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ABSTRACT 

 

Machine learning (ML) has many applications within the geosciences, from predicting 

seismic facies, to automatic fault detection. A variety of machine learning algorithms are 

commonly employed, among these principal component analysis (PCA) and self-organized maps 

(SOMs), which provide a fast organization of data into groups that aid in geological 

interpretation.  It is, nevertheless, interesting to note that parametrization choices during algorithm 

initiation could create a range of reasonable output model responses. The goal of PCA is to reduce 

a multivariate space down to a computationally more manageable size of variables. But this 

method relies primarily on the mathematically calculated eigenvectors and does not consider the a 

priori knowledge of the interpreter. The main motivation of this research is to investigate the 

impact of a user-controlled selection of attributes to perform SOM for facies classification versus 

a machine- derived result. Looking at a reflection seismic data of deepwater channel systems in 

the Taranaki Basin, a variety of attribute classes are systematically examined, including geometric, 

instantaneous, and textural attributes, in mixed combinations with one another, to understand how 

input variability alters the resultant SOM classification for deepwater architectural elements and 

facies characterization. The findings reveal that an appropriate combination of attributes with a 

clear interpretation objective enhance the SOMs results and facilitates the interpreter 

understanding of the output classes especially if attributes are previously tested. On the other hand, 

PCA provides insightful information regarding the contribution of attributes that may not have 

been initially considered by the interpreter. This study reveals that while ML techniques are a 

powerful tool for geological interpretation, user control on initial input attributes and to validate 

output results remain necessary for an optimal interpretation, at least in unsupervised ML methods. 
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CHAPTER I: INTRODUCTION 

The geophysical community has worked hard to replicate the human ability to cluster data. 

Self-organized maps, geostatistics, and neural nets are used to extend the capability of recognizing 

patterns beyond the three dimensions that the interpreter is limited to (Chopra and Marfurt, 2014). 

However, when using machine learning (ML) techniques, the interpreter needs to make sure that 

the results are easily interpretable and have a geological meaning. In this research, we compared a 

multi-attribute user-driven approach versus a machine-derived method to select suitable attribute 

combinations to use in self-organizing maps (SOMs). 

 Seismic amplitude is commonly used to recognize distinctive patterns of deepwater 

architectural elements. For instance, subparallel reflectors, with low to moderate amplitude are 

characteristics of mud-filled channels that are distinguished from chaotic, blocky, low amplitude 

reflectors associated to mass transport deposits (MTD) in vertical sections. The analysis of diverse 

individual attributes such as coherence, sweetness, and curvature helps the user to produce a more 

elaborate interpretation, and to understand the areal distribution and geomorphology of 

architectural elements. However, a multiattribute analysis is time consuming and does not provide 

an evaluation of the relationships between seismic attributes. Since SOMs have proven to extract 

similar patterns embedded within multiple seismic attribute volumes (Zhao et al., 2015), and 

produce meaningful and interpretable geologic patterns (Roden and Sacrey, 2016), this technique 

was selected to compare the results of the machine-derived and user-driven seismic attribute 

selection.  

 The user-driven approach is the focus of Chapter 2. This chapter introduces the research 

objective, geological setting, and dataset description. Later, I offer a multi-attribute workflow that 

used more than twenty single seismic attributes, including geometrical, textural, and spectral. The 
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attribute user selection evaluated non-linear relationships between attributes to perform self-

organizing maps (SOMs) and characterize deepwater architectural elements in the Miocene Moki 

Formation of the Taranaki Basin. I conclude with a recommended attribute combination to better 

interpret and map the geological settings of the deepwater deposits based on geological criteria 

with the obtained results. 

The machine-driven approach, is presented in Chapter 3. I used Principal Component 

Analysis (PCA) to reduce dimensionality and compare the user-driven insights obtained in Chapter 

2 with the machine derived method. I explored and documented the advantages and disadvantages 

of each method. 

This research tests and evaluates the use of workflows to interpret deepwater settings. I 

concluded that even though the use of machine learning methods is popular because of the increase 

in computational power, these methods cannot fully replace interpreter’s prior knowledge. I show 

how to take advantage of ML tools in a suitable manner to obtain efficient and valuable geological 

results.  

REFERENCES 
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CHAPTER 2: SEISMIC ATTRIBUTE SELECTION FOR UNSUPERVISED MACHINE 

LEARNING TECHNIQUES FOR DEEPWATER SEISMIC FACIES 

INTERPRETATION 

 

ABSTRACT 

The task of finding the most direct and time-efficient methods for understanding the paleo-

geomorphological configuration of a hydrocarbon play to define the most prospective areas is 

challenging, even for experienced seismic interpreters. Multi-attribute analysis provides 

interpreters with valuable information that can accelerate paleo-geomorphological studies. 

However, this approach requires a considerable amount of knowledge from the interpreter and 

depending on the size of the 3D seismic volume, myriads of computing hours, which sometimes 

could lead to meaningless results. The use of machine learning techniques, especially unsupervised 

methods such as self-organizing maps (SOMs), has gained a significant foothold within the seismic 

interpretation community to enhance results and to help identify similar patterns in the data. The 

patterns identified from unsupervised learning possess geological meaning and can further aid in 

the interpretation process if the input attributes are selected appropriately. We focused on the 

inspection of a series of geometrical, instantaneous, spectral, and textural seismic attributes to 

provide multi-attribute combinations that, along with SOMs, allows for a suitable interpretation of 

architectural elements in deepwater settings. The results in the Miocene section (Moki Formation) 

from the Pipeline 3D dataset, in the southern Taranaki Basin, show that the most important 

considerations for attribute selection are that attributes 1) should be geologically meaningful, and 

2) should be linearly independent. An appropriate combination of seismic attributes enhances the 

SOMs results and further facilitates the interpretation of the features of interest. Results revealed 

that, while machine learning techniques are a powerful tool for geological interpretation, the user’s 
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control on the initial input attributes and on the application of seismic geomorphology principles 

for the resulting “in context” interpretation is still necessary for an optimal interpretation.  

 

INTRODUCTION 

The use of a single seismic attribute and combined seismic attributes have been common 

practices for predicting rock properties for the past thirty years (Hart, 2011). Terms such as big 

data and machine learning continue to gain popularity within the geoscience community. There 

has been an increasing amount of interest in big data due to the vast amount of data available today. 

Machine learning can be defined as various algorithms that automatically update themselves by 

learning from the dataset. Machine learning techniques can predict rock properties or seismic 

facies in a significantly smaller amount of time than an interpreter by finding relationships between 

patterns which are not inherently obvious, and that can be often overlooked by an interpreter 

(Sacrey and Roden, 2014; Zhao et al., 2016; La Marca-Molina et al., 2019). Therefore, we are at 

the precipice of what Roden et al., (2015) consider “the next generation of advanced interpretation” 

where experienced seismic interpreters can work in combination with advance machine learning 

algorithms to better characterize and analyze the vast amount of geologic and geophysical data 

present today (Zhao et al., 2016). 

The majority of machine learning applications as they relate seismic volumes can be 

expressed in terms of two categories: supervised and unsupervised learning. Pires de Lima (2019), 

provides a brief review of different forms of supervised and unsupervised learning that can be 

helpful for geoscientists. Our study used an unsupervised technique since no labels were applied, 

and we wanted the algorithm to find natural patterns within the data, rather than to impose them. 

This analysis used unsupervised machine learning to perform dimensionality reduction and to later 



5 
 

generate clusters. Clustering (Hartigan, 1975) is the grouping of similar objects, where all the 

objects within the same cluster share a particular property in common. When machine learning 

uses seismic attributes, clusters can represent geologic information embedded in the data. These 

clusters can help identify geologic features and geobodies, which sometimes cannot be interpreted 

by other means (Roden et al., 2015). Effective clustering techniques require to 1) use 

mathematically uncorrelated input data/ attributes (Kim, 2019), and 2) that these attributes are 

geologically meaningful (Barnes, 2007), in other words, to use attributes that can differentiate 

facies of interest (Marfurt, 2018). 

 Throughout the initial analysis of a given seismic volume, myriads of seismic attributes 

are generated, with each attribute achieving different objectives. Inspecting them one by one can 

be tedious and time-consuming (Macrae et al., 2016) as an interpreter attempts to ascertain detailed 

characteristics within complex depositional environments. Therefore, there is a need to establish a 

repeatable workflow for seismic interpretation to generate useful results in a time-efficient manner. 

Methods, such as principal component analysis (PCA) (Pearson, 1901), reduce the initial number 

of attributes down to a smaller subset, which still contains most of the uncorrelated variation within 

the dataset (Sacrey and Roden, 2014) through eigenvectors (Coleou et al., 2003). The use of PCA 

has been recently combined (Roden and Sacrey, 2016) with self-organizing maps (SOMs) 

(Kohonen,1982) for seismic interpretation. However, the lower-dimensional projection generated 

by unsupervised learning techniques may have little to do with physical features of interest 

(Marfurt, 2018). Thus, this study evaluated different SOMs computed using different attributes, 

which are representative of the study’s objective. These attributes included various geometrical, 

spectral, instantaneous, and textural attributes that were meaningful for the identification of paleo-

geomorphological characteristics. The final product of the analysis provided various combinations 
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of attributes that are mathematically independent (Barnes, 2007; Kim, 2019) for SOMs to 

optimally classify deepwater facies. 

Zhao et al., (2016) found that there is no special preference for a supervised and an 

unsupervised method apart from the type of data available. This study considered that the Kohonen 

SOMs are more robust than similar techniques, such as K-means (defined by Forgy, 1965), for 

facies classification because SOM projects the data onto a lower-dimensional manifold where 

clusters have a topological order (Barnes et al., 2001). This manifold is a plane that contains all 

the possible outputs, and that best fits the sample data in an n-dimensional latent space while 

preserving the geometrical relationship among data points (Roy et al., 2013).  

