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Name: SHANNON STARK GUSS   
 
Date of Degree: DECEMBER, 2019 
  
Title of Study: REFINEMENT OF A MEASURE OF DATA USE PRACTICES 
 
Major Field: EDUCATIONAL PSYCHOLOGY 
 
Abstract: The purpose of this study is to refine a measure of data use in early childhood 
schools, focusing on one section of a set of measures used to capture data use by teachers 
in schools serving children from birth to age 5. Data are defined as information collected 
purposefully by teachers or by others. Primary examples of data in early childhood 
settings include child assessment data, data on classroom quality, and data on families.  
A framework applied to refine items included learning from data at a low level to 
responding based on data at a high level. Items were developed to coincide with these 
levels.  
Items were field tested through cognitive interviews and behavioral coding, and presented 
to panels of experts. These processes informed a version that was collected in the spring 
of 2019 with a sample of 359 teachers. The sample included early childhood teachers 
employed by a national network of early childhood programs that emphasize the use of 
data, early childhood teachers involved in similar evaluations, and teachers recruited 
from social networks. The purpose of this study was to review the psychometric qualities 
of six scales using factor analysis and item response theory (IRT) applications.  
Results/conclusions: The study found that five of the six scales of the Informational Use 
set had acceptable psychometric qualities. Scales measuring the use of teacher-collected 
child assessment data and teacher-collected classroom quality data had items that had 
high estimates of discrimination and measured well across the latent spectrum. These are 
considered sufficient for use in research and professional development. Scales focused on 
other-collected child assessment data and other-collected classroom quality data had 
sufficient discrimination and bandwidth, but are considered primarily useful for 
descriptive purposes due to item fit issues that need additional study. One of the two 
Family scales is also sufficient for descriptive use. However, teacher-collected family 
data did not have sufficient evidence to recommend use as a scale. Model fit statistics had 
mixed results for all but one scale – the teacher-collected classroom data scale. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

When educational practices are considered important, they should be measured and included in 

the study of teaching and learning. Data use is a practice that has shown to have benefits in K-12 

educational settings. Particularly since the No Child Left Behind (NCLB) Act, data have been 

infused into all aspects of schools’ systems in the United States through teacher observation, 

student achievement tests, and student surveys. Observations of teachers and assessments of 

children’s learning and development are also common in classrooms and programs serving very 

young children – from birth to age 8. While little research has focused on data-based decision-

making in early childhood classrooms, it is considered a key part of successful early childhood 

education (Derrick-Mills, 2015; NCQTL, 2011; Sandstrom, Isaacs, & Rohacek, 2015). Research 

is needed on this key practice in early childhood classrooms but is difficult to conduct efficiently 

without a measure. Thus, it is important that the practice of data use be measured in early 

childhood classrooms by a measure that is adapted to this specific educational setting.
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The benefits of data utilization in K-12 were reviewed by Stecker, Fuchs, & Fuchs (2005), who found 

that curriculum-aligned assessment was used effectively by teachers to bolster teaching practices, and 

thereby, student outcomes. For early childhood settings, this kind of research is less common than it 

is for K-12 schools. However, the use of data was written into the standards for the regulation of the 

large, federally-funded early childhood program – Head Start – in 2007, requiring grantees to set 

school readiness goals (NCPMFO, 2013). Child care centers and schools that receive Head Start 

funding are expected to use data from child assessments conducted in a previous year to set school 

readiness goals for the upcoming school year (Sandstrom, Isaacs, & Rohacek, 2015). These goals are 

thereby expected to drive practices and professional development plans of the school. Due to the 

expectation that data use should be part of early childhood education practice, as it is in education 

systems for older children, the measurement of data use in early childhood education is important. 

Only when data use practices are defined and understood through effective measurement will the 

empirical evidence for the benefits of data use to early childhood educational practices be understood. 

The measurement of data use in early childhood will allow for the empirical exploration of both the 

variation and contribution of this practice to the learning and development of young children. 

Defining Data Use in Early Childhood Settings 

A practical problem within the early childhood field is defining the construct of data use. High quality 

early childhood education and care (ecec) has been associated with positive outcomes for children 

(Boyd, Barnett, Bodrova, Leong, & Gomby, 2005; Campbell et al., 2008; NICHD Early Childcare 

Research Network, 2002), but whether data use is one of the components of high quality early 

childhood teaching practice is unclear. As the research in early childhood education evolves, it is 

important to clearly define the types of practices that are hypothesized to support children’s learning 

and development, as well as whether and how they each uniquely contribute to outcomes.  
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Research in early childhood education tends to focus on classroom quality, or teacher-child 

interactions. The practice of data use has received attention more recently, as new standards for 

assessment and evaluation have been put in place. While there are many measures for classroom 

quality and teacher-child interactions, there is only one other measure of data use developed 

specifically for early childhood programs. This may be, in part, due to a lack of clarity on what data 

use means within early childhood practice in comparison to what it might mean in general educational 

settings. While K-12 settings have a variety of curriculum-aligned assessments developed for children 

– across both age groups and learning content, child assessments of young children are more difficult 

for a variety of reasons. Young children are developing rapidly, therefore children of a similar 

chronological age may have widely varying levels of skills. Additionally, early education and care is 

not as focused on learning content as it is on exposing children to a wide variety of developmentally 

appropriate opportunities. Further, unique types of data are frequently used in early childhood that are 

not used as frequently in K-12, such as data about classroom quality and data about families. Because 

young children are difficult to assess, getting information from families and from viewing classroom 

interactions is often used to inform teacher decisions. Thus, the types of data that are used in early 

childhood are unique and this must be taken into consideration when defining data use.  

Because studies about data use often focus on data-based decision-making, this study defines data use 

as the application of systematically collected information that is gathered for the purpose of decision-

making in schools (Gottfried, Ikemoto, Orr, & Lemke, 2011; Spillane, 2012; Walker, Carta, 

Greenwood, & Buzhardt, 2008). Data use in schools is similar to data use in other professions. 

Doctors use patient data to diagnose and treat. Counselors use individual assessments to better 

understand a set of symptoms from which a client is suffering. Meteorologists use patterns and trends 

in weather, coupled with their training about those patterns, to predict weather and advise action. 

Likewise, teachers can use data to make decisions about what to teach, how to teach it, to whom, at 
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what time, and under what context. The use of data is a specific behavior that varies among 

professionals and can be measured. 

Research, Evaluation, and Data Utilization 

Data use, for the purpose of this study, is specific to a local context, such as a single child or a single 

classroom. This differentiates it from both research and evaluation. Data use in schools differs from 

research, as research seeks to use data to generalize to the wider public (Bickman & Rog, 2009). As 

data use in classrooms is localized and specific to one part of a school, it is not intended to be 

generalizable outside of this intended use. Data use also differs from program evaluation. While 

program evaluation often uses multiple connected pieces of data to understand how a program 

operates as a whole system, data use often applies a specific set of data to inform pieces of an 

educational program – such as a differentiated lesson plan for an individual student, lesson plans for a 

classroom, professional development for teachers, or materials and activities recommended to the 

families of young children (Fitzpatrick, Sanders, & Worthen, 2011;Krugly, Stein, & Centeno, 2014).  

As an example of the differences between research, program evaluation, and data utilization, consider 

data that shows that adults facing food insecurity often feed their children rather than themselves and 

that the parenting styles of these adults are often characterized as harsh. In research, this finding 

would support a synthesis of family stress theory and risk and resilience theory (Patterson, 2002). The 

parents who go hungry rather than allow their children to go hungry are protective factors supporting 

their children’s resilience (Henry, Morris, & Harrist, 2015). However, stress and hunger reduce 

parents’ emotional capacities for patience, sensitivity, and self-awareness, and may increase the level 

of harsh interactions between parent and child (McCubbin, 1993). The generalizability would extend 

to food insecure parents, with wide-ranging implications for policy, practice, and additional evidence 

to support a theoretical perspective. In contrast, a program evaluation that found this pattern would 

draw implications based on the evaluation approach and program stakeholders’ goals. If food 
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insecurity was the focus of the program, then food might be provided with parenting outcomes 

receiving little attention. However, if the focus of the program was parenting, then community 

partners might be accessed to reduce food insecurity among program participants as a short-term 

output on the path to long-term outcomes (Fitzpatrick, Sanders, & Worthen, 2011).  

The difference in data use is in the specificity with which the information can be applied. If a 

classroom teacher did a questionnaire with his students’ parents and found that two of twenty 

mentioned that meeting basic needs is a stressor in their lives and that they wish they could be more 

laid back with their kids, then this is not generalizable to a wider population of students nor is it 

evidence for a school to change the way it interacts with the majority of parents. The teacher might, 

however, sign the two specific children up for a program that sends food home on the weekend or 

connect the parent to a local food bank. Data use is characterized by learning, considering choices, 

and tailoring responses to specific information.  

Data Use Process as a Theoretical Framework 

In schools, data use is characterized by data-informed goals that guide the focus of learning and drive 

concerted efforts of schools (Christman et al., 2009). Thus, data use is optimized when it occurs 

within a social context that facilitates the flow of information and cultivates informed practice as a 

pedagogical norm (Gerzon & Guckenberg, 2015; Johnson, 2002; Love, Stiles, Mundry, DiRanna, 

2008; Spillane, 2012). Data use is characterized by learning and is more effective when applied with 

thoughtful pedagogical practice and age-appropriate content to intentional goals and specific plans 

(Bambrick-Santoyo, 2010; Means, Padilla, DeBarger, & Bakia, 2009). This can also be succinctly put 

as using data to build understanding, connecting knowledge, and responding – the basis of the 

construct framework used for this study, shown in Table 1.1 (Marsh & Farrell, 2015). 
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Table 1.1.  

Developmental Framework of Data Use 

Levels of Data Use Definitions 

Data as information 
1. Data use contexts and experiences facilitate creation of 

information; supporting understanding and learning.  

Data as an extension of 

knowledge 

2. Data use contexts and experiences facilitate combination of 

data with other knowledge to generate ideas and new knowledge. 

Data as a catalyst for 

action or stabilizer 

3. Data use contexts and experiences facilitate application of 

ideas to create change or stasis in work behavior.  

Note. Based on conceptualizations from Marsh & Farrell (2015), Spillane (2012). 

The lack of theoretical clarity around data use at the individual teacher level and at the organizational 

school level hinder the accessibility of conversations about the potential benefits and consequences of 

data use. While many data use scholars have defined steps of using data, Marsh & Farrell (2015) also 

apply sociocultural learning theory to the process clarifying that data use occurs within social 

contexts through a process of shared meaning-making. Table 1.1 shows how the work of data use 

scholars has been applied to define a theoretical framework for data utilization that can be applied in 

early childhood settings (Marsh & Farrell, 2015; Spillane, 2012). The framework is primarily from 

the work of Marsh and Farrell (2015). The work of Spillane (2012) is also synthesized in the response 

portion – as data can be used to create change or stasis. That is, data does not always indicate that 

action needs to be taken. 
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Evidence for the Benefits of Data Use in Early Childhood 

Data-based decision-making is the subject of many articles in education – both in early childhood 

education and general education (Gottfried, Ikemoto, Orr, & Lemke, 2011; Spillane, 2012; Walker, 

Carta, Greenwood, Buzhardt, 2008). While evidence exists of a relationship between the use of 

assessments for teacher decisions and stronger student achievement in K-12 education (see Stecker, 

Fuchs & Fuchs [2006] for a review), there is less evidence for this in early childhood education. 

Despite most evidence for data use coming from K-12 programs, the use of data has become expected 

in early childhood programs as well (Monahan, Atkins-Burnett, Wasik, Akers, Hurwitz, & Carta, 

2016). Thus, it is possible that an educational practice that is beneficial in K-12 programs, but less 

beneficial in early childhood programs, is being encouraged without clear evidence of its value.  

Statement of the Problem 

The lack of measures of data use limits our ability to understand whether and how data use is 

important in the lives of young children. The lack of a measure of data use by teachers serving 

children birth to age 8 has practical, empirical, and theoretical problems for the understanding of 

teaching and learning in early childhood settings. A practical issue is the definition of data utilization 

in early childhood, which should be distinguished from data utilization in K-12 programs. Developing 

a measure of data utilization that is unique to early childhood will ameliorate a practical problem by 

capturing aspects of data use that are unique to early childhood programs. This type of measure could 

potentially inform professional development efforts. 

Additionally, despite government-mandates on the use of data for program improvement in early 

childhood settings (e.g, Head Start programs), an understanding of both the presence and importance 

of data use in early childhood settings is limited due to the lack of measuring this important construct. 

Measuring data use in early childhood would facilitate generation of empirical evidence on the use of 
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data in early childhood programs. The lack of a valid and reliable measure reduces the efficiency of 

collecting evidence on the relationship of data utilization to teaching and learning.  

A theoretical issue that needs to be addressed is the development of a measure to test theory. If data 

use can be explained within current theory, a measure that is validly aligned to that theory will 

provide evidence to test the explanation empirically. Further, a measure based on a theoretical 

framework will have consistency in its content validity. Starting with theory benefits the research 

process by reducing the possibility that patterns found are found by chance and providing a clear path 

by which we can explain why and how we observe specific phenomena.  

These practical, empirical, and theoretical problems can begin to be addressed through the 

development and testing of a measure of data use for early childhood programs. 

Education researchers have a responsibility to students and teachers to clarify the most effective 

educational practices and discover how to support and implement practices in ways that maximize 

teachers’ efforts and students’ learning. While data use might be an effective educational practice in 

early childhood education, without a valid and reliable measure with which to use in research studies, 

the data use to child outcomes relationship (or lack thereof),   remains a gap in our knowledge. 

Defining a construct with a theoretical framework solves a practical issue of clarity. Constructing a 

measure around a theoretical framework supports the validity of the measure. Further, the application 

modern measurement methods will support the sensitivity and specificity of the measure.  The lack of 

measures capturing the variation of data use practices by teachers is a problem that hinders 

understanding of whether data use is important in the lives of young children. This problem is 

addressed in this study by refining and testing a measure developed for this purpose. 

Measuring Data Use in Schools 

The measurement of data utilization is complex. While the benefits of data utilization are clear in 

some instances, the clearest examples are in narrow instances of curriculum-based assessments being 
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used to inform the depth and breadth of teaching that is aligned with the same curriculum (Stecker, 

Fuchs, & Fuchs, 2005). The ways in which information can be used become broader when moving 

away from curriculum-based assessments. For example, the use of research has been shown to have 

differing types of uses including use to change a practice (instrumental), use to confirm existing 

beliefs (symbolic), and use to change a view about a problem or practice (conceptual; Penuel, et al., 

2017). The use of data has been theorized to have similar patterns, creating change or stasis through 

organizational routines (Spillane, 2012).  

Additionally, the context in which data is used may motivate people toward differing actions 

depending on the perceived function of the data or functional significance (Ford, Van Sickle, Fazio 

Brunson, 2016). While there is some consensus in the literature that data use involves identifying 

problems, deciding on solutions, and following through with a response, these routines can occur 

within a variety of contexts (Firestone & Gonzalez, 2007; Marsh & Farrell, 2015; Spillane, 2012). 

One of the contexts is the type of data use culture that characterizes an organization – whether one of 

accountability or of learning (Firestone & Gonzalez, 2007; Gannon-Slater, LaLonde, Crenshaw, 

Evens, Greene, & Schwandt (2017). Macrostructures organizing the data use culture influence the 

perception of the function of data – whether the use of data have controlling significance or 

informational significance (Adams, Forsythe, Ware, & Mwavita, 2016; Ford et al., 2016). 

Accountability cultures would focus data use on monitoring and compliance, giving data controlling 

significance (Gannon-Slater et al., 2017; Ford et al., 2016). Organizational learning cultures would 

focus data use on identifying student needs and exploring pedagogical strategies to address those 

needs (Gannon-Slater, 2017). Hence, in organizational learning cultures, data has informational 

significance (Ford et al., 2016). Due to empirical support and theoretical foundations, the use of data 

as feedback that supports learning is regarded as more beneficial to educational practice, student 

outcomes, and teacher well-being. Thus, measuring the use of data that has informational 

significance, or Informational Use, is the focus of this study.  
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Currently, the only measure of data use developed for early childhood settings – the Examining Data 

Informing Teaching (EDIT) measure - requires interviewing, portfolio review, and video coding to 

gather enough data to complete a score (Monahan, et al., 2016). A survey measure of data use, while 

having the limitations of all self-report measures, may be more accessible to early childhood 

programs. A survey measure of data use would also allow early childhood programs to assess their 

schools’ level of data use to inform professional development needs. A survey measure could also 

support program evaluation and research in early childhood settings – clarifying the contribution of 

this aspect of pedagogy. Specifically, a clearly defined measure of data use should allow researchers 

to understand the influence that the practice of data use has on young children’s learning and 

development. This contribution may be difficult to separate from similar constructs of teacher 

sensitivity – the responsiveness of a teacher to the immediate needs of a child. 

Because more effective data use entails organizational learning and concerted efforts, the process of 

applying data to learning and planning is a social effort at the organizational level of the school. This 

includes organizational routines and infrastructure that support the work of data use (Gerzon & 

Guckenberg, 2015; Spillane, 2012). Additionally, the social supportiveness of collaborative teams is 

an important piece of the data use process (Cosner, 2011; Ford et al., 2016). Finally, the function of 

data in a school will affect the data use process. While those aspects of data use context are covered 

in sections of the measure, the focus of this dissertation will be Informational Use of teacher-collected 

and other-collected data. 

In addition to multiple contexts of use – whether collected by teachers or by others – educators also 

have multiple types of data that may be useful in making decisions about their classroom practices. 

Teachers can use child assessments to understand whether a child is struggling with specific learning 

objectives and adjust classroom practices to meet this need. Teachers can also use data from 

observations of their teaching practice to reflect on potential areas for improvement. In addition to 

applying data to children and classroom practice, education professionals, particularly those in early 
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childhood programs, can apply data about children’s families to their work as co-caregivers of young 

children. Thus, early childhood teachers may have different types of data – child, classroom, or 

family – that are collected in different contexts – either by teachers or by others – and are used in 

different school climates – either for controlling or informational purposes. 

