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Abstract 

Laundry detergency is a complex process at the nexus of soil, surfactant, solid substrate, and wash 

condition. This dissertation contains the following two major topics. The first topic focused on 

developing surfactant formulations capable of providing effective cold-water detergency of 

coconut oil below its melting point. While the cold-water detergency of coconut oil below its 

melting point on 65/35 polyester/cotton surface was poor using a 0.1 w/v% branched C14-15-8PO-

SO4Na surfactant alone, coconut oil removal was found to be higher with the addition of 

intermediate chain alcohols (C7-C9 alcohols) than those of shorter and longer alcohols. Further 

detergency improvement was observed with added salt at optimum salinity (S*). Octanol was 

selected as an intermediate chain alcohol representative to evaluate detergency with the presence 

of branched octanols (2-octanol and 2-ethyl-hexanol) in the surfactant formulation. The interfacial 

tensions (IFT) measurement between the surfactant and melted coconut oil revealed that the S* 

required decreased from 8 w/v% NaCl for no alcohols to 4 w/v% NaCl for 1-octanol and to 2 w/v% 

NaCl for 2-octanol and 2-ethyl-hexanol. Comparing cold-water detergency using the surfactant 

system with added S*, the detergency of coconut oil increased from roughly 49% removal for no 

alcohol with 8 w/v% NaCl, to 83% removal for 2-ethy-hexanol with 2 w/v% NaCl, to 95% removal 

for 1-octanol with 4 w/v% NaCl, and to 98% removal for 2-octanol with 2 w/v% NaCl. Further, 

optimized surfactant formulations were tested with the effect of alcohol concentration as a final 

optimization study. Decreasing 1-octanol concentration from 90 mM (1.2%) to 15.3 mM (0.2%) 

and 2-octanol from 90mM (1.2%) to 38.5 mM (0.5%), their detergency still retained exceeding 

90% removal. This work found that improved detergency of coconut oil below its melting point 

appeared to associate with a reduction in IFT (below 1 mNm-1), enhanced wetting of the soil 

surface, and increasing solubilization of the removed soil in surfactant micelles. However, the 

studies of melting point alteration and dispersion stability were not found to correlate to enhanced 

detergency. 

The second topic of this research attempted to demonstrate a correlation between detergency of a 

wide range of soils and surfactant-systems hydrophilic-lipophilic deviation (HLD) values. Two 

anionic surfactant systems (C10-4PO-SO4Na and a binary mixture of C10-4PO-SO4Na and AOT at 

1:1 by molar ratio) were characterized surfactant characteristics using HLD concept. The results 
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suggested that the single C10-4PO-SO4Na surfactant was more hydrophilic than the mixed 

surfactant system due to more negative Cc value. Detergency using a 0.1 w/v% C10-4PO-SO4Na 

surfactant was first conducted using five different oily soils with widely varying equivalent alkane 

carbon numbers (EACNs) from 5.2 to 16.6 (ranging from low to high hydrophobicity). The 

detergency was conducted at different NaCl concentrations corresponding to HLD values, ranging 

from negative (Type I microemulsion), to zero (optimum Type III microemulsion), and to positive 

(Type II microemulsion). The detergency increased with increasing NaCl concentrations 

(beginning at HLD = -3 for most cases), reached a maximum at its S* (HLD = 0), and decreased 

with further increasing NaCl concentrations over the S* (HLDs > 0). Effective oily soil removal 

(> 80% removal) was observed at widely varying NaCl concentrations which corresponded to an 

identical HLD range between -3 and 0 with IFTs below 1 mNm-1. The mixture of C10-4PO-SO4Na 

and AOT was then studied as a confirmatory surfactant system. Likewise, the detergency trend 

was observed with varying NaCl concentrations and the HLD range between -3 and 0 showed 

excellent detergency of studied soils (lowest and highest EACNs). Finally, the mixed surfactant 

system was further evaluated detergency of octadecane (EACN = 18, solid non-particulate at 25°C) 

and demonstrated that detergency using surfactant systems with the HLD values between -3 and 0 

was superior than other HLD ranges. Thus, this work suggests the utilization of HLD concept as a 

valuable tool for designing optimum detergency formulations for a wide range of soils. 
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Chapter 1 Introduction 

The global laundry detergency market is anticipated to reach over 100 billion dollars by 2026 

(Market Study Report, 2016). Laundry detergency formulations have been extensively studied to 

develop and improve their cleaning performance to meet the customer needs. The research 

problem surrounding laundry detergency is attempting to meet the challenge of attaining a 

detergency formulation capable of providing effective detergency performance under specified 

conditions. Previous work has shown that detergency performance varies depending upon the 

nature of surfactant, soil, solid substrate, water hardness, and washing temperature (Arai, 1966; 

Attaphong and Sabatini, 2017; Chi and Obendorf, 2001). In recent years, the trend of detergency 

research has moved toward the use of sustainable ingredients and low washing temperatures to 

reduce adverse environmental impact.  

Soil removal mechanisms have been associated with multiple processes regarding the type of soil. 

Most studies agree that soil can be classified into 3 major types; oily, solid particulate and solid 

non-particulate soils (sometimes referred to as semisolid soil). Previous work has illustrated that 

removal mechanisms of each soil type were found to be different. Oily soils (e.g. vegetable-based 

oils and motor oil), that are liquid at a wash temperature, are mainly removed by roll-up and snap-

off mechanisms (Miller and Raney, 1993; Tongcumpou et al., 2005). The adsorption of surfactant 

reduces the interfacial tensions (IFTs) between soil/surfactant and fabric/surfactant, causing the 

soil to roll-up and detach itself from fabric. Solid particulate soils (e.g. activated carbon, silica, 

and sand) are dominantly removed by the IFT reduction of solid/bath and an increased electrical 

potential induced by surfactant adsorption (Harris, 1961; Rojvoranun et al., 2012). Lastly, solid 

non-particulate soils (e.g. butter and lard) exhibit a unique property. These soils have a mixture of 

solid and liquid portions (Timms, 1985) in which the liquid matrix is entrapped in the solid matrix 

below their melting point (Chanwattanakit et al., 2017). This unique property of the solid non-

particulate soil hinders its removal by surfactant adsorption. In particular, the removal mechanisms 

of solid non-particulate soils are not well understood and have been shown to be more complicated 

than those of other soils.  

