - 

33 - - - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

† Sample 27 Omitted due to suspected contamination 

†† No quantitative data available due to nearby unknown interfering peak resulting in a ratio outside of the 

20% range 
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Table 14. (continued) 
Sample # Methamphetamine Methylphenidate Morphine Norhydrocodone 

1 - - - 0.3 

2 - - - 0.1 

3 - - 0.3 0.1 

4 - - - - 

5 * - - - 

6 1.1 * - 0.1 

7 - - - - 

8 - - * 0.1 

9 - - - - 

10 - 0.1 - - 

11 * - - 0.1** 

12 - - - - 

13 - - - - 

14 * - - 0.2 

15 - - - - 

16 - - - - 

17 - - - 0.1 

18 - - - - 

19 - - - - 

20 - - 0.1 0.5 

21 - - - 0.3 

22 - - - 0.1 

23 - - 0.1 0.3 

24 - - - 0.1 

25 - - - - 

26 - - - 0.2 

27 † † † † 

28 - - - - 

29 - - - 0.1 

30 - - - 0.1 

31 - - - 0.1 

32 - - - 0.1 

33 - - - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

† Sample 27 Omitted due to suspected contamination 

†† No quantitative data available due to nearby unknown interfering peak resulting in a ratio outside of the 

20% range 
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Table 14. (continued) 
Sample # Noroxycodone O-Desmethyltramadol Oxycodone Oxymorphone 

1 0.1 - * - 

2 0.3 - * * 

3 0.2 0.9 * * 

4 - - - - 

5 0.1 - * * 

6 0.1 0.7 * - 

7 - 0.3 * - 

8 - - - - 

9 - - * - 

10 - - - - 

11 - - - - 

12 0.2 - * - 

13 2.6 4.5 * - 

14 0.3 1.7 * * 

15 0.5 0.6 * - 

16 - - - - 

17 1.0 - * * 

18 0.1** - * - 

19 - - - - 

20 0.7 - * * 

21 0.3 - * - 

22 - - - - 

23 0.2 - * - 

24 0.1 0.6** * - 

25 - 1.4 - - 

26 0.1 - - - 

27 † † † † 

28 - - - - 

29 0.1 0.6 * - 

30 0.2 1.7 * - 

31 - - - - 

32 * - * - 

33 0.3 - *** - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

† Sample 27 Omitted due to suspected contamination 

†† No quantitative data available due to nearby unknown interfering peak resulting in a ratio outside of the 

20% range 

 

  



42 
 

Table 14. (continued) 
Sample # Phentermine Pseudoephedrine Tapentadol Temazepam 

1 0.5 10 - - 

2 0.7 24 - - 

3 4.8 9.6 1.5 0.2 

4 0.3 2.4 - - 

5 2.2 2.5 - - 

6 0.3 4.5 - - 

7 1.3 6.0 - - 

8 0.1 3.1 - *** 

9 2.5 19 0.4 * 

10 0.9 8.0 - - 

11 * 9.1 - - 

12 0.2 14 - - 

13 - 7.2 - - 

14 1.1 9.3 - * 

15 3.5 19 - - 

16 4.9 10 - - 

17 - 8.8 - * 

18 4.6 4.5 - - 

19 1.5 36 - - 

20 1.8 14 - *** 

21 0.1 27 - - 

22 1.8 1.4 - - 

23 3.6 17 - * 

24 1.4 74 - - 

25 0.1 9.0 - - 

26 0.6 15 - - 

27 † † † † 

28 2.2 0.6 - - 

29 1.5 9.7 - - 

30 0.4 4.5 - - 

31 0.3 32 - - 

32 0.7 6.3 - - 

33 1.2 7.3 - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

† Sample 27 Omitted due to suspected contamination 

†† No quantitative data available due to nearby unknown interfering peak resulting in a ratio outside of the 

20% range 
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Table 14. (continued) 
Sample # Tramadol Trazodone 

1 - - 

2 1.0 - 

3 2.9 0.1 

4 - - 

5 - 0.2 

6 3.5 - 

7 1.5 - 

8 0.2 - 

9 - - 

10 2.5 0.2 

11 2.1 0.1 

12 0.1 0.3 

13 14 - 

14 4.1 - 

15 2.2 0.1 

16 0.4 - 

17 0.2 - 

18 0.6 - 

19 0.3 - 

20 0.7 0.1 

21 0.5 - 

22 - 0.1 

23 0.3 0.1 

24 1.9 0.1 

25 6.0 - 

26 - - 

27 † † 

28 0.1 - 

29 2.6 - 

30 7.4 - 

31 0.1 - 

32 0.2 - 

33 1.0 0.1 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

† Sample 27 Omitted due to suspected contamination 

†† No quantitative data available due to nearby unknown interfering peak resulting in a ratio outside of the 

20% range 
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4.1.2 Second Waters UPLC-MS/MS Extraction Results 

 The results of the second batch of samples extracted and analyzed on the Waters are 

given in Table 15. Note that the 4 background samples were not re-extracted and analyzed a 

second time due to insufficient volume. 

Table 15. Concentrations of compounds observed in the second extraction of the 33 wastewater samples collected 

during the UF home football game. Compounds that were not observed as being present in any of the samples were 

removed from the table for clarity. Concentrations are reported in ng/mL.  

