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Abstract: Pinyon jays (Gymnorhinus cyanocephalus) are an avian species of conservation 
concern in the southwest U.S. Due to habitat elimination and degradation, pinyon jay 
numbers have decreased approximately 3.5% per year since 1960. Pinyon jay 
reproductive rates are low, making it difficult for populations to recover. While numerous 
studies on pinyon jays have been conducted in ponderosa pine (Pinus ponderosa) forest, 
research has only recently taken place in pinyon pine (Pinus edulis) and juniper 
(Juniperus monophylla) woodland. Therefore, my objectives were to investigate pinyon 
jay flock movement, nest site selection, nest fate, and renesting in pinyon-juniper habitat. 
I trapped and affixed VHF radio transmitters to pinyon jays on Kirtland Air Force Base 
(KAFB) in central New Mexico from December to April in 2017 and 2018. I used radio 
telemetry to compare seasonal flock movements and core activity areas as well as find 
pinyon jay nesting colonies. Habitat surveys that recorded vegetation type, species, size, 
and foliage cover were performed at every nest site (n=42) as well as a similar number of 
randomized locations (n=41) within pinyon-juniper habitat. Movement data was analyzed 
using kernel density estimates to identify core activity areas. Nest site selection habitat 
data were compared to habitat at random sites using generalized linear models (GLMs) 
evaluated with Akaike’s Information Criterion corrected for small sample size (AICc). 
Variables that affected nest fate were used in GLMs with a logistic exposure function, 
then evaluated using AICc. 
 
Results suggest that there were 2 flocks on KAFB and spatial analyses should be 
conducted for each flock to determine accurate home ranges. Pinyon jays selected nest 
sites with fewer dead juniper trees and nest trees that were larger than surrounding trees 
in the same survey plot. Nest fate models did not perform better than the null model. 
Pinyon jays in this study did not renest as much as in ponderosa pine forest, perhaps due 
to lack of food and water availability. Furthermore, pinyon jays did not nest in satellite 
colonies as in other studies. Management recommendations are to remove smaller, less 
healthy trees in pinyon jay habitat when tree thinning occurs and leaving larger, healthier 
trees. 
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CHAPTER I 
 

 

INTRODUCTION 

 

The western United States is a biodiversity hotspot that has gone through dramatic landscape 

changes since European colonization and will continue to transform with human development and 

impacts from climate change (Lanner 1981, Romme et al. 2009, Grunau et al. 2017, Jones et al. 

2019). This region has been altered by urbanization, natural resource extraction, farming, 

livestock production, and invasive species (Lanner 1981, Marzluff and Balda 1992, Romme et al. 

2009, Grunau et al. 2017, Jones et al. 2019). Specifically, pinyon and juniper woodlands have 

been changing since the 18th century, with some areas being eliminated for human development, 

and remaining areas encroaching on shrubland and infilling existing woodland stands (Lanner 

1981, Marzluff and Balda 1992, Romme et al. 2009, Grunau et al. 2017, Jones et al. 2019). 

Consequently, land managers must be cognizant of these trends to appropriately maintain 

populations of sensitive species such as gray vireos (Vireo vicinior) and mule deer (Odocoileus 

hemionus; Romme et al. 2009; Bombaci and Pejchar 2016). 

Pinyon jays (Gymnorhinus cyanocephalus) are endemic to the western U.S. and have experienced 

large population declines in the past 70 years due to habitat loss and degradation (Marzluff and 

Balda 1992; Balda 2002; Johnson et al. 2017, 2018; Boone et al. 2018). Pinyon jay populations 

have declined by approximately 3.5% per year between 1966 and 2015 (Rosenberg et al. 2016, 
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Sauer et al. 2017). They are listed as a Department of Defense Species at Risk, a New Mexico 

Partners in Flight (NMPIF) Level 1 Species of Concern, a Species of Greatest Conservation Need  

by the state of New Mexico, and are listed on the North American Partners in Flight Watch List 

(New Mexico Department of Game and Fish 2006, NMPIF 2007, Johnson et al. 2011, Rosenberg 

et al. 2016). Historically, large tracts of woodland within pinyon jay range have been clear-cut by 

chaining for mining, agriculture, wildfire fuel reduction, and urban development (Lanner 1981, 

Balda 2002, Jones et al. 2019). Stands of remaining habitat have since expanded and infilled to 

create dense woodlands which recent studies have suggested may be undesirable or unideal 

pinyon jay habitat (Johnson et al. 2017, Boone et al. 2018). Furthermore, pinyon trees (Pinus 

edulis) have been experiencing widespread mortality and degradation from threats such as insect 

infestation, drought, and climate change (McDowell et al. 2016, Johnson et al. 2017, Boone et al. 

2018). Therefore, research must focus on identifying, preserving, and managing ideal habitat for 

pinyon jays and other wildlife in a rapidly changing landscape.  

Pinyon jays are a non-migratory species and forage year-round over home ranges up to 64 km2 

(Balda 2002). Pinyon jays are known for their mutualism with pinyon pine trees, having specially 

adapted bills for smashing and prying apart pinyon cones in order to access seeds (Lanner 1981, 

Marzluff and Balda 1992, Balda 2002). They can collect approximately 40 seeds in their 

expandable esophagi and transport them up to 11 km away to a caching ground (Ligon 1978, 

Vander Wall and Balda 1981). Seeds are buried or placed in crevices to be retrieved by pinyon 

jays at a later date (Marzluff and Balda 1992, Balda 2002, Wiggins 2005). However, not all of 

these seeds are recovered, which allows the buried seeds to germinate (Lanner 1981). The 

interaction between pinyon jays and pinyon trees may determine the rate at which pinyon habitat 

can shift and regenerate (Wiggins 2005, Grunau et al. 2017). Therefore, preserving pinyon jays 

and their habitat can be a management technique beneficial to pinyon-juniper woodlands and 

their residents. 
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Pinyon jays live in flocks of between 50–300 individuals, the size of which can change seasonally 

(Balda and Bateman 1971, Ligon 1971, Marzluff and Balda 1992, Balda 2002). In winter, all 

individuals in a flock forage together across the entirety of their home range (Balda and Bateman 

1971, Ligon 1971, Marzluff and Balda 1992, Balda 2002). When breeding season begins, flocks 

subdivide into smaller groups to establish breeding colonies (Balda and Bateman 1971, Ligon 

1971, Marzluff and Balda 1992, Balda 2002).  

Breeding pairs of pinyon jays whose nests fail due to predation, extreme weather, or lack of food, 

will often try to build a new nest (Balda and Bateman 1971, Marzluff and Balda 1992, Balda 

2002). In Flagstaff, Arizona, groups of unsuccessful nesters build new nests away from the 

original colony in a smaller group known as a “satellite” colony (Balda and Bateman 1971, 

Gabaldon 1978, Marzluff and Balda 1992, Balda 2002). If nests in this satellite colony fail, the 

breeding pairs will move elsewhere and establish yet another satellite colony (Balda and Bateman 

1971, Marzluff and Balda 1992, Balda 2002). In Arizona, pinyon jays will continue trying to 

produce a brood in subsequent satellite colonies until they either successfully fledge young, or 

stop trying for the season (Balda and Bateman 1971, Marzluff and Balda 1992, Balda 2002). 

However, renesting and satellite colonies occurred less frequently in central New Mexico than in 

Arizona, perhaps due to less precipitation and food availability (Ligon 1978). 

In the late summer, pinyon jays start to aggregate into their full-sized flock and forage together 

again (Balda and Bateman 1971, Ligon 1971, Marzluff and Balda 1992, Balda 2002). In fall, 

pinyon jays will wander widely, even outside of their traditional home range, in search of pine 

crops from masting pinyon trees or other conifers (Marzluff and Balda 1992, Balda 2002, 

Wiggins 2005). Sometimes fall flocks will encounter other flocks of pinyon jays with which they 

will temporarily associate, travel, and forage (Marzluff and Balda 1992). In the winter, pinyon 

jays will move back to their traditional home range to begin their yearly cycle again (Marzluff 

and Balda 1992, Balda 2002). 
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While research on pinyon jays has been fundamental to characterization of the species natural 

history, it is important to note that most of it was conducted in just one study site in Flagstaff, 

Arizona and may not be representative of pinyon jays across their range (Marzluff and Balda 

1992, Balda 2002, Great Basin Bird Observatory 2013, Boone et al. 2018). Pinyon jay range 

extends from central Oregon to Montana in the north and from the Mexican states of Baja 

California to Chihuahua in the south (Marzluff and Balda 1992). The vegetation in Flagstaff is 

dominated by ponderosa pine trees (Pinus ponderosa) and during nest site selection studies there, 

researchers found that pinyon jays nested almost exclusively in ponderosa pine (Gabaldon 1978). 

However, much of pinyon jay species range is located within pinyon-juniper woodland habitat, 

and researchers or land managers may not apply findings from Flagstaff studies (Marzluff and 

Balda 1992, Balda 2002, Wiggins 2005). Furthermore, pinyon jay nests in Flagstaff frequently 

failed due to cold weather and heavy snowfall during the beginning of breeding season. However, 

much of pinyon jay range is located in arid, semi-desert environments that do not experience the 

same magnitude of winter precipitation (Clark and Gabaldon 1979, Marzluff 1988, Balda 2002). 

In the last decade, more research has been conducted in different areas of pinyon jay range. 

Studies in Nevada and Idaho have investigated habitat use of pinyon jays in pinyon-juniper 

woodlands (Great Basin Bird Observatory 2013). In New Mexico, some studies have examined 

nest site selection of pinyon jays at both small and large scales in pinyon-juniper habitat (Johnson 

et al. 2016, 2017). 

In addition to habitat use, pinyon jay behavior in other regions may vary from studies in Arizona. 

Satellite colonies occur in Flagstaff, Arizona, but studies in New Mexico suggest that pinyon jays 

there do not renest frequently and other studies have not documented satellite colonies (Balda and 

Bateman 1973, Ligon 1978, Marzluff and Balda 1992, Johnson et al. 2016). It is unclear if 

satellite colonies occur in New Mexico. Pinyon jay flock sizes and group dynamics are also 

difficult to determine because pinyon jays frequently alter their grouping. Different flocks can 
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merge until winter, and flocks that inhabit adjacent home ranges can be difficult to distinguish 

(pers. obs). The timing of life history events, such as establishing breeding colonies and searching 

for seeds, is variable, especially in a region where rainfall and food production are patchy (Ligon 

1971, Marzluff and Balda 1992). More study is needed on pinyon jay flock composition and 

satellite colonies outside of Arizona.  

My study was conducted on Kirtland Air Force Base (KAFB) in central New Mexico. Kirtland 

Air Force Base contains 77 km2 of pinyon-juniper woodland habitat (Johnson et al. 2016). The 

area is largely undeveloped. Previous studies conducted at KAFB have documented locations of 

pinyon jays, mapped nesting colonies, conducted nest site selection analyses, and delineated 

habitat (Johnson et al. 2016, 2017). These studies suggested that pinyon jays on KAFB belong to 

one large flock that regularly subdivides to breed and are reliant on pinyon pines for food and 

nesting substrate. For this study, I wanted to further investigate the number of pinyon jay flocks 

on base, as well as nest site selection, nest fate, and renesting. 

After this introduction, my second chapter will be a comparison of pinyon jay flocks between 

their pre-breeding and breeding season home ranges. I will use this information to determine if 

the two groups of pinyon jays on base are separate flocks or just one, large flock that subdivides 

during the breeding season to establish separate colonies. My third chapter will examine nest site 

selection to determine if pinyon jays prefer nesting in areas with specific habitat composition. My 

fourth chapter will analyze the effects of habitat composition on pinyon jay nest survival, as well 

as investigate the potential existence of satellite colonies in central New Mexico. 
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CHAPTER II 
 

 

PINYON JAY MOVEMENT AND FLOCK DYNAMICS ON KIRTLAND AIR FORCE BASE, 

CENTRAL NEW MEXICO 

 

 

ABSTRACT 

Pinyon jay (Gymnorhinus cyanocephalus) populations continue to decline despite increased 

management across their range. Their unique social structure requires that researchers identify 

pinyon jay flocks and delineate home ranges for future management. Kirtland Air Force Base 

(KAFB) in central New Mexico manages pinyon-juniper habitat containing one or more groups 

of pinyon jays. My objectives were to determine if pinyon jays on KAFB belonged to one large 

flock that divided into discrete breeding colonies or multiple flocks that inhabited separate 

regions. I mounted VHF radio transmitters on pinyon jays to record their movements from 

January through July in 2017 and 2018. There were two major flocks of pinyon jays on KAFB 

comprising approximately 65 individuals each that subdivided into smaller, spatially-separate 

breeding colonies. The number of breeding colonies each year was likely related to availability of 

food and water. I created kernel density estimates to determine home ranges of the two flocks in 

breeding and non-breeding seasons. Previous studies on KAFB performed spatial analyses of 

both flocks together as one group,  
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however, my research indicates that home range estimates were overestimated by conducting 

spatial analyses in this manner. This study demonstrates that it is critical to determine the number  

of pinyon jay flocks to correctly delineate pinyon jay home ranges and the habitats they occupy. 

Seasonal home range findings can inform future habitat management on KAFB. 
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INTRODUCTION 

Accurate delineation of animal home ranges is necessary to create appropriate research and 

management plans. Land management plans in the southwestern United States have included 

efforts to monitor and conserve pinyon jays (Gymnorhynus cyanocephalus) because they are a 

species of concern in some regions such as New Mexico (Grunau et al. 2017, Boone et al. 2018). 

However, a majority of the research on pinyon jays comes from one flock in Flagstaff, Arizona, 

and only recent efforts have described pinyon jay ecology in New Mexico (Johnson et al. 2016, 

2017; Boone et al. 2018). Information about the Flagstaff flock is unique to the habitat it resides 

in, the number of flock members in it, and the number of adjacent flocks nearby. Because 

differences in resource availability would necessarily alter their ecology, using studies of this 

flock to predict home ranges and activity areas of pinyon jays in different regions may result in 

improper management efforts. 

Pinyon jays are a nomadic, non-migratory species whose habitat is increasingly being degraded 

by urbanization, clear cutting of trees, insect infestation, grazing practices, and an increase in 

wildfires (Marzluff and Balda 1992, Balda 2002, Bombaci and Pejchar 2016, Johnson et al. 2018, 

Boone et al. 2018). Pinyon jays have a mutualist relationship with pinyon pine (Pinus edulis), 

acting as consumers and dispersers of pinyon seeds (Lanner 1981, Marzluff and Balda 1992, 

Balda 2002). This species is distinctive due to the large size of their home ranges, as well as the 

sociality and cohesiveness of flock members. Pinyon jays live in flocks of 50–300 individuals 

that travel as far as 25 km per day across home ranges that can be 1,600 ha–6,400 ha (Balda and 

Bateman 1971, Marzluff and Balda 1992, Balda 2002). A flock is described as a group of pinyon 

jays that inhabit the same annual home range (Balda and Bateman 1971, Marzluff and Balda 

1992, Balda 2002). A flock may subdivide into smaller breeding colonies, but these are still 

considered part of the same flock because they reassemble into the full group after breeding 

(Balda and Bateman 1971, Marzluff and Balda 1992, Balda 2002, Johnson et al. 2011). Flocks 
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may interact with other flocks for a short time, especially in the fall while searching for seed 

crops, but will eventually return to their respective home ranges (Balda and Bateman 1971, 

Marzluff and Balda 1992, Balda 2002). Areas of regular activity, known as core areas, change 

depending on breeding status or food availability (Balda and Bateman 1971, Shank 1986, 

Marzluff and Balda 1992, Kenward 2001, Johnson et al. 2011). Successful conservation of 

pinyon jays must take into account the number of flocks in an area, number of flock members, 

home range size, location of core areas, and changes in these factors.  

Previous pinyon jay studies on Kirtland Air Force Base (KAFB) in central New Mexico initially 

found evidence of two groups inhabiting distinct areas (Johnson et al. 2011). Further study 

revealed that these groups sometimes aggregate during the non-breeding season, although the 

timing, location, and circumstances were not well known (Johnson et al. 2011, 2016). These 

studies of flock composition relied on telemetry observations of radio-tagged pinyon jays (n=14) 

over three years and counting the size of groups during pinyon jay sightings (Johnson et al. 2011, 

2016). It was assumed that pinyon jays on KAFB represented one large flock that subdivided into 

two large subgroups during the breeding season, however, due to the difficulty of finding and 

following pinyon jays across mountainous terrain, data on the autumnal behavior of pinyon jay 

flocks on base are lacking (Johnson et al. 2011, 2016). It is unclear if the groups of pinyon jays 

were independent flocks that were sometimes found together or if the groups comprised one 

dynamic flock that subdivided during breeding season (Johnson et al. 2011).  

Therefore, my objective was to determine if pinyon jays on KAFB belonged to one large flock 

that divided into discrete breeding colonies during breeding season, or if there were multiple 

flocks on base that inhabited separate regions. Furthermore, I documented and compared seasonal 

pinyon jay movements in the non-breeding and breeding season to inform potential management 

decisions in the future. This study is instructive for researchers and land managers working in 
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similar ecoregions to assess pinyon jay flock identity and how it affects home range spatial 

analyses in order to better allocate management resources in vital pinyon jay areas. 

METHODS 

Study Area 

This study occurred in 2017–2018 on KAFB in central New Mexico. Kirtland Air Force Base is 

located south of Albuquerque, New Mexico and encompasses 210 km2. Elevation ranges from 

5200 m–8000 m from scrub steppe in the west to juniper (Juniperus monosperma) savanna, 

pinyon-juniper woodlands, and ponderosa pine (Pinus ponderosa) forest at progressively higher 

elevations to the east (KAFB 2012). The majority of pinyon jay habitat on KAFB is located 

within a location known as the Withdrawn Area in the east which includes 77 km2 of pinyon and 

juniper habitat (Johnson et al. 2016).  

Data Collection  

Preliminary searches for pinyon jays were conducted on KAFB between 1 March–1 May in 2016 

(McMurry et al. 2016). Point counts were conducted with playback of pinyon jay vocalizations at 

50 randomized points spaced at least 500 m apart in pinyon-juniper habitat on base (Ralph et al. 

1993, Lor and Malecki 2002, McMurry et al. 2016). During these surveys observers witnessed 

groups of birds comprising 1–35 individuals. Additionally, a group of pinyon jays was observed 

with over 100 members in August 2016 (McMurry et al. 2016).  

In 2017, I conducted playback surveys for pinyon jays to locate as many groups as possible. 

These road-based surveys were performed along every accessible road in the wooded areas on 

base. I found two groups of pinyon jays approximately 5.1 km apart separated by a mountain 

range. Because of their grouping during surveys, I decided to refer to the two groups as 

independent flocks for clarity. One flock was in the south of KAFB and one was in the north 
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(hereafter Starfire flock and Madera flock, respectively). I found no other flocks despite 

continued surveys throughout 2017.  