In the removal process, the adsorption and penetration of surfactant has been shown to be primary 

steps to modify microcrystal structure of the soil (also known as the softening or liquefaction step) 
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resulting in wetting alteration of the soil (Cox, 1986). A softened soil could then be dislodged from 

the fabric surface with agitation applied. Under these circumstances, the soil removed was found 

to be small amounts of solubilized fractions in micellar aggregates of the bulk aqueous solution 

(Chanwattanakit et al., 2017a; Kabin et al., 1996; Kawase et al., 1991). The majority of removed 

particles were stably dispersed in the wash solution by electrostatic repulsion of the surfactant 

preventing redeposition on the fabric (Chanwattanakit et al., 2017). 

Surfactant (Surface Active Agent) is one of essential ingredients in detergents to remove stains 

(soil) from fabric surface. Because of their negative charges, anionic surfactants have been 

extensively used in laundry detergent to help prevent the removed soil from redepositing on the 

cleaned fabric by electrostatic repulsive force of the surfactant head group. Another superior 

anionic surfactant property is temperature insensitivity (Velásquez et al., 2010) which is crucial in 

the laundry detergent. However, other studies found that cleaning performance of anionic 

surfactants is salt-dependent (Attaphong and Sabatini, 2017). Recently, anionic extended 

surfactants with insertion of intermediate polar groups (polyethylene oxide, (EO) and 

polypropylene oxide (PO)) have been introduced to overcome the disadvantages of conventional 

surfactants. Such surfactants provide higher solubilization as a consequence of lowering interfacial 

tension (IFT) between oil and surfactant (Miñana-Perez et al., 1995). This was found to be 

desirable for detergency performance (Do et al., 2015; Tanthakit et al., 2010). 

Alcohols can be utilized in cleaning applications to further enhance soil removal by several 

mechanisms. The role of alcohol was dependent upon a function of alkyl chain length and can be 

categorized into 3 types (Graciaa et al., 1993). Short-chain alcohols (<C6 alcohols) favorably 

adsorb near palisade layer and counter-ion, thus diluting surfactant concentration at interface and 

lowering solubilization. Intermediate-chain alcohols (C6-C10 alcohols) preferentially partition to 

the oil-water interface near the surfactant tail providing additional interaction to the oil phase, 

further enhancing solubilization (lowering IFT), and reducing S* required. Longer-chain alcohols 

(>C10 alcohols) are no longer adsorbed at the interface and behave as an oil co-solvent (Sabatini 

et al., 2003). When 90mM oleyl alcohol and 180 mM dimethyl naphthalene sulfonate (SMDNS) 

were added to a 4 w/v% sodium bis (2-ethyl) dihexyl sulfosuccinate (AOT) with 5 w/v% NaCl, it 

was found that motor oil removal was enhanced from roughly 30% to over 85% with the addition 

of the additives. (Acosta et al., 2003) 
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Microemulsions are thermodynamically stable systems of aqueous and oil phases and can be 

classified into three types (Rosen and Kunjappu, 2004) as depicted in Fig. 1.1. A Winsor Type I 

microemulsion has oil solubilized in normal micelle of aqueous phase with low salinity for anionic 

surfactant and low temperature for nonionic surfactant. With increasing salinity or temperature, 

maximum solubilization of water and oil is attained in the middle phase which is known as a 

Winsor Type III microemulsion or middle phase microemulsion. For a Winsor Type II 

microemulsion, surfactant solubilizes in the oil phase and forms reverse micelles with further 

increasing salinity or temperature. Improved detergency formulations have been demonstrated to 

correlate with microemulsion phase behavior (Phan et al., 2010; Tongcumpou et al., 2003; 

Tongcumpou et al., 2006). Tongcumpou et al. (2003) showed that optimal salinity range varied 

depending upon studied soils. Effective hexadecane and motor oil removal was found at 5-8% 

NaCl and 12-16% NaCl, respectively, corresponding to the S* region (Type I approaching 

optimum Type III microemulsions) with IFTs below 1 mN/m. In a comparison of S* ranges of the 

same oil using two different surfactant systems, the maximum canola oil removal was observed at 

14% NaCl using C14-15-8PO-SO4Na (Phan et al., 2010) and 2.5 w/v% NaCl using a binary 

surfactant mixture of C10-18PO-2EO-SO4Na and dioctyl sodium sulfosuccinate (AOT) at 

0.26:0.74 molar ratio (Do et al., 2015). Thus, an optimum surfactant formulation was observed to 

be influenced by the hydrophilic/hydrophobic nature of the surfactant system and oil. 
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Figure 1.1 Correlation between microemulsion phase behavior and HLD value (modified from 

Phan et al., 2011). 

Salager et al. (1979) proposed a hydrophilic lipophilic deviation (HLD) concept to quantitatively 

describe microemulsion phase behavior. The HLD values explain deviation from the optimum 

Winsor Type III of surfactant formulation (S*). Negative, zero, and positive values of HLD 

correspond to Winsor Type I, optimum III, and II microemulsions, respectively. The HLD 

equations can be classified into 2 types depending on surfactant head group: 

Anionic surfactant 

 HLD = ln(S) – K ´ EACN - f(A) - aDT + Cc   (1.1) 

Nonionic surfactant 

 HLD = bS – K ´ EACN - f(A) - cDT + Cc    (1.2) 

Where S is salinity of the aqueous phase (g NaCl/100 mL), b is salt dependence for nonionic 

surfactant which found to be approximately 0.13 for NaCl (Acosta, 2008). K is a function of 

Increasing salinity 
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surfactant head group which  is reported to a range of 0.1 - 0.2 (Acosta et al., 2008; Hammond and 

Acosta, 2012; Salager et al., 1979; Velásquez et al., 2010; Witthayapanyanon et al., 2008). 