Sample # 7-Aminoclonazepam Amphetamine Benzoylecgonine Cocaine 

1 0.1 0.4 1.2 0.2 

2 - 0.4 1.8 0.4 

3 - 0.5 2.0 1.3 

4 - 0.5 0.6 0.6 

5 - 1.2 6.2 0.8 

6 - 1.0 1.0 0.6 

7 - 0.7 2.2 1.8 

8 - 1.0 2.0 0.3 

9 - 4.8 1.6 2.0 

10 - 0.2 3.3 5.0 

11 - 1.4 2.6 1.4 

12 - 1.1 1.2 1.6 

13 - 0.7 1.1 1.5 

14 - 2.8 2.6 0.9 

15 - 1.7 2.9 2.9 

16 - 2.7 14 0.8 

17 - 0.8 1.7 1.1 

18 - 1.0 1.7 0.9 

19 - 0.9 4.0 1.3 

20 - 2.6 4.9 0.7 

21 - 1.2 2.3 1.9 

22 - 2.2 0.6 0.8 

23 - 3.5 0.4 0.4 

24 - 0.3 0.8 2.7 

25 - 0.3 2.6 11 

26 - 1.0 0.1 * 

27 - 2.3 5.2 4.9 

28 - 2.4 0.1 0.2 

29 - 0.2 0.6 0.2 

30 - 0.5 10 3.5 

31 - 2.7 0.1 - 

32 - 2.6 0.3 * 

33 - 0.5 0.4 1.0 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 
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*** Detected below the lower limit of quantitation and outside of 20% ratio range 

 
Table 15. (continued) 

Sample # Codeine Cyclobenzaprine EDDP Hydrocodone 

1 - - - 0.3 

2 - - - 0.2 

3 - * - 0.1 

4 - - - 0.1 

5 0.1 - - - 

6 - - - 0.2 

7 - - - - 

8 - - 1.5 0.2 

9 0.4 - - 0.2 

10 - - - - 

11 - - - 0.1 

12 - - - 0.1 

13 - - * - 

14 0.1 - - 0.2 

15 - - - - 

16 - - - - 

17 - - - 0.1 

18 - - - - 

19 0.1 - - - 

20 0.1 - - 0.7 

21 - - - 0.7 

22 - - - 0.3 

23 - - - 0.3 

24 - - - 0.2 

25 0.2 - - *** 

26 - - * 0.2 

27 - - - - 

28 - - - - 

29 0.2 - - 0.1 

30 - - - 0.2 

31 - - - 0.1 

32 - - - 0.3 

33 - - - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

 
Table 15. (continued) 

Sample # Hydromorphone Ketamine MDMA Methadone 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

5 - - - - 

6 - - - - 

7 - - - - 
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8 * 0.4 - 2.5 

9 - - - - 

10 - - - - 

11 - - - - 

12 - - - - 

13 - - - - 

14 - - 0.1 - 

15 - - - - 

16 - - - - 

17 - - - - 

18 - - - - 

19 - - - - 

20 * - - - 

21 - - - - 

22 - - - - 

23 - 0.3 1.3 - 

24 - - - - 

25 - - - - 

26 - - 0.1 - 

27 - - - - 

28 - - - - 

29 - - - - 

30 - - - - 

31 - - - - 

32 - - - - 

33 - - - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

 

 

 

Table 15. (continued) 
Sample # Methamphetamine Methylphenidate Morphine Norhydrocodone 

1 - - - 0.4 

2 - - - 0.1 

3 - - 0.4 0.1 

4 - - - - 

5 0.2 - - - 

6 1.2 0.1 - 0.1 

7 - - - - 

8 - - 0.1 0.1 

9 - - - - 

10 - 0.1 - - 

11 0.6 - - 0.1 

12 - - - - 

13 - - - - 

14 0.2 - 0.1 0.2 

15 - - - - 

16 - - - - 
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17 - - - 0.1 

18 - - - - 

19 - - - - 

20 - - 1.3 0.4 

21 - - - 0.2 

22 - - - 0.1 

23 - - 0.2 0.2 

24 - - - 0.1 

25 - - - - 

26 - - - 0.1 

27 - - - - 

28 - - - - 

29 - - - 0.1 

30 - - - 0.1 

31 - - - 0.1 

32 - - - 0.1 

33 - - - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 
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Table 15. (continued) 
Sample # Noroxycodone O-Desmethyltramadol Oxycodone Oxymorphone 

1 0.2 - 0.1 - 

2 0.3 - 0.3 0.1 

3 0.2 0.6 0.2 0.1 

4 - - - - 

5 0.1** - 0.1 0.1 

6 0.1 0.7 0.1 - 

7 - 0.3 * - 

8 - - - - 

9 - - * - 

10 - - - - 

11 - - - - 

12 0.1 - 0.1 - 

13 2.5 2.7 0.2 - 

14 0.4 2.8 0.3 0.1 

15 0.3 *** 0.3 - 

16 - - - - 

17 1.0 - 0.4 0.1 

18 0.2 - 0.5 - 

19 - - - - 

20 0.7 - 0.4 0.3 

21 0.3 - 0.2 - 

22 - - - - 

23 0.2 - 0.2 - 

24 0.1** 0.6 0.1 - 

25 - 0.9 - - 

26 *** - - - 

27 - - - - 

28 - - - - 

29 0.2 0.4 0.1 - 

30 0.3 1.1 0.2 - 

31 - - - - 

32 0.1 - * - 

33 0.6 - 0.3 - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 
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Table 15. (continued) 
Sample # Phentermine Pseudoephedrine Tapentadol Temazepam 

1 1.0 15 - - 

2 0.7 21 - - 

3 4.7 7.5 1.3 0.3 

4 0.3 1.6 - - 

5 2.3 2.1 - - 

6 0.5 5.4 - - 

7 1.4 6.1 - - 

8 0.1 2.9 - 0.1 

9 4.1 27 0.5 * 

10 0.9 6.7 - - 

11 0.1 13 - - 

12 0.1 6.2 - - 

13 - 5.7 - - 

14 1.5 10 - 0.1** 

15 1.5 7.2 - - 

16 3.7 7.2 - - 

17 - 8.0 - 0.4 

18 4.2 3.7 - - 

19 1.6 35 - - 

20 1.6 12 - 0.1 

21 0.1 16 - - 

22 2.3 1.8 - - 

23 3.2 13 - 0.2** 

24 1.5 62 - - 

25 0.1 7.6 - - 

26 0.3 8.1 - - 

27 0.1 6.5 - - 

28 3.0 0.8 - - 

29 1.7 10 - - 

30 0.5 5.3 - - 

31 0.3 31 - - 

32 1.0 8.6 - - 

33 1.9 12 - - 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 
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Table 15. (continued) 
Sample # Tramadol Trazodone 