Overview of the Project 

While data is considered important to education, including early childhood education, a measure of 

data utilization for research, evaluation, or professional development does not currently exist in a 

form that is accessible to the majority of early childhood programs. This project was originally 

funded as a response to this problem. It was expected to be a three-year project, from May 2015 and 

end May 2018. I applied as the principal investigator based on previous attempts at adapting a 

measure from self-determination theory literature to the process of data utilization in early childhood 

schools (i.e. Deci, Spiegel, Ryan, Koester, & Kauffman, 1982, Deci & Ryan, 2003, Ryan & Deci, 

1987). I was joined on the project by two Ph.D. level colleagues and one school psychologist – all 

with previous experience in measurement development. As the lead developer, my role included 

writing the original grant, writing the year one literature review, designing the study timeline and plan 

of analysis, and recruiting participants. The other investigators provided feedback and editing of all 

project products (reports, power point slides, and conference presentations), consultation on design, 

and assistance with recruitment. The team and I reviewed analyses to make decisions on next steps 

and collaborated on item writing and re-writing. I received a no cost extension to end the project in 

October 2019. The co-investigators have been minimally involved in this extended arm of the project. 

An overview of the project, including what is and is not considered part of this dissertation study is 

described below. 

The project aims are to develop a comprehensive set of measures to capture various aspects of early 

childhood teachers’ beliefs about, attitudes toward, and utilization of data. The set of instruments is 
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called the Data Use Contexts and Experiences Scales (DUCES). This dissertation study focuses on 

the portion of scales dedicated to Informational Use practices. 

Pre-Dissertation. The generation of the DUCES set of measures has undergone two previous 

iterations – with this study focusing on the testing of a third iteration. Before describing the 

methodology for the testing of the third iteration, the development and testing of the first two 

iterations will be described. 

Literature Review. Version 1 was based on an extensive literature review around four concepts of 

data use – organizational, individual, motivational, and practices. At this point in the measure 

development, a breadth of items were being generated based on what the literature suggested could be 

important to understanding data utilization. This literature review can be viewed in Appendix 1. Items 

were developed around these definitions, pretested, and piloted in the Summer of 2016.  

Pilot 1. This administered survey (Version 1) had 64 items and collected qualitative information 

about the types of data teachers used. Analysis of Version 1’s pre-testing data led to significant 

changes, including dropping of two scales, the addition of new items, and a revision in the response 

categories of the scale.  

After pre-testing, Version 1 had response categories on a four-point Likert-type scale, with some 

scales being on a Strongly Disagree-Disagree-Agree-Strongly Agree continuum, one from Not at all 

Confident to Very Confident with two unanchored categories, and one being frequency-based from 

Never, Quarterly, Monthly, to Weekly. It was collected using an online survey from early childhood 

teachers (N=164). Analyses included exploratory factor analysis and the application of the 

generalized partial credit model (GPCM) which is further described in Section 3. Results of this first 

iteration led to a reorganization of the constructs and the addition of a new construct. A primary 

problem that the developers wanted to address was the low item locations for the highest categories – 

indicating that people with low levels of the construct (e.g., low experience of social support, low 
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frequency of data use) were likely to respond in the high categories. Because the higher categories 

were expected to capture those with higher levels of the construct, the developers wanted to calibrate 

items to be more difficult or harder to endorse by those at average levels of the construct. Two 

strategies were used to increase the location estimates – increasing the number of categories from 

which respondents could choose and re-wording or creating new items that were expected to reach to 

higher levels of the construct.  

Pilot 2. Version 2 was also pretested in cognitive interviews and behavioral coding prior to data 

collection. Within the data collection of Version 2, the qualitative data collected in Version 1 was 

categorized into themes and provided as a choice to teachers. The types of data teachers chose 

generated skip logic patterns. Respondents were only asked to complete items about data they used 

(either data about children, classroom quality, or families). Version 2 also forced respondents to 

explain their reason if they chose “Not applicable” rather than a frequency category. The qualitative 

and quantitative data from Version 2 data collection was used to generate Version 3.  

Analyses of Version 2 indicated that item locations were still quite low, with few items reaching past 

a theta of 0. It was at this point that items were evaluated and at times re-written to better fit a data 

use construct based on Marsh & Farrell’s (2015) theoretical framework. In the development of 

Version 2, the framework for three levels of data use was added to generate items that would be 

calibrated toward higher levels of the construct and to clarify a spectrum of data use based on a 

theoretical framework.  

Version 2 was administered to 313 early childhood teachers from Early Head Start/Head Start 

(serving children birth to age 5 from low-income families) and community childcare programs 

(serving children birth to age 8 with varying incomes). The sample included both Bachelor-degreed 

lead teachers and assistant teachers with Associates degrees or Child Development Certificates. Most 

items were answered, but some respondents were removed due to missing data on a whole scale or 



14 
 

evidence of inattentiveness (all answers the same across multiple scales). The final sample was 295 

teachers.  

The GPCM was again applied to data from Version 2, which was collected from teachers – both lead 

teachers, assistants, and aides (N=225). Refer to Appendix 3 for Version 2 items full scale. Results 

indicated that changes to the Likert scale from a 4- to 6-point scale did not necessarily increase the 

category locations, but the estimated probabilities of responses did provide information about the 

response categories that are likely to give the best information across frequency locations. For 

example, if two adjacent categories had little distance between the item-location, these could be 

combined. Similarly, if an item had low discrimination estimates, there might be a very low 

probability of participants responding in some categories, -so the categories may need to be broken up 

into more granular categories or the item may need to be reworded. Response categories for the 

DUCES were drawn from common standard measure categories (Sue & Ritter, 2013). These included 

frequencies of 1=Not applicable/Not in the last 6 months, 2=Once in the last 6 months, 3=Every 2 to 

3 months, 4=Once a month, 5=Two to three times a month, 6=Once a week, 7=Daily.  

Changes made from the analysis of Pilot 2 were often based on the examination of discrimination and 

location – viewed through numerical estimates and graphical descriptions of each item. For 

Informational Use items, many items were eliminated due to low discrimination. The reduced set was 

examined within an Exploratory Factor Analysis – using principal axis factoring with Varimax 

rotation. Informational Use items within child, classroom, and family decision content area performed 

well – with each scale containing only one factor and factor loadings between .62 - .89.  

Data Use Contexts and Experiences Scales (DUCES) 

The piloting of items related to data use has led to a shorter and more refined version of the measure. 

The measure fully incorporates the theoretical framework developed by Marsh & Farrell (2015) by 

structuring items to the context – intrapersonal, interpersonal, and organizational-structural-
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environmental – as well as the process of data use – learning, connecting knowledge, and responding 

based on data. Table 1.2 shows the constructs captured in the full set of measures.  

The first six scales focused on Informational Use are subject of this dissertation study. 
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 Table 1.2.  

 Definition and Example Items of the Data Use Contexts and Experiences Scales (DUCES) 

 Scale Definition Example items 

Informational Use 

1 TC Class 

Reported frequency of behaviors 

applying data to inform decisions in 

each content area.  

• I used data to evaluate progress 

toward student learning goals. 
2 OC Class 

3 TC Child • I identified areas where I needed to 

strengthen my instructional practice. 
4 OC Child 

5 TC Fam • I looked at data as a way to learn 

about the family.  
6 OC Fam 

Motivational Experiences 

7 Motivation 

Extent to which data users’ 

experiences were intrinsically or 

extrinsically motivating. 

• I wished I could do things differently 

in my classroom, but I feel pressure 

based on data.  

 

Structural Context 

8 Tools and 

Resources 

Rating of the effectiveness of tools 

& resources facilitating data use 

Rating of the effectiveness of time 

& training facilitating data use 

• Leaders who facilitated understanding 

of data. 

9 Time & Training • Necessary training on interpreting 

data appropriately. 

Intrapersonal Context 
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Note. TC = teacher-collected, context of data is data that is teacher-collected; OC = other-collected, 

context of data is data that is collected by someone other than teachers. 

Purpose Statement 

The purpose of this dissertation study was to refine and test the psychometric qualities of the first six 

scales of the Data Use Contexts and Experiences Scales (DUCES) – the Informational Use scales 

focused on practices of teachers in the last six to twelve months for using teacher-collected and other-

collected data. This dissertation study included decisions based on the pretesting processes, as well as 

analyses of the survey measure. The study covered content validity, construct validity and 

discriminant validity, as well as unidimensionality of the scale, and discrimination and location of the 

items. To meet the purpose of this study – examining psychometric qualities - the hypotheses below 

will be tested using the related plan of analysis. The study will review the psychometric qualities of 

six scales using factor analysis and item response theory (IRT) applications.  

10 Attitudes Level of agreement that data use is 

beneficial to teachers. 

 

• Data can help me identify my own 

strengths and weaknesses. 

11 Confidence Reported feelings of confidence in 

ability to apply data to work with 

children and families. 

• Apply your early childhood expertise 

to create plans with data. 

Interpersonal Context 

12 Social Supports  

 

Level of agreement that work colleagues are 

supportive of data use. 

I have people at work who would 

help me if I did not understand 

data. 
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Hypotheses 

Table 1.3.  

Hypotheses and plan of analysis  

  Hypotheses Related analyses 

Phase 1: 

Pretesting 

H1: Scale items are 

interpreted as 

intended. 

Cognitive interviews indicate that questions can be 

easily interpreted and answered by respondents with 

experience in early childhood classrooms (Ruel, 

Wagoner, & Gillespie, 2016) 

 H2: Scale items are 

congruent with 

their intended level 

of calibration. 

Technical expert panelists rate items as fitting within 

the intended level/definition using the Index of Item 

Objective Congruence formula (Turner & Carlson, 

2003). 

Phase 2: 

 Analysis 

of Survey 

Data 

H3: Scales are normally 

distributed 

Skewness is calculated between +/-1.0. 

Excess kurtosis is calculated at .75.  

(Ho & Yu, 2014) 

 H4: Scales are 

unidimensional and 

measure unique 

constructs 

Principle axis factor analysis show only one factor 

with an eigenvalue greater than 1, or parallel analysis 

confirms a single factor structure (Costello & 

Osborne, 2005). Scales are correlated with each other 
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at no greater than .50 using Pearson’s correlation 

coefficient (Ruel, Wagoner, & Gillespie, 2016). 

 H5: Items are 

discriminating 

Discrimination of items is greater than .80 within an 

Item Response Theory generalized partial credit 

model (De Ayala, 2009). 

 H6: Items measure 

across the construct 

levels 

Item location parameters estimate item thresholds’ 

(𝛿𝛿𝑗𝑗ℎ) differences of |2|between the first and last 

threshold with no less than a .25 gap between adjacent 

thresholds (𝛿𝛿𝑗𝑗ℎ). (De Ayala, 2009) 

Phase 3: 

Contrasting 

groups 

analysis 

H7: Scales discriminate 

between high- and 

low-level data 

users. 

Ratings from key insiders will be used to place survey 

respondents into high and low use groups (Ruel, 

Wagoner, & Gillespie, 2016). Independent t-tests will 

show significant differences on DUCES scores 

between high and low data use groups 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

 

In the previous chapter, a case was briefly made for the need of a measure of data use for early 

childhood settings, as well as an overview of plans to fill this gap by continuing the refinement of 

a measure of data use practices. This chapter further explains the need for a measure by reviewing 

current literature and introduces the need for each of the six scales refined in this study to flexibly 

measure data use based on multiple types of data used by early childhood educators and differing 

contexts of data collection. 

Theories and Frameworks of Data Use 

The work of Marsh & Farrell (2015) outlines a framework that clearly aligns to many other data 

use scholars conceptualizations of the complex process of using data (e.g. Mandinach, 2012; 

Krugly, Stein, & Centeno, 2014). Their theory of action posits that the first step from having data 

alone to using data is in the form of generating information. This entails understanding data and 

interpreting it accurately. Next, the information gained from the data is joined with knowledge 

that already exists within the individual or group who are using data.   
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The existing knowledge teachers have from their previous training/education and experience with 

children provides a basis from which they interpret the data. Teachers and other data users usually 

have knowledge about the interests, strengths, or struggles of the children in their classroom. 

Teachers and principals bring information about the curriculum or content of teaching targets to 

the conversation about data. In total, the extant knowledge from a group of data users includes 

their previous training and education, their understanding of current needs of children and 

families, and the expectations of their schools’ curriculum or expectations of developmentally 

appropriate practice. Their framework for data use capacity-building is also a framework for 

measuring the process. 

This process of moving from data to information, to knowledge, and then response characterizes 

effective data utilization and serves as an excellent the basis for the measurement of data use. As 

shown in Table 1.1, the Marsh & Farrell (2015) framework gives an understanding of data use 

that defines lower and higher aspects of data use. The lower and higher aspects of the process 

align well to the goal of measuring the process, as one of the goals of measurement is to 

understand the nature of a construct by using rules to capture its variation (De Ayala, 2009). As 

applied to measurement, Marsh and Farrell’s framework may help us distinguish the lowest levels 

of data use from that which is more complex, as defined by the types of activities occurring in the 

lower versus higher levels of data use.  

While Marsh and Farrell (2015) were not the first to explain a process of data use, they uniquely 

rooted the process in sociocultural learning theory. This is an important distinction, particularly 

when considering data use in schools, as the impact of data use on children is often not from the 

teacher alone, but from multiple agents working in concert Other educational researchers have 

suggested that the sociocultural learning theory should be considered the modern approach to data 

utilization as it moves away from the incoherence of accountability practices that narrowed 

teaching practices without improving child outcomes (Lee & Reeves, 2017; Shepard & Penuel, 
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2018). Sociocultural applications emphasize that learning occurs through meaningful 

relationships and about things that are of value to the culture. This again brings the issue back to 

the context of data use, for which the scales related to interpersonal, intrapersonal, and structural 

aspects of data use were developed. The Informational Use scales were developed to focus on 

process. 

As mentioned, Marsh and Farrell (2015) were not the first to discuss the process of data use. 

Table 2.1 shows the alignment between Marsh and Farrell’s work and the work of several other 

authors studying data utilization. This shows that, while many different versions of data process 

and protocols have been suggested, they can all be summarized succinctly by the Marsh & Farrell 

(2015) process of Information, Knowledge, and Response.  

Table 2.1. 
      

Processes of Data Utilization 

Marsh & 

Farrell (2015) 

Johnson 

(2002) 

Krugly et 

al. (2014) 

Derrick-

Mills et al. 

(2014) 

Mandinach 

et al. (2012) 

Virmani 

(2013) 
Spillane (2012) 

Data Summarize 
 

Create goals 

Gather data 

Collect 

Organize   

Information Analyze Prepare Analyze 
Analyze 

Summarize 
Acknowledge 

Routines for 

Identification of 

problems 

Knowledge Interpret Interpret Synthesize Synthesize Ask Diagnosis 
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Response 

Plan 

Act 

Follow Up 

Implement 

Evaluate 

Prioritize 

Implement 

Monitor 

Evaluate 

Prioritize Adapt Prognosis 

 

Current Available Measures 

While a measure of data use in early childhood is needed, some measures of data use do exist – 

one in early childhood (Monahan, et al., 2016) and two developed for general use (Dunn, Airola, 

Lo, & Garrison, 2013; Jimerson, 2015). These measures have their shortcomings, such as their 

lack of accessibility to general early childhood programs or their lack of specific adaptation to the 

early childhood context or too little focus on the practice of data use. 

Examining data informing teaching (EDIT). The EDIT incorporates the selection and 

collection of data, the organizing and interpreting of data, and using the data for overall and 

individualized teaching (Monahan, et al., 2016). It uses checklists, ratings, and rubrics to gather 

data about how teachers are using data. EDIT raters review documents and assessments, review 

administration of assessments and instruction. Data collection includes a one-hour interview. This 

extensive process, while generating comprehensive information on the use of formative 

assessment, is likely inaccessible to most early childhood programs. While the EDIT will likely 

be an effective tool for research studies focused on data use, another measure may be needed to 

provide more accessible information for programs and sufficient evidence for research and 

evaluation. The measure is very new and no studies have been published using it as a measure. 

Data-driven decision-making efficacy and anxiety (3D-MEA). The 3D-MEA measures 

teachers’ sense of efficacy and anxiety related to data. Many of the items are related to teachers’ 

feelings of confidence and intimidation in terms of data use. The items of the 3D-MEA loaded on 
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five factors – identification, technology, interpretation, application, and anxiety. Studies of the 

3D-MEA indicate that measurement of teacher confidence in data use, as measured by the 3D-

MEA, may fall into two factors – application and interpretation (Dunn, et al., 2013). The 3D-

MEA is based in part on a definition of data use skills as being 1) teacher ability to select and 

collect data and 2) teacher ability to apply data. The 3D-MEA expands this definition to break 

down other skills such as interpreting, using technology, and overcoming anxiety.  

One distinction of this measure is that it does not measure practices. The 3D-MEA does not ask 

about data use practices but does ask about confidence in applying data to practice. While this 

may be perceived as an effective proxy, confidence could be a moderator of practice – with more 

confidence supporting the effectiveness of data use practice. While confidence may be an 

important construct to measure, particularly in its application to professional development of 

teachers, it is unclear whether or how it is linked to data use practices. 

Survey of data use and professional learning (S-DUPL). Items of the S-DUPL ask teachers 

about the extent to which they agree with statements related to technology, collaboration, inquiry, 

interpretation, and application (Jimerson, 2015). The scales include Confidence, Effectiveness, 

Construal, Beneficence, Anxiety, and Collaboration, along with some non-scale items that 

provide descriptive information. Each of the scales asks about interpersonal feelings (Confidence, 

Construal, Beneficence, and Anxiety) or about organizational supports (Effectiveness of 

professional development, Collaborations). The S-DUPL, like the 3D-MEA, place aspects that 

are out of the teachers control (e.g., access to technology to view data) on a different subscale 

than that which is in the teachers’ control (e.g., create lesson plans with data). The scales’ internal 

consistency estimates, as measured by Cronbach’s alpha, ranged from .64 for the Collaboration 

scale to .89 for the Effectiveness scale. Most of the test-retest reliabilities for items were .50 or 

greater. 
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In addition to separating what is specific to the school and what is specific to the teacher, a 

comprehensive measure of data use would also capture the interaction of these two – the 

interpersonal context of data use. None of the current measures of data use assess the 

interpersonal aspect. Additionally, it is unclear whether an underlying theory was applied to 

consider lower versus higher levels of data use beyond attitudes and confidence in the S-DUPL 

and 3D-MEA. 

Other Means of Measuring Data Use. An innovative way in which data use micro-processes 

have been measured is in the access to a computer system. The researcher counted the number of 

teacher interactions with technology built to support data use – counting the number of clicks 

related to certain actions (Wayman, Shaw, & Cho, 2017). Others have looked at practice in a 

broader way, with data used to inform instruction, to give feedback to students, or to support 

peer- or self-assessment (Kippers, Wolternich, Schildkamp, & Poortman, 2018).While students 

may benefit from feedback about their data or be able to self-assess their own learning in the 

upper grades, these types of data use are not appropriate for children who are still learning to read 

or even talk.  