(E)ACN is the (equivalent) alkane carbon number describing the hydrophobic/hydrophilic nature 

of the oil; for example, hexane has an ACN (EACN) of 6 and canola oil has an EACN of 17 (Do 

et al., 2009). The hydrophobicity of oil increases with increasing EACN. f(A) is a function of 

alcohol or cosolvent, if present, and depends on the alcohol type and concentration. a is a 

temperature coefficient (typically is 0.01 K-1 for most anionic surfactants (Broze, 1999; Hammond 

and Acosta, 2012; Salager et al., 1979). c is a temperature constant for nonionic surfactants 

(generally is 0.06 K-1) (Acosta, 2008). DT is the difference between the studied temperature and 

reference temperature (T-25°C). The Cc value describes the relative hydrophilic/lipophilic nature 

of the surfactant. A negative Cc value corresponds to a hydrophilic surfactant which preferably 

forms normal micelles in the aqueous phase. In contrast, a positive Cc corresponds to a 

hydrophobic surfactant which favors the formation of reverse micelle in oil phase (Acosta et al., 

2012; Witthayapanyanon et al., 2008). 

The goals of this dissertation are to design and characterize detergency formulations for a wide 

range of soils and to provide a proof of removal mechanism concept. Following are the main 

objectives of this dissertation:  

1. Investigate surfactant formulations (effects of salinity and alcohol type) capable of 

providing effective cold-water detergency of triacylglycerol solid non-particulate soils 

below their melting point temperatures, as well as, to evaluate fundamental removal 

mechanisms (Chapter 2) 

2. Further explore surfactant formulations (surfactant structure, salinity, and branched 

alcohol) for cold-water detergency of triacylglycerol solid non-particulate soil below 

its melting point and explore removal mechanisms (Chapter 3) 

3. Examine the utility of HLD as a unifying design approach for detergency of oily and 

solid non-particulate soils with varying hydrophobic/lipophilic natures (Chapter 4) 
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Overview of Chapters 

Chapter 2 discusses the first objective of this research: to study the effect of salinity and alcohol 

type as a surfactant additive to improve cold-water detergency of triacylglycerol solid non-

particulate soils. Cold-water detergency was performed at washing temperatures (10°C and 20°C) 

below solid non-particulate soil’s melting point. Coconut oil was employed as a primary soil and 

palm kernel oil was used as a confirmatory soil. The detergency experiments were carried out on 

a 65/35 polyester/cotton surface. A branched anionic extended surfactant (C14-15-8PO-SO4Na) was 

used as a primary surfactant system. Due to poor detergency of coconut oil using the surfactant 

with added salt at S*, a series of alcohols (2-butanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 

and 1-decanol) were further introduced in the surfactant system to study the detergency 

improvement. Further, a single C10-16-7EO-OH and a binary surfactant mixture of C10-18PO-2EO-

SO4Na+SDOSS at 0.24/0.76 by molar with 0.5 w/v% NaCl (Do et al., 2015) were investigated as 

confirmatory surfactant systems. The studies of IFT, contact angle (wetting), melting point 

alteration, particle size, and zeta potential (dispersion stability) were conducted to determine 

correlation with detergency performance.  

Chapter 3 attempts to further investigate the effect of varying C14-15-8PO-SO4Na based surfactant 

structure and branched alcohol on cold-water detergency of coconut oil (second objective). A 

series of 50% linearity (L) with varying intermediate hydrophilic ethylene oxide (EO) groups 

(LC14-15-8PO-SO4Na, LC14-15-8PO-3EO-SO4Na, and LC14-15-8PO-7EO-SO4Na) were conducted 

to compare detergency performance with the branched C14-15-8PO-SO4Na (previously studied in 

Chapter 2). Comparing detergency of coconut oil using different C14-15-8PO-SO4Na based-

surfactant structures, the branched C14-15-8PO-SO4Na still showed better coconut oil removal. 

Thus, the branched C14-15-8PO-SO4Na surfactant was further used to study the effect of branched 

alcohols. Since the introduction of intermediate-chain alcohols (C7-C9 alcohols) in the surfactant 

systems showed superior coconut oil removal than those of other alcohol types, octanol was 

selected as a representative of intermediate-chain alcohol to examine the effect of branched 

alcohols (2-octanol and 2-ethyl-hexanol). The studies of IFT, contact angle (wetting), and oil 

solubilization were investigated to see how they correlated with improved detergency. 
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Chapter 4 is a second topic in this dissertation as a pioneer study in the correlation between 

detergency of oily and solid non-particulate soils and HLD concept (third objective). Two 

surfactant systems (C10-4PO-SO4Na and a binary mixture of C10-4PO-SO4Na and AOT at 1:1 by 

molar ratio) were utilized to conduct detergency of different oils with varying 

hydrophilic/lipophilic natures which is also referred to as equivalent alkane carbon numbers 

(EACNs). Before performing detergency experiments, the surfactant systems were characterized 

for HLD parameters (K and Cc values) through microemulsion phase behavior studies. Five 

different oils were then studied with hydrophobicities or EACN values varying from 5.2 to 16.6 

(ranging from low to high hydrophobicities). Detergency studies were conducted on a 65/35 

polyester/cotton surface at a washing temperature of 25°C. Detergency of all oily soils using the 

C10-4PO-SO4Na was first studied with varied salt concentrations from lower than S*, at S* and 

higher than S*. All salt concentrations were then converted to HLD values varying from negative, 

to zero, and to positive values using eq. 1.1. The measurements of IFT between surfactant and oil 

phases were performed to examine IFT for each surfactant formulation. Detergency of soils with 

lowest and highest EACN values was then carried out at different HLD values using the binary 

mixture of C10-4PO-SO4Na and AOT at 1:1 by molar ratio. The detergency results of oily soils 

using two different surfactant systems were found at widely different salinities but corresponded 

to an identical HLD range from -3 to 0. Finally, detergency of solid non-particulate soil 

(octadecane) using the mixed surfactant system was performed to verify if the HLD range of -3 to 

0 can be adopted for detergency of a studied solid non-particulate.  