1 - - 

2 1.1** - 

3 2.8** * 

4 - - 

5 - * 

6 4.6 - 

7 1.9 - 

8 0.3** - 

9 - - 

10 2.4 * 

11 3.4 * 

12 0.1** 0.5 

13 15 - 

14 5.4 - 

15 1.0 * 

16 0.3** - 

17 0.3 - 

18 0.7 - 

19 0.3** - 

20 0.6 * 

21 0.4** - 

22 - * 

23 0.3** * 

24 2.2 * 

25 5.7 - 

26 - - 

27 0.4 - 

28 0.2** - 

29 2.9 - 

30 9.2 - 

31 0.2** - 

32 0.4 - 

33 1.4 * 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 
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4.1.3 Shimadzu 8040 UFLC-MS/MS Data 

 The results of the second analysis of the wastewater samples performed on the Shimadzu, 

are given in Table 16.  

 

Table 16. Concentrations of compounds obtained from the extracted wastewater samples on the Shimadzu UFLC-

MS/MS. Compounds that were not observed as being present in any of the samples were removed from the table for 

clarity. Concentrations are reported in ng/mL.  

Sample # 7-Aminoclonazepam Amphetamine Benzoylecgonine Cocaine 

1 0.1** 0.3 1.3 N/A 

2 - 0.3 1.8 N/A 

3 - 0.4 1.8 N/A 

4 - 0.4 0.5 N/A 

5 - 1.0 6.1 N/A 

6 - 0.9 0.9 N/A 

7 - 0.6 2.1 N/A 

8 - 0.8 1.9 N/A 

9 - 6.5 1.4 N/A 

10 - 0.2 3.5 N/A 

11 - 1.3 2.6 N/A 

12 - 1.0 1.2 N/A 

13 - 0.5 1.1 N/A 

14 - 3.1 2.6 N/A 

15 - 1.5 2.8 N/A 

16 - 2.3 14 N/A 

17 - 0.6 1.7 N/A 

18 - 0.9 1.5 N/A 

19 - 0.8 4.0 N/A 

20 - 2.2 4.6 N/A 

21 - 1.1 2.2 N/A 

22 - 1.7 0.5 N/A 

23 - 3.1 0.4 N/A 

24 - 0.3 0.8 N/A 

25 - 0.3 2.4 N/A 

26 - 0.8 0.1 N/A 

27 - 2.4 4.8 N/A 

28 - 2.0 0.1 N/A 

29 - 0.2 0.5 N/A 

30 - 0.3 9.8 N/A 

31 - 2.3 0.1 N/A 

32 - 1.9 0.3 N/A 

33 - 0.5 0.3 N/A 

 
* Detected below the lower limit of quantitation 
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** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
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Table 16. (continued) 
Sample # Codeine Cyclobenzaprine EDDP Hydrocodone 

1 - N/A - 0.4 

2 - N/A - 0.3 

3 - N/A - 0.1 

4 - N/A - 0.1 

5 *** N/A - - 

6 - N/A - 0.3 

7 - N/A - - 

8 - N/A 1.3 0.2 

9 0.4 N/A - 0.2 

10 - N/A - - 

11 - N/A - 0.2 

12 - N/A - 0.1 

13 - N/A * - 

14 0.1 N/A - 0.1 

15 - N/A - - 

16 - N/A - - 

17 - N/A - 0.1 

18 - N/A - - 

19 0.1 N/A - - 

20 0.1 N/A - 0.8 

21 - N/A - 1.0 

22 - N/A - 0.4 

23 - N/A - 0.5 

24 - N/A - 0.2 

25 0.2 N/A - 0.1 

26 - N/A * 0.3 

27 - N/A - - 

28 - N/A - - 

29 0.2 N/A - 0.2 

30 - N/A - 0.4 

31 - N/A - 0.2 

32 - N/A - 0.4 

33 - N/A - - 

 
* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
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Table 16. (continued) 
Sample # Hydromorphone Ketamine MDMA Methadone 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

5 - - - - 

6 - - - - 

7 - - - - 

8 0.1 0.4 - * 

9 - - - - 

10 - - - - 

11 - - - - 

12 - - - - 

13 - - - - 

14 - - 0.1 - 

15 - - - - 

16 - - - - 

17 - - - - 

18 - - - - 

19 - - - - 

20 0.1 - - - 

21 - - - - 

22 - - - - 

23 - 0.2 2.3 - 

24 - - - - 

25 - - - - 

26 - - 0.1 - 

27 - - - - 

28 - - - - 

29 - - - - 

30 - - - - 

31 - - - - 

32 - - - - 

33 - - - - 

 
* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
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Table 16. (continued) 
Sample # Methamphetamine Methylphenidate Morphine Norhydrocodone 

1 - N/A - 0.2 

2 - N/A - 0.1 

3 - N/A 0.5 * 

4 - N/A - - 

5 0.2 N/A - - 

6 1.7 N/A - 0.1 

7 - N/A - - 

8 - N/A 0.1 * 

9 - N/A - - 

10 - N/A - - 

11 0.8 N/A - *** 

12 - N/A - - 

13 - N/A - - 

14 0.2 N/A 0.1 0.1 

15 - N/A - - 

16 - N/A - - 

17 - N/A - *** 

18 - N/A - - 

19 - N/A - - 

20 - N/A 1.2 0.1 

21 - N/A - 0.1 

22 - N/A - * 

23 - N/A 0.2 0.1 

24 - N/A - * 

25 - N/A - - 

26 - N/A - * 

27 - N/A - - 

28 - N/A - - 

29 - N/A - * 

30 - N/A - * 

31 - N/A - * 

32 - N/A - * 

33 - N/A - - 

 
* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
 

  