Surveys used in other research had acceptably high internal consistency when asking about use of 

curriculum-based benchmark assessment data (Christman et al, 2009). Others studied data use 

more broadly and had low variability on items asking about access to data and changes made with 

data (Pierce & Chick, 2011). The U.S Department of Education has studied data use through the 

Office of Planning, Research, and Evaluation (OPRE) and found that data use increased over time 

– these data were gathered through phone interviews using a questionnaire (Sandstrom, Isaacs, & 

Rohacek, 2015). None of these efforts focused on the broad types of data used by early childhood 

teachers, nor incorporated a framework of data use at different levels. 
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Challenges of Measuring Data Use: Content & Type 

Classroom Content. Beyond data on student learning, two other topics are considered extremely 

important in high quality early childhood education and care – information about classroom 

quality and information about the family. Classroom quality data, while also used by teachers of 

older children, has significant importance in early childhood due to studies indicating that high 

quality early childhood classrooms influence the development of children through their lifespan, 

with better outcomes still evident at 40 years of age (Campbell et al., 2008). These studies were 

specifically on children from low-income homes. More recently, studies are finding similar 

results with analysis of children from a diversity of backgrounds, with recent studies of the 

children in their adolescence (Love et al., 2003; Vandell, Burchinal, Pierce, Eccles, & Dubow 

2016). Because the quality of a classroom is empirically tied to the ongoing learning and 

development of young children, early care and education teachers are expected to produce 

measurably high quality classrooms. One way to improve the quality of a classroom is to allow 

measures of classroom quality to inform practice (Zweig et al., 2015). That is, to use data from 

classroom quality measures to identify sources of strength and areas for improvement, followed 

by professional development or other supports to adjust classroom practice as needed. 

Child Content. While other data use studies have examined the use of data related to measures of 

student outcomes (Dunn, Airola, Lo, & Garrison, 2013; Reeves, Summers, & Grove, 2016), early 

childhood professionals rely less heavily on child assessment than teachers of older children. This 

is, in part, due to the difficulty of assessing young children and the historical dearth of measures 

available for non-clinical assessment (Stevenson-Garcia, Horm, Atkins-Burnett, 2019). Some 

early childhood professionals resist data use because they feel that child assessments are not 

developmentally appropriate (Ford, et al., 2016). However, as more measures have been 

developed for young children, the use of play-based assessments has been welcomed, as they 

capitalize on the playful behavior of young children (Walker, Carta, Greenwood, & Buzhardt, 
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2008). These play-based measures are more comfortable for teachers to collect as frequent 

formative assessments, which is also a recommended practice for effective data use (Bambrick-

Santoyo, 2010; Carta, Greenwood, Baggett, Buzhardt, & Walker, 2012; Stecker, Fuchs, & Fuchs, 

2005).  

Family Content. A third area of data that can be used by early childhood educators is data on 

families. For example, data on types of adversity children may have experienced through their 

family life may help teachers or other specialists decide on the types of supports that a child 

needs – supporting a child who has experienced trauma can occur through play that allows them 

to express their fears and process confusing events. A more common example may be 

information about what a child’s typical schedule is like at home and whether a child is regularly 

read to outside the classroom setting. This kind of information may help teachers adjust to a 

child’s needs – allowing a child to take an earlier nap if needed or giving a child more one-on-one 

time with books to allow him to explore the process of text and pictures individually. A value of 

most early childhood programs is partnership with families, under the standard that parents are 

children’s first and most important teacher (National Center on Parent, Family, and Community 

Engagement; NCPFCE, 2011). Organizations that offer accreditation also have requirements for 

partnership and involvement of families. This is due to the unique relationships teachers often 

have with parents when children are young. Daily communication related to diapering, feeding, 

and naps is highly important between caregivers at home and in early childhood settings. Thus, 

early childhood professionals are, at times, in a position to support and encourage parents to work 

toward goals. Large programs, such as Head Start, require that families are involved in setting 

goals for their children (National Center on Program Management and Fiscal Operations; 

NCPMFO, 2013). As mother’s education and family income are some of the strongest predictors 

of student achievement (e.g., Ayoub, O’Connor, Rappolt-Schlictmann, Vallotton, Raikes, & 

Chazan-Cohen, 2009), Head Start staff often work with families to set goals related to 
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employment or education. Thereby, data on families because part of the information used to make 

individual and program decisions. 

Two Types of Data: Who Collects 

To further specify the information that could be considered when using ‘data’, the manner of 

collection can be important. In a qualitative study on the use of data in Louisiana, researchers 

found that teachers were more likely to use data they had collected themselves rather than data 

that was collected via a standardized computer format (Ford et al., 2016). Additionally, the self-

collection of data may increase the accessibility of data. Some studies have noted that child 

outcomes improved when teachers had technology that facilitated access to data (as cited by 

Akers, Grosso, Atkins-Burnett, Boller, Carta, and Wasik [2014]). This generates two types of 

data – teacher-collected and other-collected. Altogether, data can be defined both by the content 

of data (classroom, children, or families) and by the type of data (teacher-collected or other-

collected).  

Research on Data Use Practices 

While few measures of data use exist, research on data has been done through observation of data 

use or by assessing change in child outcomes following a data use intervention. Aligning 

curriculum-based assessment has produced gains in student outcomes (Stecker, Fuchs & Fuchs). 

Targeting children who need additional assistance through data and providing additional learning 

supports has led to larger gains for preschoolers (Buysee, Peisner-Feinberg, Soukakou, Fettig, 

Schaaf, & Burchinal, 2016). A data use intervention showed positive effects, particularly for 

children at risk (Van Geel, 2016). The use of a classroom observation measure of literacy 

practices was used to guide instruction, resulting in an increase in children’s literacy skills 

(Beecher, Abbott, Petersen, & Greenwood, 2017). Research supports that data use is important 

for educational outcomes including teacher practices and student learning. 
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When data use was measured based on the number of clicks teachers made on a website that was 

built to support teachers’ data use, a relationship between practice and outcomes was observed. 

The teachers used the website to provide students with resources, to pull reports, and track 

student work. This was associated with higher gains on assessments of elementary school reading 

(Wayman, Shaw, & Cho, 2017). However, the amount of interaction with the website did not 

have a relationship to elementary math, junior high reading, or junior high math. Some studies 

have shown that data use practices of teachers are related to student outcomes. Thus, it seems 

important to focus on this aspect of data utilization – what teachers are doing in response to data – 

whether learning, connecting their learning to other information, or responding to better meet the 

needs of children in their classroom. 

Research Questions 

Current measures are limited in several ways, including accessibility and affordability, 

comprehensive assessment of data use practices, and types of items that appropriately capture the 

data use experience of early childhood teachers.  I expect that some of these limitations can be 

overcome through further refinement and testing of the Informational Use scales of the DUCES.  

The DUCES is based on a theoretical framework that can be applied to other research, practice, 

and policy. The currently available measure developed for early childhood is focused primarily 

on child assessments and collection may be burdensome for some programs. Measures that are 

less burdensome were not developed for teachers of younger children and do not focus on 

practices - an important driver of teaching and learning. Thus, refining and testing a measure of 

data utilization that is appropriate for early childhood programs will fill a gap in current research. 

Research questions for this study include: 

RQ1: Are scale items interpreted as intended? 

RQ2: Are scale items congruent with their intended level of calibration? 
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RQ3: Are scale scores normally distributed? 

RQ4: Are items discriminating at an acceptable level? 

RQ5: Are items measuring across the construct’s latent continuum? 

RQ6: Do scales discriminate between higher- and lower-level data users?  

Considering that multiple education scholars have outlined similar processes of data use that align 

with the Marsh & Farrell framework, their framework was chosen as a model to organize analysis 

and interpretation. This chapter also outlined existing measures and argued for the need of a 

measure that is more accessible and more comprehensive than current options. Finally, the 

comprehensiveness of a measure was outlined by arguing for the need to measure within two 

context of data collection – data collected by teacher or others – and three types of data, including 

child assessment, classroom quality, and family data. 
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CHAPTER III 
 

 

METHODOLOGY 

 

 

 

The previous chapter reviewed literature about data use in early childhood and made a case for a 

theoretical framework to organize a measure. The literature also supported the need for a measure 

to cover contexts and types of data that are important in early childhood settings. 

The scales being developed for this study stem from a previous iteration of the tools, described in 

Chapter 1. Decisions about the refinement of this measure were made in accordance with 

Standards for Educational and Psychological Measurement (AERA, APA, & NCME, 2014) by 

subjecting the items to cognitive interviewing and item paneling for the purposes of pretesting 

and refining the items. Decisions about a recommended set of items were made in January 

through March of 2018 in the pre-dissertation phase of the project. This dissertation study began 

in April 2018 with pretesting. Following refinement based on pretesting, the refined items were 

tested with 359 teachers in February -- August of 2019. The survey data were analyzed using 

factor analysis and item response theory applications to assess item quality in September of 2019.  

A subset of teachers, N=61, received ratings of their data use abilities by key insiders in February 

through March of 2019. This data was gathered as part of the validation process for the measure. 
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Procedures 

This research was funded by the Buffett Early Childhood Fund. The IRB of record was with the 

University of Oklahoma, with Oklahoma State University reviewing the entire application as part 

of the agreement to allow for this. The study was reviewed and defined as Exempt. Data from 

survey respondents was kept on a secure online website (Qualtrics) or on secure servers at the 

university. Data from other respondents was not identifiable. Survey respondents were 

compensated with a $20 gift card for completing the survey. Raters of teachers were compensated 

with $10 per rating. 

Four phases of data collection occurred – pre-testing, technical expert paneling, teacher survey 

completion, and insider perspective ratings of the teachers’ data use abilities. All participants 

were informed that their participation was voluntary and that the purpose of the study was to learn 

about the items and not to learn about participants themselves. Survey participants signed a 

consent online, with identifiable data linked to their answers, including race, gender, age, school, 

education, and experience. Cognitive interviewees and behavioral coding participants were 

volunteers about whom no identifiable information was collected. Technical expert panelists were 

compensated or provided their time in-kind. 

Pre-Testing 

Cognitive Interview Sample. The cognitive interviewees were recruited from a group of current 

and former early childhood teachers within the social network of the researcher. Two former 

teachers and one current teacher were recruited to complete the cognitive interviews.  

Cognitive Interviewing and Analysis. Cognitive interviews are a means of gathering the thought 

process of respondents while they respond to test items to ensure that the intended cognitive 

process is occurring (AERA, APA, & NCME, 2014).   The cognitive interviewees were recruited 

from a group of current and former early childhood teachers within the social network of the 
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researcher. Two former teachers and one current teacher were recruited to complete the cognitive 

interviews. The researcher explained the protocol – that the participants should read the question 

out loud, then continuing talking about how they were interpreting it until they could answer it. 

They were asked to give a ‘stream of consciousness’ or to continue talking about their thoughts 

while they decided on their answer. Once they answered, they could go on. The researcher took 

notes while the participants completed this process.  

This process involves a single participant responding to each item while talking about their 

interpretation of the item, considerations they are having as they generate an answer to the item, 

and their rational for a final answer (Ruel, Wagoner, & Gillespie, 2016). A section of the set of 

measures was used, as it would be too time consuming to conduct interviews on the entire 

measure. Issues discovered through this process were documented and considered in the further 

refinement of the items. See Appendix 2 for a description of protocol.  

Behavioral Coding Sample. While the original proposal did not call for behavioral coding, the 

small number of cognitive interviewees that were recruited motivated the addition of behavioral 

coding to be conducted in order to test whether items were being interpreted as intended. An early 

childhood education night class was recruited to participate in the study. All students (N=16) 

worked during the day in an early childhood setting.  

Behavioral Coding and Analysis. Participants were asked to complete the survey and mark any 

question that they struggled to understand with a star so that the researcher could work to improve 

the understandability of the item. Three of the sixteen returned surveys were marked with a star. 

Those items were discussed. The participants in the night class were watched for signs of 

difficulty while they completed the test. These signs were also brought up and discussed. 

Identified issues were used for refinement of items. 
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Technical Expert Panel 

Technical Expert Panel Sample. The technical expert panel was recruited through research 

contacts and outreach via email. The panelists were recruited based on their expertise in three 

areas important to the overall set of scales – data use in schools, self-determination theory 

applications to data use, and early childhood education. The panel included two experts in each of 

these areas. Data use experts had published work or conducted work related to the use of data for 

decision-making in school settings. Early childhood education experts had degrees and 

publications related to the learning and development of young children in group settings. Self-

determination experts had publications in which self-determination theory was applied to data 

utilization. 

Technical Expert Paneling and Analysis. All six panelists were asked to rate the set of items 

that had Child Content (applicable to TC Child and OC Child). Due to time concerns, the rest of 

the measure was broken up between the group so that they were not asked to rate the entire 

measure. The two experts in early childhood were also asked to rate items related to Classroom 

Content and Family Content (applicable to TC Class, OC Class, TC Fam, OC Fam). Thus, the 

number of ratings for the Classroom and Family scales is smaller than that for the Child scales. 

Because many items were refined to better fit with the Marsh & Farrell (2015) framework, the 

refined items needed to be examined to evaluate whether others could evaluate and categorize 

items to the intended location on the construct table (Ruel, Wagoner, & Gillespie, 2016). This 

allowed for an evaluation of items separate from the developer’s view. Panel members were 

oriented to the construct definitions through a presentation by the developer and through online 

descriptions.  

The method for item review was an online survey presented so that panelists could rate each item 

as clearly fitting in, somewhat fitting in, or not fitting in three categories – learning, connecting 
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knowledge, or responding based on data. Thus, for each item, respondents had nine choices and 

were asked to choose three per item. See below for an example item and Appendix 4 for the 

entire measure.  

Q1 I used data to evaluate progress toward student learning goals. 

 Does not fit this 

description (-1) 

Somewhat fits this 

description (0) 

Clearly fits this 

category (1) 

Data is used to 

understand children, 

without clear 

connection to plans. 

(1)  

o  o  o  

Data connects to 

existing knowledge or 

to consider children's 

status within current 

plans. (2)  

o  o  o  

Data is used to 

respond, plan 

responses, or evaluate 

previous 

plans/actions. (3)  

o  o  o  

 

Figure 3.1. Example item from Technical Expert Panel rating instrument. 
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As shown in Figure 3.1, the item “I used data to evaluate progress toward student learning goals” 

could be evaluated as fitting, not fitting, or somewhat fitting in each of the three definitions. This 

allowed for the respondents to give rich data about their view of the items – both where they do 

and do not fit and where their fit is unclear.  

While this did not show on the survey that panelists viewed, you can see on the example item that 

a rating of ‘does not fit’ receives a -1, somewhat fits = 0, and clearly fits = 1. These values were 

used in the calculation of the Index of Item-Objective Congruence (Crocker & Algina, 1986). The 

equation is shown in the equation  

𝐼𝐼𝑖𝑖𝑖𝑖 =  𝑁𝑁
2𝑁𝑁−2

(𝜇𝜇𝑥𝑥 − 𝜇𝜇),          (3.1)  

where I is the Index of Item Objective Congruence for i items having k content areas. The mean 

𝜇𝜇𝑥𝑥 is the judges’ rating on the item within its intended category, while µ is the judges’ ratings on 

the item across all categories. This measure allows multiple judges’ ratings on the intended item 

content to be compared to the judges’ ratings on across all the item’s content areas. This distance, 

accounting for the number of objectives, gives a number between 0 and 1. An IIOC of .75 is 

considered acceptable as it can be interpreted as agreement among three-fourths of the judges 

(Turner & Carlson, 2003). 

Due to feedback from panelists, this data was not used to refine items. However, the data is 

helpful in assessing fit with the theoretical construct.  A comparison between where panelist 

calibrated items and where location estimates calibrated items will be an important exercise in 

considering the measures’ fit with the theoretical framework of an underlying data use construct.  
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DUCES Survey 

Sampling and Recruitment. The early childhood teachers who completed the survey tool were 

recruited in several ways – by providing their contact information while completing other surveys 

for the Educare Learning Network, through Educare emails, through contacts generated by 

participation in similar early childhood evaluations, through newsletters disseminated by early 

childhood evaluators and grant funders, and through social networking sites (Facebook groups) 

that were aimed at early childhood teachers. While this did not enable the recruitment of 

thousands of respondents, as is ideal for item response theory applications, it was hoped that at 

least 300 would be recruited. A suggested sample size for a general partial credit model is five 

people for each parameter estimated (De Ayala, 2000). With the general partial credit model, 

each item has its own discrimination and a location parameter is estimated for k-1 categories. 

Thus, for my largest scale (OC Child), that had nine items and seven parameters per item, I would 

have generated 63 parameters. The recommended sample size would have been 315. However, 

the categories were collapsed to five, generating 45 parameters and necessitating a sample size of 

225. The final sample size for OC child was 286. The remaining scales also had a sufficient 

sample size using a five-cases-per-parameter rule.  

Sample Description. Demographics of 338 teachers who participated in the survey were diverse 

in age and race, but not in gender. The sample of respondent reports are described in Tables 3.2 

and 3.3.  

 Race and Ethnicity. Teachers could report on multiple races/ethnicities. Those who 

marked more than one category are grouped into the multi-racial category. Almost half (45 %) of 

teachers were White/Caucasian/European American, 21.7% were Black/African American, and 

9.5% were Hispanic/Latinx. As shown in table 3.2, the remaining teachers were of another 
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race/ethnic, were multiracial, or did not have data reported. Race/ethnicity data was not collected 

from some participants (n=33) and thus, their data are missing. 

 

Table 3.2. 

  
Race/Ethnicity of Teachers (N=359) 

  

N % 

 

European American 162 45.1% 

 

African American 78 21.7% 

 

Native American 12 3.3% 

 

Asian 7 1.9% 

 

Pacific Islander 0 0.0% 

 

Hispanic 34 9.5% 

 

Other 6 1.7% 

 

Multi-racial 27 7.5% 

 

Missing  33 9.2% 

  Total 359 100.0% 

 

Teachers also reported age and gender. Some gender data was not reported (9.5%). Of those that 

were reported, the majority of teachers were female, with only 1.7% of teachers being male. This 
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is representative of the measures’ target population, as 98% of Head Start teachers were reported 

to be female in a 2016 study and a recent report focused on the ece workforce described the 

population as “predominantly female” (Institute of Medicine & National Research Council, 2015; 

Whitebook, McLean, Austin, & Edwards, 2018).  There was more diversity in age, with about a 

third (29.6%) of teachers being between 25 and 34, a quarter (25.9%) between 35 and 44, and 

almost another third (29.2%) between 45 and 64. The exact percentages are shown in Table 3.3.  

Table 3.3. 