Chapter 5 summarizes the main findings of this research and suggests potential ideas for future 

research. 
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Chapter 2 Cold water detergency of triacylglycerol semisolid soils: the effect 

of salinity, alcohol type, and surfactant systems 

Abstract 

Cold water detergency of triacylglycerol semisolid soils is much more challenging than liquid 

vegetable oils due to poorer interaction between surfactant and semisolid soil. This research seeks 

to improve the removal efficiency of semisolid soils below their melting points using surfactant-

based formulations containing different alcohol additives. To this end, cold water detergency of 

solid coconut oil and solid palm kernel oil was investigated in various surfactant/alcohol systems, 

including single anionic extended surfactant, single nonionic alcohol ethoxylate surfactant and a 

mixture of anionic surfactants. A series of alcohols (2-butanol, 1-hexanol, 1-heptanol, 1-octanol, 

1-nonanol and 1-decanol) was added to the surfactant formulations to investigate cold water 

detergency improvement. While cold water detergency using surfactant alone was poor, it was 

considerably improved when optimum salinity (S*) and 1-heptanol, 1-octanol or 1-nonanol were 

introduced to the studied surfactant formulations. The maximum detergency of solid coconut oil 

exceeded 90% removal in 0.1w/v% C14-15-8PO-SO4Na/0.2w/v% 1-octanol/4w/v% NaCl system (a 

final optimized surfactant system) at washing temperature of 10oC versus 22.9±2.2% in surfactant 

alone (not at optimum salinity and no additive). Further analysis showed that improved cold water 

detergency using surfactant/intermediate-chain alcohols/NaCl could be correlated with high 

wettability (low contact angle) as well as favorable surfactant system-soil interaction as observed 

by lower interfacial tension values. In contrast, the improved cold water detergency was observed 

to be independent of dispersion stability. This work thus demonstrates that surfactant system 

design, including additives, can improve cold water detergency of semisolid soils and should be 

further explored in future research. 

______________________________ 

1) Phaodee, P., Attaphong, C., & Sabatini, D. A. (2019) Cold water detergency of triacylglycerol 
semisolid soils: The effect of salinity, alcohol type, and surfactant systems. Journal of 
Surfactants and Detergents, 22:1175-1187. 
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Introduction 

Vegetable oils are mainly composed of triacylglycerol with different carbon chain lengths. A 

triacylglycerol is a triester of glycerol with three fatty acid molecules. The long and bulky fatty 

acid alkyl chains account for the nonpolar portion (hydrophobic moiety) of the triacylglycerol, 

while the ester groups of glycerol account for the polar portion (hydrophilic moiety). Below their 

melting point, triacylglycerols are semisolid soils. Detergency of these soils is challenging because 

removal of semisolid soil is impeded by the liquid oil being entrapped in the crystalline solid fat 

(Timms, 1985; Do et al., 2015) resulting in poor removal efficiency (Cox, 1986; Illman et al., 

1970). 

Laundry activities consume not only water but also energy to heat water. Schmitz & Stamminger 

(2014) investigated the annual energy consumption per washing cycle in European countries and 

found that the average electrical energy consumption was reduced 2.5 times by decreasing the 

washing temperature from 50 to 20oC. This energy saving motivates the pursuit of improved 

surfactant systems for cold water detergency.  

Anionic surfactants have been widely used in household laundry products to remove grease and 

oils while mitigating redeposition of the removed soil (Cox et al., 1985; Favrat et al., 2013). More 

recently, anionic extended surfactants have been introduced to overcome the limitations of 

conventional anionic surfactants in cleaning systems. The major disadvantages of conventional 

anionic surfactants are their high critical micelle concentration (CMC), precipitation at high salt 

and hardness levels and poor solubilization of large organic molecules (Stellner & Scamehorn, 

1986; Miñana-Perez et al., 1995; Do et al., 2009). In contrast, anionic extended surfactants have 

stronger surfactant-oil interaction with the presence of polypropylene oxide (PO) groups and 

stronger surfactant-water interaction with the insertion of polyethylene oxide (EO) groups. For this 

class of surfactants, PO and EO groups are inserted between the head and tail groups of 

conventional surfactants, thus extending the molecules further into either oil phase or aqueous 

phase, thus the name extended surfactants. The intermediate insertion of PO and EO groups also 

promotes a smoother transition between the hydrophilic and hydrophobic regions of the surfactants 

resulting in increased salt and hardness tolerance. Furthermore, this superior surfactant structure 

has been shown to provide greater solubilization in microemulsions while also achieving ultralow 
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interfacial tension (IFT) (<10-3 mN/m) with vegetable oils (Aoudia et al., 2006; Do & Sabatini, 

2010; Phan et al., 2010).  

For detergency of liquid vegetable oils, Do et al. (2009) compared the use of conventional anionic 

surfactant (sodium dioctyl sulfosuccinate, SDOSS) and anionic extended surfactant (C12-14PO-

2EO-SO4Na) on the dynamic IFT of triolein. The dynamic IFT results showed that SDOSS was 

not able to reach ultralow IFT, while C12-14PO-2EO-SO4Na could produce ultralow IFT with 

triolein. In addition, nonionic surfactants are also widely used in cleaning systems due to their salt 

and hardness tolerance (Lee et al., 2016) as well as high efficiency in non-polar organic soil 

removal (Dillan et al., 1979; Dillan, 1984). However, their removal performance is temperature-

dependent which is undesirable in practice (Thompson et al., 1996; Huibers & Shah, 1997). 

Previous research has found that the maximum vegetable oil removal was observed with the lowest 

IFT providing the maximum oil solubilization capacity. For ionic surfactants, the maximum soil 

removal was found near/at optimum salinity (S*) (Tongcumpou et al., 2003; Tanthakit et al., 

2010), while for nonionic surfactants, it was attained near phase-inversion temperature (PIT) 

(Raney & Miller, 1987; Thompson, 1994).  

Oily soil removal is typically attributed to the roll-up and snap-off mechanisms (Miller & Raney, 

1993; Kabin et al., 1998; Tongcumpou et al., 2005). In general, surfactant molecules adsorb on the 

fabric surface as well as solubilize/emulsify the oil. These steps take place during the washing 

cycle. During the rinse steps, roll-up or liquid crystal formation occurs to facilitate the detachment 

of oil droplets from the solid substrate by a reduction in IFT between the soil and the bath as a 

consequence of an increase in the contact angle of the attached oil droplet (Tongcumpou et al., 

2005). Ideally, complete oily soil detachment from the solid substrate appears when the contact 

angle approaches 180o (complete roll-up).  