56 
 

Table 16. (continued) 
Sample # Noroxycodone O-Desmethyltramadol Oxycodone Oxymorphone 

1 0.1 N/A 0.2 - 

2 0.2 N/A 0.3 0.1 

3 0.1 N/A 0.2 0.1 

4 - N/A - - 

5 0.1 N/A 0.1 0.1 

6 0.1 N/A 0.1 - 

7 - N/A 0.1 - 

8 - N/A - - 

9 - N/A 0.1 - 

10 - N/A - - 

11 - N/A - - 

12 0.1 N/A 0.1 - 

13 1.1 N/A 0.2 - 

14 0.2 N/A 0.4 0.2 

15 0.2 N/A 0.3 - 

16 - N/A - - 

17 0.4 N/A 0.5 0.1 

18 * N/A 0.6 - 

19 - N/A - - 

20 0.5 N/A 0.4 0.5 

21 0.1 N/A 0.2 - 

22 - N/A - - 

23 0.1 N/A 0.2 - 

24 * N/A 0.1 - 

25 - N/A - - 

26 * N/A - - 

27 - N/A - - 

28 - N/A - - 

29 * N/A 0.2 - 

30 0.1 N/A 0.3 - 

31 - N/A - - 

32 * N/A 0.1 - 

33 0.3 N/A 0.4 - 

 
* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
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Table 16. (continued) 
Sample # Phentermine Pseudoephedrine Tapentadol Temazepam 

1 N/A N/A - - 

2 N/A N/A - - 

3 N/A N/A 1.6 0.6 

4 N/A N/A - - 

5 N/A N/A - - 

6 N/A N/A - - 

7 N/A N/A - - 

8 N/A N/A - 0.1 

9 N/A N/A 0.8 0.1 

10 N/A N/A - - 

11 N/A N/A - - 

12 N/A N/A - - 

13 N/A N/A - - 

14 N/A N/A - 0.1 

15 N/A N/A - - 

16 N/A N/A - - 

17 N/A N/A - 0.6 

18 N/A N/A - - 

19 N/A N/A - - 

20 N/A N/A - 0.2 

21 N/A N/A - - 

22 N/A N/A - - 

23 N/A N/A - 0.3 

24 N/A N/A - - 

25 N/A N/A - - 

26 N/A N/A - - 

27 N/A N/A - - 

28 N/A N/A - - 

29 N/A N/A - - 

30 N/A N/A - - 

31 N/A N/A - - 

32 N/A N/A - - 

33 N/A N/A - - 

 

* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
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Table 16. (continued) 
Sample # Tramadol Trazodone 

1 - N/A 

2 1.2 N/A 

3 3.1 N/A 

4 - N/A 

5 - N/A 

6 5.5 N/A 

7 2.1 N/A 

8 * N/A 

9 - N/A 

10 2.2 N/A 

11 3.7 N/A 

12 *** N/A 

13 19**** N/A 

14 6.2 N/A 

15 1.2 N/A 

16 0.5 N/A 

17 * N/A 

18 0.9 N/A 

19 0.5 N/A 

20 0.8 N/A 

21 0.6 N/A 

22 - N/A 

23 * N/A 

24 2.7 N/A 

25 5.2 N/A 

26 - N/A 

27 0.6 N/A 

28 * N/A 

29 3.4 N/A 

30 11**** N/A 

31 * N/A 

32 0.5 N/A 

33 1.5 N/A 

 
* Detected below the lower limit of quantitation 

** Detected outside the allowed 20% ratio range 

*** Detected below the lower limit of quantitation and outside of 20% ratio range 

**** Detected above the upper limit of quantitation 

N/A Analyte not screened for in the Shimadzu’s validated urinalysis method 
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4.2 Summary 

 Final concentrations for each sample were reported based on the results obtained from all 

three (3) analyses. Compounds of interest present in the Shimadzu UFLC-MS/MS method were 

reported in Table 17 as observed. The reasoning behind this decision is the Shimadzu is method is 

validated for urine and has a history of regular, reliable performance screening clinical samples. 

Therefore, while the Shimadzu method is not validated for wastewater samples, the possibility of 

instrumental error on the Waters can be ruled out for the Shimadzu. 

For drugs not present in the Shimadzu method, an average of the two concentrations 

obtained from the Waters UPLC-MS/MS analyses is also reported in Table 17. All final 

concentrations are considered semi-quantitative since neither the Waters nor Shimadzu analysis 

methods are validated for wastewater. Concentrations were rounded up to 2 significant figures. 

Figure 5 contains a breakdown of the number of samples containing at least one drug from each 

class.  

Table 17. Final concentrations for each of the game day samples based on the three analysis. Analytes present in the 

Shimadzu method were reported as detected. Concentrations of analytes present only on the Waters were reported as an 

average of the two analyses. Compounds that were not observed as being present in any of the samples were removed 

from the table for clarity. Concentrations are reported in ng/mL.  

Sample # 7-Aminoclonazepam Amphetamine Benzoylecgonine Cocaine 

1 0.1 0.3 1.3 0.3 

2 - 0.3 1.8 0.4 

3 - 0.4 1.8 1.6 

4 - 0.4 0.5 0.7 

5 - 1.0 6.1 1.3 

6 - 0.9 0.9 0.5 

7 - 0.5 2.1 1.5 

8 - 0.8 1.9 0.4 

9 - 6.5 1.4 1.6 

10 - 0.2 3.5 5.0 

11 - 1.3 2.6 1.3 

12 - 1.0 1.2 1.9 

13 - 0.5 1.1 1.3 

14 - 3.1 2.6 0.9 

15 - 1.4 2.8 4.0 
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Sample # 7-Aminoclonazepam Amphetamine Benzoylecgonine Cocaine 