I conducted trapping from 20 January–2 March in 2017 and from 10 January–22 March in 2018 

to band and radio-tag pinyon jays. Trapping efforts were divided between the Starfire flock and 

the Madera flock. Presence of bird feeders maintained by a gate guard at the Starfire Optical 

Range (SOR) in the southern portion of the base impacted our capture efforts for the Starfire 

flock. The Starfire flock regularly visited feeders in the non-breeding season. I used baited, walk-

in style pigeon traps near the feeders at this location (Johnson et al. 2011, 2016; Great Basin Bird 

Observatory 2013). In the north of KAFB, no feeders were permanently established. In 2017, I 

used a variety of techniques to catch pinyon jays from the Madera flock, including baiting with 

pinyon seeds, using playback calls to lure pinyon jays to walk-in traps and mist-nets, and using 

predator decoys to instigate mobbing behavior near mist-nets (Marzluff and Balda 1992; Johnson 

et al. 2011, 2016). I attempted to lure and trap pinyon jays in areas where I had observed them 

regularly in large numbers, including near breeding colonies. These methods were not effective, 

likely due to our baiting techniques and the wariness of pinyon jays. Because I was unable to 

sufficiently disguise mist-nets in open woodlands, they detected and avoided the nets. Pinyon jays 

in Madera Canyon did not eat from tube feeders like the Starfire flock. Furthermore, our inability 

to replenish bait on the ground with sufficient frequency made it difficult to passively attract 

pinyon jays to traps. In 2018, I established an automatic feeder stocked with peanuts, black oil 

sunflower seeds, millet, and pinyon seeds in a location where I had regularly observed the 

Madera flock. The feeder dispersed seed onto a raised platform which pinyon jays in the area 

discovered and began visiting regularly. Afterwards, I was able to successfully capture pinyon 

jays with walk-in traps. This project was approved by the Oklahoma State University Animal 

Care and Use Committee (Protocol #AS1516). 
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I monitored the traps from a vehicle and removed trapped birds immediately. Birds were placed 

in a cloth bag until they were ready to be processed. I applied a serially-numbered USGS 

aluminum band and a unique combination of three plastic color bands to the legs of trapped 

pinyon jays. I then recorded wing chord, tail length, age, sex, feather wear, feather molt, body 

molt, fat score, presence of cloacal protuberance, presence of brood patch, tarsus length, mass, 

bill height, bill length, and bill depth (Johnson 1988, Pyle 1997, Balda 2002). Measurements 

collected were potential indicators of age, sex, breeding status, and relative health which were 

important in determining flock composition and deciding how to allocate transmitters among 

individuals. Pinyon jays were classified as either second-year or after-second-year in age by 

examining the contrast between the primary and secondary coverts (Pyle 1997). Pinyon jays are 

monomorphic and difficult to distinguish in the field, but females can be smaller, have smaller 

mandibles, and are typically more dully colored than males (Johnson 1988, Pyle 1997). While 

some displayed breeding characteristics such as a cloacal protuberance or brood patch, I only 

found these on two individuals later in the season after the majority of banding had been 

conducted (Pyle 1997). Therefore, I took a blood sample to genetically assess sex (Fair et al. 

2010). I used a 26-gauge beveled needle to puncture the brachial vein of pinyon jays and 

collected blood in capillary tubes. Blood was transferred to a blood card and sent to a laboratory 

for analysis (Animal Genetics, Inc., Talahassee, FL). I applied radio transmitters to suspected 

female pinyon jays by tying a 2.0 g tail-whip VHF radio transmitter (Holohil, Inc., Carp, ON, 

Canada) to the top of the two central rectrices and reinforcing it with cyanoacrylic glue 

(Yaremych et al. 2004; Johnson et al. 2011, 2016). 

In 2017, I banded 34 adult pinyon jays. Three were from the Madera flock while 31 were from 

the Starfire flock. DNA tests indicated that 16 individuals were male and 13 were female. 

Difficulties drawing blood and early release of stressed individuals prevented us from collecting 

blood from 5 pinyon jays which were therefore of unknown sex. I placed 14 transmitters on 13 
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pinyon jays (one transmitter was replaced) that I believed were likely to be females (Balda 2002, 

Johnson 1988). DNA tests revealed that 9 individuals with transmitters were females and 4 were 

males.  

In 2018, I banded 68 adult pinyon jays with 39 from the Madera flock and 29 from the Starfire 

flock. DNA tests indicated that 38 were male, 25 were female, and 5 were of unknown sex. I 

placed transmitters on 51 pinyon jays. While I tried to primarily place transmitters on likely 

females or individuals identified as female from previous DNA tests, I was less discriminate 

about this criterion than in 2017 to deploy as many transmitters as possible. This allowed me to 

track pinyon jays as they subdivided into progressively smaller groups throughout breeding. I 

deployed 24 transmitters on females, 25 on males, and 2 on individuals of unknown sex. Five 

transmitters that fell off during the project were redeployed on other individuals.  

Observers conducted radio telemetry surveys to search for radio-tagged individuals at least twice 

per week. Telemetry was conducted using omnidirectional telemetry, homing, and triangulation 

using an R-1000 handheld telemetry receiver (Communications Specialists, Inc., Orange, CA; 

Millspaugh et al. 2012). Observers used a short omnidirectional antenna to identify individuals in 

visible flocks at close range (< 200 m). Because of the short range of the omnidirectional antenna, 

the variability of elevation, and the strong tendency for pinyon jays to move in flocks, I was 

confident that individuals were correctly identified in this way.  Homing telemetry was conducted 

with a 3-element yagi. When an observer identified a signal from an individual pinyon jay, they 

slowly scanned the yagi across the horizon to identify the strongest signal coming from the 

transmitter (Millspaugh et al. 2012). The observer then walked in the direction of the strongest 

signal until encountering the individual with the transmitter (Millspaugh et al. 2012). Finally, 

triangulation was used in cases where observers could not see pinyon jays and transmitter signals 

did not indicate that they were nearby. After initially detecting pinyon jays using a yagi antenna, 

observers estimated the bearing of the strongest signal to determine where to position two 



18 

 

observers for an official reading (Millspaugh et al. 2012). Ideal positioning of observers was such 

that their potential bearings would intersect at an angle that would provide the least error (25°–

155°), considering factors such as topography and radio interference from roadside electrical 

transformers (Springer 1979, Millspaugh et al. 2012). Two observers stood at separate locations, 

took bearings on each transmitter, and recorded bearings of the strongest signals (Millspaugh et 

al. 2012, Millspaugh et al. 2012). Locations of individuals were inferred from the intersection of 

the two bearings using ArcMap 10.2 (ESRI, Inc., Redlands, CA). Because of the inherent error in 

estimating where triangulated birds were, I calculated a spatial confidence interval, in this case a 

circle. The resulting points were located within a 95% confidence circle with a radius of 0.33 km 

(SE = 0.026 km) and an area of 0.34 km2 derived from the following equation from Withey et al. 

(2001): 

radius = predicted mean linear error + (1.96)(SE of mean linear error)   

Considering the extreme mobility of pinyon jays, a confidence circle of this size was appropriate 

for triangulation estimations and the points were unaltered before subjecting them to analysis. 

Because pinyon jays usually travel in flocks, I consolidated individual location points of pinyon 

jays that were detected in the same place and time to avoid overweighting spatial analyses. This 

was critical because transmitters stopped functioning or fell off as the season progressed, and I 

did not want to miscount the individuals in a flock because there were fewer transmitters to detect 

later in the season. Furthermore, because trapping was inadequate for the Madera flock in 2017, I 

used visual observations of pinyon jay flocks to supplement locational data in that area that year. 

Locations of flocks were entered into analysis as one data point similarly to group detections of 

transmetered pinyon jays. 

Locations were divided for comparison by flock, year, and season (breeding and non-breeding). 

Season was determined by estimating the date of first egg laid in each nest in a flock and 
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averaging this value for each flock. We began searching for nests when transmetered females 

stopped visiting the feeders in mid-March, indicating they were beginning to construct nests. First 

egg laying dates were estimated by aging chicks in the nest then backdating by the number of 

days in nest (≤ 17), the number of days for incubation (21), and the number of days between the 

first laid egg and when the female begins to brood (3) (Marzluff and Balda 1992, Balda 2002). 

This was likely not affected by the clutch size as pinyon jays rarely lay fewer than three eggs and 

begin incubating after laying the third egg (Marzluff and Balda 1992, Balda 2002). Average first 

lay dates in 2017 were 5 March (Madera flock; N=6) and 12 March (Starfire flock; N=6). 

Average first lay dates in 2018 were 1 April (Madera flock; N=5) and 16 March (Starfire flock; 

N=4). 

Data Analysis  

I created minimum convex polygons (MCPs) using the Minimum Bounding Geometry tool in 

ArcMap 10.2. I inputted all location points from flock sightings, omnidirectional telemetry, and 

triangulation. Minimum convex polygons define home range boundaries but do not provide 

information about relative densities or core areas (Kernohan et al. 2001, Withey et al. 2001). 

Therefore, I used the Geospatial Modeling Environment tool suite (Beyer 2012; R Version 3.4.1, 

www.r-project.org, accessed 10 Sep 2017) to create kernel density estimates (KDEs). These are 

useful for estimating the relative activity levels of pinyon jays across their home range (Kernohan 

et al. 2001, Johnson et al. 2016). Kernel density estimates create a raster from point data which 

contain an estimate of the spatial density of those points (Fotheringham et al. 2000). I used a 

fixed kernel with bandwidth = 1000, kernel = quartic (biweight), cell size = 30, and scaling factor 

= 1000000 (Johnson et al. 2011, 2016). I selected a fixed bandwidth because it closely resembles 

the best performing adaptive kernel, the plugin kernel, but is less sensitive to outliers and 

clumped data points (Kernohan et al. 2001, Kie et al. 2010). The lower sensitivity to clumped 
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data points was necessary because many points were taken at feeders where pinyon jay regularly 

visited.  

To identify the most important areas within pinyon jay home ranges, KDEs were divided into 

different activity intensity levels using a percentage volume contour (PVC) isopleth tool (Beyer 

2012). Percentage volume contours calculate an area containing a specified percentage of volume 

in a KDE raster (Kernohan et al. 2001). The resulting polygon indicates the probability of a cell 

located within having a value that is equal to or greater than the specified range. For example, the 

area of 95 PVC comprises 95% of the total value from a KDE, and any cell in the polygon has a 

density probability that is within 95% of the total range of values (Kernohan et al. 2001). Kernel 

density estimates were separated into 50, 90, and 95 PVC groups that encompass a similar 

proportion of the total detection points (Edenius et al. 2004, Yaremych et al. 2004, Vigallon and 

Marzluff 2005, Lorenz and Sullivan 2009, Johnson et al. 2011). 

RESULTS 

Pinyon jays were located mostly on KAFB, but sometimes went off base to breed or forage (Figs. 

2.1–2.3). Pinyon jays self-grouped into two distinct flocks during the study. Each flock split into 

at least two smaller groups during breeding season. Individuals in the Madera flock remained 

primarily in the northern region of KAFB and individuals in the Starfire flock were found in the 

southern region of KAFB. These two groups comprised approximately 60–75 members each in 

the non-breeding season. Shortly before breeding season started I found pinyon jays in smaller 

groups of 10–30 individuals. Each breeding colony was established > 3 km from other colonies. 

Although their occupied habitat changed during breeding, pinyon jays from the Madera colonies 

remained primarily in the north and the breeding groups of the Starfire flock remained in the 

south (Figs. 2.2, 2.4–2.7). There was little overlap in home ranges of the two flocks and they were 

never observed associating with each other (Fig. 2.2).  
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In 2017, my most successful trapping efforts were with the Starfire flock, allowing me to deploy 

many transmitters early in the season. The Starfire flock was found mainly around the SOR 

facility during the non-breeding season and along the foothills in the southern region of the 

Withdrawn Area (Figs. 2.2, 2.5). The non-breeding Starfire flock numbered approximately 60 

individuals. When the Starfire flock subdivided for breeding, approximately half of the pinyon 

jays established a breeding colony (hereafter referred to as Starfire1) 2.0 km from the SOR 

feeders, while the other half were detected on Isleta Pueblo located immediately south of KAFB 

(Fig. 2.6d). Initially, the nests built at Starfire1 were grouped together in the same vicinity. When 

nests in the colony failed, pinyon jays from failed nests established new ones 0.28 km–2.06 km 

from the original colony. After the initial colony, I found subsequent nests in at least two other 

areas. The other half of the overall flock moved south to Isleta Pueblo. Because I was not allowed 

access onto that property, I used radio telemetry to determine the locations of radio-tagged 

individuals and presumed they had established a colony there (hereafter referred to as Starfire2). 

Individuals in this location in 2017 were not found back on base until late July.  

In 2018, the non-breeding Starfire flock numbered approximately 65 individuals. At the 

beginning of breeding season, the flock subdivided into two groups as they had the previous year. 

Approximately half the flock established a breeding colony on Isleta Pueblo (Starfire2), which I 

was able to determine through radio telemetry surveys. I could not confirm their presence again 

on KAFB when the study ended in July 2018 because transmitters on individuals from that group 

had fallen off or were otherwise nonfunctional. The group that bred on base established an initial 

colony (hereafter referred to as Starfire3) 0.77 km from Starfire1. When initial nests failed, 

subsequent nests were built in nearby locations at 0.40–0.67 km from Starfire3. 

The Madera flock was found primarily on Coyote Springs Road and in Madera Canyon (Figs. 2.2, 

2.4). During the non-breeding season in 2017 this flock comprised approximately 65 individuals. 

Initially, pinyon jays were difficult to trap in this area. The 3 individuals I was able to affix 



22 

 

transmitters to, however, were critical for finding two breeding colonies. In 2017 the Madera 

flock subdivided into two groups which each established a breeding colony in March. 

Approximately one half of the flock started a colony (hereafter referred to as Madera in Sol Se 

Mete Canyon (Fig. 2.6b). I observed pinyon jays flying from Sol Se Mete Canyon to Winch Road 

and back again to deliver food to nests. The other half of the Madera flock established a breeding 

colony on the northwest slope of Madera Canyon (hereafter referred to as Madera2). No 

transmitters stayed on long enough in 2017 to observe renests. However, I did find one nest 2.06 

km from Madera2 on 26 April. Because the nest was built after average first egg laying date of 

the Madera colonies and was established in the apparent absence of other nests, it was likely a 

renest from the Madera2 colony. 

In 2018 I deployed 29 transmitters on individuals in the Madera flock. During the non-breeding 

season this flock comprised approximately 75 individuals. When the breeding season started, I 

expected this flock to subdivide into two groups to establish breeding colonies, but they did not. I 

observed just one breeding colony of approximately 40 individuals (hereafter referred to as 

Madera3). This colony was established on the northwest slope of Madera Canyon, 0.60 km away 

from 2017 Madera2 colony (Fig. 2.6b, 2.7b). The remaining individuals from the non-breeding 

flock were not associated with a breeding colony and did not nest. On numerous occasions I 

observed a group of 10–20 foraging individuals, including many after-second-year females. I did 

not observe these individuals near the Madera3 breeding colony or maintaining nests of their 

own. As they were not restricted to maintaining a close proximity to a nest, I found this group of 

foraging pinyon jays over much of the home range and some locations I had not previously 

recorded. For instance, I observed this foraging group of adult jays as far as the U.S. Forest 

Service ranger station in Tijeras, New Mexico, 7.60 km from the Madera3 colony, as well as 

along the boundary of the Starfire flock home range. 

Home Range Analysis 
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Year-round home range MCP was larger when constructed from all pinyon jay locations than the 

summed value of MCPs of each flock separately (Table 2.1; Figs. 2.1, 2.2). However, year-round 

home range PVCs at all levels were smaller when constructed from all pinyon jay locations than 

the summed value of each flock separately (Table 2.1).  

Home range MCPs and PVCs were larger for the Madera flock than for the Starfire flock, except 

at the 50 PVC in 2017, which was slightly smaller than for the Starfire flock (Table 2.1; Figs. 2.2, 

2.4–2.7). All breeding home range MCPs and PVCs were larger than non-breeding home ranges, 

except the Madera flock MCPs in 2017 (Table 2.1, Figs. 2.6, 2.7). 

DISCUSSION 

Flock Analysis  

Johnson et al. (2011, 2016) asserted that it is likely the two groups of pinyon jays on KAFB are 

one flock that splits up for breeding season. However, my data do not support this finding. Of the 

102 pinyon jays I banded and the 67 transmitters I deployed during the two years of this project, I 

did not find any individuals that changed flocks. Johnson et al. (2011) recorded one flock of 

pinyon jays with 135 individuals and a biologist on KAFB recorded a flock of more than 100 

individuals in late August 2018, but observations of flocks this large are few and their duration is 

uncertain. 

I observed two non-breeding groups acting independently three months before breeding season. If 

this was one group, it would be notable that the flock divided so long before breeding. This 

behavior is not supported in the literature (Marzluff and Balda 1992, Balda 2002, Johnson et al. 

2016). It is possible that the two groups of pinyon jays were sometimes found foraging together 

in autumn, a consistent behavior of pinyon jays, which range widely in the fall to forage for seeds 

crops and sometimes associate with other conspecific groups (Bent 1964, Marzluff and Balda 

1992). Pinyon jays have been seen in autumn groups of up to 1000 members comprising different 
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independent flocks temporarily associating with each other (Bent 1964, Marzluff and Balda 

1992).  

Land managers on KAFB should consider the Madera and Starfire flocks as independent. 

Combining locations and movements of the two flocks, especially during the breeding season, 

alters spatial analyses. For example, the MCP of both flocks together, as opposed to separately, 

overestimated pinyon jay use on base by 304.6 ha. Furthermore, knowing how many individuals 

are in each flock can inform estimates of how many breeding colonies may be found on or near 

KAFB. When breeding begins, land managers on KAFB can likely expect to find at least one 

breeding colony from each flock. Finally, separating the two flocks increases the number of high 

activity areas generated from KDEs. Analyses of all pinyon jays together identified high activity 

areas mostly from the Starfire flock, which had more location points due to it being easier to trap 

and access. Failure to separate pinyon jay flocks in spatial analyses will limit identification of 

critical pinyon jay areas for both flocks. 

Accurately assessing the number of pinyon jay flocks on base is also necessary for population 

estimates. Johnson et al. (2011) considered all groups on KAFB as one overall flock, and used 

their highest observed count of pinyon jays in a group (135 individuals) as their basis for 

determining the number of individuals on base. However, care must be taken to ensure this is an 

accurate count of pinyon jays that stay on KAFB year-round, as members of flocks from off base 

may be temporarily associating with the flocks on KAFB. My data, taken during consistent 

observations from winter to summer over two years, show that there are two flocks of pinyon jays 

on base, each with approximately 60–75 individuals, based on repeated counts of each flock. 

Therefore it appears pinyon jay populations remained stable since monitoring began in 2009 

(Johnson et al. 2011). Finally, accurately identifying the number of flocks on KAFB is critical for 

comparison of pinyon jay studies elsewhere where flock sizes might be different, such as the 
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study flock in Flagstaff, Arizona, where the approximate size was between 140–200 individuals 

(Marzluff and Balda 1992, Balda 2002). 

Future research on pinyon jays should strive to uniquely identify flocks. Initial assumptions of 

flock identities may be made just before the breeding season in January–March, just before 

pinyon jays begin courtship when flock composition is relatively stable (Marzluff and Balda 

1992, Balda 2002). To add more certainty to assumptions about flock identity, researchers should 

continue to monitor individuals using color banding or telemetry techniques for long term 

monitoring. 

Home Range Analysis  

Research on corvids frequently includes an estimate of home range size. Edenius et al. (2004) 

estimated that Swedish Siberian jay (Perisoreus infaustus) home ranges were 50 ha. Yaremych et 

al. (2004) found that adult American crows (Corvus brachyrhynchos) in Illinois occupied a 610 

ha home range, but noted that home ranges of American crows varied by region. Vigallon and 

Marzluff (2005) found home ranges of Steller’s jays (Cyanocitta stelleri) averaged 57.7 ha. 

Clark’s nutcrackers (Nucifraga columbiana), a species that is frequently compared to pinyon jays 

for their similarity in wide-spread seed collection and caching, had summer home ranges that 

averaged 318 ha in Washington (Lorenz and Sullivan 2009).  Pinyon jays often have larger ranges 

than other corvids. Home ranges have been recorded between 1600 ha–6400 ha in Arizona and 

2890 ha–5978 ha in New Mexico (Ligon 1971, Balda 2002, Johnson et al. 2016). 