SOMs have drawbacks that include the absence of a quantitative error measure for the 

convergence criteria as there is no indication about the vector’s probability being well represented 

by other regions on the manifold (facies) (Kohonen, 1995; Bishop et al., 1998). However, this 

study used preferentially SOMs method over other unsupervised machine learning algorithms 

since 1) it is available in many interpretation software packages, 2) it makes the geological 

interpretation easier because it projects the combination of attributes onto a lower-dimensional 

manifold that preserves the distance between voxels according to their similarity, and 3) it has 

been successfully tested in different settings including deepwater deposits (Wallet et al., 2014; 

Tellez et al., 2015; Zhao et al., 2015 and Infante et al., 2019).  

There are several examples of studies that have used SOMs for facies classification. For 

deepwater settings, many studies (e.g., Coleou, 2003; Wallet et al., 2014; Tellez et al., 2015; Zhao 

et al., 2015) demonstrated that SOMs are useful for defining architectural elements associated with 

channel complexes. Infante et al., (2019) differentiated deepwater deposits from volcanic deposits 

using SOMs. This method has also been used in unconventional resource plays. For instance, 
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Verma et al., (2012), mapped high frackability and high TOC zones in the Barnett Shale, while 

Sacrey and Roden (2014) located sweet spots in the Eagle Ford shale. 

Our study focused on the definition of architectural elements on the Miocene deepwater 

section of the Pipeline 3D, in the Taranaki Basin. The significance of differentiating good reservoir 

architectural elements such as slope fans and scroll bars from that less reservoir-like such as levees 

and shales resides in providing insights for exploration and production plans of an oil field. With 

our study, we proposed a suitable multi-attribute approach that, with machine learning techniques, 

allowed us to distinguish the architectural elements in the system better. The Taranaki Rift Basin 

is the most prolific in terms of hydrocarbon production in New Zealand, and its tectonic and 

stratigraphic evolution is well understood (King et al., 1996, 2000; Strogen et al., 2011, 2014; 

Trasher et al., 2018). However, there are few studies that focused on the geomorphological 

investigation of the architectural elements present within the Pipeline 3D dataset to evaluate the 

distribution, size, and evolution of its channel complexes (Kroeger et al., 2019; Silver et al., 2019). 

Additionally, there are no studies to this date that applied machine learning techniques to study 

seismic facies or architectural elements in the Pipeline 3D dataset. Thus, our results are 

contributing to previous studies developed in the Basin and pioneer in applying cutting edge 

techniques for interpretation in the study area.  

We built our method upon previous studies (e.g., Zhao et al., 2016; Infante et al., 2019) by 

implementing a machine-learning interpretation workflow that involved the selection of relevant 

and linear independent seismic attributes. These attributes were used as inputs for the SOMs to 

identify deepwater architectural elements and are cross-correlated with well data (Pukeko-1) to 

support the proposed interpretations. 
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The SOM models provided a list of attributes, their response, and their uses for 

architectural elements recognition and interpretation to provide insights on the facies distribution 

and temporal migration of channel complexes in the Miocene section. Additionally, the SOMs 

here presented provided interpreters with a workflow that can be applied in similar settings to 

efficiently characterize their features of interest.  

 

MOTIVATION AND OBJECTIVES 

The primary objective of this study was to inspect and find suitable combinations of 

seismic attributes that are meaningful for geoscientists to use in SOMs to better characterize 

architectural elements and seismic facies within a deepwater setting. This study allows 

geoscientists to optimize the seismic attribute selection process resulting from post-stack time 

migrated (PSTM) data and similar geological settings. This optimized selection process enables 

the interpreter to create an efficient characterization of these features for an enhanced 

interpretation. With the workflow proposed in this paper, architectural elements of deepwater 

systems, such as mud and sand-filled channels, mass transport deposits (MTDs), and marine shales 

in the basin floor, can be better mapped. Additionally, smaller features such as levees, overbank 

deposits (splays), and sand waves can be further illustrated. The interpreter can select the best 

reservoirs (usually bars/sand-filled channels, and sheet sands) from this architectural mapping, and 

gain a better understanding of the channel’s migration over time, which can help optimize drilling 

and production plans. 

Furthermore, this paper represents the only study done so far on the Pipeline 3D dataset, 

located in the Taranaki Basin, which applies an integrated workflow that carefully considers the 

selection of attributes to be used in a SOM to better characterize the seismic facies and deepwater 
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architectural elements of the deepwater Moki Formation. We want this paper to be part of the new 

era of seismic interpretation that takes advantage of the continuous improvement in computing 

power for an efficient and enhanced interpretation. 

 

GEOLOGIC SETTING 

The study area lies in the southern Taranaki Basin, which is located offshore of north-

western New Zealand (Figure 2-1). The basin covers an area of ~330,000 km2 and is limited by 

the Reinga Basin to the north, and the West Coast Basin to the south. The eastern boundary is 

represented by the Taranaki Fault, and the western border are the Northland Basin and New 

Caledonia Trough (Baur, 2012; New Zealand Petroleum and Minerals, 2014).  

The Taranaki Basin is a rift basin formed in the Cretaceous and comprises a succession of 

around 10 km of deposits (Strogen et al., 2014; Kroeger et al., 2019) from the Cretaceous to the 

Neogene (King and Trasher, 1996). The evolution of the basin occurred in three stages, each one 

controlled by different plate boundaries kinematics (King and Trasher, 1996; Baur, 2012; Strogen 

et al., 2014; Bull et al., 2018; Kroeger et al., 2019): 1) an intra-continental rift transform from the 

Late Cretaceous to Paleocene, 2) a passive margin from the Eocene to the Early Oligocene, and 3) 

an active marginal basin from the Oligocene to present day. 

 

Miocene deepwater systems 

The Middle Miocene in the Taranaki Basin is characterized by the deposition of deepwater 

sequences controlled mainly by tectonic uplift in the hinterland. The high relief provided a south-

east source of sediments carried and deposited in a north-northwest direction. (Bull et al., 2018) 

(Figure 2-1). In terms of stratigraphy, the Miocene succession is comprised of intercalation of fine-

grained basin floor sandstones deposited by channels and fans, in addition to silty and mudstone 
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dominated deposits. The fine-grained basin floor sandstones are represented by the late Altonian 

to early Lillburnian Moki Formation (18-13 Ma), deposited during lowstands and falling stage 

systems tracts. The silty and mudstone dominated deposits correspond to the Manganui Formation 

that along with sand-waves sandstones were deposited during highstand system tracts (King and 

Thrasher, 1996; Kroeger et al., 2019). The resulting configuration of sandstones encased within 

mudstones suggests functional seismic imaging (high-impedance contrast) for the seismic data 

used. 

The Moki Formation has been documented in both well-log and seismic data (King and 

Browne, 2001). Nevertheless, only a few studies (Baur, 2012; Kroeger et al., 2019; Silver et al., 

2019) have explored the Pipeline 3D dataset, where they focused on understanding the 

geomorphology and characteristics of deepwater channel complexes. These studies reported the 

following main findings: 1) channel complex dimensions vary from 200-600 m to ~2000-5000 m 

wide and ranges between 10-30 m in thickness, 2) channel sinuosity varies from low to high, and 

3) the channel system becomes more incised and mud-dominated during the Late Miocene 

(Kroeger et al., 2019).  

Seismic attributes are explored and used within SOMs to further expand upon the results 

from these previous studies to identify and characterize the stratigraphic architecture of the 

Miocene channel complexes present in the Moki Formation. This study proposes a systematic and 

time-efficient workflow to distinguish deepwater architectures in similar settings. 
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SEISMIC DATASET AND DATA 

Seismic data 

The 3D seismic dataset used for this study is named Pipeline 3D. This seismic survey was 

acquired in 2013 by Todd Exploration and covered ~515 km2 of the southern Taranaki Basin 

(Figure 2-1). The data is zero phase and has SEG negative polarity (a positive change in acoustic 

impedance is represented by a trough). The survey has a ~25 m of vertical resolution, with a sample 

interval of 4 ms, a bin size of 25 m by 12.5 m and a total record length of 6 s. The projection datum 

is NZGD2000. The PSTM volume was processed by Excel Geophysical services in 2015. This 

data was provided by New Zealand Petroleum and Minerals. 

 

Well data and other resources 

Within the Pipeline 3D, one well titled Pukeko-1 (Figure 2-1) was incorporated in our study 

to test our results. The Pukeko-1 was drilled in 2004 and reached a total depth of 4190 m (New 

Zealand Petroleum and Minerals, 2014). This well, whose main objective was the Eocene Kapuni 

group, was abandoned due to no commercial hydrocarbon return. Our section of interest 

corresponds to the Miocene Moki and Manganui Formations, located between ~2141 m and ~2800 

m (Figure 2-2). A gamma-ray log (GR) is available for the section of interest. Other data includes 

a report which has lithology descriptions that define a fine-grained Moki Formation interbedded 

with siltstones and mudstones (Manganui Formation). A check-shot in the well establishes an 

accurate time-depth relation with the seismic dataset. All well data was provided courtesy of the 

New Zealand Petroleum and Minerals. 
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THEORETICAL FUNDAMENTALS 

Seismic attributes 

A seismic attribute is any measure of seismic data that helps us visually enhance or quantify 

features of interest for interpretation (Chopra and Marfurt, 2007). Seismic attributes are a response 

of the rocks’ physical properties. Therefore, the spatial distribution and relationships of these 

responses, along with geological context, help to make reliable seismic interpretations. A single 

attribute is not enough for extracting all the potential information present in the seismic data 

(Chopra and Marfurt, 2014). Thus, we usually combine attributes in a multi-attribute analysis 

(Taner and Sheriff, 1977; Russell and Hampson, 1997) or, such as the case in this study, are used 

in SOMs to extract geological information all at once.  

