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Abstract: Single-fiber reflectance spectroscopy has unique clinical applications not 

amendable to other types of spectroscopy technologies when assessing a very small tissue 

domain. SfRS aims to quantify light propagation in the sub-diffusive regime by using a 

detection geometry that has the illumination and collection areas completely overlapped. 

This work presents models and methods of diffuse reflectance spectroscopy in a sub-

diffusive domain that may be translated to single fiber reflectance spectroscopy (SfRS) 

measurements at steady-state and time-domain. By using Monte Carlo simulations and 

analytical approaches, this work specifically analyzes diffuse reflectance associated with a 

center-illuminated and area-collection round geometry (CIAC) that reveals patterns salient 

to SfRS, including the dependence on scattering anisotropy and scattering coefficient at 

low-scattering region, and independence on scattering over high-scattering region.   

Operating in this CIAC geometry with the tissue modeled as a semi-infinite homogeneous 

medium, this work demonstrates a few methods that are new to the modeling of diffuse 

reflectance at the scales relevant to SfRS: (1) two models of spatially-resolved diffuse 

reflectance applying to a scale as small as 10-5 of the reduced scattering pathlength that is 

two orders smaller than previously modeled are developed, (2) the total diffuse reflectance 

as the measurement is developed by taking the integration of the spatially resolved diffuse 

reflectance over the entire area of collection, (3)  the analytical results reveal quantitatively 

the saturation level and the transition shoulder point that have been observed in steady-

state SfRS measurements but without explanations. The analytical modeling approach 

demonstrated for steady-state measurements is also extended to time-revolved 

measurement for assessing the effect of absorption and scattering changes on the 

measurements. These models will be useful to rapid inversion for recovering tissue optical 

properties based on diffuse reflectance at a single-fiber scale.  
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CHAPTER I  

 

 

BACKGROUND AND INTRODUCTION 

 

1.1 Basics of photon propagation in biological tissue 

When photons propagate inside biological tissue, they are consistently scattered by various types of 

ultrastructure ranging from membranes to membrane aggregates to collagen fibers to nuclei to whole cells, 

as well as being absorbed by many optical absorbers which are primarily hemoglobin of different types, 

water, lipid, and melanin. Basic optical properties of biological tissue and their definition are summarized in 

Table below[1].   

Table I-1 Basic optical parameters of biological tissue 

Parameter Symbol Typical value Unit 

Absorption coefficient 𝜇𝑎 0.01 𝑚𝑚−1 
Scattering coefficient 𝜇𝑠 10 𝑚𝑚−1 
Anisotropy factor g 0.9 dimensionless 

Reduced scattering 

coefficient 
𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔) 1 𝑚𝑚−1 

Refraction index n 1.4 dimensionless 
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The probability distribution of scattering angle over the while 4𝜋 solid angle is characterized by scattering 

phase function 𝑝(𝜃), and the anisotropy g represents the average value of cosine of scattering angle 𝜃, which 

is expressed by following equation.  

𝑔 = 〈𝑐𝑜𝑠𝜃〉 = ∫ {∫ cos(𝜃) 𝑝(𝜃) sin(𝜃)𝑑𝜃
𝜋

0
}𝑑𝜙

2𝜋

0
  (I-1) 

Henyey-Greenstein (HG) phase function, initially developed in astrophysics to describe scattering of light by 

interstellar dust clouds, is widely used to describe light scattering event in biological tissue due to its 

simplicity. As express in following equation, the structure of HG phase function is designed to possess these 

features: 1) giving any g ∈ [−1,1],  the integration of pHG(θ) over 4𝜋 solid angle leads to one; 2) giving 

any g value in the range of −1 < 𝑔 < 1, such as  g = 0.9 corresponding an averaged scattering angle of 

~260 , pHG(θ) quantifies the probability distribution of any possible scattering angle between [0,1800] and 

meet the anisotropy definition as expressed in Equation (I-1). 

pHG(θ) =
1

4π

1−g2

[1−g2+2gcos(θ)]3/2
    (I-2) 

Since most biological tissue is strong scattering medium and anisotropy g only varies in small range, reduced 

scattering coefficient 𝜇𝑠
′ , as a compositive property that incorporates scattering coefficient 𝜇𝑠  and the 

anisotropy g, is commonly used in diffusion theory to describe photon scattering.  

Light absorption is weak in the visible and near-infrared (VIS/NIR) spectral region between 400nm-1350nm.  

Photons take a mean free scattering path length on the order of 0.1mm between two adjoining scattering 

events, while the mean free absorption path length can range from 10mm to 100mm. Particularly, the 

wavelength range of 650nm to 1350nm where the light has its maximum penetration depth, is identified as 

near-infrared (NIR) optical windows and widely used for tissue diagnosis or therapeutical monitoring. The 

following Figure I-1 presents the absorption spectrum of typical biological absorbers in tissue, and the NIR 

optical windows are high-lighted with yellow background. 
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Figure I-1 Absorption spectrum of primary biological absorbers in tissue and NIR optical window 

([1]Lihong Wang et.al. 2012) 

1.2 Single-fiber reflectance spectroscopy for tissue properties measurement 

1.2.1 Single-fiber scale measurement and its unique advantages 

Diffuse reflectance spectroscopy using a single-fiber applicator probe both for light delivery and collection, 

often referred as single-fiber reflectance spectroscopy (SfRS), is featured by small form-factor, simple set-

up, compact size and low cost and possess the clinical potentials of bedside use. As pictured by Figure I-2, 

the single fiber probe can be a single solid fiber, or a pair of fibers bound together, or one fiber bundle that 

contains many small optical fiber randomly divided to illumination branch and collection branch. The 

diameter of single fiber probe in biomedical application ranges from 100𝜇𝑚 to 1000𝜇𝑚 for type 1 probe, 

and 1mm-2mm for type 2 and type 3 probes[2]. 



4 
 

 

Figure I-2 The probe designs of single-fiber reflectance spectroscopy 

The unique advantageous of single fiber scale measurement lies in non-invasive or minimum-invasive tissue 

diagnosis or monitoring, especially when tissue probing window is spatially constrained or difficult, such as 

one requiring endoscopic instrument channel or interstitial deployment[3-16].  

Single-fiber reflectance spectroscopy can be configured in steady-state (or continue wave), time-domain and 

frequency-domain. Fluorescence technique that relies on the measurement of fluorescence emission form 

exogenous fluorophore injected into investigated tissue, can be combined with any of above three 

configurations, termed as fluorescence SfRS. This work mainly focuses on steady-state and time-domain 

configurations. 

1.2.2 Clinical applications of SfRS 

Currently almost all clinical applications with SfRS adopts the steady-state configuration, and only one paper 

demonstrates time-domain SfRS in a phantom experiment[17]. No literature is found with frequency-domain 

SfRS. Compared to time-domain and frequency-domain configuration, steady-state SfRS can be 
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instrumented with lowest cost. Another important reason is the availability of an semi-empirical model [2, 

18-20]for steady-state SfRS. This steady-state model was initialized in 2009 by a group in Amsterdam and 

has enabled many clinical applications with SfRS related to diagnosis of lung cancer, hepatics steatosis, 

bladder cancer, cervical cancer, et.al., as well as in vivo monitoring of oxygen saturation level, as will be 

described below. 

Stephen, et.al., incorporated SfRS probe into the endoscopic ultrasound fine-needle aspiration procedure for 

lung cancer staging, and demonstrates the capability of SfRS of detecting differences in the physiology 

between normal and metastatic lymph nodes[21].  

Piao, et.al. utilized percutaneous SfRS measurement to assess the scattering change of nucleus pulposus 

cause by intervertebral disc herniation disease in chondrodystrophic dogs, and found percutaneous SfRS may 

be useful as an in situ sensing tool for assessing the level of mineral degeneration in intervertebral disc for 

the prospect of disc-specific dosage adjustment in percutaneous laser disc ablation [11, 14]. This 

percutaneous SfRS was also applied to assess the scattering change of fatty liver tissue, and it showed that 

the elevation of scattering power due to morphological change of lipid droplet may be an early indicator of 

diet-induced hepatic steatosis.[8, 9].  

Sun, et.al. applied SfRS to explore the spectroscopic feature associated with bladder cancer in rat model in 

vivo, and found that the elevated methemoglobin proportion in the context of increased total hemoglobin 

concentration may indicate different level of cancerous change [12].  

Yu, et al, demonstrated a SfRS system that uses reflectance mirrors and beam splitter instead of commonly 

used bifurcated fibers for light delivery and router, and applied it to the in vivo monitoring of oxygen 

saturation level in rat deep brain[4, 10].  
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Paulien L, et.al. applied SfRS to the optical guidance during endoscopic ultrasound-guided fine needle 

aspirations (EUS-FNA) of pancreatic masses, and demonstrated its ability to distinguish benign from 

malignant pancreatic tissue [16]. 

Tabrizi et.al. compared the performance of SfRS in detection of cervical pre-cancerous squamous 

intraepithelial lesions with the regular colposcopy in a Phase III trial, and the results showed that SfRS can 

reduced the number of unnecessary biopsies by a factor more than 5.5. [3, 15]. 

1.2.3 Implementation of steady-state SfRS 

Steady-state SfRS is the most common used implementation due to its low cost and simple setup. Figure I-3 

illustrates the principle of steady-state SfRS and one example of implementation with bifurcated optical 

fiber[12, 14, 22, 23]. Steady-state technique only measures the intensity change that is modulated by tissue 

scattering and absorption. The system consists of a broadband light source, a spectrometer, and light delivery 

equipment which adopts bifurcated fiber and a single fiber probe. The spectrum of a broadband light source 

commonly covers from visible to near-infrared range, and may include ultra-violet. The spectrometer detects 

photons reemitted from tissue and generates spectrally-resolved reflectance signal. The probe at distal end 

both injecting light into and collecting remitted light from tissue, can be either a single-fiber probe or a single 

fiber-bundle probe which bundles small fibers together to form a larger probe dimension. 
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Figure I-3 Principle and implementation of steady-state SfRS 

1.2.4 Implementation of time-domain SfRS 

Time-domain technique injects an extremely short pulse of light into tissue and measures the arrival time of 

reemitted photons that represents the path length one photon travels inside tissue. Hence, it provides the 

richest information about tissue morphology and physiology. However, time-domain implementation is very 

expensive in cost and requires high-speed gating devices. Until now only one publication was found to 

experimentally develop the time-domain SfRS system[17]. 

Figure I-4 presents the principles of time-domain technique, as well as one example of system 

implementation. Time-domain SfRS utilizes a pulsed laser to fire an extremely short pulse and used an 

ultrafast time-gated single photon avalanche diode (time-gated SPAD) as detector to measure temporal 

response from tissue. The probe at distal end both injecting light into and collecting remitted light from tissue, 

can be either a single-fiber probe or a single fiber-bundle probe which bundles small fibers together to form 

a larger probe dimension. 
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Figure I-4 Principle and implementation of time-domain SfRS 

1.3 Reviews of current model development of SfRS 

Due to the difficulties of quantifying light transportation in sub-diffusion regime and calculating convolution 

for an overlapped illumination and collection geometry, the exact analytical solution to spatially resolved 

diffuse reflectance as well as total diffuse reflectance collected from biological tissue has been void for years. 

Thus, the current models of steady-state and time-domain SfRS were developed empirically under the 

framework of beer-lambert law. 

1.3.1 Methods of describing of photon propagation in biological tissue 

Photon propagation in biological tissue can be modeled analytically by radiative transfer equation (RTE) or 

Boltzmann equation as expressed below in spherical coordinate system, where L is radiance, 𝑟 is the spatial 

vector of observation point, 𝜇𝑡 = 𝜇𝑠 + 𝜇𝑎 is extinction coefficient or total interaction coefficient, �̂� is unit 

direction vector, �̂�′is the unit direction vector of light propagation, 𝑃(�̂�′ ⋅  �̂�) is scattering phase function, Ω′ 

is solid angle, and 𝑆(𝑟, �̂�, 𝑡) is the source. 

 
𝜕𝐿(𝑟,�̂�,𝑡)

𝑐𝜕𝑡
= −�̂� ⋅ ∇𝐿(𝑟, �̂�, 𝑡) − 𝜇𝑡𝐿(𝑟, �̂�, 𝑡) + 𝜇𝑠 ∫ 𝐿(𝑟, �̂�′, 𝑡)𝑃(�̂�′ ⋅  �̂�)𝑑Ω′ + 𝑆(𝑟, �̂�, 𝑡)

4𝜋
 (I-3) 
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The RTE follows the principle of conservation of energy. The left-hand term represents the changing rate or 

the power of radiation per unit volume per unit solid angle, the first term at right-hand side represents the 

energy divergence out of the volume element, the second term at right-hand side represents the energy loss 

due to scattering and absorption,  and the third term at right-hand side represents energy incident due to 

scattering. 

Though RTE accurately describes the light propagation in tissue, it is very difficult to solve. Therefore, 

approximations such as 𝛿 -𝑃𝑁  [24-26] which adds a Dirac-𝛿  function to the Nth order of Legendre 

polynomial expansion of radiance, is sought to arrive at a specific solution to a certain geometry.  

Diffusion approximation assumes the radiance in high-albedo (𝜇𝑎 ≪ 𝜇𝑠 ) scattering medium is nearly 

isotropic after sufficient scattering, under which the radiance is expanded as the 1st order of spherical 

harmonics. Thus, the RTE could be simplified to diffusion equation (DE) as shown below with the fluence 

rate term Φ. 

𝜕Φ(𝑟,𝑡)

𝑐𝜕𝑡
= 𝐷𝛻2Φ(𝑟, 𝑡) − 𝜇𝑎Φ(𝑟, 𝑡) + S(𝑟, 𝑡)   (I-4) 

However, the diffusion theory normally fails to quantify the photon propagation in non-diffusion regime and 

the tissue conditions with strong absorption. Enhanced diffusion-based models[27] were reported to 

overcome this limit. Piao et.al. reported a master-slave dual source model[28] which is demonstrated to be 

able to quantify the spatially resolved diffuse reflectance collected from a semi-infinite geometry associated 

with a pencil beam input over the range of the dimensionless 𝜌𝜇𝑠
′  as close as 0.01. Xu reported a model[29] 

base on small angle approximation (SAA) that pushed the its working range one order closer to incident 

point, 𝜌𝜇𝑠
′ = 0.001.  

Besides above analytical approaches to describe photon propagation in tissue, Monte-Carlo (MC) method is 

also utilized to solve RTE as summarized in review article [30]. Compared to standard diffusion 

approximation, MC method could offer solution of high accuracy with price of high computation cost. 
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Empirical models that were developed by comparing with MC simulated results and/or phantom experiment 

are also reported in literatures [2, 20, 31-35]. Artificial neural network based model were also reported to 

model spatially-resolved diffuse reflectance spectra for retrieving scattering and absorption properties[36-

38]. 

1.3.2 Current steady-state model and its limitation 

Steady-state SfRS application currently employs a set of semi-empirical forward models that were initiated 

in 2009 and finalized in 2012 by Dr. Stephen C. Kanick’s group [2, 18-20, 32, 34, 35, 39]. This model sets, 

built upon observations on and calibrations with data from Monte-Carlo simulations and phantom 

experiments, adopts the framework of modified beer-lambert law to account for the effects of scattering and 

absorption as shown in equation below, where  𝜇𝑎  is absorption coefficient, 𝜇𝑠
′  is the reduced scattering 

coefficient, 𝑅𝑠𝑐𝑎𝑡(𝜇𝑠
′) is the SfRS intensity of absorption-free case, and < 𝐿( 𝜇𝑎 , 𝜇𝑠

′) > is the average 

photon path length.  

𝑅𝑆𝑓𝑅𝑆( 𝜇𝑎 , 𝜇𝑠
′) = 𝑅𝑠𝑐𝑎𝑡(𝜇𝑠

′) exp(− 𝜇𝑎〈𝐿( 𝜇𝑎 , 𝜇𝑠
′ )〉)                    (I-5) 

During the four years modeling process, the model sets evolved and brought out several versions. Among 

which the one most commonly used in many steady-state SfRS clinical studies[3, 4, 8, 9, 11, 14, 15] is their 

intermediate version as shown in equation below, where  𝜂𝑙𝑖𝑚 is a collecting efficiency of the fiber imposed 

by the numerical aperture,  and [ 𝑝1  𝑝2  𝑝3  𝐶𝑃𝐹] are a set of parameters dependent on scattering phase 

function of the medium, substituted by an optimal set of constant values [1.55, 6.82, 0.97, 0.944] reported 

in Kanick’s study[34]. 

𝑅𝑆𝑓𝑅𝑆( 𝜇𝑎 , 𝜇𝑠
′) =               

 𝜂𝑙𝑖𝑚[1 +  𝑝1 ⋅ 𝑒𝑥𝑝(− 𝑝2𝜇𝑠
′  𝑑𝑓𝑖𝑏)] [

(𝜇𝑠
′  𝑑𝑓𝑖𝑏)

 𝑝3

 𝑝2+(𝜇𝑠
′  𝑑𝑓𝑖𝑏)

 𝑝3] 𝑒𝑥𝑝 (− 𝜇𝑎
 1.54𝐶𝑃𝐹 𝑑𝑓𝑖𝑏

(𝜇𝑠
′  𝑑𝑓𝑖𝑏)

0.18[ 𝑝6+(𝜇𝑎 𝑑𝑓𝑖𝑏)
0.64]
)  (I-6) 

While the final version that represents [𝑝1,  𝑝2,  𝑝3,  𝐶𝑃𝐹]  as 𝛾 -specific parameter set  

[0.63𝛾2, 2.31𝛾2, 0.57𝛾, 0.68𝛾0.6] is not widely adopted by the community. The reason is that this 𝛾-
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specific version need co-work with a novel methodology of multi-diameter single fiber reflectance 

spectroscopy (MDSfRS) proposed and tested by Kanick’s group[33-35, 39, 40] to extract wavelength-

dependent 𝛾(𝜆), 𝜇𝑠
′ (𝜆) and  𝜇𝑎(𝜆). But the MDSfRS methodology also brings disadvantages that may 

limit its practical use in clinical studies, which includes: 

1) Increased system complexity. Need a special apparatus to control the fiber diameter and location of a 

source-detector spot projected onto the fiber bundle.  

2) The difficulty of ensuring a colocalized sampling volume when measuring with different fiber diameter.  

3) Increased number of measurements and longer data acquisition time. 

The currently used semi-empirical model in above equation has powered many clinical studies. However, its 

empirical origination of current forward models may limit its practical use in resolving complex tissue. Yu, 

et.al. reported that a negative value of oxygen saturation level ~ 8% was returned from data fitting by using 

current semi-empirical model, as shown by the black line in following figure which is directly cropped from 

Yu’s publication[10]. The Oxygen saturation level of ~ 8% which goes beyond the physical range and makes 

the incorrect sense, may be attributed to empirical nature of current model that separates absorption and 

scattering by the framework of Beer-Lambert law.  
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Figure I-5 Negative oxygen saturation level of ~8% was returned from the data fitting with 

current semi-empirical model (black line)[10] 

The author of this dissertation also encountered similar issue when using current model in data fitting to 

quantify the proportion of methemoglobin from reflectance spectrum measured from rat bladder tissue in 

vivo as detailed in Chapter II. Certain extracted parameters such as oxygen saturation level, went beyond 

the physical range of biological tissue when applying the model to data fitting over entire wavelength 

range. Some fitted curves of reflectance spectrum display artifact of methemoglobin spectral signature 

around 635nm compared with experimental data, as shown by following figure. 
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Figure I-6 The fitted curve of reflectance spectrum(blue solid line) shows artifact of 

methemoglobin spectral signature around 635nm compared with experimental data(red line) 

1.3.3 Current time-domain model and its limitation 

Time-domain SfRS was first demonstrated experimentally in 2012 by Erik, et al.[17], and so far their study 

remains the only published work in this field. As shown in Equation 3, an incomplete empirical model that 

is based on observation on Monte-Carlo simulated data, was adopted to approximately describe time-

resolved diffuse reflectance.  

𝑦𝑑𝑖𝑓𝑓( 𝜇𝑎 , 𝜇𝑠
′ , 𝑡) = 𝑘𝑑(𝜇𝑠

′)𝑦0(𝑡)exp (−𝜇𝑎𝑣𝑡)                   (I-7) 

Where 𝑘𝑑(𝜇𝑠
′) is a coefficient describing the intensity of diffuse reflectance, 𝑦0(𝑡) is the shape of diffusely 

reflected curve, and 𝑣 is the light speed in medium.  

This is an incomplete empirical model with the framework of beer-lambert law to organize scattering 

contribution and absorption contribution. Both 𝑘𝑑(𝜇𝑠
′) and 𝑦0(𝑡) have no concrete expression. To extract 

𝜇𝑎  through data fitting, 𝑘𝑑(𝜇𝑠
′) has to be set as free parameter and 𝑦0(𝑡) is generated by Monte-Carlo 

simulation at one fixed tissue condition chosen by empirical observation but used for all fittings, as described 

in their paper. The incompleteness of this model also makes it impossible to extract scattering information 
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from measured time-resolved SfRS signal. More applications of time domain SfRS is impeded by inadequate 

understanding of the measurement characteristics. 

1.4 Overview of this work 

Motivated by addressing the limitations of current model encountered in experimental study with steady-

state SfRS, the objective of this dissertation includes two aspects: 1) develop analytical-driven models of 

SfRS in steady-state and time-domain configurations for more robust extraction of tissue optical properties 

2) demonstrate the modeling methodology that could be potentially transferred to frequency-domain SfRS 

and fluorescence SfRS, as well as other probing geometries more complex than single-fiber. 

The layout of this dissertation is: Chapter II presents an experimental investigation of spectroscopic feature 

related to bladder cancer by using steady-state SfRS technique. Chapter III presents an analytical steady-state 

total diffuse reflectance over a 1/𝜇𝑠
′  scaled dimension of [10-5, 10-1] centered at the point-of-incidence from a 

semi-infinite medium with an HG anisotropy. Chapter IV demonstrates a model of total diffuse reflectance 

collected from a center-illumination and area-collection geometry by integrating a spatial diffuse reflectance 

model constructed by concatenating two models for diffusive and sub-diffusive region, as validated by 

numerous MC simulations and phantom experiment. Chapter V provides analytical perspectives to three 

characteristics of steady-state SfRS based on model demonstrated in Chapter IV. Chapter VI presents a 

promising time-domain model of SfRS by transferring the methodology demonstrated in steady-state work. 

Chapter VII summarizes the contribution of this dissertation research and projects the future research topics 

associated with SfRS. 
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CHAPTER II  

 

 

IN VIVO STEADY-STATE SFRS STUDY OF BLADDER CANCER IN A RAT MODEL 

2.1 Introduction 

Urinary bladder cancer ranks as the fourth most common cancer in men and the tenth most common cancer 

in women in the United States [41]. Bladder cancers are usually detected by cystoscopy [42], and 

transurethral resection of the bladder tumor (TURBT) is used to remove the tumor [43]. Unfortunately, flat 

lesions of bladder cancer often evade cystoscopy, making adequate detection as well as complete removal of 

bladder cancer by TURBT at the time of resection a challenge [44]. Inadequate detection and removal of 

bladder tumor increases tumor recurrence [5] and the risk of cancer metastasis [45]. The frequent tumor 

recurrence requiring life-long surveillance and management has made bladder cancer one of the most 

expensive cancers to treat from diagnose to the death caused by cancer.  

Among the new modalities that can be integrated with cystoscopy for bladder cancer detection, two 

promising techniques are blue-light cystoscopy (BLC) and optical coherence tomography (OCT). BLC 

visualizes blue-light excited fluorescence of intravesically administered hexylaminolevulinate acid [46] that 

drives the accumulation of protoporphrin IX (PpIX) in malignant cells. Some other dyes have also been 

shown to accumulate in bladder tumor [47] as a result of the enhanced permeability and retention effect [48]. 

OCT is powerful for high-resolution depth-resolved imaging of tissue micromorphology including 

vasculature [49]  These imaging modalities have significantly enhanced the potential of detecting bladder 
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lesions difficult to identify under regular cystoscopy that images surface reflection morphology in high 

resolution.  

This study has used diffuse reflectance spectroscopy (DRS) implemented with a single-fiber probe to explore 

if bladder cancer reveals potential spectroscopic features associated with neoplastic changes, and if it does, 

whether there is a correlation between the extent of the spectral features and the extent of neoplastic changes. 

DRS in the visible and near-infrared band [50] is sensitive to bio-chemical compositions of tissue 

chromophores including hemoglobin of different oxygen binding capacities, cytochrome oxidase, water and 

lipid that may collectively infer degraded microenvironment [51], and sensitive to subcellular structural 

variations that alter tissue scattering properties [52]. The physiological information offered by light 

interrogation of tissue absorption and scattering has thus rendered DRS useful for meeting some challenging 

needs, such as tumor margin determination in breast surgery [53-55]. In evaluating the potential of DRS for 

bladder cancer detection, a single-fiber probe that illuminated tissue and acquired the diffusely reflected light 

from tissue using the same small fiber was implemented for its potential of future applicability within the 

instrument channel of a cystoscope. Reflectance spectroscopy using a single-fiber probe or a probe of small 

end-profile allowing insertion through needle or an endoscopic port has been demonstrated for staging of 

lung cancer through examination of mediastinal lymph nodes [21], brain tumor detection [22], intra-operative 

differentiation of healthy and demyelinated peripheral nerves [23], and prediction of cervical squamous 

intraepithelial lesions [24], etc. In this study, the application of single-fiber reflectance spectroscopy (SfRS) 

on an orthotopic bladder carcinoma tumor model in rat bladder has revealed a spectral feature in tumorous 

tissues that is characteristic of methemoglobin (MetHb)—the hemoglobin compound that has lost the 

oxygen-transporting capacity [25] and shown to associate with neoplastic development of several types of 

human tumor cells [26]. The study has indicated both an increased total hemoglobin content and an increased 

MetHb proportion within the total hemoglobin content in tumorous rat bladder tissues, when compared to 

normal bladder tissue. 
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2.2 Materials and methods 

2.2.1 Single-fiber reflectance spectroscopy system 

The diffuse reflectance spectroscopy system using a single-fiber probe as shown in Figure 1(A) was 

assembled on a custom-modified stainless-steel cart. The system consisted of a broadband light source, a 

compact spectrometer, a single-fiber-probe mounted on a translation stage with 5-degrees of freedom, a 

personal computer for acquiring the spectral data, and accessories. A deuterium tungsten halogen light source 

(model DH2000-FHS, Ocean Optics Inc., Dunedin, FL) [27] was coupled to one branch of a 200-μm 

diameter bifurcated fiber bundle (BIF 200-VIS/NIR, Ocean Optics Inc., Dunedin, FL). Only the halogen 

source was used after evaluating the overall spectral response of the system. The other end of the bifurcated 

fiber bundle was connected to a compact spectrometer (NT58-303; Edmund Optics Inc., Barrington, NJ, 

USA) [28, 29], which has a spectral response over 450 – 1000 nm as shown in Figure 1(B). The combined 

end of the bifurcated fiber bundle was connected to a low-OH fiber of 320 μm in diameter (H320R; New 

Star Lasers Inc., Roseville, CA, USA) for light delivery to and collection from the tissue. The tip of the single-

fiber probe was polished in-house to an angle of ∼15 degree [27-29] to reduce specular back reflection. The 

single-fiber probe was mounted on a stage with 3 degrees of freedom for linear translation and two degrees 

of freedom for rotation, as shown in Figure 1(C). The stage with 5-degrees of freedom rendered quick 

adjustment of the angle-polished fiber-probe for just-in-contact with the arbitrarily oriented tissue surface.  A 

large vertically translating stage was placed under the single-fiber probe for placing the object to be measured 

and quickly bringing the object (e.g., the exposed rat bladder as shown in Figure 1(D)) closer to the fiber 

probe. The single-fiber probe was subsequently adjusted with 5-degrees of freedom to make consistent fiber-

tissue contact. The assembly consisting of the fiber-optical probe, the fiber positioning stages, and the sample 

lifting stage was covered by a black cloth to reduce ambient light. The reflectance spectrum collected by the 

single-fiber probe from the tissue was acquired and displayed by using a BWSpec 3.26 software (B&W Tek, 

Newark, DE) after averaging over 10 measurements at an individual exposure time of 500ms. Each spectrum 

was saved individually for post-processing using the method of analysis as detailed in the later section. 
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2.2.1Animal Protocol 

This study was approved by the Institutional Animal Care and Use Committee of the Oklahoma University 

Health Sciences Center. The study involved six female Fisher rats (CDF® [F-344]) separated randomly to 

two rats as controls and four rats as the tumor group that were given intravesical tumor-cell instillation. Of 

the four rats in the tumor group, a suspension of AY-27 cells was instilled to the urinary bladder by urethral 

catheterization [30]. At 7 days post-instillation of the AY-27 cells, all animals were anesthetized using 

isoflurane and placed in a supine position on a water-warmed heating pad (37C). The abdomen was opened 

and urinary bladders were bisected to two connected halves to expose the mucosal side of the bladder. The 

single-fiber probe was then brought into contact with the exposed bladder tissue, in the area grossly inspected 

to be normal or tumor-bearing. SfRS measurements at fatty tissues in the peripheral of the exposed bladder 

as well as skin tissue not covered by fur were also performed to establish reference measurements from well 

identified tissue. On gross examination, the exposed bladder tissue of the rats in the control group appeared 

normal. On gross examination, the exposed bladder tissue of the rats in the AY-27 instilled group had single 

or multiple focal lesions indicating abnormal development.   

 

Figure II-1 (A) The experimental setup consisting of the single-fiber reflectance spectroscopy unit 

and the bench for animal work. (B) Screenshot of the spectrometer display. (C) The single-fiber 
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probe mounted to a stage with 5 degrees of freedom, aside the rats under anesthesia. (D). Close-

up view of the single-fiber probe in contact with a halved rat bladder. 

A total of 107 SfRS measurements were taken from tissue sites corresponding to grossly normal or tumor-

bearing on the bisected halves of the bladders of 6 rats. Among the 107 SfRS measurements, 27 were from 

grossly-normal bladder tissues of the rats in the control group, and 80 were from bladder tissues of rats in the 

AY-27 group that were grossly examined as tumor-bearing. After each measurement, the single-fiber probe 

of 320µm was slightly repositioned to another location; therefore no two SfRS measurements were from the 

same position on the exposed bladder wall. For any tumor-bearing site of a couple of millimeters in size that 

was substantially greater than the diameter of the fiber-probe, SfRS measurements were taken from multiple 

positions within the same tumor-bearing lesion. After completion of the SfRS measurements, the animals 

were humanly euthanized. The two connected halves of the bladder were then separated, removed, and fixed 

in 10% buffered formalin. The bladder specimens were embedded in paraffin, and tissue sections of 5 μm 

were prepared with a cryostat microtome and stained with haematoxylin-eosin (H&E) for histological 

examination.  

2.2.3 Model analysis of the SfRS signal 

The analytical method of SfRS used for estimating the chromophore contents of the rat bladder tissue was 

adapted from a model that has been applied to SfRS studies of two tissue conditions with significantly 

different chromophore compositions: 1) scattering changes in the degeneration of canine intervertebral disc 

that had minimal interference from blood absorption because of the avascularity of the intervertebral disc 

[28, 29] and 2) scattering changes in rat liver as a result of steatosis development that was strongly interfered 

by absorption [27] of chromophores in hepatic tissue.     

The principle of SfRS is schematically illustrated in Figure 2.2. Light from a broadband source is coupled to 

a single-fiber probe by a bifurcated fiber coupler which is also connected to a compact spectrometer. The 

bifurcated fiber couple is consisted of fibers of 200µum, and the single-fiber probe has a diameter of 320µm. 
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The light source has a native spectral profile of 𝑆(𝜆) for coupling into the tissue by a fiber-optical probe. The 

light when recollected by the same fiber-probe used for illumination has experienced many scattering events 

in tissue in addition to absorbing events associated with tissue chromophores, making the spectrum of the 

collected light modulated by the chromophore absorption and tissue scattering spectrum. We denote the 

baseline spectral profile as 𝑆(𝜆) and neglect the spectral artifact due to internal reflection. The spectral 

reflectance from the tissue is then modeled as [27-29]  

𝑅𝑡𝑖𝑠𝑠𝑢𝑒(𝜆) = 𝜂𝑐 ⋅ [�̄�𝑠𝑐𝑎𝑡(𝜆) ⋅ 𝑒𝑥𝑝{−𝜇𝑎(𝜆)⟨𝐿(𝜆)⟩} + 𝜂𝑓𝑖𝑏𝑒𝑟/𝑡𝑖𝑠𝑠𝑢𝑒]𝑆(𝜆)  (II-1) 

where 𝜂𝑐  is the collection efficiency of a single-fiber probe , �̅�𝑠𝑐𝑎𝑡(𝜆) represents the contribution of tissue 

scattering to single-fiber reflection in the absence of absorption, 𝜇𝑎(𝜆) is the absorption coefficient of tissue, 

〈𝐿(𝜆)〉 denotes the average pathlength of the photon between injecting into tissue and collecting by the same 

fiber [31], and 𝜂𝑓𝑖𝑏𝑒𝑟/𝑡𝑖𝑠𝑠𝑢𝑒represents the Fresnel reflection at the fiber/tissue interface.  

The single-fiber reflectance signal from the tissue was normalized by using reference signals acquired in air 

and in water [27-29] for isolating the tissue contribution to the measured spectrum. The reference signals 

from the air and water are respectively modeled as  

𝑅𝑎𝑖𝑟(𝜆) = 𝜂𝑐 ⋅ 𝜂𝑓𝑖𝑏𝑒𝑟/𝑎𝑖𝑟𝑆(𝜆)                                                                (II-2) 

𝑅𝑤𝑎𝑡𝑒𝑟(𝜆) = 𝜂𝑐 ⋅ 𝜂𝑓𝑖𝑏𝑒𝑟/𝑤𝑎𝑡𝑒𝑟𝑆(𝜆)                                                         (II-3) 

With which the tissue modulation to the single-fiber spectral reflectance is obtained by the following 

normalization 
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Figure II-2 Schematic diagram of the single-fiber reflectance spectroscopy probing of the 

mucosal side of the halved urinary bladder.     