A meta-analysis of corvids by Shank (1986) found a positive correlation between total food 

energy requirements of conspecific corvid social groups and the nutritional productivity of a 

home range. In other words, corvids that live in groups that require a greater total number of 

calories per day tend to inhabit home ranges that, due to size or unit productivity, produce more 

food to feed all the members. This may explain why pinyon jays have such large home ranges in 
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conifer dominated landscapes, such as pinyon-juniper woodlands and ponderosa pine forests, 

where seed production is irregular (Lanner 1981, Marzluff and Balda 1992, Balda 2002).  

Previous studies in Arizona found pinyon jays in landscapes dominated by ponderosa pine (Balda 

and Bateman 1971, Marzluff and Balda 1992, Balda 2002). Even though ponderosa forest is 

apparently suitable habitat for pinyon jays in Arizona, I did not find pinyon jays in the higher-

elevation ponderosa forest on KAFB. Instead, I found pinyon jays exclusively in juniper savanna 

and pinyon-juniper woodland. This demonstrates that habitat requirement recommendations 

based on research from Arizona may not apply in New Mexico. 

Although I considered pinyon jays on KAFB as two independent flocks, I also produced home 

range maps including all the pinyon jays on base as one group for comparison with previous 

studies (Johnson et al. 2011, 2016). The size of the home range MCPs from these previous studies 

(5027.4 ha and 5978.0 ha, respectively) were based on calculating points from pinyon jays and 

nest sites from both groups. Analyzing location data from my study using pinyon jay location 

points from both groups on KAFB yielded a larger polygon (6482.7 ha). The primary differences 

between these MCPs are due to my observations of pinyon jays relatively far from base in Isleta 

Pueblo and Tijeras, whereas Johnson et al. (2011, 2016) did not detect pinyon jays far from the 

boundaries of KAFB.  

Johnson et al. (2011) produced a 95 PVC for all of pinyon jays, collectively, on KAFB (5741.7 

ha) which was nearly double the size of the 95 PVC I generated (3289.3 ha). This could be due to 

a variety of factors that involve the particular location and number or density of observations 

(Kernohan et al. 2001, Jones et al. 2015). The Johnson et al. (2011) analyses used 135 location 

points where mine used 343 points, which is partially a result of having more pinyon jays with 

transmitters in my study than in previous studies. The higher number of points used in my study 

made my analyses less sensitive to outlying observations. Therefore my 95 PVC does not extend 
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to accommodate infrequent, isolated pinyon jay observations. However, the MCP home range 

maps produced by Johnson et al. (2011, 2016) are similar in size and location to my analyses, 

with some exceptions. There are a few areas where Johnson et al. (2011) found pinyon jays in 

higher densities than I did, such as at their southern feeder and the Lurance Canyon Burn Site. 

There are also areas I found pinyon jays where Johnson et al. (2011, 2016) did not, such as Isleta 

Pueblo and in Tijeras. Additionally, the seasonal spatial analyses are similar to Johnson et al. 

(2011) in that non-breeding pinyon jays are most frequently detected at feeding stations such as 

the feeders at the SOR gate and temporary automatic feeders. Some geographical differences 

between my PVCs and the ones produced by Johnson et al. (2011), especially the 50 PVC, are 

likely due to different placement of feeders during the non-breeding season. Johnson et al. (2011) 

placed a feeder in the foothills on the southern boundary of KAFB while I placed a feeder on 

Winch Road in Madera Canyon. 

When I performed spatial analyses of each KAFB flock separately, home range estimates were 

similar to pinyon jay home ranges in other parts of New Mexico. Johnson et al. (2011) recorded 

the home range of one pinyon jay flock on White Sands Missile Range in south-central New 

Mexico and found the home range MCP for one flock there was 3415.7 ha and a 95 PVC was 

3486.8 ha. Johnson et al. (2015) found the MCP home range for a pinyon jay flock in 

Farmington, New Mexico was 3102.9 ha and a 95 PVC was 4033.7 ha. These home range 

estimates closely resemble home range size estimates for the Madera flock, which I was able to 

collect thorough locations over 7 months. However, they are larger than my estimates for the 

Starfire flock due to limitations on accessing the entirety of their home range on KAFB. This 

comparison indicates that the home ranges of fully sampled flocks in three regions of New 

Mexico are similar (Kernohan et al. 2001, Jones et al. 2015). 

MCP analyses are not as accurate at defining a home range as contouring methods are (Kernohan 

et al. 2001). I compared PVC areas between pinyon jay flocks (Starfire, Madera), year (2017, 
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2018), and breeding status (nonbreeding, breeding). The key differences between PVC areas 

involved the number of breeding colonies found, the location of feeders or water, the extent at 

which I was able to detect pinyon jays, and possibly the effects of severe drought in 2018. These 

factors frequently affected the 90 and 95 PVC differently than the 50 PVC. For example, the 

difference between the PVC areas of both flocks was large at 95 and 90 PVCs but small at 50 

PVC. The area the Madera flock inhabited at 95 and 90 PVCs was greater than for the Starfire 

flock because I was able to observe and follow most of their movements. In contrast, I was not 

able to follow the Starfire pinyon jays on Isleta Pueblo, where they likely established a breeding 

colony in the same area both years, which resulted in a reduced area sampled and analyzed for 

their flock. Areas were more similar at the 50 PVC for both flocks because each flock 

concentrated their activity around 1 or 2 important areas depending on the season. In the non-

breeding season, pinyon jays regularly visited a feeder in their area, whereas during breeding, 

each flock spent most of their time around their breeding colony. When each flock had an equal 

number of feeders or breeding colonies on base, 50 PVC areas were similar. 

I found that PVC estimates were larger at the 95 and 90 PVCs in 2018 than in 2017, but were 

smaller at the 50 PVCs. Larger areas in 2018 possibly result from my better knowledge of pinyon 

jay activity on site, an increased number of deployed transmitters, and changes in pinyon jay 

behavior on KAFB that year due to extreme drought. Drought may have suppressed arthropod 

production that spring and, therefore, reduced potential food sources for nesting pinyon jays 

(Ligon 1978). This may have caused many members of the Madera flock to forego breeding. 

Pinyon jays that did not establish and tend nests were therefore able to wander far from their core 

home range during breeding season. Smaller area estimates at the 50 PVC in 2018 were also 

likely affected by drought that year. In 2017, the Madera flock established 2 breeding colonies, 

however, in 2018 the Madera flock only established 1 breeding colony, likely due to drought. The 
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Starfire flock appeared to be less affected by drought because of its year-round access to food and 

water provided by humans. 

Areas of all PVCs were higher in the breeding season than in the non-breeding season. This is due 

to three factors. Firstly, pinyon jays visited feeding stations in the non-breeding season and 

limited their movements around those feeders. When the breeding season started, pinyon jays no 

longer visited the feeders and ranged more widely across their home range to forage or retrieve 

caches. Secondly, when the flocks subdivided into breeding colonies, it increased the amount of 

pinyon jay high activity centers. Thirdly, the non-breeding season was from January to mid-

March while the breeding season lasted from mid-March until the end of July. Thus, I collected 

breeding season observations for two months more than for non-breeding. 

There were limitations of my research that are common to radio telemetry studies. Radio 

telemetry equipment is most effective when observers have clear lines of sight to deployed 

transmitters (Millspaugh et al. 2012). The terrain in the Withdrawn Area on KAFB is 

mountainous and obscures signals from transmitters that are too far up the mountain from access 

roads (Johnson et al. 2011, 2016). Future studies might use GPS loggers to collect locations even 

when pinyon jays are not near places accessible to observers (Millspaugh et al. 2012). The 

technology is still developing to make GPS units that are small enough to use on pinyon jays. I 

affixed transmitters to the top two retrices of pinyon jays, which is a minimally invasive 

technique but subject to many transmitters falling off while still attached to the feathers. For 

studies that require consistency of transmitters on individuals, a leg-loop harness with a “weak 

link” can ensure long-term attachment which will fall off after the unit runs out of battery 

(Kessler 2011). 

Other environmental factors also likely influenced pinyon jay locations. For example, a fire 

occurred in March 2018 which burned 80 ha, including part of the Starfire1 colony. The fire 
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altered the vegetation structure of the area which might have been why pinyon jays in 2018 

established the Starfire3 colony 0.84 km away from the initial Starfire1 colony from 2017.  

Another factor likely affecting pinyon jay locations was severe drought in 2018. Yearly 

precipitation from April 2016–March 2017 and April 2017–March 2018 were below the normal 

yearly precipitation (19.86 cm, 17.32 cm, 24.0 cm, respectively; NOAA 2018). The drought 

caused multiple national forests closures in New Mexico due to fire warning, including the Cibola 

National Forest, of which the Withdrawn Area on KAFB is part of. It is possible this affected 

pinyon seed production in 2018, and thus, pinyon jays on KAFB, however there are no estimates 

for pinyon seed production for those years (Lanner 1981, Marzluff and Balda 1992, Parmenter et 

al. 2018). This might be why the Madera flock established only one breeding colony in 2018 

despite having access to food provided at Winch Road from December–March. One female that 

nested in the Madera3 colony that year did not renest when her first attempt failed on 23 April, 

well before breeding usually ends in late July. Instead, she joined the foraging flock for the 

remainder of the breeding season. This is another indication that drought may have had adverse 

effects on pinyon jay breeding in 2018 and altered PVCs that year. 

CONCLUSION 

I determined there were two pinyon jay flocks on KAFB by monitoring non-breeding season 

movements. Each flock had 60–75 individuals that subdivided into smaller groups to establish 

breeding colonies in March and April. Flocks were most active around feeders during the non-

breeding season. The number and location of feeders and breeding colonies affected the size and 

shape of pinyon jay core activity areas. These insights provided useful information about how to 

determine the number and location of pinyon jay flocks and how that affects home range 

analyses. Future studies on KAFB should record year-round movements of pinyon jays to identify 

flocks in the winter and breeding colonies in the spring, as well as investigate wandering flocks 

and interactions with neighboring flocks in the fall. Regular monitoring of pinyon pine crops in 
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addition to precipitation and ambient weather data can serve as an indicator of pinyon jay food 

availability and, thus, pinyon jay breeding propensity. This information can be useful in 

explaining or predicting pinyon jay flock and breeding dynamics in central New Mexico. 
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TABLES AND FIGURES 

Table 2.1 – The areas of pinyon jay home ranges on Kirtland Air Force Base, New Mexico in 
2017 and 2018. Home range analyses consisted of minimum convex polygons (MCP) and kernel 
density estimates (KDEs). Kernel density estimates used a fixed kernel with bandwidth = 1000, 
kernel = quartic (biweight), cell size = 30, and scaling factor = 1000000 to show probability 
densities of pinyon jays (Beyer 2012). Kernel density estimates were divided into 95, 90, and 50 
percent volume contours. The number of points used in analyses are listed because it impacted the 
resulting area (Jones et al. 2015, Kernohan et al. 2001). 

Year Flock Breeding MCP 95 PVC (ha) 90 PVC (ha) 50 PVC (ha) Points Used 

2017 Madera Non 1144.3 850.2 664.0 153.7 29 

2017 Madera Breed 1100.3 1202.9 955.3 255.7 35 

2017 Starfire Non 498.6 691.6 538.1 157.5 41 

2017 Starfire Breed 855.4 1008.9 747.8 205.4 45 

2018 Madera Non 1452.6 1311.4 970.9 138.8 39 

2018 Madera Breed 3570.2 1635.3 1272.8 200.6 35 

2018 Starfire Non 718.6 830.4 558.8 88.8 49 

2018 Starfire Breed 828.4 871.4 654.9 197.3 71 

2017 All All 4029.2 2574.6 1935.5 541.2 150 

2018 All All 6144.4 2911.5 2044.4 370.7 194 

All Madera All 4775.7 2581.0 1829.4 436.0 138 

All Starfire All 1402.4 1164.0 808.5 211.1 206 

All All Non 4037.4 2516.4 1729.4 260.7 158 

All All Breed 5197.8 2699.5 1999.1 468.1 186 

All All All 6482.7 3289.3 2367.4 494.8 344 
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Figure 2.1 – Pinyon jay home range Minimum Convex Polygon (MCP) for combined Madera and 
Starfire flocks on Kirtland Air Force Base (KAFB), New Mexico. The MCP comprises all pinyon 
jay location data from January to July in 2017 and 2018. The area of the MCP is 6482.7 ha. 
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Figure 2.2 – Pinyon jay home range Minimum Convex Polygons (MCPs) for the Madera and 
Starfire flocks on Kirtland Air Force Base, New Mexico. The MCP comprises all pinyon jay 
location data from January to July in 2017 and 2018. Home range MCPs for the Madera and 
Starfire flocks were 4775.7 ha and 1402.4 ha, respectively. Their home ranges overlapped by 
150.4 ha. 
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Figure 2.3 – Pinyon jay home range kernel density estimate for the combined Madera and Starfire 
flocks on Kirtland Air Force Base, New Mexico. This analysis includes all pinyon jay locations 
from January to July in 2017 and 2018. I used a fixed kernel with bandwidth = 1000, kernel = 
quartic (biweight), cell size = 30, and scaling factor = 1000000 (Beyer 2012). Kernel densities are 
divided between 50, 90, and 95 percent volume contours (PVCs). 
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Figure 2.4 – Pinyon jay home range kernel density estimate for the Madera flock on Kirtland Air 
Force Base, New Mexico. This analysis includes all pinyon jay locations in the Madera flock 
from January to July in 2017 and 2018. I used a fixed kernel with bandwidth = 1000, kernel = 
quartic (biweight), cell size = 30, and scaling factor = 1000000 (Beyer 2012). Kernel densities are 
divided between 50, 90, and 95 percent volume contours (PVCs). 
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Figure 2.5 – Pinyon jay home range kernel density estimate for the Starfire flock on Kirtland Air 
Force Base, New Mexico. This analysis includes all pinyon jay locations in the Starfire flock 
from January to July in 2017 and 2018. I used a fixed kernel with bandwidth = 1000, kernel = 
quartic (biweight), cell size = 30, and scaling factor = 1000000 (Beyer 2012). Kernel densities are 
divided between 50, 90, and 95 percent volume contours (PVCs). 
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Figure 2.6 – Pinyon jay home range kernel density estimate on Kirtland Air Force Base, New 
Mexico in 2017. Analyses are for the a) Madera flock in the non-breeding season, b) Madera 
flock in the breeding season, c) Starfire flock in the non-breeding season, and d) Starfire flock in 
the breeding season. I used a fixed kernel with bandwidth = 1000, kernel = quartic (biweight), 
cell size = 30, and scaling factor = 1000000 (Beyer 2012). Kernel densities are divided between 
50, 90, and 95 percent volume contours (PVCs). 
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Figure 2.7 – Pinyon jay home range kernel density estimate on Kirtland Air Force Base, New 
Mexico in 2018. Analyses are for the a) Madera flock in the non-breeding season, b) Madera 
flock in the breeding season, c) Starfire flock in the non-breeding season, and d) Starfire flock in 
the breeding season. I used a fixed kernel with bandwidth = 1000, kernel = quartic (biweight), 
cell size = 30, and scaling factor = 1000000 (Beyer 2012). Kernel densities are divided between 
50, 90, and 95 percent volume contours (PVCs). 

li
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CHAPTER III 
 

 

PINYON JAY NEST SITE SELECTION IN CENTRAL NEW MEXICO 

 

ABSTRACT 

Pinyon jays (Gymnorhinus cyanocephalus) are experiencing population declines primarily in 

response to habitat degradation. Furthermore, few studies have investigated pinyon jay nest site 

selection in pinyon-juniper woodlands. Therefore, I conducted a nest site selection study on 

pinyon jay breeding habitat on Kirtland Air Force Base in central New Mexico. I compared tree 

size, foliage, and species composition in 42 17.5-m radius plots around pinyon jay nests to 41 

same-sized vegetation plots in random locations in pinyon-juniper habitat using binomial 

generalized linear models. I evaluated models of habitat characteristics with Akaike’s Information 

Criterion corrected for small sample sizes. The strongest model indicated that pinyon jays 

preferred nesting in areas with fewer dead juniper trees. Furthermore, using Student’s paired t-

tests, I found that pinyon jays built nests in trees with greater height (p < 0.001) and nests were 

built below the tree line (p = 0.001). Finally, pinyon jays nested in plots with relatively open-

canopied pinyon-juniper woodland (x̄ = 23.67% tree area) which has implications for pinyon-

juniper stand management currently practiced in the western United States. 
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INTRODUCTION 

Habitat characterization is central to identifying and setting conservation priorities (Guisan et al. 

2013). When habitat loss is imminent, such as the expected conifer mortality projected in the 

western U.S. by the end of this century, habitat characterization is critical for designing 

appropriately targeted mitigation strategies (Hoegh-Guldberg et al. 2008, Johnson et al. 2016, 

McDowell et al. 2016, Johnson et al. 2017b). It is especially important to protect breeding habitat 

for species of conservation concern (Brown et al. 1995, Margules and Pressey 2000, Sutherland et 

al. 2004, Johnson et al. 2016). This can be difficult for species with large ranges that live in a 

variety of habitats, such as the pinyon jay (Gymnorhinus cyanocephalus; Marzluff and Balda 

1992; Balda 2002). 

Unfortunately, little is known about pinyon jay breeding habitat over significant portions of their 

range (Balda 2002, Boone et al. 2018). Until recently, most research on pinyon jays occurred at 

one study site in Flagstaff, Arizona (Gabaldon 1979, Marzluff and Balda 1992, Balda 2002). The 

Flagstaff site was situated in a ponderosa pine (Pinus ponderosa) forest interspersed with 

grassland (Gabaldon 1979, Marzluff and Balda 1992). Individual pinyon pine (Pinus edulis) and 

juniper (Juniperus spp.) trees were also present (Gabaldon 1979, Marzluff and Balda 1992). 

While these studies provided the basis of much of what is known about pinyon jays, this site is 

just a small portion of their range which comprises many regions with different habitat structures 

(Ligon 1978, Lanner 1981, Marzluff and Balda 1992, Balda 2002, Romme et al. 2009). In the 

past decade researchers have begun to publish studies that focus on pinyon jays in pinyon-juniper 

habitats (Great Basin Bird Observatory 2013; Johnson et al. 2016, 2017b, 2018; Boone et al. 

2018).   

Pinyon jays are a nonmigratory species endemic to the western United States (Marzluff and Balda 

1992, Balda 2002). They are closely associated with pinyon trees because they eat pinyon seeds 
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and use the tree as nest substrate (Lanner 1981, Marzluff and Balda 1992, Balda 2002). These 

social corvids live in flocks of between 50–300 individuals and occupy home ranges from 16 

km2–64 km2 (Balda and Bateman 1971, Marzluff and Balda 1992, Balda 2002). During the 

breeding season, flocks subdivide into smaller groups of 14–32 nesting pairs to establish breeding 

colonies (Gabaldon 1979, Marzluff and Balda 1992, Balda 2002, Johnson et al. 2016). Breeding 

colonies are large because nests within it are spaced approximately 110 m apart from each other 

(Marzluff and Balda 1992, Balda 2002, Johnson et al. 2016). Due to the large size of their home 

range, pinyon jays are sensitive to large-scale habitat alterations, such as human development, 

woodland clear-cutting for wildfire fuel reduction, and climate change (Marzluff and Balda 1992, 

Balda 2002, Romme et al. 2009, Johnson et al. 2017b, Boone et al. 2018). 

Currently, pinyon jays are viewed as an ecologically sensitive species by numerous organizations 

and agencies (NatureServe 2004, New Mexico Department of Game and Fish 2006, New Mexico 

Partners in Flight 2007, Birdlife International 2016, Rosenberg et al. 2016). Pinyon jay 

populations have declined by approximately 3.5% per year between 1966 and 2015 (Sauer et al. 