In Table 2-1, Roden and Sacrey (2015) present a list of common seismic attributes, their 

type, and interpretive use. Geometric attributes such as dip, coherence, and curvature help in 

delineating the geometry or shape of the channel, and attributes such as the instantaneous phase 

and sweetness could be reliable lithological indicators (La Marca-Molina et al., 2019). Grey level 

co-occurrence matrix (GLCM) texture attributes are useful for the determination of seismic facies 

analysis (Chopra and Marfurt, 2014) as these attributes quantify the uniformity or disorder in the 

image. Frequency attributes help to interpret bed thicknesses, discontinuities, and fluids (Partyka 

et al., 1999). More information about attributes and their use in facies characterization is available 

in Taner (1979), Barnes (2001), Liu (2007), Chopra and Marfurt (2007), and Marfurt (2018). 

 

SOMs: an unsupervised technique for seismic facies identification 

A SOM is an unsupervised (feed-backward) machine learning technique that was first 

introduced by Kohonen in 1982 and is frequently used in many areas such as in technology (e.g., 
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An and Yu, 2012), in marketing (e.g., Hanafizadeh and Mirzazadeh, 2010), in medicine (e.g., 

Tuckova et al., 2011) and in environmental applications (e.g., Gibson et al., 2017) to find patterns 

with similar characteristics within their respective datasets. Roy et al., (2013) describe how this 

machine learning method has been used since the late 1990s in the oil industry to resolve diverse 

geoscience interpretation problems. For example, SOMs have been adapted to be used in seismic 

facies identification as it extracts similar patterns embedded within multiple seismic attribute 

volumes (Zhao et al., 2015). With modern visualization capabilities and the application of 2D color 

maps (Gao, 2007), SOMs routinely produce meaningful and easily interpretable geologic patterns 

(Roden and Sacrey, 2016).  

Humans are good at pattern recognition, yet the task of finding the relationship between all 

the data points at the same time is cumbersome, if not impossible. SOMs attempt to solve this issue 

by reducing the number of dimensions and illustrating these similarities (Roden et al., 2015) onto 

a 2D lower dimensional space where these output groups (e.g., clusters) are easier to interpret.  

The SOM algorithm details are presented in Kohonen (1982). We use a coffee bean analogy 

to explain how SOMs can classify these beans based off on their flavor, morphology, and amount 

of caffeine (Figure 2-3). We can summarize the process in four steps: 

1) Input data and initialization: coffee bean attributes that have a characteristic flavor, 

morphology, and amount of caffeine, are used as the input. 

2) Weighting and best matching unit (BMU) definition (sometimes referenced as the winning 

neuron), where a neuron learns by adjusting its position within the attribute space as it is 

drawn toward nearby data samples.  Once the learning process has completed, the winning 

neuron set is used to classify each selected multiattribute sample in the survey (Roden et al., 

2015). 
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3) Clustering: Given the BMU, each attribute sample in the dataset incrementally approaches 

towards a similar BMU in each case by the Euclidean distance. A SOM manifold that 

contains all the possible combinations is then formed, and the algorithm deforms this 

manifold to better fit the data in each iteration (Zhao et al., 2016). 

4) Projection of clusters in a lower 2D dimensional space where colors are assigned. Gao (2007) 

mentions that if the number of prototype vectors is 256, we will have 256 colors. These are 

the potential clusters. Our results can form either 256 or considerably a smaller number of 

clusters (e.g., three or four). Finally, after clusters or classes are obtained, the interpreter uses 

their knowledge to make geological interpretations of these clusters.  

 

METHODS 

The workflow applied in this study is presented in Figure 2-4. Important details of each 

phase of the workflow are given as follows: 

 

3D volume inspection and AOI definition 

Preliminary inspection of the seismic volume is paramount for identifying acquisition 

footprint, noise, and other features that can influence the interpretation. Also, this inspection helps 

the interpreter identifying prominent features and the potential areas of interest (AOIs) within the 

seismic volume. We use amplitude and coherence volumes to perform this preliminary analysis by 

scanning through various, inlines, crosslines, and time slices.  

Depending on the focus of the study and objective, the interpreter selects an AOI, and crops 

the initial seismic volume to the AOI extent. In our case, we chose an AOI of ~300 km2 as it 

comprises the channel complexes while also avoiding the structural influence of a large-scale fold 
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present in the area. This structural feature was omitted from the SOM as it can affect the 

classification. Vertically, the AOI includes the Miocene Moki and Manganui Formations. These 

deepwater formations are located at around 1800-2300 ms in two-way travel time within the 

seismic record. We defined the AOI vertical window of 500 ms as it captures the same type of 

deposits that should be genetically related (facies). Therefore, by using a small window, in addition 

to a representative AOI, the algorithms can process information more efficiently and further avoid 

miscalculations and misclassifications. 

 

Well tie 

The Pukeko-1 well contains check shot data and well tops (New Zealand Overseas 

Petroleum Ltd., 2004), which facilitates a depth-time conversion and a well tie. This well tie allows 

for the recognition of the geological formations and the lithological responses present within each 

interval in the seismic. Although the 25 m seismic resolution of our volume is insufficient to 

characterize the geological sequences in detail, well logs (as GR) are useful for identifying not 

only lithology but to also further support the architectural elements due to the logs’ characteristic 

signatures and trends.  

 

Horizon picking/mapping 

There are several visualization techniques to represent seismic attributes with the aim of 

performing geological interpretation. Some of these are vertical and horizontal slices, horizon 

slices, stratal slices, phantom horizon slices, box probes, etc. (e.g., Posamentier, 2015). The 

visualization techniques used depend on the purpose of the study. In the case of this study, time 

slices are not appropriate for analyzing the same architectural elements that share similar 
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depositional settings at the same geological time. Therefore, by picking horizons parallel to the 

reflectors of the AOI, a better representation of the deepwater system can be created upon 

extracting seismic attributes or flattening seismic attribute volumes onto these reflectors. We 

fattened the seismic volumes on the Moki Horizon (Figure 2-5). This horizon was picked by 

following a clear and continuous reflector (a peak). We interpreted the horizon every ten lines, in 

an inline-crossline sequence, to better map the reflector. After completing the interpretation, we 

used automatic tracking. We then evaluated the automatic tracking results in non-continuous 

reflector zones, such as in channel valleys, where interpolation can sometimes underperform. We 

corrected the horizon manually where necessary.   

 

Multi-attribute analysis and attribute selection for SOM 

How to select the right attributes? 

Seismic interpretation begins by defining the objective of the study (Roden and Sacrey, 

2016) and by performing a data quality check. It is paramount to have a clear goal while 

interpreting so that the appropriate seismic attributes are selected to best suit the purpose of the 

study and geological setting (Roy et al., 2003). This first phase allows for an optimal, preliminary 

selection of attributes. For example, if the study is predominantly structural, then the use of 

geometrical details may provide better results than using just spectral attributes. This study aimed 

to identify different seismic facies and architectures that correspond to deepwater deposits found 

within the Miocene Moki Formation. Therefore, attributes that could differentiate mud-filled 

channels from sand-filled ones and isolate MTD, and overbank deposits were selected. There is a 

myriad of attributes that can be tested, such as amplitude versus offset (AVO) attributes to optimize 

classifications, mainly when the objective implies hydrocarbon detection. However, when the 



17 
 

dataset is a PSTM volume, the attributes that can be calculated are limited on this type of seismic 

data and should be a crucial consideration for all interpreters.  

We explored geometric, spectral, instantaneous, and texture attributes to find the most 

suitable attributes to incorporate into the SOM models for deepwater seismic facies 

characterization. We selected geometrical (discontinuity) attributes because they are commonly 

used to define the outer shape or geomorphology of geological features (Chopra et al., 2007). 

GLCM textural attributes aid in facies identification (Haralick et al., 1973). Spectral and 

instantaneous attributes, on the other side, are known for unraveling lithological content (Marfurt, 

2006), and their capability of distinguishing differently sized features associated with channel 

complexes (Partyka et al., 1999): small architectures like levees are usually related to high 

frequencies, and significant, master channels can be identified with small frequencies.    

For attributes calculation, we used the AASPI (Attribute Assisted Seismic Processing and 

Interpretation) software provided to the University of Oklahoma School of Geosciences. 

Polychromatic color bars were used to better visualize the internal behavior (Barnes, 2001) related 

to seismic properties, and monochromatic color bars were used to visualize the edges. Some of the 

attributes were co-rendered to improve the interpretation, as suggested by Posamentier (2015). Co-

rendering allows the interpreter to concentrate on features of interest. The result section presents 

the attributes selected for each workflow (SOMs). Attribute volumes were extracted and flattened 

on the Moki Horizon to perform better interpretations of the architectural elements. 

 Before incorporating the various attributes into the SOM, they should be linearly 

independent (Kim et al., 2019), to avoid using redundant attributes that are similar to each other. 

We analyzed the co-variance matrices in each attribute combination to define the most suitable 
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ones. We selected attribute combinations were the linear relationship between each attribute with 

the others resulted in R < 0.7, as suggested by Kim et al., (2019). 

 

SOMs and interpretation 

The SOM algorithm was selected over other similar unsupervised learning techniques for 

the following reasons: 

1) It allows for the integration of three or more attributes which can highlight features that are 

not easily recognizable by a single attribute or through co-rendering; 

2) It is a method that is relatively easy to apply; 

3) It is available in at least three interpretation software packages. 