In contrast, semisolid soil detergency is an extremely complicated process simultaneously 

involving many physiochemical processes. Scheuing (1990) reported that the removal of tri-stearin 

soil was more complicated than those of solid alkane soils because the polymorphism in the solid 

crystal of tri-stearin hindered the soil removal by surfactant molecules. The dominant removal 

mechanism of myristic acid by sodium dioctyl sulfate (SDS) and alcohol ethoxylate surfactant 

with 7 groups of EO was accomplished by micellar solubilization of the myristic acid below its 
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melting point (Kawase et al., 1991; Kawase et al., 1994). In later studies, semisolid soil removal 

was achieved by surfactant penetration promoting loosening of the soils and subsequent 

solubilization (Beaudoin et al., 1995; Kabin et al., 1996; Kabin et al., 1999). Recently, 

Chanwattanakit et al. (2017) found that methyl palmitate was not removed through roll-up 

mechanism but rather detached by the surfactant-enhanced-wetting. This mechanism is the process 

of weakening of the particle’s failure strength cause by solubilization-emulsification leading to the 

soil being dislodged into small fractions, followed by dispersion into the bath (Bourne & Jennings, 

1963; Grindstaff et al., 1967).  

Generally, the detergency of semisolid soils is fairly poor at low washing temperatures. For 

example, a recent study in cold water detergency of methyl palmitate shows that it achieved about 

25% removal at 15oC and 30% removal at 20oC in 0.1wt% C12-13-4PO-SO4Na at 5wt% NaCl (an 

optimized surfactant formulation) (Chanwattanakit et al., 2017). In an effort to improve detergency 

performance, incorporation of alcohol additives to the surfactant system is being considered in this 

research. Alcohols have been used as surfactant additives in liquid laundry detergency, enhanced 

oil recovery (EOR) and pharmaceutical applications (McKarns et al., 1997; Acosta et al., 2003; 

Salager et al., 2017).  

Short-chain alcohol molecules have been mixed in surfactant-oil mixtures in order to produce a 

low viscosity microemulsion and prevent separated viscous phase formation (Graciaa et al., 1993; 

Graciaa et al., 1993; Hirasaki et al., 2011). Further, short-chain alcohols such as propanol favorably 

solubilize in palisade layer near the surfactant heads and counterions, thus reducing surfactant film 

rigidity and accelerating approach to equilibrium (Hirasaki et al., 2011). Intermediate-chain 

alcohols preferentially solubilize in both the palisade layer and the micelle core providing an 

additional interaction to the oil phase which results in enhanced oil solubilization capacity (Acosta 

et al., 2003). Longer-chain alcohols can act as lipophilic linkers and enhance the microemulsion 

behavior (decreased IFT and increased solubilization) (Sabatini et al., 2003). It has been found that 

oil removal efficiency was enhanced by the addition of long-chain alcohol in the surfactant 

formulation; e.g., motor oil removal was approximately 30% in 4w/v% SDOSS with 5w/v% NaCl, 

while it went up to over 85% with an addition of 90 mM oleyl alcohol and 180 mM sodium mono 

and dimethyl naphthalene sulfonate (SMDNS) to the surfactant formulation (Acosta et al., 2003).
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Thus, this current study focuses on developing optimized surfactant formulations that provide 

improved cold water detergency of triacylglycerol semisolid soils. The main objectives of this 

work are to investigate the effect of optimum salinity (S*), alcohol type (intermediate- to long-

chain alcohols) and surfactant systems on improving cold water detergency while also evaluating 

fundamental system properties for correlation with detergency (IFT, contact angle, melting point 

shift, particle size and zeta potential).  

Experimental Procedures  

Materials  

While most studies were conducted using coconut oil from Cocos nucifera, a confirmatory study 

was also conducted with palm kernel oil. The coconut oil and alcohols studied (2-butanol, 1-

hexanol, 1-heptanol, 1-octanol, 1-nonanol and 1-decanol) were all purchased from Sigma Aldrich 

(St. Louis, MO, USA). Palm kernel oil was purchased from Mountain Rose Herbs (Eugene, OR). 

The reported melting points of coconut and palm kernel oils are 27.5oC (current study) and 28.6oC 

(Do et.al., 2015), respectively. The anionic extended surfactant used in this study was a branched 

alcohol propoxylate sulfate sodium salt with 14-15 carbon atoms with 8 groups of propylene oxide 

(PO) (C14-15-8PO-SO4Na) with 93.84% active, as received from Sasol North America, Inc. (Lake 

Charles, LA, USA). The branched surfactant dioctyl sodium sulfosuccinate (SDOSS, 80%) was 

purchased from Sigma Aldrich (St. Louis, MO, USA). The linear anionic extended surfactant with 

18 PO and 2 EO groups (C10-18PO-2EO-SO4Na) with 21.5% active was received from Huntsman 

Chemical Co. (Houston, TX, USA). Alcohol ethoxylate nonionic surfactants were used as follows: 

10-16 carbon numbers with 7 and 9 groups of ethylene oxide (EO) (C10-16-7EO-OH and C10-16-

9EO-OH) and 100% active, as supplied by Huntsman Chemical Co. (Houston, TX, USA). The 

physical properties of the selected surfactants and alcohols are shown in Table 2.1. The oil-soluble 

dye Oil-Red-O was purchased from Sigma Aldrich (St. Louis, MO, USA). Sodium Chloride 

(NaCl) with 99% purity was received from Avantor Performance Materials, Inc. (Center Valley, 

PA, USA). Blended 65/35 polyester/cotton with 34 inch in size was supplied by Test Fabrics, Inc. 

(West Pittston, PA, USA). All materials and chemicals were performed without further 

purification. All the solutions were prepared using de-ionized (DI) water. 
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Table 2.1 The properties of studied surfactants and alcohols 

Chemicals % Purity Density 

(g cm-3) 

Molecular weight  

(g mole-1) 

Melting point 

(Tm, oC) 

Surfactants     

C14-15-8PO-SO4Na 93.84 1.04-1.07 787 - 

C10-16-7EO-OH 100.0 0.99 508 - 

C10-16-9EO-OH 100.0 0.99 596 - 

C10-18PO-2EO-SO4Na 21.5 1.04 1392 - 

Dioctyl sodium sulfosuccinate 

(SDOSS) 

80.0 - 444.56 - 

Alcohols     

2-butanol 99.5 0.808 74.12 -115 

1-hexanol 98.0 0.814 102.14 -52 

1-heptanol 98.0 0.822 116.2 -36 

1-octanol 98.0 0.827 130.23 -15 

1-nonanol 98.0 0.828 144.27 -5 

1-decanol 99.0 0.829 158.28 5-7 

Methodology 

Microemulsion Phase Behavior Studies 

Microemulsion phase behavior studies of liquid coconut oil were carried out by varying the 

surfactant formulations and NaCl concentrations to observe middle phase microemulsion 

formation. Five mL of 2w/v% surfactant in aqueous phase was prepared at different salinities, then 

5 mL of melted coconut oil (at 30oC) was added in a 15 mL flat-bottom vial to obtain an aqueous 

surfactant solution-to-oil volumetric ratio of unity. All vials containing the mixtures were gently 

shaken by hand for once a day for 3 days and placed in a temperature controlled water bath for 

months to ensure equilibrium at 30oC (above coconut oil’s melting point). 