𝑅𝑛𝑜𝑟𝑚(𝜆) =
𝑅𝑡𝑖𝑠𝑠𝑢𝑒(𝜆)−𝑅𝑤𝑎𝑡𝑒𝑟(𝜆)

𝑅𝑎𝑖𝑟(𝜆)−𝑅𝑤𝑎𝑡𝑒𝑟(𝜆)
= 𝜉 ⋅ �̄�𝑠𝑐𝑎𝑡(𝜆) ⋅ 𝑒𝑥𝑝{−𝜇𝑎(𝜆)⟨𝐿(𝜆)⟩}  (II-4) 

where 𝜉 is a constant arising during the algebraic procedures. The scattering-contribution to the reflectance 

as represented by �̅�𝑠𝑐𝑎𝑡(𝜆) and the average photon pathlength in tissue as denoted by 〈𝐿(𝜆)〉 are reported 

to follow a set of semi-empirical formulae according to Monte Carlo and experimental SfRS studies [31] as 

�̄�𝑠𝑐𝑎𝑡(𝜆) = 𝜂(1 + 𝑝1 𝑒𝑥𝑝[−𝑝3𝜇𝑠
′(𝜆)𝑑𝑓𝑖𝑏])

[𝜇𝑠
′(𝜆)𝑑𝑓𝑖𝑏]

𝑝2

𝑝3+[𝜇𝑠
′(𝜆)𝑑𝑓𝑖𝑏]

𝑝2

𝑙𝑖𝑚

     (II-5) 

⟨𝐿(𝜆)⟩ =
𝑝4⋅𝑑𝑓𝑖𝑏

[𝜇𝑠
′(𝜆)𝑑𝑓𝑖𝑏]

𝑝5⟨𝑝6+[𝜇𝑎(𝜆)𝑑𝑓𝑖𝑏]
𝑝6⟩

                     (II-6) 

In this study the tissue absorption is attributed to five chromophores, including oxygenated hemoglobin 

(OxyHb), deoxygenated hemoglobin (DeoxyHb), methemoglobin (MetHb), lipid, and water. Within the 

total blood content that is represented by [𝐻𝑏]𝑡𝑜𝑡𝑎𝑙, the concentration proportion of OxyHb is denoted as 
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 𝑓𝑂𝑥𝑦𝐻𝑏  , and MetHb as 𝑓𝑀𝑒𝑡𝐻𝑏  . Within the water-lipid composite that occupies a volume fraction of 

𝑉𝑊𝑎𝑡𝑒𝑟&𝐿𝑖𝑝𝑖𝑑 of tissue, the proportion of lipid is represented as 𝑓𝑙𝑖𝑝𝑖𝑑 . The tissue absorption thus becomes 

𝜇𝑎(𝜆) = [�̂�𝑎
𝑂𝑥𝑦𝐻𝑏

(𝜆)𝑓𝑂𝑥𝑦𝐻𝑏 + �̂�𝑎
𝐷𝑒𝑜𝑥𝑦𝐻𝑏

(𝜆)(1 − 𝑓𝑂𝑥𝑦𝐻𝑏 − 𝑓𝑀𝑒𝑡𝐻𝑏) + �̂�𝑎
𝑀𝑒𝑡𝐻𝑏(𝜆) ×

𝑓𝑀𝑒𝑡𝐻𝑏][𝐻𝑏]𝑡𝑜𝑡𝑎𝑙 + [�̂�𝑎
𝐿𝑖𝑝𝑖𝑑

(𝜆)𝑓𝐿𝑖𝑝𝑖𝑑 + �̂�𝑎
𝑊𝑎𝑡𝑒𝑟(𝜆)(1 − 𝑓𝐿𝑖𝑝𝑖𝑑)]𝜈𝑊𝑎𝑡𝑒𝑟&𝐿𝑖𝑝𝑖𝑑     (II-7) 

where �̂�𝑎
𝑂𝑥𝑦𝐻𝑏

, �̂�𝑎
𝐷𝑒𝑜𝑥𝑦𝐻𝑏

,  �̂�𝑎
𝑀𝑒𝑡𝐻𝑏 , �̂�𝑎

𝑙𝑖𝑝𝑖𝑑
 and �̂�𝑎

𝑤𝑎𝑡𝑒𝑟are respectively the absorption coefficient (unit: 

𝑚𝑚−1)  of 1 𝜇𝑀 oxygenated hemoglobin, of 1 𝜇𝑀 deoxygenated hemoglobin, 1 𝜇𝑀 methemoglobin, of 

pure lipid (100% volume fraction) and of pure water (100% volume fraction). [𝐻𝑏]𝑡𝑜𝑡𝑎𝑙   is the total 

hemoglobin concentration (unit: 𝜇𝑀 ) combining OxyHb, DeoxyHb, and MetHb. The �̂�𝑎
𝑂𝑥𝑦𝐻𝑏

, 

�̂�𝑎
𝐷𝑒𝑜𝑥𝑦𝐻𝑏

, �̂�𝑎
𝑙𝑖𝑝𝑖𝑑

 and �̂�𝑎
𝑤𝑎𝑡𝑒𝑟  were extracted from the “Spectral Panel” of VirtualPhotonics [32] with a 

resolution of 1nm within the spectral range corresponding to the spectral analysis on the tissue measurements.  

The absorption coefficient of MetHb is converted from its molar extinction coefficient [33] available over a 

spectral range of 450-680nm with a spectral resolution of 5nm. The MetHb absorption coefficient was 

interpolated to a resolution of 1nm within 450-680nm, and extrapolated as a flat value beyond 680nm to the 

upper range of the SfRS model analysis. The water absorption spectrum extracted from VirtualPhotonics 

varies over the entire SfRS spectrum. The lipid absorption spectrum extracted from VirtualPhotonics varies 

over the spectral range above 640nm and remains flat at wavelengths shorter than 640nm. The spectral 

profiles of the five chromophores are collectively displayed in Figure 2.3(A).  The 𝑣𝑊𝑎𝑡𝑒𝑟&𝐿𝑖𝑝𝑖𝑑  in Eq. 

(II.7) is set at 93% [34]. In the implementation of Eqs (II.6) and (II.7) to Eq. (II.5), the spectral dependence 

of the reduced scattering coefficient of the soft bladder tissue was assumed to follow the widely-adopted 

formula of 𝜇𝑠
′ = 𝐴𝜆−𝑏, where A is the scattering amplitude and b is the scattering power. When all terms 

are fully expanded, Eq. (II.4) is expressed with seven variables to be determined, including [𝐻𝑏]𝑡𝑜𝑡𝑎𝑙 , 

 𝑓𝑂𝑥𝑦𝐻𝑏, 𝑓𝑙𝑖𝑝𝑖𝑑  , 𝑓𝑀𝑒𝑡𝐻𝑏, A, b, and P0. The number P0 is an effective intensity value that appears after the 

full expansion of the model. It has been found that the system had a low composite sensitivity at a spectral 

range below 500nm, and artifacts of undetermined sources occurred at above 850nm during the spectral 
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fitting process. The spectral analysis was thus performed over the range of 500-850nm for the outcomes to 

be consistent. The spectra profiles shown in Figure 3 are thus displayed over the 500-850nm range only.  The 

absorption spectra of OxyHb (1 𝜇𝑀), DeoxyHb (1 𝜇𝑀), MetHb (1 𝜇𝑀), lipid (50%) and water (10%). The 

concentrations are chosen for the peak values to be at similar levels at the linear scale of the ordinate. (B). 

The chromophore concentrations may be more accurately estimated by fitting the data sequentially within 

the three non-overlapping segments that have different sensitivity to the chromophore(s) considered. The 

spectrum segment 1 (500nm-600nm) is sensitive to [OxyHb] and [DeoxyHb]. The spectrum segment 2 

(600nm-675nm) reveals [MetHb] according to the spectral dip around 635nm. The contributions of lipid and 

water is expected to dominate over the spectral segment 3 (675nm-850nm). 

 

Figure II-3 (A) Absorption spectrum of oxygen-hemoglobin, dioxygen-hemoglobin, 

methemoglobin, lipid and water. (B) Three wavelength segments for sequential data-fitting 
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2.2.4 Method of estimating the chromophore compositions using a multi-segment fitting approach 

The SfRS measurement was fitted according to the model composition described in the previous section for 

estimating the chromophore concentrations and scattering parameters. The model-data fitting of each 

individual SfRS profile was implemented in a sequential order, over the entire spectral profile and non-

overlapping segments of the spectral profile as referred to Figure 2.3(B), according to the following 

sequences of minimizing the objective function between the fitted SfRS profile  R𝑓𝑖𝑡𝑡𝑒𝑑(𝜆)  and the 

measured SfRS profile R𝑛𝑜𝑟𝑚(𝜆) as defined by: 

𝜒 = ∑ |𝑅𝑓𝑖𝑡𝑡𝑒𝑑(𝜆) − 𝑅𝑛𝑜𝑟𝑚(𝜆)|
2𝜆𝑢𝑝𝑝𝑒𝑟

𝜆=𝜆𝑙𝑜𝑤𝑒𝑟
     (II-8) 

Step 1: The seven variables are assigned an initial set of values including [Hb]Total=200µM, 𝑓𝑂𝑥𝑦𝐻𝑏=50%, 

𝑓𝑀𝑒𝑡𝐻𝑏=1%, 𝑓𝐿𝑖𝑝𝑖𝑑=10%, A=1, b=1, and P0=1. With this initial guess-set, the seven variables were updated 

simultaneously by minimizing the objective function of the model-data fit over the entire spectral range that 

combined the three segments, i.e., λ𝑙𝑜𝑤𝑒𝑟 = 500𝑛𝑚 , and λ𝑢𝑝𝑝𝑒𝑟 = 850𝑛𝑚 in Eq. (II.8).    

Step 2: The seven parameters as the output of the step 1 were implemented as the modified guess-set. The 

seven variables were then updated simultaneously by minimizing the objective function of the model-data 

fit over only the spectral segment 2, i.e. λ𝑙𝑜𝑤𝑒𝑟 = 600𝑛𝑚 , and λ𝑢𝑝𝑝𝑒𝑟 = 675𝑛𝑚 in Eq. (II.9). This step 

resulted in stronger weight on [MetHb] when all parameters are updated. 

Step 3: Using the seven parameters estimated from the step 2 as the modified guess-set, the seven variables 

were updated simultaneously by minimizing the objective function of the model-data fit over only the 

spectral segment 1, i.e. λ𝑙𝑜𝑤𝑒𝑟 = 500𝑛𝑚  , and λ𝑢𝑝𝑝𝑒𝑟 = 600𝑛𝑚  in Eq. (II.9). This step resulted in 

stronger associated weights on [OxyHb] and [DeoxyHb] when all parameters are updated. 

Step4: Using the seven parameters estimated from the step 3 as the modified guess-set, the seven variables 

were updated simultaneously by minimizing the objective function of the model-data fit over only the 

spectral segment 3, i.e. λ𝑙𝑜𝑤𝑒𝑟 = 675𝑛𝑚  , and λ𝑢𝑝𝑝𝑒𝑟 = 850𝑛𝑚  in Eq. (II.9). This step modifies 
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primarily the parameters associated with scattering, and slightly updates the water and lipid contributions to 

the spectral absorption. 

The sequence of steps 1-4 were executed one-round for each SfRS profile obtained from the rat bladder 

tissue. The potential of enhancing the estimation accuracy by sequentially fitting over the three non-

overlapping spectral segments is to take advantage of the characteristic hemoglobin spectral feature at around 

550nm, and a MetHb absorption signature at around 635nm. As shown in Figure 3(B), the spectral segment 

1 (500-600nm) is significantly sensitive to [DeoxyHb] and [OxyHb]. The spectrum segment 2 (600-675nm) 

is notably sensitive to MetHb which is the most likely one among the five chromophores that could produce 

the characteristic dip at the neighborhood of 635nm. The spectral segment 3 (675-850nm) is a region wherein 

weak and relatively uniform spectral absorption is observed for all five chromophores of consideration, so 

over this spectral segment the scattering parameters could be recovered with less interplay by the absorption 

of the chromophore components. 

2.3 Results 

2.3.1 SfRS measurements grouped according to experimental conditions and the level of MetHb-

indicating pattern  

The total 107 SfRS measurements after normalization can be separated to 4 groups, according to the level of 

the spectral pattern at around 635nm that uniquely indicates the MetHb content. The representative SfRS 

profiles of these four groups are given in Figure 4. The MetHb (III) group at the right-most contains 2 SfRS 

profiles measured from two different positions of one grossly tumorous lesion of the bladder tissues of one 

rat in the AY-27 instilled group. There is a remarkable absorption feature near 635nm that matches MetHb 

absorption signature. The MetHb (II) group contains 6 SfRS profiles measured from other grossly tumorous 

lesions of the bladder tissues of two rats in the AY-27 instilled group, including one site close to that from 

which the profile of the MetHb (III) group was generated. The common features of these 6 SfRS profiles is 

a weak, but nonetheless, distinguishable, absorption feature near 635nm that reveals MetHb absorption. The 
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MetHb (I) group contains 72 SfRS profiles measured from other grossly tumorous lesions of the bladder 

tissues of four rats in the AY-27 instilled group, including the sites close to the two lesions generating the 

profiles of the MetHb (II) and (III) groups. Of these 72 SfRS profiles, there is lack of an absorption feature 

near 635nm unambiguously indicating MetHb absorption. The normal-group contains the entire 27 SfRS 

profiles acquired from the bladder tissues of the two control rats. None of these 27 SfRS profiles has shown 

any remarkable MetHb spectral feature near 635nm. However, when comparing the spectral pattern at sub-

600nm range, the SfRS profile representing the 27 measurements from the normal rat tissues revealed weaker 

OxyHb/DeoxyHb absorption feature than the one representing 72 measurements of the MetHb-I group.  

Interestingly, the SfRS profile representing the 6 measurements of the MetHb-II group has stronger 

OxyHb/DeoxyHb absorption feature than the one representing the 72 measurements of the MetHb-I group, 

and the SfRS profile representing the 2 measurements of the MetHb-III group has the strongest 

OxyHb/DeoxyHb absorption feature among the profiles displayed. The distribution of the sites whereupon 

the 107 SfRS measurements were taken is summarized in Table 1, according to tissue-treatment condition 

and the significance of [MetHb] absorption feature in referring to Figure II-4.  The normal group received no 

AY-27 treatment. The tumors groups are further separated to three sub-groups, according to the 

remarkableness of the MetHb spectra feature near 635nm. The bladders of the three tumor groups received 

AY-27 treatment. 

 

Figure II-4 The total 107 SfRS profiles are separated to normal group and three tumor groups 
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Table II-1 The distribution of the 107 measurements according to tissue-treatment condition and 

the significance of [MetHb] absorption feature in referring to Figure II-4 

Group Number of measurements Animal ID 

Control  27 Rat #1, #2 

AY-27 instilled 

Subgroup I 72 Rat #3, #4, #5, #6 

Subgroup II 6 Rat #4, #5 

Subgroup III 2 Rat # 5 

 

2.3.2 Estimation of the MetHb proportion, total hemoglobin content, and the lipid fraction 

The model-data fitting resulted in seven parameters to be estimated for each SfRS profile. These estimated 

parameters were grouped according to the 4 sub-sets of measurements, one set for the control bladders and 

three sets for the bladders treated with AY-27 celllines, as shown in Figure 4 that indicated different levels 

of MetHb spectral marker. Among the parameters resolved from the spectral analysis, three showed patterns 

of potential association with each other and with the tissue conditions expected for the specific group. These 

three parameters are total hemoglobin concentration, the proportion of MetHb in the total hemoglobin, and 

the lipid fraction in the water/lipid body. The estimated values of the total hemoglobin concentration, the 

proportion of MetHb in the total hemoglobin, and the lipid fraction in the water/lipid body are charted in 

Figure 5. The 2 SfRS measurements in the subset 3 of AY-27 instilled group had a MetHb proportion of 

(32.8±10.1) %. The 6 SfRS measurements in the subset 2 of AY-27 instilled group had a MetHb proportion 

of (7.3±3.6) %. The 72 SfRS measurements in the subset 1 of AY-27 instilled group had a MetHb proportion 

of (6.9±6.6) %. The 27 SfRS measurements in the control group had a MetHb proportion of (5.3±6.9) %. 

When grouped according to the MetHb proportion within the total hemoglobin, the total hemoglobin 

centration estimated for the 27 SfRS measurements in the control group was 285.1±214.6 µM. The total 

hemoglobin centration estimated for the 72 SfRS measurements in the subset 1 of AY-27 instilled group was 

367.7±263.5 µM, for the 6 SfRS measurements in the subset 2 of AY-27 instilled group was 487.7±238.9 

µM, and for the 2 SfRS measurements in the subset 3 of AY-27 instilled group was 541.6±364.9 µM. When 

grouped according to [MetH] proportion within the total hemoglobin, the fraction of lipid within the water-
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lipid body decreased from (2.6±2.8) % of the control group to (0.14±0.7) % of the subset 1 of AY-27 instilled 

group, and to negligible amount for both subset 2 and subset 3 of AY-27 instilled group.  

 

Figure II-5 The total hemoglobin content (uM), the MetHb proportion within the total 

hemoglobin content, and the lipid fraction within the water-lipid body. 

2.4 Discussions 

The 2 SfRS measurements sub-grouped as MetHb (III) carried a distinctive signature of MetHb absorption. 

The proportion of MetHb within hemoglobin content estimated for these two sites were significantly greater 

(more than 4-folds) than all other sites. The 2 sites with the highest MetHb proportion also presented the 

highest total hemoglobin concentration, approximately doubling that of the control site. For the MetHb (I) 

and MetHb (II) sub-groups, although the proportion of MetHb within the total hemoglobin were not 

significantly greater than that for the control group, the moderate increase of MetHb proportion was shown 

to associate with much stronger increase of the total hemoglobin concentration. The increased total 

hemoglobin and the elevation of MetHb proportion could be associated with angiogenesis and degradation 

in hemoglobin oxygen-transport. On the other hand, when evaluated according to the ascending order of 

MetHb proportion within the total hemoglobin, the fraction of lipid within the water-lipid body decreased 

from 2.6% of the control sits to 0.14% at the MetHb (I) sites, and negligible-to-nondetectable amounts at the 

MetHb (II) and MetHb (III) sites. The significant reduction of the lipid volume content in the tumor groups 
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comparing to that in the control group, and the near-complete loss of the lipid content in the tumor sites 

revealing more MetHb proportion could indicate disruption of sub-epithelium tissue architecture due to 

neoplastic changes.  

The total hemoglobin concentration, MetHb proportion within the total hemoglobin, and the lipid fraction in 

the water-lipid body are among the seven parameters estimated from the SfRS profiles. Other parameter 

including oxygen saturation and scattering power did not show a uniform ascending or descending order as 

the total hemoglobin, MetHb proportion, or lipid fraction are. The oxygenation saturation estimated for all 

107 sites ranged from 87% to 96%. The high tissue oxygenation of the rat bladder wall measured in vivo by 

SfRS was in agreement with the oxygenation level of the serosal surface of human bladder wall measured in 

vivo by other spectroscopy methods [35].     

One limitation of this study was the limited spectral range, specifically the longer wavelength bound of 

850nm, with which the tissue parameters were estimated. The spectral analysis was conducted with the 

postulation of a fixed water-lipid body of 93% as was suggested by the previous reports [33]. However, the 

spectral profiles when extending beyond 850nm revealed potential changes of the water-lipid fraction in 

association with the different levels of MetHb spectral markers. Work is on-going to analyze the limited 

spectral information beyond 850nm to potentially improve the estimation of lipid and water contents. The 

improvement of lipid and water content estimations using the spectral information above 850nm, however, 

may have little effect on the estimations of the total hemoglobin and MetHb proportion as these hemoglobin 

compounds absorb weakly over the specific spectral range of 800nm and above when comparing to water 

and lipid, so the spectral analysis over that region would be less sensitive to the contents of OxyHb, DeoxyHb 

and MetHb.   

2.5 Summary 

In vivo single-fiber reflectance spectroscopy (SfRS) was performed on an orthotopic AY-27 rat bladder 

urothelial cell carcinoma model to explore potential spectroscopic features revealing neoplastic changes 
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induced by intravesical instillation of AY-27 bladder tumor cells. A total of 107 SfRS measurements were 

taken from 27 sites on two control bladders and 80 from four AY-27 treated bladders. The spectral profiles 

obtained from AY-27 treated bladders revealed various levels of a methemoglobin (MetHb) characteristic 

spectral feature around 635nm. A multi-segment spectral analysis method estimated concentrations of five 

chromophore compositions including oxyhemoglobin, deoxyhemoglobin, MetHb, lipid and water. The 80 

measurements from the AY-27 treated bladders could separate to three sub-sets according to the MetHb 

proportion. Specifically, 72 were in subset 1 with low proportion (5.3%<[MetHb]<7%), 6 in subset 2 with 

moderate proportion (7%<[MetHb]<30%), and 2 in subset 3 with significant proportion (>30%). When 

grouped according to [MetHB], the [HbT] increased from 368 µMol of subset 1 to 488 μMol of subset 2 

to541 µMol of subset 3, in comparison to the 285 μMol of the control. The increased total hemoglobin and 

the elevation of MetHb proportion may signify angiogenesis and degradation in hemoglobin oxygen-

transport. Additionally, the lipid volume content decreased from 2.58% in the control to <0.2% in the tumor 

groups, indicating disruption of sub-epithelium tissue architecture.   
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CHAPTER III  

 

 

SIMPLE ANALYTICAL TOTAL DIFFUSE REFLECTANCE OVER A REDUCED-

SCATTERING-PATHLENGTH SCALED DIMENSION OF [10-5, 10-1] FROM A MEDIUM OF 

HG SCATTERING ANISOTROPY 

3.1 Introduction 

Diffuse reflectance is useful to surface assessment of turbid medium in biomedicine [56], 

pharmaceutical packaging [57],  agriculture [58], as well as remote sensing [59]. In applications 

for biomedical domains involving interstitial deployment or instrument channel of an endoscope, 

and for remote sensing, diffuse reflectance is assessed with a very small size or angular profile, like 

that of a 200𝜇𝑚 single-fiber probe [60]. Whether it is for diagnosing cancer [61] or for monitoring 

physiological functions [62], diffuse reflectance probing near the point-of-incidence practically 

requires a forward model of the light collected over the entire circular area containing the point-of-

incidence [63].   

The exact analytical solution of radial diffuse light reflectance from a biological tissue does not 

exist [64], nor does the total diffuse reflectance over a small probing area. As a result, Monte Carlo 

(MC) simulation is the de facto tool for computing the radial as well as the total diffuse reflectance 

over sub-diffusion scale [65]. However, the statistical demand on random events and the lack of 

physical insights [66] make MC method under-suited for rapid forward computation. Accurate 
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analytical total diffuse reflectance at sub-diffusion scale would involve radiative transfer (RT) that 

must also entertain the phase-function complexity [67]. Alternatively, approximate analytical total 

diffuse reflectance over an area containing the point-of-incidence is sought for a specific phase 

function. Steady-state probing at a single-fiber scale has benefited from a semi-empirical model 

[18, 19, 68, 69] of the total diffuse reflectance. That model considers the delivery area to overlap 

with the collection area with a limited angular aperture. Developed by fitting to MC measurements 

at various values of the scattering anisotropy factor g specific to the Heyney-Greenstain (HG) phase 

function, that model expressed the total diffuse reflectance as the product of a scattering component 

determined by the reduced scattering only, an attenuation component accounting for the attenuation 

due to absorption over an effective total pathlength, and a collection aperture component. Up to 6 

parameters were fitted for each value of g. Being the primary analytical model of the total diffuse 

reflectance at the single-fiber scale for clinical applications [70-73], there were however indications 

that the model could give rise to physiologically impractical parameters [60]. Besides calibration 

[74], more understanding of the analytical aspect of the total diffuse reflectance over an area 

centered on the point-of-incidence that is amendable to single-fiber-scale modeling is imperative. 

The total diffuse reflectance over an area is the integration of the radial diffuse reflectance over the 

area of collection. When a collection angle is pertinent, the total diffuse reflectance is the full-angle 

diffuse reflectance scaled by the collection aperture [68, 75].  Analytical total diffuse reflectance 

can thus be derived, if the analytical radial diffuse reflectance is available. However, it remains 

challenging to model the radial diffuse reflectance from biological tissue at the single-fiber scale, 

i.e. close to the point-of-incidence [76]. Methods based on diffusion analytics implemented 

multiple distributed or isolated isotropic sources [77, 78] to enhance modeling of the steady-state 

radial diffuse reflectance at dimensions less than the transport scattering path-length. Radial diffuse 

reflectance at source-detector-separation (SDS) close to one transport mean free path was found 

predictable [79] with 𝜇𝑎,   𝜇𝑠
′ , and the moments of the phase function. One approach modeled the 
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g-specific radial diffuse reflectance over a SDS down to 10−1  of 1/𝜇𝑠
′ , or 100µm for 𝜇𝑠

′ =

1𝑚𝑚−1, where 𝜇𝑠
′  is the reduced scattering coefficient [80]. Radial diffuse reflectance for a SDS 

of 10−2 of 1/𝜇𝑠
′  was derived via an alternative solution to RT [66] with the higher-order phase-

function dependency to be solved by integration. Analytical radial diffuse reflectance at a SDS of 

10−3 of 1/𝜇𝑠
′  was given by small-angle-scattering approximation (SAA) to RT [81].  These 

approximations to radial diffuse reflectance at very short SDS encourage the analytical formation 

of the total diffuse reflectance via integration.   

We demonstrate simple analytical total diffuse reflectance over a spatial scale much smaller than 

the reduced scattering pathlength. This is an integration-based approach performed over an area 

centered at the point-of-incidence that has a reduced scattering pathlength (1/𝜇𝑠
′) scaled diameter 

of [10−5, 10−1] from a turbid medium of a scattering anisotropy factor g that is specific to the HG 

phase function [82]. This approach is based upon an analytical radial diffuse reflectance over the 

similar range of SDS of [10−5, 10−1], with the lower bound of the dimension being two orders of 

magnitude smaller than was previously modeled [81]. The radial diffuse reflectance from an infinite 

medium of isotropic scattering associated with a point-beam injection is derived with RT, which is 

used as the basis for approximating the radial diffuse reflectance from a semi-infinite medium of 

𝑔 ≈ 0 by way of P1 approximation and considering the boundary effects. Integration of it then 

produces the analytical total diffuse reflectance for 𝑔 ≈ 0. The radial diffuse reflectance from a 

medium with g≥0.5 is then formulated semi-empirically by referring to MC simulation results, 

while abiding to the constraint that the analytical radial diffuse reflectance for 𝑔 > 0 must resort to 

the analytical radial diffuse reflectance for isotropic scattering as g⇒ 0. The integration of this 

radial diffuse reflectance for g≥0.5 then leads to the analytical total diffuse reflectance for g≥0.5 

that must also resort to the one for isotropic scattering as g⇒ 0. The analytical radial and the 

integration-rendered analytical total diffuse reflectance for turbid medium with HG scattering 
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anisotropy are evaluated over a 1/𝜇𝑠
′  scaled dimension of [10−5 100], for g over [0.5, 0.95], and 

an absorption coefficient ranging 3 orders of magnitude up to the magnitude of 𝜇𝑠
′ .       

3.2 Analytical Methods 

3.2.1 The geometry of concern 

The analysis is limited to the full-angle total diffuse reflectance over an area with a diameter <1/𝜇𝑠
′  

(e.g. <1mm for 𝜇𝑠
′ = 1𝑚𝑚−1), from a semi-infinite homogeneous medium as depicted in Fig. 1. A 

steady-state unitary-power source is injected into the medium at the center of the area of collection, 

which is also the origin of the polar coordinate. A point on the tissue-air interface at a radial distance 

of 𝜌 from the point-of-incidence is represented by (𝜌, 0, 𝜑). A unit vector �̂� marks the initial 

direction of the light injected into the medium. The diameter of the area is denoted as 𝑑𝑎𝑟𝑒𝑎, so  

𝜌 = (0, 𝑑𝑎𝑟𝑒𝑎 2⁄ ].   

 

Figure III-1 Full-angle collection of diffuse reflectance within a circular area.   

3.2.2. Steady-state radial and total diffuse reflectance from a semi-infinite medium of g≈0 

We first consider an infinite homogeneous medium of isotropic scattering. The scattering phase 

function is 𝑃(�̂�′, �̂�) = 𝑃(�̂�′ ∙ �̂�) , where �̂�  and  �̂�′  are respectively the outgoing and incoming 

directions of a scattering event. The steady-state RT equation associated with this medium is: 
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�̂� ∙ 𝛻𝐿(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) = −𝜇𝑡𝐿(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) + 𝜇𝑠∭ 𝐿(𝜌, 𝑧, ∅, �̂�′, 𝜇𝑎 , 𝜇𝑠)𝑃(�̂�
′ ∙ �̂�)𝑑𝛺′

4𝜋
+

 𝑆(𝜌, 𝑧, ∅, �̂�)  (III-1) 

where 𝐿(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) is the radiance at position (𝜌, 𝑧, ∅) traversing along the direction �̂�, 𝜇𝑡 =

𝜇𝑎 + 𝜇𝑠 is the attenuation coefficient, and 𝑆(𝜌, 𝑧, ∅, �̂�) is the distribution of the source along the 

direction �̂�. A narrow unitary-power source injected at the origin and along the �̂� direction is 

represented by [10]:   

𝑆(𝜌, 𝑧, ∅, �̂�) =
1

2𝜋
𝛿(𝜌)𝛿(𝑧)𝛿(1 − �̂� ∙ �̂�)                                   (III-2) 

where the 2𝜋 factor is related to ∅. The radiance of Eq. (III.1) associated with isotropic scattering 

resulting from a collimated light injection can be decomposed to a collimated component and an 

isotropically diffusing component [66] as  

𝐿(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) = 𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) + 𝐿𝑖𝑠𝑜(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠)      (III-3) 

The RT equation then becomes  

�̂� ∙ 𝛻𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) + �̂� ∙ 𝛻𝐿𝑖𝑠𝑜(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) = −𝜇𝑡𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) −

𝜇𝑡𝐿𝑖𝑠𝑜(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) + 𝜇𝑠∭ 𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�
′, 𝜇𝑎 , 𝜇𝑠)𝑃(�̂�

′ ∙ �̂�)𝑑𝛺′
4𝜋

+

𝜇𝑠∭ 𝐿𝑖𝑠𝑜(𝜌, 𝑧, ∅, �̂�
′, 𝜇𝑎 , 𝜇𝑠, 𝑔)𝑃(�̂�

′ ∙ �̂�)𝑑𝛺′
4𝜋

+
1

2𝜋
𝛿(𝜌)𝛿(𝑧)𝛿(1 − �̂� ∙ �̂�)     (III-4) 

By referring to the decomposition treatment demonstrated in [66], we seek a solution to a portion 

of Eq. (III.4) as the following,  

�̂� ∙ 𝛻𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) = −𝜇𝑡𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) +
1

2𝜋
𝛿(𝜌)𝛿(𝑧)𝛿(1 − �̂� ∙ �̂�)      (III-5) 

Integrating Eq. (III.5) over the entire spatial angle gives  

           ∭ �̂� ∙ 𝛻𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠)𝑑𝛺4𝜋
= −𝜇𝑡∭ 𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠)4𝜋

𝑑𝛺 +

1

2𝜋
𝛿(𝜌)𝛿(𝑧)∭ 𝛿(1 − �̂� ∙ �̂�)

4𝜋
𝑑𝛺            (III-6) 
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 and that leads to  

𝜕

𝜕𝑧
𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) = −𝜇𝑡𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) +

1

2𝜋
𝛿(𝜌)𝛿(𝑧)          (III-7) 

It is noted with Eq. (III.1) that 𝐿(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) must have the dimension of 𝑆(𝜌, 𝑧, ∅, �̂�) 𝜇𝑡⁄ . The 

solution to Eq. (III.7) is then given, via Laplace transformation and satisfying the initial condition 

at (𝑧 = 0), as the following:   

𝐿𝑐𝑜𝑙𝑙(𝜌, 𝑧, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) =
1

2𝜋𝜇𝑡
𝛿(𝜌)𝛿(𝑧) +

1

2𝜋𝜇𝑡
𝛿(𝜌)[1 − 𝛿(𝑧)]𝑒𝑥𝑝(−𝜇𝑡𝑧)    (III-8) 

Evaluating Eq. (III.4) on (𝑧 = 0) by plugging Eqs. (III.6) and (III.8) gives  

�̂� ∙ 𝛻𝐿𝑖𝑠𝑜(𝜌, 0, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) = −𝜇𝑡𝐿𝑖𝑠𝑜(𝜌, 0, ∅, �̂�, 𝜇𝑎 , 𝜇𝑠) 

+𝜇𝑠∭ 𝐿𝑖𝑠𝑜(𝜌, 0, ∅, �̂�
′, 𝜇𝑎 , 𝜇𝑠)𝑃(�̂�

′ ∙ �̂�)𝑑𝛺′
4𝜋

+
1

2𝜋𝜇𝑡
𝜇𝑠𝛿(𝜌)      (III-9) 

Using the spherical harmonic expansion and considering that there is only the 0-th order term for 

isotropic scattering, we have the fluence rate solution of Eq (III.9) at (𝑧 = 0) as the following:   

𝛷𝑖𝑠𝑜(𝜌, 0, 𝜇𝑎 , 𝜇𝑠) =
1

8𝜋2𝐷𝜇𝑡

𝜇𝑠

𝜌
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝜌) =

1

4𝜋

3

2𝜋

(𝜇𝑠)
2

𝜇𝑠𝜌
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝜌)         (III-10) 

Where 𝜇𝑒𝑓𝑓 = √𝜇𝑎 𝐷⁄  is the effective attenuation coefficient and 𝐷 = (3μt)
−1  is the diffusion 

coefficient with μ𝑡 = 𝜇𝑎 + 𝜇𝑠. We then consider a medium with a negligible anisotropy i.e., 𝑔 ≈

0. Repeating the spherical harmonic expansion will now lead to the 0-th order term of photon 

fluence rate on the plane of (𝑧 = 0) to be identical to Eq. (III.10), and the 1-st order term by the 

slightly anisotropic scattering forming a flux term that is much smaller than the 0-th order term. 