16 - 2.3 14 0.8 

17 - 0.6 1.7 1.1 

18 - 0.9 1.5 0.9 

19 - 0.8 4.0 1.2 

20 - 2.2 4.6 0.8 

21 - 1.1 2.2 2.0 

22 - 1.7 0.5 0.7 

23 - 3.1 0.4 0.5 

24 - 0.3 0.8 2.5 

25 - 0.2 2.4 11 

26 - 0.8 0.1 0.1 

27 - 2.4 4.8 4.9 

28 - 2.0 0.1 0.1 

29 - 0.2 0.5 0.2 

30 - 0.3 9.8 3.1 

31 - 2.3 0.1 - 

32 - 1.9 0.3 0.1 

33 - 0.5 0.3 0.9 
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Table 17. (continued) 
Sample # Codeine Cyclobenzaprine EDDP Hydrocodone 

1 - - - 0.4 

2 - - - 0.3 

3 - 0.6 - 0.1 

4 - - - 0.1 

5 0.1 - - - 

6 - - - 0.3 

7 - - - - 

8 - - 1.3 0.2 

9 0.4 - - 0.2 

10 - - - - 

11 - - - 0.2 

12 - - - 0.1 

13 - - 0.1 - 

14 0.1 - - 0.1 

15 - - - - 

16 - - - - 

17 - - - 0.1 

18 - - - - 

19 0.1 - - - 

20 0.1 - - 0.8 

21 - - - 1.0 

22 - - - 0.4 

23 - - - 0.5 

24 - - - 0.2 

25 0.2 - - 0.1 

26 - - 0.1 0.3 

27 - - - - 

28 - - - - 

29 0.2 - - 0.2 

30 - - - 0.4 

31 - - - 0.2 

32 - - - 0.4 

33 - - - - 

 
  



62 
 

Table 17. (continued) 
Sample # Hydromorphone Ketamine MDMA Methadone 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

5 - - - - 

6 - - - - 

7 - - - - 

8 0.1 0.3 - 1.1 

9 - - - - 

10 - - - - 

11 - - - - 

12 - - - - 

13 - - - - 

14 - - 0.1 - 

15 - - - - 

16 - - - - 

17 - - - - 

18 - - - - 

19 - - - - 

20 0.1 - - - 

21 - - - - 

22 - - - - 

23 - 0.2 2.1 - 

24 - - - - 

25 - - - - 

26 - - 0.1 - 

27 - - - - 

28 - - - - 

29 - - - - 

30 - - - - 

31 - - - - 

32 - - - - 

33 - - - - 

 
  



63 
 

Table 17. (continued) 
Sample # Methamphetamine Methylphenidate Morphine Norhydrocodone 

1 - - - 0.2 

2 - - - 0.1 

3 - - 0.5 - 

4 - - - - 

5 0.2 - - - 

6 1.7 0.1 - 0.6 

7 - - - - 

8 - - 0.1 0.7 

9 - - - - 

10 - 0.1 - - 

11 0.8 - - - 

12 - - - - 

13 - - - - 

14 0.2 - 0.1 0.1 

15 - - - - 

16 - - - - 

17 - - - - 

18 - - - - 

19 - - - - 

20 - - 1.2 0.1 

21 - - - 0.1 

22 - - - - 

23 - - 0.2 0.1 

24 - - - - 

25 - - - - 

26 - - - - 

27 - - - - 

28 - - - - 

29 - - - - 

30 - - - - 

31 - - - - 

32 - - - - 

33 - - - - 
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Table 17. (continued) 
Sample # Noroxycodone O-Desmethyltramadol Oxycodone Oxymorphone 

1 0.1 - 0.2 - 

2 0.2 - 0.3 0.1 

3 0.1 0.7 0.2 0.1 

4 - - - - 

5 0.1 - 0.1 0.1 

6 0.1 0.7 0.1 - 

7 - 0.3 0.1 - 

8 - - - - 

9 - - 0.1 - 

10 - - - - 

11 - - - - 

12 0.1 - 0.1 - 

13 1.1 3.6 0.2 - 

14 0.2 2.2 0.4 0.2 

15 0.2 0.6 0.3 - 

16 - - - - 

17 0.4 - 0.5 0.1 

18 0.2 - 0.6 - 

19 - - - - 

20 0.5 - 0.4 0.5 

21 0.1 - 0.2 - 

22 - - - - 

23 0.1 - 0.2 - 

24 - 0.6 0.1 - 

25 - 1.1 - - 

26 - - - - 

27 - - - - 

28 - - - - 

29 0.1 0.5 0.2 - 

30 0.1 1.4 0.3 - 

31 - - - - 

32 0.1 - 0.1 - 

33 0.3 - 0.4 - 
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Table 17. (continued) 
Sample # Phentermine Pseudoephedrine Tapentadol Temazepam 

1 0.8 12 - - 

2 0.7 23 - - 

3 4.7 8.6 1.6 0.6 

4 0.3 2.0 - - 

5 2.3 2.3 - - 

6 0.4 4.9 - - 

7 1.3 6.0 - - 

8 0.1 3.0 - 0.1 

9 3.3 23 0.8 0.1 

10 0.9 7.4 - - 

11 0.1 11 - - 

12 0.1 10 - - 

13 - 6.4 - - 

14 1.3 10 - 0.1 

15 2.5 13 - - 

16 4.3 8.7 - - 

17 - 8.4 - 0.6 

18 4.4 4.1 - - 

19 1.5 35 - - 

20 1.7 13 - 0.2 

21 0.1 22 - - 

22 2.0 1.6 - - 

23 3.4 15 - 0.3 

24 1.4 68 - - 

25 0.1 8.4 - - 

26 0.5 12 - - 

27 0.1 6.5 - - 

28 2.6 0.7 - - 

29 1.6 9.9 - - 

30 0.5  4.9 - - 

31 0.3 32 - - 

32 0.9 7.4 - - 

33 1.6 9.8 - - 
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Table 17. (continued) 
Sample # Tramadol Trazadone 