   
Gender and Age Group of Teachers (N=359) 

 

Gender   n % 

 
 

Female 319 88.9 

  

Male 6 1.7 

  

Not reported 34 9.5 

  

Total 359 100 

 

Age Group   n % 

 
 

18-24 20 5.6 

 
 

25-34 106 29.5 

  

35-44 93 25.9 

 
 

45-54 68 18.9 

 
 

55-64 37 10.3 
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65+ 3 .8 

  

Missing 32 8.9 

    Total 359 100 

 

Survey Data Collection and Analysis. Teachers completed scales based on the types of data 

they use, so that the content of items relevant to them were shown. TC Classroom Content was 

shown to those who said they had access to data collected by other teachers about classroom 

quality and teacher-child interactions. OC Classroom Content was shown to respondents who said 

they had access to data collected by evaluators, researchers, or quality rating and improvement 

systems (QRIS) data collectors about classroom quality or teacher-child interactions. More 

teachers had access to data collected by others than collected by teachers. The most common type 

of data to which teachers had access was data about children that teachers collected themselves – 

only one teacher in the sample did not have access to this kind of data. The second most common 

type was data about children that others had collected. Teachers collected formative assessments, 

natural observations, and screenings, while others collected direct child assessments and 

standardized measures. 

Table 3.4. 

         
Frequency and Percent of Total Sample Completing Each Scale by types of data accessed 

(N=359) 

Teacher Collected Context N 
 

% Other Collected Context N 
 

% 

 
Classroom Content 254 

 
70.8 

 
Classroom Content 268 

 
74.7 
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(TC Class scale) (OC Class scale) 

 
Child Content 

(TC Child scale) 

329 
 

91.6 
 

Child Content 

(OC Child scale) 

286 
 

79.7 

 
Family Content 

(TC Family scale) 

227 
 

63.2 
 

Family Content 

(OC Family scale) 

223 
 

62.1 

The type of data that the fewest teachers had access to was data about families. This included 

parent interest surveys collected by teachers or formal family needs assessments collected by 

others. 

Normality. Normality is an important assumption of parametric statistics. Thus, the normality of 

the data is an important point to check as we begin analysis of a measure. The data were checked 

in three ways – skewness, kurtosis, and the Shapiro-Wilk test. Skewness was expected to be 

between -.1.0 and 1.0, while excess kurtosis was expected to be between greater than .75 (Ho & 

Yu, 2014). The Shapiro-Wilk test has a null hypothesis that the data in the distribution are 

identical to a normal distribution. Thus, a statistically significant Shapiro-Wilk test would 

indicate that the data are not normal. 

Unidimensionality. Because changes to the measure were significant through pretesting, 

exploratory factor analysis was conducted rather than confirmatory factor analysis. Similar to the 

previous version, principal axis factor analysis with varimax rotation was used, as suggested by 

Costello and Osborne (2015). Scales were considered unidimensional if all items load on a single 

factor with an eigenvalue greater than 1, also known as the Kaiser criterion. This method is not 

the most accurate method; it is critiqued because it tends to generate too many factors (Costello & 

Osborne, 2015). This effectively makes it a more conservative approach to testing 

unidimensionality with a single factor considered evidence for unidimensionality.  
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Item response theory. Item response theory (IRT) is a modern approach to measure development 

(De Ayala, 2009; Devellis, 2016). IRT applications provide a sample-independent means of 

examining the information contributed by an individual item to a scale. The information 

contributed by an item can be estimated based on the item’s estimated discrimination value and 

each category’s location estimate, further described below. These methods can be applied to both 

dichotomous and categorical, or polytomous, ordered data. This study applied IRT methods to 

polytomous items to which there is no correct answer.  

The items of the measure examined for this study are on an ordered scale ranging from Never, 

Once in the last 6 months, Every 2 to 3 months, Once a month, Two to three times a month, Once 

a week, and Daily. Potential methods for handling this type of data include the graded response 

model (GRM) and the generalized partial response model (GPCM). The GPCM was chosen 

because it is an adjacent model, rather than a cumulative model. That is, the GPCM estimates the 

location on the latent continuum at which there is a .5 probability of crossing from one adjacent 

category to the next, but does not assume categories are in the ‘correct’ order by person location. 

In contrast, the GRM uses an additive model that does assume correct order of response 

categories.  

While the frequency response scale from Never to Daily does have a natural ordering in terms of 

understood timing, the ‘ordering’ referred to and tested by the GPCM is that those with a lower 

level of the construct, i.e., low-level data users, will respond in lower categories, such as never 

and once-a-month, and those with a higher level of the construct will respond in higher 

categories, such as Weekly or Daily. The equation for the GPCM is 

𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗�𝜃𝜃, 𝛼𝛼𝑗𝑗, 𝛿𝛿𝑗𝑗𝑗𝑗) =
𝑒𝑒𝑒𝑒𝑒𝑒�∑ 𝛼𝛼𝑗𝑗(𝜃𝜃−𝛿𝛿𝑗𝑗ℎ)

𝑘𝑘𝑗𝑗
ℎ=1 �

∑ 𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑗𝑗
𝑐𝑐=1 �∑ 𝛼𝛼𝑗𝑗(𝜃𝜃−𝛿𝛿𝑗𝑗ℎ𝑐𝑐

ℎ=1 )�
,      (3.2) 
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which shows the probability of score X for item j in category k, given person location (θ), 

discrimination (α) of item j, and item j location (δ) of each category k (De Ayala, 2009). The 

equation is essentially an odds ratio where probability is determined by the occurrence of an 

event over all possible occurrences. In the generalized partial credit model, the event is the logit 

of the sum of person location differences from item locations for each item j’s threshold h, 

multiplied by the discrimination estimate (De Ayala, 2009).  

The GPCM model was applied to the dataset of item responses from the set of examinees’ 

response patterns on the set of items for each of the six scales. Following the evaluation of the 

unidimensional assumption of IRT, each of the 6 scales had item parameters estimated using 

marginal maximum likelihood estimation.  

Model fit was tested using the C2 adaptation of Maydeu-Olivares M2* by Cai and Monroe 

(2014). The developers of the C2 goodness of fit statistic demonstrate that C2 is more powerful 

than M2 and M2*, particularly when there are a small number of items (Cai & Monroe, 2014). 

The statistic was tested with unidimensional and ordinal data. The data in this study fit both of 

these characteristics – small number of items per scale and unidimensional, ordinal data – making 

C2 an appropriate model fit statistic for this analysis.  

These model fit indices were run in R with the mirt package. The model was adapted from R 

defaults for the generalized partial credit model to replicate the modeling of Stata software. 

Specifically, Stata software uses a Newton-Raphson algorithm and sets quadrature points to seven 

(Yang & Zheng, 2018). The code that was used to estimate the model in R is shown below. 

Mod1 <- mirt(data, 1, itemtype = ‘gpcm’, method = "EM", optimizer = ‘NR’, calcNull = TRUE, 

quadpts = 7, verbose = TRUE) 

Item fit was assessed with SX2. The SX2 item fit statistic was shown to be have the lowest Type 

1 error rate when compared to G2 and RISE (Liang & Wells, 2009).   
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Model fit and item fit were also conducted in R. The remaining analyses were conducted in Stata 

V.14, 2015. 

Discrimination. Discrimination is an item’s ability to distinguish between respondents who differ 

from each other on the latent continuum that is being measured. In the GPCM model, each item 

has a discrimination parameter. The quality of the items of each scale was evaluated by 

examining that discrimination of items were .80 or greater. This is a recommended point to 

identify items having unacceptably low discrimination in a generalized partial credit model (De 

Ayala, 2009). Items with a low discrimination parameter (less than .80) were considered for 

elimination (De Ayala, 2009).  

Location. Location of items is the estimate of where on the latent continuum an item captures 

information about respondents. In the GPCM, location is estimated at the threshold between 

category responses (e.g. between Never and Rarely). The quality of the items of each scale was 

evaluated by examining that estimated locations were ordered and ranged between -1(δ) and 1(δ) 

units of the spectrum. Items with categories that do not follow the expected order or are 

redundant in their locations will be considered for elimination or refinement.  

Insider Perspective Ratings 

As part of the validation process for the data use measure, ratings of teachers by key respondents 

(teachers’ supervisors or local evaluation partners) were used to examine discriminant validity. 

While discriminant validity and divergent validity are sometimes used interchangeably, 

discriminant validity is here defined as a measure’s capacity to distinguish between two different 

groups. This differs from divergent validity, which should be defined as a measure’s divergence 

from a dissimilar construct (Raykov & Marcoulides, 2010). Discriminant validity was examined 

with a mean comparison between two groups that were determined to be higher and lower data 

users based on the insider perspective ratings. Insider perspective ratings were used to assess 
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discriminant validity. The ratings of key insiders were used to create high and low groups for 

discriminant validity. 

Sampling and Recruitment. The insider perspective ratings were gathered from key individuals 

who had experience working with teachers during data use processes at the school. The 

individuals were supervisors of teachers or Local Evaluation Partners (LEPs). The supervisor or 

LEP was recruited based on being in a position to be familiar with the teachers’ use of data. In 

order to protect the confidentiality of teachers, supervisors and LEPs were not told which teachers 

were participating in the study. Raters provided a rating to as many teachers as they wanted, with 

the expectation set that they would only rate teachers with whom they had worked in a data use 

context. Eleven raters provided 127 ratings. About half of these were matched with a completed 

survey (N=61). This sample size was smaller than the expected 100 matched ratings. 

Data Collection and Analysis. The key respondents (insiders) rated each individual teacher in 

classrooms they had worked with using a brief 10-item rating, created by the researcher, asking 

how likely the teacher was to use data in a variety of ways. Example items include “How likely is 

this teacher to… use data to learn more about a child; use data to identify areas of classroom 

practice they want to improve.” The full rating instrument can be found in Appendix 5.  

To protect confidentiality, key respondents were not provided with information about which 

teachers had participated in the study and had no knowledge of teachers’ scores on the DUCES.  

The rating was scored by summing all 10 items. The scores were used to create high and low 

groups based on an approximate mean split prior to matching the insider rating to the DUCES 

survey completed by the rated teacher.  

Because those who were rating the teachers were unaware of who was in the study, the ratings 

and surveys were not matched in one-to-one correspondence. In fact, only 48% of teachers who 

were rated completed the DUCES. Attrition from staff turnover, promotion, surveys filtering as 
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spam, or just being ignored due to lack of recognition reduced the potential sample. While issues 

of job changes and email problems could be considered somewhat random, if the email was seen 

and understood, but participants selected not to participate, this would bias the sample. Thus, a 

sensitivity check was conducted to assess the appropriateness of the validity data by analyzing 

mean differences (independent t-test) between the insider ratings of teachers who had completed 

a DUCES survey (and therefore had a match) and the insider ratings of teachers who had not 

completed a survey (and therefore had no matched DUCES survey). 
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CHAPTER IV 
 

 

FINDINGS 

 

 

 

This chapter covers results for each hypothesis, in order of the research questions outlined in the 

first chapter. A synthesis of the findings and decisions about items and scales are then shown to 

as a final refinement of the set of measures.  

RQ1: Are scale items interpreted as intended? 

H1: Scale items are interpreted as intended. 

Pre-Testing: Cognitive Interviews 

The cognitive interviewing process led to minor revisions in the measures. Most items were 

interpreted as intended. Some items were misinterpreted by multiple interviewees; these items 

were dropped. Other items were reworded.  

Use of Classroom Data. When answering about use of classroom data collected by others, one 

interviewee noted that she received feedback from supervisors on a schedule. Thus, her answers 

were based on systems and lacked variability in regard to frequency. 
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She also struggled to interpret one item. The second interviewee also answered classroom data 

based on other-collected data, as that was all that she had experienced during her time as a 

teacher. Her explanations of why she answered were less detailed than her answers about using 

child data. She seemed to interpret all items generally, rather than focusing them on how data was 

used when the items did not begin with “I used data to…” She also mentioned that she would 

have taken action more frequently if the system had provided feedback more frequently (e.g. she 

had been given more information about interpreting and responding to the data). There was little 

variability in her scores. The third teacher did not answer the classroom set of questions because 

she said that teachers rarely observed other teachers and formal observations only occurred once a 

year. The scale was ordered from ‘Not in the last 6 months’ to ‘Once a week’.  

These results informed decisions to shorten one item and to begin all items with “I used data 

to…” There is also evidence that systems – programs or schools – may influence this measure 

more than the scale assessing use of child data. The response category, ‘once in the last 12 

months’ was also added. 

Use of Child Data. The first participant was asked to only think of teacher-collected data when 

answering questions. She struggled with one question, wondering ‘if they aren’t doing well 

everyday…’ but interpreted it based on whether she had data to group children, as the item 

intended. As she answered questions about child data, she explained that her answers were 

primarily based on structured monthly meetings, so many of her answers were ‘monthly’. For 

answers that were ‘daily’, she noted that she was basing it on informal data collection. 

Specifically, “daily data in some form is constant, especially with babies.” She referenced what 

some early childhood professionals would consider knowing a child’s schedule and reading an 

infant’s cues as pieces of data that she learned from experience or noted on a Daily Sheet and 

made decisions based on throughout the day. These are high-level skills in an early childhood 
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professional, thus an answer of daily in this context would align with a high ability level, as 

intended.  

The second participant was asked to answer questions about teacher-collected data. All questions 

were interpreted as expected. An example is the interpretation of “I used data to identify whether 

student learning needs were met using data” as using data to provide different types of instruction 

based on abilities. This shows that the teacher is connecting data to other knowledge she has – 

that children may need differentiated instruction. This item was designed to capture the mid-level 

of use – Connecting to Existing Knowledge. 

The third participant answered based on teacher-collected data. She noted that some time frames 

for her use were systematic, depending on software systems generating data. She noted that she 

used data weekly in most areas and had little trouble interpreting the data. Despite her reliance on 

systems, she was using data at almost the highest level on the scale. 

Use of Family Data. The first participant answered about teacher-collected data. She was 

confused about two items, felt that she could not answer a third due to lack of applicability to her 

situation, and needed additional information to answer a third. The second respondent also 

responded about teacher collected data. Three of the questions were easy to interpret – learned 

about the family, reflected on data, and noticed changes in the child, but the other three were 

difficult to understand. The third respondent interpreted the first two questions easily but 

struggled to answer three. The results of this interview led to dropping two items and slightly 

rewording a fourth.  

Pre-Testing: Behavioral Coding 

Based on the information gathered from the 16 students in the behavioral coding sample, x items 

were reworded. The process also confirmed the need to keep the scales separated between 
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Teacher-collected and Other-collected. The number of response categories was increased from 

four to seven, partially based on information received during this meeting.  

Participants said that they struggled to answer some questions based on consideration of the type 

of data, saying “I do things differently with my own data (than with data that others collect).” 

Some questions did not apply to their experience (family progress). The researcher followed each 

of these comments with further questions. The researcher asked if the questions would have been 

easier to answer if the survey had started out by saying – ‘Think about data you collect’ and the 

teacher confirmed that this was true. The teacher who felt that the family questions did not apply 

to her noted that she was a public school teacher, rather than a Head Start or Early Head Start 

teacher – whose organizations focus heavily on family engagement. These findings confirmed 

that the questions needed to be split by teacher-collected and other-collected types of data. The 

findings also supported the use of logic embedded into the online survey that would only show 

questions about families to teachers who had access to family data for the purpose of informing 

practice. 

The researcher noted that some finished very quickly, while others took a long time. The 

researcher also noted who erased their answers, had facial expressions denoting a cognitive 

struggle (frowns, furrowed eyebrows, turned head), and who had long pauses before going on to 

the next answer. Follow up with the participants who had signs of struggling to complete the 

assessment were asked about their interpretation of questions. These participants asked about 

specific phrases, such as ‘inform practice’ and one explained that she does not use much data. 

The participants who were pausing for a long time said that they felt the question did not apply to 

them (home childcare). They also felt that there should be more response categories to provide for 

more or less frequent use of data. This was part of the reason the scale was moved from a four-

point scale to a seven-point scale. Overall, most items were interpreted as intended. Items that 

were not interpreted as intended were revised. 
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RQ2: Are scale items congruent with their intended level of calibration? 

H2: Scale items are congruent with their intended level of calibration. 

Technical Expert Panel Analyses 

The Index of item-objective congruence (IIOC) calculations for items was not at a high level for 

most items. Turner and Carlson (2002) suggest an IIOC of .75 is acceptable, as that would 

indicate that 3/4ths of the judges agreed that the item was congruent with its intended content. 

Average scores for each item’s content area are shown in Table 4.1 under Objectives. As an 

example, the first TC Classroom item, “I identified areas where I needed to strengthen my 

instructional practice”, was intended to be about learning, apart from connect to other knowledge 

or responding – hence the rating under the objective Learning is highlighted in grey.  

Application of the Turner and Carlson rule was not possible, however, due to the lack of judges to 

rate some of the scales. Specifically, only the items for TC Child and OC Child were reviewed by 

more than two judges. Thus, the Classroom and Family items only have four scores - both said 

that the item clearly fell in one objective, giving it a rating of (1), with their scores averaged to 

equal (1); both said that the item clearly did not fall in one objective/level, giving it a rating of 

(0), with scores averaged to (0); the two disagreed on whether the item fell in the objective, with 

one saying it clearly did/did not (1/-1) and one saying it did somewhat (0), for an average rating 

of (.50/-.50). The IIOC is calculated accounting for the number of objectives. 

While three of the five Classroom Data items were rated at 1.0 (both raters agreed), only one of 

the Child Data items were rated above the suggested criteria of .75. One of the four Family Data 

items had IIOC values at 1.0. Refer to Table 4.1 for more information. Most items on the Child 

and Family scales were not congruent with intended levels of calibration based on IIOC values. 
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Most of the items on the Classroom scale did meet the expected IIOC value, indicating that these 

items were congruent with their intended level.  

Table 4.1 

Index of Item Objective Congruence Estimates and Judges’ Average Ratings by Objective 

 

Item   Objectives 

 

IIOC 1) Learning 2) Knowledge 3) Response 

Classroom Data (TC or OC)       N=2         

I identified areas where I needed to 

strengthen my instructional practice.  
-0.62 -1.00 1.00 -0.50 

I used data to make plans (e.g. 

professional goals, work objectives). 
0.75* -1.00 1.00 0.00 

I made changes to the types of 

activities I was doing with students.  
0.75* -1.00 0.00 1.00 

I made changes to the strategies I 

used to support learning and 

development. 

0.75* -1.00 0.00 1.00 

I used data to evaluate the 

effectiveness of my plans for 

improvement. 