The total photon counts are then:   

𝑅(𝜌, 0, 𝜇𝑎 , 𝜇𝑠, 𝑔 ≈ 0) = 𝛷𝑖𝑠𝑜(𝜌, 0, 𝜇𝑎 , 𝜇𝑠
′ ) − 3D ∙ ∇𝛷𝑖𝑠𝑜(𝜌, 0, 𝜇𝑎 , 𝜇𝑠

′) 

=
1

4𝜋

𝜁

𝜋

(𝜇𝑠)
2

𝜇𝑠𝜌
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝜌)                                              (III-11)                                      
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Where 𝜁 is the result of scaling the smaller flux term with respect to the fluence rate term. When 

the plane (𝑧 = 0)  is the air-medium interface, the extrapolated zero-boundary condition is  

implemented with an image source  [83]. The image of the source defined by Eq. (III.2) becomes 

−
1

2𝜋
𝛿(𝜌)𝛿(𝑧 + 2𝑧𝑏)𝛿(1 + �̂� ∙ �̂�) , which corresponds to a source of negative unitary-power 

collimated along −�̂� and at 2𝑧𝑏 away from the plane (𝑧 = 0) , where 2𝑧𝑏 = 4AD, A= (1 +

𝜉)/(1 − 𝜉) , and 𝜉 = −1.44𝑛𝑡𝑖𝑠𝑠
−2 + 0.710𝑛𝑡𝑖𝑠𝑠

−1 + 0.668 + 0.0636𝑛𝑡𝑖𝑠𝑠 for the tissue-air 

boundary [84]. The resulted diffuse reflectance on the tissue-air interface at the now half-plane 

(𝑧 = 0) is  

𝑅(𝜌, 0, 𝜇𝑎 , 𝜇𝑠, 𝑔 ≈ 0) =
1

4𝜋

𝜁

𝜋

(𝜇𝑠)
2

𝜇𝑠𝜌
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝜌) −

1

4𝜋

𝜁′

𝜋

(𝜇𝑠)
2

𝜇𝑠√𝜌
2+(2𝑧𝑏)

2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝜌

2 + (2𝑧𝑏)
2) 

(III-12) 

The second term in Eq. (III.12) is evaluated (see Appendix 1) to be <1.8% of the first term over 

(𝜇𝑠
′𝜌)=[10-5, 10-1], the region of interest of this work, so is dropped. The 𝜁 in Eq. (III.12) is set to 

be 2 by comparing with MC simulation to result in a simple form of: 

𝑅(𝜌, 0, 𝜇𝑎 , 𝜇𝑠, 𝑔 ≈ 0) =
1

2𝜋2
(𝜇𝑠)

2

𝜇𝑠𝜌
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝜌)                         (III-13) 

Integrating Eq. (III.13) over the area of collection leads to the analytical total diffuse reflectance as   

I(ρ, 0, 𝜇𝑎 , 𝜇𝑠, 𝑔 ≈ 0) = ∫ ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠
′) ∙ ρ ∙ dρ

ρ

0
dφ

2π

0
  

=
1

𝜋
∙ (

𝜇𝑠

𝜇𝑒𝑓𝑓
) ∙ [1 − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝜌)]        (III-14)  

3.2.3. Steady-state radial and total diffuse reflectance from a semi-infinite medium with an 

anisotropy factor g 

We then consider a homogeneous turbid medium with a scattering anisotropy factor g that gives 𝜇𝑠
′ =

𝜇𝑠(1 − 𝑔). The radial diffuse reflectance for 𝑔 > 0 must analytically become that corresponds to isotropic 
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scattering as 𝑔 ⇒ 0.  By abiding to this physical constraint and fitting to MC simulation results to be detailed 

in the subsequent sections, we approximate the radial diffuse reflectance from a semi-infinite medium of an 

anisotropy factor g as: 

R(ρ, 0, μa, μs, g) =
1

2π2
∙ exp (−1.5(√g)

γ1
) ∙
μs
(2−𝑔)[𝜇𝑠(1−𝑔)]

𝑔

(μsρ)
(1+ϵ) exp(−μeffρ)        (III-15) 

Which contains the following newly appearing parameters: 

𝛾1 = 4𝜇𝑎
1

𝜇𝑡
         (III-16) 

ϵ = 0.2{1 − [1 − (𝛾2)
g]g}     (III-17) 

𝛾2 = 0.1𝜇𝑎
1

𝜇𝑡
      (III-18) 

The “𝛾" of Eq. (III.16) or (III.18) that vanishes at no absorption acts as the scaled probability of absorption 

over the transport pathlength. The “ϵ” is a g-dependent factor that vanishes as the scattering anisotropy 

disappears. Eq. (III.15) apparently becomes Eq. (III.13) at g=0. Integrating Eq. (III.15) over the area of 

collection as with Eq. (III.14) leads to the total diffuse reflectance. The result contains an Error function and 

approximates to: 

I(ρ, 0, μa, μs, g) =
1

π
∙ exp (−1.5(√g)

γ1
) ∙
(1−g)g

1−ϵ
∙ (μsρ)

1−ϵ ∙ [1 − exp(−μeffρ)] ∙
1

(μeffρ)
1+ϵ  

(III-19) 

It is straightforward to see Eq. (3.19) reaching Eq.(3.14) at g ⇒ 0.  

3.3 Numerical assessments 

The MC simulations were performed using the Monte Carlo Command Line (MCCL, v4.7.0Beta) 

application of Virtual Photonics [80, 85] implemented on a 24-core Linux server operated by the High 

Performance Computing Center at Oklahoma State University. This MC solver outputs the radial diffuse 

reflectance from an air-bounding turbid medium of only the HG phase function by specifying the g. All 

photons arriving at a surface evaluation point were counted. The MC results are the discrete values of the 
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radial diffuse reflectance, as illustrated in Figure III-2, for examining the analytical radial diffuse reflectance 

computed with Eq. (III.13) or (III.15). The MC radial diffuse reflectance was then numerically assembled to 

produce the total diffuse reflectance against which the analytical total diffuse reflectance of Eq. (III.14) or 

(III.19) was compared. 

 

Figure III-2 MC simulated spatially resolved diffuse reflectance 

 A user-editable Input File was modified to customize the thickness of the medium, medium optical 

properties, and the positions of evenly spaced evaluation points on the medium surface. The tissue thickness 

was set to 1000m or 1 kilometer to ensure the semi-infinite condition at a scattering property as weak as 𝜇𝑠
′ =

0.001𝑚𝑚−1 or 1 μs
′⁄ =1m. The tissue refractive index was fixed at 1.40, giving an A value of 3.2507 for 

Eq. (3.12). Other tissue optical properties for user definition included the set of (𝜇𝑎 , 𝜇𝑠, 𝑔)  or 

equivalently(𝜇𝑎 , 𝜇𝑠
′ , 𝑔). The radial diffuse reflectance was evaluated over the reduced scattering scaled SDS 

of (μs
′𝜌 )=[10-5, 100] for assessing the analytical forms. The interval of the points was 10-5(1 μs

′⁄ ) , 

corresponding to total 100,000 points on the tissue surface. A total 10,000,000 photons were launched for 

each set of tissue parameters. Approximately 5 hours of computational time were needed to obtain a data set 

corresponding to each subfigure of (A)-(D) of the results shown in Figure III-4 of the next section. 



40 
 

As shown in Figure III-2, the interval between the neighboring points is ∆𝜌, the total number of steps is N, 

so the radius of the discrete area of collection is 𝑏 = 𝑁 ∙ ∆𝜌. The order of the radial position counted from 

the one next to the point-of-incidence is 𝑘=[1, N]. The k-th discrete strip has an inner radius of 𝜌𝑘 = 𝑘 ∙ ∆𝜌. 

The MC radial diffuse reflectance is denoted as 𝑅𝑀𝐶(𝑘 ∙ ∆𝜌, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔). The MC total diffuse reflectance 

over the radius of 𝑏 = 𝑁 ∙ ∆𝜌 is denoted as 𝐼𝑀𝐶(𝑏, μa, μs
′ , g), which is calculated by: 

𝐼𝑀𝐶(𝑏, μa, μs
′ , g) = ∑ RMC(k ∙ ∆ρ, μa, μs

′ , g)N−1
k=0 ∙ [𝜋𝜌𝑘+1

2 − 𝜋𝜌𝑘
2]  

= ∑ RMC(k ∙ ∆ρ, μa, μs
′ , g)N−1

k=0 ∙ π(∆ρ)2[2𝑘 + 1]                  (III-20) 

The tissue optical and dimensional properties used for the MC simulations were implemented in Eqs. (III.13) 

and (III.14) to calculate respectively the radial and total diffuse reflectance from a medium of isotropic 

scattering, and to Eqs. (III.15) and (III.19) for those corresponding to a medium with g=[0.5, 0.6. 0.7, 0.8, 

0.9, 0.95]. The total diffuse reflectance versus μs
′𝑑𝑎𝑟𝑒𝑎  is also evaluated for two cases with the same 

μs
′𝑑𝑎𝑟𝑒𝑎. One is to have μs

′ = 1𝑚𝑚−1 so 𝑑𝑎𝑟𝑒𝑎 may change, and the other is to have 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚 so 

μs
′  may change. The aforementioned spatially resolution of 100,000points on the tissue surface corresponds 

to the former case. The latter case is assessed by setting  μs
′  as [1, 3, 5, 7, 9]× [ 10-5, 10-4, 10-3, 10-2, 10-

1]𝑚𝑚−1. The implementation of Eqs. (III.13) & (III.14) (g=0) and Eq. (III.15) & (III.19) (g>0) for the latter 

case wherein μs
′  is varied for 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚 is done by converting the value of μs

′  for 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚 to a 

value of 𝑑𝑎𝑟𝑒𝑎for μs
′=1mm-1 while keeping μs

′𝑑𝑎𝑟𝑒𝑎 unchanged.    

3.4 Results 

It is worth noting the spatial scale, with respect to 1/μs
′ , over which the forgoing analytical radial and total 

diffuse reflectance are evaluated against the MC measurements. Figure 3.3 displays the MC radial and total 

diffuse reflectance over the 1/μs
′  scaled dimension of [10−5, 103] at three conditions of the scattering 

anisotropy:  isotropic (g=0), moderately anisotropic (g=0.5), and highly forward scattering (g=0.95).   The 

MC results over the abscissa range of 8 orders of magnitude over [10−5 , 103] were obtained by 
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concatenating one set corresponding to 4 orders of magnitude over [10−5 , 10−1]  and another set 

corresponding to 4 orders of magnitude over [10−1, 103]. The concatenation was necessary due to the 

difficulty of computing the entire data set over the full spatial scale of 8 orders of magnitude while 

maintaining the same radial resolution. The concatenation of the two date sets having two different radial 

resolutions and numerical precisions caused the discontinuity of the markers at the abscissa value of 10−1, 

the boundary between the radial scales of the two data sets.  

 

Figure III-3 Radially resolved diffuse reflectance (left-hand part) and total diffuse reflectance 

(right-hand part) evaluated in this work 

Three 1/μs
′  scaled spatial regions for the radial diffuse reflectance can be identified in (A). (1) The leftmost 

segment of [10−5, 10−2], over which the three profiles corresponding to the g values of respectively 0, 0.5, 

and 0.95 run nearly parallel to each other, indicating the intensity dependency on g. (2) The middle segment 

of [10−2, 100], over which the three profiles corresponding to three g values including 0, 0.5, and 0.95 

appear to merge as the spatial dimension increases, indicating the rate-of-change dependency on g. (3) The 

rightmost segment of [100, 102], over which the insensitivity on g is unremarkable. By assembling the 

radial diffuse reflectance of (A) to produce the total diffuse reflectance as shown in (B), three regions can 

also be identified. The assembly of the radial diffuse reflectance of (A) up to the 1/μs
′  scaled spatial 

dimension of 10−2 leads to the segment marked as (1) in (B). The assembly of the radial diffuse reflectance 
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of (A) up to the 1/μs
′  scaled spatial dimension of 100 leads to the segment marked as (1)+(2) in (B). The 

assembly of the radial diffuse reflectance of (A) up to the 1/μs
′  scaled spatial dimension of 103 leads to the 

segment marked as (1)+(2)+(3) in (B).  It is over [10−5, 100] that the forgoing analytical radial and total 

diffuse reflectance are evaluated while the model-working range is suggested as [10−5, 10−1].  The lower 

bound of this scale for assessing the radial diffuse reflectance is 2~3 orders of magnitude closer to the point-

of-incidence than was previously approached [66, 81].  The lower bound of this scale for assessing the total 

diffuse reflectance is 3 orders of magnitude smaller than the scale previously analyzed [86].  

The analytical radial and total diffuse reflectance in comparison to MC simulation results are 

presented according to the following orders. The results for radial diffuse reflectance precede those 

for the total diffuse reflectance. The results for g=0 precede those for g=[0.5, 0.9]. In assessing the 

radial or total diffuse reflectance, the case of isotropic scattering with differing μa is presented 

firstly, then the case of g=0.9 with differing μa, followed by the case of fixed μa with 4 values of 

g. In each case involving non-zero g, the MC profile corresponding to isotropic scattering (g=0) is 

added as the reference (marked as green). The radial diffuse reflectance is evaluated versus (μs
′𝜌) 

range of [10-5, 100], while the total diffuse reflectance is evaluated versus (μs
′𝑑𝑎𝑟𝑒𝑎) over [10-5, 100].  

The results in sub-sections 4.1 to 4.9 corresponding to (μs
′𝜌) or (μs

′𝑑𝑎𝑟𝑒𝑎) of [10-5, 100] are presented 

with 5 sub-figures. (A) to (D) are the diffuse reflectance as a function of (μs
′𝜌) or (μs

′𝑑𝑎𝑟𝑒𝑎) over 4 

values of one tissue property as marked. (E) plots the errors of the analytical values of (A)-(D) with 

respect to the MC simulations. A straight line of slope 1 would indicate an exact match of the model 

predictions with the MC results. The percentage errors of the analytical values with respect to MC 

results are presented as (average ± standard deviation)%  evaluated over the size scale specified for 

each case.   
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3.4.1 Absorption coefficient dependency of the radial diffuse reflectance in isotropic scattering 

medium 

 

Figure III-4 assesses the radial diffuse reflectance 𝑅(𝜇𝑠𝜌) over (𝜇𝑠𝜌)=[10-5, 100] for a medium of isotropic 

scattering (g=0) with 𝜇𝑠=1mm-1, and 𝜇𝑎=[0.001, 0.01, 0.1, 1.0]mm-1. The range of 𝜇𝑎 corresponds to an 

absorption to scattering ratio of [0.001, 1]. Over (𝜇𝑠𝜌 )=[10−5, 10−1] , the analytical radial diffuse 

reflectance 𝑅(𝜇𝑠𝜌) agrees with MC result with an error of (29.1±8.8)%. The absorption dependence of 

𝑅(𝜇𝑠𝜌)  over (𝜇𝑠𝜌) of [10-5, 10-1] is unremarkable. The shaded area in (D) and (E) marks the value of 

(𝜇𝑠𝜌) > 10
−1. The effect of absorption on 𝑅(𝜇𝑠𝜌)  becomes increasingly noticeable over the shaded area 

as 𝜇𝑠𝜌 increases. 

 
Figure III-4 Radial diffuse reflectance at µs= 1mm-1 and g=0 for four different absorption cases 
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3.4.2 Absorption coefficient dependency of the radial diffuse reflectance in anisotropy medium 

with g=0.9 

 

Figure III-5 assesses the radial diffuse reflectance 𝑹(𝛍𝐬
′𝝆) over (𝛍𝐬

′𝝆) of [10-5, 100] for a medium of 

𝛍𝐬
′=1mm-1 with an anisotropy factor g=0.9, and 𝝁𝒂=[0.001, 0.01, 0.1, 1.0]mm-1. The 𝝁𝒂 varying 

over 3 orders of magnitude corresponds to an absorption to reduced scattering ratio of [0.001, 1]. 

Over (𝛍𝐬
′𝝆)= [𝟏𝟎−𝟓, 𝟏𝟎−𝟏], the analytical radial diffuse reflectance 𝑹(𝛍𝐬

′𝝆) agrees with MC result 

with an error of (5.0±9.2)%. The absorption dependence of 𝑹(𝛍𝐬
′𝝆)  appears unremarkable over 

(𝛍𝐬
′𝝆) of [10-5, 10-1]. When compared to the MC result at g=0 as the reference (green markers), the 

radial diffuse reflectance is smaller for g=0.9 at the same value of 𝛍𝐬
′𝝆. The difference of the radial 

diffuse reflectance between g=0.9 and g=0 diminishes as 𝛍𝐬
′𝝆 reaches 100, or equivalently at SDS 

equaling the reduced scattering pathlength. 
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Figure III-5 Radial diffuse reflectance at µs
’=1mm-1 and g=0.9 and four different absorptions 

 

3.4.3 Anisotropy factor dependency of the radial diffuse reflectance in medium with reduced 

scattering coefficient of 1mm-1 and absorption coefficient of 0.01mm-1 

Figure III-6 presents the radial diffuse reflectance 𝑹(𝛍𝐬
′𝝆)over (𝛍𝐬

′𝝆) of [10-5, 100] for a medium 

of𝝁𝒂 = 𝟎. 𝟎𝟏𝒎𝒎
−𝟏 and 𝛍𝐬

′=1mm-1 with the anisotropy factor g=[0.5 0.7, 0.8, 0.9], or equivalently  

𝛍𝐬=[2, 3.33, 5, 10]mm-1. Over (𝛍𝐬
′𝝆) = [𝟏𝟎−𝟓, 𝟏𝟎−𝟏], the analytical radial diffuse reflectance 

𝑹(𝛍𝐬
′𝝆) agrees with MC result with an error of (11.6±9.4)%. When compared to the MC result at 

g=0 as the reference (green markers), the radial diffuse reflectance decreases as g increases from 
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0.5 to 0.9 at the same value of 𝛍𝐬
′𝝆. The difference of the radial diffuse reflectance between g=[0.5, 

0.9] and g=0 diminishes as 𝛍𝐬
′𝝆 is as high as 100. 

 
Figure III-6 Radial diffuse reflectance at µs

’=1mm-1 and µa =0.01mm-1 and different g values 

3.4.4 Absorption coefficient dependency of the total diffuse reflectance in isotropic scattering 

medium 

Figure III-7 assesses the total diffuse reflectance 𝐼(𝜇𝑠𝑑𝑎𝑟𝑒𝑎) over (𝜇𝑠𝑑𝑎𝑟𝑒𝑎) of [10-5, 100] for a medium of 

isotropic scattering (g=0) with 𝜇𝑠=1mm-1, and 𝜇𝑎=[0.001, 0.01, 0.1, 1.0]mm-1. The range of 𝜇𝑎 corresponds 

to an absorption to scattering ratio of [0.001, 1]. Over (𝜇𝑠𝑑𝑎𝑟𝑒𝑎) = [10−5, 10−1], the analytical total diffuse 

reflectance 𝐼(𝜇𝑠𝑑𝑎𝑟𝑒𝑎)  agrees with MC result with an average error (1.3±1.4)%.  The absorption 

dependence of 𝐼(𝜇𝑠𝑑𝑎𝑟𝑒𝑎)  over (𝜇𝑠𝑑𝑎𝑟𝑒𝑎) of [10-5, 10-1] is unremarkable. The shaded area in (D) and (E) 
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marks the value of (𝜇𝑠𝑑𝑎𝑟𝑒𝑎) > 10
−1. The absorption dependence of 𝐼(𝜇𝑠𝑑𝑎𝑟𝑒𝑎) becomes increasingly 

noticeable over the shaded area as 𝜇𝑠𝑑𝑎𝑟𝑒𝑎 increases.  

 

Figure III-7 Total diffuse reflectance at µs =1.0mm-1 and g=0 at different absorption 

3.4.5 Absorption coefficient dependency of the total diffuse reflectance in anisotropy medium 

with g=0.9 

Figure III-8 assesses the total diffuse reflectance 𝑰(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂)  over (𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂) of [10-5, 100] for a 

medium of 𝛍𝐬
′=1mm-1 with an anisotropy factor of g=0.9, and 𝝁𝒂=[0.001, 0.01, 0.1, 1.0]mm-1. The 

𝝁𝒂  varying over 3 orders of magnitude from 0.001 to 1mm-1 corresponds to an absorption to 

reduced scattering ratio of [0.001, 1]. Over (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) = [𝟏𝟎−𝟓, 𝟏𝟎−𝟏], the analytical total diffuse 

reflectance 𝑹(𝛍𝐬
′𝝆)  agrees with MC result with an average error (1.6±2.0)%. The absorption 
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dependence of 𝑰(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂)  appears unremarkable over (𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂) of [10-5, 10-1]. When compared 

to the MC result at g=0 as the reference (green markers), the total diffuse reflectance is smaller for 

g=0.9 at the same 𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂. The difference of the total diffuse reflectance between g=0.9 and g=0 

decreases as 𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂 increases to 100.  

 

Figure III-8 Total diffuse reflectance at µs
’=1mm-1 and g=0.9 and different absorption 

3.4.6 Anisotropy factor dependency of the total diffuse reflectance from medium with reduced 

scattering coefficient of 1mm-1 and absorption coefficient of 0.01mm-1 

Figure III-9 assesses the total diffuse reflectance 𝑰(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂)  over (𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂) of [10-5, 100] for a 

medium of𝝁𝒂 = 𝟎. 𝟎𝟏𝒎𝒎
−𝟏 and 𝛍𝐬

′=1mm-1 with the anisotropy factor g=[0.5 0.7, 0.8, 0.9], or 

equivalently  𝛍𝐬=[2, 3.33, 5, 10]mm-1. Over (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) = [𝟏𝟎−𝟓, 𝟏𝟎−𝟏], the analytical total diffuse 

reflectance 𝑰(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) agrees with MC result with an average error (16.1±5.0)%. When compared 
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to the MC result at g=0 as the reference, the total diffuse reflectance decreases slightly as g increases 

from 0.5 to 0.9 for the same value of 𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂. As 𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂 reaches 𝟏𝟎𝟎, the difference of the total 

diffuse reflectance between g=[0.5, 0.9] and g=0 decreases slowly.   

 

Figure III-9 Total diffuse reflectance at µs
’ =1mm-1 and µa =0.01mm-1 and different g 

3.4.7 Absorption coefficient dependency of the total diffuse reflectance collected via darea=1mm 

from isotropic scattering medium 

Figure III-10 presents the total diffuse reflectance over (𝝁𝒔𝒅𝒂𝒓𝒆𝒂) of [10-5, 100] for an isotropic 

medium and a fixed collection area of  𝒅𝒂𝒓𝒆𝒂=1mm, at 𝝁𝒂 of respectively 0.001, 0.01, 0.1, and 

1mm-1. At 𝒅𝒂𝒓𝒆𝒂=1mm, the range of (𝝁𝒔𝒅𝒂𝒓𝒆𝒂 )=[10-5, 100] corresponds to an absorption to 

scattering ratio of respectively [0.001, 100] for 𝝁𝒂 =0.001mm-1, [0.01, 1000] for 𝝁𝒂 =0.01mm-1, 
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[0.1, 10000] for 𝝁𝒂 =0.1mm-1, and [1, 100000] for 𝝁𝒂 =1mm-1. The analytical evaluation is 

implemented with the aforementioned conversion.  

 

Figure III-10 Total diffuse reflectance for darea=1mm and g=0 and different absorptions 

For example, the total diffuse reflectance associated with 𝝁𝒔 = 𝟎. 𝟎𝟎𝟏𝒎𝒎
−𝟏 and 𝒅𝒂𝒓𝒆𝒂=1mm 

producing 𝝁𝒔𝒅𝒂𝒓𝒆𝒂  of 0.001 is calculated with Eq. (3.14) by setting 𝝁𝒔 = 𝟏𝒎𝒎
−𝟏 and 

𝒅𝒂𝒓𝒆𝒂=0.001mm to keep the same 𝝁𝒔𝒅𝒂𝒓𝒆𝒂  of 0.001, with 𝝁𝒂   unaltered. Over (𝝁𝒔𝒅𝒂𝒓𝒆𝒂 )  =

[𝟏𝟎−𝟓, 𝟏𝟎−𝟏], the analytical total diffuse reflectance 𝑰(𝝁𝒔𝒅𝒂𝒓𝒆𝒂) agrees with MC result with an 

average error (31.5±1.4)% if counting the 4 values of 𝝁𝒂 up to 1mm-1. The error of the analytical 

total diffuse reflectance 𝑰(𝝁𝒔𝒅𝒂𝒓𝒆𝒂) with respect to MC result improves to (7.2±1.5)% if counting 

the 𝝁𝒂 up to 0.1mm-1. 
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3.4.8 Absorption coefficient dependency of the total diffuse reflectance collected via darea=1mm 

from anisotropic scattering medium with g = 0.9 

Figure III-11 presents the total diffuse reflectance over (μs
′𝑑𝑎𝑟𝑒𝑎) of [10-5, 100] for a medium of 

g=0.9 and a fixed collection area of  𝑑𝑎𝑟𝑒𝑎=1mm, at 𝜇𝑎 of respectively 0.001, 0.01, 0.1, and 

1mm-1. 

 
Figure III-11 Total diffuse reflectance for darea=1mm and g=0.9 and different absorptions  

 

At 𝒅𝒂𝒓𝒆𝒂=1mm, the range of (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂 )=[10-5, 100] corresponds to an absorption to reduced-

scattering ratio of respectively [0.001, 100] for 𝝁𝒂 =0.001mm-1, [0.01, 1000] for 𝝁𝒂 =0.01mm-1, 

[0.1, 10000] for 𝝁𝒂 =0.1mm-1, and [1, 100000] for 𝝁𝒂 =1mm-1. The analytical evaluation is 

implemented with the aforementioned conversion. For example, the total diffuse reflectance 

associated with 𝛍𝐬
′ = 𝟎. 𝟎𝟎𝟏𝒎𝒎−𝟏 and 𝒅𝒂𝒓𝒆𝒂=1mm producing𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂  of 0.001 is calculated 



52 
 

with Eq. (19) by setting 𝛍𝐬
′ = 𝟏𝒎𝒎−𝟏 and 𝒅𝒂𝒓𝒆𝒂=0.001mm to keep the same 𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂 of 0.001, 

with 𝝁𝒂   unaltered. Over (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂 )  = [𝟏𝟎−𝟓, 𝟏𝟎−𝟏] , the analytical total diffuse reflectance 

𝑰(𝝁𝒔𝒅𝒂𝒓𝒆𝒂) agrees with MC result with an average error (47.4±7.0)% if counting the 4 values of 

𝝁𝒂 up to 1mm-1. The error of the analytical total diffuse reflectance 𝑰(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) with respect to MC 

result improves to (0.4±5.7)% if counting the 𝝁𝒂 up to 0.1mm-1. 

3.5 Discussions 

The relative scale between the size of the collection area and the scattering pathlength in tissue is 

particularly relevant to tissue probing over a small size such as using ultra-fine fiber or over an 

ultra small angle like that using common-path optical-projection inside an instrument channel. For 

𝛍𝐬
′ = 𝟏𝒎𝒎−𝟏 that is common to soft-tissue, the reduced scattering pathlength scaled dimension 

(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) =100 corresponds to a collection diameter of 1mm. Over a sub-diffusive scale of 

(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂)=[10-5 10-1] from a turbid medium with the HG scattering anisotropy, MC assessment of 

this work has identified a consistent pattern of the total diffuse reflectance: it increases nearly 

linearly with respect to (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂 ) or equivalently (𝝁𝒔𝒅𝒂𝒓𝒆𝒂 ). The total diffuse reflectance 

increasing nearly linearly with respect to 𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂 over the scale shown corresponds uniquely to a 

radial diffuse reflectance that must show near-linear dependency on (𝛍𝐬
′/𝝆) over the same scale. 

The near-linear dependency of the radial diffuse reflectance on (𝛍𝐬
′/𝝆) when near the point-of-

incidence is readily appreciable from [81] by examining the plot of  𝑹(𝝆) [𝝁𝒔
′ ]𝟐⁄  versus (𝛍𝐬

′ ∙ 𝝆) 

=[10-3 10-1]. This pattern of the radial profile of the diffuse reflectance near the point-of-incidence, 

namely the dependency on SDS being 𝝆−𝟏, differs significantly from the well-known pattern of the 

diffuse reflectance at the diffusion regime wherein the dependency on SDS is 𝝆−𝟐. The transition 

of the diffuse reflectance from the SDS-dependency of 𝝆−𝟐 over the diffusion regime to the SDS-

dependency of 𝝆−𝟏 over the sub-diffusive domain as the spatial dimension reduces is associated 

with lesser-and-lesser possibility of photons experiencing multiple-scattering between the point-
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of-incidence and the point-of-collection [87, 88]. At single-scattering case, the dependence of the 

diffuse reflectance on SDS as 𝝆−𝟏 has been derived with single-scattering solution to RT in infinite 

medium [89]. Further reduction of the scattering-scaled dimension may lead to the radial diffuse 

reflectance to be weighted more by the ballistic peak. The total diffuse reflectance, however, may 

be insensitive to the ballistic peak due to the weighting of the radial profile by the area associate 

with the radial dimension.       

The same range of the dimensionless scattering or dimensionless size of light collection (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) 

for evaluating the total diffuse reflectance can be reached in two ways. One is like those 

implemented for Figs. 7-9 that has the scattering properties fixed so the range of (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) 

represents the spatial range of the total diffuse collection. The other case is like those implemented 

for Figs. 10-12 that has the spatial range of the total diffuse collection fixed so the range of 

(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) represents the range of the scattering properties. At the same range of (𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂), one 

can expect that the two cases of producing the same range of (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) will be “felt” much 

differently by the absorption properties of the tissue. For the first case wherein the scattering 

properties are fixed, the tissue scattering albedo is fixed over the range of (𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂) over the 

spatial range of the total diffuse collection. Therefore the analytical total diffuse reflectance 

modeled over the spatial range of the total diffuse collection is associated with a fixed condition of 

tissue attenuation and consequently would perform consistently for different levels of absorption. 

However, for the second case wherein the spatial size of the light collection is fixed, the change of 

(𝛍𝐬
′𝒅𝒂𝒓𝒆𝒂)  is associated with a change of the scattering albedo. For example, (𝛍𝐬

′𝒅𝒂𝒓𝒆𝒂) =

[𝟏𝟎−𝟓, 𝟏𝟎−𝟏] at 𝒅𝒂𝒓𝒆𝒂 = 𝟏𝒎𝒎 and 𝛍𝐚=1mm-1 corresponds to 𝛍𝐬
′ = [𝟏𝟎−𝟓, 𝟏𝟎−𝟏] mm-1 and thus 

an absorption to reduced scattering ratio varying between 0.1 where the scattering dominates and 

100,000 where the absorption overwhelms. Over these large range of the tissue diffusivity, the 

attenuation collected over the same spatial range from a tissue of the same absorption will be 
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unfitted by a model approach based on diffusion approximation as is implemented for the total 

diffuse reflectance. That explains why the model prediction for the cases of Figs. 10-12 degrades 

at 𝛍𝐚=1mm-1.    

It must be noted that the analytical total reflectance as represented by Eq. (III.19) for a medium of 

HG scattering anisotropy is specific to the geometry shown in Fig. 1 that has idealized the light-

introduction into the medium as a point-injection and the light collection from the medium as over 

a small circular-area centered on the point-of-incidence. This geometry has facilitated analytical 

total diffuse reflectance to be developed by integrating the radial diffuse reflectance over the area 

of collection. This geometry may be similar to non-contact diffuse reflectance probing using optical 

projections inside a small instrument channel of an endoscope or remote sensing over a large 

distance. This geometry, however, differs from the actual geometry of single-fiber probing which 

has the light-illumination area overlapping completely with the light-collection area. A more 

accurate analytical total diffuse reflectance for tissue probing using a single-fiber probe will require 

double-integration involving the light injection distributed over the probe area and the spatially-

resolved diffuse reflectance associated with each element of the light 

injection distribution over the probe area. Therefore, the model approach of this work may not be 

directly translated to single-fiber probing. However, the characteristics of the total diffuse 

reflectance identified by this work over the reduced scattering pathlength scaled diameter <10-1 will 

be informative to understanding some qualitative patterns salient to single-fiber probing. For 

example, why the rate of change of the total diffuse reflectance seems to be linear with respect to 

the dimensionless scattering when small, and why the total diffuse reflectance is greater for smaller 

anisotropy for the same value of the dimensionless reduced scattering. The total diffuse reflectance 

in this work is evaluated in association with the HG phase function only due to MC resource. 

Analytical total diffuse reflectance from medium with non-HG scattering anisotropy can be 
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expected to have the g-dependency different from that of Eq. (III.19). Since the integration of the 

radial diffuse reflectance over the area of collection essentially low-pass filters the local higher-

order variation [28] of the scattering distribution, the total diffuse reflectance will respond to the 

global slower change of the scattering distribution which is accounted for at the first-order by the 

anisotropy factor g. Therefore, for a collection dimension that is sub-diffusive as is assessed herein, 

the total diffuse reflectance can be expected to be not much sensitive to the higher-order phase 

function and may still be modeled with Eq. (III.15-19) by adjusting the empirical parameters. 

Regardless of the higher-order details of the scattering anisotropy, the analytical total diffuse 

reflectance corresponding to an anisotropy must analytically approach the total diffuse reflectance 

for isotropic scattering as indicated by Eq. (III.14) when the anisotropy disappears.  

With many limitations to address in future studies, this work may provide insights for analytical 

understanding of ultra-small-scale probing of steady-state tissue properties. These applications 

have been characterized with empirical models, but further understanding of some salient features, 

such as the saturation pattern, the condition of saturation, etc., cannot be adequately understood 

without analytically-originated analysis. Analytical, thus better understanding of the tissue 

measurement will also be important for optimizing instrument for interrogation of specific tissue 

properties. The approach to analytical total diffuse reflectance over sub-diffusive scale as 

demonstrated may also be extendable to time-resolved configuration and fluorescence detection. 

3.6 Summary 

We demonstrated analytical steady-state total diffuse reflectance over a 1/𝝁𝒔
′ scaled dimension of 

[10-5, 10-1] centered at the point-of-incidence from a semi-infinite medium with an HG anisotropy. 

Two constraints are abided to: (1) The total diffuse reflectance is the integration of the radial diffuse 

reflectance; (2) The radial and total diffuse reflectance at g>0 must resort to their respective values 

corresponding to isotropic-scattering as g becomes zero. Steady-state radial diffuse reflectance near 
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the point-of-incidence from a semi-infinite medium of 𝒈 ≈ 𝟎 is developed, and the radial diffuse 

reflectance for 𝒈 ≥ 𝟎. 𝟓  is semi-empirically formulated by referring to the former one. The 

integration of each leads to the corresponding total diffuse reflectance. When compared to MC 

results over (𝝁𝒔
′𝒅𝒂𝒓𝒆𝒂)=[10-5, 10-1], g = [0.5, 0.95] and 𝝁𝒂 = [0.001, 1]mm-1, the analytical total 

diffuse reflectance has an error < 16.1%. 
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CHAPTER IV  

 

TOTAL DIFFUSE REFLECTANCE ASSOCIATED WITH A CENTER-ILLUMINATION 

AND AREA-COLLECTION ROUND GEOMETRY FOR PROBING MEDIUM WITH 

HEYNEY-GREENSTEIN SCATTERING PHASE FUNCTION: AN INTEGRATION-BASED 

ANALYTICAL MODEL OF STEADY-STATE MEASUREMENT 

4.1 Introduction 

Diffuse reflectance is a simple method for assessing turbid medium by surface or interstitial measurement 

for biological[14], pharmaceutical[90], and agricultural [91, 92] needs. Diffuse reflectance assessment of the 

sub-surface medium properties, whether for steady-state evaluation of abnormalities[12] or for temporal 

monitoring of functions[17], often is implemented in a total-diffuse reflectance mode that collects the photon 

remission over the area of the collecting aperture, that may or may not be overlapping with the area of light 

illumination on the interface with tissue. Device level variations of the total-diffuse reflectance are many: (1) 

the illumination area completely overlaps with the collection area which can be realized by setting up 

common-path via a beam-splitter[10] or by coupling two smaller fibers with a larger fiber for interfacing 

with tissue[12]; (2) the illumination position is asymmetrically offset from the collection area ; (3) the 

illumination area centers the collection aperture or the collection area centers the illumination aperture [93, 

94]. All these configurations of total diffuse reflectance can be instrumented with small profile for point-of-

care assessment, but a geometry-specific light-tissue interaction model is always needed for practical 

applications.  
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The spatially resolved diffuse reflectance, even at a single wavelength could accurately inform tissue 

effective attenuation. In comparison, the total diffuse reflectance relies upon the spectral variation acquired 

over a fixed probing geometry to estimate tissue properties. An accurate forward model is crucial to 

recovering physiologically meaningful range of parameters such as oxygenation saturation[10] by diffuse 

reflectance. The exact analytical solution of light propagation in biological tissue does not exist [31], nor does 

the total diffuse reflectance. As a result, Monte Carlo (MC) simulation is the primary tool for modeling total 

diffuse reflectance, especially when the tissue probing is over a sub-diffusion scale. However, the statistical 

demand of assembling large amount of random events makes MC ill-suited for point-of-care rapid forward 

computation. Algebraic (approximate) form of the total diffuse reflectance is thus sought[31, 93] to 

complement Monte Carlo simulations. An analytical form of the total diffuse reflectance is not only more 

rapid to use than MC, it may also help identify characteristic patterns of total diffuse reflectance, such as the 

tissue-probe conditions at which the signal will be sensitive and insensitive to the tissue property change. 