1 - - 

2 1.2 - 

3 3.1 0.1 

4 - - 

5 - 0.2 

6 5.5 - 

7 2.1 - 

8 - - 

9 - - 

10 2.2 0.2 

11 3.7 0.1 

12 - 0.3 

13 14 - 

14 6.2 - 

15 1.2 0.1 

16 0.5 - 

17 0.2 - 

18 0.9 - 

19 0.5 - 

20 0.8 0.1 

21 0.6 - 

22 - 0.1 

23 - 0.1 

24 2.7 0.1 

25 5.2 - 

26 - - 

27 0.6 - 

28 - - 

29 3.4 - 

30 8.3 - 

31 - - 

32 0.5 - 

33 1.5 0.1 
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Figure 5. A bar graph representing the number of samples where at least one drug from a specified class was detected. 
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CHAPTER V 
 

DISCUSSION 

5.1 Interpreting Final Results 

 In order to properly interpret the drug concentrations obtained from this study, the 

relationship between parent drugs and their metabolites should be understood. The presence of 

both the parent drug and any screened for metabolites will prove important in correlating WBE 

data back to the sampled population. Some pharmacologically active metabolites are prescribed 

on their own and thus observed concentrations may not necessarily be correlated to the parent 

compound. Other metabolites can be the product of various different parent compounds. While 

the results of this study provide a proof of concept more than anything else, discussion as to 

which metabolites could be the result of parental drug use only and which may have been 

consumed in the metabolized form is important. 

5.1.1 Opioids 

The consumption of the opiate codeine can sometimes be difficult to differentiate from 

the use of its major metabolite morphine and minor metabolite hydrocodone24,30. Both 

hydrocodone and morphine are metabolized to some extent into hydromorphone27. Hydrocodone 

use can be differentiated from morphine use by the presence of its unique metabolite 

norhydrocodone27.  

Codeine was detected in samples 5, 9, 14, 19, 20, 25, and 29 at concentration below 0.5 

ng/mL. Samples 5 and 19 contained only the parent compound and no metabolites. 
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Samples 14 and 20 also contained codeine’s major metabolite morphine at a similar 

concentration, although the concentration of morphine in sample 20, 1.2 ng/mL, was much higher 

than codeine, 0.1 ng/mL. The metabolite of minor morphine and hydrocodone, hydromorphone, 

was also detected in sample 20. Both samples also contained codeine’s minor metabolite 

hydrocodone and its subsequent metabolite norhydrocodone at similar levels to both codeine and 

morphine, 0.1 ng/mL. This indicated the possibility of metabolite use in both samples, along with 

the consumption of codeine directly. Hydrocodone was also detected in samples 9, 25, and 29 at 

concentrations similar to codeine, indicating the possibility of its use within these samples as 

well.  

Morphine without the presence of codeine was detected in samples 3, 8, and 23. 

Hydromorphone was also detected in sample 8. This indicates that the morphine detected in these 

samples is more likely the result of direct use or as a metabolite of another opioid such as heroin. 

The metabolite of heroin 6-MAM was not detected in any samples and as such the presence of 

morphine cannot be related back to heroin. This could be the result of poor stability for 6-MAM 

within wastewater however. Hydrocodone was detected without the presence of codeine in 

samples 1, 2, 3, 4, 6, 8, 11, 12, 17, 21, 22, 23, 24, 26, 30, 31, and 32 along with norhydrocodone 

in samples 1, 2, 6, 8, 21, and 23. This indicates that hydrocodone is likely present in these 

samples due to its direct consumption than as a product of codeine use within the samples 

population.   

The other opioids screened for within this study are less difficult to differentiate. 

Oxycodone, a semisynthetic opioid, is metabolized into both noroxycodone and oxymorphone31. 

Buprenorphine, another semisynthetic opioid, has the major urinary metabolite norbuprenorphine. 

Methadone’s major metabolite is EDDP24. The first fully synthetic opioid meperidine’s 

metabolite is normeperidine24. The major metabolite of the synthetic opioid fentanyl present in 

urine is norfentanyl32. Norcarfentanil is the major metabolite of carfentanil, but is also the 
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metabolite of remifentanil, a fentalog used medicinally for general anesthesia33. Lastly, O-

desmethyltramadol is the major metabolite of tramadol. 

Oxycodone was detected in samples 1, 2, 3, 5, 6, 7, 9, 12, 13, 14, 15, 17, 18, 20, 21, 23, 

24, 29, 30, 32, and 33. Samples 7, 9, and 24 contained only the parent drug, samples 2, 3, 5, 14, 

17, and 20 contained both noroxycodone and oxymorphone, and samples 1, 6, 7, 12, 13, 15, 18, 

21, 23, 29, 30, 32, and 33 contained only noroxycodone. None of the samples contained only a 

metabolite of oxycodone without the parent compound. Methadone was only detected in sample 8 

while its metabolite EDDP was detected in samples 8, 13, and 26. Tramadol was detected in 

samples 2, 3, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 27, 29, 30, 32, and 33 while 

it’s metabolite O-desmethyltramadol was only detected in samples 3, 6, 7, 13, 14, 15, 24, 25, 29, 

and 30. None of the samples where O-desmethyltramadol was detected did not also contain 

tramadol. The parent compounds buprenorphine, meperidine, fentanyl, and carfentanil and their 

metabolites were not detected in any of the samples.  

5.1.2 Benzodiazepines  

 The majority of benzodiazepines screened for in this analysis do not share metabolites 

with the exception of diazepam. Diazepam is metabolized into nordiazepam and temazepam34. 