0.00 -1.00 1.00 0.00 
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Child Data (TC or OC)       N=6         

I used data to evaluate progress 

toward student learning goals. 
0.25 -0.50 0.17 0.33 

I used data to evaluate the 

effectiveness of my instruction. (e.g. 

lessons and/or projects) 

0.71 -0.67 -0.50 0.83 

I used data to identify a group of 

children who weren't doing well. 
0.13 0.17 0.17 -0.33 

I identified students' strengths and 

areas for improvement.  
0.25 0.33 0.17 -.050 

I identified students who needed 

more learning challenges. 
-0.13 0.33 -0.17 -0.17 

I identified whether student learning 

needs were met using data.  
0.08 -0.17 0.17 0.17 

I used data to determine children's 

knowledge or skills before teaching. 
-.17 0.67 -0.17 -0.33 

I formed small groups based on data 

about children's learning and 

development. 

0.75* -1.00 0.00 1.00 

I identified reasons a child struggled 

to learn. 
0.62 -0.50 1.00 0.00 
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Family Data (TC or OC)       N=2         

I looked at data as a way to learn 

about the family. 
1.00* 1.00 -1.00 -1.00 

I reflected on data with others (e.g. 

co-workers, supervisors) to think 

about the strengths of families. 

0.25 0.00 0.00 -1.00 

I used data to plan family 

engagement activities with other 

staff 

0.00 -1.00 1.00 0.00 

I used data to assess progress in the 

well-being of families. 
0.00 0.00 0.00 0.00 

I noticed that family data explained 

changes (positive or negative) in a 

child. 

0.00 0.00 0.00 0.00 

Note: Grey coloring indicates the valid objective defined to be measured by the item. *Marks 

IIOC that meet the criteria of .75. 

In addition to the IIOC, Table 4.1 reports the average score across judges for each level of data 

use. The intended objective is highlighted in grey. This shows how judges calibrated the items 

across objectives. Judges thought that the last item on the Classroom Data Scale fit best under 

“knowledge” – or connecting to knowledge. While the act of evaluating plans with data was 

placed in a higher level in development than learning to make plans, it is easily understood how 

this item could be calibrated at the ‘Knowledge’ level.  
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While most items on the Child scale did not reach the .75 criterion, the average ratings on the 

intended objective give some indication of how well the item was calibrated. Items 2, 8, and 9 

had high ratings, with most judges rating them as clearly fitting in their intended category. 

However, they did not all reach the .75 criterion because the items were also rated under other 

objectives. Items 1, 3, 4, and 6 also had positive values, indicating some agreement with the 

intended objective. Items 5 and 7 were both rated in a lower objective than intended.  Most of the 

Family items, with the exception of item 1, seemed unclear to judges, with average ratings of zero 

across many categories.  

The information from this process was not clear enough to be used for changing the items. One 

panelist mentioned that for the design of the content, objectives logically included multiple levels. 

He noted that he had marked multiple categories and why. Specifically, if data use occurred at a 

high level, the understanding was that it was also occurring at the lower levels. Judges were given 

the ability to rank the data in this way for precisely this reason – I wanted to check whether my 

assumptions about category fit matched others’ assumptions. This feedback gave clear initial 

indication that my assumptions were not validated – judges saw many items fitting in multiple 

categories, rather than just one. While this data was not used to refine the measure, the IIOC and 

the average ratings indicated that some items were calibrated as intended and others were not. 

RQ3: Are scale scores normally distributed? 

H3: Scales are normally distributed.  

Evaluation of the DUCES Distribution and Structure 

Normality. Scales were scored by summing the items. The means, standard deviations, Shapiro-

Wilk test statistic, skewness, and kurtosis were examined. Many scales lacked normality. The 

frequencies were examined to learn what categories might be collapsed in order to increase the 

normality of the items and, thereby, the scale. Very few teachers responded on the lowest ends of 
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the scale, such as “Never” or “Once or twice a year.” For this reason, many scales were collapsed 

at the low end to improve the normality of the scale. 

The means, standard deviations, Shapiro-Wilk test statistic, skewness, and kurtosis following the 

collapse of categories are shown in Table 4.2. For each scale, the original skewness and kurtosis 

was examined, as well as frequencies of responses within each category to determine the most 

appropriate combination of categories. Practical considerations of interpretability were also part 

of the decision making process. All scales initially had 7 categories. TC Child and TC Class were 

collapsed to 3 categories; TC Fam, OC Class, and OC Fam were collapsed to 4 categories; and 

TC Child was collapsed to 5 categories. 

In the collapsed scales, the Shapiro-Wilk test of normality is significant for all scales, indicating 

that the distribution of scores are statistically significantly different from a normal distribution. 

However, the W value is high. The W value calculated by the Shapiro-Wilk formula is between 0 

and 1. Distributions with a W value close to 1 are close to normal (Shapiro & Wilk, 1965). Thus, 

while the Shapiro-Wilk test indicated a non-normal distribution based on the p-value, the W value 

indicates a distribution approaching normality. This is likely due to the Shapiro-Wilk’s sensitivity 

to sample size (Field, 2005). 

The level of excess kurtosis that was considered acceptable was set at +/- .75 and the level of 

acceptable skewness was set between +/- 1.0 based in a demonstration of normality testing on 

raw and scaled scores (Ho & Yu, 2014). While the original data collected had issues of negative 

skewness, data were collapsed at the lower end by combining categories such as ‘Not in the last 6 

months’ and ‘Once in the last 6 months’. This served to improve the normality of items, and thus 

the normality of the overall scales. The scales were also somewhat platykurtotic, with excess 

negative kurtosis. The collapsing of categories also seemed to improve this issue. As shown in 

Table 4.2, the collapsed categories had acceptable skewness and kurtosis in the scores.  
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Table 4.2. 

 Evaluation of Normality of Distribution of Scales Following Category Collapse  

 Variables Mean SD Categories Shapiro-Wilk Skewness Kurtosis N 

1 TC Class 11.44 2.38 3 .94* -.25 .20 254 

2 TC Child 23.60 6.81 3 .97* -.18 .41 329 

3 TC Fam 10.91 2.93 4 .95* -0.35 .21 227 

4 OC Class 13.01 4.21 4 .95* -0.13 .67 268 

5 OC Child 25.45 8.41 5 .95* .55 .17 286 

6 OC Fam 13.27 4.00 4 .94* -0.29 .52 223 

*p < .05 

 

Another way to check the data was through graphing the distribution. Figure 4.1 indicates that 

there are some outliers at the low end of TC Class and TC Child. The scales all had a wide spread 

of scores across their relative ranges. OC Child had a particularly normal looking boxplot, with 

the median score at the middle of the inner quartiles and the legs of the box plot showing even 

distribution from both ends. Still, this distribution did not meet criteria sufficient for a non-

significant Shapiro-Wilk test.  

Thus, the normality statistics were mixed. While skewness and kurtosis were acceptable for all 

scales, the Shapiro-Wilk was significant, indicating non-normal distribution. However, the W 

value was high, which is often associated with a non-significant Shapiro-Wilk. For this reason, I 

determined that the data were sufficient for analysis. As noted in the title of Table 4.2, the 
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analysis of normality was conducted following category collapse, which was necessary to meet 

this first assumption. All subsequent analyses are also administered with the collapsed scales to 

continue testing assumptions with the same set of data. 

 

Figure 4.1. Boxplots of the Six Scales’ Scores 

H4: Scales are unidimensional and measure unique constructs 

Unidimensionality.  

Preliminary analysis for factor analysis were checked - see Table 4.3. The Kaiser Meyer Olkin 

(KMO) estimates were greater than .80, denoting that data were sufficiently correlated for factor 

analysis. Additionally, Bartlett’s test of sphericity was significant for all scales, indicating that we 

can reject the null hypothesis that the correlation matrix is an identity matrix. Similarly, 

determinants are another indicator that the item correlation matrix is not a singular or identity 

matrix; all were greater than .00, indicating that some multicollinearity exists among the variables 
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and a latent factor can potentially be revealed through factor analysis. The communalities varied, 

but were primarily above .40, indicating a good amount of correlation in the original data. 

Further, the percent of variance captured by factors was evaluated. All scales captured more than 

50% of the variance, indicating that the items within the factors represented broad aspects of the 

constructs. All analyses were conducted using principal axis factor analyses. The assumption of 

unidimensionality was tested based on the rule of extracting only one factor with an eigenvalues 

greater than 1, or the Kaiser criterion (Costello & Osborne, 2003). 

Table 4.3. 

Estimates evaluating the appropriateness and results of Exploratory Factor Analysis 

 KMO Determinant Communalities % Variance  Factor 

Loadings 

N 

TC Class .84 .106 .32 - .61 64.1 * 254 

TC Child .92 .004 .56 - .75 71.6 * 329 

TC Fam .79 .119 .48 - .64 72.6 * 227 

OC Class .90 .010 .64 - .81 80.8 * 268 

OC Child .93 >.000 .62 - .91 78.7 * 286 

OC Fam .86 .014 .56 - .84 77.6 * 223 

Note: *Factor loadings were not reported when only one factor was extracted.  

As the Kaiser criterion is criticized due to its tendency to overextract, it can be considered a 

conservative rule when applied to test for unidimensionality, as it is here (Zwick & Velicer, 1986, 

as cited by Reise, Waller, & Comrey, 2000). That is, as the Kaiser criterion would tend to 
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overextract rather than underextract, and we can consider this a conservative test. Thus, the 

assumption of unidimensionality holds for all scales, as only one factor was extracted for each. 

A second way to test unidimensionality was to examine correlations greater than .50 between 

scales. Some scales were highly correlated, as shown in Table 4.4. The highest correlations were 

between TC Class and TC Child (r = .65), OC Class and OC Child (r = .70), and between TC 

Family and OC Family (r = .68). These are beyond the recommended level of r = .50 to consider 

constructs sufficiently unique (Ruel, Wagoner, & Gillespie, 2016). Other scales that are estimated 

to have correlations above .50 include OC Child and TC Child (r = .57), OC Fam and OC Child (r 

= .56). 

Table 4.4. 

      
Correlations Between Scales 

  

1 2 3 4 5 6 

1 TC Class 1.00 
     

2 TC Child 0.65* 1.00 
 

 

 

  

3 TC Fam 0.41 0.42 1.00 
   

4 OC Class 0.41 0.41 0.43 1.00 
  

5 OC Child 0.42 0.57* 0.49 0.70* 1.00 
 

6 OC Fam 0.21 0.33 0.68* 0.41 0.56* 1.00 

*Correlation is greater than .50, indicating possible overlap of constructs. 
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While the results of the factor analysis provide sufficient evidence that each scale is 

unidimensional, the correlations suggest that the scales may not be measuring unique constructs. 

Because the factor analysis suggests that the scales meet the criteria of unidimensionality, an 

important assumption has been met for the next step in analysis – item analysis using item 

response theory applications. 

Evaluation of the Scales Using Item Response Theory Methods 

Model Fit Statistics. Model fit statistics are shown in Table 4.5. The model fit statistics indicated 

that most of the scales were a good fit for the specified model – generalized partial credit model. 

Two of the scales – TC Child and OC Child did not have a good fit with the model. C2 statistics 

are goodness of fit statistics that, like a chi-square fit statistic, should be non-significant to 

indicate a good fit. C2 uses limited information to adjust for a small number of items and sparse 

data (Cai & Monroe, 2014). Significant p-values (< .05) for the two child scales indicate that 

these models were not a good fit. The C2 for TC Class is moderately significant and is not 

significant for OC Class, indicating good fit for OC Class. 

The Tucker-Lewis Index (TLI) compares the fitted model to a null model with the same data and 

degrees of freedom (Tucker & Lewis, 1973). Higher numbers are considered more favorable, 

with a common rule of greater than .95 considered an adequate fit. While the TLI indicates that 

the models were a good fit, and were used as evidence for moving forward, the more rigorous fit 

statistic (C2) was non-significant for just one scale. 

Table 4.5.  

Model-Fit Statistics   

 

C2 df p TLI N 
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Item Fit Statistics. Item fit statistics were estimated for all items in each scale, including S-X2 

and RMSEA. S-X2 is a goodness of fit statistic. Thus, a model is interpreted as having a good fit 

if the S-X2 statistic is non-significant. As shown in Table 4.6., the item fit statistics for the TC 

Class were mostly a good fit. The S-X2 test for TC Child items indicated that all items were a 

good fit. Across the OC scales, the OC Class had poor fit for all items (note that this was the only 

scale that had model fit with C2). The Root Mean Square Error of Approximation (RMSEA) for 

these items varied from .01 to .12. RMSEAs of less than .05 are commonly considered adequate 

(Cai & Monroe, 2013). 

Table 4.6. 

Item Fit Statistics 

  

TC Class 

  

TC Child 

  

TC Fam 

(N=254) (N=329) (N=227) 

 

S-X2 RMSEA 

 

SX2 RMSEA 

 

SX2 RMSEA 

TC Class 11.9 5 .04 .98 254 

TC Child 42.3 14 <.00 .99 329 

TC Fam 17.1 2 < .00 .92 227 

OC Class 9.0 5   .11 .99 268 

OC Child 145.6 27 .00 .97 286 

OC Fam 19.1 5 .00 .98 223 
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Item 1 19.6* .11  12.7 .04  15.8* .10 

Item 2 7.6 .06  13.9 .04  15.7* .11 

Item 3 4.7 .00  8.8 .00  20.4* .09 

Item 4 16.0* .09  11.1 .03  31.1* .12 

Item 5 9.3 .06  14.4 .04    

Item 6    9.4 .02    

Item 7    9.1 .01    

Item 8     

 

    

 

    

Item 9                 

 
OC Class 

  

OC Child   

  

OC Fam 

 

(N=268) (N=286)   (N=223) 

 

SX2 RMSEA 

 

SX2 RMSEA 

 

SX2 RMSEA 

Item 1 73.6* .14  48.1* .06  15.2 .06 

Item 2 66.9* .14  24.0 .02  11.6 .05 

Item 3 43.4* .12  28.3 .03  24.9* .09 

Item 4 142.5* .32  25.4 .03  47.2* .12 

Item 5 40.5* .11  28.0 .04  19.1* .07 

Item 6     

 

44.9* .06 
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Item 7     

 

64.9* .08 

 

    

Item 8     

 

122.2* .10 

 

    

Item 9       60.1* .07       

*p-value < .05 

        
 

RQ4: Are items discriminating at an acceptable level? 

H5: Item discrimination estimates are acceptable 

Discrimination. Hypothesis 5 was tested by examining the estimates of discrimination (α), 

shown in Table 4.7. Acceptable discrimination estimates of .80 or greater are expected for 

generalized partial credit models (De Ayala, 2009). Across all scales, only one item did not meet 

the criteria of .80 for an acceptable discrimination level – Item 8 on the OC Child scale. This item 

“I formed small groups based on data about children’s learning and development” may need to be 

dropped. The low discrimination will mean that answers to the question will not contribute to 

distinguishing well between people who have lower and higher data use practices. Another item 

that was somewhat low (.94) was on the OC Fam scale – “I used data to plan family engagement 

activities with other staff.” It is possible that this item was not discriminating well because the 

behavior is not under the choice of the data user. Some programs require family engagement staff 

to partner with teaching staff on a regular basis (i.e. once a month). Other programs may support 

the partnership and still others may give very little attention to partnerships between teaching 

staff and family support staff. In the case of little attention being given to the behavior by support 

networks, the teacher may have very little say in the frequency of this activity.  
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RQ5: Are items measuring across the construct’s latent continuum? 

H6: Item locations measure across the construct level. 

Table 4.7 

Estimates of Discrimination 

 

TC Class  TC Child  TC Fam  OC Class  OC Child  OC Fam 

 (N=254)  (N=329)  (N=227)  (N=268)  N=286)  (N=223) 

 α  α  α  α  α  α 

Item 1 1.30  1.75  2.06  1.48  1.57  2.16 

Item 2 2.12  1.69  3.35  1.56  1.85  3.42 

Item 3 2.55  2.22  1.00  2.31  2.34  1.94 

Item 4 2.07  2.39  1.12  12.07  2.54  .94 

Item 5 2.07  2.48    2.48  2.10  1.72 

Item 6   2.12      1.80   

Item 7   1.87      1.38   

Item 8         .78   

Item 9         1.10   
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Item Location. The location of items was expected to cross over two units of measure in the 

latent continuum - for example, from -1 to 1. Additionally, the gaps between category thresholds 

was expected to be .25 or more. Table 4.8 shows the location parameters between the two lowest 

and two highest categories. The purpose of this table is to show the spread of locations that are 

captured by the items, sometimes called bandwidth, indicating that the categories function to 

cover a breadth of the latent spectrum. The wide bandwidth of a scale, when joined by items that 

are sufficiently discriminating (see description of Table 4.7), allows for measurements to be taken 

on a wide variety of participants – both those whose responses manifest high data use and those 

whose responses indicate low data use practices. As shown, almost all of the items have a 

bandwidth of at least two theta units. Exceptions include TC Class: Item 2, with a bandwidth of 

1.77 and OC Class: Item 5, with a bandwidth of 1.86. While these items are not at or above the 

criterion of 2, their bandwidth was fairly close, indicating a respectable range of locations could 

potentially be captured by these items. 

Table 4.8. 

Item Location Parameters of the First and Last Category Thresholds 

 

TC Class 

(N=254)   

TC Child 

(N=329)   

TC Fam 

(N=227) 

 

δ.1-2 δ.2-3 

 

δ.1-2 δ.2-3 

 

δ.1-2 δ.3-4 

Item 1 -1.91 1.12  -1.18 1.08  -2.37 .97 

Item 2 -1.11 .66  -1.53 1.19  -2.24 .78 

Item 3 -1.74 .37  -1.34 1.14  -1.06 2.50 



67 
 

Item 4 -1.93 .31  -1.47 .83  -.76 1.85 

Item 5 -1.63 .87  -1.25 1.09    

Item 6    -1.00 1.51    

Item 7    -1.03 1.49    

Item 8         

Item 9         

  

OC Class 

(N=268)   

OC Child 

(N=286)   

OC Fam 

(N=223) 

 

δ.1-2 δ.3-4 

 

δ.1-2 δ.4-5 

 

δ.1-2 δ.3-4 

Item 1 -1.36 1.56  -3.42 2.69  -2.36 1.11 

Item 2 -1.15 1.18  -2.84 2.71  -2.17 .90 

Item 3 -1.14 .81  -2.76 2.41  -2.33 .82 

Item 4 -1.83 .19  -2.85 2.45  -1.29 2.06 

Item 5 -.91 .95  -3.04 2.57  -1.86 1.28 

Item 6    -3.18 2.92    

Item 7    -2.83 2.70    

Item 8    -2.77 1.33    

Item 9    -3.23 2.15    
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A second purpose of examining item location parameters is to evaluate the ordering of the scales. 