With an accurate algebraic solution, it may thus be possible to identify the causes of any characteristic patterns 

of measurements, and knowing those patterns and their causes may translate to better understanding of the 

applicability or limitation of the device for biological tissue sampling.   

The total diffuse reflectance is the diffuse reflectance over the entire area of collection. Analytically it is thus 

the integration of the spatially resolved diffuse reflectance over the entire area of collection, regardless of 

overlapping or non-overlapping between the light illumination and collection area.   An analytical form of 

the total diffuse reflectance can thus be expected, if there exists an accurate analytical form of the spatially 

resolved diffuse reflectance specific to the light illumination and collection geometry of concern. The realistic 

use of total diffuse reflectance in tissue-probing always involves area illumination with certain intensity 

profile such as gaussian, top hat, donut or even more complex [thorlab], and besides, the illumination area 

may not be completely overlapping with the collection area or may be asymmetric to collection area. Thus 

pencil beam illumination, as the simplest light illumination geometry, is of fundamental significance due to 

superposition principle: by breaking down the illumination area to a collection of pencil beams with weighted 
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intensity, the spatially resolved diffuse reflectance of any arbitrary area illumination and area collection type 

is a sum of all individual pencil beam induced spatially resolved diffuse reflectance, since biological tissue is 

linear system. However, calculating the spatially resolved diffuse reflectance of area-illumination type from 

the fundamental pencil beam type is quite difficult, and so far no literature has reported any solution even to 

a simple case of top hat circular area illumination completely overlapping with collection area.  Even though 

the above problem is analytically solved and a spatially resolved diffuse reflectance of area-illumination type 

is available, the further 2-dimension integration over the collection area may result in a bulky form of total 

diffuse reflectance that is not practical to use. 

Considering pencil beam as one extreme case of Gaussian type area-illumination and placed at the center of 

a round collection area, the total diffuse reflectance associated with this center-illumination and area-

collection round (CIACR) geometry as shown in Fig 1, is worth to explore. First, it offers the mathematic 

feasibility to analytically derive a close form of total diffuse reflectance specific to this CIACR geometry. 

Second, the aforementioned total diffuse reflectance, shall provide some common features with the general 

case of area-illumination and area-collection round geometry (AIACR), such as anisotropy-sensitive zone, 

scattering-sensitive zone and scattering-insensitive zone, thus shines some insights into the analytical 

understanding of those observed features.  Third, the derived total diffuse reflectance of CIACR geometry 

may potentially work as an approximated analytical solution in practice to retrieve meaningful physiological 

parameters from data acquired from AIACR geometry.   
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Figure IV-1 The total diffuse reflectance specific to the center-illumination and area-collection 

round geometry 

This work aims to model the total diffuse reflectance specific to the center-illumination and area-collection 

round geometry as illustrated in Figure IV-1 and detailed as below: A semi-infinite homogeneous tissue is 

bounded with air. On the interface, a steady-state directional point light source is placed right at the center of 

a circular collection area with diameter 𝑑𝑎𝑟𝑒𝑎, injecting photons into tissue normal to interface. The total 

diffuse reflectance is counted by including all photons remitting within the collection area, regardless of their 

various incident angles.  

It is still difficult to model the spatially resolved diffuse reflectance in CIACR geometry with diffusion theory, 

due to the need to cross the sub-ballistic to sub-diffusion scale (10s microns to a few millimeters). The 

conventional diffusion approach fails to model the aggressive peaking of the diffuse reflectance towards the 

point-of-entry [7-9, 10] when compared to accurate measurements [3, 4]. Several analytical methods for 

modified diffusion approach have enhanced modeling of the diffuse reflectance at spatial dimensions close 

to the point-of-entry [11, 12, 13, 14], among which there are methods incorporating multiple isotropic sources 

[12, 13, 14]. A simple master-slave dual-source configuration [14] produces the rapid peaking of the diffuse 

reflectance toward the point-of-entry by using a slave source whose position and intensity are controlled by 
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a master source that dominates the diffuse reflectance at the diffusion regime. This model of spatially resolved 

diffuse reflectance has shown to be valid for a semi-infinite medium over a source-detector-separation (SDS) 

as small as 1/10 of 1/𝜇𝑠
′ , for instance SDS larger than 100µm for 𝜇𝑠

′ = 1𝑚𝑚−1.  To arrive at an accurate 

integral solution of the total diffuse reflectance, the spatially resolved diffuse reflectance at SDS much small 

than 1/10 of 1/𝜇𝑠
′  is needed.  The spatially resolved reflectance at SDS close to one transport mean free path 

has also been shown to be predictable  with 𝜇𝑎,   𝜇𝑠
′ , and the moments of the Heyney-Greenstain (HG) phase 

function. As far as the authors knows, there is no single model that can accurately quantify the spatially 

resolved diffuse reflectance from a sub-ballistic domain (i.e., near the point-of-entry) to a sub-diffusive 

regime (i.e. near millimeter). 

This work introduces a concatenation strategy to construct a model of spatially resolved diffuse reflectance 

that works for long range of SDS covering sub-ballistic, sub-diffusive and diffusive region. One semi-

empirical model that was developed for sub-ballistic to sub-diffusive SDS range [1/10,000, 1] of 1/𝜇𝑠
′  using 

𝜇𝑎, 𝜇𝑠
′ , and g (the anisotropy of HG phase function), is concatenated with the aforementioned master-slave 

model  that was validated at SDS range beyond 1/10 of 1/𝜇𝑠
′ ,  to make a final form of spatially resolved 

diffuse reflectance model working at SDS ranging from [1/10,000, 1000] of 1/𝜇𝑠
′ . The integration of the 

above spatially resolved diffuse reflectance gives rise to an analytical form of the total diffuse reflectance 

with infinite numerical aperture. After being slightly adapted for practical use in a broad range of tissue 

optical parameters and different sizes of collection area , the model was then compared against Monte-Carlo 

simulated results of same CIACR geometry in a total amount of 4368 sceneries covering 𝜇𝑎 =

[0.001 − 1.0]𝑚𝑚−1, 𝜇𝑠
′ = [0.01 − 1000]𝑚𝑚−1, 𝑔 = [0.5 − 0.95], and diameter of collection area 

𝑑𝑎𝑟𝑒𝑎 = [50 − 1000]𝜇𝑚 for forward model evaluation.  A pilot phantom experiment was also conducted 

to test the model’s effectiveness in reserve problem solving in context of AIACR geometry, during which 

the effect of limited numerical aperture of a realistic fiber was added into consideration. 

4.2 Theory and methodology 
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4.2.1 Spatially resolved diffuse reflectance 

We consider two regions of the circular area for spatially resolved diffuse reflectance associated with pencil 

beam illumination. The two areas as illustrated in Figure IV-2 contain an inner-field centered at and adjacent 

to the center illumination point, and an outer-field that is co-centric and encloses the inner-field. The radius 

that borders the inner-field from outer-field is defined as a dimensionless number 𝛿 when scaled versus 𝑧𝑎 =

1/𝜇𝑠
′  [unit: mm], namely 𝜌 = 𝛿/𝜇𝑠

′ , where the dimensionless 𝛿 can vary from 0.1 and 1.0 and is set as 0.5 

in this work to reach the best model performance. The outer radius of the outer area 𝑏 = darea 2 ⁄  [unit: 

mm] is defined as a dimensionless number ξ when scaled versus 𝑧𝑎 = 1/𝜇𝑠
′  .  

 

Figure IV-2 The area of collection contains an inner-field of a diameter of 2𝛿za and an out-field 

covering the space elsewhere.  

The tissue properties concerning diffuse reflectance include refractive index 𝑛𝑡𝑖𝑠𝑠, absorption coefficient 𝜇𝑎 

[unit: mm-1], scattering coefficient 𝜇𝑠  [unit: mm-1], anisotropy factor 𝑔 following the Henyey-Greenstein 

(HG) phase function that gives 𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔) [unit: mm-1], diffusion coefficient 𝐷 = 1/[3(𝜇𝑎 + 𝜇𝑠

′ )] 

[unit: mm], and effective attenuation coefficient 𝜇𝑒𝑓𝑓 = √𝜇𝑎 𝐷⁄  [mm-1]. The light illumination of unit 

intensity occurs at the center of the round geometry. The model of the spatially resolved diffuse reflectance 

for the inner-field is derived semi-empirically by fitting to MC simulations and consulting a form 
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representing the upper limit of the diffuse reflectance associated with a tissue of isotropic scattering (see 

APPENDIX ).  The modeling of the spatially resolved diffuse reflectance in the outer-field involves a 

master-slave dual-source approach as shown in Figure IV-3. For the point illumination, a master-source [14] 

of intensity S=1 [unit: W·mm-3] is set at a depth of 𝑧𝑎 = 1/𝜇𝑠
′ .  A slave-source index is defined [14]   as 

𝜂(𝑔) = [𝑔 ∙ 𝑒𝑥𝑝(1 − 𝑔)]1/10. Then the slave-source is set at a depth of 𝑧𝑎
∗ = (1 − 𝑔)2(1 − 𝜂)𝑧𝑎 =

𝛼𝑧𝑎  [unit: mm], and the intensity of the slave source is 𝑆∗ = 𝜂 ∙ 𝑆 ∙ 𝑒𝑥𝑝[−𝜇𝑒𝑓𝑓 𝑧𝑎(1 + 𝛼) 2⁄ ] [unit: 

W·mm-3]. The medium-air boundary is accounted for by the extrapolated zero-boundary [15] that is set at a 

distance of 𝑧𝑏 = 2𝐴𝐷 = 𝛽𝑧𝑎 [unit: mm] away from medium surface, where 𝐴 = (1 + 𝜉)/(1 − 𝜉), and 

𝜉 = −1.44𝑛𝑡𝑖𝑠𝑠
−2 + 0.710𝑛𝑡𝑖𝑠𝑠

−1 + 0.668+0.0636𝑛𝑡𝑖𝑠𝑠. For a position on the tissue-air interface of a 

distance of 𝜌 [unit: mm] from the source, the following lengths [unit: mm] are defined: 

lreal = √ρ
2 + za

2      (IV-1) 

limag = √ρ
2 + za

2(1 + 2β)2      (IV-2) 

lreal
∗ = √ρ2 + za

2α2      (IV-3) 

limag
∗ = √ρ2 + za

2(α + 2β)2      (IV-4) 
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Figure IV-3 The master and slave sources dual sources configuration [14] 

 

The spatially resolved diffuse reflectance for the inner field is denoted as R←δ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔).  Appendix A 

gives the semi-empirical R←δ(ρ) as the following  

R←δ(ρ) =
0.75𝑔

2π
10−(1+𝑝1𝛾)

𝜇𝑠
2(1−𝑔)𝑔

(μsρ)
1+𝑝2𝛾

exp(−𝛾)   (IV-5) 

Where 𝑝1 = 1.25, 𝑝2 = 1 and 𝛾 = 2(𝜇𝑎 𝜇𝑠⁄ ). This semi-empirical inner-field model was validated by 

comparing against monte-carlo simulated spatially resolved diffuse reflectance over the range of 𝜌𝜇𝑠
′ =

[0.0001,1] under following tissue optical properties: 𝜇𝑎 = [0.001,0.01,0.1,1.0]𝑚𝑚
−1, g=[0.5, 0.6, 0.7, 

0.8, 0.9, 0.95] and a fixed 𝜇𝑠
′ = 1𝑚𝑚−1. In section 2.2, Eq. (5) is used to analytically derive the initial form 

of total diffuse reflectance through integration. In section 2.3, we will introduce an adaption approach in 

which 𝑝1 and 𝑝2 are slightly modified, to expand the use of the integral model for a broad range of tissue 

optical properties and sizes of collection area.  



65 
 

The spatially resolved diffuse reflectance for the “outer-field” is denoted as Rδ→(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) which takes 

the following form [14]: 

Rδ→(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) = RΨ(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) + RΨ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) + RJz(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) + RJZ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) 

 (IV-6) 

Where the four terms represent respectively the contribution to the diffuse reflectance by the fluence rate due 

to the master source, the fluence rate due to the slave source, the normal flux component due to the master 

source, and the normal flux component due to the slave source. The four terms of Eq. (6) are defined 

respectively as the following [14]: 

RΨ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) =

1

8√2π
 
1

2π

1

D
[
exp(−μefflreal)

lreal
−
exp(−μefflimag)

limag
]    (IV-7) 

RΨ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) =

1

8√2π

1

2π

S∗

D
[
exp(−μefflreal

∗ )

lreal
∗ −

exp(−μefflimag
∗ )

limag
∗ ] (IV-8) 

RJz(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) =

3

8√2π
 
1

2π
[ 
za(μefflreal+1)exp(−μefflreal)

(lreal)
3       

+
(za+2zb)(μefflimag+1)exp(−μefflimag)

(limag)
3 ]  (IV-9)  

RJZ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) =

3

8√2π
 
1

2π
 S∗[ 

za
∗(μefflreal

∗ +1)exp(−μefflreal
∗ )

(lreal
∗ )

3        

+
(za
∗+2zb)(μefflimag

∗ +1)exp(−μefflimag
∗ )

(limag
∗ )

3 ]  (IV-10)  

The concatenation of the inner-field model R←δ(ρ) and the outer-field Rδ→(ρ) model produces the 

spatially resolved diffuse reflectance R(ρ) [unit: W·mm-2·sr-2] in a level-set form as:   

R(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) = R←δ(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔)[u(ρ) − u(ρ − δza)] + Rδ→(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔)u(ρ − δza)             

(IV-11) 

Where u(ρ) is the Heaviside step function. When ρ ≤ δza, only the first term stays in Equation (IV.11) 
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4.2.2 Total diffuse reflectance as the integration of the spatially resolved diffuse reflectance over 

the area of collection   

The total diffuse reflectance over an area of radius of b = darea 2⁄  with the illumination of unity-intensity 

injected at the center of the area is:  

𝐼0↔b(𝜇𝑎 , 𝜇𝑠
′ , 𝑔) = ∫ ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) ∙ ρ ∙ dρ
b

0
dφ

2π

0
  

= 2π ∙ [∫ R(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ∙ ρ ∙ dρ

∞

0
− ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) ∙ ρ ∙ dρ
∞

b
]   (IV-12) 

If  𝑏 = ξza ≤ 𝛿𝑧𝑎, or ξ ≤ 𝛿, Eq. (12) becomes  

𝐼0↔ξza(𝜇𝑎, 𝜇𝑠
′ , 𝑔) = 2π ∙ ∫ R←δ(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) ∙ ρ ∙ dρ
ξza
0

    

= 0.75𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)
1

1−𝑝2𝛾
(
ξ

1−𝑔
)
1−𝑝2𝛾

 (IV-13) 

We define a function 𝐼x↔∞(𝜇𝑎, 𝜇𝑠
′ , 𝑔) as the following for x ≥ 0: 

𝐼x↔∞(𝜇𝑎, 𝜇𝑠
′ , 𝑔) = 2π ∙ ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) ∙ ρ ∙ dρ
∞

x
    (IV-14)  

So if  𝑏 = ξza > 𝛿𝑧𝑎, or ξ > 𝛿,  

𝐼0↔ξza(𝜇𝑎, 𝜇𝑠
′ , 𝑔) = 2π ∙ [∫ R←δ(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) ∙ ρ ∙ dρ + ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ∙ ρ ∙ dρ

ξza
𝛿𝑧𝑎

δza
0

]  

= 2π ∙ [∫ R←δ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ∙ ρ ∙ dρ + ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠

′ , 𝑔) ∙ ρ ∙ dρ − ∫ R(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ∙ ρ ∙ dρ

∞

ξza

∞

𝛿𝑧𝑎

δza
0

]  

= 𝐼0↔𝛿za(𝜇𝑎 , 𝜇𝑠
′ , 𝑔) + [𝐼𝛿𝑧𝑎↔∞(𝜇𝑎, 𝜇𝑠

′ , 𝑔) − 𝐼ξ𝑧𝑎↔∞(𝜇𝑎, 𝜇𝑠
′ , 𝑔)]                   

(IV-15) 

Where 𝐼0↔𝛿za(𝜇𝑎 , 𝜇𝑠
′ , 𝑔) is the Eq. (IV.13) evaluated at  ξ = 𝛿, or 

𝐼0↔𝛿za(𝜇𝑎 , 𝜇𝑠
′ , 𝑔) = 0.75𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
δ

1−𝑔
)
1−𝑝2𝛾

  (IV-16) 

The other two terms in Eq. (IV.15) can be decomposed to 4 items according to Eq. (IV.6 - IV.10):   
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𝐼𝛿𝑧𝑎↔∞(𝜇𝑎, 𝜇𝑠
′ , 𝑔) = 𝐼𝛿𝑧𝑎↔∞

Ψ (𝜇𝑎 , 𝜇𝑠
′ , 𝑔) + 𝐼𝛿𝑧𝑎↔∞

Ψ∗ (𝜇𝑎, 𝜇𝑠
′ , 𝑔) + 𝐼𝛿𝑧𝑎↔∞

JZ (𝜇𝑎 , 𝜇𝑠
′ , 𝑔) +

𝐼𝛿𝑧𝑎↔∞
JZ∗ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) (IV-17) 

𝐼ξ𝑧𝑎↔∞(𝜇𝑎 , 𝜇𝑠
′ , 𝑔) = 𝐼𝜉𝑧𝑎↔∞

Ψ (𝜇𝑎, 𝜇𝑠
′ , 𝑔) + 𝐼𝜉𝑧𝑎↔∞

Ψ∗ (𝜇𝑎 , 𝜇𝑠
′ , 𝑔) + 𝐼𝜉𝑧𝑎↔∞

JZ (𝜇𝑎, 𝜇𝑠
′ , 𝑔) +

𝐼𝜉𝑧𝑎↔∞
JZ∗ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) (IV-18) 

The first terms in respectively Eq. (IV.17) and (IV.18) are  

𝐼𝛿𝑧𝑎↔∞
Ψ (𝜇𝑎, 𝜇𝑠

′ , 𝑔) = 2π∫ RΨ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

δza

= 

1

8√2πDμeff
[exp(−μeffza√δ

2 + 1)−exp(−μeffza√δ
2 + (1 + 2β)2)] (IV-19) 

𝐼𝜉𝑧𝑎↔∞
Ψ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) = 2π∫ RΨ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

ξza
=   

1

8√2πDμeff
[exp(−μeffza√ξ

2 + 1)−exp(−μeffza√ξ
2 + (1 + 2β)2)] (IV-20) 

The second terms in respectively Eq. (IV.17) and (IV.18) are  

𝐼𝛿𝑧𝑎↔∞
Ψ∗ (𝜇𝑎, 𝜇𝑠

′ , 𝑔) = 2π∫ RΨ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

δza
=  

𝑆∗

8√2πDμeff
[exp(−μeffza√δ

2 + α2)− exp(−μeffza√δ
2 + (α + 2β)2)] (IV-21) 

𝐼𝜉𝑧𝑎↔∞
Ψ∗ (𝜇𝑎, 𝜇𝑠

′ , 𝑔) = 2π∫ RΨ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ =

∞

ξza

 

  
𝑆∗

8√2πDμeff
[exp(−μeffza√ξ

2 + α2)−exp(−μeffza√ξ
2 + (α + 2β)2)] (IV-22) 

The third terms in respectively Eq. (IV.17) and (IV.18) are  

𝐼𝛿𝑧𝑎↔∞
JZ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) = 2𝜋 ∫ RJZ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

δza
=  

3

8√2π
[

1

√δ2+1
exp(−μeffza√δ

2 + 1)+
(1+2β)

√δ2+(1+2β)2
exp(−μeffza√δ

2 + (1 + 2β)2)] (IV-23) 
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𝐼𝜉𝑧𝑎↔∞
JZ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) = 2𝜋 ∫ RJZ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

ξza
=  

3

8√2π
[

1

√ξ2+1
exp(−μeffza√ξ

2 + 1)+
(1+2β)

√ξ2+(1+2β)2
exp(−μeffza√ξ

2 + (1 + 2β)2)] (IV-24) 

The fourth terms in respectively Eq. (IV.17) and (IV.18) are  

𝐼𝛿𝑧𝑎↔∞
JZ∗ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) = 2𝜋 ∫ RJZ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

δza
=  

3𝑆∗

8√2π
[

α

√δ2+α2
exp(−μeffza√δ

2 + α2)+
(α+2β)

√δ2+(α+2β)2
exp(−μeffza√δ

2 + (α + 2β)2)] (IV-25) 

𝐼𝜉𝑧𝑎↔∞
JZ∗ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) = 2𝜋 ∫ RJZ∗(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) ρdρ

∞

ξza
=  

3𝑆∗

8√2π
[

α

√ξ2+α2
exp(−μeffza√ξ

2 + α2)+
(α+2β)

√ξ2+(α+2β)2
exp(−μeffza√ξ

2 + (α + 2β)2)] (IV-26) 

So if  𝑏 = ξza ≤ 𝛿𝑧𝑎 , the terminal algebraic forms of Eq. (IV.13) is used to model the total diffuse 

reflectance. Otherwise if  𝑏 = ξza > 𝛿𝑧𝑎, or ξ > 𝛿, the terminal algebraic forms of Eq. (IV.19-IV.26) are 

used to model the total diffuse reflectance according to the following combined equation:   

𝐼0↔ξza(𝜇𝑎, 𝜇𝑠
′ , 𝑔) = 𝐼0↔δza(𝜇𝑎 , 𝜇𝑠

′ , 𝑔) + 

[𝐼𝛿𝑧𝑎↔∞
Ψ (𝜇𝑎, 𝜇𝑠

′ , 𝑔) − 𝐼𝜉𝑧𝑎↔∞
Ψ (𝜇𝑎, 𝜇𝑠

′ , 𝑔)] + [𝐼𝛿𝑧𝑎↔∞
Ψ∗ (𝜇𝑎, 𝜇𝑠

′ , 𝑔) − 𝐼𝜉𝑧𝑎↔∞
Ψ∗ (𝜇𝑎, 𝜇𝑠

′ , 𝑔)] 

+[𝐼𝛿𝑧𝑎↔∞
JZ (𝜇𝑎, 𝜇𝑠

′ , 𝑔) − 𝐼𝜉𝑧𝑎↔∞
JZ (𝜇𝑎, 𝜇𝑠

′ , 𝑔)] + [𝐼𝛿𝑧𝑎↔∞
JZ∗ (𝜇𝑎 , 𝜇𝑠

′ , 𝑔) − 𝐼𝜉𝑧𝑎↔∞
JZ∗ (𝜇𝑎, 𝜇𝑠

′ , 𝑔)] (IV-27) 
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4.2.3 Adapted model of total diffuse reflectance for practical application 

In practical use, total diffuse reflectance is collected via a fixed collection area that is mainly limited by optical 

fiber probe, to investigate the change of tissue optical properties such as reduced scattering coefficient and 

absorption coefficient. For biomedical application, the single solid optical fiber probe has a core diameter 

ranging from 100𝜇𝑚 to 1000𝜇𝑚, while an optical fiber bundle probe consisting of many small fibers, with 

part for illumination and the other for collection, could have a profile factor larger than 1 mm.  The optical 

properties of soft biological tissue fall into following range: μs
′ = [0.12 − 4.0]mm−1, g = ~0.9, μa =

[0.003 − 0.16]mm−1, [1, 95]. This work intends to model the total diffuse reflectance collected via the 

first type of optical fiber probe with core diameter 𝑑𝑎𝑟𝑒𝑎 in the range of [50-1000]𝜇𝑚, and collected from 

tissue with optical properties in following range: 𝜇𝑠
′ = [0.01 − 1000]𝑚𝑚−1, 𝑔 = [0.5 − 0.95],  𝜇𝑎 =

[0.001 − 1.0]𝑚𝑚−1 to meet the need of practical use.  

As mentioned in section 4.2.1, the inner-field spatially resolved model R←δ(ρ, 𝜇𝑎 , 𝜇𝑠
′ , 𝑔) was validated 

under tissue condition with fixed 𝜇𝑠
′ = 1𝑚𝑚−1, therefore for tissue with 𝜇𝑠

′ ≠ 1𝑚𝑚−1, it is not guaranteed  

that the initial form of integral model derived above will work as well as it is in 𝜇𝑠
′ = 1𝑚𝑚−1 case. As we 

know, for scattering-alone medium, the total diffuse reflectance is dependent on a dimensionless term 

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 or 𝑑𝑎𝑟𝑒𝑎 scaled by mean free scattering path 1/𝜇𝑠

′  for clear physics understanding, regardless of 

different combinations of 𝜇𝑠
′  and 𝑑𝑎𝑟𝑒𝑎 within the product[xx]. This scaling effect tells that the total diffuse 

reflectance collected via 𝑑𝑎𝑟𝑒𝑎 = 400𝜇𝑚 from absorption-free medium with 𝜇𝑠
′ = 0.5𝑚𝑚−1, equals the 

one collected via 𝑑𝑎𝑟𝑒𝑎 = 200𝜇𝑚 from absorption-free medium with 𝜇𝑠
′ = 1.0𝑚𝑚−1, since the scale 

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 = 0.2 stands same for both.  

Inspired by above, we came up with following adaptation approach that could expand the usage of the initial 

integral model to arbitrary 𝜇𝑠
′  case for medium with absorption. 1) Conversion: when using Eq. (IV.13) and 

(IV.16) to calculate the inner-field contributed total diffuse reflectance for an arbitrary case [∀𝜇𝑠
′ , 𝑑𝑎𝑟𝑒𝑎], 

always equate it to calculating total diffuse reflectance for the case of 𝜇𝑠
′ = 1𝑚𝑚−1 with new 𝑑𝑎𝑟𝑒𝑎

𝑛𝑒𝑤 =



70 
 

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎/1𝑚𝑚

−1 [unit: mm], while 𝜇𝑎 and g are kept the same. 2) Correction: modify 𝑝1 and 𝑝2  as 𝑝1 =

2𝑑𝑎𝑟𝑒𝑎 + 0.2  and 𝑝2 = 0.1  to simultaneously correct any mis-estimation of total diffuse reflectance 

brought by conversion with the existence of absorption. The above adaption approach could be implemented 

either by directly coding it into the model, or by rewriting the Eq. (IV.13) and (IV.16) as below: 

𝐼0↔ξza(𝜇𝑎, 𝜇𝑠
′ , 𝑔) = 0.75𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
ξnew

1−𝑔
)
1−𝑝2𝛾

   (IV-28) 

Where  ξnew = 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎/2. 

𝐼0↔𝛿za(𝜇𝑎 , 𝑔, 𝑑𝑎𝑟𝑒𝑎) = 0.75
𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
δ

1−𝑔
)
1−𝑝2𝛾

   (IV-29) 

Where 𝑝1 = 2𝑑𝑎𝑟𝑒𝑎 + 0.2, 𝑝2 = 0.1, 𝛾 = 2𝜇𝑎(1 − 𝑔)/1𝑚𝑚
−1. 

Note that after adaptation, 𝐼0↔ξza(𝜇𝑎, 𝜇𝑠
′ , 𝑔) still has dependency on 𝜇𝑠

′  since ξnew is updated based on 

original 𝜇𝑠
′  value, while  𝐼0↔𝛿zabecomes a function of (𝜇𝑎 , 𝑔, 𝑑𝑎𝑟𝑒𝑎) and does not depend on 𝜇𝑠

′  any more 

since 𝛿 remains same and 𝛾 mian depends on 𝜇𝑎.  Numerical calculation shows that 𝐼0↔𝛿za mainly depends 

on 𝜇𝑎 and insensitive to g and 𝑑𝑎𝑟𝑒𝑎 within the range evaluated in this work. As the decrease of absorption, 

𝐼0↔𝛿za  increases and reach the upper limit of ~0.0486 when 𝜇𝑎  drops to zero, which in absorption-free 

medium or very strong scattering medium, 𝐼0↔𝛿za contributes a constant value of ~0.0486.  

For calculating outer-field contributed total diffuse reflectance, no adaptation is needed. 

4.3 Materials and Methods 

4.3.1 Monte-Carlo simulation 

Monte-Carlo simulation has been performed on a 24-core Linux server by using the open source Monte 

Carlo Command Line (MCCL, v4.6.0Beta) application developed by Virtual Photonics. The same CIACR 

geometry as illustrated in Fig. 1 is used, where a directional point source sitting at the origin point (0,0,0) is 

injecting photons into semi-infinite tissue medium in steady-state mode along the positive z direction (0,0,1) 

and diffusely reflected photons are collected within a circular area with a radii 𝑏 = 𝑑𝑎𝑟𝑒𝑎/2 measured from 
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the origin point. A total of N+1 points are linearly spaced between 𝜌 = [0, 𝑏], cutting the whole collection 

into N concentric element areas termed as bins in monte-carlo. The area of 𝑘𝑡ℎ bin is calculated as 𝐵𝑖𝑛(𝑘) =

[𝜋𝜌𝑘+1
2 − 𝜋𝜌𝑘

2], where k is the integer index ranging from 1 to N, 𝜌1 = 0 and  𝜌𝑁+1  = 𝑏. As illustrated 

in Figure IV-4, the MC simulation produces the spatially resolved diffuse reflectance 𝑅𝑀𝐶(𝑘) [unit:𝑚𝑚−2] 

specific to each bin, defined as the number of photons collected at the 𝑘𝑡ℎ bin normalized by total amount of 

photons lunched into tissue then divided by the bin area 𝐵𝑖𝑛(𝑘). The total diffuse reflectance 𝐼𝑀𝐶(0 ↔ b) 

is calculated by summing up the product of 𝑅𝑀𝐶(𝑘) and 𝐵𝑖𝑛(𝑘) across entire collection area, using the 

following equation: 

𝐼𝑀𝐶(0 ↔ b) = ∑ 𝑅𝑀𝐶(𝑘)
𝑁
𝑘=1 ⋅ [𝜋𝜌𝑘+1

2 − 𝜋𝜌𝑘
2]             (IV-30)                                

Our monte-carlo simulation plan finally generates the total diffuse reflectance in a total amount of 4368 

sceneries, which consists of 7 values of 𝑑𝑎𝑟𝑒𝑎 form [50, 100, 200, 400, 600, 800, 1000]𝜇𝑚 by 26 values of  

𝜇𝑠
,
 from [0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 3.0, 5.0, 7.0, 9.0, 10. 30, 50, 70, 90, 100, 300, 

500, 700, 900, 1000]𝑚𝑚−1 by 6 values of g from [0.5, 0.6, 0.7, 0.8, 0.9, 0.95] by 4 values of 𝜇𝑎 from [0.001, 

0.01, 0.1, 1.0]𝑚𝑚−1. Other parameters are kept the same across all simulations, including refraction index 

of tissue 𝑛𝑡𝑖𝑠𝑠=1.4, thickness of tissue layer d = 100mm, and stepsize ∆𝜌 = 1𝜇𝑚. Per each simulation, one 

million photons are launched in order to yield statistically robust spatially resolved results with standard 

deviation controlled within 5%. 
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Figure IV-4 The total diffuse reflectance is calculated using MC simulation of the spatially 

resolved diffuse reflectance over the entire area of the tissue-air interface.  

4.3.2 Phantom experiment 

To test the model’s effectiveness in solving reverse problem in the context of realistic AIACR geometry, a 

pilot phantom experiment was set up as shown in Figure IV-5, where accurately measuring temporal change 

of oxygen saturation level is the task of concern. The experiment was conducted by our collaborator Linhui 

Yu in University of Calgary, Canada, and the data were shared and processed by both. 

 

Figure IV-5 Set up of phantom experiment for model evaluation in inverse problem solving 
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The phantom, made from 57 mL of 1x phosphate-buffered saline (PBS), 3 mL of 20% intralipid, and 1.2 mL 

of rat whole blood finally have ~1% intralipid concentration, ~2% blood volume fraction, and total 

hemoglobin concentration of 13.8 g/dL. The phantom was kept in an airtight box with the controlled gas 

environment. A stirring hotplate kept the phantom homogenous. At the beginning, the airtight box was 

gassed with 100% oxygen until the blood was fully oxygenated, then the measurements began, and pure 

nitrogen was gassed into the box to deoxygenate the phantom. Two devices were used at the same time to 

measure the temporal change of oxygen saturation level: one is the single-fiber reflectance spectroscopy that 

was detailed in [4, 10], and the other, used as reference system here, is also a broadband near-infrared 

spectroscopy but using “the second differential method” to quantify deoxyhemoglobin then obtain oxygen-

saturation[96].  

 

Figure IV-6 Schematic of SfRS system used in phantom experiment [10] consisting of light 

emitting diode (LED), collimating lens(L1), beam splitter (BS), focusing lenses(L2, L3), fiber (F), 

polarizers (Pol1, Pol2) and spectrometer (S) 

The schematic of SfRS is illustrated in Figure IV-6. It measured the spectrally resolved total diffuse 

reflectance via a 200𝜇𝑚 single solid optical fiber with NA of 0.39 from a completely over-lapping AIACR 

geometry, and then the data was fitted to both our model developed in this work and another existing 
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empirical model developed by Kanick [2, 18-20, 32, 34, 35, 39] in the procedure detailed in [10].  The 

existing empirical model is reproduced as below:  

𝑅𝑆𝑓𝑅𝑆( 𝜇𝑎 , 𝜇𝑠
′ ) = 𝑅𝑠𝑐𝑎𝑡(𝜇𝑠

′ ) exp(− 𝜇𝑎〈𝐿( 𝜇𝑎, 𝜇𝑠
′ )〉)

=  𝜂𝑙𝑖𝑚[1 +  𝑝1 ⋅ 𝑒𝑥𝑝(− 𝑝2𝜇𝑠
′  𝑑𝑓𝑖𝑏)] [

(𝜇𝑠
′  𝑑𝑓𝑖𝑏)

 𝑝3

 𝑝2 + (𝜇𝑠
′  𝑑𝑓𝑖𝑏)

 𝑝3
] 

𝑒𝑥𝑝 (− 𝜇𝑎
 1.54𝐶𝑃𝐹 𝑑𝑓𝑖𝑏

(𝜇𝑠
′  𝑑𝑓𝑖𝑏)

0.18[ 𝑝6+(𝜇𝑎 𝑑𝑓𝑖𝑏)
0.64]
)   (IV-31) 

While [𝑝1,  𝑝2,  𝑝3,  𝐶𝑃𝐹]  as 𝛾 -specific parameter set  [0.63𝛾2, 2.31𝛾2, 0.57𝛾, 0.68𝛾0.6]  and 𝛾  is a 

phase-function dependent parameter. 