Although SOMs appear to be advantageous over similar unsupervised learning methods, 

there are some limitations. Kohonen (1995) and Bishop (1998) identified these caveats as follows: 

1) The selection of the neighborhood option in each iteration is subjective so that different 

solutions derive after each iteration; 

2) There is an absence of a quantitative error to define the convergence acceptance; 

3) SOMs do not provide a quantitative confidence measure in the facies classification. 

This study’s proposed workflow can mitigate some of these uncertainties by having some 

geological biases in the input data, which in this case, are the selected seismic attributes. 

We used AASPI for calculating the SOMs and was parametrized by defining 256 clusters 

(prototype vectors). The SOMs were then exported into a commercial interpretation package to 

visualize and interpret the results, where each SOM was flattened on the Moki Horizon. Available 

GR logs from the Pukeko-1 well were also incorporated into the SOM analysis and were upscaled 

to the resolution of the seismic data (~25 m). 
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RESULTS 

Seismic expression of the AOI 

Before exploring the different seismic attributes, we evaluated the seismic amplitude 

character in the AOI. Figure 2-5 shows an amplitude time slice at -2000 ms. In Crossline 2193 (A-

A’ in Figure 2-5), we observe the intersection of different size channels (100 m to 3000 m wide) 

and their variable amplitudes. Some of these channels are incised, exhibiting basal scour surfaces, 

and different infill patterns. These features are shown through the typically low amplitude and 

stacked reflector responses. Overall, the reflector configurations range from more conformable in 

deeper sections to more chaotic as it becomes shallower. A continuous, high amplitude reflector 

(trough) above the Moki Horizon is associated with sheet sands due to its high amplitude response 

and lateral continuity. We interpret some levees to be associated with the main channel belts. Table 

2-4 explains the internal seismic reflection, external shape, and amplitude character of the 

architectural elements recognized in the dataset. Notice that although amplitude is a good 

preliminary tool to identify some architecture and facies, especially on vertical slices, it does not 

define the dimensions or aerial extent of the architectural elements. Therefore, it is necessary to 

integrate other attributes to create a more accurate characterization of these features. 

 

Seismic attributes: finding the most suitable combination 

Attributes that have geological significance for deepwater facies were chosen after 

exploring various geometrical, textural, spectral, and instantaneous attributes. The chosen 

attributes are those that can better highlight geomorphologic or stratigraphic features. Table 2-2 

presents the list of attributes selected, indicating their types, explaining its principle, and 
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supporting references. The common geological interpretation of each attribute is shown in each 

case. 

Secondly, the list of attributes was reduced by ensuring that these attributes are linearly 

independent (Barnes, 2007; Kim et al., 2019). Table 2-3 shows the combinations used for each 

SOM model. The attribute combinations for SOM1 were identical to the attributes used by Zhao 

(2016), who studied deepwater seismic facies in the Canterbury Basin. By selecting the same 

attributes as Zhao (2016) for SOM1, we evaluated his approach in a different area, which still 

shares a similar geological setting. The second seismic-multi-attribute workflow explores the 

combination of geometrical attributes with attributes that are a useful indicator of lithology. The 

third combination evaluates the contribution of textural and spectral attributes. Ultimately, we 

aimed to test the different SOM responses by using various combinations of different attribute 

types.  

We evaluated the geologic response of the attributes when comparing among each other 

after flattening on the Moki Horizon. Curvedness (Figure 2-6a), dip magnitude (Figure 2-7c), and 

sobel filter similarity (Figure 2-7d) highlight the geomorphology of architectural elements within 

the channel belt complexes such as channels, levees, scroll bars, splays, and abandoned channels. 

Most positive curvature, K1, (Figure 2-7e) is particularly useful for defining the levees and smaller 

channels associated with the master channel and to further differentiate various deepwater 

architectural elements. Additionally, sweetness, root mean square (RMS), and instantaneous phase 

are good lithological indicators (Figure 2-8b). High values of sweetness denote possible sandstone 

rich areas (Figure 2-7a), such as sandy lobes (sheets), sandy bars, and some splays. These high 

sweetness areas often coincide with high RMS values zones (Figure 2-8b).   
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Textural attributes belong to a different category of seismic attributes. In this study, GLCM 

entropy emphasizes changes in textures, whose interpretation is associated with different facies 

(Figure 2-8a). Therefore, this attribute is a useful input for the SOM algorithm as it will better 

characterize different deepwater facies. Sand prone deposits exhibit low GLCM entropy values, 

whereas more mud-prone and chaotic (such as MTDs) deposits are represented by higher GLCM 

values. 

Spectral decomposition is a widely used technique for channel studies (Partyka et al., 

1999). The incorporation of different frequency components with other input attributes into the 

SOM model can help to further differentiate facies and architectures of different thicknesses (e.g., 

levees and channels). The Pipeline 3D dataset contains a frequency spectrum which varies from 5 

Hz to almost 100 Hz. The dataset’s dominant and representative frequencies within the AOI of 13, 

35, and 60 Hz, were RGB blended (Figure 2-8d). Smaller frequencies are useful for defining the 

major architectural elements, like channels, whereas higher frequencies highlight minor features, 

such as levees or splays (Figure 2-8d). 

Figure 2-9 shows a schematic representation of the location of various deepwater elements 

from proximal to distal areas. Table 2-4 presents the seismic expression of the various deepwater 

architectural elements recognized in this study in addition to their responses within the meaningful 

seismic attributes. Note that the elements in Table 2-4 appear in Figure 2-9 with letters to show 

their relative position in the system. 

 

Testing non-linear relationships between attributes 

Kim (2019) states that while relevant attributes preserve a relationship with the output 

classes, redundant attributes have a higher correlation between them. This is the reason for 

evaluating the linear relationship between attributes to better optimize our SOM models.  
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Table 2-5 presents a correlation matrix for each SOM model. The main diagonal presents 

values of one (1) since it is comparing the same seismic attribute with itself. For each attribute 

combination explored, attributes that had a correlation smaller than 0.7 were considered as input 

to be used in the various SOM models as this value indicated that there is a weak linear relationship 

amongst the list of attributes selected.  

 

SOMs - Interpretations per workflow  

We evaluated the results of each of the SOM results by flattening their volumes on the 

Moki Horizon so that features of interest are comparable between the different SOM models. We 

applied principles of seismic geomorphology to interpret the different architectural elements 

present within the AOI. The word “workflow” refers to the combination of attributes selected for 

each SOM. The results of each workflow are presented as follows: 

 

Workflow 1- (SOM1) 

SOM1 uses a combination of attributes that are beneficial for deepwater facies 

characterization after studies from Zhao et al., (2016). SOM1 was calculated by combining peak 

frequency, peak magnitude, coherent energy, and curvedness seismic attributes (shown in Figure 

2-10). The yellow and orange colors (or classes) represent more sand-prone deposits, which 

include point bars and sheet sands (fan-lobe) as well as some sediment waves as defined recently 

by Kroeger et al., (2019). These sediment waves are perpendicular to the paleo-flow direction, 

which follows a southeast-northwest trend, and can be sometimes overlooked or misinterpreted as 

noise when only looking at a single attribute. The purple and blue colors possibly indicate more 

shaley elements such as mud-filled channels, and marine shales commonly found in the basin floor.  
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Workflow 2- (SOM2) 

SOM2 derives from using a combination of sweetness, instantaneous phase, dip magnitude, 

sobel filter similarity, and most positive curvature (K1) seismic attributes. Figure 2-11 highlights 

different colors than the ones that were prominent in SOM1. It is essential to mention that the 

colors assigned to output classes in the SOMs are randomly chosen after each iteration. As a result, 

the same architectural elements can be represented in different colors. This means that the yellow 

color in each of the SOMs does not always correlate to sandy scroll bar facies. However, what is 

more important is that the classes are positioned in similar zones over the same AOI. This can be 

seen in SOM2, where the orange to greenish colors represents sandstone prone elements, like scroll 

bars, lobes, and some overbanks and are in the same location as the yellow and orange colors from 

SOM1. However, the fuchsia and purple colors represent silty levees and smaller channels 

positioned around the main channel (Figure 2-11). The purple and light blue colors represent 

mudstone deposits like mud-filled channels (both small and large scale) and basin floor marine 

shales. In SOM2, geomorphological features are better differentiated than they were in SOM1. 

Upon looking at a vertical slice (Figure 2-14), the identification of architecture shapes suggests a 

strong influence from the geometrical attributes used in the classification. 

 

Workflow 3- (SOM3) 

Finally, SOM3 (Figure 2-12) conveys the best representation of the different architectural 

elements when compared to the other SOMs. In this case, we used the seismic attributes GLCM 

entropy, RMS, sobel filter similarity, and spectral frequencies (Table 2-2) as inputs into the SOM. 

These results show that the orange colors isolate sandstone-prone features like bars, splay, and 

fans (sheets). The greenish to yellowish colors are interpreted to represent silty deposits where 
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sediment waves deposits are identified. The blue and purple classes help to identify the mud-filled 

turbiditic channels (Figure 2-12) and basin floor marine shales. The purple color especially helps 

to delineate the external geometry/geomorphology of features like levees. The SOM3 results 

suggest that the combination of spectral and textural attributes further refine the classes identified 

in the previous SOMs while also helping to resolve channels thicknesses that are slightly below 

seismic resolution. 

 

Testing results, time evolution, and architectural elements  

After obtaining the SOMs and creating an interpretation of the deepwater system at the 

time of the deposition of the Moki formation, we evaluated the SOM results. Figure 2-13 shows a 

series of time slices that intersect the Pukeko-1 well, tied to the seismic volume. In the vertical 

slice, we defined sample areas to evaluate the output classes from the SOM3 model. For example, 

in the time slice taken at -1916 ms, the well has a low GR signature, which is characteristic of 

shales. These characteristics are shown by the blue and purple colors in SOM3. However, in the 

time slice taken at -1968 ms, there is a low GR value, which is characteristic of sandstones and 

possesses a signature that is representative of a channel (blocky to finning upward log pattern). 