A strength of the GPCM is that it does not assume the order of thresholds, thus allowing for 

threshold estimation to be informed by the observed data and testing the possibility that the 

expected order is not manifested in the estimates. Beyond bandwidth and ordering, location of 

category parameters should also be evaluated for redundancy of categories within an item. That 

is, category parameters should not be measuring at the same location, but rather be spread out so 

that each successive category covers a slightly different section of the latent continuum than does 

the previous category. While Table 4.8 allows us to examine bandwidth by showing the lower 

and upper ends of the latent continuum, Table 4.9 allows us to evaluate potential misordering 

among categories. Table 4.9 lists differences between thresholds, starting with the difference (or 

gap) between threshold 1 and 2 and threshold 2 and 3. For three categories, there are only two 

thresholds, and therefore only one gap to evaluate – between the first and second threshold. 

Likewise, for the scale with the most categories (TC Child which has five categories), there are 

four category thresholds and thus three gaps to evaluate. Only the gap between adjacent 

categories is evaluated. That is, the table (4.9) only shows calculations of the difference between 

one threshold and the successive threshold. Gaps that are below a criterion of .25 are highlighted, 

as they indicated thresholds that are too close or, if negative values, they indicate misordered 

categories. When category thresholds are very close, then the categories’ may be redundant and in 

need of being collapsed. Because categories have already been collapsed, this shouldn’t be an 

issue unless the items has other issues, such as discrimination that is too high. 

As shown in Table 4.9, most items do follow the expected order, with the first threshold having 

the lowest theta value and the last threshold having the highest theta value. Exceptions to this are 

gaps with a negative value – Items 3 and 4 of the TC Family scale and Item 4 of the OC Family 

scale. While not misordered, Item 4 of the OC Class scale has less than a .25 gap, indicating that 
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it has some redundancy in the third and fourth category. This small gap is also due to the 

extremely high discrimination of that particular item (see Table 4.7). 

Table 4.9.      

Gaps Between Category Thresholds   

 
TC 

Class 
 

TC 

Child 
 TC Family  OC Class  OC Child  OC Family 

                 

 

δ.1-

δ.2 
 

δ.1-

δ.2 
 

δ.1-

δ.2 

δ.2-

δ.3 
 

δ.1-

δ.2 

δ.2-

δ.3 
 

δ.1-

δ.2 

δ.2-

δ.3 

δ.3-

δ.4 
 

δ.1-

δ.2 

δ.2-

δ.3 

Item 1 3.03  2.26  1.59 1.75  1.56 1.36  2.71 2.17 1.23  1.26 2.21 

Item 2 1.77  2.72  1.49 1.53  1.24 1.09  1.66 2.4 1.49  1.31 1.76 

Item 3 2.11  2.48  -0.34 3.9  1.52 0.67  1.75 1.97 1.45  0.92 2.23 

Item 4 2.24  2.3  -0.23 2.84  1.81 0.21  1.8 1.89 1.61  -0.02 3.37 

Item 5 2.5  2.34       0.77 1.09  2.07 1.81 1.73  0.8 2.34 

Item 6    2.51            2.4 1.75 1.95      

Item 7    2.52            1.92 2.08 1.53      

Item 8                 1.43 2.35 0.32      

Item 9                 2.19 2.51 0.68      

  Note. Numbers that are underlined denote threshold gaps less than .25.   
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Evaluation of the DUCES Discriminant Validity 

RQ6: Do scales discriminate between higher- and lower-level data users?  

H7: Scales discriminate between high- and low-level data users. 

Discriminant validity was assessed by comparing the mean DUCES scores of two groups that 

were expected to be contrasting. The contrasting groups were created by gathering ratings from 

key insiders. The rating – a brief 10-item survey – was provided only to those who had 

experience working with the teacher in the context of using data.  Raters provided ratings on 112 

teachers.  

The ratings were scored by summing all items. The scores were used to create high and low 

groups based on an approximate mean split. The mean was 89.3, with a confidence interval of 

87.6 – 90.9. The low group was made from teachers who were rated at 87.6 and below; the high 

group was made from teachers who were ranked at 90.9 and above. However, only 54% (n=61) 

of teachers who were rated by insiders also selected to participate in completing the DUCES 

survey. Of the 61 teachers who completed the DUCES survey, 15 had been placed in the low 

category based on their rating and 37 had been placed in the high category based on their rating; 9 

were excluded from analysis to create two differentiated groups. Thus, the validation ratings may 

be biased due to fewer low-rated teachers completing the DUCES survey than did high-rated 

teachers. 

Because the number of teachers rated by insiders was much larger than the number of teachers 

who completed the DUCES survey, it was suspected that the teacher sample who selected to 

complete the DUCES survey may be biased. Thus, a sensitivity check was conducted to assess 

the appropriateness of the insiders’ rating data to discriminate between high and low data users, 

as indicated by the DUCES.  
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When checking to learn whether the validation ratings were biased due to fewer low-rated 

teachers completing a DUCES survey, a significant mean difference on the insider rating was 

found between teachers who completed the DUCES survey and those who did not – t (110) = -

2.65, p < .01. The mean insider rating score for those who did not complete the DUCES was 86.8 

(n = 51) and the mean insider rating score of those who did completed the DUCES survey was 

91.3 (n=61). Thus, the sample of matched insider ratings and DUCES surveys should be 

considered biased, as a group of teachers who were considered lower-capacity data users by 

insiders selected not to complete the DUCES survey.  

Despite the compressed scores of the matched insider ratings and DUCES surveys, analyses were 

conducted to assess whether any discrimination could be detected amongst the biased data. Mean 

differences between high and low groups were tested on each of the six scales with an 

independent t-test – reported in Table 4.10.  

Table 4.10. 

DUCES Scales Mean Differences in High and Low-Rated Teachers  

(N = 52) 

Scale Group X n T df N 

TC Class High 28.6 29 -1.72* 38 40 

 
Low 24.9 11 

   

TC 

Child 
High 36.8 

37 
-1.04 49 51 

 
Low 33.6 14 
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TC Fam High 13.4 28 -0.22 34 36 

 
Low 13 8 

   

OC 

Class 
High 23.4 

36 
-0.03 48 50 

 
Low 23.3 14 

   

OC 

Child 
High 35.2 

36 
0.82 47 49 

 
Low 38.9 13 

   

OC Fam High 16.6 31 0.59 37 39 

  Low 18 8       

Note. p < .10 
 

Differences were expected in the means of the six scales. There were no statistically significant 

differences between the high and low matched samples. The TC Class score means had a 

marginally significant difference (p < .10), with a higher mean score for the higher ranked group.  

This pattern is somewhat visible in Figure 4.2. While only a marginal difference, this may reflect 

that classroom quality feedback (classroom data) provided by the insiders (sometimes called 

Master Teachers or Instructional Coaches) were used by the teachers who completed the DUCES. 

Thus, classroom teachers are using classroom data provided by the insiders, and the insiders were 

most aware of this use – lending strength to the statistical relationship between the insider ratings 

and the teachers’ use of teacher-collected classroom data. 
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Interestingly, while not significant, there seems to be a negative correlational trend between the 

insider ratings and the OC Child scale. The high-rated data users self-report using other-collected 

child data less frequently than do low-rated data users. Unfortunately, the biased sample, as 

denoted by the sensitivity check, likely has constrained correlations reducing the interpretability 

of these relationships. Another possibility is that the use of teacher-collected data is considered 

most effective by teachers and the insiders who completed data use ratings; the time taken to use 

teacher-collected data may displace the need for or time available to devote to the use of other-

collected data. 

Insider ratings were used to create four groups, rather than two, in order to visually explore 

patterns. The mean scores of the scales across the four groups are shown in Figure 4.2.  

 

Figures 4.2. Mean Differences Between Higher- and Lower-Users of Data 
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Synopsis and Synthesis 

Each scale was evaluated with the seven hypotheses. These evaluations have led to the following 

conclusions about how the measures should be used in the field. The first hypothesis was that 

items would be interpreted as intended – an important aspect of the validity of items. Overall, 

while the cognitive interviewing and behavioral coding indicated more categories were needed to 

provide respondents with choices that matched their experience, this was problematic to the 

normality of items and scales as well as to the fit statistics that relied on expected cell distribution 

to make comparisons to the observed data. Thus, the first evaluation led to the slight adaptations 

in wording of the items and additions to the response categories – however these response 

categories should be collapsed when scoring and using the measure.  

The second hypothesis was that items were calibrated to a theoretical level. This was expected to 

be seen through the agreement of panelists rating the items at the intended level. However, while 

some panelists rated the items at the same level as the developer intended the item to measure – 

use of data to 1) learn, 2) build knowledge, or 3) respond – the raters often chose multiple levels 

for each item due to the progressive nature of data use, according to one rater. Another way to 

look at calibration was to examine the variation of location in the items. These were also not 

widely varying for any scales. Thus, while the calibration of items to theory added to validity, 

these items were not empirically different. That is, there was little evidence that items developed 

to assess ‘using data to respond’ were more difficult to endorse than items developed to assess 

‘using data to learn’. For these reasons, further analysis indicating that some items need to be 

trimmed will not take into consideration whether loss of the item will be a loss of information at 

one of the three levels of data use. The third through sixth hypotheses will be examined per scale. 

The seventh hypothesis was only confirmed for the TC Class scale and will be addressed only in 

the synopsis of that scale.  
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TC Class. The TC Class scale was had a slight negative skew, but skewness and kurtosis were 

within an acceptable range and the W value of the Shapiro-Wilk test was high (.94), although 

significant. The EFA indicated a single factor that was correlated with one other scale – TC Child 

(r=.65). The model fit was marginally acceptable with, C2 = 11.9, p=.04, TLI = .98. The items 

that did not fit included “I used data to identify ways to strengthen my teaching. I used data to 

create strategies that support children’s learning and development.” When removing item 1 from 

the model, model fit statistics improved, but there were still two items with poor item fit. 

However, removing item 4 improved both model fit and item fit. Thus, the final recommended 

use of this measure will be without item 4.  This scale was also the only scale that showed 

concurrent validity with the ratings given by teachers’ supervisors of their data use abilities. 

Figure 4.3 shows the category characteristic curves for the recommended set of items.  

 

Figure 4.3. Category characteristic curves of the final set of TC Class items 
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OC Class. The OC Class scale, while having good model fit statistics, had poor item fit statistics 

for all items. Additionally, the item that was problematic in the TC Class set had an unusually 

high discrimination in the OC Class set. Removing the item did not improve the model fit or the 

item fit statistics to acceptable levels. While the removal of item 4 did not improve the item fit 

statistics, the high discrimination caused an unacceptably small gap between category thresholds. 

Thus, it is recommended that this item be removed. A plot of the items with item 4 removed is 

shown in Figure 4.4. 

 

Figure 4.4 Category characteristic curves of the final set of OC Class items 

TC Child. The TC child scale had slight negative skew. The factor analysis had a high KMO and 

high communalities, supporting one factor. The model fit for the gpcm was poor based on the C2, 

but the TLI was acceptable at .99. Item fit statistics were acceptable for all items using both S-X2 

and RMSEA < .05 criteria. All discrimination parameters were above .80, with the lowest being 



77 
 

at 1.69. The location parameters measured across the bandwidth of the latent continuum and did 

not have unacceptably small gaps or misordered categories. There are no recommended changes 

for this scale based on these analysis. The plot of the final set is shown in Figure 4.5. 

 

 

Figure 4.5 – Category characteristic curves of the final set of TC Child items 

OC Child. The OC Child measure had fair normality, with a W value of .95, but a significant 

Shapiro Wilk test. Skewness and kurtosis were within acceptable levels. The EFA supported a 

unidimensional construct as a precursor to IRT analysis. The model fit statistics for the GPCM 

were not acceptable using the C2 and TLI was .97. Item fit statistics were acceptable for four 

items, but the S-X2 was significant for the other five items. The set of items were re-assessed for 

model and item fit, starting with the item with the highest RMSEA. The last three items were 
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trimmed, which improved model fit somewhat. Both model fit and item fit statistics are still not at 

acceptable levels. The plot of items is shown in Figure 4.6. 

 

Figure 4.6 - Category characteristic curves of the final set of OC Child items 

Family Scales. The clearest result of the IIOC process was that the scale that received the lowest 

ratings across all items also had poor model fit and item fit and reverse-ordered categories (TC 

Family and OC Family). The family items, because of the plethora of types of family that can 

exist and the multitude of ways that teachers could use these data, are not a strong set of items for 

use in evaluation, or professional development. The TC Family scale, in particular, does not seem 

useful as the model fit was very low (TLI = .92) and none of the items had acceptable fit 

statistics.  
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The OC Family had a TLI of .98 and only one item had an RMSEA greater than .09. It is likely 

that the high sampling from Head Start programs, in which a separate staff member has the role 

of working directly with families, resulted in family items working somewhat better in the 

context of others collecting the data. The item with poor fit in the OC Family set – “I use data to 

plan family engagement activities with other staff” also had low discrimination and misordered 

categories in the IRT analysis, both for OC and TC Family items. Thus, this item should be 

removed from both the TC Family and OC Family set of items. Removing this item improved 

model fit (C2 = 1.52, p = .48; TLI = 1.00), but only two items had acceptable item fit (“I looked 

at data as a way to learn about the family; I reflected on data as information about the strengths 

and needs of families.”).  

 

Figure 4.7 - Category characteristic curves of the final set of OC Family items 
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Removing the poorest fitting item from the TC Family set did not leave enough degrees of 

freedom to run the model fit test. Because this left few acceptable items remaining in the family 

sets, additional items were tested with a small subsample – TC Family n = 68; OC Family n = 56. 

They have internal consistency TC Family α = .89; OC Family α = .93, so may be sufficient as a 

descriptive scale.  

This refined set of measures are graphed in Figures 4.3 through 4.7. The measures cover three 

types of data – child assessment, classroom quality, and family data. The measures also cover two 

contexts of data collection – by teachers and by non-teachers. However, the teacher-collected use 

of family data scale had poor model fit, item fit, misordered threshold locations and is not 

recommended for use. The OC Class scale had poor item fit, but adequate discrimination and 

location. This left four scales that have adequate model- and item-fit, acceptable discrimination, 

and cover a breadth of the latent spectrum and one scale (OC Class) that needs further research to 

clarify why its results were mixed. Additionally, the scale – TC Class – had evidence for validity 

based on the insider perspective ratings. 
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CHAPTER V 
 

 

CONCLUSION 

 

 

The six scales of the Informational Use section of the Data Use Contexts and Experiences Scales 

(DUCES) offer measures uniquely developed for early childhood contexts, tested with early 

childhood practitioners in multiple ways – through cognitive interviews, behavioral coding, and 

rigorous analysis of survey responses. The DUCES set of Informational Use scales will provide 

the early childhood field with a brief measure of teachers’ data use practices. These measures 

capture data use across three commonly used types of data – classroom quality data, child 

assessment data, and data about families. Additionally, the measures can be used in different 

contexts – whether data are collected by teachers themselves or by others, such as evaluators, 

researchers, or special education staff.  

The Informational Use Scales 

The results of this study found evidence to drop one item from the TC Class scale. The final 

evaluation of the measure indicates that its psychometric qualities are sufficient for use in 

research and professional development.  
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Its marginal association with the validation ratings, despite the compressed score variability, 

indicate that higher data users will score higher on this measure. As the insiders who rated 

teachers were primarily responsible for assisting teachers with improving their classroom quality, 

the use of this measure to assess teachers’ use of data for continuous quality improvement has 

some early evidence. More evidence that will verify the usefulness of this measure for 

professional development and research purposes include studies that include an intervention 

intended to change classroom quality with the use of classroom quality data as moderator of 

change. 

The OC Class scale is recommended for use as a descriptive measure for exploratory research. 

Due to problematic item fit indices, the use of this scale for purposes beyond descriptive are not 

currently recommended. One area for potential research is how this measure differs between 

teachers who are employed in a school that emphasizes a learning culture versus one that 

emphasizes an accountability culture (Firestone & Gonzalez, 2007; Gannon-Slater et al., 2017). It 

is possible that measurement invariance will not be verified between teachers in these two 

cultures, as a learning culture may primarily focus on regularly-collected internal data and an 

accountability culture may focus primarily on annually-collected external data. 

The TC Child scale is recommended for research or professional development without any 

changes to items. Like the TC Class scale, these items are most likely related to regularly-

collected internal data. However, in the context of early childhood, a concern with the use of this 

scale is the dearth of useful formative measures of children’s learning and development. For 

example, one of the most widely used curriculums in early childhood – Creative Curriculum -has 

an aligned assessment system – Teaching Strategies Gold. This system has been found to have 

low variability (Ehrlich, et al., 2019) and may be as more of a burden to teachers than a tool when 

used in accountability contexts (Kim, 2018). Thus, it will be important to use this scale as part of 
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research that also gathers rigorous evidence about the type of data being used to interpret why 

teachers may or may not frequently use the data. 

Likewise, the OC Child scale will need additional information about the data being used and the 

context of its use to understand the patterns of frequency of use in the early childhood field. For 

example, gathering data that may be provided from the Motivational Use scales – indicating 

whether the organizational culture leans more toward an accountability or learning culture – may 

provide important information about why other-collected data is or is not used. For example, in 

an accountability use culture that measures teacher performance and pay raises on end of year 

assessments, other-collected data from the previous year may be used all year long. In contrast, a 

learning culture may rarely look at other-collected data, opting to use regularly collected 

formative assessment to flexibly differentiate children’s instruction based on their changing 

needs. One of the most interesting findings of the insider ratings data was that higher-rated 

teachers had visibly lower scores on the OC Child scale – refer to Figure 4.2. One possible 

interpretation of this findings is that teachers who are highly skilled at using data to make 

decisions are opting to use their own data rather than data collected by others. This echoes 

previous qualitative research on early educators (Ford, et al. 2016). 

The two family data measures both had model fit and item fit problems. Due to this early finding, 

when additional data were collected late in the summer of 2019, some additional items were 

added. Those items had a minimal sample size, so could not be assessed at the level of this study, 

but basic internal consistency met frequently desired levels of .80. The measures, including their 

additional items, can be used for descriptive purposes, with the OC Family measure more highly 

recommended than the TC Family. The OC Family items had sufficient qualities to be used as 

shown in Figure 4.7. It is possible that the scale focused on family information collected by others 

had more reliability due to the heavy sampling from Head Start programs – which mandate a 

family support worker who can provide family information to the teacher. These two scales, like 
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all the Informational Use scales, have been developed separately from the other types of data use 

so that programs can choose the set of scales that best meets their informational needs and 

organizational conditions. 