For reference system, NIR attenuation spectra (716.53–983.86nm) were measured using a custom built 

bNIRS system, including a broadband light source (model 77501, Oriel Instruments Inc., USA), a 

chargecoupled device (CCD) camera (DU420-BR-DD, Andor Technology Inc., Northern Ireland), an 

imaging spectrograph (Shamrock 303i, Andor Technology Inc., Northern Ireland), two 30 ft long multiple 

single core silica optic fibers (Techen, USA) and a data processor (Optix280, Dell, USA). Data were read 

from the CCD chip with 56 vertically binned pixels. Data collection and analysis were performed with 

custom software that integrated the hardware components and determined the absolute concentration of HHb 

using the second differential spectrum method. ASavitzky-Golay smoothing and differentiation program 

(SAVGOL) was used to calculate the second derivative spectrum from the filtered spectral data. Water 

content was assumed to be 80% for the adult rat brain. The data acquired by the reference system was process 

by using the second differential method detailed in [96].  

4.4 Results 

The results of forward model evaluation with monte-carlo simulated data are presented in section 4.4.1 to 

section 4.4.3, and results of reverse problem solving with phantom experimental data are presented in section 

4.4.4. During forward model evaluation, 7 sets of total diffuse reflectance corresponding to 7 different sizes 



75 
 

of 𝑑𝑎𝑟𝑒𝑎 were calculated, with each set containing 624 combinations of tissue optical properties within the 

3-d parameter space [26𝜇𝑠
′ × 4𝜇𝑎 × 6𝑔]. In section 4.4.1, we evaluate the model on the cross-section with 

typical anisotropy value of biological tissue [26𝜇𝑠
′ × 4𝜇𝑎 × (𝑔 = 0.9)], and in section 4.4.2, we evaluate 

the model on the cross-section with typical absorption value [26𝜇𝑠
′ × (𝜇𝑎 = 0.01𝑚𝑚

−1) × 6𝑔] . In 

section 4.4.3, we present an overall model evaluation on entire 3-d parameter space 26𝜇𝑠
′ × 4𝜇𝑎 × 6𝑔 for 

7 different sizes of collection area. As mentioned before, with the existence of absorption in medium, though 

at the same value of 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 , total diffuse reflectance is different for different combinations of 𝜇𝑠

′  and 𝑑𝑎𝑟𝑒𝑎 

within the product, therefore we choose to plot total diffuse reflectance collected via different darea against 

𝜇𝑠
′  instead of 𝜇𝑠

′𝑑𝑎𝑟𝑒𝑎 in forward model evaluation, to provide better sense in practice to judge under which 

range of tissue optical parameters and using which size of collection fiber our model will perform well.  

It is necessary to point out that the total diffuse reflectance predicted by monte-carlo simulation and our model 

both manifests three visible patterns that are anticipated from intuitive physics understanding, as presented 

in Figure IV-7 with darea = 400𝜇𝑚 as an example. These three patterns are: 1). Total diffuse reflectance 

increases as the scattering goes high, and tends to saturate when scattering becomes strong enough. 2). 

Stronger absorption results in smaller total diffuse reflectance and also slower speed of saturation. 3) A g-

sensitive pattern, smaller g leading to bigger total diffuse reflectance, appears at lower scattering region. In 

Part II, we will provide analytical understanding to above three observed patterns based on the model 

developed in this work. 
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Figure IV-7 Patterns manifested both by our model and monte-carlo simulate data 

4.4.1 Forward model evaluation with MC simulated data on: darea=[50-1000]µm, µa =[0.01-

1.0]mm-1, µs'=[0.01-1000]mm-1, g=0.9 

To clearly display the results, we select 4 cases of collection area 𝑑𝑎𝑟𝑒𝑎 =[50, 200, 600, 1000]𝜇𝑚 to give a 

visual comparison between model-predicted total diffuse reflectance and monte-carlo simulated results, as 

shown in part A-D in Fig.7. In part E, average error percent and standard deviation are calculated for all 7 

cases of collection area 𝑑𝑎𝑟𝑒𝑎 =[50, 100, 200, 400, 600, 800, 1000]𝜇𝑚 to give a quantitative report on 

forward model evaluation at the cross-section with typical anisotropy value g=0.9.  Average error and 

standard deviation for 7 cases of 𝑑𝑎𝑟𝑒𝑎= [50, 100, 200, 400, 600, 800, 1000]  𝜇𝑚 :  -3.8%±7.6%, -

4.0%±6.6%, -2.6%±5.4%, -1.6%±4.6%, -1.7%±4.9%, -2.2%±5.9%, -3.0%±7.2%, respectively. Over 

the range of 𝜇𝑠
′  that spans 5 decades from 0.01𝑚𝑚−1 until 1000 𝑚𝑚−1, it is observed that our model 

closely matches monte-carlo results even when absorption reaches as high as 1𝑚𝑚−1. The average error of 

all 7 cases of 𝑑𝑎𝑟𝑒𝑎  ranges from the minimum -1.6% in 𝑑𝑎𝑟𝑒𝑎 = 400𝜇𝑚  to the maximum -4.0% in 

𝑑𝑎𝑟𝑒𝑎 = 100𝜇𝑚 case, while standard deviation ranges from the minimum 4.6% in 𝑑𝑎𝑟𝑒𝑎 = 400𝜇𝑚 case 

to the maximum 7.5% in 𝑑𝑎𝑟𝑒𝑎 = 50𝜇𝑚 case. Generally, the model’s deviation from monte-carlo results 

are less than ±10% as bounded by two red-dashed lines in part E. 
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Figure IV-8 (A-D) the green dashed line represents model-predicted total diffuse reflectance and 

the solid discrete markers represent MC results. (E) average error and standard deviation.  

4.4.2 Forward model evaluation with monte-carlo simulated data: darea =[50-1000]µm,  g = [0.5-

0.95], µs' =[0.01-1000] mm-1, µa =0.01 mm-1 

Similar to above, part A-D in present a visual comparison between model-predicted total diffuse reflectance 

and monte-carlo simulated results against 𝜇𝑠
′  in the range of [0.01 − 1000]mm−1 . With the typical 

absorption level 𝜇𝑎 = 0.01𝑚𝑚
−1, each part among the four picks an anisotropy value from [0.5, 0.7, 0.9, 

0.95] respectively. The data with g=0.6 and g=0.8 show the same pattern and are not presented in this section 

for the conciseness of entire figure. Part E presents the average error percent and standard deviation for all 7 

cases of collection area darea simulated. average error and standard deviation for 7 cases of 𝑑𝑎𝑟𝑒𝑎= [50, 100, 
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200, 400, 600, 800, 1000] 𝜇𝑚:  -4.0%±9.6%, -4.0%±7.9%, -3.4%±6.8%, -2.6%±5.9%, -2.5%±5.7%, -

2.5%±5.6%, -2.7%±5.6%.  As observed from part A-D, the modeled total diffuse reflectance matches with 

monte-carlo results well, with a slight deviation appearing at g=0.5, darea = 50μm, and μs
′  as low as 

0.01mm−1 . The average error for each darea  is calculated from 156 sceneries on the cross-section 

[26𝜇𝑠
′ × 6𝑔 × (𝜇𝑎 = 0.01𝑚𝑚

−1)], and falls into the range of [-4.0%, -2.5%] among 7 different 𝑑𝑎𝑟𝑒𝑎, 

while the standard deviation varies from 5.6% to 9.6%. From the error plot E, it is found that the case of 

smaller size of 𝑑𝑎𝑟𝑒𝑎 , such as 50𝜇𝑚  and 100𝜇𝑚 , brings relatively bigger average error and standard 

deviation, which is mainly attributed to the deviation observed at g=0.5 and low scattering region. But it is 

still an excellent match between our model and monte-carlo.  
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Figure IV-9 (A-D) the green dashed line represents model-predicted total diffuse reflectance and 

the solid discrete markers represent MC results. (E) average error and standard deviation  

4.4.3 Forward model evaluation with MC simulated data of entire 3-D tissue parameter space 

As shown in Figure IV-10, the model predicted total diffuse reflectance is compared against MC results of 

entire 3-dimension tissue parameter space, which consists of a total of 4368 sceneries from following 

ranges: 𝜇𝑎 = [0.001 − 1.0]𝑚𝑚
−1 ,  g = [0.5-0.95], 𝜇𝑠

′ = [0.01 − 1000]𝑚𝑚−1  and 𝑑𝑎𝑟𝑒𝑎 =

[50𝜇𝑚 − 1000𝜇𝑚]. Considering the typical anisotropy g is ~0.9 for biological tissue [1], we further divide 

the 3-D tissue parameter space [6𝑔 × 4𝜇𝑎 × 26𝜇𝑠
′ ] into two halves:  Part A with three lower g = [0.5, 0.6, 

0.7], and Part B with three higher g = [0.8, 0.9, 0.95] which covers the biological range of g well. From Part 

A, it is observed that less deviation appears when total diffuse reflectance is higher than 3× 10−2 or lower 
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than 3 × 10−4, and more deviation appears when total diffuse reflectance is in the middle range between [3 

× 10−4, 3× 10−2].  The deviation shown in middle range, mainly comes from the cases of using larger size 

of collection area 𝑑𝑎𝑟𝑒𝑎  such as 800𝜇𝑚  and 1000𝜇𝑚 . The higher range of total diffuse reflectance 

corresponds to stronger scattering and weaker absorption, and lower range corresponds to weaker scattering 

and stronger absorption.  From Part B where the biologically relevant g range is concerned, an excellent 

match between our model and MC data shows up for whole ranges of total diffuse reflectance from the 

lowest 1 × 10−5 to the highest 100. Since this work intends to be applied in biomedical context, we present 

the statistics report of how well the model matches with MC data for g = [0.8 – 0.95]. As shown in Part C, 

the mean error and standard deviation for 7 sizes of collection area is -4.2%±10.2%, -4.4%±9.3%, -

3.5%±9.2%, -2.5%±10.9%, -2.4%±13.3%, -2.8%±15.5%, -3.4%±17.4%, respectively. The mean 

errors are distributed within [-4.4%, 2.4%] for all 7 cases, while the standard deviation ranges from 9.2% 

from 𝑑𝑎𝑟𝑒𝑎 = 200𝜇𝑚 to 17.4% from 𝑑𝑎𝑟𝑒𝑎 = 1000𝜇𝑚, which indicates that in the range of g = [0.8 – 

0.95] lager 𝑑𝑎𝑟𝑒𝑎 brings more deviations than smaller 𝑑𝑎𝑟𝑒𝑎. But with the mean error percent less than 5% 

and  the maximum standard deviation less than 18%, our model matches MC data reasonably well in the 

tissue parameters space ranging in g = [0.8-0.95], 𝜇𝑎 = [0.001 − 1.0]𝑚𝑚
−1  and  𝜇𝑠

′ = [0.01 −

1000]𝑚𝑚−1, especially for smaller size of 𝑑𝑎𝑟𝑒𝑎.  
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Figure IV-10 Overall forward model evaluation with MC data on three-dimension tissue 

parameter space 

4.4.4 Inverse problem solving for oxygen-saturation level retrieval in phantom experiment with 

AIAC geometry  

As shown in Figure IV-11 part A, total diffuse reflectance collected by the 200𝜇𝑚 optical fiber with NA of 

0.39 is modeled by both by our model developed by integration approach based on center-illuminated 

geometry and existing model empirically developed from an area-illuminated geometry. We could see that 

as scattering increases, both models predict increased total diffuse reflectance and the same saturation stage 

as scattering in tissue grows strong, but when scattering is not stronger than 10 𝑚𝑚−1, the two models show 

different level of total diffuse reflectance since the two model are based on different geometries.  

The part B presents the oxygen-saturation level measured by reference system, extracted by using our model 

and existing empirical model. Among them, the original reference data shown by red circles, was smoothed 

by sliding window method in Matlab in order to suppress the noise. The SO2 extracted from data fitting with 
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both model shows the correct changing trend as measured by reference system, but also presents the 

following differences: 1) SO2 fitted by using existing empirical model shows an under-estimation at higher 

range and tends to match better when SO2 decreases, but produces a negative value when SO2 drops to close 

to zero. 2) SO2 fitted by using our model tends to match better at higher range and over-estimates when SO2 

drops down, but returns a positive number larger than zero when it drops to close to zero.  

 

Figure IV-11 (A) Comparison of total diffuse reflectance modeled with two different approaches. 

(B) Temporal change of oxygen-saturation level measured by reference system and SfRS system 

by data fitting with two different models. 

4.5 Discussions 

4.5.1 Forward model evaluation 

The statistics report of forward model evaluation in 4368 sceneries detailed in previous section demonstrates 

that our model accurately predicts the total diffuse reflectance collected via 7 different sizes of darea and 

from a broad range of tissue optical properties intended for the context of biomedical applications. This 

validates our modeling methodology introduced in this work, including the construction of spatially resolved 

diffuse reflectance model by concatenating an inner-field model and an outer-field model as detailed in 
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section 4.2.1, the integration approach to obtain the total diffuse reflectance as detailed in section 4.2.2, and 

the adaptation technique to broaden model’s effective range to any arbitrary 𝜇𝑠
′  values as detailed in section 

4.2.3. 

The concatenation strategy used in constructing spatial diffuse reflectance model, evades the difficulty of 

building a single analytical model that works from diffuse range down to sub-diffuse range close to point of 

entry which is particularly crucial for modeling single fiber collected total diffuse reflectance. In addition, a 

scattering-dependent border point 𝜌𝑏𝑜𝑟𝑑𝑒𝑟 = 𝛿/𝜇𝑠
′  that sepeartes inner field and outer field, coordinates two 

models to complement each other closely to address various tissue scattering conditions. The number 𝛿 is 

set as 0.5 in this work, but in fact we intentionally make an overlapping between the working ranges of inner-

field model and outer field model. This allows a spare adjustment range for 𝛿 value, and it could even include 

the effect of  𝜇𝑎 when needed, which provides our model with additional flexibility to resolve even complex 

tissue conditions.  

However, the concatenation design of our spatial model also brings an expected side effect: the discontinuity 

at border point 𝜌𝑏𝑜𝑟𝑑𝑒𝑟 = 𝛿/𝜇𝑠
′  . After integration, this discontinuity will propagate into the integral model 

of total diffuse reflectance. Taking 𝑑𝑎𝑟𝑒𝑎 = 200𝜇𝑚 for instance, when reduced scattering 𝜇𝑠
′  is less than 

5𝑚𝑚−1 , the border point 𝜌𝑏𝑜𝑟𝑑𝑒𝑟 ≥ 100𝜇𝑚 and the collected total diffuse reflectance will be solely 

dominated by inner-field model; when reduced scattering 𝜇𝑠
′  is larger than 5𝑚𝑚−1 , the border point 

𝜌𝑏𝑜𝑟𝑑𝑒𝑟 ≤ 100𝜇𝑚, then the collected total diffuse reflectance is determined by both inner-field model and 

outer-field model. Thus, each size of 𝑑𝑎𝑟𝑒𝑎  corresponds to one threshold reduced scattering [𝜇𝑠
′ ]𝑡ℎ𝑟𝑒𝑠 ,  

where total diffuse reflectance when plotted against 𝜇𝑠
′  will possess inevitable discontinuity.  A lot of efforts 

were invested on minimizing this discontinuity as much as possible while taking full advantages of the 

convenience brought by our concatenation design, since the extent of its existence will affect the forward 

modeling accuracy in comparison with MC results. Finally it is only slightly visible if observing part A-D in 

Figure IV-8 and Figure IV-9 carefully, but the deviation appearing in the middle range of total diffuse 
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reflectance as shown in part A of Figure IV-10 may indicate that this inevitable discontinuity may become 

worse under certain conditions such as probing tissue of lower anisotropy g with larger size of 𝑑𝑎𝑟𝑒𝑎. The 

absolute value of average error percent is less than 5% compared to MC data, and all show negative, which 

means that our model slightly under-estimate total diffuse reflectance generally. This may result from 

different reasons, including the discontinuity mentioned above, the inaccuracy of our models as well as the 

error introduced by adaptation technique, et.al. 

The adaptation technique, inspired by scattering-only case where the total diffuse reflectance is only 

dependent on the dimensionless term 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 regardless of the combinations within, is designed to broaden 

our integral model’s effective working range to any arbitrary 𝜇𝑠
′  values from the case 𝜇𝑠

′ = 1𝑚𝑚−1 where 

the initial inner-field model was developed. It turns out to work well in absorption-present cases with arbitrary 

𝜇𝑠
′  values even when 𝜇𝑎  reaches as high as 1 𝑚𝑚−1 , as shown in Figure IV-10. This novel technique 

successfully addresses the conflict between the practical need of applying the model to probe tissue with 

various optical properties including 𝜇𝑠
′ , and the realistic difficulty of empirically developing a spatial inner-

field model through calibration with equal amount of MC simulated data. Conversion method; inner-field, 

not outer-field does not need. The spatial inner-field model, though empirically calibrated with MC data, 

were inspired and guided by the solid angler approaches illustrated in Appendix 2. Compared with analytical 

model we developed in Chap IV, the structure of semi-empirically developed spatial inner-field model in this 

work, provides more simplicity and flexibility, and more importantly the inherent ability of being integrated 

to reach total diffuse reflectance, thus was finally adopted as inner-field model in this work.  

4.5.2 Inverse problem solving in experiment setup with AIAC geometry  

The model in this work was developed specific to a center-illumination and area-collection (CIAC) 

geometry, yet it reveals similar pattern as the total diffuse reflectance collected with area-illumination and 

area collection geometry, including the saturation plateau, scattering-sensitive region, and anisotropy-

sensitive region, as shown in Figure IV-7 and Figure IV-11. As stated before, the experiment setup of single-
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fiber reflectance spectroscopy involves a complete overlapping area-illumination and area-collection 

geometry, however the data fitting with our model correctly predicts the temporal change of SO2 over a large 

span from 100% down to 0%. Particularly when SO2 level is larger than 90%, which is the biological range 

in medical application, results from our model displays an excellent match with the reference, while the 

exiting empirical model displays a noticeable under-estimation. This indicates that considering the difficulty 

of analytically deriving a model from AIAC geometry, our model developed from CIAC geometry could be 

used as a good approximation in practice for inverse problem solving. Nevertheless, the geometry difference 

does exist and reflects itself displays a slight over-estimation when SO2 drops below 90% compared to the 

reference. Interesting things happened when SO2 finally dropped to 0%, our model returns a positive SO2 

value about 5%, while the existing empirical model returns a negative SO2 value about -8%, with data-fitting 

performed by using the same Matlab function lsqcurvefit (), same boundary parameter setting. Beyond the 

physiological range, the negative SO2 value extracted from data-fitting with existing empirical model, was 

also reported in an earlier publications [10] published by Linhui Yu in 2016, and that is what motived the 

author to collaborate with us in the seeking for a more robust model for tissue optical parameter retrieval.  

4.6 Summary 

In conclusion, this work developed a model of total diffuse reflectance collected from a center-illumination 

and area-collection geometry by integrating a spatial diffuse reflectance model constructed by concatenating 

two models for diffusive and sub-diffusive region. The comparison with a large amount of MC tissue probing 

sceneries displays excellent forward modeling accuracy over a broad range of  𝜇𝑎 = [0.001 − 1.0]𝑚𝑚
−1,  

g = [0.8-0.95], 𝜇𝑠
′ = [0.01 − 1000]𝑚𝑚−1 with average error less than 5% for 7 𝑑𝑎𝑟𝑒𝑎 in the range of and 

[50𝜇𝑚 − 1000𝜇𝑚, which validates our modeling methodology of concatenation strategy, integration 

approach and adaptation technique. The phantom experiment set up for inverse problem solving in a different 

geometry of overlapping area-illumination and area-collection, indicates the potential of applying our model 

to single-fiber reflectance spectroscopy for more robust retrieving tissue optical parameters.
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CHAPTER V  

 

 

MODEL-BASED PROFILING OF CHARACTERISTICS OF STEADY-STATE SFRS 

 

5.1 Introduction 

In the field of steady-state single-fiber diffuse reflectance spectroscopy, Kanick’s model [2, 18-20, 32, 34, 

35, 39] that was developed by empirically fitting with MC simulated results and phantom experiment data 

associated with an area-illumination and area-collection (AIAC) geometry, has powered many clinical 

applications of tissue probing. Kanick’s model also manifested the following characteristics of steady-state 

SfRS measurements as shown in Figure V-1 and illustrated below: (1) A saturation zone wherein the diffuse 

reflectance reaches a plateau as the dimensionless reduced scattering coefficient scaled to the fiber-diameter 

𝜇𝑠
′𝑑𝑓𝑖𝑏escalates to ~100. The total diffuse reflectance is close to 100% before scaled down 𝜂𝑙𝑖𝑚 = 2.47% 

which is the light collection efficiency at high-scattering end due to numerical aperture of a realistic fiber. In 

this saturation zone, total diffuse reflectance is insensitive to scattering change. The existence of absorption 

does not affect the saturation level.  (2) A diffusion zone wherein the diffuse reflectance increases as the 

reduced scattering coefficient increases but remains insensitive to the anisotropy factor.  The transition 

between the scattering-sensitive diffusion zone and scattering-insensitive saturation zone is observed to 
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appear approximately at 𝜇𝑠
′𝑑𝑓𝑖𝑏 = ~10 when tissue absorption is zero or very small. The increase of 

absorption tends to postpone the transition to happen at larger 𝜇𝑠
′𝑑𝑓𝑖𝑏 values, as shown in Part C. (3) A g-
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sensitive zone when scattering is weak, the total diffuse reflectance not only increases as the reduced 

scattering coefficient increase, but also sensitive to anisotropy factor g.  At same 𝜇𝑠
′ , the smaller g that 

corresponding to stronger backward scattering, yields out larger diffuse reflectance.  

 

Figure V-1 Characteristics of SfRS manifested by Kanick’s model. A). Kanick’s MC simulated 

total diffuse reflectance collected form absorption-free medium [18, 19]. B) Kanick’s model-

predicted total diffuse reflectance from absorption-free medium corresponding to part A. C) 

Kanick’s model-predicted total diffuse reflectance from medium with absorption. 

The chapter IV in this work has demonstrated a model of total diffuse reflectance associated with a center-

illumination and area-collection (CIAC) round geometry that was validated by large amount of MC 

simulated results generated from same CIAC geometry and further tested in reverse problem solving with 
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SfRS configuration. Interestingly, despite the geometry difference, our MC data and our model without 

considering numerical aperture, also presents the same characteristics as summarized before, as shown in 

following figure.  

 

Figure V-2 Characteristics presented by our MC data and model associated with center-

illumination and area-collection geometry, without including scaling effect of numerical aperture. 

The effect of numerical aperture of a realistic fiber, when approximated in the first order, could be considered 

as an overall scaling ratio of 𝜂𝑙𝑖𝑚 = (
𝑁𝐴

𝑛𝑡𝑖𝑠𝑠
)
2

, or empirically formularized as 𝜂𝑐 = 𝜂𝑙𝑖𝑚[1 +

1.55exp (−6.82𝜇𝑠
′𝑑𝑓𝑖𝑏𝑒𝑟)] according to Kanick’s monte-carlo simulation study[2]. In this work, we adopt 

the later 𝜂𝑐 formula to account for effect of numerical aperture, the same formula used by Kanick’s model. 

The Figure below presents how light collection efficiency changes with reduced scattering coefficient, based 

on an optical fiber with NA = 0.22 and core diameter 𝑑𝑓=1mm, tissue refraction index 𝑛𝑡𝑖𝑠𝑠=1.4. We see 

that at high-scattering end, 𝜂𝑐 reduces to 𝜂𝑙𝑖𝑚 = 2.47%, but at low scattering region, it can reach 2-3 folds 

of 𝜂𝑙𝑖𝑚.  
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Figure V-3 The empirical formula of light collection efficiency A) the red marker is Kanick’s MC 

simulated result [2]and black dashed line is the empirical formula developed by fitting with MC 

data. B) A reproduced result of  collection efficiency formula in left part but displayed in linear 

scale to better visualization of its change with scattering. 

Then scaling the data presented in Figure V-2 by 𝜂𝑐  will yield out the total diffuse reflectance of SfRS 

measurement as shown in Figure V-4. As observed from this figure, the three characteristics including 

saturation zone, diffusion zone, and g-sensitive zone, remain after adding the effect of numerical aperture in 

our model. The only difference is that in low-scattering range, the total diffuse reflectance is lifted up a little 

bit by a relatively higher value of 𝜂𝑐 than high-scattering region, which is consistent with Kanick’s study 

shown in Figure V-1.  
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Figure V-4 Characteristics presented by our MC data and model associated with center-

illumination and area-collection geometry, after including scaling effect of numerical aperture. 

However, those three characteristics observed in steady-state SfRS measurements is still insufficiently 

understood, due to lack of analytical model with physics insight. Analytically driven understanding of the 

global characteristic patterns of the SfRS measurement will be fundamentally important in designing the 

clinical applications with SfRS, such as providing guidance to the choice of optical fiber to better quantify 

the scattering change in tissue, and offering the potential to assess the anisotropy change in tissue by 

employing the g-sensitive zone in SfRS measurement. In this work, we will use the model developed in 

Chapter IV to provide a model-based profiling to above three steady-state SfRS patterns. 

5.2 Theory  

5.2.1 A summary of our total diffuse reflectance model  

We use same notions in this chapter as used in Chapter IV, such as b = 𝑑𝑎𝑟𝑒𝑎/2, 𝑧𝑎 = 1/𝜇𝑠
′ , et. al.  

If  𝑏 = ξza ≤ 𝛿𝑧𝑎, total diffuse reflectance is solely determined by inner-field model as represented in Eq. 

(V-1) 



92 
 

𝐼0↔ξza = 0.75
𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
ξ

1−𝑔
)
1−𝑝2𝛾

  (V-1) 

If  𝑏 = ξza > 𝛿𝑧𝑎, total diffuse reflectance is determined by both inner-field model an outer-field model 

as represented in Eq. (V-2): 

𝐼0↔ξza(darea, μs
′ , μa, g) = 𝐼0↔δza + [𝐼𝛿𝑧𝑎↔∞

Ψ − 𝐼𝜉𝑧𝑎↔∞
Ψ ] + [𝐼𝛿𝑧𝑎↔∞

Ψ∗ − 𝐼𝜉𝑧𝑎↔∞
Ψ∗ ] 

      +[𝐼𝛿𝑧𝑎↔∞
JZ

− 𝐼𝜉𝑧𝑎↔∞
JZ

] + [𝐼𝛿𝑧𝑎↔∞
JZ∗

− 𝐼𝜉𝑧𝑎↔∞
JZ∗

]  (V-2) 

𝐼0↔δza = 0.75
𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
δ

1−𝑔
)
1−𝑝2𝛾

    (V-3) 

𝐼𝛿𝑧𝑎↔∞
Ψ =

1

8√2πDμeff
[exp(−μeffza√δ

2 + 1)−exp(−μeffza√δ
2 + (1 + 2β)2)] (V-4) 

𝐼𝜉𝑧𝑎↔∞
Ψ =

1

8√2πDμeff
[exp(−μeffza√ξ

2 + 1)−exp(−μeffza√ξ
2 + (1 + 2β)2)]  (V-5) 

𝐼𝛿𝑧𝑎↔∞
Ψ∗ =

𝑆∗

8√2πDμeff
[exp(−μeffza√δ

2 + α2)− exp(−μeffza√δ
2 + (α + 2β)2)] (V-6) 

𝐼𝜉𝑧𝑎↔∞
Ψ∗ =

𝑆∗

8√2πDμeff
[exp(−μeffza√ξ

2 + α2)− exp(−μeffza√ξ
2 + (α + 2β)2)] (V-7) 

𝐼𝛿𝑧𝑎↔∞
JZ

=
3

8√2π
[

1

√δ2+1
exp(−μeffza√δ

2 + 1)+
(1+2β)

√δ2+(1+2β)2
exp(−μeffza√δ

2 + (1 + 2β)2)](V-8) 

𝐼𝜉𝑧𝑎↔∞
JZ

=
3

8√2π
[

1

√ξ2+1
exp(−μeffza√ξ

2 + 1)+
(1+2β)

√ξ2+(1+2β)2
exp(−μeffza√ξ

2 + (1 + 2β)2)](V-9) 

𝐼𝛿𝑧𝑎↔∞
JZ∗

=  

3𝑆∗

8√2π
[

α

√δ2+α2
exp(−μeffza√δ

2 + α2)+
(α+2β)

√δ2+(α+2β)2
exp(−μeffza√δ

2 + (α + 2β)2)] (V-10) 

𝐼𝜉𝑧𝑎↔∞
JZ∗

=  

3𝑆∗

8√2π
[

α

√ξ2+α2
exp(−μeffza√ξ

2 + α2)+
(α+2β)

√ξ2+(α+2β)2
exp(−μeffza√ξ

2 + (α + 2β)2)](V-11)  

5.2.2 The saturation level when scattering approaches to infinite 
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With above algebraic form of total diffuse reflectance model 𝐼0↔ξza(darea, μs
′ , μa, g), the saturation level 

could be analytically calculated as the limit of total diffuse reflectance when reduced scattering 𝜇𝑠
′  

approaches infinite.  Since the border point 𝜌𝑏𝑜𝑟𝑑𝑒𝑟 = 𝛿za  will approaches zero and thus 𝜌𝑏𝑜𝑟𝑑𝑒𝑟 =

𝛿za < 𝑏 stands anyway, we only need consider Eq. (V-2) for limit calculation. The saturation level denoted 

as Isatu, is contributed by five components including inner-field 𝐼0↔δza, master fluence rate 𝐼𝛿za↔b
Ψ , slave 

fluence rate 𝐼𝛿za↔b
Ψ∗ , master flux z-direction part  𝐼𝛿za↔b

JZ
, and slave flux z-direction part 𝐼𝛿za↔b

JZ∗
. 

Isatu = lim
𝜇𝑠
′→∞
𝐼0↔δza + lim

𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ + lim

𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ + lim

𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ

+ lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ∗

   (V-12) 

For inner-filed component, when 𝜇𝑠
′ → ∞, the parameter 𝛾 = 2𝜇𝑎/𝜇𝑠  → 0, 

lim
𝜇𝑠
′→∞
𝐼0↔δza = limγ→0

0.75𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)
1

1 − 𝑝2𝛾
(
δ

1 − 𝑔
)

1−𝑝2𝛾

 

          = 0.75𝑔10−1(1 − 𝑔)𝑔
δ

1−𝑔
     (V-13) 

For a typical value g=0.9 as the following derivation is based on, the inner-field component is  

lim
𝜇𝑠
′→∞
𝐼0↔δza = ~4.86%     (V-14) 

a) Master fluence rate component 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ = lim

𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ − lim

𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ

   (V-15) 

Calculate the first term, 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ = lim

𝜇𝑠
′→∞

1

8√2πDμeff
[exp(−μeffza

√δ2 + 1)−exp(−μeffza√δ
2 + (1 + 2β)2)] (V-16) 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

1

8√2𝜋
[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎

√𝛿
2
+1)−𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎

√𝛿
2
+(1+2𝛽)2)

𝐷𝜇𝑒𝑓𝑓
] (V-17) 

Apply 𝐷 =
1

[3(𝜇𝑎+𝜇𝑠
′)]
→

1

3𝜇𝑠
′ =

1

3
𝑧𝑎, as 𝜇𝑠

′ → ∞ 
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lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ =

3

8√2𝜋
[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎

√𝛿
2
+1)−𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎

√𝛿
2
+(1+2𝛽)2)

𝜇𝑒𝑓𝑓𝑧𝑎
]  (V-18) 

Denote  𝑥 = 𝜇𝑒𝑓𝑓𝑧𝑎 =
𝜇𝑒𝑓𝑓

𝜇𝑠
′ =

√3𝜇𝑎(𝜇𝑎+𝜇𝑠
′)

𝜇𝑠
′ = √

3𝜇𝑎(𝜇𝑎+𝜇𝑠
′)

[𝜇𝑠
′]2

→ 0, as 𝜇𝑠
′ → ∞ 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ =

3

8√2𝜋
𝑙𝑖𝑚
𝑥→0

𝑒𝑥𝑝(−𝑥√𝛿2 + (1 + 2𝛽)2)− 𝑒𝑥𝑝(−𝑥√𝛿2 + 1)

𝑥
 

=
3

8√2𝜋
[√𝛿2 + (1 +

4𝐴

3
)
2
− √𝛿2 + 1] = ~36.78%  (V-19) 

The details of calculation above is shown in Appendix 3. 

Now calculate the second term,  

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ = lim

𝜇𝑠
′→∞

1

8√2πDμeff
[exp(−μeffza

√ξ2 + 1)−exp(−μeffza
√ξ2 + (1 + 2β)2)] (V-20) 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

1

8√2𝜋
[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓

√𝑏
2
+(𝑧𝑎)2)−𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓

√𝑏
2
+(𝑧𝑎+2𝑧𝑏)

2
)

𝐷𝜇𝑒𝑓𝑓
]  (V-21) 

Expand the two exponential terms above to Taylor series of the first two orders, and the derivation shows 

that the second term turns out to be zero, as detailed in appendix 4.  

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏)

4𝛽(1+𝛽)

𝜇𝑠
′ 𝑑𝑎𝑟𝑒𝑎

= 0   (V-22) 

Finally, the master fluence rate component is 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ = ~36.78%     (V-23) 

It matches our expectation according to physics understanding of diffuse reflectance collection from tissue. 