2017). Changes in habitat may have contributed to this decrease (Boone et al. 2018). Over the 

past 150 years, pinyon-juniper woodlands have experienced reductions due to human 

development, while remaining stands of pinyon-juniper have experienced expansion and infilling 

(Lanner 1981, Balda 2002, Jones et al. 2019). European settlers in the western U.S. deforested 

millions of hectares of pinyon forests to support mining and grazing operations (Lanner 1981, 

Balda 2002). More recently, remaining pinyon-juniper landscapes have been expanding and 

infilling, likely due to reduced fire regimes and changes in land-use practices (Romme et al. 2009, 

Boone et al. 2018, Jones et al. 2019). Elimination and replacement of open woodland, which 

appears to be preferred pinyon jay habitat in some parts of their range (Johnson et al. 2017, 

Boone et al. 2018), with dense, closed-canopy woodland may also be responsible for modern 

population decline (Boone et al. 2018). Further, rising temperatures and prolonged droughts 
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associated with climate change may be contributing to pinyon tree mortality and habitat 

degradation (Gitlin et al. 2006, Romme et al. 2009, Adams et al. 2017, Johnson et al. 2017b, 

Boone et al. 2018). Pinyon jays are the primary disperser for pinyon seeds, thus, detrimental 

effects on either pinyon jays or pinyon trees are likely to have synergistic effects on pinyon 

woodland extent and quality (Lanner 1981, Lanner 1996, Boone et al. 2017). The most direct way 

to arrest pinyon jay decline is to identify prime habitat across their range and protect it from 

habitat threats (Marzluff and Balda 1992, Balda 2002, Bombaci and Pejchar 2016, Boone et al. 

2018).  

I studied pinyon jays on Kirtland Air Force Base (KAFB) in New Mexico to investigate nest-site 

habitat characteristics in pinyon-juniper landscape. Two flocks (approx. 135 individuals total) 

occurred in juniper (Juniperus monophylla) savanna and pinyon-juniper woodland on KAFB 

(Chapter 2). Specifically, I recorded tree type, size, and foliage cover to compare with habitat at 

random locations within pinyon-juniper woodland. Furthermore, I compared size and foliage 

cover of nest trees to the non-nest trees in study plots. Based on these results I identified habitat 

variables potentially indicating suitable habitat criteria for pinyon jay breeding areas.  

METHODS 

Study Area 

Kirtland Air Force Base is located south of Albuquerque, New Mexico and encompasses 210 km2 

including 77 km2 of pinyon-juniper habitat (KAFB 2012). The base is situated on an elevational 

gradient from the Rio Grande Valley in the west to the Manzanita Mountains in the east (KAFB 

2012). In the western lowlands, the habitat is characterized as scrub steppe, transitioning east 

along the elevational gradient through juniper savanna, pinyon-juniper woodland, and ponderosa 

pine forest in the mountains (KAFB 2012). Under the Sikes Act Improvement Act of 1997, 

species of concern, like the pinyon jay in New Mexico, must be monitored and managed for 
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conservation on federal lands, including Department of Defense lands (NatureServe 2004, 

BirdLife International 2016). 

Data Collection 

This study took place in 2017 and 2018. Pinyon jays were captured from January–March with 

walk-in traps baited with pinyon seeds (Great Basin Bird Observatory 2013, Johnson et al. 2016). 

To re-identify individuals, I fitted pinyon jays with a serially-numbered, USGS aluminum leg 

band and a unique combination of three, plastic color bands. I attached VHF radio transmitters to 

the two central rectrices of individuals we thought likely to be female (Johnson 1988, Pyle 1997, 

Balda 2002). In 2017 I tried to exclusively attach transmitters to females, however, in 2018 I was 

less discriminating in order to deploy more transmitters. With a greater number of transmitters I 

could more consistently locate nests and follow different parts of a pinyon jay flock as it 

subdivided into smaller groups during breeding (Marzluff and Balda 1992, Balda 2002).  

After attaching transmitters to pinyon jays, I tracked birds as they established breeding colonies. I 

monitored pinyon jay movements and behaviors until I determined that nesting had begun in early 

March of both years (Marzluff and Balda 1992, Balda 2002). At this time I monitored nesting 

behaviors such as collecting nest material or continually returning to the same location (Gabaldon 

1979, Marzluff and Balda 1992, Ralph et al. 1993, Balda 2002). Additionally, I located nesting 

females by observing that their transmitter signals remained stationary.  

After determining pinyon jays were nesting in an area, I searched for nests by homing telemetry 

and visual observation. For homing telemetry, I stood near the colony and used a yagi antenna to 

assess direction of the strongest signal (Millspaugh et al. 2012). I walked in the direction of the 

strongest signal until finding the approximate nest site, then visually searched until spotting the 

nest. I also found nests by watching unmarked pinyon jays return to nests to deliver nesting 

material or food (Ralph et al. 1993). After discovering a nest and recording its location, I 
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retreated to avoid unnecessary disturbance. I monitored nests every few days until they either 

successfully fledged offspring or failed. Furthermore, I attempted to locate renesting attempts 

from unsuccessful breeding pairs by following radio-tagged pinyon jays.  

I found 3 breeding colonies in 2017 and 2 in 2018. Additionally, I found 4 nests that were not 

apparently associated with breeding colonies that were likely renesting attempts. I found 25 nests 

in 2017 and 17 in 2018. Four of these were renesting attempts, where I knew the location of the 

previous nest, and 8 were likely renesting attempts due to nest establishment date and location. I 

determined age of nests by identifying what stage the nest was at (incubation, brooding, or 

fledging), then backdating to the date of the first laid egg (Balda 2002). 

In June and July each year, when nesting was complete, I conducted habitat surveys at all nest 

sites and at a similar number of randomly determined locations within pinyon-juniper habitat on 

KAFB. Pinyon pine and juniper trees have been observed to grow new needles and elongate their 

stems in June and July, however stem growth is less than 1 cm per year and, thus, did not 

appreciably change between pinyon jay nest construction in mid-March and vegetation surveys in 

June (Herman 1956, Jaindl et al. 1995). Needle growth may have led to small increase in foliage 

between nesting and vegetation surveys (Herman 1956, Jaindl et al. 1995).  Random locations 

were generated using the Create Random Points tool in ArcGIS (ESRI, Inc., Redlands, CA) 

within pinyon-juniper habitat as delineated by previous studies (Johnson et al. 2016). Each survey 

plot was a circle with a radius of 17.5 m (Krofcheck et al. 2016). The center of the circle for nest 

points was the nest and the center of the circle for random points was the randomly generated 

point wherever it lay. After the center of the circle was identified, I used a tape to place flags 17.5 

m away from the center of the circle in each of the cardinal directions to use as landmarks during 

the survey. 
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Pinyon-juniper woodlands contain singular trees as well as “multi-trees” comprising an 

intertwined, contiguous aggregate of two or more individual trees (Gabaldon 1979). Therefore, I 

took measurements of these multi-trees rather than just an individual tree. I took measurements 

for multi-trees when they occurred while also recording the number of individual trees within 

them and their species. I did not take measurements for individual trees within multi-trees. 

Therefore, I could not analyze total area or volume of pinyon and juniper trees. Furthermore, 

averages of pinyon and juniper size and foliage values reflect only free-standing trees.  

I recorded elevation (± 1 m) and UTM coordinates (± 3 m) at survey plots with a GPS unit and 

slope with a clinometer. If the plot was at a nest site, measurements were taken of the nest and 

nest tree (or multi-tree). Previous studies of pinyon jay nests measured relative nest placement 

compared to height and width of the nest tree as a proxy for next exposure to predators and solar 

radiation (Gabaldon 1979, Marzluff 1988). Therefore, I measured nest height above the ground 

(m) and used it to calculate relative nest height, which is a ratio of nest height to nest tree height. I 

also generated a value for the ratio between nest height and average non-nest tree height in the 

plot. To calculate nest placement relative to tree width, or relative edge distance, I divided 

distance of the nest to the center of the tree by distance of the edge of the tree to the center. Most 

nests in this study were in juniper, which grow in irregular shapes and do not have a centrally 

located trunk (Johnson et al. 2014). Therefore, I recorded diameter of the nest tree at the height 

and directional aspect of the nest, then divided this by two to determine tree radius. Then I 

measured distance of the nest from the edge of the tree and subtracted it from the radius to get 

distance between the nest and center of tree (Gabaldon 1979, Marzluff 1988). 

To measure the other trees at a site, a technician and I started at the same side of the plot circle 

and worked in opposite directions until we met on the other side. We made measurements for 

every plant greater than 1 m in height. This criteria was useful for concentrating on vegetation 

structures that pinyon jays could potentially use as a nest or security cover (Marzluff and Balda 
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1992). We measured the greatest width, the corresponding perpendicular length, and the height 

(m) of trees and shrubs beginning with the side of greatest width (KAFB 1998, Krofcheck et al. 

2016). We recorded the plant species if it was alive or dead. We estimated foliage cover for live 

trees but not for shrubs or dead trees. Foliage estimates were taken using the Braun-Blanquet 

Cover-Abundance Scale (Wilkum and Shanholtzer 1978) on four opposing sides of each tree, 

beginning with the side with the longest width. We stood 3–5 m in front of the tree and estimated 

how much foliage was present on a scale of 0–100%. To simplify estimates, we divided the 0–

100% scale into four levels: 1 (1–25% foliage present), 2 (26–50% foliage present), 3 (51–75% 

foliage present), and 4 (76–100% foliage present). We practiced these measurements on two trees 

outside the plot before each survey to ensure our estimates were similar. We classified all pinyon 

and juniper as trees, and all other short, woody stems, including scrub oak (Quercus turbinella), 

as shrubs, which typically do not grow greater than 3 m in height (KAFB 1998, Körner 2012).  

I used the tree measurements to generate area and volume of trees in a plot. I calculated top-down 

tree area as an ellipse with radii of half the greatest length and half the corresponding 

perpendicular width (Krofcheck et al. 2016). I calculated tree volume as an ellipsoid with radii of 

half the greatest length, half the perpendicular width, and half the height (Krofcheck et al. 2016). 

I calculated volume as an ellipsoid because it followed naturally from the elliptical area 

calculation and was the most approximate shape to pinyon and juniper trees (Krofcheck et al. 

2016). Previous pinyon jay habitat studies have compared characteristics of the nest tree to trees 

surrounding it (Gabaldon 1979; Johnson et al. 2014, 2017). Thus, I used tree measurements to 

create comparative ratios of the height, area, volume, and foliage, respectively, between nest trees 

and non-nest trees in the plot.  

Data Analysis  
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To assess factors that may influence pinyon jay nest site selection, I compared vegetation 

measurements of nest plots to randomly dispersed plots. I analyzed vegetation measurements 

among habitat survey plots using binomial generalized linear models (GLMs) constructed with 

the R package lme4 (Bates et al. 2015; R Version 3.4.1, www.r-project.org, accessed 10 Sep 

2017) and evaluated them using Akaike’s Information Criterion corrected for small sample size 

(AICc; Burnham and Anderson 2002). I used fixed effect GLMs instead of mixed models because 

I did not have enough data points for the random effect to fit the model (Harrell 2015). To make 

all habitat characteristic variables comparable to each other, I standardized each variable by 

subtracting the mean of the variable from each value in that variable and dividing by the standard 

deviation (Anderson and Burnham 2002, Symonds and Moussalli 2011). The response variable 

was binomial (nest site or random site). Habitat characteristics were incorporated as fixed effect 

explanatory variables. I only created univariate models because the power of my analysis was low 

(Harrell 2015). Models were not considered predictive if their AICc value relative to the best 

model was too great (Δi ≤ 2). 

I also identified the p-value from each GLM, separately. While this might increase the chance of 

type I and II errors, this work is exploratory and is a valuable first step into identifying potentially 

important habitat characteristics for future hypothesis testing. Average area, volume, and foliage 

values for pinyon, multi-trees, and shrubs could not be evaluated by AICc because not all plots 

contained those trees or shrubs and, thus, missing values could not be compared to average 

values. Therefore, I removed plots missing those values before evaluating GLMs.  

Nest tree characteristics from nest plots could not be paired with random plots. Therefore, I 

compared nest tree characteristics to non-nest trees in the plot. I conducted one-way paired t-tests 

to determine if nest tree height, area, volume, and foliage cover, respectively, were different than 

the values from one randomly selected tree in the surrounding plot. 
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RESULTS 

I conducted habitat surveys at 42 nest sites and 41 random locations. Data were grouped into 

general habitat characteristics (Table 3.1) and nest tree characteristics (Table 3.2). I excluded 

some variables before AICc evaluation (Table 3.3), along with terrain variables because I wanted 

to focus on vegetation characteristics of the study site, and some variables because they could not 

be measured in all plots. For example, I did not measure separate individual trees of each multi-

tree, therefore, I could not analyze total pinyon or juniper tree volume. Further, I did not use 

average area, volume, and foliage measurements for pinyon trees, multi-trees, or shrubs because 

they were not present in all plots, thus, average measurements could not be compared with the 

absence of measurements in an AICc evaluation (Burnham and Anderson 2002).  

When two variables were correlated, I eliminated the more complex one, usually when one 

variable was a component of, or was used to calculate, the other (|r| > 0.6; Table 3.3; Burdett et al. 

2010; Goldenberg et al. 2016). For instance, I eliminated average juniper tree volume because 

average juniper tree area was used to calculate the volume. I eliminated average tree area because 

average juniper area is a more specific subset of average tree area. After eliminating correlated 

variables, the remaining models were: number of dead pinyon, number of dead juniper, number 

of dead multi-trees, average live tree height, average shrub area, average juniper area, and 

percentage of dead pinyon. Although number of dead pinyon and percentage of dead pinyon were 

somewhat correlated (r = 0.59), they did not meet the threshold for elimination (Table 3.3). 

The top performing model in the AICc evaluation included the variable for the number of dead 

juniper trees (β = -1.1770; Table 3.4; Fig. 3.1). The next best model was not was not predictive of 

nest site selection  (Δi = 8.2; β = 0.22739, Table 3.4). The null model was also not competitive 

with the top model (Δi = 10.7; Table 3.4) indicating the potential power of the dead juniper model 

to predict nest site selection. Nest sites were negatively associated with the number of dead 
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juniper in a plot, meaning pinyon jays selected areas with relatively fewer dead juniper trees (Fig. 

3.1).  

GLM p-values reinforced AICc results. Number of dead juniper and percentage of dead juniper 

were both greater for random plots than for nest plots (Table 3.1). Average juniper area was 

greater in nest plots than random plots (Table 3.1). Additionally, pinyon jays nested at lower 

elevations than randomly selected plots (Table 3.1).  

Pinyon jays nested in juniper (n = 33) and pinyon trees (n = 8). I also found 1 nest in a large shrub 

oak. I found the majority of nests in single trees (n = 27), but pinyon jays also built nests in multi-

trees (n = 15).  In paired, one-way t-tests, height was greater for surrounding trees in the same 

plot (Table 3.5). Area, volume, and foliage of nest trees were not different from other trees in the 

plot (Table 3.5). Finally, nest height was lower than the mean height of the non-nest trees in the 

plot (p = 0.001, r = 0.07). 

DISCUSSION 

Model Selection 

Number of dead juniper performed best in the AICc evaluation, meaning pinyon jays nested in 

areas with approximately a third as many dead juniper trees. Many dead juniper were formerly 

mature trees that did not show visible effects of fire. Because juniper can live for hundreds of 

years (Waichler et al. 2001), it is possible that the age of these dead junipers are indicative of the 

age of the rest of the trees in the stand, suggesting that pinyon jays selected younger stands. 

Another possible explanation is that dead juniper are potential roosting or perching substrate for 

aerial predators such Cooper’s hawks (Accipiter cooperii; Reinert 1984), which we observed in 

pinyon jay home ranges.  



57 

 

While recent research has specifically explored the relationship between pinyon tree 

characteristics and pinyon jays, the role of juniper in pinyon jay nesting ecology has not been 

examined (Johnson et al. 2014, 2017; Boone et al. 2018). Models in this study incorporating 

juniper variables were biologically relevant because juniper trees were present at all nest sites and 

frequently were the only tree species present. Therefore, even though many pinyon tree variables, 

such as total pinyon area in plot and average pinyon size, could not be included in the AICc 

evaluation because of survey design or non-applicable values, evaluating the role of juniper in 

pinyon jay nest site selection provided valuable information about an understudied component of 

pinyon jay ecology.  

Models in this analysis were fixed effect GLMs that treated nest site location as independent. This 

assumption was violated as pinyon jays nest in colonies. The process of colony formation is 

unclear, but after an area is established, pinyon jay breeding pairs build nests in the area with the 

rest of the flock (Marzluff and Balda 1992). I tried to account for potential autocorrelation by 

including colony as a random effect in a generalized linear mixed model, but there were too few 

data points to fit the random effect for the model (Harrell 2015). 

Habitat Characteristics 

Gabaldon (1979) conducted nest site selection analyses in Flagstaff, AZ on pinyon jays whose 

home range primarily comprised ponderosa pine forest interspersed with individual pinyon and 

juniper trees. Out of 121 pinyon jay nests, she found 120 in ponderosa trees and 1 in a pinyon 

pine. I did not test for preference of nest tree species, however, pinyon jays constructed the 

majority of nests in juniper trees, even though pinyon trees were also available in most nest plots. 

This may be in part because juniper trees typically outnumbered pinyon trees on nest plots and 

some sites (n = 8) were located within juniper savanna which did not have any live pinyon. 

Because pinyon jays chose to nest in areas with few or no pinyon trees, it suggests pinyon are not 
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always preferred in habitat immediately surrounding the nest. There is a large ponderosa pine 

forest on KAFB, but during frequent surveys over the course of two seasons we did not detect 

pinyon jays there. This suggests that although ponderosa pine forest is available to nest in, it is 

not preferred breeding habitat for pinyon jays on KAFB. 

Nearly all habitat and nest measurements in Gabaldon (1979) were taken from ponderosa trees, 

however, this study is still comparable with mine. Mean nest tree height was 11.77 m and mean 

nest height was 5.55 m above the ground (Gabaldon 1979), which were much higher than on 

KAFB due to the greater height of ponderosa trees. My study supports findings from Gabaldon 

(1979) and others that pinyon jays nest in trees that are taller than the trees surrounding them and 

that nests are placed below the height of surrounding trees (Johnson et al. 2014, 2017b). The 

reasons for this are not clear, but Gabaldon suggested that tall nest trees may have more potential 

nesting branches, might provide a better vantage point to see predators, or may serve as a 

landmark for pinyon jays returning to their nest. Nests may be lower than the average tree height 

in nest plots because they are more hidden from predators or destructive weather. Tree area and 

volume were not larger than non-nest trees in the same plot. It is unclear why area was nest tree 

area was not larger than non-nest tree area because there are more locations to build a nest in a 

larger tree (Gabaldon 1979) and more area would allow a nest to be built behind more foliage 

which may provide more nest concealment. While nest tree height was larger than non-nest tree 

height, similarities in volume may be due to non-significant results from tree area. Foliage was 

neither a factor in nest site selection nor did pinyon jays select trees with higher foliage scores 

than non-nest trees. This might be because foliage estimates are a poor proxy for nest 

concealment. 