Review of Development 

The measures were developed across a four-year project, culminating in a set of questions with 

evidence for validity and reliability. Validity evidence assessed in this dissertation study was 

gathered from cognitive interviews and behavioral coding of pre-testing participants. Reliability 

evidence was assessed with tests of unidimensionality, which indicated single factor structures for 

each of the scales. Additionally, the application of IRT methods allowed for examination of how 

well items could discriminate between respondents, as well as how well the items measured 

across the latent spectrum of data use practices. 

While the calibration of items using panelists to assess item fit within three theoretically-based 

levels of data use did not produce the expected results, there are some themes across the panel 

ratings and the item analysis. However, the process of planning the IIOC (Turner & Carlson, 

2002) was a check of each item against a theoretical level of data use, from data as information, 

to knowledge, and then to response (Marsh & Farrell, 2015). The use of a theoretical framework, 

informed by a wide literature review (see Table 1.2 and Appendix 1) supported the design of 

items around the intended construct. These aspects of validity were embedded into the design of 

the measure, while more common types of validity, such as concurrent validity, were difficult to 

obtain due to the uniqueness of the measure. That is, the measure cannot be compared or 

contrasted to similar or dissimilar constructs due to the dearth of data use measures available to 

the education field, and especially in early childhood. 

In addition to this measure being unique to the field, its development has been rigorous, using 

modern methods of measurement evaluation to consider ways to improve the measure. A 
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particularly new method was the application of C2, a model fit statistic developed in 2014, to 

assess a small sample of respondents using a polytomous scale and few items (Cai & Monroe, 

2014). This fit index, while the most appropriate for the type of data in this study, is limited in the 

scope of literature testing its utility and feasibility with various models, as has been done with 

older tests such as S-X2 or G2 (see Kang & Chen, 2010). It is possible that this particular test 

(C2) needs additional evaluation regarding its limitations and applications.  

Implications 

Contribution to theory. An expected contribution of this study to the theory of data use in 

schools was to test whether the data use framework articulated by Marsh & Farrell (2015) would 

be supported with empirical evidence. Specifically, there was an expectation that in both item 

paneling and estimates of item location, items would be aligned to a low-, mid-, and high-level of 

data use as they were designed to represent learning, knowledge-building, and responding. The 

process of data utilization in the Marsh & Farrell framework informed the design of items that 

represented each of these three levels. While there was some evidence that items designed to 

represent the highest level of data use (response) had higher item location estimates than those at 

lower levels, items designed for learning and knowledge-building did not consistently have 

respective low- and mid-level location estimates. For example, for both the TC Child and OC 

Child scales, the item “I used data to identify whether student learning needs were met using 

data” had slightly higher item location estimate in the last category than other items. This item 

represents a higher level in the data use framework because a teacher would have needed to use 

data to identify a child’s needs through learning, consider how to meet those learning needs in the 

context of wider curricula expectations (knowledge), implement a plan (response), and then 

identify whether the child’s learning needs were met through additional data, technically 

returning to learning within a cycle. Similar patterns were found for items in the TC Fam and OC 

Fam location estimates for the item “I used data to assess progress in the well-being of families.” 
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However, while the TC Class item “I used data to evaluate the effectiveness of my plans” was at 

a high level, the same item was at a low-level within the OC Class scale. This further suggests 

that the OC Class scale has differences that need to be explored by examining it in the context of 

other DUCES scales. 

Considerations for future data use models include the interchangeability of the first two levels – 

learning and knowledge – within the data use framework. This supports other frameworks for 

differentiating instruction for children with disabilities, including universal design for learning, 

which begins with learning about children, and retrofitting which begins with expectations set by 

the curriculum or standards (Thousand, Villa, & Nevin, 2015). Similarly, the Learning 

Trajectories framework developed by Clements and Sarama (2009) outlines a process of 

beginning with a learning goal, then using formative assessment or observation to learn about the 

child, followed by principled decision to implement learning activities that support children’s 

development to the next level of learning. This debate was echoed at an AERA presentation in 

which special interest groups (sigs) from data use and curriculum were represented by researchers 

making a case for one or the other as the foundation for excellent pedagogy. (AERA, 2015). The 

answer for which one should be considered more important – data use or curriculum - is not clear 

and leaves empirical questions that can be explored in early childhood settings with these scales 

and the other scales of the DUCES. Rather than reordering the framework, it seems likely that the 

effectiveness of using data before or after considering curricular and pedagogical expectations 

will depend on the situation. A new theoretical framework may be more clearly stated as 1) 

synthesis of learning from data with curricular and pedagogical expectations, and 2) response – 

with a continuous cycle of these steps leading to more positive outcomes for teaching and 

learning. For this reason, the validity of the scale not threatened because, even with poor items 

removed, the new sets of items still covers these two levels – synthesis of learning and response. 

Thus, this study contributed to the theory of data use in schools by empirically testing the validity 
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of a theoretical framework, finding that the order of learning from data and synthesizing 

information to create new knowledge are unlikely to need a specific order, as long as they each 

occur and precede the data-informed response. The study produced a research tool that covers 

knowledge-building as a synthesis of learning and response based on data-informed learning. 

Contribution to research. With clarity on the theoretical cycle of effective data use, the measure 

contributes to research by providing a flexible set of measures that include both items related to 

learning and synthesis with other knowledge, as well as items designed to capture various types 

of data-informed responses by teachers. These two steps – synthesizing data with previous 

knowledge and data-informed responding – are reported as behavior frequencies that capture the 

latent trait of data use practices for early childhood teachers. With this tool of data use practices, 

the early childhood field can capture the presence and importance of data use.  

In addition to the measures’ contribution as tools with which to study a piece of the teaching and 

learning process, the measures may help to study the early childhood workforce – informing the 

amount of time that teachers spend in data use and in what contexts this is important . For 

example, will teachers’ frequency of data use increase in the context of extrinsically motivating 

experiences? One of the scales that is not included in this study asks about teachers’ experience of 

pressure related to using data. While this may be important to increase the amount of data use, 

will it moderate the relationship between data use and child outcomes? Research from the self-

determination theory perspective would suggest that teachers’ creativity and well-being would be 

diminished in a highly controlling context (Deci & Ryan, 1987, Deci, et al., 1982, Ryan & Deci, 

2003). A study that included DUCES measures of data use practices, controlling significance, and 

classroom and child outcomes could contribute to questions of whether accountability cultures in 

schools help to improve teaching and learning. It may be that, in some contexts, a higher 

frequency of data use would not contribute to more optimal outcomes. If a study using this set of 

measures suggested that school cultures focused on accountability were not associated with 
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improved teaching and learning outcomes, this would be an important contribution to educational 

research, particularly in terms of policy decisions. 

In early childhood, we need to understand the conditions under which teachers will use data in 

ways that contribute to children’s learning and development. These measures fill a gap in the 

literature by providing a measure to the field to further understand the presence and importance of 

data use to teaching and learning in early childhood settings.  

Contribution to practice.  These results can inform the field of early childhood to consider how 

data use is defined, to capture aspects of data use that are unique to early childhood, and to inform 

professional development. When data use is defined as synthesizing learning about children with 

knowledge of teaching, the expectations of data use become clearer for practice. Both practices of 

teachers and administrators can focus on collecting quality data that is aligned to learning goals 

and pursuing professional development experiences that ensure teachers understand how to 

scaffold children’s progress toward such goals. This type of horizontal coherence across 

curriculum, teaching, assessment, and professional development will ensure that data use practice 

expectations support high quality support for teachers and students (Shephard, Penuel, Davidson, 

2017).  

The Informational Use scales as stand-alone measures can be aligned with program goals and 

used to evaluate progress toward those goals that are specific to early childhood contexts. While 

most schools use data about child learning to inform practice, early childhood programs more 

frequently use classroom quality data to reduce assessment burden on young children. Another 

contribution to practice would be to inform professional development. For example, if a program 

expects teachers to use data that they have collected about children, the TC Child measure 

provides valid and reliable information about this type of use. However, if the program goals are 

to use classroom quality data collected by others to inform efforts toward improvement, the OC 
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Class scale can provide information about the frequency of this type of data use. Tailored 

professional development that trains teachers who have lower frequency of data use to increase 

their efforts can be informed by results from these scales. Thus, professional development and 

school improvement efforts may be influenced by the use of these measures.  

Limitations 

Despite the TLI and RMSEA being indicative of reasonable fit for the models, the lack of fit 

indicated by the C2 and S-X2 statistics are a limitation. Thus, the results of this study will need 

further confirmation. The sample selection bias may be a major limitation, given the results of the 

discriminant validity sensitivity check – recall that teachers rated as low-level data users selected 

not to complete the DUCES. Using the scales with a larger and more diverse groups of teachers, 

specifically focusing on gathering data from teachers who are considered low-level data users, 

and gathering data from teachers who work with wider ages of children or who have varying 

support systems for data use will improve the ability to generalize the scales to those contexts.  

Another limitation is that the data did not have a normal distribution according to a Shapiro-Wilk 

test. However, levels of skewness and kurtosis were acceptable. While the skewness, kurtosis, 

and boxplots gave some indication of normality for the data, the classic test of normality – the 

Shapiro-Wilk – did not. While this is most likely due to the Shapiro-Wilk’s sensitivity to sample 

size, the data from the gpcm should be interpreted with some caution, as the maximum likelihood 

estimation process relies on the normality assumption for a starting guess prior to running 

iterations to estimate parameters. The normality issue or sample diversity issue may also have 

contributed to the issue of model fit.  

Future Research 

In addition to assessing model and item fit with a larger sample size, future research should 

include a confirmatory factor analysis, evaluation of convergent validity, and use of the tool in an 
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intervention. Unidimensionality was tested with exploratory factor analysis. A confirmatory 

factor analysis is the next appropriate step to follow the exploratory factor analysis conducted in 

this analysis. Again, with a larger sample size, a confirmatory factor analysis could be used with 

respondents who are answering across multiple scales, thus ensuring that the scales are not 

capturing too similar a construct. While all items in the exploratory factor analysis were fit to a 

single factor based on the Kaiser criterion, with only one eigenvalue greater than one being 

generated from the analysis, correlations between scale scores indicated a correlation greater than 

.5 between many scales. This is evidence for the possibility of these measures are not a single 

construct.  

A study conducted with another measure of data use, such as the EDIT, could also be used to 

assess convergent validity. If the survey measure were to be highly correlated with a measure 

conducted through observation and interviews, its value would be confirmed for use as a tool that 

would provide excellent information at an accessible cost. Finally, an important use of this 

measure to test its sensitivity in the future will be to use it in an intervention. If the measure were 

used as a pre- and post-test, with an intervention on data use conducted in between, the expected 

behavior of the measure would be for it to change for the group of teachers who received the 

treatment. Further, if this change slope were also related to child outcomes, the hypothesis that 

data use is an important component in early childhood education and care could be tested. 

A hypothesis that was not confirmed was that the scales would distinguish between high- and 

low-level data users. The t-test test found only marginal differences between groups that had been 

rated as higher and lower level data users. Further the marginal difference was only on one scale 

– the TC Class. This scale asked questions about the way that teachers used data that they or other 

teachers collected. In many of the schools where this data was collected, the teachers’ supervisors 

are called Master Teachers. Their role is to provide coaching and modeling of best practices to 

teachers, as well as observe them and give them feedback. It is likely that the ratings of teachers’ 
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data use proficiency was based on Master Teacher’s experience with teachers receiving classroom 

observation feedback from them. If the Master Teacher’s data was frequently used, this would be 

the evidence the Master Teacher used to rate the teacher. Further, this would be the data about 

which the teacher described her own experience using data.  

Another interesting pattern in the ratings data is that teachers who were in the group rated high by 

Master Teachers and reported frequently using teacher-collected data, also reported using other-

collected data less frequently. The TC Class and OC Class had a correlation of .51, while the TC 

Child and OC Child had a correlation of .64. These seem to have shared variance, but the patterns 

in the ratings group data indicate a possible tradeoff. Perhaps those who are frequently using 

teacher-collected data do not have time to frequently use other-collected data, and vice versa. 

This could be an interesting next step for testing the measure in a mixed-methods study – with the 

addition of teachers explaining when they use data, how it is prioritized among their other tasks, 

and if it ever displaces other work that needs to be done. Penuel (Penuel, Shepard, Hamilton, 

Miller, Gummer, & Mandinach, 2018) argued that data use routines are time intensive and that a 

focus on curriculum may be a more effective use of teachers’ time.  

Finally, the set of measures can contribute to a variety of questions, particularly when combined 

in studies with organizational, interpersonal, intrapersonal and student learning goals. These are 

some lines of inquiry that could be pursued. Are student learning goals met with more frequency 

when more data use is present? Is this relationship mediated by higher teacher attitudes or 

confidence? Is the relationship moderated by the type of organizational culture that dominates the 

staff experiences? Is the relationship stronger for certain sub-groups? What would sub-group 

differences mean for practice – considering teachers and children of color, children with various 

types of disability, and children of different ages? Does data use in early childhood matter more 

once teachers have specific learning goals? Are teacher’s more likely to use data to achieve their 

goals when children are in certain age groups? Is that a function of education, professional 
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development, or different needs of children? This is would further lead to differences in how 

much policy needs to push teachers to use data in certain ages. While the infant to three year old 

brain is growing rapidly, the job of the teacher may be to respond within the data of the moment, 

rather than the systematically collected data. Would teachers of infants who are and are not using 

data to inform their teaching have differences in the development of their students?  

In addition to child goals, teacher goals could also be pursued. Interventions developed to 

improve teachers’ use of data may seek to change attitudes toward data. Program evaluations 

focused on improving child outcomes may need to include these measures, as well as focus 

groups, to have a full picture of whether teachers’ use of data is a function of teachers’ trust in 

data. It is logical that, when teachers consider data of low quality or low usefulness in informing 

current goals, they would not want to use that data at a high frequency. It is also likely that if data 

are not of high quality or coherently aligned with teaching and learning goals, then the more 

frequent use of them would not lead to more positive outcomes. Thus, it is extremely important 

that users of these measures are informed that DUCES data should be interpreted in light of the 

possibility that more frequent data use may not be helpful due to contextual factors beyond this 

measure, such as what teachers think about the data.  

In conclusion, this study has produced five acceptable scales. Two of these scales – TC Child and 

TC Class – seem acceptable for both research and professional development, as they have 

excellent discrimination and excellent bandwidth. The TLI model fit test and S-X2 item fit 

statistics support the conclusions of the IRT analysis and the scales should be considered ready 

for use. The OC Child and Class scales, while having many strengths such as acceptable 

discrimination and bandwidth, were not supported by the model and item fit statistics. Thus, there 

may be additional issues that need uncovering with these scales. They are acceptable for use, but 

would not be recommended for use to inform an individual teacher. Rather, the aggregate data 

from these measures may be informative in a larger context of other data points. Finally, the OC 
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Family scale can also be used in a similar way as the OC Child and OC Class, but needs 

additional cautions. While no scale is expected to capture all aspects of what is being measured, a 

sufficient sampling of behaviors are expected to capture the latent construct. I believe the Family 

scales are currently not broad enough to capture the types of data that teachers use about families. 

Despite the limitations of the scales related to data collected by those other than teachers and the 

family scales, this set of measures will add to the limited set of tools early childhood researchers 

currently have to understand data utilization in classrooms serving young children. Scales related 

to child and classroom quality data collected by teachers met all expectations of this study for 

factor structure, model fit, discrimination, and location – leading to the conclusion that these two 

scales, in particular, will be beneficial to early education research and professional development.     
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Appendix 2: Pre-testing Scripts 
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Appendix 4: DUCES 3.1 All Items 

 

 

I have read the consent and agree to participate in this survey. 

o Yes  (5)  

o No  (6)  

 

Skip To: End of Survey If I have read the consent and agree to participate in this survey. = 6 

 

Page Break  
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For the purpose of this survey, we define "Data" as 'any information that is collected in a 
purposeful/systematic way.' 

 

 

 

Data is... 

o information that is collected purposefully.  (1)  

 

 

 
Fantastic!  You're ready to take our survey! 

 

 

Page Break  

 

 
Sometimes, you collect data (e.g. observing child behavior) and sometimes other people collect 
data (e.g. speech therapists assess a child's language).   
    
This survey will ask you about Teacher-Collected data (that you or other teachers collect) and 
will repeat some of the same questions about data other people collect. 

 

 

Page Break  
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Below are types of teacher-collected data.   
  In the last 12 months, which type of data did you or other teachers collect?  

▢ Screening Tools (e.g. Ages and Stages Questionnaire, ESI-R, Denver-PDQ)  (1)  

▢ Informal Observations (e.g. child behavior, anecdotes of development, classroom 
activities)  (2)  

▢ School Records (e.g. attendance, daily sheets, parent communication)  (3)  

▢ Child Rating Tools (e.g. DECA)  (4)  

▢ Direct Child Assessments (e.g. IGDIs collected by teachers)  (5)  

▢ Child Observation Tools (e.g. DRDP, TS Gold)  (6)  

▢ Teacher-created formative assessments (e.g. exit tickets)  (7)  

▢ Classroom observations (e.g. observation of teachers' classroom practice)  (8)  

▢ Information about families (e.g. family needs, home culture, family preferences/interests)  
(9)  

▢ None of these.  (11)  

 

Skip To: TypeOT If Below are types of teacher-collected data.   In the last 12 months, which type 
of data did you or... = 11 
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CLASSROOM QUALITY DATA 
 (observations of teachers' classroom practice) 

Please answer the following questions based on information about Classroom 
Quality collected by you or other teachers.      
(e.g. classroom climate, instructional support, observations of teachers in the classroom) 

In the last 12 months, how often did the following happen with teacher-collected Classroom 
Quality observation data? 

How often did the 
following happen? 

Not 
applicabl
e/ Not in 
the last 
12 
months 
(1) 

Once in 
last 12 
months 
(2) 

Once in 
last 6 
months 
(3) 

Every 2 
to 3 
months 
(4) 

Once a 
month 
(5) 

Two to 
three 
times a 
month 
(6) 

Once 
a 
week 
(7) 

I used data to identify 
ways to strengthen my 
teaching. (TCClass_1)  

o  o  o  o  o  o  o  
I used data to make 
plans (e.g.professional 
goals, work objectives). 
(TCClass_2)  

o  o  o  o  o  o  o  

I used data to change my 
activities with students. 
(TCClass_3)  

o  o  o  o  o  o  o  
I used data to create 
strategies that support 
children's 
learning/development. 
(TCClass_4)  

o  o  o  o  o  o  o  

I used data to evaluate 
the effectiveness of my 
plans. (TCClass_5)  

o  o  o  o  o  o  o  
 



106 
 

CHILD ASSESSMENT DATA 
 (Data about children's learning and development) 

Please answer the following questions based on Child Assessment data that teachers collect.   