Dynamic Interfacial Tension (IFT) Measurements 
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Dynamic IFT experiments were conducted to evaluate the IFT between the surfactant formulations 

and melted coconut oil at 30oC (above the melting point) using a spinning drop tensiometer 

purchased from the University of Texas (Model 500). A volume of 1-3µL melted coconut oil (at 

30oC) was injected into a 300-µL capillary tube filled up with a surfactant solution having different 

NaCl concentrations and alcohol types. Surfactant and alcohol concentrations were kept constant 

at 0.1w/v% and 90 mM, respectively. The drop radius was recorded every 5 minutes for 20 minutes 

after oil injection corresponding to the washing period in detergency experiments. The IFT was 

calculated using the following equation given by Vonnegut (1942),  

            

Where  is the difference in densities between the heavy and light phases,  is angular 

velocity (radius/second) and R is the radius of the cylindrical drop, as measured in the instrument. 

Contact Angle Measurements 

Contact angle measurements of surfactant solution against soil surface (solid coconut oil) were 

carried out by the sessile drop technique at ambient temperature of 20±2oC. An aliquot of 

approximately 2 µL of the surfactant solution containing the same solutions as those of the washing 

solutions was dropped on the solid coconut oil coated on the fabric using a micro-syringe and the 

contact angle was measured after 30 seconds (Chanwattanakit et al., 2017). 

Melting Point Determination Studies 

Melting point of coconut oil in surfactant formulation was determined by visual observation. Solid 

dyed-coconut oil was heated at 30oC, then 0.5 mL liquid dyed-coconut oil was added into a flat-

bottom vial. The liquid dyed-coconut oil was allowed to solidify before use overnight at ambient 

temperature. Five mL of the surfactant formulation was then added into the vial. The oil:water 

ratio was 1:10 by volume. All the vials were kept in a temperature controlled water bath varying 

temperature over time. Melting point was recorded as the temperature where the coconut oil 

completely melted. 

Particle Size and Zeta Potential Measurements 

Suspended particle size and dispersion stability measurements of the surfactant formulations after 
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washing cycle for 20 minutes at 10oC were carried out at day 1 and day 8 to evaluate the time-

dependent nature of this property. Particle size and zeta potential were studied with dynamic light 

scattering (DLS) using a Zeta Plus Analyzer (Brookhaven Instruments Corp. Holtsville, NY) 

equipped with a 532 nm laser. These experiments were repeated in triplicate for 2 minutes each 

cycle at measuring temperature of 10oC. 

Detergency Experiments  

 1. Soiling Procedure 

 Detergency studies were conducted using 3´4-inch swatches of blended 65/35 

polyester/cotton in zig zagged direction. Liquid coconut oil was mixed at 20vol% chloroform. 

Coconut oil was heated at 30oC (above its melting point) prior to mix with chloroform. The 

swatches were completely submerged in the oil/chloroform solution for one minute and hung to 

dry overnight in a fume hood before use. All swatches were freshly prepared with the average 

weight ratios of oil:fabric approximately 0.30±0.02:1 for solid coconut oil and 0.29±0.02:1 for 

solid palm kernel oil. 

 2. Detergency Procedure 

 Cold water detergency was carried out at temperatures of 10oC and 20oC. Detergency 

experiments were carried out using a Terg-O-Tometer (Model 7243; USA Testing Co., Inc., 

Hoboken, NF). A 20-minute wash cycle was performed for washing cycle with 1 L surfactant 

solution. A 3-minute first rinse and a 2-minute second rinse were performed with 1 L DI-water. 

Washing and rising cycles were at 120 rpm agitation speed. The bath temperature was kept 

constant during the washing and rinsing steps. Finally, washed fabrics were hung overnight to dry. 

The detergency was determined by dividing the mass of removed soil after wash to the mass of 

initial oil soiled. All laundry experiments were repeated in triplicate and the error bars presented 

in the detergency results were standard deviations that calculated using Microsoft Excel 2016. 
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Results and Discussion 

Microemulsion phase behavior studies 

Based on previous studies, the branched anionic extended surfactant C14-15-8PO-SO4Na was 

initially used in this work since it has been shown to achieve ultralow IFT and high solubilization 

capacity with liquid triacylglycerol oils (Do et al., 2009; Phan, et al., 2010; Witthayapanyanon et 

al., 2010) and demonstrated improved cold water detergency performance of canola oil (Attaphong 

& Sabatini, 2017). Coconut oil was used as a semisolid soil which has melting point of 27.5oC. 

Figure 2.1 demonstrates that microemulsion phase transition from Type I to III to II was achieved 

by scanning NaCl from 0 to 13w/v% NaCl at 30oC with 2w/v% C14-15-8PO-SO4Na. The phase 

behavior results show that Type I microemulsion was produced from 0-1w/v% NaCl, Type III 

microemulsion was observed from 4 to 10w/v% NaCl and Type II microemulsion was observed 

beyond 9w/v% NaCl with the optimum surfactant system observed at 8w/v% NaCl (optimum 

salinity (S*)). 