As tissue scattering increases but size of collection area is fixed as 𝑏 = 𝑑𝑎𝑟𝑒𝑎/2, diffusely reflected photons 

tend to be remitted at region close to incident point and get collected within the area with 𝜌 = [0, 𝑏],  while 

the total diffuse reflectance collected 𝜌 = 𝑏  will become less and less. Then total diffuse reflectance 
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collected from limited size of 𝑑𝑎𝑟𝑒𝑎 will close to total diffuse reflectance collected from entire semi-infinite 

geometry.  

b) Slave fluence rate component  

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ = lim

𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ∗ − lim

𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ∗

   (V-24) 

Calculate the first term, 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ∗ = lim

𝜇𝑠
′→∞

𝑆∗

8√2πDμeff
[exp(−μeffza

√δ2 + α2)−exp(−μeffza√δ
2 + (α + 2β)2)] 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ∗ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎√𝛿

2 + 𝛼2) − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎√𝛿
2 + (𝛼 + 2𝛽)2)

𝜇𝑒𝑓𝑓𝑧𝑎
] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
× 𝑙𝑖𝑚
𝜇𝑒𝑓𝑓𝑧𝑎→0

[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎√𝛿

2 + 𝛼2) − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎√𝛿
2 + (𝛼 + 2𝛽)2)

𝜇𝑒𝑓𝑓𝑧𝑎
] 

=
3𝜂

8√2𝜋
× 𝑙𝑖𝑚
𝑥→0
[
𝑒𝑥𝑝(−𝑥√𝛿2+𝛼2)−𝑒𝑥𝑝(−𝑥√𝛿2+(𝛼+2𝛽)2)

𝑥
]     (V-25) 

By using L'Hospital's Rule, as detailed in Appendix 5, 

The first term is 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔∞
Ψ∗ =

3𝜂

8√2𝜋
√𝛿2 + (𝛼+

4𝐴

3
)
2
−√𝛿2 +𝛼2 = ~32.59%  (V-26) 

Calculate the second term,  

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ∗ = lim

𝜇𝑠
′→∞

𝑆∗

8√2πDμeff
[exp(−μeffza√ξ

2 + α2)−exp(−μeffza√ξ
2 + (α + 2β)2)] (V-27) 

Rewrite it as 
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lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ∗ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓

√𝑏
2
+(𝛼𝑧𝒂)2)−𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓

√𝑏
2
+(𝛼𝑧𝒂+2𝛽𝑧𝑎)2)

𝐷𝜇𝑒𝑓𝑓
] (V-28) 

Apply the following Taylor series expansion at x = 0 to the first two order in the derivation as detailed in 

Appendix 6,  

√1 + 𝑥 = 1 +
1

2
𝑥, 

√𝑎2 + 𝑥 = 𝑎 +
1

2𝑎
𝑥, (a>0) 

𝑒𝑥𝑝(−𝑥) = 1 − 𝑥 

The second term result 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ∗ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

3𝜂

8√2𝜋
[𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏) (

8𝐴
3
(𝛼+

2𝐴
3
)

𝜇𝑠
′ 𝑑
𝑎𝑟𝑒𝑎

)] = 0  (V-29) 

At last, the slave fluence rate component is  

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ = ~32.59%     (V-30) 

c) Master flux z-direction component 

lim
μs
′→∞
Iδza↔b
JZ

= lim
μs
′→∞
Iδza↔∞
JZ

− lim
μs
′→∞
Ib↔∞
JZ

   (V-31) 

Calculate the first term 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔∞
𝐽𝑍

 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2π
[

1

√δ
2
+1

exp(−μeffza
√δ2 + 1)+

(1+2β)

√δ
2
+(1+2β)2

exp(−μeffza√δ
2 + (1 + 2β)2)] (V-32) 

Refer to Appendix 2, μeffza → 0  as 𝜇𝑠
′ → ∞.  The two exponential terms above approaches one, hence,  
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𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔∞
𝐽𝑍

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
[

1

√𝛿
2
+1

+
(1+2𝛽)

√𝛿
2
+(1+2𝛽)2

]   (V-33) 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔∞
𝐽𝑍

=
3

8√2𝜋

[
 
 
 
1

√𝛿
2
+1

+
(1+

4𝐴
3
)

√𝛿
2
+(1+

4𝐴
3
)
2

]
 
 
 

= ~15.95%  (V-34) 

Now calculate the second term 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍

 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2π
[
1

√ξ
2
+1

exp(−μeffza√ξ
2 + 1)+

(1+2β)

√ξ
2
+(1+2β)2

exp(−μeffza√ξ
2 + (1 + 2β)2)](V-35) 

Rewrite it as below: 

𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2π
[

𝑧𝑎

√𝑏2+(𝑧𝑎)
2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎)
2) +

(𝑧𝑎+2𝑧𝑏)

√𝑏2+(𝑧𝑎+2𝑧𝑏)
2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎 + 2𝑧𝑏)
2)] 

 (V-36) 

Further simplify it by applying Taylor series expansion as detailed in Appendix 7.  

The second term reaches zero: 

 𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍 = 𝑙𝑖𝑚

𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)

4(1+
2𝐴

3
)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

= 0  (V-37) 

At last, the master flux z-direction component is 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔𝑏
𝐽𝑍 = ~15.95%    (V-38) 

d) Slave flux z-direction component 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ∗

= lim
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔∞
JZ∗

− lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
JZ∗

  (V-39) 

Calculate the first term, 
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𝐼𝛿𝑧𝑎↔∞
JZ∗

= 

3𝑆∗

8√2π
[

α

√δ2+α2
exp(−μeffza√δ

2 + α2)+
(α+2β)

√δ2+(α+2β)2
exp(−μeffza√δ

2 + (α + 2β)2)](V-40) 

Refer to Appendix 2, μeffza → 0  as 𝜇𝑠
′ → ∞.  The two exponential terms above approaches to one. 

So,  

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔∞
𝐽𝑍 = 𝑙𝑖𝑚

𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
[

α

√𝛿2+𝛼2
+

(𝛼+2𝛽)

√𝛿2+(𝛼+2𝛽)2
]  (V-41) 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔∞
𝐽𝑍 =

3𝜂

8√2𝜋
[

α

√𝛿2+𝛼2
+

(𝛼+
4𝐴

3
)

√𝛿2+(𝛼+
4𝐴

3
)
2
] = ~8.38%  (V-42) 

Now calculate the second term, 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
JZ∗

=  

3𝑆∗

8√2π
[

α

√ξ2+α2
exp(−μeffza√ξ

2 + α2)+
(α+2β)

√ξ2+(α+2β)2
exp(−μeffza√ξ

2 + (α + 2β)2)](V-43) 

Rewrite it as 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
JZ∗

=
3𝑆∗

8√2𝜋
[

𝑧𝑎
∗

√𝑏2+(𝑧𝑎
∗)2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎
∗)2) +

(𝑧𝑎
∗+2𝑧𝑏)

√𝑏2+(𝑧𝑎
∗+2𝑧𝑏)

2
exp(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2)]    (V-44) 

Further simplify it by applying Taylor series expansion as detailed in Appendix 8.  

The second term reaches zero. 

 𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍∗

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝜂

8√2𝜋
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏) {

4(𝛼+
2𝐴
3
)

𝜇𝑠
′ 𝑑
𝑎𝑟𝑒𝑎

} = 0  (V-45) 

At last, the master flux z-direction component is 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍∗

= ~8.38%    (V-46) 
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e) Summary of saturation level 

lim
𝜇𝑠
′→∞
𝐼0↔δza = ~4.86% 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ =

3

8√2𝜋
[√𝛿2 + (1 +

4𝐴

3
)
2

−√𝛿2 + 1] = ~36.78% 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ =

3𝜂

8√2𝜋
√𝛿2 + (𝛼 +

4𝐴

3
)
2

−√𝛿2 + 𝛼2 = ~32.59% 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ

=
3

8√2𝜋
[
 
 
 

1

√𝛿2 + 1
+

(1 +
4𝐴
3 )

√𝛿2 + (1 +
4𝐴
3 )

2

]
 
 
 

= ~15.95% 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ∗

=
3𝜂

8√2𝜋
[
 
 
 

α

√𝛿2 + 𝛼2
+

(𝛼 +
4𝐴
3 )

√𝛿2 + (𝛼 +
4𝐴
3 )

2

]
 
 
 

= ~8.38% 

The saturation predicted our model before including effect of numerical aperture is  

Isatu = lim
𝜇𝑠
′→∞
𝐼0↔δza + lim

𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ + lim

𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ + lim

𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ

+ lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
JZ∗

= 97.56% 

 (V-47) 

As scattering approaches infinite, light collection efficiency will collapse down to 𝜂𝑙𝑖𝑚, equal of ~2.47% 

for a fiber with NA = 0.22, and tissue refraction index = 1.4.  

𝜂𝑐 = 𝜂𝑙𝑖𝑚[1 + 1.55exp (−6.82𝜇𝑠
′𝑑𝑓𝑖𝑏𝑒𝑟)] = 𝜂𝑙𝑖𝑚 = (

𝑁𝐴

𝑛𝑡𝑖𝑠𝑠
)
2
 (V-48) 

The saturation predicted our model after including effect of numerical aperture is  

Isatu
NA = 𝜂𝑙𝑖𝑚 × Isatu = ~2.41%    (V-49) 

5.2.3 The transition point prior to saturation 
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From Eq. (IV-29), we know that inner-field contributed total diffuse reflectance is calculated by using 

adaptation technique with which any arbitrary 𝜇𝑠
′  is mapped back to 𝜇𝑠

′ = 1𝑚𝑚−1 case. Hence inner-field 

component no longer has dependency on scattering, and does not contribute to the calculation of transition 

point. 

a) Transition point of master fluence rate component 

Prior to saturation,  

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ =

3

8√2𝜋
[√𝛿2 + (1 +

4𝐴

3
)
2
− √𝛿2 + 1] − 𝑙𝑖𝑚

𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

4𝛽(1+𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

 (V-50) 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ =

3

8√2𝜋
[√𝛿2 + (1 +

4𝐴

3
)
2
− √𝛿2 + 1] − 𝑙𝑖𝑚

𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

8𝐴

3
(1+

2𝐴

3
)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

 (V-51) 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ =

3

8√2𝜋
[√𝛿2 + (1 +

4𝐴

3
)
2
− √𝛿2 + 1] lim

𝜇𝑠
′→∞
 [1 − 𝑒𝑥𝑝(1−𝜇𝑒𝑓𝑓𝑏)

𝑃1

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

] (V-52) 

Where  

𝑃1 =
8𝐴

3
(1+

2𝐴

3
)

√𝛿2+(1+
4𝐴

3
)
2
−√𝛿2+1

= ~6.48   (V-53) 

Denote transition factor 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 as 

𝑇𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃1

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

=
~6.48

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

    (V-54) 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ = 36.78%× lim

𝜇𝑠
′→∞

[1 − 𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟] (V-55) 

As 𝜇𝑠
′  is increasing toward infinite, 𝐼𝛿za↔b

Ψ  is moving upward saturation plateau, while the term 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟  is decreasing downward to zero. Essentially, it is the decreasing speed of 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟 that determines the increasing speed of 𝐼𝛿za↔b
Ψ and , 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 further modulates the 

exponentially deceasing speed of 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏).  
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When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 > 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 < 4.86, 𝐼𝛿za↔b

Ψ  tends to increase fast and very sensitive to scattering 

change, as observed in diffusion region shown in Figure V-5. 

 When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 < 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 > 4.86,  𝐼𝛿za↔b

Ψ  tends to increase slower than above case. Especially 

when 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 → 0, 𝐼𝛿za↔b
Ψ  will stop increasing, as observed in saturation zone in Figure V-5. 

Hence, the 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 = 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 = 4.86, will correspond to a sensitive point where increasing 

rate of 𝐼𝛿za↔b
Ψ  undergoes a substantial change, which is the transition point we are seeking for slave fluence 

rate component.   

b) Transition point of slave fluence rate component 

Prior to saturation,  

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ =

3𝜂

8√2𝜋
[√𝛿2 + (𝛼+

4𝐴

3
)
2
−√𝛿2 +𝛼2]− 𝑙𝑖𝑚

𝜇𝑠
′→∞

3𝜂

8√2𝜋
[𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏) (

8𝐴
3
(𝛼+

2𝐴
3
)

𝜇𝑠
′ 𝑑
𝑎𝑟𝑒𝑎

)] (V-56) 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ =

3𝜂

8√2𝜋
[√𝛿2 + (𝛼+

4𝐴

3
)
2
−√𝛿2 +𝛼2] lim

𝜇𝑠
′→∞

[1 − 𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏) (
𝑃2

𝜇𝑠
′ 𝑑
𝑎𝑟𝑒𝑎

)] (V-57) 

Where 

𝑃2 =
8𝐴

3
(𝛼+

2𝐴

3
)

√𝛿2+(𝛼+
4𝐴

3
)
2
−√𝛿2+𝛼2

= ~4.86   (V-58) 

Denote transition factor 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 as 

𝑇𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃2

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

=
4.86

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

    (V-59) 

lim
𝜇𝑠
′→∞
𝐼𝛿za↔b
Ψ∗ = 32.59%× lim

𝜇𝑠
′→∞

[1 − 𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟]  (V-60) 

As 𝜇𝑠
′  is increasing toward infinite, 𝐼𝛿za↔b

Ψ∗  is moving upward saturation plateau, while the term 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟  is decreasing downward to zero. Essentially, it is the decreasing speed of 
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𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟 that determines the increasing speed of 𝐼𝛿za↔b
Ψ∗ , and , 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 further modulates the 

exponentially deceasing speed of 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏).  

When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 > 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 < 4.86, 𝐼𝛿za↔b

Ψ∗  tends to increase fast and very sensitive to scattering 

change, as observed in diffusion region shown in Figure V-5.  

 When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 < 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 > 4.86,  𝐼𝛿za↔b

Ψ∗  tends to increase slower than above case. Especially 

when 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 → 0, 𝐼𝛿za↔b
Ψ∗  will stop increasing, as observed in saturation zone in Figure V-5.. 

Hence, the 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 = 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 = 4.86, will correspond to a sensitive point where increasing 

rate of 𝐼𝛿za↔b
Ψ∗  undergoes a substantial change, which is the transition point we are seeking for slave fluence 

rate component.  

c) Transition point of master flux z-direction component 

Prior to saturation,  

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔𝑏
𝐽𝑍

=
3

8√2𝜋

[
 
 
 
1

√𝛿
2
+1

+
(1+

4𝐴
3
)

√𝛿
2
+(1+

4𝐴
3
)
2

]
 
 
 

− 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏)

4(1+
2𝐴
3
)

𝜇𝑠
′ 𝑑
𝑎𝑟𝑒𝑎

  (V-61) 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝛿𝑧𝑎↔𝑏
𝐽𝑍

= ~15.95%× 𝑙𝑖𝑚
𝜇𝑠
′→∞

[1 − 𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓𝑏)
𝑃3

𝜇𝑠
′ 𝑑
𝑎𝑟𝑒𝑎

]  (V-62) 

Where 

𝑃3 =
4(1+

2𝐴

3
)

1

√𝛿2+1
+

(1+
4𝐴
3 )

√𝛿2+(1+
4𝐴
3
)
2

= ~6.70    (V-63) 

Denote transition factor 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 as 

𝑇𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃3

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

=
6.70

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

    (V-64) 
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As 𝜇𝑠
′  is increasing toward infinite, 𝐼𝛿𝑧𝑎↔𝑏

𝐽𝑍
 is moving upward saturation plateau, while the term 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟  is decreasing downward to zero. Essentially, it is the decreasing speed of 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟 that determines the increasing speed of𝐼𝛿𝑧𝑎↔𝑏
𝐽𝑍

, and , 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 further modulates the 

exponentially deceasing speed of 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏).  

When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 > 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 < 6.70, 𝐼𝛿𝑧𝑎↔𝑏

𝐽𝑍
tends to increase fast and very sensitive to scattering 

change, as observed in diffusion region shown in Figure V-5.  

 When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 < 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 > 6.70,  𝐼𝛿𝑧𝑎↔𝑏

𝐽𝑍
tends to increase slower than above case. Especially 

when 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 → 0, 𝐼𝛿𝑧𝑎↔𝑏
𝐽𝑍

 will stop increasing, as observed in saturation zone in Figure V-5. 

Hence, the 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 = 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 = 6.70, will correspond to a sensitive point where increasing 

rate of 𝐼𝛿𝑧𝑎↔𝑏
𝐽𝑍

 undergoes a substantial change, which is the transition point we are seeking for slave fluence 

rate component.  

d) Transition point of slave flux z-direction component 

Prior to saturation, 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍∗ =

3𝜂

8√2𝜋
[

α

√𝛿2+𝛼2
+

(𝛼+
4𝐴

3
)

√𝛿2+(𝛼+
4𝐴

3
)
2
] − 𝑙𝑖𝑚

𝜇𝑠
′→∞

3𝜂

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) {

4(𝛼+
2𝐴

3
)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

}  (V-65) 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍∗ = 8.38%× 𝑙𝑖𝑚

𝜇𝑠
′→∞

[1 − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)
𝑃4

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

]   (V-66) 

Where 

𝑃4 =
4(𝛼+

2𝐴

3
)

α

√𝛿2+𝛼2
+

(𝛼+
4𝐴
3 )

√𝛿2+(𝛼+
4𝐴
3
)
2

= ~8.73   (V-67) 

Denote transition factor 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 as 
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𝑇𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑃4

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

=
8.73

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

    (V-68) 

As 𝜇𝑠
′  is increasing toward infinite, 𝐼𝑏↔∞

𝐽𝑍∗
 is moving upward saturation plateau, while the term 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟  is decreasing downward to zero. Essentially, it is the decreasing speed of 

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑇𝑓𝑎𝑐𝑡𝑜𝑟 that determines the increasing speed of 𝐼𝑏↔∞
𝐽𝑍∗

, and , 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 further modulates the 

exponentially deceasing speed of 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏).  

When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 > 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 < 8.73, 𝐼𝑏↔∞

𝐽𝑍∗
 tends to increase fast and very sensitive to scattering 

change, as observed in diffusion region shown in Figure V-5. 

 When 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 < 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 > 8.73,  𝐼𝑏↔∞

𝐽𝑍∗
 tends to increase slower than above case. Especially 

when 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 → 0, 𝐼𝑏↔∞
𝐽𝑍∗

 will stop increasing, as observed in saturation zone in Figure V-5. 

Hence, the 𝑇𝑓𝑎𝑐𝑡𝑜𝑟 = 1, namely 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 = 8.73, will correspond to a sensitive point where increasing 

rate of 𝐼𝑏↔∞
𝐽𝑍∗

 undergoes a substantial change, which is the transition point we are seeking for slave fluence 

rate component.  

e) Summary of transition points 

𝑃1 =

8𝐴
3
(1 +

2𝐴
3
)

√𝛿2 + (1 +
4𝐴
3 )

2

− √𝛿2 + 1

= ~6.48 

𝑃2 =

8𝐴
3 (𝛼 +

2𝐴
3 )

√𝛿2 + (𝛼 +
4𝐴
3 )

2

− √𝛿2 + 𝛼2

= ~4.86 
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𝑃3 =
4 (1 +

2𝐴
3
)

1

√𝛿2 + 1
+

(1 +
4𝐴
3 )

√𝛿2 + (1 +
4𝐴
3 )

2

= ~6.70 

𝑃4 =
4(𝛼 +

2𝐴
3
)

α

√𝛿2 + 𝛼2
+

(𝛼 +
4𝐴
3
)

√𝛿2 + (𝛼 +
4𝐴
3
)
2

= ~8.73 

The transition point for entire model is defined as the mean of above four transition points with each weighted 

by its corresponding saturation level divided by 92.71% which is sum of our components of outer-field total, 

as shown in equation below. Because inner-field model does not affect any transition, the weight calculation 

excludes the inner-field contributed saturation level in denominator.  

𝑃𝑡𝑟𝑎𝑛𝑠 =
36.78%

92.71%
𝑃1 +

32.59%

92.71%
𝑃2 +

15.95%

92.71%
𝑃3 +

8.38%

92.71%
𝑃4 = ~6.48  (V-69) 

5.2 Results and Discussion  

5.3.1 Saturation level  

Our model predicts a saturation level of 97.56% before adding the effect of numerical aperture. To validate 

this result, we use MC simulated total diffuse reflectance collected from an absorption-free medium with 

large reduced scattering coefficient 𝜇𝑠
′  of 1000 𝑚𝑚−1 for comparison, since we cannot simulate infinite 

large reduced scattering in monte-carlo. The collection area 𝑑𝑎𝑟𝑒𝑎 is set 1mm, g = 0.9, 𝑛𝑡𝑖𝑠𝑠 = 1.4, the 

medium thickness is 1000mm, and the rest parameters are consistent with previously used. Three different 

illumination geometries are investigated, including center-illumination, gaussian-type illumination with 

FWHM beam diameter of 0.5mm, and a uniform circular area illumination. For center-illumination 

geometry, the MC predicted saturation level is 95.62%; for area-illumination geometry with gaussian-type 
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intensity profile, the MC predicted saturation level is 94.64%, and for area-illumination geometry with 

uniform intensity profile, the MC predicted saturation level is 94.30%.   

After including the effect of numerical aperture, our model predicts a saturation level of 2.41% for SfRS 

measurement. Since we have no access to MC simulated data with NA included, we compare our results 

with the saturation level predicted by Kanick’s model.  When 𝜇𝑠
′  goes to infinite, Kanick’s model reduces 

to  𝜂𝑙𝑖𝑚 = 2.47%, very close to our result.  

From the section 5.2.2, we know that the saturation level is dependent upon anisotropy g and tissue refraction 

index  𝑛𝑡𝑖𝑠𝑠,  which vary in a small range for biological tissue. The above results are calculated based on the 

typical value g=0.9 and 𝑛𝑡𝑖𝑠𝑠 = 1.4. When g varies within [0.5, 0.99] and 𝑛𝑡𝑖𝑠𝑠 = 1.4, the saturation level 

varies in a narrow band between 96.67% and 98.41%.  

5.3.2 Transition point 

Our model predicts a transition point of 𝜇𝑠
′𝑑𝑓𝑖𝑏 = ~6.48, close to the visually observed transition point 

𝜇𝑠
′𝑑𝑓𝑖𝑏 = ~10 from MC simulated data with absorption coefficient 𝜇𝑎 equal to zero or very weak. From 

section 5.2.3, though the transition point also has dependency on anisotropy g and tissue refraction index 

𝑛𝑡𝑖𝑠𝑠, numerical test shows that it stays stably at a value of 6.48 when g varies between [0.5, 0.99]. 

Interestingly, our derivation shows that the four components of outer-field model have different transition 

points, ~6.48 for master fluence rate component, ~4.86 for slave fluence rate component, ~6.70 for mater 

flux z-direction component, and ~8.73 for slave flux z-direction component. And the final transition point 

~6.48 which is calculated as weighted mean of the four above, equals the transition point of master fluence 

rate component. Thus, we predict that when decomposing the outer-field model into four components and 

plotting them together against 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎, we shall be able to visually observe the following effects: 

1) The slave fluence rate will transition into saturation stage earlier than other three components. 
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2) The master fluence rate component and master flux z-direction component will have approximate at 

the same position.  

3) The slave flux z-direction component will the last one that transition into saturation stage.  

4) The whole model shall transition to saturation at same position with master fluence rate. 

5) The four components shall saturate at different levels at high scattering end, corresponding to the 

results derived in section 5.2.2.e.  

To test above prediction, we plot the model decomposition against 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 in an example described as 

below: 𝜇𝑠
′ = [10−2, 105]𝑚𝑚−1, g = 0.9,  𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚

−1, 𝜇𝑎 = 0.01𝑚𝑚
−1,  𝑛𝑡𝑖𝑠𝑠 = 1.4.  As 

shown in following figure, when 𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 is larger than 2𝛿, namely 𝜇𝑠

′ ≥ 1𝑚𝑚−1 in this example, the 

entire model consists of five components, and they saturate at different level that match our derivation. The 

sequence of transition point also matches the expectation above. 
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Figure V-5 Decomposition of model shows different levels of saturation and transition points as 

derived. 

5.3.3 Anisotropy-sensitive zone 

The g-sensitive zone is observed in low-scattering region. In our model construction, when 

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 is less than 2𝛿, namely 𝜇𝑠

′ ≤ 1𝑚𝑚−1 for 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚
−1, the total diffuse reflectance 

collected by a single fiber probe is solely dominated by the inner-field model. Therefore, this g-

sensitive zone is mainly affected by our inner-field model as formularized in Eq. (IV-29). The 

following figure presents the g-dependency predicted by our model. From part A, we see that g-

sensitive zone is mainly observed from the region where inner-field model completely dominates. 

In part B, we choose three weak scattering conditions 𝜇𝑠
′ = [0.01, 0.05, 0.1]𝑚𝑚−1 and plot total 

diffuse reflectance plotted against anisotropy factor g from 0.5 up to 0.99. As the increase of 

anisotropy factor, which means stronger forward scattering properties, the total diffuser 

reflectance tends to decrease as expected. 



109 
 

 

Figure V-6 the g-dependency in low scattering region modeled by inner-field model.  

 

5.4 Summary  

Chapter IV demonstrated an integration model for steady-state diffuse reflectance associated with a single-

fiber applicator-probe that agrees numerically with a long-standing semi-empirical model [2, 18-20, 32, 34, 

35, 39]. In this Chapter, the integration model is based upon to address several characteristic features 

manifested by Kanick’s semi-empirical model. Kanick’s semi-empirical model has pictured the following 

zones of single-fiber diffuse reflectance, at the absence of absorption: (1) A saturation zone wherein the 

diffuse reflectance approaches 0.97 before scaled down by fiber collection efficiency 2.47% at high-

scattering end, as the dimensionless reduced scattering coefficient scaled to the fiber-diameter escalates to 

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎~100. (2) A diffusion zone wherein the diffuse reflectance increases as the reduced scattering 

coefficient increases but remains insensitive to the anisotropy factor and that transits softly to the saturation 

zone at  𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎 approximately within [5, 10].  (3) A weak-scattering zone, wherein the increase of the 

diffuse reflectance as a function of the reduced scattering coefficient is also affected by the anisotropy factor 

(for g=0.5 to 0.9 with the HG phase function). These features of steady-state single-fiber diffuse reflectance 

are examined by using the integration model of Chapter IV in the general presence of absorption. For the 
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saturation zone, the integration model analytically arrives at a saturation level of 97.57% before scaled down 

by fiber collection efficiency 2.47% at high-scattering end. For the diffusion zone, the integration model 

mandates the transition from it to the saturation zone to occur at approximately 𝜇𝑠
′𝑑𝑓𝑖𝑏~6.48, in addition to 

revealing the dependence of the diffuse reflectance upon the reduced scattering. For the weak-scattering zone, 

the integration model conveniently delivers the dependence of the diffuse reflectance upon the anisotropy 

factor at the same level of reduced scattering. The analytically originated approach demonstrated in this thesis 

combined provides a model approach to diffuse reflectance associated with single fiber applicator probe that 

will also be useful to modeling time-domain and fluorescence-domain SfRS configurations wherein model-

based understandings of the forward measurements have much to improve.
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CHAPTER VI  

 

MODELING OF TIME-DOMAIN SFRS 

 

6.1 Introduction 

Time-domain technique injects an extremely short pulse of light into tissue and measures the arrival time of 

reemitted photons that represents the path length one photon travels inside tissue, as illustrated in part A of 

Figure VI-1 . Hence, it provides the richest information about tissue morphology and physiology, compared 

to steady-state configuration.  

 

Figure VI-1 Part (A) The principle of time-domain technique; Part (B) An example of 

implantation of time-domain SfRS. 
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As shown in part B of Figure VI-1, Time-domain SfRS utilizes a pulsed laser to fire an extremely short pulse 

and used an ultrafast time-gated single photon avalanche diode (time-gated SPAD) as detector to measure 

temporal response from tissue. The probe at distal end both injecting light into and collecting remitted light 

from tissue, can be either a single-fiber probe or a single fiber-bundle probe which bundles small fibers 

together to form a larger probe dimension. 

Time-domain SfRS was first demonstrated experimentally in 2012 by Erik, et al.[17], and so far their study 

remains the only published work in this field. As shown in Equation below, an incomplete empirical model 

that need Monte-Carlo simulated data as its input, was adopted to approximately describe time-resolved 

diffuse reflectance.  

𝑦𝑑𝑖𝑓𝑓( 𝜇𝑎, 𝜇𝑠
′ , 𝑡) = 𝑘𝑑(𝜇𝑠

′)𝑦0(𝑡)exp (−𝜇𝑎𝑣𝑡)      (VI-1)               

Where 𝑘𝑑(𝜇𝑠
′) is a coefficient describing the intensity of diffuse reflectance, 𝑦0(𝑡) is the shape of diffusely 

reflected curve, and 𝑣 is the light speed in probed medium. It employs beer-lambert law to separate scattering 

contribution and absorption contribution, but the reason for its incompleteness is that both 𝑘𝑑(𝜇𝑠
′) and 𝑦0(𝑡) 

are not modeled in specific form. To extract 𝜇𝑎 through data fitting, 𝑘𝑑(𝜇𝑠
′) has to be set as free parameter 

and 𝑦0(𝑡)  is generated by Monte-Carlo simulation at one fixed tissue condition chosen by empirical 

observation but used for all fittings, as described in their paper. The incompleteness of this model also makes 

it impossible to extract scattering information from measured time-resolved SfRS signal. More applications 

of time domain SfRS is impeded by inadequate understanding of the measurement characteristics. 

6.2 Theory and Method 

6.2.1 The structure of time-domain model 

As shown in Figure VI-2, a center-illumination and area collection (CIAC) geometry on semi-infinite air-

tissue interface is our concern in time-domain modeling work. The light source is described as 

𝛿(𝜌)𝛿(1 − �̂� ∙ �̂�)𝛿(𝑡), a direction point source that launches a temporal impulse into a homogeneous 
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medium from air along normal direction. The diffusely reflected photons hit at different position on the air-

tissue interface at different time, and its spatial and temporal distribution is described by 𝑅(𝜌, 𝑡) due to its 

cylindrical symmetry to light source and termed as time-domain spatially resolved diffuse reflectance in this 

work. The circular collection area with diameter 𝑑𝑎𝑟𝑒𝑎 is centered by the impulsive directional point source. 

The total diffuse reflectance collected via 𝑑𝑎𝑟𝑒𝑎 is denoted as 𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡)In addition, both 𝑅(𝜌, 𝑡) and 

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) it also depends on tissue optical properties such as absorption coefficient 𝜇𝑎 , reduced 

scattering coefficient 𝜇𝑠
′ , anisotropy factor g, and tissue refraction index 𝑛𝑡𝑖𝑠𝑠 , among which g is 

approximately 0.9 and 𝑛𝑡𝑖𝑠𝑠 = 1.4 for biological tissue.  

 

Figure VI-2  The geometry of concern in time-domain work. 

The above geometry in this time-domain work is as same as the one in Chapter V steady-state work, except 

that light source changes to an impulsive directional point from a continuous wave directional point. Thus, 

for the problem of light propagation in turbid medium, there is an inherent connection between steady-state 

solution that was already developed in Chapter V and the time-domain solution in this Chapter: 

𝑅𝑠𝑠(𝜌) = ∫ 𝑅(𝜌, 𝑡)𝑑𝑡
∞

0
     (VI-2) 

𝐼𝑠𝑠(𝑑𝑎𝑟𝑒𝑎) = ∫ 𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡)𝑑𝑡
∞

0
    (VI-3) 
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Where 𝑅𝑠𝑠(𝜌) and 𝐼𝑠𝑠(𝑑𝑎𝑟𝑒𝑎) refer to the models of spatially-resolved diffuse reflectance and total diffuse 

reflectance in steady-state configuration. Therefore, our time-domain model shares the same concatenation 

structure as steady-state model, both for 𝑅(𝜌, 𝑡) and 𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡). As shown in Figure VI-3, the time-domain 

spatially resolved diffuse reflectance 𝑅(𝜌, 𝑡) consists of an inner-field model R←δ(ρ, t) and an outer field 

model Rδ→(ρ, t) that are bordered by 𝛿𝑧𝑎 . The outer-field Rδ→(ρ, t) still employs a master-slave dual 

sources configuration and has four components, but each component needs to be derived from time-variant 

diffusion equation. When radius of collection area b is less than 𝛿𝑧𝑎, the total diffuse reflectance 𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡) 

is solely dominated by inner-field model; when b is larger than 𝛿𝑧𝑎,  𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡) is contributed by both 

inner-field model and outer-field model.  

 

Figure VI-3 The structure of time-domain model  

6.2.2 Time-domain spatially resolved diffuse reflectance 

a) Inner-field model 

The steady-state inner-field model as expressed in Equation (IV-5) is connected to time-domain 

inner field model Rδ→(𝜌, 𝑡) by relation:  
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0.75𝑔

2π
10−(1+𝑝1𝛾)

𝜇𝑠
2(1−𝑔)𝑔

(μsρ)
1+𝑝2𝛾

exp(−𝛾) = ∫ R←δ(ρ, t)𝑑𝑡
∞

0
  (VI-4) 

The boundary condition that R←δ(ρ, t) should meet is: 

R←δ(ρ, t)|𝑡=∞ = 0     (VI-5) 

We construct the solution of Rδ→(𝜌, 𝑡) in the following form 

R←δ(ρ, t) = h(ρ)exp (−𝜇𝑎𝑐𝑡)    (VI-6) 

Substitute it into the right-hand part of Equation (VI-2) and integrate it, 

∫ h(ρ)exp (−𝜇𝑎𝑐𝑡)𝑑𝑡
∞

0
= h(ρ)

1

−𝜇𝑎𝑐
exp(−𝜇𝑎𝑐𝑡) |0

∞ =
h(ρ)

𝜇𝑎𝑐
  (VI-7) 

Thus h(ρ) could be easily solved: 

h(ρ) =
0.75𝑔

2π
10−(1+𝑝1𝛾)

𝜇𝑠
2(1−𝑔)𝑔

(μsρ)
1+𝑝2𝛾

exp(−𝛾)𝜇𝑎𝑐   (VI-8) 

Then the time-domain inner field model is 

𝑅←𝛿(𝜌, 𝑡) =
0.75𝑔

2𝜋
10−(1+𝑝1𝛾)

𝜇𝑠
2(1−𝑔)𝑔

(𝜇𝑠𝜌)
1+𝑝2𝛾

𝑒𝑥𝑝(−𝛾)(𝜇𝑎𝑐)𝑒𝑥𝑝(−𝜇𝑎𝑐𝑡)  (VI-9) 

b) outer-field model 

First consider the radiance in infinite homogeneous medium induced by an impulsive isotropic point light 

source with unity intensity. The time-variant diffusion equation regarding the fluence rate term is expressed 

in spherical coordinate system as:  

𝛻2�̂�(𝑟, 𝑡) −
𝜇𝑎

𝐷
�̂�(𝑟, 𝑡) −

1

𝐷𝑐

𝜕�̂�(𝑟,𝑡)

𝜕𝑡
= −

�̂�𝛿(𝑟−𝑟′⃗⃗⃗⃗⃗)𝛿(𝑡)

𝐷
  (VI-10) 

Where 𝜇𝑎  is absorption coefficient, D is diffusion coefficient, 𝑟′⃗⃗⃗⃗  is the position of light source, 𝑟 is the 

observation point. The solution to above is well-studied and expressed as: 

Ψinf(𝑟, 𝑡) =
𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−

|𝑟−𝑟′⃗⃗⃗⃗⃗|2

4𝐷𝑐𝑡
− 𝜇𝑎𝑐𝑡)  (VI-11) 
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Where c is the speed of light in medium. 

The flux term is parallel to the vector (𝑟 − 𝑟′⃗⃗⃗⃗ ) and expressed as: 

𝐽𝑖𝑛𝑓(𝑟, 𝑡) = −𝐷∇Ψinf = −𝐷
∂Ψinf

∂l
𝑙   (VI-12) 

Where l=|𝑟 − 𝑟′⃗⃗⃗⃗ |, and 𝑙 is unity direction vector of l.  

The radiance if expanded as the 1st order of spherical harmonic is expressed as 

𝐿(𝑟⃗⃗⃗⃗ , 𝑡, �̂�) = Ψinf(𝑟, 𝑡) +
3

4𝜋
𝐽𝑖𝑛𝑓(𝑟, 𝑡) ⋅ �̂�   (VI-13) 

Now, let us consider the radiance at the interface between air and semi-infinite medium induced by an 

impulsive directional point source, which is the geometry of concern in this work as illustrated by Figure 

VI-2.  We still adopt the master and slave dual-source configuration as used in steady-state modeling work, 

as represented as figure below. 