(e.g. ASQs, informal observations, daily sheets, DECA, direct child assessments, teacher-created 
assessments)   

In the last 6 months, how often did the following happen with teacher-collected Child 
Assessment data?  

How often did 
the following 
happen? 

NA/Not 
in the 
last 6 
months 
(1) 

Once in 
the last 6 
months 
(2) 

Every 2 
to 3 
months 
(3) 

Once a 
month 
(4) 

Two to 
three 
times a 
month 
(5) 

Once a 
week 
(6) 

Daily 
(7) 

I used data to 
evaluate 
progress 
toward student 
learning goals. 
(TCchild1)  

o  o  o  o  o  o  o  

I used data to 
evaluate the 
effectiveness 
of my 
instruction 
(e.g. lessons 
and/or 
projects). 
(TCchild2)  

o  o  o  o  o  o  o  

I used data to 
identify a 
group of 
children who 
weren't doing 

o  o  o  o  o  o  o  
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well. 
(TCchild3)  

I used data to 
identify 
students' 
strengths and 
areas for 
improvement. 
(TCchild4)  

o  o  o  o  o  o  o  

I used data to 
identify 
students who 
needed more 
learning 
challenges. 
(TCchild5)  

o  o  o  o  o  o  o  

I used data to 
identify 
whether 
student 
learning needs 
were met using 
data. 
(TCchild6)  

o  o  o  o  o  o  o  

I used data to 
identify 
reasons a child 
struggled to 
learn. 
(TCchild7)  

o  o  o  o  o  o  o  
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FAMILY DATA 
 (Information collected about families) 

Please answer the following questions based on Family Data that teachers collect. 
   (e.g. family needs, home culture, family preferences/interests) 

In the last 6 months, how often did the following happen with teacher-collected  Family 
Data? 

 Not 
applicable/ 
Not in the last 
6 months (1) 

Once in the 
last 6 months 
(2) 

Every 2 to 3 
months (3) 

Once a 
month (4) 

Two to four 
times a 
month (5) 

I looked at data 
as a way to 
learn about the 
family. 
(TCFam_1)  

o  o  o  o  o  

I reflected on 
data as 
information 
about 
strengths/needs 
of families. 
(TCFam_2)  

o  o  o  o  o  

I used data to 
plan family 
engagement 
activities with 
other staff. 
(TCFam_3)  

o  o  o  o  o  

I used data to 
assess progress 
in the well-
being of 

o  o  o  o  o  
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families. 
(TCFam_4)  

 

 
The previous set of questions were about data collected by teachers.   
 
We are going to repeat these questions now, but please answer them based on data collected by 
people other than teachers (e.g. researchers, therapists, evaluators, special services). 

Below are types of data often collected by people other than teachers.  
     
Which of these data did other people collect, but you had access to in last 12 months? 

▢ Classroom Observations (e.g. ITERS, ECERS, CLASS, TPOT, Master Teacher 
Observations)  (1)  

▢ Family Data (e.g. parent surveys, enrollment records, family needs assessment)  (2)  

▢ Child Health Data (e.g. dental records, health needs)  (3)  

▢ Child Rating Tools (e.g. PSRA)  (4)  

▢ Direct Child Assessments (e.g. IGDIs/ECI, PLS, PPVT, Bracken)  (5)  

▢ Child Observation Tools (e.g. DRDP, TS Gold)  (6)  

▢ Developmental Records (e.g. IEP status, assessment records)  (7)  

▢ Other  (8) ________________________________________________ 

▢ None of these  (9)  
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CLASSROOM QUALITY DATA 
  (observations of teachers' classroom practice) 

Please answer the following questions based on data collected by others about Classroom 
Quality. 
 (e.g. ITERS, ECERS, CLASS) 

In the last 12 months, how often did the following happen with Classroom Quality 
data collected by others? 

How often did the 
following happen? 

Not 
applicable/ 
Not in the 
last 12 
months (1) 

Once in 
the last 
12 
months 
(2) 

Once in 
the last 
6 
months 
(3) 

Every 2 
to 3 
months 
(4) 

Once a 
month 
(5) 

Two to 
three 
times a 
month 
(6) 

Once 
a 
week 
(7) 

I used data to identify 
ways to strengthen 
my teaching. (1)  

o  o  o  o  o  o  o  
I used data to make 
plans 
(e.g.professional 
goals, work 
objectives). (4)  

o  o  o  o  o  o  o  

I used data to change 
my activities with 
students. (5)  

o  o  o  o  o  o  o  
I used data to create 
strategies that support 
children's 
learning/development. 
(6)  

o  o  o  o  o  o  o  

I used data to evaluate 
the effectiveness of 
my plans. (7)  

o  o  o  o  o  o  o  
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CHILD ASSESSMENT DATA   
 (Data about children's learning and development) 

Please answer the following questions based on Child Assessment data collected by others.   
  
(e.g. child health data, child rating tools, direct child assessments, child observation tools, 
developmental records)   

In the last 6 months, how often did the following happen with Child Assessment 
data collected by others?  

How often 
did the 
following 
happen? 

Not 
applicable/ 
Not in the 
last 6 
months (1) 

Once in 
the last 6 
months 
(2) 

Every 2 
to 3 
months 
(3) 

Once a 
month 
(4) 

Two to 
three 
times a 
month 
(5) 

Once a 
week 
(6) 

Daily 
(7) 

I used data to 
evaluate 
progress 
toward student 
learning goals. 
(1)  

o  o  o  o  o  o  o  

I used data to 
evaluate the 
effectiveness 
of my 
instruction 
(e.g. lessons 
and/or 
projects). (4)  

o  o  o  o  o  o  o  

I used data to 
identify a 
group of 
children who 
weren't doing 
well. (5)  

o  o  o  o  o  o  o  
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I used data to 
identify 
students' 
strengths and 
areas for 
improvement. 
(6)  

o  o  o  o  o  o  o  

I used data to 
identify 
students who 
needed more 
learning 
challenges. (7)  

o  o  o  o  o  o  o  

I used data to 
identify 
whether 
student 
learning needs 
were met 
using data. (8)  

o  o  o  o  o  o  o  

I used data to 
determine 
children's 
knowledge or 
skills before 
teaching. (9)  

o  o  o  o  o  o  o  

I formed small 
groups based 
on data about 
children's 
learning and 
development. 
(10)  

o  o  o  o  o  o  o  
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I used data to 
identify 
reasons a 
child 
struggled to 
learn. (11)  

o  o  o  o  o  o  o  
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FAMILY DATA 
 (Information collected about families) 

Please answer the following questions based on Family Data collected by others.    
(e.g. parent surveys, enrollment records, family needs assessment) 

In the last 6 months, how often did the following happen with data collected by 
others about families? 

How often did 
the following 
happen? 

Not 
applicable/ 
Not in the last 
6 months (1) 

Once in the 
last 6 
months (2) 

Every 2 to 3 
months (3) 

Once a 
month (4) 

Two to four 
times a 
month (5) 

I looked at data 
as a way to learn 
about the 
family. 
(OTFam_1)  

o  o  o  o  o  

I reflected on 
data  as 
information 
about the 
strengths/needs 
of families. 
(OTFam_4)  

o  o  o  o  o  

I noticed that 
family data 
explained 
changes 
(positive or 
negative) in a 
child. 
(OTFam_5)  

o  o  o  o  o  

I used data to 
plan family 
engagement 
activities with 

o  o  o  o  o  
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other staff. 
(OTFam_6)  

I used data to 
assess progress 
in the well-being 
of families. 
(OTFam_7)  

o  o  o  o  o  

 

How effective 
were these 
resources? 

Not at all 
effective/Did 
not have (1) 

Slightly 
effective 
(2) 

Moderately 
effective (3) 

Very 
effective 
(4) 

Extremely 
effective (5) 

Leaders who 
facilitated 
understanding of 
data. (tools1)  

o  o  o  o  o  

Interdisciplinary 
teams who 
brought multiple 
perspectives to 
interpret data. 
(tools2)  

o  o  o  o  o  

Access to staff 
who gave advice 
on how to apply 
data to work. 
(tools3)  

o  o  o  o  o  

Access to 
technology that 
generated reports 
about data. 
(tools4)  

o  o  o  o  o  
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Conversations 
that guided you to 
reflect on data. 
(tools5)  

o  o  o  o  o  

Tools that helped 
focus the 
interpretation and 
use of data. (e.g. 
paper forms, 
reflection guides) 
(tools6)  

o  o  o  o  o  

Procedures that 
helped prioritize 
teaching practice 
using data. 
(tools7)  

o  o  o  o  o  

Processes to 
create strategies 
that address 
concerns revealed 
by data. (tools8)  

o  o  o  o  o  
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How effective 
were these 
resources? 

Not at all 
effective/Did 
not have (1) 

Slightly 
effective 
(2) 

Moderately 
effective (3) 

Very 
effective 
(4) 

Extremely 
effective (5) 

Training on using 
a cycle of inquiry 
(e.g. prepare data, 
interpret 
meaning, 
implement plans, 
evaluate plans). 
(time1)  

o  o  o  o  o  

Protected time 
(e.g. plan time, 
meetings) to 
evaluate progress 
on data-informed 
plans. (time2)  

o  o  o  o  o  

Protected time 
(e.g. plan time, 
meetings) to set 
goals with data. 
(time3)  

o  o  o  o  o  

Necessary 
training on 
interpreting data 
appropriately. 
(time4)  

o  o  o  o  o  

Timely access to 
data. (e.g. results 
available when 
need, quick to get 
a score) (time5)  

o  o  o  o  o  

 



118 
 

To what 
extent do 
you agree? 

Strongly 
disagree 
(1) 

Disagree 
(2) 

Somewhat 
disagree 
(3) 

Neither 
agree 
nor 
disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree 
(7) 

I have people 
at work who 
would help 
me if I did 
not 
understand 
the data. 
(supp1)  

o  o  o  o  o  o  o  

My co-
workers 
would be 
supportive if 
I made a 
mistake when 
interpreting 
data. (supp2)  

o  o  o  o  o  o  o  

I have 
opportunities 
to talk with 
people I trust 
about data. 
(supp3)  

o  o  o  o  o  o  o  

My co-
workers help 
me use my 
skills and 
knowledge to 
make 
meaning 

o  o  o  o  o  o  o  
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from data. 
(supp4)  

We work as a 
team to 
understand 
how data 
connects to 
classroom 
practice. 
(supp5)  

o  o  o  o  o  o  o  

My ideas 
about 
applying data 
are respected 
by my 
colleagues. 
(supp6)  

o  o  o  o  o  o  o  

We would 
share new 
strategies if 
data indicated 
a need. 
(supp7)  

o  o  o  o  o  o  o  

I have 
received 
support to 
develop data 
use skills. 
(supp8)  

o  o  o  o  o  o  o  
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To what extent do 
you agree? 

Strongly 
disagree 
(1) 

Disagree 
(2) 

Somewhat 
disagree 
(3) 

Neither 
agree 
nor 
disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree 
(7) 

Data can help 
inform interactions 
and instruction. 
(att1)  

o  o  o  o  o  o  o  

Data can help me 
identify my own 
strengths and 
weaknesses. (att2)  

o  o  o  o  o  o  o  

Data can offer 
valuable insight 
into work with 
children. (att3)  

o  o  o  o  o  o  o  

Teachers can make 
better decisions 
with data than 
without it. (att4)  

o  o  o  o  o  o  o  

Data can make my 
job easier. (att5)  o  o  o  o  o  o  o  
Data can motivate 
continuous 
improvement. 
(att6)  

o  o  o  o  o  o  o  

Using data is an 
important part of 
teaching. (att7)  

o  o  o  o  o  o  o  
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How confident are you 
in your ability to… 

Not at all 
confident (1) 

Slightly 
confident (2) 

Moderately 
confident (3) 

Very 
confident (4) 

Extremely 
confident (5) 

Use data to decide 
whether new strategies 
are needed. (Conf1)  

o  o  o  o  o  
Use data to design 
lesson plans for the 
whole class. (Conf2)  

o  o  o  o  o  
Use data to help parents 
understand how their 
child is doing. (Conf3)  

o  o  o  o  o  
Use data to create a plan 
for an individual 
student. (Conf4)  

o  o  o  o  o  
Use data to generate 
data-informed plans. 
(Conf5)  

o  o  o  o  o  
Participate in a cycle of 
inquiry (i.e. prepare 
data, interpret data, 
implement data-
informed plans, evaluate 
with data). (Conf6)  

o  o  o  o  o  

Use data to understand 
whether children are 
progressing. (Conf7)  

o  o  o  o  o  
Apply your early 
childhood expertise to 
create plans with data. 
(Conf8)  

o  o  o  o  o  
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To what extent do you 
agree? 

NA/ 
Strongly 
disagree 
(1) 

Disagree 
(2) 

Somewhat 
disagree 
(3) 

Neither 
agree 
nor 
disagree 
(4) 

Somewhat 
agree (5) 

Agree 
(6) 

Strongly 
agree 
(7) 

I worried that data 
would show that my 
work was less 
successful than my 
colleagues. (motiv1)  

o  o  o  o  o  o  o  

I saw data represented 
in ways that could 
create competition 
among co-workers. 
(motiv2)  

o  o  o  o  o  o  o  

I wished I could do 
things differently in my 
classroom, but I feel 
pressure based on data. 
(motiv3)  

o  o  o  o  o  o  o  

I worried that I would 
lose my job if my 
scores were low. 
(motiv4)  

o  o  o  o  o  o  o  

I felt pride or shame 
when my scores were 
compared to others. 
(motiv5)  

o  o  o  o  o  o  o  

I enjoyed using data to 
inform my classroom 
practice. (motiv6)  

o  o  o  o  o  o  o  
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I felt that using data 
was valuable/beneficial. 
(motiv7)  

o  o  o  o  o  o  o  
People I know well (e.g. 
work friends, close 
colleagues) 
recommended using 
data to inform my 
classroom practice. 
(motiv8)  

o  o  o  o  o  o  o  

I thought it was fun to 
use data to inform my 
classroom practice. 
(motiv9)  

o  o  o  o  o  o  o  

I thought it was 
important to make the 
effort to use data. 
(motiv10)  

o  o  o  o  o  o  o  

I felt ashamed because I 
did not want to use data. 
(motiv11)  

o  o  o  o  o  o  o  
I felt under pressure to 
use data to inform my 
classroom practice. 
(motiv12)  

o  o  o  o  o  o  o  

I felt guilty because I 
did not want to use data. 
(motiv13)  

o  o  o  o  o  o  o  
I felt pressure to have 
data showing I am 
doing my job. 
(motiv14)  

o  o  o  o  o  o  o  
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I felt pulled in multiple 
directions by data. 
(motiv15)  

o  o  o  o  o  o  o  
I felt that data was used 
to help me become 
more self-aware in my 
practice. (motiv16)  

o  o  o  o  o  o  o  
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Appendix 5: Insider Rating Questionnaire
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Appendix 6: R Code 

library(mirt) 

 

library(readxl) 

 

Model fit 

 

#TCclass_3c 

 

TCclass <- read_excel("Dissertation/TCclass.xlsx") 

View(TCclass) 

 

TCclassMod <- mirt(TCclass, 1, itemtype = "gpcm", method = "EM", optimizer = "NR", calcNull 
= TRUE, quadpts = 7, verbose = TRUE) 

 

M2(TCclassMod, type = 'C2') 

 

 

#TCchild 

 

TCchild_3c <- read_excel("Dissertation/TCchild_3c.xlsx") 

View(TCchild_3c) 

 

TCchildMod <- mirt(TCchild_3c, 1, itemtype = "gpcm", method = "EM", optimizer = "NR", 
calcNull = TRUE, quadpts = 7, verbose = TRUE) 

 

M2(TCchildMod, type = 'C2') 
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#TCfam 

 

TCfam_4c <- read_excel("Dissertation/TCfam_4c.xlsx") 

View(TCfam_4c) 

 

TCfamMod <- mirt(TCfam_4c, 1, itemtype = "gpcm", method = "EM", optimizer = "NR", 
calcNull = TRUE, quadpts = 7, verbose = TRUE) 

 

M2(TCfamMod, type = 'C2') 

 

  

 

 

#OCclass 

 

OCclass_4c <- read_excel("Dissertation/OCclass_4c.xlsx") 

> View(OCclass_4c) 

 

OCclassMod <- mirt(OCclass_4c, 1, itemtype = "gpcm", method = "EM", optimizer = "NR", 
calcNull = TRUE, quadpts = 7, verbose = TRUE) 

 

M2(OCclassMod, type = 'C2') 
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#OCchild 

 

OCchild_5c <- read_excel("Dissertation/OCchild_5c.xlsx") 

View(OCchild_5c) 

 

OCchildMod <- mirt(OCchild_5c, 1, itemtype = "gpcm", method = "EM", optimizer = "NR", 
calcNull = TRUE, quadpts = 7, verbose = TRUE) 

 

M2(OCchildMod, type = 'C2') 

 

 

 

#OCfam 

 

OCfam_4c <- read_excel("Dissertation/OCfam_4c.xlsx") 

> View(OCfam_4c) 

 

OCfamMod <- mirt(OCfam_4c, 1, itemtype = "gpcm", method = "EM", optimizer = "NR", 
calcNull = TRUE, quadpts = 7, verbose = TRUE, SE = TRUE) 

 

M2(OCfamMod, type = 'C2') 

 

 

 

Item fit 

 

itemfit(TCclassMod) 
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itemfit(TCchildMod) 

 

itemfit(TCfamMod) 

 

itemfit(OCclassMod) 

 

itemfit(OCchildMod) 

 

itemfit(OCfamMod) 

 

Item parameters 

 

TCclassItems <-coef(TCclassMod, IRTpars=TRUE, as.data.frame=TRUE) 

 

TCchilditems <-coef(TCchildMod, IRTpars=TRUE, as.data.frame=TRUE) 

 

TCfamitems <-coef(TCfamMod, IRTpars=TRUE, as.data.frame=TRUE) 

 

OCclassItems <-coef(OCclassMod, IRTpars=TRUE, as.data.frame=TRUE) 

 

OCchilditems <-coef(OCchildMod, IRTpars=TRUE, as.data.frame=TRUE) 

 

OCfamItems <-coef(OCfamMod, IRTpars=TRUE, as.data.frame=TRUE) 

 

TCclassItems 
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TCchilditems 

TCfamitems 

OCclassItems 

OCchilditems 

OCfamItems 
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