 Johnson et al. (2014, 2017b) studied tree density in four pinyon jay colonies on KAFB as 

well as one on White Sands Missile Range in Socorro County, NM, which was also located in 

pinyon-juniper woodland. They found that the density of trees in nest areas was 965.1 trees/ha 
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(SE = 97.88/ha). In my study, I extrapolated the density of trees in nest plots to 332.60 trees/ha 

(SE = 60.28/ha). Even though pinyon jay flocks on KAFB were of similar size and had similar 

home ranges between studies, colonies were established in different locations. Pinyon jays in 

Johnson et al. (2014, 2017b) established colonies on high-elevation ridges with a greater 

proportion of pinyon to juniper trees, whereas in my study, colonies were established in lower 

elevation habitats with more juniper than pinyon. Lower elevation areas on KAFB were usually 

characterized by juniper savanna or less dense pinyon-juniper woodland (KAFB 2012). Habitat 

becomes more thickly wooded with pinyon and juniper as elevation increases on KAFB (Padien 

and Lajtha 1992, KAFB 2012). Johnson et al. (2014, 2017b) did not provide measurements of 

canopy coverage that were comparable with mine due to sampling technique, so it is possible that 

the difference in the number of tree stems per hectare does not reflect a similar change in the 

openness of the canopy. Pinyon jays might have moved from higher to lower elevation colonies 

because of significant pinyon mortalities on KAFB in the past decade (Johnson et al. 2017b, 

Boone et al. 2018). Results from my study and others show that most pinyon-juniper habitat on 

base, possibly excepting completely closed-canopy pinyon-juniper forest, was potentially suitable 

for pinyon jay nest site selection.  

A study in Farmington, NM found that tree area in a study plot was approximately 21.82% 

(Johnson et al. 2017a). Similarly, in my study, mean tree area was 23.67%. Johnson et al. (2017a) 

also found that 71% of pinyon jay nests were in pinyon-juniper woodlands with a tree cover area 

of 16.75% or more. In my study, 60% of nests were found in similarly open canopy. Pinyon jays 

in my study nested in relatively open canopy, which was not consistent with a previous study on 

KAFB (Johnson et al. 2014), but was similar to pinyon jay nesting habitat in Farmington, New 

Mexico (Johnson et al. 2017a). Nests in my study were mostly found in open juniper savanna or 

pinyon-juniper woodland. These areas can be considered edge or transitional areas between scrub 

steppe and densely wooded pinyon and ponderosa forest (KAFB 2012, Johnson et al. 2016). 
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Furthermore, pinyon jays nested in artificially created edge habitat where roads were constructed 

through woodland habitat. Two of four colonies from Johnson et al. (2014) and 22 nests from that 

study were situated less than 100 m from a road. In my study, three of five colonies were either 

intersected by dirt roads or were directly adjacent to one. The other two colonies were 200 m and 

400 m, respectively, from a dirt road. Characterization of pinyon jays as an edge or near-edge 

species is important to accurately portray these birds because of the way woodlands are being 

managed in the western U.S. 

 Federal and state agencies have been trying to mitigate pinyon-juniper encroachment and 

infilling out of concern for wildfire fuel management, pine beetle infestation, and habitat 

improvement for other species such as mule-deer (Romme et al. 2009, Kramer et al. 2015, 

Bombaci and Pejchar 2016, Jones et al. 2019). The primary treatment of pinyon-juniper habitat to 

mitigate these concerns is to clear cut large tree stands, healthy or otherwise (Bombaci and 

Pejchar 2016, Johnson et al. 2017b, Jones et al. 2019). It is hoped that this technique 

simultaneously reduces the spread of conifer pests and fuel for wildfires, while creating habitat 

for species of concern (Kramer et al. 2015, Bombaci and Pejchar 2016, Johnson et al. 2017b, 

Jones et al. 2019). My study and others suggest that this technique may be detrimental to pinyon 

jays because it can fragment or eliminate their habitat (Boone et al. 2018, Great Basin Bird 

Observatory 2013, Johnson et al. 2017b, Jones et al. 2019). 

Currently, pinyon-juniper landscapes in the western U.S. are changing due to complex factors 

including climactic conditions and human land use, however fire suppression might not be severe 

or widespread enough to significantly impact open pinyon juniper woodlands like the habitat 

pinyon jays were found in on KAFB (Gitlin et al. 2006, Romme et al. 2009, Bombaci and Pejchar 

2016, Jones et al. 2019). While pinyon-juniper woodlands are currently infilling formerly open 

stands and encroaching on shrub lands, their range in the next century is projected to contract due 

to climate change, especially in southern regions such as New Mexico (Romme et al. 2009, 
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McDowell et al. 2016, Bombaci and Pejchar 2016, Boone et al. 2018, Jones et al. 2019). If 

climate change causes conifer mortality, there are few mitigation procedures to protect pinyon 

jays from widespread habitat degradation (Breshears et al. 2010). Prescribed fire programs are not 

appropriate as a management technique for pinyon jays in open woodland because they likely not 

burn effectively enough in open pinyon-juniper habitat to affect the landscape appreciably 

(Romme et al. 2009). Boone et al. (2018) suggested that selectively thinning smaller pinyon trees 

and leaving taller ones may improve growing conditions for remaining trees, while also 

preserving trees pinyon jays have shown preference for nesting in. This management strategy is 

consistent with my results suggesting pinyon jays on KAFB preferred to nest in larger than 

average trees in a nest plot. While one short-term study on pinyon jay nesting habitat altered by 

tree thinning showed few impacts, longer term studies on tree reduction are needed (Balda 2002, 

Bombaci and Pejchar 2016, Johnson et al. 2018, Jones et al. 2019). It is questionable if woodland 

thinning is having the desired impact for wildfire prevention or conservation of wildlife (Bombaci 

and Pejchar 2016, Jones et al. 2019). If these treatments show little or no mitigation efficacy, it 

may be appropriate rethink how and when they are implemented.  

CONCLUSION 

Pinyon jays within pinyon-juniper habitat on KAFB nested in areas with fewer number of dead 

juniper trees. Findings from this study suggest ideal pinyon jay nest site habitat included fewer 

than 16 dead juniper trees per hectare. Pinyon jays nested in trees that were taller and larger than 

the trees surrounding it and placed nests below the average survey plot tree height. They also 

nested in relatively open woodlands with fewer trees than in other studies, suggesting suitable 

pinyon jay breeding habitat may be variable within pinyon-juniper woodland. Therefore, 

maintaining pinyon and juniper trees in a range of densities and canopy areas may be ideal for 

conserving pinyon jay habitat in New Mexico. When tree removal does occur, efforts should be 

made to selectively thin smaller trees and dead juniper while leaving larger live trees.  
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TABLES AND FIGURES 

Table 3.1 – Habitat characteristics of vegetation survey plots around pinyon jay nests on Kirtland 
Air Force Base, New Mexico 2017-2018. While there is an elevated chance of type I and II 
errors, this work is exploratory and is a valuable first step into identifying potentially important 
habitat characteristics for future hypothesis testing. 

 
Nest Site  Random Site  

  
Variable X̅ SE  X̅ SE  F P 

No. of shrubs a 12.16 2.28  10.23 1.82  0.263 0.609 

No. of trees a 32.00 5.80  44.05 7.44  1.641 0.204 

No. of pinyon a 23.60 6.45  34.03 8.31  0.492 0.485 

No. of juniper a 21.05 2.94  28.02 3.19  2.587 0.112 

No. of multi-trees a 6.29 1.50  7.16 1.52  0.521 0.472 

No. of live trees 26.71 4.22  34.12 5.72  1.093 0.299 

No. of live pinyon 17.21 4.51  24.30 7.41  0.323 0.572 

No. of live juniper 20.50 2.86  25.39 2.75  1.516 0.222 

No. of live multi-trees 5.79 1.28  6.57 1.37  0.544 0.463 

No. of dead trees 8.54 3.13  13.57 3.38  1.957 0.166 

No. of dead pinyon 12.05 4.43  13.04 3.82  0.425 0.516 

No. of dead juniper 1.53 0.17  5.40 0.91  11.36 0.001* 

No. of dead multi-trees 4.25 0.85  4.40 1.78  0.131 0.718 

Mean live tree height (m) 2.94 0.09  2.90 0.09  0.096 0.757 

Mean live shrub area (m2) 3.96 0.51  3.26 0.32  1.347 0.250 

Mean live tree area (m2) 13.36 1.46  11.64 1.06  0.909 0.343 

Mean live pinyon area (m2) 1.30 0.22  1.79 0.26  2.031 0.160 

Mean juniper area (m2) 10.32 1.39  7.13 0.71  4.115 0.046* 

Mean multi-tree area (m2) 20.85 2.97  19.76 2.12  0.091 0.762 

Total live shrub area (m2) 44.19 7.03  37.79 8.21  0.203 0.654 

Total live tree area (m2) 227.72 20.43  258.72 23.19  1.008 0.318 

Total live multi-tree area (m2) 81.78 12.69  84.30 12.20  0.366 0.547 

Total live vegetation area (m2) 260.34 22.90  287.29 25.06  0.632 0.429 

Live shrub area (%) 4.59 0.73  3.93 0.85  0.203 0.654 

Live tree area (%) 23.67 2.12  26.89 2.41  1.008 0.318 

Live vegetation area (%) 27.06 2.38  29.86 2.60  0.632 0.429 

Mean live shrub volume (m3) 5.35 0.78  4.31 0.50  1.243 0.269 

Mean live tree volume (m3) 33.23 4.60  27.84 3.01  0.952 0.332 

Mean live pinyon volume (m3) 2.94 0.62  4.37 0.70  2.234 0.132 

Mean live juniper volume (m3) 25.67 4.43  16.20 1.91  3.784 0.0552 

Mean live multi-tree volume (m3) 54.19 10.40  50.62 5.92  0.093 0.762 

*Indicates statistical significance 

a Live or dead 
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Table 3.1 - (continued) 

 
Nest Site Random Site 

  
Variable X̅ SE X̅ SE F P 

Total live shrub volume (m3) 65.73 11.40 52.58 12.75 0.392 0.533 

Total live tree volume (m3) 535.22 48.50 599.26 58.41 0.714 0.400 

Total live multi-tree volume (m3) 206.43 33.51 208.15 29.53 0.253 0.616 

Total live vegetation volume (m3) 583.73 52.42 639.02 61.22 0.472 0.494 

Mean foliage cover 2.50 0.06 2.35 0.08 2.244 0.138 

Mean pinyon foliage cover 2.33 0.11 2.09 0.13 1.902 0.173 

Mean juniper foliage cover 2.52 0.08 2.35 0.10 1.745 0.190 

Mean multi-tree foliage cover 2.58 0.09 2.50 0.10 0.390 0.534 

Elevation (m) 1938.1 9.2 2006.9 16.4 13.64 < 0.001* 

Slope (degrees) 20.24 1.82 16.68 1.80 1.922 0.169 

Dead trees (%) 14.39 2.08 19.91 2.70 3.736 0.057 

Dead pinyon (%) 28.99 5.41 36.83 6.20 2.238 0.139 

Dead juniper (%) 7.28 1.10 13.53 1.82 6.912 0.010* 

* Indicates statistical significance 
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Table 3.2 – Pinyon jay nest tree characteristics on Kirtland Air Force Base, New Mexico in 2017-
2018. 

Variable X̅ SE 

No. of individual trees in a multi-tree nest tree 2.80 0.33 

Height of nest tree (m) 3.77 0.13 

Area of nest tree (m2) 19.21 1.49 

Volume of nest tree  (m3) 49.61 4.76 

Foliage cover of nest tree (0-4 scale) 2.57 0.08 

Nest height (m) 2.27 0.11 

Relative nest height 1a 60.43% 2.30% 

Relative nest height 2b 78.96% 4.33% 

Distance of nest to tree center (m) 0.97 0.10 

Distance of nest to tree edge (m) 0.88 0.09 

Relative edge distance c 49.71% 3.80% 
a Relative nest height 1 – Ratio of nest height to nest tree height. 

b Relative nest height 2 – Ratio of nest height to average non-nest tree height in the study plot. 

c Relative edge distance – Ratio of the distance from the nest to the center of the tree compared to 
the distance from the edge of the tree to the center. 
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Table 3.3 – Habitat characteristic variables eliminated before nest site selection AICc evaluation. 
Some variables were eliminated before evaluation because they showed little or no slope when 
plotted, indicating weak association with nest site selection. Other variables were eliminated 
because they were highly correlated with other variables, or could not be applied across all plots 
for AICc evaluation. Kirtland Air Force Base, New Mexico 2017-2018. 

Variable Reason Eliminated Correlated Variable r 

Number       

No. of shrubs  Correlation Total live shrub area 0.90 

No. of trees  Correlation Total live tree area 0.89 

No. of pinyon  Correlation Total live tree area 0.79 

No. of juniper  Correlation Total live tree area 0.80 

No. of multi-trees  Correlation Total live tree area 0.69 

No. of live trees Correlation Total live tree area 0.89 

No. of live pinyon  Correlation Total live tree area 0.89 

No. of live juniper  Correlation Total live tree area 0.81 

No. of live multi-trees Correlation Total live tree area 0.71 

No. of dead trees Correlation No. of dead juniper 0.61 

Mean live shrub area (m2) Not on all plots 
  

Mean live tree area (m2) Correlation Mean juniper area 0.81 

Mean live pinyon area (m2) Not on all plots 
  

Mean multi-tree area (m2) Not on all plots 
  

Total live multi-tree area (m2) Correlation Total live tree area 0.69 

Total live vegetation area (m2) Correlation Total live tree area 0.97 

Live shrub area (%) Correlation Total live shrub area 1.00 

Live tree area (%) Correlation Total live tree area 1.00 

Live vegetation area (%) Correlation Total live tree area 1.00 

Mean shrub volume (m3) Not on all plots   

Mean live tree volume (m3) Correlation Mean juniper area 0.82 

Mean live pinyon volume (m3) Not on all plots   

Mean live juniper volume (m3) Correlation Mean juniper area 0.98 

Mean live multi-tree volume (m3) Not on all plots   

Total live shrub volume (m3) Correlation Total live shrub area 0.98 

Total live tree volume (m3) Correlation Total live tree area 0.96 

Total live multi-tree volume (m3) Correlation Total live tree area 0.67 

Total live vegetation volume (m3) Correlation Total live tree area 0.95 

Mean foliage cover Correlation Total live tree area 0.70 

Mean pinyon foliage cover Not on all plots   

Mean juniper foliage cover Correlation Total live tree area 0.63 
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Table 3.3 – (continued) 

Variable Reason Eliminated Correlated Variable  r 

Mean multi-tree foliage cover Not on all plots 
  

Elevation (m) Not vegetation 
  

Slope (degrees) Not vegetation 
  

Dead trees (%) Correlation No. of dead juniper 0.65 

Dead juniper (%) Correlation No. of dead juniper 0.80 
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Table 3.4 – Support for models explaining nest site selection by pinyon jays on Kirtland Air 
Force Base, New Mexico in 2017-2018. The model containing the number of dead juniper best 
predicts nesting sites. I rejected all models listed below except the highest ranked model due to 
high Δi values (Δi  ≥ 2; Arnold 2010). 

Variable Intercept Coefficient dfa AICcb Δi
c ωi

d  

No. dead juniper -0.1240 -1.1770 2 106.4 0 0.9642  

Mean live juniper area 0.05049 0.22739 2 114.6 8.2 0.0163  

Percentage dead pinyon 0.01941 -0.34432 2 116.9 10.5 0.0050  

Null 0.0241  1 117.1 10.7 0.0046  

Total tree area 0.02339 -0.22649 2 118.2 11.8 0.0027  

No. dead pinyon 0.02347 0.22014 2 118.8 12.4 0.0020  

Total live shrub area 0.02431 0.10119 2 119 12.6 0.0018  

No. dead multi-tree 0.02396 -0.08167 2 119.1 12.7 0.0017  

Mean live tree height 0.02416 0.06952 2 119.1 12.7 0.0017  
a df - Degrees of freedom  

b AICc – Akaike’s Information Criterion corrected for small sample sizes. 

c Δi– Akaike’s Information Criterion relative to the highest ranked model 

d ωi– Akaike weight  
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Table 3.5 – Results of one-way paired t-tests comparing pinyon jay nest tree (n = 42) 
measurements against a randomly selected non-nest tree in the same nest vegetation survey plots 
on Kirtland Air Force Base, New Mexico in 2017-2018.  

  Nest Tree   Plot Trees     

Parameter  X̅ SE   X̅ SE  r P 

Height (m) 3.77 0.13 2.91 0.03  0.31 < 0.001 

Area (m2) 19.21 1.49 15.79 0.46  0.33 0.118 

Volume (m3) 49.61 4.76 38.68 1.36  0.33  0.103 

Foliage 2.57 0.08 2.57 0.02  0.34  0.500 
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Figure 3.1 – Regression demonstrating the relationship between the number of dead juniper trees 
in a vegetation survey plot and the percent probability the plot was a pinyon jay nesting site. Data 
points represent either nest plots   (y = 1) or random plots (y = 0) and are jittered to show 
overlapping points. The gray region represents the confidence interval. Kirtland Air Force Base, 
New Mexico 2017-2018. 
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CHAPTER IV 
 

 

PINYON JAY NEST FATE AND RENESTING IN CENTRAL NEW MEXICO 

 

ABSTRACT 

Pinyon jay (Gymnorhinus cyanocephalus) populations are declining by almost 3.5% per year 

which may be related to low reproductive success. However, pinyon jay nest success and 

renesting propensity has not been studied in pinyon-juniper habitat. Therefore, my objectives 

were to compare habitat characteristics of successful and unsuccessful nest sites in central New 

Mexico as well as to investigate renesting and potential instances of pinyon jay satellite colonies. 

I attached radio telemetry transmitters to pinyon jays to locate nesting sites, then conducted 

habitat surveys at each nest location. I measured number, species, area, volume, and foliage of 

trees at 37 nest sites in addition to nest  and nest tree characteristics. To assess which variables 

affected daily nest fate, nest plot characteristics were incorporated into binomial generalized 

linear models with a logistic exposure function, then evaluated with Akaike’s Information 

Criterion corrected for small sample size (AICc). No habitat differences were found between 

successful and unsuccessful nests. Satellite colonies were not detected, but some breeding pairs 

did renest > 1.5 km from their original colony. Renesting mostly occurred in the original colony. 

Renesting was common in one flock that had year-round access to food and water, and less 

common in another flock that did not. To assess which variables affected renesting propensity, 

nest plot vegetation variables were compared between 10 original and 10 subsequent nest sites, 
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then incorporated into binomial generalized linear models and evaluated with AICc. Total tree 

area and average juniper tree area models best predicted renesting sites. Nest success was 21.43% 

including an estimated 40 fledglings, but likely was an ineffective measure of population trends 

for pinyon jays on the study site because we found few nests relative to the breeding population. 

Count surveys indicated the pinyon jay numbers on KAFB has remained similar for at least eight 

years and potentially grew in the second year of this study. Results suggest pinyon jay habitat 

with greatest nest success in a pinyon-juniper landscape would have large nest trees (54.34 m3), 

open canopy (20% tree area), and healthy pinyon trees. When prescribed thinning occurs in 

pinyon jay habitat, dead and less vigorous pinyon trees should be removed while larger healthy 

trees should be preserved. 
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INTRODUCTION 

Factors influencing nesting success in birds are important to identify in species of concern (Willis 

1974). Studies of songbirds frequently investigate how habitat characteristics such as number of 

trees, nest tree species, canopy cover, and tree size affect nest success (Liebezeit and George 

2002, St-Louis et al. 2010, Francis et al. 2011). The effects of habitat characteristics on nesting 

success are species specific (Liebezeit and George 2002, St-Louis et al. 2010, Francis et al. 2011). 

There are many birds that require research into how habitat characteristics affect nest success, 

especially species of concern with declining populations such as the pinyon jay (Gymnorhinus 

cyanocephalus; Marzluff and Balda 1992; Balda 2002; Rosenberg et al. 2016). 

Pinyon jays are a colonially-nesting species distributed throughout the western United States 

(Marzluff and Balda 1992, Balda 2002). Pinyon jay populations have declined approximately 

3.5% per year, in part due to low breeding success (Marzluff and Balda 1992, Balda 2002, 

Rosenberg et al. 2016). Only 55% of pinyon jay eggs hatch and 56% of hatched eggs fledge 

young (Marzluff and Balda 1992, Barber et al. 2001, Balda 2002). Pinyon jays, however, have 

relatively long lifespans, which can compensate for low nesting success by allowing them to nest 

a greater number of times over their lives (Marzluff and Balda 1992). Breeding pairs of pinyon 

jays often try to nest more than once in a season if their first attempt is unsuccessful (Balda 2002, 

Walker and Marzluff 2017, Benvenuti et al. 2018). Therefore, overall reproductive success often 

depends on the success of renesting attempts (Marzluff and Balda 1992, Morris et al. 2015).  