This GR log feature is shown by the orange color in the SOM.  In the other time slices that are 

more mixed to- silty, the class is represented by green-yellowish color in SOM3. The well log 

profiles matching the SOM results (Figure 2-13) allowed us to corroborate our analyses and be 

able to make geological interpretations on the evolution of the system. These findings can be 

further used to determine volumetric estimations of these reservoirs or seismic facies of interest. 

In this instance, the seismic data shows how the geomorphology of the channel complexes change 

upwards, from straight-linear (most likely channelized gullies) to a higher sinuosity, meandering 
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character (channel-levee complexes). The channel widths also vary from ~200 m to 5 km for these 

channel complexes. This suggests that there were changes in the energy, slope, and trigger factors 

(Catuneanu, 2009) within the Miocene deepwater system, having individual older channels 

followed by younger channel complexes. 

After looking at vertical slices and time slices, it seemed that the sandy-prone facies were 

predominant in the lower time slices, and the system becomes more mud-rich up section. We 

interpret the system in our section of interest to be a channelized turbidite fan system where the 

channels became progressively more carved and migrated laterally due to avulsion. Additionally, 

the deposits that were reworked by bottom currents, as suggested by Kroeger et al., (2019), were 

recognized in the horizon slices with the aid of the SOM results. Single attributes did not allow for 

the recognition of these features. 

Figure 2-14 presents the SOM results in a vertical slice. When comparing SOM1, SOM2, 

and SOM3, in general, sandy-prone facies (channels and fans) are located relatively in the same 

position (in time/ vertically). The mud-prone facies, recognized as the basin-floor marine shales, 

are positioned in similar areas in the three SOMs cases. SOM3 (Figure 2-15) appears to present 

more details and classes than the other two SOM results. Therefore, it suggests that the 

incorporation of textural and spectral attributes generates a more robust classification of the 

deepwater facies. 

 

DISCUSSION  

A clear understanding of the dataset and the establishment of a geological goal is 

paramount. This is the first step we recommend before any multi-attribute analysis or machine 

learning application. By establishing a clear objective, the interpreter can incorporate the attributes 

that can represent the most meaningful information based on the available data. In the case of this 
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study, only a PSTM volume is available. Thus, we can only generate spectral, geometric, textural, 

and instantaneous attributes. These attributes help define the geomorphological properties of 

deepwater architectural elements while also providing an understand of their possible lithologies 

as presented in the SOM results. Chopra and Marfurt (2014) highlighted the importance of using 

different types of attributes in order to capture both structural and stratigraphic features present 

within the dataset. The incorporation of multiple attributes types as input for SOM studies to 

enhance seismic interpretation has become a common practice, as observed by Sacrey and Roden 

(2014) and by Roden and Sacrey (2016). These studies are the first step in the right direction for 

efficient and robust seismic characterization. 

The selection of the attributes considered the findings presented in Barnes (2007) and Kim 

(2019). When selecting the appropriate attribute combinations, we discarded the GLCM 

homogeneity attribute as it shared a redundant classification with the GLCM entropy attribute 

(e.g., an R value greater than 0.7).  

We corroborated that the sweetness and RMS amplitude seismic attributes are good 

lithological indicators. The higher the values of these two attributes, the more sand-prone the facies 

are, as can be seen in Figures 2-7a and 2-8b. On the other hand, seismic attributes, such as 

coherence and dip magnitude, highlight the geomorphology of the architectural elements within 

the channel belt complex. This can be seen in the various channels, levees, scroll bars, splays/ 

overbank, and abandoned channel features present in Figure 2-8c. Most positive curvature (k1) 

excels in identifying the positive relief created by levees when compared to the other attributes 

(Figure 2-7e).  

Although each seismic attribute provides individual hints about the facies and the 

geomorphology of the deepwater elements, this study demonstrates that SOMs create a more 
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efficient workflow for classifying and highlighting channel elements within the AOI. Features 

such as splays and levees are quickly identified in the SOMs (shown by arrows in Figures 2-10, 2-

11, 2-12, and 2-13), whereas they were not confidently imaged by individual attributes (shown in 

Figures 2-7, 2-8 and 2-9). Sandy wave deposits that were recently suggested by Kroeger et al., 

(2019) in the Pipeline 3D were confirmed after SOM analysis, similarly to the levees (Figures 2-

10, 2-11, and 2-12).  

The combined use of input attributes that were previously inspected, allowed to find similar 

patterns in the data and group distinctive facies within the SOM results. The seismic facies or 

groups are represented by different colors in each of the SOM models, as the colors are assigned 

randomly in each iteration. The orange and greenish zones in SOM1 correspond to coarser-grain 

facies (sandstones and siltstones). Color orange represent the sandier and silty rich zones in SOM2, 

and these are yellowish-greenish in the SOM3. Additionally, SOM2 and SOM3 highlight the 

levees and channels edges, shown by the purple color. This may be associated with the 

incorporation of geometrical attributes within the SOM models.  

The facies configuration shown in Figure 2-14 leads to a better understanding of the 

deepwater system within the AOI. First, the sandier and siltier facies present within some portions 

of the channel complexes, which are also found in the continuous reflectors. This distribution of 

facies is typical of sheet-sands (basin floor lobes). Secondly, the mud-prone facies, such as the 

mud-filled channels (zones within the channel complexes), and marine shales (basin floor 

hemipelagic- predominant background) are represented by the blue or purple colors in the SOM1, 

SOM2, and SOM3. Finally, from the SOM3 interpretations of the associated seismic facies and 

architectures, the system goes from a more sand-rich basin floor fan system in the older sediments 

and evolves into individual channels (that carved the fan system). The system becomes more mud-



28 
 

prone in the younger deposits (upper section). This evolution was analyzed by using the Pukeko-

1 well and is represented in Figure 2-13. 

Because the seismic resolution tends to decrease with depth (Hart, 2011) and depositional 

systems vary vertically (Slatt and Weimer, 2004), this study focused on the Moki Formation (500 

ms interval in TWT) to characterize this Miocene deepwater system. Future work would evaluate 

the different SOM results for different vertical ranges and windows of operation. 

After understanding the configuration of this deepwater system, the location of the possibly 

best quality reservoirs can be determined. These optimal reservoirs are defined as sandstone prone 

elements like sheet sands and scroll bars, as presented by Slatt and Weimer (2004). The recognition 

of these good reservoir quality architectural elements can optimize drilling designs, make 

production plans more efficient, and can significantly reduce operational costs. However, since the 

SOMs can produce different results for each iteration and lack an error uncertainty measure for the 

output classes, the interpreter should apply their knowledge and experience by using seismic 

geomorphology and geological context to interpret the SOM results. A comparative analysis 

between the SOM results with other types of data and analogs is strongly encouraged.  

We found that SOM3 performed better than SOM1 and SOM2 when differentiating 

between facies (APPENDIX). From these results, we suggest using at least one textural attribute 

(e.g., GLCM entropy) that can highlight continuity, one instantaneous or amplitude attribute, like 

sweetness or RMS amplitude, that denotes amplitude and provides hints about the lithological 

composition. We also recommend using one or more spectral attributes that highlight frequency 

(e.g., frequencies, peak spectral magnitude) and thickness changes. Finally, we would include one 

geometrical attribute like coherence or curvature. The incorporation of these different attributes 

may vary depending on the data available and the objective of the study. 
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Machine learning algorithms can serve as a tool for assisting seismic interpreters by 

identifying relationships within the data that humans may not be able to recognize easily. However, 

the interpreter is vital for either training the algorithms or for interpreting the results within a 

geological context, which is something that these algorithms cannot yet accomplish. 

 

CONCLUSIONS 

In this study, we tested a wide range of geometrical, spectral, instantaneous, and textural 

attributes, and we later incorporated the chosen combinations into three different SOM models to 

enhance deepwater architectural elements and facies interpretations. For that, we tested the 

deepwater Moki Formation within the Pipeline 3D dataset located in the Taranaki Basin.  

 The first takeaway of the study is that the establishment of a clear goal is paramount before 

any seismic interpretation study. The interpreter should first inspect the seismic dataset to 

recognize noise and define the goal. Then, the interpreter would be able to select the most suitable 

(geologically meaningful) attributes for the dataset and the study objective. For the pre-selection 

of candidate attributes, we suggest to use a combination of 1) at least one geometrical attribute that 

defines the geomorphology of the architectural elements (e.g., sobel filter similarity), 2) one 

amplitude attribute like RMS or sweetness for accentuating sand-prone facies and architectures 

(e.g., sand-filled channels, lobes or sheet sands); and 3) at least one textural attribute such as 

GLCM entropy to differentiate facies (e.g., MTD from mud-filled channels). In addition to this, 

the combination of attributes should have a non-linear relation among them to avoid redundancy. 

The use of spectral attributes and curvature in our dataset resulted beneficial in discriminating 

elements like levees (positive curvature, high spectral frequency) from major dimension 

architectures like channels (low spectral frequency).  
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 When comparing the three SOMs based on the different combinations, we found that 

SOM3 offered better detail that allowed us to interpret smaller features like levees, sand waves, 

and smaller channels. The robustness of these results may be attributed to the use of individual 

spectral frequencies in addition to the GLCM entropy attribute.  