Temazepam is then further metabolized into oxazepam35. Only of these 4 analytes screened for in 

the analysis, only temazepam was present in any samples. Some other benzodiazepine 

metabolites included in this screen worth discussing are α-hydroxyalprazolam and 7-

aminoclonzepam. Alprazolam is metabolized into α-hydroxyalprazolam but neither were detected 

in any samples. 7-aminoclonzepam is the metabolite of the benzodiazepine clonazepam, which 

was not included in this studies analysis screen since it is often difficult to detect in urine36. Only 

sample 1 contained a detectable concentration of 7-aminoclonzepam. 
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5.1.3 Stimulants 

 The only non-illicit CNS stimulant metabolite screened for in this study was 

amphetamine, which was detected at some level in every sample. Amphetamine is also the 

metabolite of the illicit substance methamphetamine which was not detected in every sample. As 

such, it’s difficult to draw a conclusion as to the cause of the prevalence of amphetamine 

observed. 

5.1.4 Illicits 

 None of the illicit metabolites screened for can result from numerous parent drugs with 

the exception of amphetamine which itself is a commonly consumed parent compound. 

Methamphetamine was present in samples 5, 6, 11, and 14 while amphetamine was present in 

every sample. Therefore, it can be assumed that at least some of the amphetamine observed in 

samples 5, 6, 11, and 14 was the result of methamphetamine metabolism. The metabolite of 

cocaine, benzoylecgonine, was present in every sample while the parent compound was also 

present in every sample except sample 31.  

5.1.5 Background Samples 

 The background samples were intended to provide a baseline concentration of any drugs 

or metabolites that might be residually present in the wastewater system prior to the UF football 

game. Table 18 provides a useful side-by-side comparison between 3 randomly selected game 

day samples from each sampling location and the background samples corresponding to those 

locations.  

Background 1, 2, and 4 all contained around 0.3 ng/mL of the cocaine metabolite 

benzoylecgonine, indicating the possibility of a similar baseline concentration. As mentioned in 

section 5.2.4, benzoylecgonine was present in every sample, however the majority of samples 

were greater than 0.3 ng/mL. In samples 26, 28, 31, 32, and 33 however, benzoylecgonine was 
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detected at a concentration below 0.3 ng/mL. The parent compound, cocaine, was also detected at 

a concentration of 0.1 ng/mL in background 2. Again, nearly every sample contained a detectable 

concentration of cocaine greater than 0.1 ng/mL with the exception of sample 32. Morphine was 

detected at a concentration of 0.1 ng/mL in both background 2 and 4. Similar concentrations of 

morphine were detected in samples 8 and 14. Tramadol was also detected in background 2 and 4 

at a concentration of 0.1 ng/mL and 0.2 ng/mL respectively. Sample 17 also contained a 

concentration of tramadol at 0.2 ng/mL. Pseudoephedrine was detected in background 2, 3, and 4 

at concentrations 0.4 ng/mL, 0.2 ng/mL, and 1.2 ng/mL respectively. Pseudoephedrine was 

detected in all 33 samples with many containing relatively high concentrations. In fact, only 

sample 28 contained a concentration of pseudoephedrine below 1.2 ng/mL at 0.7 ng/mL. Perhaps 

most concerning was the detection of trazodone in background 2 and 3 at a concentration of 0.1 

ng/mL. This is problematic as every sample containing trazodone was quantified at a low 

concentration, the highest being 0.3 ng/mL. Samples 3, 11, 15, 20, 22, 23, 24, and 33 all 

contained a concentration of trazodone near 0.1 ng/mL. Lastly, only background 4 contained a 

detectable concentration ketamine at 0.1 ng/mL and phentermine at 0.2 ng/mL. Samples 8, 11, 12, 

21, 25, and 27 contained a similar concentration of phentermine while the two samples containing 

ketamine, 8 and 23, were quantified at a slightly higher concentration of 0.3 and 0.2 ng/mL.  

In conclusion, the presence of these compound in the background samples indicates the 

possibility that their detection within the aforementioned samples was the result of a baseline 

concentration rather than active excretion by the sampled population. However, further 

background samples will need to be obtained in future studies to better identify these baseline 

concentrations. Overall, the background concentrations observed when the stadium was not in use 

are far lower than those observed during the UF vs UK game. 
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Table 18. Comparison between selected game day samples 7, 8, and 9 and background samples corresponding to their 

sample collection location. 

Compound Name Sample 7 Background 1 Sample 8 Background 3 Sample 9 Background 4 

Benzoylecgonine 2.1 0.2 1.9 - 1.4 0.3 

Cocaine 1.5 - 0.4 - 1.6 - 

Ketamine - - 0.3 - - 0.1 

Morphine - - 0.1 - - 0.1 

Phentermine 1.3 - 0.1 - 3.3 0.2 

Pseudoephedrine 6.0 - 3.0 0.2 23 1.2 

Tramadol 2.1 - - - - 0.2 

Trazodone - - - 0.1 - 0.1 

 

5.2 Comparison with Other Sources 

 One of the major goals of WWBE is to verify drug abuse data already obtained through 

less reliable sources. One of the best sources of this information comes from SAMHSA, who 

issues annual nationwide drug use reports broken down from the national level to regional and 

state levels. Table 18 contains the illicit drug abuse data released in SAMHSA’s 2016-2017 

annual report for the state of Florida4. The most reportedly abused drug is cannabis, which was 

not analyzed for in this study. However, the next most reportedly misused drug was pain 

relievers. Many of the opioids detected in the 33 waste water samples analyzed, such as 

hydrocodone, oxycodone, and tramadol, are commonly prescribed for pain relief. While 

conclusions cannot be drawn about the nature of opioid consumption among the stadium 

attendees present during the UF home game, their presence in the waste water does not conflict 

with the SAMHSA report. Additionally, cocaine was the second most commonly reported illicit 

drug abused. Cocaine and its metabolite benzoylecgonine were detected in all 33 of the game day 

waste water samples. This again appears to agree with the SAMHSA report. Lastly, 

methamphetamine followed by heroin were listed after cocaine as drugs abused by the drug 

abusers polled by the surveys used in SAMHSA’s report. Methamphetamine was detected in 4 

samples, alongside its metabolite amphetamine which was detected in every sample. This would 

again imply that some methamphetamine use is occurring among the attendees excreting drugs 
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and metabolites into the stadium waste water system. No 6-MAM, the metabolite of heroin, was 

detected in the analyzed samples but the metabolite of 6-MAM, morphine was present. While the 

presence of morphine does not necessarily indict heroin use, its presence at least does not rule out 

the possibility of heroin use and thus does not conflict in any way with the SAMHSA report.  