When pinyon jays renest, they often do so 1.2 km–5.0 km away from the original breeding colony 

in a group of other renesting breeding pairs (Balda and Bateman 1971, Marzluff and Balda 1992). 

Groups of renesting pinyon jays that have dispersed away from the original colony have been 

called “satellite colonies” which can comprise 3–12 nests (Balda and Bateman 1971, Marzluff 

and Balda 1992, Balda 2002). This behavior has been observed in Flagstaff, AZ and is understood 
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as an established part of the pinyon jay life cycle, but it has not been investigated or mentioned in 

other regions of pinyon jay habitat (Ligon 1978; Johnson et al. 2016, 2017, 2018). For example, 

multi-year studies in central New Mexico delineated the boundaries of pinyon jay colonies 

established at the beginning of breeding season, but researchers did not detect satellite colonies 

(Johnson et al. 2016, 2017, 2018). Satellite colonies may not have been observed or mentioned in 

other pinyon jay literature because pinyon jays in some regions might not often renest or make 

satellite colonies (Ligon 1978). Pinyon jays have been known to alter the height at which they 

construct subsequent renests after predation or destructive weather causes a first nest to fail, but it 

is unclear if the circumstances of previous nest failures cause pinyon jays to select different 

habitat to renest (Marzluff 1988).  

Therefore, my objectives were to evaluate if nest habitat characteristics affect pinyon jay nest 

fate, as well as compare nest habitat characteristics between first and subsequent nesting attempts. 

Additionally, I measured the distance between renest attempts and determined if satellite colonies 

existed on the study site.  

METHODS 

Study Area 

I conducted this study on Kirtland Air Force Base (KAFB) in 2017 and 2018. Kirtland Air Force 

Base is located in central New Mexico and comprises habitat types that follow an elevational 

gradient from west to east (KAFB 2012). The scrub-steppe lowlands in the west transition to 

juniper (Juniperus monophylla) savanna, pinyon (Pinus edulis) and juniper woodland, and 

ponderosa pine (Pinus ponderosa) forest in the east (KAFB 2012). KAFB is 210 km2, including 

77 km2 of pinyon-juniper woodland (Johnson et al. 2016). Two flocks of pinyon jays resided in 

pinyon-juniper woodlands on KAFB (Chapter 2). The Madera flock inhabited the north region 

and the Starfire flock inhabited the south near the Starfire Optical Range (SOR; Fig. 4.1). I did 
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not observe the two flocks associating with each other between December and July. Under the 

Sikes Act Improvement Act of 1997, species of concern, such as the pinyon jay in New Mexico, 

must be monitored and managed for conservation on Department of Defense lands (NatureServe 

2004, BirdLife International 2016) 

Data Collection 

I trapped pinyon jays between December and March in both years. Regularly stocked bird feeders 

maintained by the SOR gate attendant regularly attracted the Starfire flock. In the north, I also 

established an automatic feeder in an area of high pinyon jay activity in 2018 (Johnson et al. 

2016). The feeder dispensed shelled peanuts, black-oil sunflower seeds, and millet. 

I trapped pinyon jays in walk-in style pigeon traps and a large box trap baited with pinyon seeds 

(Johnson et al. 2016). Trapped pinyon jays were immediately placed in cloth bags (Ralph et al. 

1993). All pinyon jays had serially-numbered USGS aluminum bands attached and a unique 

combination of three, plastic color bands to identify individuals. I determined age of pinyon jays 

by the presence or absence of molt limits in their flight feathers (Pyle 1997). Male and female 

pinyon jays are monomorphic and difficult to differentiate (Balda 2002). Although literature 

indicates that males have more blue on their head, are slightly larger, and have slightly larger bill 

measurements than females, these characteristics are not precise and I recorded many individuals 

as “unknown sex” (Johnson 1988, Pyle 1997, Balda 2002). I collected blood samples from the 

brachial vein of all trapped pinyon jays and sent them to a genetics lab for definitive sex 

determination (Animal Genetics, Inc., Talahassee, FL).  

I attached VHF radio transmitters weighing 2.0 g to a subset of pinyon jays by tying transmitters 

around the base of their central two rectrices and reinforcing it with cyanoacrylic glue (Holohil, 

Inc., Carp, ON, Canada; Johnson et al. 2016). To find nests, I attempted to deploy transmitters on 
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as many females as possible. In 2017 and 2018, I deployed transmitters on 9 and 24 females, 

respectively. I also deployed transmitters on 32 pinyon jays that were male or unknown sex. 

When pinyon jays subdivided from the two main flocks into breeding colonies (Chapter 2), I 

located nests by homing in on transmitter signals from nesting females (Millspaugh et al. 2012). I 

used telemetry to find the strongest signal from transmitters of likely-nesting females, i.e. females 

with transmitters signaling no movement throughout the day during breeding season. Males with 

transmitters were useful for finding colonies, but moved too quickly for me to locate their nests. I 

found other nests by watching the breeding colony from a vantage point (Johnson et al. 2010). 

When colony members carrying food or nesting material returned to nests, I determined where 

they entered or exited trees, then tried to find nests in those areas (Johnson et al. 2017). To 

identify nest owners without transmitters, I hid nearby and noted the color bands on each parent if 

present (Marzluff and Balda 1992). I could not identify subsequent nests if parents were 

unbanded. 

When nests failed I tried to relocate individuals to see if they constructed new nests. This was 

accomplished by following radio-tagged females whose nests had recently failed. I found 4 

renests using this technique. However, most of the first nests I found either did not belong to a 

female with a transmitter, or else their transmitter had fallen off. This made locating renests 

difficult. Most nests are established in an original colony within 10 days, thus, I assumed nests 

established after this to be renests (Marzluff and Balda 1992, Balda 2002). I determined nest start 

date by identifying the nesting stage (incubation, brooding, or fledging), then counting backward 

the number of days it took to reach that stage (Marzluff and Balda 1992, Balda 2002). To 

determine the start date of each colony, I calculated the first lay date for every known nest in each 

original colony to determine the average first lay date. I found 8 nests established sufficiently 

later than the average first lay date of the original colony to call them renests. I used the Measure 

tool in ArcGIS 10.2 (ESRI, Inc., Redlands, CA) to find: the distance between renests and their 
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previous nests; the distance between renests and the closest nest of the original colony; and, for 

all colony nests, the closest neighboring nest (Gabaldon 1979, Marzluff and Balda 1992). 

Habitat Measurements 

After nesting ended in a colony, I conducted habitat surveys at every nest location with the help 

of a technician. Habitat survey plots were a circle with a 17.5 m radius in which we collected 

measurements of the terrain and the nest, as well as vegetation data from the nest tree and non-

nest trees in the plot (Johnson et al. 2014, Krofcheck et al. 2016). We found the nest tree at the 

center of the plot, recorded the GPS coordinates, and measured the slope of the ground with a 

clinometer (Gabaldon 1979, Krofcheck et al. 2016). Then we used a tape measure to place flags 

17.5 m away at the edges of the plot in the four cardinal directions to make a visible boundary for 

reference while collecting data.  

We measured nest height off the ground, directional aspect of the nest in the tree relative to the 

center, nest distance to tree edge, and nest distance to tree center (Gabaldon 1979). Pinyon jays 

constructed the majority of their nests in juniper trees which grow asymmetrically and do not 

have an easily identifiable center (Waichler et al. 2001). Thus, to calculate distance from the nest 

to the center of the tree, I measured tree width at the height and aspect of the nest and divided that 

value by two to find the radius of the tree. I then subtracted distance of the nest to tree edge from 

the radius to find distance of the nest from the center. I used these values to calculate relative 

height and edge distance of the nest in the tree, which are ratios that describe the location of the 

nest within a nest tree (Marzluff 1988). Relative edge distance was defined as the distance from 

the nest to the center of the tree divided by the distance from the center to the edge (Marzluff 

1988). Nests closer to the tree edge had higher relative edge distance values than nests closer to 

the center. Similarly, relative nest height (hereafter relative height 1) was defined as height of the 

nest above the ground divided by total tree height (Marzluff 1988). Relative height values were 
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greater for nests higher up in the nest tree. The closer a nest was to the top of the tree, the higher 

the relative height value was. Additionally, I computed a second relative height (hereafter relative 

height 2) value that compared nest height to the average non-nest tree height in the plot 

(Gabaldon 1979). This is a measure of the height of the nest above or below the local canopy, and 

therefore a proxy of nest concealment from predators or protection from destructive winds 

(Gabaldon 1979).  

The technician and I surveyed the remainder of the vegetation beginning from the same side of 

the plot and working in opposite directions until we met on the other side. We recorded species of 

woody plants > 1 m tall and noted if they was alive or dead (KAFB 1998). I imposed this height 

limit to include only plants potentially used for nesting by pinyon jays (Marzluff and Balda 

1992). All pinyon and juniper were classified as trees, and all other short, woody-stemmed plants 

including scrub oak (Quercus turbinella) were classified as shrubs, which typically do not grow 

greater than 3 m in height (KAFB 1998, Körner 2012). We measured the length, width, and 

height for each plant, beginning with the side of greatest length (Krofcheck et al. 2016). Tree area 

was calculated as an ellipse with radii of half the greatest length and half the corresponding 

perpendicular width (Krofcheck et al. 2016). Tree volume was calculated as an ellipsoid with 

radii of half the greatest length, half the perpendicular width, and half the height (Krofcheck et al. 

2016). I chose to calculate volume as an ellipsoid because it followed naturally from the elliptical 

area calculation and was the most approximate shape to pinyon and juniper trees (Krofcheck et al. 

2016). I estimated visible foliage using the Braun-Blanquet Cover-Abundance Scale (Wilkum and 

Shanholtzer 1978). I stood 3–5 m from each tree and evaluated it from four sides, beginning with 

the side of longest width and continuing every 90°. Scores were from 1–4 for each side of the 

tree: 1 (1–25% foliated); 2 (26–50%); 3 (51–75%); 4 (76–100%). 

Some trees were intertwined with one or more other trees that affected their growth and, thus, 

their size and foliage measurements (Gabaldon 1979). I measured the collection of intertwined 
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trees together (hereafter multi-tree), and did not measure each constituent tree separately. I did 

record how many trees comprised the multi-tree and their species.  

I compared characteristics of the nest tree to other trees in the plot. These values potentially 

indicate important nest tree characteristics (Gabaldon 1979). For each nest plot, I compared the 

ratio of the height, area, volume, and foliage cover, respectively, between the nest tree and the 

average of the non-nest trees in the plot (Gabaldon 1979). 

Data Analysis 

To assess effects of pinyon jay nest site habitat characteristics on nest successful, I created a set 

of binomial generalized linear models (GLMs) and evaluated them with Akaike’s Information 

Criterion corrected for small sample sizes (AICc; Burnham and Anderson 2002). I used GLMs 

instead of mixed models with a random effect for colony because I did not have enough data 

points for the random effect to fit the model (Harrell 2015). To make all variables comparable to 

each other for AICc analysis, I standardized variables by subtracting the mean of each variable 

from every data value within it and dividing those values by the standard deviation (Anderson 

and Burnham 2002, Symonds and Moussalli 2011). I did not include nests for which I could not 

determine if the nest fledged or failed. Using the lme4 R package (Bates et al. 2015; R Version 

3.4.1, www.r-project.org, accessed 10 Sep 2017), I created GLMs with a logistic exposure link to 

evaluate nest mortality as a function of nest exposure in days (Shaffer 2004, Bolker 2014). 

Because nests that are found with older clutches are more likely to be successful than with 

younger clutches, and nests that fail are less likely to be discovered than active nests tended by 

adults, the logistic exposure function is appropriate to use because it considers the number of days 

nests were monitored (Shaffer 2004). The binary response variable was nest fate at each nest 

check, which was given a value of 1 if active or 0 if failed. Nests which fledged at least one chick 
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were given a value of 1 for that nest check. The fixed explanatory variables were habitat 

characteristics of the nest site.  

Evaluations of AICc are more informative about a given set of variables when the number of 

models is small (Anderson and Burnham 2002, Dochtermann and Jenkins 2011). Therefore, I 

analyzed a subset of the habitat characteristics I measured (Table 4.1). For example, I excluded 

terrain measurements from analysis because I wanted to assess vegetation characteristics of nest 

sites, however, terrain measurements were useful for comparing colony locations with previous 

studies on KAFB. I also removed some before analysis (Table 4.2). I eliminated variables from 

AICc analysis if they could not be meaningfully measured in all plots. For example, I did not 

measure the individual trees comprising a multi-tree, so I could not analyze the total area and 

volume for pinyon or juniper. I also excluded the average area, volume, and foliage 

measurements for pinyon trees or multi-trees because they were not present to be measured in all 

plots and, therefore, could not be used in an AICc evaluation (Anderson and Burnham 2002). I 

also removed variables that were highly correlated (|r| ≥ 0.6; Burdett et al. 2010; Goldenberg et al. 

2017). After evaluation, I rejected models with relatively large AICc values (Δi ≤ 2; Richards 

2008, Arnold 2010). 

I also compared habitat characteristics between all original nests and renests using an AICc 

analysis that evaluated binomial GLMs constructed from a subset of measured habitat variables 

(Table 4.3). The response variable was the type of nest (original or renest). The fixed explanatory 

variables were the habitat characteristics of the nest site. I removed variables before analysis as 

noted above (Table 4.4). 

RESULTS 

Nest Fate 
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I found 42 nests during the study, 38 of which nest fate was known (Table 4.5). Predation was 

likely the cause of failure for most nests, but some were abandoned (Table 4.5). Nest predation 

occurred during the incubation (n = 18) and brooding stages (n = 8) of nesting. I could not count 

how many individual eggs were predated because I typically did not check nest contents until the 

female began brooding. There were 43 nestlings that did not survive, most of which were likely 

predated, however, 6 were from nests that eventually fledged at least one chick. Pinyon jay nests 

produced 21 fledglings and I found a minimum of 9 other hatch-year birds which fledged from 

unobserved nests. 

I collected habitat data at 42 pinyon jay nest sites, but eliminated 5 nests from the AICc analysis. 

I removed 4 nests of unknown fate and 1 nest that had fledged before discovery because they 

could not be analyzed with the logistic exposure function (Bolker 2014). Specifically, nests found 

after fledging (0 exposure days) could not be calculated because it would require the function to 

divide by 0 and result in an error (Bolker 2014). After removing variables from the analysis, the 

following variables were included in the AICc evaluation: number of dead pinyon, number of 

dead juniper, average juniper area, total shrub area, total tree area, percentage of dead juniper, 

average juniper foliage cover, relative edge distance, nest tree area, nest tree foliage cover, nest 

tree to average non-nest tree area ratio, and nest tree to average non-nest tree foliage ratio, and 

relative nest height 1. I evaluated only univariate models because of the low power of this 

analysis (Harrell 2015). The AICc evaluation yielded 9 best models (Δi ≤ 2) (Table 4.6). The best 

model included the variable for nest tree area and had a confidence set of 0.158, meaning that 

there is a 15.8% chance that the best model truly is the best of the ones evaluated (Table 4.6). The 

null model was too similar to the top model to reject as a predictive model (Δi < 2; Table 4.6).  

Additionally, I conducted ANOVAs on GLM models from every variable, even those excluded 

from AICc analysis (Table 4.1). Since pinyon, multi-trees, and shrubs were not present on every 

plot, variables of average size and foliage measurements could not be compared to missing 
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values. Therefore, I excluded plots that did not have those vegetation categories before processing 

each GLM and conducting an ANOVA (Table 4.1).  

Renesting and Satellite Colonies 

When breeding began, pinyon jays from each flock subdivided to establish breeding colonies in 

smaller groups. In 2017, the Madera flock established two nesting colonies: one in Sol Se Mete 

Canyon (hereafter Madera1; nests = 5) and the other on the northwest edge of Madera Canyon 

(hereafter Madera2; nests = 6; Fig. 4.2). In 2017, the Starfire flock split into two colonies. They 

built one colony (hereafter Starfire1; nests = 9) on base near the Combat Arms Training and 

Maintenance firing range (Fig. 4.3) and likely established another (hereafter Starfire2) across the 

southern border of KAFB on Isleta Pueblo (Fig. 4.1), but I did not have access to this location. I 

determined this group to be nesting because females with radio transmitters were repeatedly 

detected at the same bearing for several days. In 2018, the Madera flock nested in one colony 

(hereafter Madera3; nests = 8). The Starfire flock established two colonies in 2018. They nested 

at Starfire 2 again and created a new colony (hereafter Starfire 3; nests = 9; Fig. 4.4) near the 

High Energy Research and Technology Facility. 

I found 30 nests that were first nesting attempts. Additionally, I found 4 renests for which I knew 

the previous nest location, and 8 for which I did not, but I determined by backdating nests that the 

latter were of renest age. Pinyon jays did not renest within the same tree. I did not find pinyon 

jays nesting in satellite colonies, rather, they built some renests “contiguously” with the original 

colony (< 0.7 km; n = 8; hereafter “contiguous renests”), while some were built far from the 

original colony (> 1.5 km; n = 4; Figs. 4.2–4.4). Importantly, when pinyon jays lost nests and 

renested nearby, the active boundary of the colony shifted, so although all contiguous renests 

were less than 0.7 km away from the original colony boundary, they were much closer to the 

contemporaneous, reshaped colony boundary. Contiguous renests ranged 0.28 km–0.61 km (x̅ = 
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0.44, SE = 0.05 km) from the closest nest in the original colony (Table 4.7). Non-contiguous 

nests ranged 1.6 km–2.1 km (x̅ = 1.8 km, SE = 1.11 km) from the closest nest in the original 

colony (Table 4.7). The average distance of contiguous nests from their nearest neighbor did not 

differ compared to the average distance of nearest neighbors in the original colony (t = 0.51, P = 

0.62).  

In 2017 I found nests in the Madera1 and Madera2 colonies using traditional nest searching 

techniques, but without an adequate number of pinyon jays with transmitters, I could not track 

them to potential renests. I found one nest 1.6 km from Madera2 (Fig. 4.2). Additionally, I 

located three nests far from Starfire1 whose breeding pairs originated from there and four 

contiguous nests less than 0.4 km from the original colony (Fig. 4.3). In 2018, I located four 

renests at Starfire3 which were all contiguous with the original colony and therefore I do not 

consider them satellite nests (Fig. 4.4). 

The majority of renests were in Starfire1 and Starfire3 (n = 10, 91%). Therefore, to compare 

habitat characteristics between original nests and renests, I analyzed these two colonies because 

were in a similar location and comprised the same flock. After removing variables (see above), 

the models I evaluated in the AICc analysis included: number of dead pinyon, number of dead 

juniper, average juniper area, total shrub area, total tree area, average juniper foliage cover, 

percentage of dead pinyon, nest tree height, nest tree area, nest tree foliage cover, nest tree to 

average non-nest tree height ratio, relative nest height 1, and relative edge distance. The top 

models included the variable for average juniper tree area and total tree area, which were 

negatively associated with renests (Table 4.8). The null model was not competitive (Δi = 2.3; 

Table 4.8).  

DISCUSSION 

Nest Success 
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Although researchers have recently been studying nest site selection of pinyon jays in New 

Mexico, there has been little research on nesting success in pinyon-juniper habitat (Balda 2002; 

Johnson et al. 2016, 2017, 2018). The lack of studies on pinyon jay nest success is concerning 

because populations are declining as the habitat they live in is changing rapidly (Romme et al. 