 

Figure VI-4 master and slave dual-source configuration for outer field 
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For the point illumination, a master-source [14] of intensity S=1 [unit: W·mm-3] is set at a depth of 𝑧𝑎 =

1/𝜇𝑠
′ .  A slave-source index is defined [14]   as 𝜂(𝑔) = [𝑔 ∙ 𝑒𝑥𝑝(1 − 𝑔)]1/10. Then the slave-source is 

set at a depth of 𝑧𝑎
∗ = (1 − 𝑔)2(1 − 𝜂)𝑧𝑎 = 𝛼𝑧𝑎  [unit: mm], and the intensity of the slave source is 𝑆∗ =

𝜂 ∙ 𝑆 ∙ 𝑒𝑥𝑝[−𝜇𝑒𝑓𝑓 𝑧𝑎(1 + 𝛼) 2⁄ ]  [unit: W·mm-3]. The medium-air boundary is accounted for by the 

extrapolated zero-boundary [15] that is set at a distance of 𝑧𝑏 = 2𝐴𝐷 = 𝛽𝑧𝑎  [unit: mm] away from 

medium surface, where 𝐴 = (1 + 𝜉)/(1 − 𝜉) , and 𝜉 = −1.44𝑛𝑡𝑖𝑠𝑠
−2 + 0.710𝑛𝑡𝑖𝑠𝑠

−1 +

0.668+0.0636𝑛𝑡𝑖𝑠𝑠. For a position on the tissue-air interface of a distance of 𝜌 [unit: mm] from the source, 

the following lengths [unit: mm] are defined: 

lreal
m = √ρ2 + za

2    (VI-14) 

limag
m = √ρ2 + za

2(1 + 2β)2    (VI-15) 

lreal
s = √ρ2 + za

2α2    (VI-16) 

limag
s = √ρ2 + za

2(α + 2β)2    (VI-17) 

At extrapolated boundary 𝑧 = −𝑧𝑏, the Dirichlet Boundary Condition is met by real source and image 

source, both for master source and slave source.  

Ψsemi(𝜌, 𝑡) = Ψ𝑖𝑛𝑓
real(𝜌, 𝑡) + Ψ𝑖𝑛𝑓

imag
(𝜌, 𝑡)   (VI-18) 

The fluence rate contributed by master source are slave source are expressed as following two 

equations respectively: 

Ψsemi
m =

𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) [exp (−

(𝑙𝑟𝑒𝑎𝑙
𝑚 )2 

4𝐷𝑐𝑡
) − exp (−

(𝑙𝑖𝑚𝑎𝑔
𝑚 )2

4𝐷𝑐𝑡
)] (VI-19) 

Ψsemi
s =

𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) [exp (−

(𝑙𝑟𝑒𝑎𝑙
𝑠 )2 

4𝐷𝑐𝑡
) − exp (−

(𝑙𝑖𝑚𝑎𝑔
𝑠 )2

4𝐷𝑐𝑡
)] (VI-20) 

The flux -z direction component that are contributed by master source are slave source, are expressed 

as following two equations respectively. See Appendix 9 for detailed derivation. 
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𝐽𝑠𝑒𝑚𝑖
𝑚 |−𝑧(𝜌, 𝑡) =

𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎 exp (−
(𝑙𝑟𝑒𝑎𝑙
𝑚 )2

4𝐷𝑐𝑡
) + (𝑧𝑎 + 2𝑧𝑏) exp (−

(𝑙𝑖𝑚𝑎𝑔
𝑚 )2

4𝐷𝑐𝑡
)]

 (VI-21) 

𝐽𝑠𝑒𝑚𝑖
𝑠 |−𝑧(𝜌, 𝑡) =

𝑆∗

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎
∗ exp(−

(𝑙𝑟𝑒𝑎𝑙
𝑠 )2

4𝐷𝑐𝑡
) + (𝑧𝑎

∗ + 2𝑧𝑏) exp (−
(𝑙𝑖𝑚𝑎𝑔
𝑠 )2

4𝐷𝑐𝑡
)] 

(VI-22) 

At last, the time-domain outer field model is expressed  

Rδ→(ρ, t) =
1

√2
[
1

4𝜋
(Ψsemi

m +Ψsemi
s ) +

3

4𝜋
(𝐽𝑠𝑒𝑚𝑖
𝑚 |−𝑧 + 𝐽𝑠𝑒𝑚𝑖

𝑠 |−𝑧)]  (VI-23) 

6.2.3 Time-domain total diffuse reflectance  

a) Inner-field contribution 

When radius of collection area b is less than 𝛿𝑧𝑎, the total diffuse reflectance 𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡) is solely dominated 

by inner-field model: 

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) = ∫ 2𝜋𝜌Rδ→(𝜌, 𝑡)𝑑𝜌
ξza
0

   (VI-24) 

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) = 0.75
𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
ξ

1−𝑔
)
1−𝑝2𝛾

(𝜇𝑎𝑐)exp (−𝜇𝑎𝑐𝑡) 

(VI-25) 

When b is larger than 𝛿𝑧𝑎,  𝐼0↔b(𝑑𝑎𝑟𝑒𝑎, 𝑡) is contributed by both inner-field model and outer-field model. 

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) = ∫ 2𝜋𝜌R←δ(𝜌, 𝑡)𝑑𝜌
𝛿za
0

+ ∫ 2𝜋𝜌Rδ→(𝜌, 𝑡)𝑑𝜌
𝑏

𝛿za
  (VI-26) 

Decompose the outer-field contribution to four components corresponding to master fluence rate, slave 

fluence rate, master flux, and slave flux. We have 𝐼0↔b(𝑑𝑎𝑟𝑒𝑎, 𝑡) in the form of  

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) = 𝐼0↔𝛿za + 𝐼𝛿𝑧𝑎↔b
Ψ + 𝐼𝛿𝑧𝑎↔b

Ψ∗ + 𝐼𝛿𝑧𝑎↔b
JZ

+ 𝐼𝛿𝑧𝑎↔b
JZ∗

  (VI-27) 

Among them, the inner-field component 𝐼0↔𝛿zais, 
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𝐼0↔𝛿za = 0.75
𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
δ

1−𝑔
)
1−𝑝2𝛾

𝜇𝑎𝑐exp (−𝜇𝑎𝑐𝑡) (VI-28)  

b) Master fluence rate component 

Calculate it as the difference of two terms 

𝐼𝛿𝑧𝑎↔b
Ψ = 𝐼𝛿𝑧𝑎↔∞

Ψ − 𝐼𝑏↔∞
Ψ     (VI-29) 

The first term is  

𝐼𝛿𝑧𝑎↔∞
Ψ =

1

2√2

𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) ∫ [exp (−

(𝑙𝑟𝑒𝑎𝑙
𝑚 )2 

4𝐷𝑐𝑡
) − exp (−

(𝑙𝑖𝑚𝑎𝑔
𝑚 )2

4𝐷𝑐𝑡
)] ρdρ

∞

δza
 (VI-30) 

𝐼𝛿𝑧𝑎↔∞
Ψ =

1

2√2

𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) ∫ [exp(−

ρ2 + za
2 

4𝐷𝑐𝑡
) − exp (−

ρ2 + za
2(1 + 2β)2

4𝐷𝑐𝑡
)] ρdρ

∞

δza

 

(VI-31) 

The indefinite integral is calculated as below, where k > 0. 

∫exp(−
ρ2 + 𝑘2 

4𝐷𝑐𝑡
)ρdρ =

1

2
∫exp(−

ρ2 + 𝑘2 

4𝐷𝑐𝑡
)d(ρ2 + 𝑘2) =

(−4𝐷𝑐𝑡)

2
exp(−

ρ2 + 𝑘2 

4𝐷𝑐𝑡
) + 𝐶 

(VI-32) 

Apply above integral, we have  

𝐼𝛿𝑧𝑎↔∞
Ψ =

1

2√2

𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) 

4𝐷𝑐𝑡

2
[exp (−

ρ2 + za
2(1 + 2β)2

4𝐷𝑐𝑡
) − exp(−

ρ2 + za
2 

4𝐷𝑐𝑡
)] |𝛿𝑧𝑎

∞  

=
1

2√2

𝑆𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) 

4𝐷𝑐𝑡

2
[exp(−

(δza)
2 + za

2 

4𝐷𝑐𝑡
) − exp (−

(δza)
2 + za

2(1 + 2β)2

4𝐷𝑐𝑡
)] 

=
1

8√2𝜋3/2
𝑆𝑐

√𝐷𝑐𝑡
exp (−𝜇𝑎𝑐𝑡) [exp (−

δ2+1 

4𝐷𝑐𝑡
za
2) − exp (−

δ2+(1+2β)2

4𝐷𝑐𝑡
za
2)]       (VI-33) 

The second term could be easily found in same way by replacing 𝛿 with 𝜉 in above derivation due to the 

definition 𝑏 = 𝜉𝑧𝑎. 
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𝐼𝑏↔∞
Ψ =

1

8√2𝜋3/2
𝑆𝑐

√𝐷𝑐𝑡
exp (−𝜇𝑎𝑐𝑡) [exp (−

ξ2+1 

4𝐷𝑐𝑡
za
2) − exp (−

ξ2+(1+2β)2

4𝐷𝑐𝑡
za
2)] (VI-34) 

c) Slave fluence rate component 

Same with the treatment on master fluence rate, we decompose it to two terms.  

𝐼𝛿𝑧𝑎↔b
Ψ∗ = 𝐼𝛿𝑧𝑎↔∞

Ψ∗ − 𝐼𝑏↔∞
Ψ∗     (VI-35) 

The first term is  

𝐼𝛿𝑧𝑎↔∞
Ψ∗ =

1

2√2

𝑆∗𝑐

(4𝜋𝐷𝑐𝑡)3/2 
exp (−𝜇𝑎𝑐𝑡) ∫ [exp(−

ρ2 + za
2α2 

4𝐷𝑐𝑡
) − exp (−

ρ2 + za
2(α + 2β)2

4𝐷𝑐𝑡
)] ρdρ

∞

δza

 

(VI-36) 

By comparing with the derivation demonstrated in master fluence rate component, we observe that 

essentially the integration type is same but with two differences, one for slave source intensity 𝑆∗, the other 

for slave source depth 𝛼𝑧𝑎. This predicts that the result of slave fluence rate will take the following form:  

𝐼𝛿𝑧𝑎↔∞
Ψ∗ =

1

8√2𝜋3/2
𝑆∗𝑐

√𝐷𝑐𝑡
exp (−𝜇𝑎𝑐𝑡) [exp (−

δ2+α2 

4𝐷𝑐𝑡
za
2) − exp (−

δ2+(𝛼 +2β)2

4𝐷𝑐𝑡
za
2)] (VI-37) 

𝐼𝑏↔∞
Ψ∗ =

1

8√2𝜋3/2
𝑆∗𝑐

√𝐷𝑐𝑡
exp (−𝜇𝑎𝑐𝑡) [exp (−

ξ2+α2  

4𝐷𝑐𝑡
za
2) − exp (−

ξ2+(𝛼 +2β)2

4𝐷𝑐𝑡
za
2)] (VI-38) 

d) Master flux component 

𝐼𝛿𝑧𝑎↔b
JZ

= 𝐼𝛿𝑧𝑎↔∞
JZ

− 𝐼𝑏↔∞
JZ

   (VI-39) 

The first term is  

𝐼𝛿𝑧𝑎↔∞
JZ

=
3

2√2

𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) ∫ [𝑧𝑎 exp (−
(𝑙𝑟𝑒𝑎𝑙
𝑚 )2

4𝐷𝑐𝑡
) + (𝑧𝑎 + 2𝑧𝑏) exp (−

(𝑙𝑖𝑚𝑎𝑔
𝑚 )2

4𝐷𝑐𝑡
)] ρdρ

∞

δza
  

=
3

2√2

𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) ∫ [𝑧𝑎 exp (−
ρ2+za

2

4𝐷𝑐𝑡
) + (𝑧𝑎 + 2𝑧𝑏) exp (−

ρ2+za
2(1+2β)2

4𝐷𝑐𝑡
)] ρdρ

∞

δza
  

(VI-40)  
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The indefinite integral is calculated as 

∫[𝑧𝑎 exp (−
ρ2+za

2

4𝐷𝑐𝑡
) + (𝑧𝑎 + 2𝑧𝑏) exp (−

ρ2+za
2(1+2β)2

4𝐷𝑐𝑡
)] ρdρ     

= ∫𝑧𝑎 exp (−
ρ2+za

2

4𝐷𝑐𝑡
) ρdρ + ∫(𝑧𝑎 + 2𝑧𝑏) exp (−

ρ2+za
2(1+2β)2

4𝐷𝑐𝑡
)ρdρ  

=
𝑧𝑎

2
(−4𝐷𝑐𝑡) exp (−

ρ2+za
2

4𝐷𝑐𝑡
) +

(𝑧𝑎+2𝑧𝑏)

2
(−4𝐷𝑐𝑡)exp (−

ρ2+za
2(1+2β)2

4𝐷𝑐𝑡
) + 𝐶  (VI-41) 

Apply above definite integral result, we have the first term as 

𝐼𝛿𝑧𝑎↔∞
JZ

=
3

2√2

𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [
𝑧𝑎

2
(4𝐷𝑐𝑡) exp (−

δ2+1

4𝐷𝑐𝑡
za
2) +

(𝑧𝑎+2𝑧𝑏)

2
(4𝐷𝑐𝑡)exp (−

δ2+(1+2β)2

4𝐷𝑐𝑡
za
2)]   (VI-42) 

Rearrange it as 

𝐼𝛿𝑧𝑎↔∞
JZ

=
3

16√2𝜋
3
2

𝑆

𝑡(𝐷𝑐𝑡)
1
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎 exp (−
δ2+1

4𝐷𝑐𝑡
za
2) + (𝑧𝑎 + 2𝑧𝑏)exp (−

δ2+(1+2β)2

4𝐷𝑐𝑡
za
2)]

 (VI-43) 

Then the second term could be derived in parallel by replacing 𝛿 with 𝜉, 

𝐼𝜉𝑧𝑎↔∞
JZ

=
3

16√2𝜋
3
2

𝑆

𝑡(𝐷𝑐𝑡)
1
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎 exp (−
ξ2+1

4𝐷𝑐𝑡
za
2) + (𝑧𝑎 + 2𝑧𝑏)exp (−

ξ2+(1+2β)2

4𝐷𝑐𝑡
za
2)]

 (VI-44) 

e) Slave flux component 

𝐼𝛿𝑧𝑎↔b
JZ∗

= 𝐼𝛿𝑧𝑎↔∞
JZ∗

− 𝐼𝑏↔∞
JZ∗

   (VI-45) 

With same principle demonstrated in deriving the slave fluence rate component, the slave flux component 

takes following form: 
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𝐼𝛿𝑧𝑎↔∞
JZ∗

=
3

16√2𝜋
3
2

𝑆∗

𝑡(𝐷𝑐𝑡)
1
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎
∗ exp (−

δ2+α2

4𝐷𝑐𝑡
za
2) + (𝑧𝑎

∗ + 2𝑧𝑏)exp (−
δ2+(α+2β)2

4𝐷𝑐𝑡
za
2)]

 (VI-46) 

𝐼𝑏↔∞
JZ∗

=
3

16√2𝜋
3
2

𝑆∗

𝑡(𝐷𝑐𝑡)
1
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎 exp (−
ξ2+α2

4𝐷𝑐𝑡
za
2) + (𝑧𝑎 + 2𝑧𝑏)exp (−

ξ2+(𝛼+2β)2

4𝐷𝑐𝑡
za
2)]

 (VI-47) 

To summarize, when  𝑏 ≤ 𝛿𝑧𝑎, the total diffuse reflectance in time-domain is 

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) = 0.75
𝑔10−(1+𝑝1𝛾)(1 − 𝑔)𝑔exp(−𝛾)

1

1−𝑝2𝛾
(
ξ

1−𝑔
)
1−𝑝2𝛾

𝜇𝑎𝑐exp (−𝜇𝑎𝑐𝑡) (VI-48) 

When 𝑏 > 𝛿𝑧𝑎, the total diffuse reflectance in time-domain is 

𝐼0↔b(𝑑𝑎𝑟𝑒𝑎 , 𝑡) = 𝐼0↔𝛿za + [𝐼𝛿𝑧𝑎↔∞
Ψ − 𝐼𝑏↔∞

Ψ ] + [𝐼𝛿𝑧𝑎↔∞
Ψ∗ − 𝐼𝑏↔∞

Ψ∗ ] + [𝐼𝛿𝑧𝑎↔∞
JZ

− 𝐼𝑏↔∞
JZ

] +

[𝐼𝛿𝑧𝑎↔∞
JZ∗

− 𝐼𝑏↔∞
JZ∗

] (VI-49) 

6.2.4 Monte-Carlo simulation 

Time-domain Monte-Carlo simulation has been performed on a 24-core Linux server by using the open 

source Monte Carlo Command Line (MCCL, v4.8.0Beta) application developed by Virtual Photonics. The 

same CIAC geometry illustrated in Figure VI-2 is used in simulation, where a directional point source sitting 

at the origin point (0,0,0) is injecting an impulse of photons into semi-infinite tissue medium along the 

positive z direction (0,0,1) and diffusely reflected photons are collected within a circular area with a radii 

𝑏 = 𝑑𝑎𝑟𝑒𝑎/2 measured from the origin point over a short span of collection time 𝑡𝑚𝑐. A total of (M+1) 

spatial points and are linearly spaced between 𝜌 = [0, 𝑏]𝑚𝑚, cutting the whole collection into N concentric 

element areas termed as spatial bins in monte-carlo. The area of 𝑚𝑡ℎ spatial bin is calculated as 𝜌𝑏𝑖𝑛(𝑚) =

[𝜋𝜌𝑚+1
2 − 𝜋𝜌𝑚

2 ], where m is the integer index ranging from 1 to N, 𝜌1 = 0 and  𝜌𝑀+1  = 𝑏. Similarly, a 

total of (N+1) temporal points are linearly spaced between 𝑡 = [0, 𝑡𝑚𝑐]ns and cut the collection time into N 

element segments termed as temporal bins in monte-carlo. The length of each temporal is equal to same 

value of 𝑡𝑏𝑖𝑛(𝑛) = 𝑡𝑚𝑐/𝑁. Therefore, the time-domain spatially resolved diffuse reflectance 𝑅(𝜌𝑚, 𝑡𝑛) 
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(unit : 𝑛𝑠−1𝑚𝑚−1) generated from MC simulation has 2-dimension distribution over M spatial bins by N 

temporal bins, which is defined as the density of diffuse reflectance at a 2D time-domain Bin 𝐵𝑖𝑛𝑡𝑑 =

𝜌𝑏𝑖𝑛(𝑚)𝑡𝑏𝑖𝑛(𝑛). 

The time-domain total diffuse reflectance collected via 𝑑𝑎𝑟𝑒𝑎 = 2𝑏 = 2𝜌𝑀+1 at the temporal moment 𝑡 =

𝑡𝑛, can be calculated by integrating 𝑅(𝜌𝑚, 𝑡𝑛) over the spatial dimension, as shown in following equation. 

𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡𝑛) = ∑ 𝑅(𝜌𝑚, 𝑡𝑛) × [𝜋(𝜌𝑚+1)
2 − 𝜋(𝜌𝑚)

2]𝑀
𝑚=1  (VI-50) 

𝐼(𝑑𝑎𝑟𝑒𝑎 , 𝑡𝑛) has a unit of 1/𝑛𝑠, which means the power of total diffuse reflectance collected via 𝑑𝑎𝑟𝑒𝑎 at 

the moment 𝑡 = 𝑡𝑛.  

6.3 Results and Discussion 

6.3.1 Model dependency on reduced scattering coefficient 

Figure VI-5 presents the temporal total diffuse reflectance collected via 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚
−1 at three different 

reduced scattering coefficients 𝜇𝑠
′ = [0.1, 1.0, 10]𝑚𝑚−1 representing weak, typical and strong scattering 

mediums. The absorption coefficient 𝜇𝑎 = 1𝑚𝑚
−1 and anisotropy factor g = 0.9, typical for biological 

tissue, are kept same for all three cases. The black solid line in the figure represents the model-predicted 

temporal total diffuse reflectance, and the discrete markers represent MC simulated results. From Part (A) 

that plots the time axis in linear scale, we could observe that after injection of light impulse, total diffuse 

reflectance drops down very sharply within the first 0.1nanosecond approximately, and decreases more and 

more slowly as time goes. Our model predicts the same change trend as well as a good match with MC 

simulated results. To look closely at the characteristics in the first 0.1ns. we display the time axis in logarithm 

scale in part (B). MC data shows that the total diffuse reflectance reaches a summit in the first 3 picoseconds 

after the impulse inject, and from this peak, it starts to drop down sharply as observed before. In weaker 

scattering medium, this summit shows up later than stronger scattering case. Our model does not quantify 

the summit feature well, especially when scattering is weak.  
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Figure VI-5 temporal total diffuse reflectance at different reduced scattering coefficients 

The photons that arrives earlier have shorter path length when propagating inside tissue, which are mainly 

collected from the area close to incident point. These early arrival photons normally undergo larger angle 

scattering events. The photons that arrives relatively later have longer path length inside tissue, which are 

mainly contributed from the area with larger source-detector distance.  

6.3.2 Model dependency on absorption coefficient 

Figure VI-6 presents the temporal total diffuse reflectance collected via 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚
−1 at four different 

reduced scattering coefficients 𝜇𝑎 = [0.001, 0.01, 0.1, 1.0]𝑚𝑚
−1 .  The reduced scattering coefficient 

𝜇𝑠
′ = 1𝑚𝑚−1 and anisotropy factor g = 0.9 are chosen based on their typical value for biological tissue. Part 

(A) displays time axis in linear scale and part (B) display the same data in logarithm scale. As expected, 

temporal total diffuse reflectance presents the same decreasing trend as time goes, and the stronger the 

absorption, the faster it drops. It is observed that our model matches MC simulated result well generally. In 

stronger absorption case of 𝜇𝑎 = 1𝑚𝑚
−1, our model does not quantify the later arrival photon well.  
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Figure VI-6 temporal total diffuse reflectance at different absorption coefficients 

6.3.3 Model dependency on anisotropy factor g 

Figure VI-7 presents temporal total diffuse reflectance collected via 𝑑𝑎𝑟𝑒𝑎 = 1𝑚𝑚
−1  at 6 different 

anisotropy factor g = [0.5, 0.6, 0.7, 0.8, 0.9, 0.95].  The reduced scattering coefficient 𝜇𝑠
′ = 1𝑚𝑚−1 and 

absorption coefficient 𝜇𝑎 = 0.01𝑚𝑚
−1 are chosen based on their typical value for biological tissue. Since 

only subtle difference are observed among 6 cases with different g values, we present the MC simulated 

results in part (A) and part (C), and model-predicted results in part (B) and (D), and display time axis in linear 

scale in part (A) and (B), and display time axis in logarithm scale in part (C) and (D).  
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Figure VI-7 temporal total diffuse reflectance at different anisotropy factor values 

From MC results, it is observed from MC data that the effect of different g on total diffuse reflectance is small 

and become visible in the first 0.02 nanosecond when both X axis and Y axis are zoomed in logarithm scale, 

especially during the first 3 picoseconds when total diffuse reflectance reaches summit. During t > 0.1 

nanosecond, as the collected photons become less and less, and effect of random noise in MC simulation also 

becomes severe, it is hard to visually observe the effect of anisotropy and is also hard to judge whether it 

exists or not.  As observed in part (B) and part (D), during the time duration very close to incident moment, 

our model cannot quantify the summit feature, but our model predicts that the photons arriving in later time 

displays the difference caused by anisotropy factor. Since early arrival photons are mainly collected via area 

close to incident point due to large angle scattering event, the smaller anisotropy factor which represents 

larger probability of larger angle scattering, will reveal larger amounts of photons at early time, particularly 

the first 0.02 nanosecond.  
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6.3.4 Model dependency on collection area  

Figure VI-8 presents the total diffuse reflectance collected at different 𝑑𝑎𝑟𝑒𝑎 at same temporal moment t = 

0.01 nanosecond to evaluate model’s dependency on size of collection area. The tissue properties are set as 

below: reduced scattering coefficient 𝜇𝑠
′ = 1𝑚𝑚−1, absorption coefficient 𝜇𝑎 = 0.01𝑚𝑚

−1, anisotropy 

g = 0.9.  The connected green markers represent MC results that is calculated by integrating 𝑅(𝜌𝑚, 𝑡𝑛) over 

different size of collection area, while the black solid line represents our model predicted results. 

 

Figure VI-8 total diffuse reflectance collected at t = 0.01ns against different size of collection area  

It is observed that out model predicts the correct trend as collection area increases, but also tends to over-

estimate the total diffuse reflectance compared with MC results. And the deviation tends to increase as 𝑑𝑎𝑟𝑒𝑎 

increases. 

6.4 Summary 

This work demonstrated the first analytical model for time-domain single-fiber diffuse reflectance 

spectroscopy. By comparing with MC simulated data in various condition, our model could predicts the 

correct temporal changing pattern under conditions of different tissue scattering, absorption and anisotropy 

g as well as different collection area. Though still having difficulty in quantify summit feature during the first 

3 picoseconds, our model generally matches MC results in most conditions evaluated in this work, which 
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proves the correctness of our methodology used in developing time-domain model. It also indicates that our 

current time-domain still need to be further refined. Currently the dimension border point 𝛿 is set as 0.005, 

we may need update it when we further adjust inner-field model to meet Monte-Carlo predicted results
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CHAPTER VII  

 

FINAL REMARKS 

7.1 Contributions of this work 

This work develops analytically-driven models of total diffuse reflectance of single fiber reflectance 

spectroscopy (SfRS) measurement in steady-state and time-domain, and demonstrates a few methods that 

are new to the modeling of diffuse reflectance at the scales relevant to SfRS: (1) concatenate two models of 

spatially-resolved diffuse reflectance to construct one effective model based on center illumination and area 

collection geometries that works at a reduced scattering pathlength scaled dimension as small as 10-5. (2) 

Derive the total diffuse reflectance by integrating the spatially resolved diffuse reflectance over the entire 

area of collection. The analytically arrived steady-state model of total diffuse reflectance, as validated by 

Monte-Carlo simulations and phantom experiment, could potentially provide more robust tissue properties 

recovering than existing empirical model in practical use. In addition, for the first time, it offers transparent 

understanding about three steady-state patterns previously observed as well as accurate quantification of the 

saturation level and transition point. The modeling methodology developed in steady-state work is also 

extended to the development of time-domain model and renders the first analytical description of time-

domain features of SfRS measurement, which will power more clinical application with time-domain SfRS. 
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The modeling methodology demonstrated in steady-state and time-domain opens the potential of being 

transferred to frequency-domain SfRS and fluorescence SfRS. 

7.2 Future work 

The intended future work includes following directions: 

1) Refine current time-domain model of SfRS 

The time-domain model developed in Chapter VI reveals correct temporal patterns and model dependency 

on scattering, absorption and collection area. However, our current model does not quantify the summit 

feature observed during the first 3 picoseconds. In a lower scattering medium, our model shows deviation 

from MC simulated data during earlier time of collection. These issues may be addressed by further refining 

our inner-field model component through comparing with MC results simulated in broader range of tissue 

properties. The current time-domain simulation launches 1 million photons into tissue medium, but to make 

the later arrival photons more visible, more than 1 million photons per simulation may be needed. 

2) Model the average optical path length of a single fiber probe 

The time-domain MC present the temporal total diffuse reflectance collected via a circular area. The arrival 

time 𝑡𝑚 uniquely corresponds to the optical path length that the photon travels inside tissue before being 

collected, e.g. for photons that arrives at t = 𝑡𝑚, their path length is calculated as 𝑙𝑚 = 𝑐𝑡𝑚. Then the average 

optical path length can be calculated as the weighted mean of 𝑙𝑚, as shown in equation below, where the 

weight is defined as number of photons collected over 𝑑𝑎𝑟𝑒𝑎 at TimeBin(m) divided by total number of 

photons collected over 𝑑𝑎𝑟𝑒𝑎  from t = 0 up to t = infinite, and M is a large integer number set in MC 

simulation to numerically emulate t= infinite.   

𝐿𝑀𝐶 = ∑
𝐼(𝑑𝑎𝑟𝑒𝑎,𝑡=[𝑡𝑚,𝑡𝑚+∆𝑡])

𝐼(𝑑𝑎𝑟𝑒𝑎,𝑡=[0,𝑀∆𝑡])
× (𝑐𝑡𝑚)

𝑀
𝑚=1   (VII-1) 
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The model-predicted average optical path length could be calculated by using modified Beer-Lambert Law, 

as shown in following equation (VII-2), or by directly deriving from time-domain model as shown in 

equation (VII-3). 

𝐿𝑀𝑜𝑑𝑒𝑙 = −
𝑙𝑛 (𝐼/𝐼𝑠𝑐𝑎𝑡)

𝜇𝑎
    (VII-2) 

𝐿𝑀𝑜𝑑𝑒𝑙 = ∫ 2𝜋𝜌[∫ 𝑅𝑡𝑑(𝜌, 𝑡)(𝑐𝑡)𝑑𝑡]𝑑𝜌
∞

0

𝑑𝑎𝑟𝑒𝑎/2

0
  (VII-3) 

3) Transfer modeling methodology to frequency-domain SfRS configuration and fluorescence steady-state 

SfRS 

The same modeling methodology demonstrated in steady-state and time-domain work could be applied to 

frequency-domain SfRS and fluorescence steady-state SfRS where the model or analytical understanding of 

observed feature is still blank.   

4) Develop graphic user interface provide convenient use of our models for data-fitting  

Compared with empirical model, diffusion-based analytical model usually possesses a bulky form. To 

provides convenience use of our models in their data-fitting tasks, it is worth to encapsulate our models into 

easy-to-use graphic user interface (GUI) and widely publish them online. Matlab Live Script will be our first 

choice to this GUI development due to its highly flexibility and easy deployment. Live scripts contain output 

and graphics with the code that produced them, together in a single interactive environment called the Live 

Editor. The GUI will be designed to allow user to upload reflectance spectrums and fiber specifications, and 

extract absorption spectrum 𝜇𝑎(𝜆) and scattering spectrum 𝜇𝑠
′ (𝜆) through data-fitting with our models. 
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APPENDICES 
 

APPENDIX A: Evaluation of the second term of Eq. (III.12) with respect to the first term 

How much the second term of Eq. (III.12) affects the radial diffuse reflectance in comparison to 

the first term is assessed as shown in Fig.A1 over the following ranges: (μs
′𝜌)=[10-5 100], g=[0.5, 

0.6, 0.7, 0.8, 0.9, 0.95] at μs
′ =1 mm-1 and  𝜇𝑎 =[0.001, 0.01. 0.1, 1]mm-1. One example 

corresponding to 𝜇𝑎=0.01 mm-1 and g=0.9 is shown in Fig. A-1.  The maximal contribution of the 

second term to the radial diffuse reflectance over the range of (μs
′𝜌)=[10-5 10-1] is less than 2%.  

 

Figure A-1 (A) The absolute values of the two terms of Eq. (III.12). (B) The relative value of the 

second term versus the first term.    
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APPENDIX B: The upper limit of the total diffuse radiance from a center-illuminated and 

an area-collected round-geometry corresponding to isotropic tissue scattering 

We use the special case of a homogeneous infinite medium that is isotropic and free of absorption to estimate 

the upper limit of the diffuse radiance in a center-illuminated and area-collected geometry that has the same 

lateral dimension as the one given in. This upper limit of the diffuse radiance, when adding the absorption 

effect, also enlightens the form of the diffuse irradiance at near-the-entry, following which the near-field 

model of Eq. (IV.5) has been developed.  

Consider the homogeneous, isotropic, and non-absorbing infinite medium as shown in Figure A-2.  The light 

of intensity 1 (W∙ 𝑚𝑚−3) that is injected at a position within the medium (the origin of the coordinate) will 

experience the first isotropic scattering event at a distance of 1 𝜇𝑠⁄  from the position of injection and long 

the direction of injection. The resulted radiance will be distributed uniformly over the entire 4𝜋 steradian. If 

the medium does not absorb, the total radiance on a spherical surface centered at the first scattering event 

remains constant (equaling the source intensity). Now we evaluate the total radiance at a thin circular strip 

on the plane lateral to the light injection and at the origin that has a radius of 𝜌 and a differential thickness of 

𝑑𝜌. The area of the circular strip is 2𝜋𝜌 ∙ 𝑑𝜌, and the distance of any segment of the circular strip to the 

position of the first scattering event is √𝜌2 + (1 𝜇𝑠⁄ )2 .  As a result the differential spatial angle that this 

circular strip forms with respect to the position of the first scattering event is 𝑑Ω =

2𝜋𝜌 ∙ 𝑑𝜌 [𝜌2 + (1 𝜇𝑠⁄ )2]⁄ . The total irradiance 𝑑𝐼(𝜌) received by this circular strip is thus  

𝑑𝐼(𝜌) =
𝑑Ω

4𝜋
=

1

4𝜋

2𝜋𝜌∙𝑑𝜌

𝜌2+(1 𝜇𝑠⁄ )2
=
1

2
𝜇𝑠

𝜇𝑠𝜌

(𝜇𝑠𝜌)
2+1
𝑑𝜌     
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Integration of Eq. (A.1) from the origin to 𝜌 gives the total radiance 𝐼(𝜌) over the circular area of radius 𝜌 

as the following 

𝐼(𝜌) = ∫ 𝑑𝐼(𝜌)
𝜌

0
=
1

4
𝜇𝑠 ∫

2𝜇𝑠𝜌

(𝜇𝑠𝜌)
2+1
𝑑𝜌

𝜌

0
=
1

4
𝑙𝑛[(𝜇𝑠𝜌)

2 + 1]    

 

Figure A-2 (A) The depth of the slave-source as determined by the term (1 − 𝜂), thus represents 

(𝑧𝑎𝑧𝑎
∗)(𝜇𝑠)

2. (B) The relative intensity of the slave-source with respect to the product of the 

intensity S and the tissue property dependent term, as a function of g, at different. 