Correlation between dynamic IFT measurement and detergency of coconut oil with different 

salinities 

Dynamic IFT experiments were carried out to assess interfacial dynamics of the optimum salinity 

(S*) at 30oC (above coconut oil’s melting point). The IFT values were measured after oil injection 

every 5 minutes for 20 minutes, the latter time corresponding to the studied washing cycle. The 

IFT measurement as a function of time indicated that the IFT reached the equilibrium after 10 

minutes for all salinity values (results not shown). This result suggests that a washing cycle for 20 

minutes is long enough to allow surfactant adsorption on the soil-water interface in the bath. The 

detergency results of the C14-15-8PO-SO4Na/8w/v% NaCl system at 10oC showed that solid 

coconut oil removal increased with increasing salinity reaching a maximum of 49.4±0.2% at 

8w/v% NaCl (the S*), then it decreased at salt concentration beyond the S* (Fig. 2.1). Other 

researchers have observed a similar trend in increased detergency when the microemulsion phase 

approached Winsor Type III region (Tongcumpou et al., 2003; Phan et al., 2010). The maximum 

solid coconut oil removal in the surfactant system at 10oC also corresponded to the formation of 

optimum middle phase microemulsion (Winsor Type III) with the minimum IFT of 0.064 mN/m 
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at 30oC, as shown in Fig. 2.1. Witthayapanyanon et al. (2006) found that the minimum IFT value 

of triolein in 10 mM C14-15-8PO-SO4Na was IFT > 10-3 mN/m for all salt concentrations. These 

current results suggest a good correlation between microemulsion phase behavior, IFT studied at 

temperatures above coconut oil’s melting point and cold water detergency efficiency below 

coconut oil’s melting point. In contrast, Chanwattanakit et al. (2017) observed that the best cold 

water detergency of methyl palmitate did not correspond to optimum salinity above its melting 

point; reasons for this disparity are not clear. 

 

Figure 2.1 The correlation between coconut oil dynamic IFT measurement at 30°C and cold water 

detergency at 10°C as a function of salinity. C14-15-8PO-S04Na concentration was kept constant at 

0.1 w/v%. 

Correlation between alcohol type, contact angle and dynamic IFT measurements 

In this work, intermediate- to long-chain alcohols (2-butanol, 1-hexanol, 1-heptanol, 1-octanol, 1-

nonanol and 1-decanol) were introduced as additives in C14-15-8PO-SO4Na formulations to 

evaluate the ability of alcohol addition to improve cold water detergency of solid coconut oil. To 
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determine optimum alcohol concentration for cold water detergency, 1-octanol was first 

introduced at varying concentrations as an alcohol representative (in C14-15-8PO-SO4Na without 

adding NaCl). The detergency results showed that solid coconut oil removal plateaued for 1-

octanol concentrations above 90 mM (results not shown); thus all the alcohol concentrations were 

maintained constant at 90 mM. Figure 2.2 demonstrates that addition of intermediate-chain alcohol 

(1-heptanol (C7), or 1-octanol (C8)) in C14-15-8PO-SO4Na significantly improved solid coconut oil 

removal to as high as 85% versus ~20% with no alcohol (surfactant only) at 20oC. Meanwhile, 

shorter- (C6) or longer-chain (C9) alcohols showed poorer detergency of solid coconut oil relative 

to C7 and C8 alcohols.  

Surfactant system adsorption and corresponding change in wettability (Wasan et al., 1988) are 

considered to be a potential mechanism of surfactant penetration into the soil to loosen the soil 

molecules (Gotoh et al., 2016; Kanasaki et al., 2016). Higher penetration of the surfactant and 

corresponding water into the soil phase has demonstrated improved detergency based on the 

improved ability to wet and penetrate into the soil (Cox et al., 1987). Wettability was assessed by 

contact angle measurement of a surfactant drop against the solid soil surface. Previous research 

has demonstrated that a correlation between contact angle and detergency of solid soils (Kalak & 

Cierpiszewski, 2015; Kanasaki et al., 2016). Smaller contact angle (<90o) corresponds to higher 

wettability (Wasan et al., 1988). In this current study, a decline in contact angle was observed over 

measuring time with the different rates depending on the surfactant system so this study was 

designed to be observed at the same timeframe for all surfactant systems. Results in Fig. 2.2 show 

that as contact angle decreased (as wetting increased), the detergency improved; however, above 

the minimum contact angle, the detergency performance declined. Interestingly, for the surfactant 

formulations with 1-nonanol or 1-decanol, their contact angle values were comparable to 

formulations with 1-heptanol or 1-octanol but their detergency efficiencies were slightly different. 

Solubilization-emulsification is another potential mechanism by which surfactant can improve soil 

removal. As mentioned above, alcohols modify the surfactant-oil interaction at the interface, thus 

possibly allowing displacement of the soil molecules and improved soil removal efficiency (Lim 

et al., 1992). Higher solubilization capacity of oil by surfactant micelles has been shown to 

correlate with lower IFT values (Wasan et al., 1988; Graciaa et al., 1993; Graciaa et al., 1993; 

Salager et al., 1998). Dynamic IFT measurements were carried out to determine correlation 
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between solubilization of surfactant-alcohol-oil mixtures and cold water detergency of solid 

coconut oil. Figure 2.2 illustrates that cold water detergency at 20oC was maximum with the 

addition of 1-heptanol or 1-octanol although the IFT value of 1-heptanol at 30oC was about four 

times higher than that of 1-octanol (1.37 mN/m vs 0.35 mN/m). Previous work observed that 1-

hexanol to 1-decanol less preferentially adsorbed at the interface but they provided additional 

interaction to the oil as a consequence of an increase in oil solubilization capacity (Graciaa et al., 

1993). In addition, Kahlweit et al. (1990) investigated the thermodynamic basis for the effect of 

alcohols on microemulsion formation which found that intermediate- to long-chain alcohols 

reduced the effective carbon number of oil leading to an observation of the minimum IFT 

(maximum oil solubilization) at lower temperatures. It could be further observed that the addition 

of alcohols in C14-15-8PO-SO4Na was not able to produce an ultralow (<10-3 mN/m) IFT range 

with liquid coconut oil. These results are consistent with past research that has shown good 

detergency as long as IFT values were reduced to the 0.1 to 1.0 mN/m range (Tongcumpou et al., 

2003; Tanthakit et al., 2010; Attaphong & Sabatini, 2017) (i.e., ultralow IFT values are not 

required for good detergency which is attributed to the mechanical agitation/energy present in a 

washing cycle which promotes roll-up and snap-off mechanisms (Tongcumpou et al., 2005; Phan 

et al., 2010). These results suggested that wettability and low IFT by surfactant/alcohol mixtures 

are possible mechanisms to explain the improved cold water detergency. Furthermore, the effect 

of bath temperatures (at 10oC and 20oC) on cold water detergency with the presence of alcohols 

was also investigated. It was shown that the detergency showed the same trend at both washing 

temperatures but the efficiencies were higher at 20oC (Fig. 2.2). This can be attributed to the fact 

that the fraction of the soil that is liquid is higher at higher temperatures (Do et al., 2015; 