Whereas each seismic attribute provides hints about facies and geomorphology, we 

demonstrated that the application of SOMs allows for a more efficient workflow in deepwater 

element discrimination and classification (e.g., splays, levees, and smaller features). Machine 

learning techniques like SOMs allow for multiple attributes to be combined and to extract 

meaningful information from the seismic samples (when the user can just recognize limited 

patterns or features). If attributes are tested to be meaningful before the application of any 

clustering algorithm, we may get a more robust classification. We must remember that the 

machines cannot (yet) inherit our knowledge and criteria. Therefore, the goal of the project, the 

interpreter experience and “in context” interpretations play a key role in using unsupervised 

machine learning techniques for seismic facies interpretation 

 

ACKNOWLEDGMENTS 

We acknowledge New Zealand Petroleum and Minerals for providing the dataset used for 

this research. We thank the AASPI consortium for the access to AASPI (attribute assisted seismic 

processing and interpretation). In the same way, we extend our appreciation to Schlumberger for 

the Petrel license. They provided these licenses to the University of Oklahoma for research and 

education purposes. We also thank Julian Chenin for his support. Special appreciation is dedicated 

to Dr. Kurt Marfurt, Javier Tellez, and Dr. Rafael Pires de Lima for their valuable contribution and 

advice throughout the research. 



31 
 

FIGURES 

 

 

Figure 2-1: Map of western offshore New Zealand highlighting the Taranaki Basin and the study 

area. The dataset (Pipeline 3-D) location is shown in yellow and the Pukeko-1 well with a fuchsia 

point. The paleo-trend of deposition (southeast-northwest) and principal faults trend (southwest-

northeast) are indicated as reported in Kroeger et al., (2019). Notice that the study location is close 

to the distal fans area near Miocene time, when the Moki Formation was deposited. The paleo-

shelf break limit by that period is indicated using a blue dashed line after Strogen (2011). 
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Figure 2-2:  Stratigraphic diagram for the Taranaki Basin (modified after Roncaglia et al., 2010 

in Strogen et al., 2011) focusing on the interval of study, indicating period, epoch, group, age in 

Ma, lithology and the corresponding tops in the Pukeko-1 well. The gamma ray (GR) log and 

seismic appearance of the Moki A and the Moki B reflectors are also shown. 
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Figure 2-3: Example for explaining self-organizing maps (SOMs). The input data is represented 

by coffee beans. When they are placed in this space, the best matching units (BMUs) will group 

similar beans together as they come closer to one another as a result of weighting. The 

classification is performed in accordance with type, flavor, and amount of caffeine. When the 
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beans with similar characteristics are clustered together, they can be differentiated from other 

coffee beans in different clusters. These clusters are then projected onto the latent space and are 

color-coded where they can be later interpreted. In this case, the yellow class is Arabica coffee, 

with low caffeine content, aromatics, and less bitter in flavor. Therefore, it can be interpreted as 

Colombian coffee as this is characteristic of the beans that grow in that country’s soils. On the 

other hand, a Robusta bean, with higher caffeine, high bitterness, and less aromatics is clustered 

in the blue color and can be interpreted as Vietnamese coffee. Even if the clustering method you 

decide to use is the most robust, you will need an interpreter with the knowledge that can decode 

the results to determine if they are meaningful. 
 

 

 

Figure 2-4: Workflow applied for this study. 
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Figure 2-5: Seismic amplitude expression. A) In the upper left, time slice Z: 2000 ms is presented, 

and the vertical slice at Crossline 2193 is indicated in blue color b) Vertical transect (A-A’) of the 

amplitude section with interpretations of some architectural elements like channels and levees. 

Seismic data courtesy of New Zealand Petroleum and Minerals. 
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Figure 2-6: Attribute combination for SOM1, proposed by Zhao (2016). Peak frequency, peak 

magnitude, curvedness, and coherent energy seismic attributes are presented and interpreted 

respectively. Interpretations are shown in arrows with color. 
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Figure 2-7: Attribute combination for SOM2: a) Sweetness attribute is believed to be a lithological 

indicator for this study. High values of sweetness (colored in red) represent possible sandy 
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deposits. b) Instantaneous phase helps to add contrast and provides further insight into the 

lithological distributions. This attribute separates the different possible lithologies into various 

colors. c) Dip magnitude delineates the outer shape of the channel and improves the definition of 

larger features within the system. High values of dip are shown in black. d) Sobel filter similarity 

(coherence) seismic attribute helps to define the geometry of the channel. High values of coherence 

depict the channel edges (shown in black) and provide a detailed delineation of the architecture of 

channel elements such as scroll bars.  

 

 

 

Figure 2-8: Attribute combination for SOM3: a) GLCM entropy, b) RMS amplitude, c) Sobel 

filter similarity, d) Spectral CWT decomposition (13 Hz, 35 Hz, and 60 Hz) is presented.  
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Figure 2-9: Schematic illustration of the main architectural elements in deepwater systems. 

Modified after Posamentier et al., (2003). Notice some features have letters that are related to the 

content described in Table 2-4. 
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Figure 2-10: SOM1 flattened on the Moki Horizon. The yellow and orange classes represent 

sandier to siltstone prone deposits that include point bars, sheet sands (fan), and some splays 

recognized in the outer zone of the cut banks. Also, some sediment waves, perpendicular to the 

paleo-flow, as proposed recently by Kroeger et al., (2019), are depicted by this class. The latter 

can be overlooked or misinterpreted as noise if just evaluating individual attributes. The purple 

and blue colors possibly indicate more shaley deposits, this is, mud-filled channels and mud-basin 

floor (marine shales).  

 



41 
 

 

Figure 2-11: SOM2 flattened on the Moki Horizon. The results of the classes are similar to the 

ones presented in SOM1 but with different colors and smaller elements detected, which is shown 

by the thin channels (fuchsia color).  
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Figure 2-12: SOM3 flattened on the Moki Horizon. In this case, sandy bars, splays, and fans 

(sheets) are clearly represented by the orange color/class, while blue and purple classes correspond 

to mudstone prone deposits (mud-filled channels and marine shales). Single attributes did not 

allow for the recognition of these features. 
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Figure 2-13: Evaluation of the interpreted facies and architectural elements by using the gamma-

ray log from the Pukeko-1 well and upscaling it to the seismic resolution (~25 m). We show four 

time slices where the SOM3 results can be evaluated. These slices highlight the evolution of the 

architectural elements. A vertical amplitude slice (B-B’) is shown perpendicular to the paleo flow 

direction alongside the SOM results that aid in the interpretation. This is interpreted as a fan system 

that was carved or incised by younger channels, and the system turns more mud prone as it 

becomes younger (upwards).  
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Figure 2-14: a) Crossline 2239 in seismic amplitude within the interval of study. b) Results of 

SOM1 c) Results of SOM2, d) Results of SOM3. Notice how each SOM represents similar seismic 

facies in different colors, and SOM3 appears to provide a more detailed classification. The 

upscaled Pukeko-1 GR log is shown in the section. 
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Figure 2-15: SOM3 results presented in a chair display. Sandy bars, splays, and fans (sheets) are 

clearly represented by the orange color/class, while blue and purple classes correspond to silty to 

mudstone prone deposits (marine shales in this case). Some levees are recognized in dark purple, 

and overbank deposits in green. 

 

TABLES 

Table 2-1: Common attributes, category, type, and interpretative use in geology (Modified from 

Roden et al., 2015).  
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Table 2-2: List of attributes selected for deepwater seismic characterization in this study. The type 

of attribute is indicated and explained according to the listed references (fourth column). The last 

column describes the application of these attributes for seismic interpretation. 

 

 

 

 
 

 

Table 2-3: List of the input attributes for each SOM.  
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Table 2-5: Correlation matrixes from SOM1, SOM2, and SOM3. Main diagonals indicate the 

value of 1 because it compares each attribute with itself. When comparing every other attribute, 

the correlation is less than R = 0.7, which, according to Kim et al., (2019), represents the non-

linear relationship between the attributes. From this, every attribute used as an input for each SOM 

is unique and representative of the dataset. 
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APPENDIX  
 

This appendix shows the comparison of SOM1, SOM2, and SOM3 results with the aim of better 

visualizing the differences between them. In this image, Crossline 2239 is displayed for the vertical 

display for each individual SOM. Notice that the colors of clusters in each SOM are assigned 

randomly. Therefore, the same architectural element in SOM1 may not be represented by the same 

color in SOM2 and SOM3. However, the features interpreted should appear in similar spatial 

location for all cases.  
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CHAPTER 3. USER VS MACHINE SEISMIC ATTRIBUTE SELECTION FOR 

UNSUPERVISED MACHINE LEARNING TECHNIQUES: DOES HUMAN INSIGHT 

PROVIDE BETTER RESULTS THAN STATISTICALLY CHOSEN ATTRIBUTES? 

 

INTRODUCTION 

Conventional seismic interpretation techniques involve seismic attribute calculations and 

applications to determine geometries, lithologies, and reservoir properties. In recent years, the use 

of machine learning techniques has become a common practice in advanced seismic interpretation 

workflows. These methods are based on complex algorithms that allow quick and improved 

classification of seismic data than traditional single attribute analysis made by interpreters.  

Machine learning (ML) applications within the geosciences extend from predicting seismic 

facies, to automatic fault detection. The choice of an unsupervised ML method over a supervised 

method depends on the type of data available for the study. In exploration stages, it is often rare to 

find well logs or other data. In this scenario, unsupervised methods provide ways to find 

relationships among the variables in the data available. However, unsupervised methods require 

interpreter evaluation to approve or disapprove the output.  

Methods such as Principal Component Analysis (PCA), introduced by Pearson (1901) and 

developed by Hotelling (1933), are a common technique to find patterns in data of high dimensions 

(Smith, 2002). PCA seeks to reduce a multivariate space (dataset) down to a more manageable size 

of relatively independent variables. In seismic interpretation, PCA helps to determine the most 

meaningful seismic attributes (Taner, 2001; Roden and Sacrey, 2016). Likewise, SOM is an 

unsupervised technique used in multi-attribute analysis to extract additional information from the 

seismic response not possible with single attributes (Leal et al., 2019). This method was first coined 

by Kohonen (1982), but became popular nowadays due to the increase in computational power. 