2009, Breshears et al. 2010, Rosenberg et al. 2016). This study provided exploratory nest fate 

data for pinyon jays in pinyon-juniper habitat. 

The majority of nests in this study failed due to predation. In most instances, the lack of egg or 

nestling remnants in a relatively undisturbed nest cup indicated predation by common ravens 

(Corvus corax), Woodhouse’s scrub-jays (Acephalocoma woodhouseii), or bull snakes (Pituophis 

catenifer sayi), all of which were observed on KAFB (Marzluff 1988, Petyk 2004, Stake et al. 

2004). Three nests in this study were abandoned with nestlings. I made an effort to disturb nests 

as little as possible, typically only verifying at a distance if females were still maintaining the nest 

and only checking nest contents when the adults were not present. It is possible one nest failed 

due to loud noises from high-velocity impact testing at the nearby Aerial Cable Facility. 

The AICc evaluation of factors influencing nest fate yielded 9 best models with weak confidence 

sets, meaning there was not enough evidence to select a best model. In a preliminary analysis, I 

tried to use mixed effects models to compare habitat differences among colonies, but they had 

random effect variances equal to zero, meaning that there were not enough data to compare 

among five colonies (Harrell 2015). Therefore, I analyzed nests in a fixed effect model, but it is 

uncertain how the results are affected by autocorrelation. Further, the null model produced similar 

results to the top model (Δi < 2), indicating the predictive power of the best models were weak. 

Therefore, variables in the best models should not be assumed as good predictors of pinyon jay 

nest success within pinyon-juniper woodland; rather, they may be candidates for further 

investigation. 
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The best model included nest tree area which was positively associated with nest success. Nest 

tree to average non-nest tree area ratio was also an important variable and positively associated 

with nest success. Larger nest trees have more branches and offer a greater number of potential 

nesting sites than smaller trees (Gabaldon 1979). Furthermore, the larger area of a nest tree might 

serve as a proxy for greater nest concealment because, even if green foliage was lower in larger 

trees, there would still be a greater amount of vegetation, green or not, obscuring the location of 

the nest from predators (Gabaldon 1979, Best and Stauffer 1980).  

The second best model in the nest fate analysis included total tree area around nest sites, which 

was negatively associated with nest success. This was consistent with findings from other studies 

that showed pinyon jays in pinyon-juniper habitat prefer nesting in relatively open woodland 

(Johnson et al. 2014, 2017). The reasons why total tree area might affect nest fate are unclear 

because the lower density nest sites are closer to, or may be characterized as, edge habitat, which 

is frequently associated with greater predation and nest predation rates (Andrén and Anglestam 

1988, Manolis et al. 2002, Stirnemann et al. 2015). However, nests in relatively open areas might 

be conducive for detecting predators (Gabaldon 1979, Götmark et al. 1995). Another explanation 

for the importance of total tree area on pinyon jay nest success is that a more open canopy might 

have greater exposure to solar radiation to keep chicks warm at the beginning of breeding season 

(Marzluff 1988, Marzluff and Balda 1992). This would need to be examined in temporally-

focused research and was outside the scope of this study. Finally, it has been suggested that the 

loss of open sagebrush mosaic within pinyon-juniper landscape might be related to pinyon jay 

population decline by reducing the amount of seed caching sites. This loss has not been 

documented at KAFB, but it may be possible that open-canopied nesting areas indicate a closer 

proximity to ideal caching sites (KAFB 2012, Boone et al. 2018).  

Relative edge distance was positively associated with nest success. Marzluff (1988) found that 

more exposed nests (i.e. higher up or closer to the edge of a nest tree) in AZ failed more 
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frequently than less exposed nests. In my study, cold weather was a potential risk for nests, and 

pinyon jays may have benefitted from increased nest exposure measured as a larger relative edge 

distance value because the increase in solar radiation might have kept eggs warm. However, 

unlike Flagstaff, AZ, KAFB does not receive much snow, and the temperature during this study 

rarely fell below freezing during breeding (NOAA 2019). Pinyon jays abandoned 3 nests (7.8%), 

which was less than in AZ (14.8%), so weather may not have impacted nest success as much as in 

AZ (Marzluff and Balda 1992).  

The number of dead pinyon trees was negatively associated with nest success. This may be 

because pinyon jays rely on pinyon seeds for much of their nutrition (Marzluff and Balda 1992, 

Balda 2002). Pinyon jays in areas with fewer live or healthy trees may have less access to seeds. 

Johnson et al. (2014, 2017) found pinyon jays frequently nested in areas with live pinyon trees 

with higher vigor than random sites. However, they also found that pinyon vigor on KAFB was 

declining, which could potentially cause pinyon jays to nest elsewhere when pinyon vigor 

decreases past a certain threshold (Johnson et al. 2014, 2017). Indeed, five years after Johnson et 

al. (2014, 2016, 2017), I found that pinyon jay colonies shifted to lower elevation juniper savanna 

with fewer pinyon and fewer trees overall (KAFB 2012). Live pinyon trees have been a focus of 

pinyon jay habitat research, however, I did not include variables for live pinyon trees in my AICc 

analysis due to the lack of pinyon in many nest plots, the difficulty of measuring individual trees 

within multi-trees, and the high correlation of pinyon size with total tree area (Johnson et al. 

2014, 2017, 2018). Rather, pinyon jays in this study closely associated with juniper trees, by 

nesting mostly in juniper, as well as inhabiting areas with more juniper (Chapter 3).  

I recorded 21 fledglings from study nests and found evidence of at least 9 other hatch-year pinyon 

jays. Assuming the Starfire2 colony on Isleta Pueblo produced offspring at a similar rate to the 

three KAFB colonies (approx. 10 fledglings and hatch-years per colony), the two flocks could 

have potentially produced 40 fledglings over two years. Marzluff and Balda (1992) found that 
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adult pinyon jays had a 74% annual survivorship. Survivorship rate for hatch-year and second-

year birds is lower than for adults, but I did not have age composition data, so I used the adult 

survivorship rate to project the population trend over two years. Assuming there were 125 pinyon 

jays on KAFB at the beginning of breeding season in 2017 (Chapter 2), approximately 33 after-

hatch-year pinyon jays would be expected to die within a year. It is likely that the 20 projected 

fledglings per year on KAFB, which experience the greatest mortality rates, would not be enough 

to replace all the adult mortalities. This population projection is likely not accurate because I 

likely did not find all fledglings produced during the study. Further, immigration and emigration 

from the flock likely occurred but were not measured. Considering the number of fledglings 

projected, a net total of 13 pinyon jays would have to immigrate to the KAFB flocks to stabilize 

the population, which is more than typically immigrated per year in Flagstaff (Marzluff and Balda 

1992). 

Marzluff and Balda (1992) believed a more accurate population model used direct counts of flock 

size. They found that pinyon jays in Flagstaff were declining at a rate of 7-12% per year. Previous 

pinyon jays studies on KAFB estimated 135 individuals which is similar to the number I found 

(Johnson et al. 2011). Thus, counts of pinyon jays on KAFB appear to have remained relatively 

stable since at least 2009. Between 2017 and 2018, the maximum flock count in my study grew 

from 60 to 65 individuals in the Starfire flock and from 65 to 75 individuals in the Madera flock 

(Chapter 2).  

Renesting and Satellite Colonies  

The majority of pinyon jay renesting research has been in Flagstaff, AZ (Gabaldon 1979, 

Marzluff 1988, Marzluff and Balda 1992). Gabaldon (1979) investigated renesting pinyon jays 

and found that older individuals had higher nesting success than younger ones. Marzluff (1988) 

studied renesting pinyon jays at the same site and focused on placement of renests within 
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subsequent nesting trees, but not landscape-scale spatial patterns of renests. His research showed 

that pinyon jays demonstrated specific changes in nest placement in response to nest failure due 

to either predation or weather events. Pinyon jays whose nests were preyed upon by aerial 

predators were more likely to renest in a less exposed location lower down in a subsequent nest 

tree. When pinyon jay nests failed because of snow or extreme cold, they were more likely to 

renest in a location that was more exposed to solar radiation, i.e. higher up or closer to the edge of 

the nest tree. These studies were conducted in ponderosa pine forests, however, and pinyon jay 

renesting site selection is potentially different in pinyon-juniper woodland. 

Pinyon jay studies have recently been conducted in New Mexico pinyon-juniper landscapes, but 

investigations into renesting and satellite colonies are lacking (Ligon 1978, Johnson et al. 2016, 

2017, 2018). Ligon (1978) did not observe pinyon jays renesting during a long-term study. He 

thought that this might have been due to lack of food and water in the dry climate. More studies 

have occurred in New Mexico since, but have not reported on renesting or satellite colonies 

(Johnson et al. 2016, 2017, 2018). 

I deployed 31 transmitters on females, but was only able to find 4 renests for which I knew the 

original nest location. This was due to transmitters falling off, some pinyon jays nesting off base, 

and few renesting attempts (n = 12). In 2018, I only found one breeding colony for the Madera 

flock. Although I tracked many adult females from this flock (n = 16) throughout the breeding 

season, we located just 2 nests from these females and many of the remainder appeared to forego 

breeding. Rather, a group of approximately 20 adult individuals wandered and foraged across 

their home range throughout spring and summer, indicating they forwent nesting during this time. 

Of 9 nesting females with transmitters that year, all but 1 either successfully fledged a brood or 

else their transmitter fell off before renesting. The remaining radio-tagged female did not renest 

after her first nest failed. Following males with transmitters also did not yield any indication of 
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renesting. It is likely that no renesting occurred within the Madera3 colony due to lack of 

precipitation and poor food availability (Ligon 1978).  

The Starfire flock established two colonies each year. Breeding pairs in the Starfire flock renested 

many times both years. Unlike the Madera flock, the Starfire flock had year-round access to food 

and water at feeders at the SOR front gate. This is perhaps why the Starfire flock was able to 

establish two colonies each year and have a high prevalence of renesting (Ligon 1978, Marzluff 

and Balda 1992).  

I found no evidence of satellite colonies, but breeding pairs did construct renests ≥ 1.6 km from 

the original colony either alone or by one other nest. One breeding pair whose first nest failed 

renested twice in one season, first renesting far from the original colony, then renesting 

contiguously with it. Renesting in pinyon jays has not been well studied (Balda and Bateman 

1971, Ligon 1978, Gabaldon 1979, Marzluff and Balda 1992, Balda 2002). Satellite colonies are 

described in the literature as discrete groups of nests, at least 1.2 km away from an original 

colony (Balda and Bateman 1971, Marzluff and Balda 1992). In this study, I found most renests 

less than 0.6 km from the original colony and, due to their proximity, they were difficult to 

distinguish from the original colony. Nests in the original colonies continued to fledge or fail 

concurrently with the construction of new nests in the area.  

In Arizona, when nests fail at approximately the same time, the breeding pairs of the failed nests 

will begin a new colony group (Marzluff and Balda 1992, Balda 2002). This satellite colony can 

still receive new members for up to 30 days after the establishment of the colony (Marzluff and 

Balda 1992). The Starfire1 colony experienced two “pulses” of high nest failure. Although there 

were two large groups of failed nesters, just one breeding pair from each pulse established a nest 

by themselves far away from the original colony, demonstrating that the concurrent timing of nest 

failure did not result in a group establishing a satellite colony.  
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Average juniper area was the best predictor of renesting and was negatively associated with 

renests. The reasons for this are unclear. The second best model was total tree area, which was 

negatively associated with renesting attempts. This suggests that pinyon jays select renest sites 

that are relatively more open than at their first nest. Analyses of renesting are complex because 

nesting preferences are dynamic and may be context dependent. Marzluff (1988) noted that the 

ecological factors that influence pinyon jay nest placement do not favor one fixed nest position 

within a nest tree, and that might be true for nesting habitat as well. For example, renesting 

pinyon jays may alter nest site selection based on the conditions of failure at their previous nests, 

but not all nests fail in the same way. Thus, any habitat differences between original nests and 

renests would not be consistent across breeding pairs (Gabaldon 1979, Marzluff 1988). Further 

investigation of habitat characteristics associated with renesting should focus on temporal 

changes and document types of predation. 

CONCLUSION 

No pinyon jay nest site habitat characteristics were sufficiently associated with nest success, 

however, nest tree area had the lowest AICc value and may be an ideal candidate for further 

investigation. Renesting pinyon jays preferred to build new nests in areas with relatively less total 

tree area and less average juniper area than original nest sites. Results suggest the ideal pinyon 

jay nesting habitat in a pinyon-juniper landscape would have nest trees with large areas (23.7 m2), 

relatively sparse tree density (22.29 trees/ha), open canopy (20% tree area), and healthy pinyon 

trees. Therefore, areas such as this should be protected and managed for by removing smaller, 

unhealthy trees in pinyon-juniper woodland during non-breeding while letting larger trees remain. 

Pinyon jays did not nest in satellite colonies on KAFB, but did build some nests far from the 

original colony (≥ 1.6 km). Findings suggest pinyon jays do not renest as much in New Mexico as 

they do in Arizona.  
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TABLES AND FIGURES 

Table 4.1 - Habitat characteristics of vegetation survey plots around successful and unsuccessful 
pinyon jay nests on Kirtland Air Force Base, New Mexico 2017-2018. Of 9 successful nests, 1 
could not be used because it was found after nestlings had fledged and had no observed exposure 
time to use in the logistic exposure function of the model. P-values are based on evaluating GLM 
models. Tree counts are of both live and dead trees unless otherwise specified.  

  Successful (8)  Unsuccessful (29)    

Variable X̅ SE  X̅ SE  F P 

No. of shrubs a 6.14 1.83  10.46 2.91  3.925 0.049* 

No. of trees a 22.29 5.76  34.27 7.91  4.838 0.029* 

No. of pinyona 10.71 3.68  20.58 7.03  3.021 0.035* 

No. of junipera 13.86 3.79  23.27 4.14  4.064 0.046* 

No. of multi-trees a 2.29 0.99  5.50 1.67  3.338 0.070 

No. of live trees 18.57 4.80  28.77 5.54  3.935 0.049* 

No. of live pinyon 7.57 2.58  14.50 4.70  4.550 0.084 

No. of live juniper 13.29 3.62  22.92 4.04  4.115 0.044* 

No. of live multi-trees 2.29 0.99  5.08 1.47  2.899 0.070 

No. of dead trees 3.71 1.74  5.50 3.09  4.296 0.040 

No. of dead pinyon 3.14 1.83  6.08 3.31  5.157 0.025* 

No. of dead juniper 0.57 0.30  0.35 0.15  0.312 0.577 

No. of dead multi-trees 0.00 0.00  0.42 0.25  5.005 0.027* 

Mean live tree height (m) 2.69 0.22  2.91 0.13  0.073 0.787 

Mean live shrub area (m2) 5.14 1.50  3.46 0.78  0.546 0.462 

Mean live tree area (m2) 14.16 4.45  12.85 1.94  0.911 0.341 

Mean live pinyon area (m2) 1.17 0.45  1.35 0.16  3.52 0.063 

Mean juniper area (m2) 11.00 2.72  10.54 2.06  1.129 0.290 

Mean multi-tree area (m2) 37.81 13.75  17.07 6.78  3.515 0.064 

Total live shrub area (m2) 32.42 11.77  33.54 8.73  2.648 0.106 

Total live tree area (m2) 187.85 32.14  232.21 25.91  3.533 0.062 

Total live multi-tree area (m2) 50.49 13.86  67.93 15.20  1.356 0.246 

Total live vegetation area (m2) 220.27 43.03  265.75 29.47  4.737 0.031* 

Live shrub area (%) 3 1  3 1  2.648 0.106 

Live tree area (%) 20 3  24 3  3.533 0.062 

Live vegetation area (%) 23 4  28 3  4.737 0.031* 

Mean live shrub volume (m3) 7.73 2.25  4.63 2.17  0.436 0.511 

Mean live tree volume (m3) 35.33 13.37  32.18 6.37  0.937 0.335 

Mean live pinyon volume (m3) 2.40 1.20  2.99 0.46  3.859 0.052 

Mean live juniper volume (m3) 28.17 8.82  26.29 6.66  1.324 0.252 

Mean live multi-tree volume (m3) 110.52 51.75  42.83 23.87  2.800 0.097 

* Indicates statistical significance 

a Live or dead 
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Table 4.1 - (continued) 

  

Successful 

 nests (8) 

 Unsuccessful  

nests (29) 
 

  

Variable X̅ SE  X̅ SE  F P 

Total live shrub volume (m3) 58.47 21.14  49.60 13.51  2.242 0.316 

Total live tree volume (m3) 472.73 103.88  532.70 58.73  2.180 0.142 

Total live multi-tree volume (m3) 137.74 45.41  169.60 39.28  0.906 0.343 

Total live vegetation volume (m3) 522.84 1.73  582.30 64.82  2.797 0.096 

Mean foliage cover 2.54 0.15  2.49 0.08  0.299 0.585 

Mean pinyon foliage cover 2.18 0.21  2.42 0.43  0.099 0.753 

Mean juniper foliage cover 2.69 0.22  2.51 0.09  1.644 0.202 

Mean multi-tree foliage cover 2.39 0.22  2.57 0.45  0.145 0.704 

Elevation (m) 1965.6 18.9  1939.7 10.5  0.098 0.754 

Slope (degrees) 24.57 4.12  20.92 2.36  0.669 0.451 

Dead trees (%) 14 5  6 2  0.085 0.771 

Dead pinyon (%) 16 9  14 5  0.016 0.899 

Dead juniper (%) 5 3  1 0  0.717 0.398 

Nest height (m) 2.35 0.24  2.18 0.15  0.03 0.868 

Height of nest tree (m) 3.47 0.23  3.74 0.15  0.015 0.901 

Area of nest tree (m2) 23.72 3.95  18.18 1.92  2.432 0.121 

Volume of nest tree (m3) 54.34 9.93  47.99 6.61  1.197 0.276 

Foliage cover of nest tree 2.54 0.18  2.64 0.09  1.021 0.314 

Nest tree/non-nest tree height ratio 1.31 0.06  1.32 0.07  0.056 0.813 

Nest tree/non-nest tree area ratio 1.99 0.28  1.67 0.19  1.181 0.279 

Nest tree/non-nest tree volume ratio 1.97 0.30  1.88 0.26  0.594 0.442 

Nest tree/non-nest tree foliage ratio 1.00 0.06  1.07 0.03  4.196 0.042* 

Relative nest height 1b 0.68 0.06  0.59 0.03  0.119 0.730 

Relative nest height 2c 0.88 0.06  0.78 0.06  0.301 0.584 

Distance of nest to center (m) 1.37 0.24  0.85 0.14  1.955 0.164 

Distance of nest to edge (m) 0.58 0.19  0.93 0.12  0.796 0.374 

Relative edge distanced 0.66 0.09  0.45 0.05  2.223 0.138 

* Indicates statistical significance 

b Relative nest height 1– Ratio of the height of the nest compared to the height of the nest tree.      

c Relative nest height 2 – Ratio of the height of the nest compared to the average height of non-
nest trees in the plot.   

d Relative edge distance – Ratio of the distance from the nest to the center of the nest tree divided 
by the tree radius. 

 



107 

 

Table 4.2 - Habitat characteristic variables eliminated before pinyon jay nest fate AICc 
evaluation. Some variables were eliminated before evaluation because they showed little or no 
slope when plotted, indicating weak association with nest site selection. Other variables were 
eliminated because they were highly correlated with other variables or could not be evaluated in 
an AICc without values from all plots. Kirtland Air Force Base, New Mexico 2017-2018. 