Equation (A.2) sets the limit of the radiance at the circular area that has a scattering coefficient scaled radius 

of 𝜇𝑠𝜌.   This 𝐼(𝜌) can also be obtained by the integration of the irradiance 𝑅(𝜌)  over the circular are of 

radius 𝜌 . By defining ℝ(𝜌) = 𝑅(𝜌) ∙ 𝜌; and ℜ(ρ)⏞ = ∫ℝ(𝜌) ∙ 𝑑𝜌 , we have the following alternative 

expression of 𝐼(𝜌): 

𝐼(𝜌) = 2π∫ 𝑅(𝜌) ∙ 𝜌 ∙ 𝑑𝜌
𝜌

0
= 2π∫ ℝ(𝜌) ∙ 𝑑𝜌

𝜌

0
  

= 2π [ℜ(ρ)⏞ −ℜ(0)⏞  ]=
1

4
[𝑙𝑛[(𝜇𝑠𝜌)

2 + 1] − 𝑙𝑛[(𝜇𝑠0)
2 + 1]]      

With Eq. (A.3), we can have   

ℜ(ρ)⏞ =
1

8𝜋
 𝑙𝑛[(𝜇𝑠𝜌)

2 + 1]      

And  
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𝑅(𝜌) =
1

𝜌

𝑑

𝑑𝜌
ℜ(ρ)⏞ =

1

4𝜋

(𝜇𝑠)
2

(𝜇𝑠𝜌)
2+1

      

When there is absorption and there 

𝑅(𝜌) =
1

4𝜋

(𝜇𝑠)
2

(𝜇𝑠𝜌)
2+1
𝑒𝑥𝑝 (−2𝜇𝑎

1

𝜇𝑠
)  
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APPENDIX C: Relations and approximations when scattering approaches infinite 

n=10, g=0.9, 𝑛𝑡𝑖𝑠𝑠 = 1.4, 𝛿 = 0.5 

𝜂 = [𝑔 ∙ 𝑒𝑥𝑝(1 − 𝑔)]1 𝑛⁄ = 0.999 

𝛼 = (1 − 𝑔)2(1 − 𝜂) = 5.36 × 10−6 

𝜉 = −1.44𝑛𝑡𝑖𝑠𝑠
−2 + 0.710𝑛𝑡𝑖𝑠𝑠

−1 + 0.668+0.0636𝑛𝑡𝑖𝑠𝑠. 

𝐴 =
1 + 𝜉

1 − 𝜉
= 3.255 

𝛼 ≪ 𝛿 < 1 < (𝛼 +
4𝐴

3
) < (1 +

4𝐴

3
) 

When 𝜇𝑠
′ → ∞ 

𝑧𝑎 =
1

𝜇𝑠
′ → 0 

𝐷 =
1

[3(𝜇𝑎 + 𝜇𝑠
′ )]
→
1

3𝜇𝑠
′ =

1

3
𝑧𝑎 → 0 

𝛽 =
𝑧𝑏
𝑧𝑎
=
2𝐴𝐷

𝑧𝑎
=

2𝐴𝜇𝑠
′

[3(𝜇𝑎 + 𝜇𝑠
′ )]
→
2𝐴

3
 

𝑧𝑎
∗ = 𝛼𝑧𝒂 → 0 

𝑧𝑏 = 𝛽𝑧𝑎 → 0 
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𝜇𝑒𝑓𝑓 = √
𝜇𝑎
𝐷
= √3𝜇𝑎(𝜇𝑎 + 𝜇𝑠

′) → √
3𝜇𝑎
𝑧𝑎
→ ∞ 

𝜇𝑒𝑓𝑓𝐷 = √𝜇𝑎𝐷 = √
𝜇𝑎

[3(𝜇𝑎 + 𝜇𝑠
′ )]
→ √

𝜇𝑎𝑧𝑎
3
→ 0 

𝜇𝑒𝑓𝑓𝑧𝑎 =
𝜇𝑒𝑓𝑓

𝜇𝑠
′ =

√3𝜇𝑎(𝜇𝑎 + 𝜇𝑠
′)

𝜇𝑠
′ = √

3𝜇𝑎(𝜇𝑎 + 𝜇𝑠
′)

[𝜇𝑠
′ ]2

→ √3𝜇𝑎𝑧𝑎 → 0 

𝜇𝑒𝑓𝑓𝑧𝑎
∗ = 𝛼𝜇𝑒𝑓𝑓𝑧𝑎 → 0 

𝜇𝑒𝑓𝑓𝑧𝑏 = 2𝐴𝐷𝜇𝑒𝑓𝑓 → 2𝐴√
𝜇𝑎𝑧𝑎
3
→ 0 

𝑆∗ = 𝑆 ∙ exp (−𝜇𝑒𝑓𝑓
𝑧𝑎 + 𝑧𝑎

∗

2
) ∙ 𝜂 → 𝑆 ∙ (1 − 𝜇𝑒𝑓𝑓

𝑧𝑎 + 𝑧𝑎
∗

2
) ∙ 𝜂 = 𝑆 (1 − 𝜇𝑒𝑓𝑓𝑧𝑎

1 + 𝛼

2
)𝜂 → 𝑆𝜂 
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APPENDIX D: The calculation of the first term in section 5.2.2.a 

As 𝜇𝑠
′ → ∞, 𝑥 = 𝜇𝑒𝑓𝑓𝑧𝑎 =

𝜇𝑒𝑓𝑓

𝜇𝑠
′ =

√3𝜇𝑎(𝜇𝑎+𝜇𝑠
′)

𝜇𝑠
′ = √

3𝜇𝑎(𝜇𝑎+𝜇𝑠
′)

[𝜇𝑠
′]2

→ 0. 

3

8√2𝜋
𝑙𝑖𝑚
𝑥→0

𝑒𝑥𝑝(−𝑥√𝛿2 + 1) − 𝑒𝑥𝑝(−𝑥√𝛿2 + (1 + 2𝛽)2)

𝑥
 

=
3

8√2𝜋
𝑙𝑖𝑚
𝑥→0

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑧𝑎√𝛿
2 + 1)(−√𝛿2 + 1) − 𝑒𝑥𝑝(𝑥√𝛿2 + (1 + 2𝛽)2) (−√𝛿2 + (1 + 2𝛽)2)

1

=
3

8√2𝜋
𝑙𝑖𝑚
𝑥→0

(−√𝛿2 + 1) − (−√𝛿2 + (1 + 2𝛽)2)

1
 

=
3

8√2𝜋
𝑙𝑖𝑚
𝜇𝑠
′→∞
(√𝛿2 + (1 + 2𝛽)2 −√𝛿2 + 1) 

=
3

8√2𝜋
[√𝛿2 + (1 +

4𝐴

3
)
2

−√𝛿2 + 1] 
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APPENDIX E: The calculation of the second term in section 5.2.2.a 

The following Taylor series expansion is applied in later derivation. 

√𝑏2 + (𝑧𝑎)
2 = 𝑏 +

(𝑧𝑎)
2

2𝑏
 

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2 = 𝑏 +

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
 

𝑒𝑥 𝑝 (−𝜇𝑒𝑓𝑓
(𝑧𝑎)

2

2𝑏
) = (1−𝜇𝑒𝑓𝑓

(𝑧𝑎)
2

2𝑏
) 

𝑒𝑥 𝑝 (−𝜇𝑒𝑓𝑓
(𝑧𝑎 + 2𝑧𝑏)

2

2𝑏
) = (1−𝜇𝑒𝑓𝑓

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
) 

 

𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋
[
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎)
2) − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎 + 2𝑧𝑏)
2)

𝐷𝜇𝑒𝑓𝑓
] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋

(𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓 (𝑏 +
(𝑧𝑎)

2

2𝑏
)) − 𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓 (𝑏 +

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
)))

𝐷𝜇𝑒𝑓𝑓
 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋

(𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓
(𝑧𝑎)

2

2𝑏
) − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
))

𝐷𝜇𝑒𝑓𝑓
 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋

(𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)(1−𝜇𝑒𝑓𝑓
(𝑧𝑎)

2

2𝑏
) − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)(1−𝜇𝑒𝑓𝑓

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
))

𝐷𝜇𝑒𝑓𝑓
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= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋
exp(−𝜇𝑒𝑓𝑓𝑏)

((1−𝜇𝑒𝑓𝑓
(𝑧𝑎)

2

2𝑏
) − (1−𝜇𝑒𝑓𝑓

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
))

𝐷𝜇𝑒𝑓𝑓
 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

(𝜇𝑒𝑓𝑓
(𝑧𝑎 + 2𝑧𝑏)

2

2𝑏
− 𝜇𝑒𝑓𝑓

(𝑧𝑎)
2

2𝑏
)

𝐷𝜇𝑒𝑓𝑓
 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

((𝑧𝑎 + 2𝑧𝑏)
2 − (𝑧𝑎)

2)

2𝑏𝐷
 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

4𝑧𝑏(𝑧𝑎 + 𝑧𝑏)

2𝑏𝐷
 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

1

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

4𝛽𝑧𝑎(𝑧𝑎 + 𝛽𝑧𝑎)

2𝑏
1
3 𝑧𝑎

 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

4𝛽(1 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥 𝑝(−𝜇𝑒𝑓𝑓𝑏)

4𝛽(1 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎
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APPENDIX F: The calculation of first term in section 5.2.2.b 

𝑙𝑖𝑚
𝑥→0
[
𝑒𝑥𝑝(−𝑥√𝛿2 + 𝛼2) − 𝑒𝑥𝑝(−𝑥√𝛿2 + (𝛼 + 2𝛽)2)

𝑥
] 

= 𝑙𝑖𝑚
𝑥→0
[
𝑒𝑥𝑝(−𝑥√𝛿2 + 𝛼2) − 𝑒𝑥𝑝(−𝑥√𝛿2 + (𝛼 + 2𝛽)2)

𝑥
] 

== 𝑙𝑖𝑚
𝑥→0
[
𝑒𝑥𝑝(−𝑥√𝛿2 + 𝛼2) (−√𝛿2 + 𝛼2) − 𝑒𝑥𝑝(−𝑥√𝛿2 + (𝛼 + 2𝛽)2)(−√𝛿2 + (𝛼 + 2𝛽)2)

1
] 

= lim
𝜇𝑠
′→∞
(−√𝛿2 + 𝛼2) + √𝛿2 + (𝛼 + 2𝛽)2 

= √𝛿2 + (𝛼 +
4𝐴

3
)
2

−√𝛿2 + 𝛼2 
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APPENDIX G: The calculation of second term in section 5.2.2.b 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
Ψ∗ = 𝑙𝑖𝑚

𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[
 
 
 
 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓(𝑏 +

(𝛼𝑧𝑎)
𝟐

2𝑏
))− 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓(𝑏 +

(𝛼𝑧𝒂 + 2𝛽𝑧𝑎)
2

2𝑏
))

𝐷𝜇𝑒𝑓𝑓
]
 
 
 
 

 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[
exp(−𝜇𝑒𝑓𝑓𝑏) exp (−𝜇𝑒𝑓𝑓

(𝛼𝑧𝑎)
2

2𝑏
) − 𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) 𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓

(𝛼𝑧𝒂 + 2𝛽𝑧𝑎)
2

2𝑏
)

𝐷𝜇𝑒𝑓𝑓
] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)

(1 − 𝜇𝑒𝑓𝑓
(𝛼𝑧𝑎)

2

2𝑏
) − (1 − 𝜇𝑒𝑓𝑓

(𝛼𝑧𝒂 + 2𝛽𝑧𝑎)
2

2𝑏
) 

𝐷𝜇𝑒𝑓𝑓
] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)

 (𝜇𝑒𝑓𝑓
(𝛼𝑧𝒂 + 2𝛽𝑧𝑎)

2

2𝑏
− 𝜇𝑒𝑓𝑓

(𝜶𝒛𝒂)
𝟐

2𝑏
)

𝐷𝜇𝑒𝑓𝑓
] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)

 (
4𝛽𝒛𝒂

𝟐

2𝑏
(𝛼 + 𝛽))

𝐷
] 

𝐷 =
1

[3(𝜇𝑎 + 𝜇𝑠
′ )]
→
1

3𝜇𝑠
′ =

1

3
𝑧𝑎 

 (
4𝛽𝒛𝒂

𝟐

2𝑏
(𝛼 + 𝛽))

𝐷
=
 (
4𝛽𝒛𝒂

𝟐

2𝑏
(𝛼 + 𝛽))

1
3 𝑧𝑎

= (
12𝛽𝒛𝒂
2𝑏

(𝛼 + 𝛽)) = (
12𝛽

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

(𝛼 + 𝛽)) 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑆∗

8√2𝜋
[𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) (

12𝛽

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

(𝛼 + 𝛽))]
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= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝜂

8√2𝜋
[𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) (

4𝛽(𝛼 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

)] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝜂

8√2𝜋
[𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)(

8𝐴
3 (𝛼 +

2𝐴
3 )

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

)] 
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APPENDIX H: The calculation of second term in section 5.2.2.c 

Apply Taylor series expansion 

√𝑏2 + (𝑧𝑎)
2 = 𝑏 +

(𝑧𝑎)
2

2𝑏
 

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2 = 𝑏 +

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
 

𝑙𝑖𝑚
𝜇𝑠
′→∞
𝐼𝑏↔∞
𝐽𝑍

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2π
[
 
 
 

𝑧𝑎

√𝑏2 + (𝑧𝑎)2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎)2)

+
(𝑧𝑎 + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎 + 2𝑧𝑏)2)

]
 
 
 

 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
[

𝑧𝑎

√𝑏2 + (𝑧𝑎)
2
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓 (𝑏 +

(𝑧𝑎)
2

2𝑏
))

+
(𝑧𝑎 + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓 (𝑏 +

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
))] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
[

𝑧𝑎

√𝑏2 + (𝑧𝑎)
2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓

(𝑧𝑎)
2

2𝑏
)

+
(𝑧𝑎 + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
)] 
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= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) [

𝑧𝑎

√𝑏2 + (𝑧𝑎)
2
(1−𝜇𝑒𝑓𝑓

(𝑧𝑎)
2

2𝑏
)

+
(𝑧𝑎 + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
(1−𝜇𝑒𝑓𝑓

(𝑧𝑎 + 2𝑧𝑏)
2

2𝑏
)] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) {(

𝑧𝑎

√𝑏2 + (𝑧𝑎)
2
+

(𝑧𝑎 + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
)

−
𝜇𝑒𝑓𝑓𝑧𝑎

2𝑏
[

(𝑧𝑎)
2

√𝑏2 + (𝑧𝑎)
2
+ (1 + 2𝛽)

(𝑧𝑎 + 2𝑧𝑏)
2

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
]} 

Refer to Appendix 2, when 𝜇𝑠
′ → ∞, 𝑧𝑎 → 0. We apply following approximating by discarding the second 

order small variable (𝑧𝑎)
2 appearing at denominator.  

(
𝑧𝑎

√𝑏2 + (𝑧𝑎)
2
+

(𝑧𝑎 + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
) = (

𝑧𝑎
𝑏
+
(𝑧𝑎 + 2𝑧𝑏)

𝑏
) =

2𝑧𝑎(1 + 𝛽)

𝑏
=
4(1 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

 

𝜇𝑒𝑓𝑓𝑧𝑎

2𝑏
[

(𝑧𝑎)
2

√𝑏2 + (𝑧𝑎)
2
+ (1 + 2𝛽)

(𝑧𝑎 + 2𝑧𝑏)
2

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
]

=
𝜇𝑒𝑓𝑓𝑧𝑎

2𝑏
[
(𝑧𝑎)

2

𝑏
+ (1 + 2𝛽)

(𝑧𝑎 + 2𝑧𝑏)
2

𝑏
] =

2𝜇𝑒𝑓𝑓𝑧𝑎

2𝑏

(𝑧𝑎)
2

2𝑏
[1 + (1 + 2𝛽)3]

=
2𝜇𝑒𝑓𝑓𝑧𝑎
(𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎)

2
[1 + (1 + 2𝛽)3] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) {

4(1 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

−
2𝜇𝑒𝑓𝑓𝑧𝑎
(𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎)

2
[1 + (1 + 2𝛽)3]} 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)

4(1 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)

4 (1 +
2𝐴
3 )

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎
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APPENDIX I: The calculation of second term in section 5.2.2.d 

Apply Taylor series expansion 

√𝑏2 + (𝑧𝑎
∗)2 = 𝑏 +

(𝑧𝑎
∗)2

2𝑏
 

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2 = 𝑏 +
(𝑧𝑎
∗ + 2𝑧𝑏)

2

2𝑏
 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
JZ∗

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
[

𝑧𝑎
∗

√𝑏2 + (𝑧𝑎
∗)2
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎
∗)2)

+
(𝑧𝑎
∗ + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2
exp (−𝜇𝑒𝑓𝑓√𝑏

2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2)] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
[

𝑧𝑎
∗

√𝑏2 + (𝑧𝑎
∗)2
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓 (𝑏 +

(𝑧𝑎
∗)2

2𝑏
))

+
(𝑧𝑎
∗ + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2
𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓 (𝑏 +

(𝑧𝑎
∗ + 2𝑧𝑏)

2

2𝑏
))] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
[

𝑧𝑎
∗

√𝑏2 + (𝑧𝑎
∗)2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓

(𝑧𝑎
∗)2

2𝑏
)

+
(𝑧𝑎
∗ + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏)𝑒𝑥𝑝 (−𝜇𝑒𝑓𝑓

(𝑧𝑎
∗ + 2𝑧𝑏)

2

2𝑏
)] 

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) [

𝑧𝑎
∗

√𝑏2 + (𝑧𝑎
∗)2
(1−𝜇𝑒𝑓𝑓

(𝑧𝑎
∗)2

2𝑏
)

+
(𝑧𝑎
∗ + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2
(1−𝜇𝑒𝑓𝑓

(𝑧𝑎
∗ + 2𝑧𝑏)

2

2𝑏
)] 
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= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) {(

𝑧𝑎
∗

√𝑏2 + (𝑧𝑎
∗)2
+

(𝑧𝑎
∗ + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2
)

−
𝜇𝑒𝑓𝑓𝑧𝑎

3

2𝑏
[

𝛼3

√𝑏2 + (𝑧𝑎)
2
+

(1 + 2𝛽)3

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
]} 

Refer to Appendix 2, when 𝜇𝑠
′ → ∞, 𝑧𝑎 → 0. We apply following approximating by discarding the second 

order small variable (𝑧𝑎)
2 appearing at denominator.  

(
𝑧𝑎
∗

√𝑏2 + (𝑧𝑎
∗)2
+

(𝑧𝑎
∗ + 2𝑧𝑏)

√𝑏2 + (𝑧𝑎
∗ + 2𝑧𝑏)

2
) = (

𝑧𝑎
∗

𝑏
+
(𝑧𝑎
∗ + 2𝑧𝑏)

𝑏
) =

2𝑧𝑎(𝛼 + 𝛽)

𝑏
=
4(𝛼 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

 

𝜇𝑒𝑓𝑓𝑧𝑎
3

2𝑏
[

𝛼3

√𝑏2 + (𝑧𝑎)
2
+

(1 + 2𝛽)3

√𝑏2 + (𝑧𝑎 + 2𝑧𝑏)
2
] =

𝜇𝑒𝑓𝑓𝑧𝑎
3

2𝑏
[
𝛼3

𝑏
+
(1 + 2𝛽)3

𝑏
]

=
2𝜇𝑒𝑓𝑓𝑧𝑎

2𝑏

(𝑧𝑎)
2

2𝑏
[𝛼3 + (1 + 2𝛽)3] =

2𝜇𝑒𝑓𝑓𝑧𝑎
(𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎)

2
[𝛼3 + (1 + 2𝛽)3] 

lim
𝜇𝑠
′→∞
𝐼𝑏↔∞
JZ∗

= 𝑙𝑖𝑚
𝜇𝑠
′→∞

3𝑆∗

8√2𝜋
𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) {

4(𝛼 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

−
2𝜇𝑒𝑓𝑓𝑧𝑎
(𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎)

2
[𝛼3 + (1 + 2𝛽)3]} 

=
3𝜂

8√2𝜋
𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏) {
4(𝛼 + 𝛽)

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

} 

=
3𝜂

8√2𝜋
𝑙𝑖𝑚
𝜇𝑠
′→∞

𝑒𝑥𝑝(−𝜇𝑒𝑓𝑓𝑏){
4(𝛼 +

2𝐴
3 )

𝜇𝑠
′𝑑𝑎𝑟𝑒𝑎

} 
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APPENDIX J: The derivation of flux -z component in section 6.2.2.b 

 

𝐽𝑠𝑒𝑚𝑖(𝜌, 𝑡) = 𝐽𝑖𝑛𝑓
real + 𝐽𝑖𝑛𝑓

imag
 

𝐽𝑖𝑛𝑓
real = −𝐷

∂Ψ𝑖𝑛𝑓
real

∂lreal
𝑙𝑟𝑒𝑎𝑙 = −𝐷

𝑆𝑐

(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡)
∂ exp (−

𝑙𝑟𝑒𝑎𝑙
2

4𝐷𝑐𝑡
)

∂lreal
𝑙𝑟𝑒𝑎𝑙  

= −𝐷
𝑆𝑐

(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡)
−2𝑙𝑟𝑒𝑎𝑙
4𝐷𝑐𝑡

exp(−
𝑙𝑟𝑒𝑎𝑙
2

4𝐷𝑐𝑡
) 𝑙𝑟𝑒𝑎𝑙     

=
𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡)𝑙𝑟𝑒𝑎𝑙 exp (−
𝑙𝑟𝑒𝑎𝑙
2

4𝐷𝑐𝑡
) 𝑙𝑟𝑒𝑎𝑙     

𝐽𝑖𝑛𝑓
imag

= −𝐷
∂Ψ𝑖𝑛𝑓

𝑖𝑚𝑎𝑔

∂limag
𝑙𝑖𝑚𝑎𝑔 =

−𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡)𝑙𝑖𝑚𝑎𝑔 exp (−
𝑙𝑖𝑚𝑎𝑔
2

4𝐷𝑐𝑡
) 𝑙𝑖𝑚𝑎𝑔    

𝐽𝑠𝑒𝑚𝑖(𝜌, 𝑡) =
𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [𝑙𝑟𝑒𝑎𝑙 exp(−
𝑙𝑟𝑒𝑎𝑙
2

4𝐷𝑐𝑡
) 𝑙𝑟𝑒𝑎𝑙 − 𝑙𝑖𝑚𝑎𝑔 exp(−

𝑙𝑖𝑚𝑎𝑔
2

4𝐷𝑐𝑡
) 𝑙𝑖𝑚𝑎𝑔] 

For master source, 

𝐽𝑠𝑒𝑚𝑖
𝑚 |−𝑧(𝜌, 𝑡) =

𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [𝑙𝑟𝑒𝑎𝑙
𝑚 exp(−

(𝑙𝑟𝑒𝑎𝑙
𝑚 )2

4𝐷𝑐𝑡
)
𝑧𝑎
𝑙𝑟𝑒𝑎𝑙
𝑚

+ 𝑙𝑖𝑚𝑎𝑔
𝑚 exp(−

(𝑙𝑖𝑚𝑎𝑔
𝑚 )2

4𝐷𝑐𝑡
)
(𝑧𝑎 + 2𝑧𝑏)

𝑙𝑖𝑚𝑎𝑔
𝑚



155 
 

𝐽𝑠𝑒𝑚𝑖
𝑚 |−𝑧(𝜌, 𝑡) =

𝑆

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎 exp(−
(𝑙𝑟𝑒𝑎𝑙
𝑚 )2

4𝐷𝑐𝑡
) + (𝑧𝑎 + 2𝑧𝑏) exp (−

(𝑙𝑖𝑚𝑎𝑔
𝑚 )2

4𝐷𝑐𝑡
)] 

Similarly, for slave source, 

𝐽𝑠𝑒𝑚𝑖
𝑠 |−𝑧(𝜌, 𝑡) =

𝑆∗

2𝑡(4𝜋𝐷𝑐𝑡)
3
2

exp(−𝜇𝑎𝑐𝑡) [𝑧𝑎
∗ exp(−

(𝑙𝑟𝑒𝑎𝑙
𝑠 )2

4𝐷𝑐𝑡
) + (𝑧𝑎

∗ + 2𝑧𝑏) exp (−
(𝑙𝑖𝑚𝑎𝑔
𝑠 )2

4𝐷𝑐𝑡
)] 
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APPENDIX K: Matlab code of steady-state model of total diffuse reflectance in Chapter IV 

function [Hybrid_SF]...     % calcualte the TDF in substraction method 
    = model_hybrid_sub(mua, g, mus, Nrel, Rfib, delta) 

  
b = Rfib; 
Trans = 0.9988; % transimission 
border = delta/(mus*(1-g)); 
Dfib = 2*Rfib; 

  
p2 = 0.1;  %  
p3 = 2*Dfib + 0.2; 

  
if ( b <= border)  % inner-field convers entire fiber, equ (13) 
     musp = mus*(1-g); 
     MUSP = 1; 
     MUS = MUSP/(1-g); 
     B = b*musp /MUSP; % musp*dfib are same 
     XIB = B/(1/MUSP); 
     GAMMA = 2*mua/MUS; 

      
     Hybrid_SF = (0.75^g)*10^(-(1+p3*GAMMA))*((1-g)^g)*exp(-GAMMA)/(1-

p2*GAMMA)*(XIB/(1-g))^(1-p2*GAMMA);  % v1228 

      
elseif(border < b)   % equ (27) 
    %% inner-field integral, from zero to delta*Za, equ (16) 

  
     MUSP = 1; 
     MUS = MUSP/(1-g); 
     GAMMA = 2*mua/MUS; 

  
     Nearmodel_SF = (0.75^g)*10^(-(1+p3*GAMMA))*((1-g)^g)*exp(-

GAMMA)/(1-p2*GAMMA)*(delta/(1-g))^(1-p2*GAMMA);  % v1228 

     
    %% far-field integral, from border to Rfib = Farfield(delta*Za --> 

inf) - Farfield(b --> inf), eqn (15-27) 

  

     
    n = 10; 
    S = 1; 

     
    musp = mus*(1-g); % unit = um^-1 
    D = 1/(3*(mua + musp)); % unit = um 
    mueff = sqrt(mua/D); % unit = um^-1 
    Za = 1/musp;     % unit = um 
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    eta = (g*exp(1-g))^(1/n); 
    alpha = (1-g)^2*(1-eta); 
    Zas = alpha*Za;    % unit = um 
    Ss = S*exp(-mueff*(Za + Zas)/2)*eta; 

     
    ksi = -1.44*Nrel^(-2) + 0.71*Nrel^(-1) + 0.668 + 0.0636*Nrel; 
    A = (1+ksi)/(1-ksi); 
    Zb = 2*A*D; % unit = um 
    beta = Zb/Za; 

     
    XIB = b/Za; 

     

     
    Im_phi_delta2inf = S/(8*sqrt(2)*pi*D*mueff)*(exp(-

mueff*Za*sqrt(delta^2 + 1))- exp(-mueff*Za*sqrt(delta^2 + 

(1+2*beta)^2))); % eqn(19) 

     
    Im_phi_b2inf =     S/(8*sqrt(2)*pi*D*mueff)*(exp(-

mueff*Za*sqrt(XIB^2 + 1))- exp(-mueff*Za*sqrt(XIB^2 + (1+2*beta)^2))); 

% eqn(20) 

     

     
    Is_phi_delta2inf = Ss/(8*sqrt(2)*pi*D*mueff)*(exp(-

mueff*Za*sqrt(delta^2 + alpha^2))- exp(-mueff*Za*sqrt(delta^2 + 

(alpha^2+2*beta)^2))); % eqn(21) 

     
    Is_phi_b2inf =     Ss/(8*sqrt(2)*pi*D*mueff)*(exp(-

mueff*Za*sqrt(XIB^2 + alpha^2))- exp(-mueff*Za*sqrt(XIB^2 + 

(alpha^2+2*beta)^2))); % eqn(22) 

     

     
    Im_jz_delta2inf = 3*S/(8*sqrt(2)*pi)*(1/sqrt(delta^2+1)*exp(-

mueff*Za*sqrt(delta^2+1)) + ... 
                                       

(1+2*beta)/sqrt(delta^2+(1+2*beta)^2)*exp(-

mueff*Za*sqrt(delta^2+(1+2*beta)^2))); % eqn(23) 

     
    Im_jz_b2inf = 3*S/(8*sqrt(2)*pi)*(1/sqrt(XIB^2+1)*exp(-

mueff*Za*sqrt(XIB^2+1)) + ... 
                                       

(1+2*beta)/sqrt(XIB^2+(1+2*beta)^2)*exp(-

mueff*Za*sqrt(XIB^2+(1+2*beta)^2)));  % eqn(24) 

     
    Is_jz_delta2inf = 

3*Ss/(8*sqrt(2)*pi)*(alpha/sqrt(delta^2+alpha^2)*exp(-

mueff*Za*sqrt(delta^2+alpha^2)) + ... 
                                       

(alpha+2*beta)/sqrt(delta^2+(alpha+2*beta)^2)*exp(-

mueff*Za*sqrt(delta^2+(alpha+2*beta)^2))); % eqn(25) 

     
    Is_jz_b2inf = 3*Ss/(8*sqrt(2)*pi)*(alpha/sqrt(XIB^2+alpha^2)*exp(-

mueff*Za*sqrt(XIB^2+alpha^2)) + ... 
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(alpha+2*beta)/sqrt(XIB^2+(alpha+2*beta)^2)*exp(-

mueff*Za*sqrt(XIB^2+(alpha+2*beta)^2))); % eqn(26) 

   

     
    %% 

     
    Hybrid_SF = Nearmodel_SF + Trans*((Im_phi_delta2inf - Im_phi_b2inf) 

+ (Is_phi_delta2inf - Is_phi_b2inf) +... 
                                      (Im_jz_delta2inf - Im_jz_b2inf) + 

(Is_jz_delta2inf - Is_jz_b2inf)); 

                                   
else 
    Hybrid_SF = -1; 
    disp(‘check you code’); 
end 
end 
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APPENDIX L: Matlab code of time-domain model of total diffuse reflectance in Chapter VI  

 
function [td_Hybrid_SF]...     % calcualte the TDF  
    = tdModel(t, mua, g, mus, Nrel, Rfib, delta) 

  
b = Rfib; 
Trans = 0.9988; % transimission 
border = delta/(mus*(1-g)); 
c = 3e11; % mm/s; 
Dfib = 2*Rfib; 

 
p2 = 0.1;  %  
p3 = 2*Dfib + 0.2; 

  

  
if ( b <= border)  % inner-field convers entire fiber,  
     musp = mus*(1-g); 
     MUSP = 1; 
     MUS = MUSP/(1-g); 
     B = b*musp /MUSP; % musp*dfib are same 
     XIB = B/(1/MUSP); 
     GAMMA = 2*mua/MUS; 

      
     td_Hybrid_SF = (0.75^g)*10^(-(1+p3*GAMMA))*((1-g)^g)*exp(-

GAMMA)/(1-p2*GAMMA)*(XIB/(1-g))^(1-p2*GAMMA)*mua*c*exp(-mua*c*t); % 

v1228 

      
elseif(border < b) 
    %% inner-field integral, from zero to delta*Za,  

  
     MUSP = 1; 
     MUS = MUSP/(1-g); 
     GAMMA = 2*mua/MUS; 

  
     Nearmodel_SF = (0.75^g)*10^(-(1+p3*GAMMA))*((1-g)^g)*exp(-

GAMMA)/(1-p2*GAMMA)*(delta/(1-g))^(1-p2*GAMMA)*mua*c*exp(-mua*c*t);  % 

v1228 

     

     
    n = 10; 
    S = 1; 

     
    musp = mus*(1-g); % unit = um^-1 
    D = 1/(3*(mua + musp)); % unit = um 
    mueff = sqrt(mua/D); % unit = um^-1
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    Za = 1/musp;     % unit = um 

     
    eta = (g*exp(1-g))^(1/n); 
    alpha = (1-g)^2*(1-eta); 
    Zas = alpha*Za;    % unit = um 
    Ss = S*exp(-mueff*(Za + Zas)/2)*eta; 

     
    ksi = -1.44*Nrel^(-2) + 0.71*Nrel^(-1) + 0.668 + 0.0636*Nrel; 
    A = (1+ksi)/(1-ksi); 
    Zb = 2*A*D; % unit = um 
    beta = Zb/Za; 

     
    XIB = b/Za; 

     

     
    Im_phi_delta2inf = 1/(8*sqrt(2)*pi^(3/2))*S*c/sqrt(D*c*t)*exp(-

mua*c*t)*(exp(-(delta^2+1)/(4*D*c*t)*Za^2) - exp(-

(delta^2+(1+2*beta)^2)/(4*D*c*t)*Za^2)); %  

     
    Im_phi_b2inf = 1/(8*sqrt(2)*pi^(3/2))*S*c/sqrt(D*c*t)*exp(-

mua*c*t)*(exp(-(XIB^2+1)/(4*D*c*t)*Za^2) - exp(-

(XIB^2+(1+2*beta)^2)/(4*D*c*t)*Za^2)); %  

     

     
    Is_phi_delta2inf = 1/(8*sqrt(2)*pi^(3/2))*Ss*c/sqrt(D*c*t)*exp(-

mua*c*t)*(exp(-(delta^2+alpha^2)/(4*D*c*t)*Za^2) - exp(-

(delta^2+(alpha+2*beta)^2)/(4*D*c*t)*Za^2)); %  

     
    Is_phi_b2inf = 1/(8*sqrt(2)*pi^(3/2))*Ss*c/sqrt(D*c*t)*exp(-

mua*c*t)*(exp(-(XIB^2+alpha^2)/(4*D*c*t)*Za^2) - exp(-

(XIB^2+(alpha+2*beta)^2)/(4*D*c*t)*Za^2)); %  

     

     
    Im_jz_delta2inf = 3/(16*sqrt(2)*pi^(3/2))*S/(t*sqrt(D*c*t))*exp(-

mua*c*t)*(Za*exp(-(delta^2+1)/(4*D*c*t)*Za^2) + (Za+2*Zb)*exp(-

(delta^2+(1+2*beta)^2)/(4*D*c*t)*Za^2)); 

     
    Im_jz_b2inf = 3/(16*sqrt(2)*pi^(3/2))*S/(t*sqrt(D*c*t))*exp(-

mua*c*t)*(Za*exp(-(XIB^2+1)/(4*D*c*t)*Za^2) + (Za+2*Zb)*exp(-

(XIB^2+(1+2*beta)^2)/(4*D*c*t)*Za^2)); 

     

     
    Is_jz_delta2inf = 3/(16*sqrt(2)*pi^(3/2))*Ss/(t*sqrt(D*c*t))*exp(-

mua*c*t)*(Za*exp(-(delta^2+alpha^2)/(4*D*c*t)*Za^2) + (Za+2*Zb)*exp(-

(delta^2+(alpha+2*beta)^2)/(4*D*c*t)*Za^2)); 

     
    Is_jz_b2inf = 3/(16*sqrt(2)*pi^(3/2))*Ss/(t*sqrt(D*c*t))*exp(-

mua*c*t)*(Za*exp(-(XIB^2+alpha^2)/(4*D*c*t)*Za^2) + (Za+2*Zb)*exp(-

(XIB^2+(alpha+2*beta)^2)/(4*D*c*t)*Za^2)); 

     
    %% 
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    td_Hybrid_SF = Nearmodel_SF + Trans*((Im_phi_delta2inf - 

Im_phi_b2inf) + (Is_phi_delta2inf - Is_phi_b2inf) +... 
                                      (Im_jz_delta2inf - Im_jz_b2inf) + 

(Is_jz_delta2inf - Is_jz_b2inf)); 

                                   
else 
    td_Hybrid_SF = -1; 
    disp(‘check your code'); 
end 

  

  
end 
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