PCA and SOM have been used for many purposes. For example, in the marketing arena, Das et 
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al., (2016) applied PCA and SOM to find clusters in people's responses regarding the retail store 

personality. In seismic data, Coleou et al., (2003) applied SOMs for seismic classification using a 

1D latent space. More recently, Guo et al., (2009) computed spectral attributes and applied PCA 

to determine the first three principal components of the spectral variation. Later, Matos et al., 

(2007), Roy and Marfurt (2010), and Roy (2013) showed the advantage of extending the SOM 

latent space to 2D and 3D, using 2D and 3D colorbars to delineate elements in depositional 

environments. More recent studies (Sacrey and Roden, 2014; Roden and Sacrey, 2016; and Leal 

et al., 2019) integrated PCA to select attributes, and SOMs to interpret facies in various 

depositional environments. 

This research investigates the impact of a user-driven (biased) selection of seismic 

attributes to perform SOM for seismic facies classification versus a machine- derived selection 

(through PCA). We used the Pipeline 3D seismic dataset, in the southern Taranaki basin of New 

Zealand, to determine suitable attributes and combinations to interpret deepwater architectural 

elements. We explored which attribute selection allows for a reliable and time-efficient 

classification to improve interpretation. 

 

MOTIVATION  

The motivation of Chapter 3 was to provide a comparison between machine selected 

attributes (via principal component analysis) and user-defined attributes (multi-attribute approach 

in Chapter 2) (Figure 3-1). To compare methods in a deepwater setting, we evaluated how effective 

each combination of attributes was. We explored the advantages and disadvantages of a user-

driven vs. machine conducted attribute selection. We sought to understand the best seismic 

attributes to characterize a deepwater setting and compare the generated clusters. 
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PRINCIPAL COMPONENT ANALYSIS (PCA) 

PCA is one of the oldest and most known among multivariate analysis techniques 

(Jolliffe,1986). It was first introduced by Pearson (1901) and consists of mathematical algorithms 

that apply a principal axis method, and transform a set of variables into a smaller number of 

variables called principal components (eigenvectors), that still has most of the information present 

in the input dataset. Therefore, PCA is primarily used as a dimensionality reduction technique. In 

the PCA results, the first principal component (PC1) accounts for as much of the variability in the 

data as possible (Figure 3-2), and each succeeding component (PC2, PC3, etc.) accounts for as 

much of the remaining variability (Guo et al., 2009; Zhao et al., 2015). Because PCA is based on 

Gaussian statistics, the first eigenvalues or PC preserve the most of the signal, and best represent 

the variance in the data, while the last PC has uncorrelated noise (Zhao et al., 2015).  

In the world of PCA we need to understand two concepts, eigenvalues, and eigenvectors. 

Eigenvalues also called characteristic roots, represent the amount of variance/ variation in the total 

sample accounted for by factor. If a factor has low eigenvalue, then it contributes little to the 

variance. The second concept, eigenvectors, are vectors resulting from the PCA where the first 

vector has the highest eigenvalue and represents the maximum variance in the data (Chopra and 

Marfurt, 2014). 

In geoscience applications, PCA is performed on a square symmetric matrix, usually 

covariance matrix (scaled sums of squares and cross products). This mathematical procedure is 

applied when the variances of individual variates differ much, or if the units of measurement of 

individual variates differ, which is the case for seismic attributes from different types. (Atchley, 

2018) 
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PCA has been used as the first step in clustering techniques such as self-organizing maps 

(e.g., Leal et al., 2019), generative topographic maps (e.g., Roy, 2013) and support vector machine 

analysis (e.g., Zhao et al., 2015), because it reduces the number of attributes for subsequent 

analysis (Chopra and Marfurt, 2014). However, one of the drawbacks about PCA is that after the 

dimensionality reduction, there is no guarantee that the dimensions or results are interpretable. 

 

METHODOLOGY 

For the previous chapter, we performed the dataset inspection and area of interest 

definition. For this part of the study, we followed the workflow in Figure 3-3. We used as input a 

total of 28 attributes from a variety of textural, geometrical, instantaneous, and spectral attributes. 

Table 3-1 presents the attributes considered for input in the PCA. We computed the attributes in 

the AASPI software and imported them in Paradise software for the subsequent steps. It is 

important to mention that all the seismic volumes should ideally have the same dimensions and be 

associated with the same original amplitude volume. The selection of a window of interest allows 

for an optimal calculation of preceding methods and avoids miscalculations. Next, we inputted the 

28 attributes and ran PCA. We then evaluated the eigenvectors in the section of interest (see AOI 

in Chapter 2) and determined the main contributors (attributes).  

We considered the most representative attributes (the attributes that contributed the most 

to the total variance) in the first three principal components. We then performed SOM to determine 

the classes (seismic facies). We selected a neuron configuration of 16, that would represent 16 

possible clusters, and 100 epochs (iterations). While the groups themselves are defined in the 

original n-dimensional space, they are mapped into a lower-dimensional, typically one- or two-

dimensional, latent space (Wallet et al., 2009). This two dimensional, hexagonal, or rectangular 
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grid, is referred as a Kohonen map (Kohonen, 1982).  Subsequently, we compared SOM results 

with the SOM obtained in the previous chapter to determine possible biases and differences 

between the machine and user-driven approaches. Finally, we proposed an efficient solution of 

attribute combinations to depict deepwater architectural elements, comparing the advantages and 

disadvantages of each method explored in the study.  

 

RESULTS 

Principal component analysis 

The first step before conducting any seismic interpretation project is having clear the 

geological objective. For some studies, the focus may be structural; in others, it can be purely 

stratigraphic. In our case, we aimed to identify deepwater seismic facies and architectural elements 

in a defined area of interest in the Pipeline 3D dataset. In Figure 3-4, Inline 1365 in seismic 

amplitude is shown. We indicated some of the architectures we can identify in the slice. The 

seismic expression of these elements has been defined previously in Chapter 2 and summarized in 

Table 2-4. We also present the location of the inline in a 2D amplitude map. Selecting a line or 

area of interest is beneficial when determining PCA in paradise software since the result is shown 

in the fashion of the eigenspectrum. Also, by recognizing some elements when possible, we 

establish control points that can be compared to the output groups when using SOMs. 

 

From the eigenspectrum to principal components and attributes 

Figure 3-5 corresponds to the results of the PCA analysis from Paradise software. The 

attributes shown in Table 3-1 were inputted in our window of interest. In Figure 3-5, we observe 

a series of blue bars (eigenspectrum). These bars denote the highest eigenvalues in each inline 

(Roden and Sacrey, 2016). We selected a representative inline in the area of interest (red bar) to 
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determine the attributes that contribute the most in each principal component in that area. 

Remember that an eigenvalue is showing how much variance is contained in the associated 

eigenvector and that an eigenvector is a vector that shows a principal spread of attribute variance 

in the data. 

Figure 3-5 shows the three principal eigenvectors (yellow bars within the blue bars), which 

contain most of the variability in the data. Notice that for each eigenvector one, two, and three, a 

list of attributes and its total contribution is displayed in a table in the rightmost side. We followed 

the criteria used in Leal et al., (2019), considering only the attributes that accounted for most of 

the variability in the data (max%>80%). The first eigenvector has as main contributors three 

texture attributes, envelope, and sweetness, which account for as much of the 60% of the data. 

Eigenvector two derived mainly curvature attributes, and eigenvector three resulted in amplitude 

and cosine of phase attribute. 

The application of PCA to a set of 28 attributes allowed the distillation of them into nine 

attributes. Depending on the objective or goal of the study the attributes derived from the PCA 

may be good candidates as inputs for self-organizing maps or other unsupervised ML method. 

 

Self-organizing maps analysis 

We used the seismic attributes considered good candidates (Table 3-2) as input in the SOM 

to find the natural attribute clusters generated upon the input data. However, in this case, the 

attributes were selected by the program and not by the user/ interpreter. The nine seismic attributes 

(amplitude, envelope, cosine of instantaneous phase, GLCM dissimilarity, GLCM homogeneity, 

GLCM entropy, K1, K2 and sweetness) were inputted to calculate SOM over the area of interest. 

We selected a configuration of four-by-four neurons, so we obtained 16 neurons projected on a 

topological map. Each neuron represents a cluster with information, geological or not, that has a 
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distinctive color. Each one of these colors represents herein a cluster of data points. In Figure 3-6, 

we show the results of the SOM with the topological map indicated to the left. In this stage, we 

selected the clusters (neurons) that were associated with features of interest or facies in the 3D 

space. We made the decomposition and inspection of each neuron and found that some of these 

clusters did not represent anything but random noise (e.g. Neurons 6, 9, 11,13 and 16). On the 

contrary, neurons such as one, four, and eight highlighted the channel complex and associated 

architectural elements in the system.  

Figure 3-7 showcases the interpreted neurons and their geological significance. Neurons 

one and eight were interpreted as possible bars, whereas Neuron two represents the “background” 

conformed by hemipelagic facies. Neuron four is recognized as sheet sands (fan-like deposits) for 

its architecture and in context interpretation. Finally, Neurons 12 and 14 represent overbank 

deposits and levees. The Neuron 14 also was identified in places where more chaotic facies such 

as MTD and turbiditic channels were recognized in amplitude data. Notice how similar clusters 

are placed nearby in the topological map (Neurons two and one are both fine-grained). A cartoon 

has also been included to better explain the relationship between the interpreted facies and how 

the system migrates to keep an equilibrium profile. Migration of a channel complex results from 

avulsion and lateral migration in a channel-levee complex due to the buildup of the levees and 

changes in energy and sediment supply in the system.   