Table 19. Select data obtained from the SAMHSA 2016-2017 annual drug use report for the state of Florida4.  

Measure 
Percentage of Users 12 

Years of Age or Older 

Past Year Cannabis Use 13.69 

Past Year Misuse of Pain Relievers 4.18 

Past Year Cocaine Use 1.96 

Past Year Methamphetamine Use 0.47 

Past Year Heroin Use 0.29 

 

5.3 Issues Encountered 

5.3.1 Validation of Waters HPLC-MS/MS Method 

 During the method development stage on the Waters HPLC-MS/MS, validation of 

calibration linearity was attempted on 2 separate occasions with no success. According to OSU-

FTTL validation guidelines, a minimum of 6 calibration curves containing at least 6 concentration 

levels evenly spaced over the entire quantification range are required for validation. On both 

occasions multiple analytes contained less than 6 calibration points within the 20% concentration 

accuracy range while those outside that range were excluded.  

 There are three possible reasons for these inconsistencies. The first possibility is 

instrumental error either within the HPLC or MS/MS. After developing a working 

chromatographic and quantitation method on the Waters, numerous instrumental errors occurred 

and were addressed. The first major problem presented itself in the form of RT shifts between 

each analysis run and was diagnosed as a LC pump failure. After replacing the pump hardware 
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this issue disappeared. Later during the first validation attempt some analytes would be missing 

from the 400c calibrator while be present in the other calibrators. This issue was partially 

addressed by updating the instruments software, replacing a faulty guard column, and adjusting 

the MS/MS tune file. However, similar issue would still occasionally occur during subsequent 

analyses. Misinjection by the autosampler was ruled out by reinjecting samples and by the fact 

that only select analytes were not being detected. Developing a method on a different instrument 

such as the Shimadzu 8040 would help eliminate this as a possible source of error.  

The next possibility is SPE error. There were several attempts to troubleshoot the SPE 

method with some success. Originally the SPE procedure developed for this study contained no 

pre-conditioning step because the SPE cartridges were said to be designed without a need for 

preconditioning. After speaking with SPEware technicians the preconditioning step described in 

Chapter III was introduced. After testing the updated solid phase extraction method, less 

variability was observed, but it was still present. The second variability in the SPE process was 

that of flow rate. While uniform pressure was applied to each cartridge during sample addition via 

the positive pressure manifold, variability in flow rate occurred, even among the calibrators 

which contained no particulate debris. It’s possible that the use of a different SPE cartridge could 

address this issue. 

Finally, a third possible cause of variability in calibrator concentrations post extraction 

could be human error. There are several opportunities within the extraction and analysis process 

to introduce human error but the most likely source is during solution preparation and SPE. While 

this is difficult to control for, an additional extraction on the same system showed that the results 

were consistent among multiple analysts. Therefore, while this did appear to reduce some of the 

observed variability, many analytes still required one or more calibrators and QCs to be excluded 

from both the Waters and Shimadzu analysis.  
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5.3.2 Cannabinoids 

 As seen in Tables 8 and 9 of chapter III, the illicit compound THC and its major 

metabolite THCA were originally included in the LC-MS/MS method developed of this study. 

However, post extraction concentrations were observed to be very low with only the top three 

calibrators containing a detectable peak, often not within specified parameters. It’s likely that 

both THC and THCA are either lost at some point during the SPE procedure or retained by the 

cartridge sorbent during the elution phase. The acidification of the wastewater samples prior to 

addition and of the sorbent during preconditioning were done partially in an attempt to address 

this, with little success. Collecting WWBE data on THC and THCA, both compounds found 

within cannabis, is desirable because of the recent decriminalization of this schedule I substance 

at the State level. One proposed way to address the inability to extract these analytes using the 

current SPE method is to develop a separate SPE or liquid-liquid extraction (LLE) method to 

target both compounds.   

5.4 Future Work and Conclusions 

 Future work on this study will focus on developing a validated LC-MS/MS method, an 

extraction procedure for cannabinoids of interest, and ways to relate observed concentrations of 

the analytes of interest back to the sampled population. Additionally, glucuronide metabolites 

were not included in this studies analysis panel and no glucuronidase enzymes were added prior 

to SPE of the wastewater samples. A test was performed to see if the SPE procedure would cleave 

any glucuronide metabolite by extracting and analyzing a water sample containing 3 glucuronide 

metabolite standards. This glucuronide sample was extracted alongside an extracted positive 

control, prepared from the calibration stock solution, and negative water control. These three 

extracted samples were analyzed alongside an unextracted glucuronide water sample on the 

Shimadzu 8040. The results of this test revealed that the glucuronides had not been hydrolyzed 
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and were not detectable. Therefore, future studies should also explore the possibility of cleaving 

any glucuronides likely present in wastewater.  

 In conclusion, the hypothesis of this study, that drug and metabolite concentrations would 

be elevated during times when the football stadium is in use when compared to times when it 

isn’t, was confirmed. Overall this work showed that a LC-MS/MS analysis method can be 

developed for a large panel of drugs of abuse to screen wastewater for the purposes of WWBE. 

Furthermore, this study also demonstrated that wastewater samples obtained directly from the 

wastewater system during football games is a promising way to establish drug consumption 

trends within the attending population. The relative success of this study in identifying 26 of the 

56 compounds of interest at a semi-quantitative in at least one of each of the 33 wastewater 

samples analyzed should lay the foundation for future studies of this kind.
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