Variable Reason Eliminated Correlated Variable r 

No. of shrubs a  Correlation Total shrub area 0.62 

No. of trees a Correlation Total tree area 0.79 

No. of pinyon a  Correlation Total tree area 0.75 

No. of juniper a Correlation Total tree area 0.88 

No. of multi-trees a  Correlation Total tree area 0.76 

No. of live trees Correlation Total tree area 0.89 

No. of live pinyon  Correlation Total tree area 0.78 

No. of live juniper  Correlation Total tree area 0.88 

No. of live multi-trees Correlation Total tree area 0.75 

No. of dead trees Correlation Number dead pinyon 0.99 

No. of dead multi-trees Correlation Total tree area 0.63 

Mean live tree height (m) Correlation Average juniper area 0.73 

Mean live shrub area (m2) Not on all plots 
  

Mean live tree area (m2) Correlation Average juniper area 0.90 

Mean live pinyon area (m2) Not on all plots 
  

Mean multi-tree area (m2) Not on all plots 
  

Total live multi-tree area (m2) Correlation Total tree area 0.73 

Total live vegetation area (m2) Correlation Total tree area 0.96 

Live shrub area (%) Correlation Total live shrub area 1.00 

Live tree area (%) Correlation Total live tree area 1.00 

Live vegetation area (%) Correlation Total live vegetation area 1.00 

Mean shrub volume (m3) Not on all plots 
  

Mean live tree volume (m3) Correlation Average juniper area 0.90 

Mean live pinyon volume (m3) Not on all plots   

Mean live juniper volume (m3) Correlation Average juniper area 0.99 

Mean live multi-tree volume (m3) Not on all plots   

Total live shrub volume (m3) Correlation Total live shrub volume 0.83 

Total live tree volume (m3) Correlation Total tree area 0.96 

Total live multi-tree volume (m3) Correlation Total tree area 0.73 

Total live vegetation volume (m3) Correlation Total tree area 0.94 

Mean foliage cover Correlation Total tree area -0.63 
a Live or dead 
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Table 4.2 – (continued) 

Variable Reason Eliminated Correlated Variable  r 

Mean foliage cover Correlation Total tree area -0.63 

Mean pinyon foliage cover Not on all plots 
  

Mean multi-tree foliage cover Not on all plots 
  

Elevation (m) Not Vegetation 
  

Slope (degrees) Not Vegetation 
  

Dead trees (%) Correlation Number dead pinyon 0.72 

Dead juniper (%) Correlation No. dead juniper 0.62 

Nest height (m) Correlation Relative height 1 0.67 

Height of nest tree (m) Correlation Relative area 0.66 

Volume of nest tree (m3) Correlation Area of nest tree 0.92 

Nest tree/non-nest tree height ratio Correlation Relative area 0.66 

Nest tree/non-nest tree volume ratio Correlation Relative area 0.97 

Relative nest height 2b Correlation Relative area 0.67 

Distance of nest to center (m) Correlation Relative edge distance -0.79 

Distance of nest to edge (m) Correlation Relative edge distance 0.89 
b Relative nest height 2 – Ratio of the height of the nest compared to the average height of non-
nest trees in the plot.   
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Table 4.3 - Habitat characteristics of vegetation survey plots around pinyon jay original nests and 
renests at Starfire1 and Starfire3 breeding colonies on Kirtland Air Force Base, New Mexico 
2017-2018. P-values are based on ANOVA tests of GLM models. Tree counts are of live and 
dead trees unless otherwise specified. 

  Original Nests (10)  Renests (10)     

Variable X̅ SE  X̅ SE  F P 

No. of shrubs a 9.40 3.56  9.00 3.72  0.408 0.531 

No. of trees a 15.70 4.61  10.30 0.73  1.336 0.263 

No. of pinyona 5.17 1.90  2.88 0.40  0.295 0.593 

No. of junipera 14.90 4.30  9.40 0.72  1.593 0.223 

No. of multi-trees a 3.40 1.17  2.00 0.49  0.109 0.745 

No. of live trees 14.70 4.20  9.80 0.83  1.311 0.267 

No. of live pinyon 4.60 1.50  2.75 0.41  0.008 0.932 

No. of live juniper 14.70 4.25  9.00 0.77  1.745 0.203 

No. of live multi-trees 3.40 1.17  2.00 0.49  0.109 0.745 

No. of dead trees 2.50 0.50  1.00 0.00  1.098 0.309 

No. of dead pinyon 2.00 0.58  1.00 0.00  3.041 0.0982 

No. of dead juniper 2.00 0.00  1.00 0.00  0.600 0.449 

No. of dead multi-trees 0.00 0.00  0.00 0.00  NA NA 

Mean live tree height (m) 3.36 0.27  2.85 0.17  2.564 0.127 

Mean live shrub area (m2) 2.93 0.43  3.22 0.83  0.067 0.800 

Mean live tree area (m2) 21.87 4.61  14.21 1.98  2.332 0.144 

Mean live pinyon area (m2) 1.21 0.62  0.48 0.11  2.06 0.189 

Mean juniper area (m2) 19.11 4.37  10.50 1.03  3.678 0.071 

Mean multi-tree area (m2) 31.35 12.66  22.44 4.81  0.553 0.474 

Total live shrub area (m2) 33.21 15.43  30.96 13.66  0.308 0.586 

Total live tree area (m2) 202.54 28.15  134.99 18.94  3.964 0.144 

Total live multi-tree area (m2) 66.44 13.79  46.22 14.68  0.002 0.961 

Total live vegetation area (m2) 219.14 31.97  159.76 17.93  2.624 0.123 

Live shrub area (%) 3 2  3 1  0.308 0.586 

Live tree area (%) 21 3  14 2  3.964 0.144 

Live vegetation area (%) 23 3  16 2  2.624 0.123 

Mean live shrub volume (m3) 3.66 1.56  3.22 0.79  0.081 0.782 

Mean live tree volume (m3) 58.12 15.92  32.43 5.41  2.335 0.144 

Mean live pinyon volume (m3) 3.35 2.10  0.43 0.12  3.065 0.118 

Mean live juniper volume (m3) 51.43 15.28  24.00 2.80  3.117 0.094 

Mean live multi-tree volume (m3) 75.04 34.00  48.36 12.22  0.706 0.420 

* Indicates statistical significance 

a Live or dead 
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Table 4.3 (continued) 

  Original Nests (10) Renests (10)    

Variable X̅ SE X̅ SE Z P 

Total live shrub volume (m3) 54.55 38.10 39.10 17.84 0.025 0.875 

Total live tree volume (m3) 466.76 52.09 311.53 53.41 4.329 0.052 

Total live multi-tree volume (m3) 153.73 34.50 108.97 42.55 0.000 0.990 

Total live vegetation volume (m3) 494.03 64.71 342.81 50.08 3.416 0.0811 

Mean foliage cover 2.70 0.06 2.68 0.08 0.026 0.875 

Mean pinyon foliage cover 2.62 0.26 2.90 0.36 0.325 0.584 

Mean juniper foliage cover 2.71 0.06 2.62 0.12 0.454 0.509 

Mean multi-tree foliage cover 2.88 0.28 2.71 0.13 0.368 0.558 

Elevation (m) 1884.7 10.6 1911.0 14.1 2.227 0.153 

Slope (degrees) 11.40 3.09 19.10 3.69 2.559 0.127 

Dead trees (%) 13 4 12 1 0.056 0.816 

Dead pinyon (%) 43 19 33 0 1.756 0.202 

Dead juniper (%) 8 0 12 2 3.395 0.082 

Nest height (m) 2.30 0.22 1.88 0.13 2.595 0.125 

Height of nest tree (m) 3.80 0.22 3.44 0.23 1.328 0.264 

Area of nest tree (m2) 22.19 1.95 21.18 2.98 0.081 0.779 

Volume of nest tree (m3) 56.80 6.85 49.26 6.98 0.594 0.451 

Foliage cover of nest tree 2.85 0.11 2.50 0.20 2.371 0.141 

Nest tree/non-nest tree height ratio 1.17 0.09 1.22 0.07 0.150 0.703 

Nest tree/non-nest tree area ratio 1.32 0.19 1.62 0.25 0.883 0.360 

Nest tree/non-nest tree volume ratio 1.49 0.29 1.77 0.34 0.394 0.538 

Nest tree/non-nest tree foliage ratio 1.05 0.03 0.92 0.05 3.531 0.077 

Relative nest height 1b 0.60 0.05 0.56 0.04 0.352 0.561 

Relative nest height 2c 0.71 0.08 0.67 0.04 0.235 0.634 

Distance of nest to center (m) 1.08 0.21 1.13 0.23 0.026 0.874 

Distance of nest to edge (m) 0.96 0.24 0.91 0.20 0.026 0.125 

Relative edge distanced 0.51 0.08 0.55 0.07 0.128 0.725 

* Indicates statistical significance 

b Relative nest height 1– Ratio of the height of the nest compared to the height of the nest tree.      

c Relative nest height 2 – Ratio of the height of the nest compared to the average height of non-
nest trees in the plot.   

d Relative edge distance – Ratio of the distance from the nest to the center of the nest tree divided 
by the tree radius. 
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Table 4.4 - Habitat characteristic variables eliminated and retained before AICc evaluation of 
pinyon jay renesting habitat. Some variables were eliminated before evaluation because they 
showed little or no slope when plotted, indicating weak association with nest site selection. Other 
variables were eliminated because they were highly correlated with other variables or could not 
be meaningfully applied among nest plots. Kirtland Air Force Base, New Mexico 2017-2018. 

Variable Reason Eliminated Correlated Variable  r 

No. of shrubs a  Correlation Total shrub area 0.94 

No. of trees a Correlation Total tree area 0.76 

No. of pinyon a  Correlation Total tree area 0.65 

No. of juniper a Correlation Total tree area 0.80 

No. of multi-trees a  Correlation Total tree area 0.71 

No. of live trees Correlation Total tree area 0.75 

No. of live pinyon  Correlation Number dead pinyon 0.68 

No. of live juniper  Correlation Total tree area 0.80 

No. of live multi-trees Correlation Total tree area 0.71 

No. of dead trees Correlation Total tree area 0.67 

No. of dead pinyon  Correlation Total tree area 0.69 

No. of dead multi-trees Not Present 
  

Mean live tree height (m) Correlation Average juniper area 0.82 

Mean live shrub area (m2) Not on all plots 
  

Mean live tree area (m2) Correlation Average juniper area 0.89 

Mean live pinyon area (m2) Not on all plots 
  

Mean multi-tree area (m2) Not on all plots 
  

Total live multi-tree area (m2) Correlation Total tree area 0.69 

Total live vegetation area (m2) Correlation Total tree area 0.93 

Live shrub area (%) Correlation Total shrub area 1.00 

Live tree area (%) Correlation Total live tree area 1.00 

Live vegetation area (%) Correlation Total live vegetation area 1.00 

Mean shrub volume (m3) Not on all plots     

Mean live tree volume (m3) Correlation Average juniper area 0.89 

Mean live pinyon volume (m3) Not on all plots 

Mean live juniper volume (m3) Correlation Average juniper area 0.99 

Mean live multi-tree volume (m3) Not on all plots   

Total live shrub volume (m3) Correlation Total shrub area 0.93 

Total live tree volume (m3) Correlation Total tree area 0.92 

Total live multi-tree volume (m3) Correlation Total tree area 0.67 

Total live vegetation volume (m3) Correlation Total tree area 0.88 
a Live or dead 
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Table 4.4 – (continued) 

Variable Reason Eliminated Correlated Variable  r 

Mean foliage cover Correlation Average juniper foliage 0.79 

Mean pinyon foliage cover Not on all plots 
  

Mean multi-tree foliage cover Not on all plots 
  

Elevation (m) Not Vegetation 
  

Slope (degrees) Not Vegetation 
  

Dead trees (%) Correlation Average juniper area 0.62 

Dead juniper (%) Correlation Number dead juniper 0.82 

Nest height (m) Correlation Relative Height of Nest 0.67 

Volume of nest tree (m3) Correlation Area of nest tree 0.84 

Nest tree/non-nest tree area ratio Correlation Relative Nest Tree Height 0.74 

Nest tree/non-nest tree volume ratio Correlation Relative Nest Tree Height 0.89 

Nest tree/non-nest tree foliage ratio Correlation Foliage cover of nest tree 0.90 

Relative nest height 2b Correlation Relative Height of Nest 0.73 

Distance of nest to center (m) Correlation Relative edge distance 0.85 

Distance of nest to edge (m) Correlation Relative edge distance -0.89 
b Relative nest height 2 – Ratio of the height of the nest compared to the average height of non-
nest trees in the plot. 
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Table 4.5 – Fate of pinyon jay nests on Kirtland Air Force Base, New Mexico in 2017–2018. 

  2017  2018  Total 

Nest Fate No. Nests %  No. Nests %  No. Nests % 

Fledged 4 16.0  5 29.4  9 21.4 

Predated 16 64.0  10 58.8  26 61.9 

Abandoned 2 8.0  1 5.9  3 7.2 

Unknown 3 12.0  1 5.9  4 9.5 

Total nests 25 100.0  17 100.0  42 100.0 
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Table 4.6 – Support for models explaining pinyon jay nest fate on Kirtland Air Force Base, New 
Mexico in 2017-2018. Support for all models was weak because the null model could not be 
rejected (Δi  ≤ 2).  

Variables Intercept Coefficient dfa AICcb Δi
 c ωi

 d 

Nest tree area 3.1184 0.4261 2 145.4 0 0.158 

Total tree area 3.0932 -0.3606 2 146.1 0.7 0.111 

Relative edge distance 3.1338 0.3188 2 146.1 0.7 0.109 

Total shrub area 3.0995 -0.3741 2 146.2 0.8 0.106 

Average juniper foliage cover 3.1267 0.3494 2 146.5 1.1 0.090 

Null 3.139 
 

1 147.1 1.7 0.068 

Nest tree/non-nest tree area ratio 3.1413 0.3218 2 147.1 1.7 0.068 

Nest tree/non-nest tree foliage ratio 3.1173 -0.3038 2 147.1 1.7 0.066 

No. dead pinyon 3.0968 -0.3904 2 147.1 1.8 0.066 

Average juniper area 3.1582 0.3249 2 147.8 2.4 0.047 

Relative nest height 1 3.1602 0.1471 2 148.5 3.1 0.033 

Nest tree foliage 3.13863 -0.07977 2 148.9 3.6 0.027 

No. dead juniper 3.13458 -0.06926 2 149.0 3.6 0.026 

Percentage dead juniper 3.14081 0.01167 2 149.1 3.7 0.025 
a df – Degrees of freedom 

b AICc – Akaike’s Information Criterion corrected for small sample sizes 

c Δi – Akaike’s Information Criterion relative to the highest ranked model 

d  ωi – Akaike weight  

e Relative edge distance – Ratio of the distance from nest to tree center compared to distance from 
nest to tree edge in the nest tree 

d Relative nest height 1– Ratio of the height of the nest compared to the height of the nest tree 
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Table 4.7 – Distance of pinyon jay nests from their original colonies and neighboring nests on 
Kirtland Air Force Base, New Mexico in 2017-2018. Contiguous nests were renests built near the 
original colony (< 0.7 km) and non-contiguous nests were renests built far away from the original 
colony (≥ 1.5 km). 

 Distance (m) n X̅ SE 

Original colony nearest neighbor 12 137.86 34.55 

Contiguous renest nearest neighbor 8 174.59 45.35 

Non-contiguous nest to original colony 4 1767.90 111.42 

Contiguous nest to original colony boundary 8 440.44 46.82 

Renests from previous nest (when known) 4 1547.85 325.06 
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Table 4.8 – Support for models explaining the relationship between habitat variables and choice 
of pinyon jay renesting location on Kirtland Air Force Base, New Mexico in 2017-2018. The 
relative edge distance of nests trees best predicted nest fate. All models below the null model 
were rejected due to high Δi values (Δi  ≥ 2; Arnold 2010; Symonds and Moussalli 2011). 

Variables Intercept Coefficient dfa AICcb Δi
 c ωi

 d 

Average juniper area -0.2361 -1.7112 2 27.6 0 0.292 

Total tree area -0.04077 -1.01288 2 28.6 1.0 0.181 

Null 0 
 

1 29.9 2.3 0.09 

Nest tree foliage 0.01067 -0.76931 2 30.0 2.4 0.088 

Percentage dead pinyon -0.1046 -0.9986 2 30.2 2.6 0.079 

Nest tree height 0.003675 -0.576535 2 31.0 3.4 0.053 

No. dead juniper 0.007189 0.389416 2 31.8 4.2 0.036 

Average juniper foliage 0.001573 -0.329997 2 31.9 4.3 0.033 

Relative nest height 1e -0.0007597 -0.2887386 2 32.0 4.4 0.032 

Total shrub area 0.001958 0.270665 2 32.1 4.5 0.031 

Nest tree/non-nest tree height ratio 0.0004023 0.1883246 2 32.3 4.7 0.028 

Relative edge distance f -0.0001766 0.1734011 2 32.3 4.7 0.028 

Nest tree area -0.0001117 -0.1381537 2 32.3 4.7 0.027 
a df – Degrees of freedom 

b AICc – Akaike’s Information Criterion corrected for small sample sizes 

c Δi – Akaike’s Information Criterion relative to the highest ranked model 

d  ωi – Akaike weight  

e Relative nest height 1– Ratio of the height of the nest compared to the height of the nest tree 

f Relative edge distance – Ratio of the distance from nest to tree center compared to distance from 
nest to tree edge in the nest tree 
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Figure 4.1 - Map of 90 percent volume contours of a kernel density estimate for pinyon jay flocks 
on Kirtland Air Force Base, New Mexico in 2017-2018 (Chapter 2). 
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Figure 4.2 – Map of pinyon jay nests at the Madera2 breeding colony and a renest on Kirtland Air 
Force Base, New Mexico in 2017. 

 

 

 

 

 

 

 

 



119 

 

Figure 4.3 – Map of pinyon jay nests at the Starfire1 breeding colony and renests on Kirtland Air 
Force Base, New Mexico in 2017. Arrows indicate the succession of breeding attempts by two 
breeding pairs. 

 

 

 

 

 

 

 

 



120 

 

Figure 4.4 – Map of pinyon jay nests at the Starfire3 breeding colony on Kirtland Air Force Base, 
New Mexico in 2018. The arrow indicates the succession of nesting attempts by one breeding 
pair. Although the original nests and renests in this colony appear like distinct groups, the 
distance between the original nests and the nearest renest is approx. 0.4 km. Further, not all of the 
nests of the original colony were found, so the full extent of the original colony boundary is 
unknown. 

 

 



  

 
 
 
 
 
 
 
 
 
 

VITA 
 

Michael Coulter Novak 
 

Candidate for the Degree of 
 

Master of Science 
 
Thesis:    PINYON JAY MOVEMENT, NEST SITE SELECTION, NEST FATE, AND 

RENESTING IN CENTRAL NEW MEXICO 
 
 
Major Field:  Integrative Biology 
 
Biographical: 
 

Education: Graduated from Lowell High School, San Francisco, CA, June 2006; 
Bachelor of Science in Zoology from University of California, Santa 
Barabara, June 2010; completed the requirements for the Master of 
Science in Integrative Biology at Oklahoma State University, Stillwater, 
OK, August 2019. 

 
 
Experience: Wildlife Field Technician, Institute for Wildlife Studies, 2016. 

Avian Biologist, WEST, Inc., 2015 & 2016, Volunteer Field Technician, 
Florida State Univeristy, 2016. Bird Bander, Monomoy National 
Wildlife Refuge, 2013 & 2014. Field Technician, Colorado State 
University, 2014. Field Biologist, University of Illinois, 2012 & 2014. 
Bird Bander, Rocky Mountain Bird Observatory, 2013. Field Crew 
Leader, USGS, 2013. Banding Assistant, Kiawah Island Banding 
Station, 2012. Field Biologist, Southern Sierra Research Station, 2012. 
Monitoring Avian Productivity and Survivorship (MAPS) Intern, 2011. 
Assistant Researcher, UCSB, 2010. 

 
 

 



  

 

 

 

 