 

SOMs results from user selected attributes vs machine derived inputs 

Figure 3-8 depicts the comparison between the SOM derived from attributes selected in an 

unsupervised fashion, using PCA in Figure 3-8a. The SOM results from meaningful attributes 

characterized by us (SOM3 in Chapter 2) in Figure 3-8b and the amplitude expression in Figure 
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3-8c. Our first impression is that when comparing the SOMs results with the seismic amplitude, 

we can differentiate with the former, architectures and different elements with particular geological 

meaning, that are not easily recognizable in the amplitude.  

When comparing results from the SOM using the attributes selected by the machine using 

PCA (Figure 3-8a) and the SOM3 derived from the user-method (Figure 3-8b), we noticed that the 

first one allows the distinction of predominant architectural elements. However, we found more 

detail with the user-selected attributes. Details, like the geomorphology of the channels and 

definition of subtler facies, allow for a better picture, and therefore interpretation in the case of the 

user-selected attributes SOM. We included attributes that PCA did not consider (e.g. spectral) that 

can provide better detail in the classification. In the user-defined approach we considered for 

SOM3 a mixture of GLCM entropy, RMS, sobel filter, and spectral attributes. It is nevertheless 

surprising how good results can be with an unsupervised method. Therefore, the use of PCA 

preceding a SOM can be a good practice when the interpreter's experience is limited. 

 

Human vs machine comparison (upsides and downsides of PCA vs multi attribute analysis) 

Upsides of the approaches 

• The user-driven approach allows us to inspect attributes individually and select the most 

geologically meaningful for their interpretation purpose/ goal. (as explained in Chapter 2). 

• Regardless of the goal, the PCA is a dimensionality reduction technique that narrows down 

the data to a smaller dataset containing most of the variability in the data. (Tables 3-1 and 

3-2, and Figure 3-5). 

• PCA offers a quick way to explore a dataset. It is more time-efficient than a multi-attribute 

analysis and may consider attributes that were not previously inspected by the user. For 
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instance, envelope attribute (Figure 2-5) is cataloged as good facies discriminator (Chopra 

and Marfurt, 2005), but I did not consider it for this 3D volume analysis in Chapter 2). 

• The user-selected methods allow integrating different data types that can be tested or 

classified to reduce redundancy (e.g. Table 2-5). 

• Both methods, implemented an unsupervised machine learning technique (SOM), which 

allows to recognize elements that the human may not have been able to identify by himself. 

(e.g. Figure 3-8). 

 

Downsides and limitations  

• The optimal selection of attributes relies on the interpreter’s experience and understanding 

of each attribute significance and it might be biased. 

• The PCA results may show attributes that are not the most suitable for the goal (e.g. cosine 

of phase, in Figure 2-5), and, also requires data QC, because PCA is sensitive to noise. For 

example, Figure 3-6 shows clusters that only contain noise. The PCA will reduce the 

amount of data examined, but results may have little to do with physical features of interest 

(Lubo-Robles and Marfurt, 2019).  

• The multi-attribute approach may result time-consuming if started from zero, but, effective 

if combinations used for every setting are documented and followed to apply in similar 

geological settings. 

• The PCA method suggest attributes that are “main contributors” but that may be similar or 

redundant. For example, most positive curvature and maximum curvature (Figure 3-5c).  

• Both methods, applied to SOMs, require human inspection and approval in pivotal 

moments. The most straight forward example is the validation and interpretation of the 
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SOMs outputs regardless of the initial approach used. Interpreters must apply seismic 

geomorphology principles to define the groups of data points with “similar” characteristics 

that belong to each cluster. 

 

CONCLUSION 

In this chapter we aimed to compare previously user-selected attributes implemented in a 

self-organizing map (SOM) technique for deepwater seismic facies interpretation, and attributes 

selected statistically by a Principal Component Analysis (PCA). PCA allowed the reduction of a 

large dataset of 28 attributes to only nine attributes contained in the principal components. The 

first, second, and third principal components contained the most of the variability within the data. 

This machine- derived attribute selection included amplitude, cosine of instantaneous phase, 

envelope, most positive and most negative curvature, sweetness, and textural attributes such as 

GLCM, dissimilarity, entropy and homogeneity to use in the self-organizing maps (SOMs). We 

concluded that the machine-based attribute selection is composed of redundant attributes such as 

GLCM homogeneity and GLCM entropy, or amplitude and envelope.  

We found that the user-driven approach offers a better picture and geological significance 

to the interpreter than the machine-driven approach (PCA). The user-driven method helped to 

better illustrate the architecture and geomorphology of the elements, and define subtle differences 

within them. We suggest a list of attributes provided to use in unsupervised machine learning 

methods in similar geological settings (see Chapter 2). However, if the geological setting and 

objective differs of the one in this research, the user should define the most suitable attributes for 

their geological goal.  
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The use of PCA requires user control in the evaluation process to assess the quality of the 

input data, the algorithm sensitivity to noise, and the window of analysis. It is up to the interpreter 

to decide if results are meaningful depending on the scope of the study. SOMs are able to depict 

elements that are not identifiable using single attributes, and also help to corroborate previous 

insights of the interpreter. However, the interpreter knowledge and experience is important to give 

meaning to each generated class using seismic geomorphology principles and context to the 

interpretation.  

The major difference between the compared methods is the time efficiency and accuracy: 

A user-driven approach produces better results but is not as time efficient as the machine-driven 

method. Nonetheless, machine learning methods have to be treated as a tool to work efficiently to 

extract information from multiple datasets at the same time, to overcome interpreter’s limitations. 

In the future may machines try to supplant humans. But we underpin the idea that just now 

geoscientists interpreters are irreplaceable. 
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Figure 3-1: Questions proposed for the study. 

 

 

 

 

 

Figure 3-2: Explanation of the main principal components derived from PCA. 
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Figure 3-3: Workflow for machine assisted attribute selection and comparison of methods in 

Chapters 2 and 3. 
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Figure 3-4: Inline 1365 shown in amplitude. We selected a representative inline over which we 

interpreted the PCA results. Some deepwater architectural elements are recognizable: channel 

complex, levees, hemipelagic deposits, MTD and channelized lobes. Therefore, the attributes 

contributing in each eigenvector should be related to these geological features.   
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Figure 3-5: Principal component analysis (PCA) results from 28 attributes shown in Table 3-1. 

The first three eigenvectors (also known as principal components) represent the most of the 

variation in the data. a) Eigenspectrum represented by a bar chart where each bar represents the 

highest eigenvalue for each inline in the seismic 3D volume. Notice we selected a representative 

inline (1965) for the analysis presented in b, c, and d. b) Principal component one (PC1) 

represented with a yellow bar.  The seismic attribute contribution is presented to the right. We 
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followed Leal et al., (2019) data analysis to select the most representative attributes. Therefore, 

the selected attributes were those whose maximum percentage contribution to the principle 

component was greater than or equal to 80%. In this case, GLCM, envelope and sweetness 

attributes account for around 60% of the total variability in the data. c) Principal component two 

(PC2) in yellow bar, to the right we find the main seismic attribute contributors. d) Principal 

component three (PC3), represented by a yellow bar in the left, and the attribute selection based 

on statistical contribution to the right. Depending on the interpretation objective, the highest 

contributors (attributes) in each PC are possible candidates as input to a SOM or other 

unsupervised ML technique. 
 

 

Figure 3-6: Self-organizing maps and inspection of individual neurons to determine which are 

geologically meaningful and which represent random noise. 
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Figure 3-7: Self-organizing maps results from PCA is presented here, after filtering neurons 

considered as noise or not geologically meaningful. Notice that out of the 16 neurons, we selected 

six that represent possibly architectural elements in the deepwater system evaluated. Neurons one 

and eight represent bars, one, more shaley and eight sand rich. Neuron two denotes the shaley or 

hemipelagic background and four the sheet sands that are fan like. Neurons 12 and 14 represent 

minor sized features like overbanks and levees without much distinction between them. Similar 

clusters are located close in the topological map. 
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Figure 3-8: Comparison between a) SOM derived from the PCA-selected attributes and b) the 

SOM from the user selected attributes (Chapter 2). c) Amplitude has been provided to compare 

where high amplitude areas may correspond to sandstone prone facies such as scroll bars and fans 

(sheet sands), but also to highlight the importance of the SOMs, since the architectural elements 

are not distinguishable just in amplitude expression. The position of the Inline 1365 in Figure 2-4, 

and Crossline 2239 shown below the time slices, are presented as reference. 
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TABLES 

Table 3-1: List of input seismic attributes to PCA. Notice that a total of 28 attributes from different 

types were considered to determine the main contributors in the section of interest. 
 

Dip magnitude Sweetness 

Chaos Envelope 

Sobel filter Instantaneous frequency 

Energy ratio similarity Instantaneous phase 

Total energy Amplitude  volume transform AVT 

Most positive curvature Cos of instantaneous phase 

Most negative curvature Peak frequency 

Reflector convergence Peak magnitude 

Curvedness Seismic Amplitude 

K (CURVATURE( positive GLCM entropy 

K negative Spectral CWT frequency 13Hz 

GLCM contrast Spectral CWT frequency 35 Hz 

GLCM energy Spectral CWT frequency 60 Hz 

GLCM homogeneity GLCM dissimilarity 

 

Table 3-2: List of input seismic attributes to PCA. Notice that a total of 28 attributes from different 

types were considered to determine the main contributors in the section of interest. 
 

 
SELECTED ATTRIBUTES EIGENVECTOR 

Cos. of instantaneous phase 3 

Amplitude (original) 3 

Envelope 1 

GLCM dissimilarity 1 

GLCM entropy 1 

GLCM homogeneity 1 

K1 (most positive curvature) 2 

K2 (most negative curvature) 2 

Sweetness 1 
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