Chanwattanakit et al., 2017). 
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Figure 2.2 Correlation between cold water detergency at 20°C, contact angle measurement at 20°C, 

and dynamic IFT measurement at 30°C. A series of alcohols at concentration of 90 mM were added 

in 0.1 w/v% C14-15-8PO-SO4Na solutions 

The effect of surfactant systems on alcohol selection 

The effect of varying the surfactant system on the impact of alcohol addition was also taken into 

consideration. The surfactant systems of C14-15-8PO-SO4Na, C10-16-7EO-OH (better solid coconut 

oil removal than C10-16-9EO-OH according to this current study, data not shown) and C10-18PO-

2EO-SO4Na+SDOSS at 0.24/0.76 molar fraction with 0.5w/v% NaCl (an optimized surfactant 

formulation in previous study (Do et al., 2015) were selected to evaluate the impact of alcohol 

addition on solid coconut oil detergency. Figure 2.3 shows that adding intermediate-chain alcohols 

(1-heptanol or 1-octanol or 1-nonanol) achieved the most significant level of solid coconut oil 

removal improvement for all three surfactant systems, demonstrating the robust nature of these 

alcohols as detergency additives. Exact reasons for the significant change in detergency 

performance from 1-hexanol to 1-heptanol in C14-15-8PO-SO4Na are not clear at this time and will 
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be the subject of future research. 

 

Figure 2.3 Coconut oil removal in different surfactant/alcohol systems at a washing temperature 

of 10°C. All concentrations of surfactants and alcohols remained constants at 0.1 w/v% and 90 

mM, respectively. 

The effect of alcohol type on contact angle of coconut oil in different surfactant systems 

Table 2.2 summarizes contact angle results of the different surfactant formulations. It was found 

that good cold water detergency of C14-15-8PO-SO4Na (see Fig. 2.3) for 1-heptanol to 1-nonanol 

corresponded to the minimum contact angle values of approximately 45.7-50.5o. Meanwhile, the 

contact angle values for these alcohols in C10-16-7EO-OH and C10-18PO-2EO-SO4Na+SDOSS at 

0.24/0.76 molar fraction with 0.5w/v% NaCl were in the ranges of 32.5-43.5o and 52.6-55.8o, 

respectively. It should be noted that for all three surfactant systems, solid coconut oil detergency 

was maximum for alcohol systems correlated with lower contact angles (better wetting). Karvan 

et al. (2011) investigated the correlation between contact angle and detergency performance in 

nonionic and cationic surfactants and found that contact angles of the hydrophobic surface were 
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varied from 36.9o to 45.6o. However, contact angle values in this current study were slightly 

different. This variation somewhat depends on the properties of surfactant, fabric and soil studied 

(Kalak & Cierpiszewski, 2015). It was also observed that the addition of 2-butanol, or 1-decanol 

demonstrated higher contact angle values corresponding to poorer cold water detergency. This is 

consistent with Kalak & Cierpiszewski (2015) which found that the good detergency of activated 

carbon (a particulate soil) in various surfactant systems was highly related to low contact angle. 

Contact angle is thus identified as an important parameter for design of optimized detergency 

formulations in cold water detergency of semisolid soils. 

Table 2.2 Contact angle of different surfactant systems 

Detergency 

system 

Contact angle (O) 

C14-15-8PO-SO4Na C10-16-7EO-OH 

C10-18PO-2EO-SO4Na+SDOSS 

at 0.24/0.76 molar fraction   

with 0.5w/v% NaCl 

Surfactant only 110.8±0.6 48.3±1.3 61.6±0.7 

2-butanol 83.4±0.5 55.0±1.6 56.0±0.9 

1-hexanol 54.8±0.7 36.2±1.3 51.7±0.2 

1-heptanol 45.7±0.2 35.4±0.9 55.8±0.5 

1-octanol 50.3±0.7 32.5±0.4 52.6±0.5 

1-nonanol 50.5±0.5 43.5±3.6 55.6±0.7 

1-decanol 52.9±0.3 50.1±0.4 58.2±1.5 

The effect of alcohol types on melting point shift of coconut oil in different surfactant systems 

Another potential explanation for the alcohol impact on detergency of semisolids is that they may 

lower the coconut oil’s melting point rendering the soils more oil like. Table 2.3 shows the melting 

point values measured for different surfactant/alcohol systems (note that the variability in melting 

point is 2oC or less for all systems). The surfactant formulations without alcohol had similar values 

of coconut oil melting point temperature. Interestingly, the presence of 1-heptanol or 1-octanol or 

1-nonanol did not significantly alter the melting point of coconut oil even though they showed a 



 

 

27 

marked improvement in cold water detergency. Thus alcohol-lowered melting point is not shown 

to be a mechanism responsible for the enhanced cold water detergency of our systems. 

Table 2.3 Melting point of coconut oil in different surfactant systems (published melting point = 

27.5°C) 

Detergency 

system 

Melting point (oC) 

C14-15-8PO-SO4Na C10-16-7EO-OH 

C10-18PO-2EO-SO4Na+SDOSS 

at 0.24/0.76 molar fraction  

with 0.5w/v% NaCl 

Surfactant only 27.4±0.1 27.0±1.0 27.6±0.8 

2-butanol 26.8±0.0 26.2±0.5 25.3±0.2 

1-hexanol 27.0±0.2 26.4±0.3 26.5±0.3 

1-heptanol 27.3±0.5 26.6±0.2 26.7±0.3 

1-octanol 27.4±0.3 27.0±0.3 26.7±0.3 

1-nonanol 28.8±0.2 27.4±0.5 26.9±0.4 

1-decanol 28.9±0.5 27.7±0.3 27.0±0.5 

The effect of triacylglycerol soil molecule 

To confirm our work above with solid coconut oil, limited studies were conducted with solid palm 

kernel oil to assess the enhanced cold water detergency with intermediate-chain alcohol additives 

with a second soil. Coconut oil (Tm=27.5oC) and palm kernel oil (Tm=28.6oC) are predominantly 

composed of lauric acid (C12:0) in the range of 45-55% and different portions of other minor 

components (Young, 1983; Orsavova et al., 2015). Figure 2.4 shows the detergency of solid 

coconut and solid palm kernel oils in C14-15-8PO-SO4Na with different alcohol types showed a 

similar trend of removal but slightly different in absolute soil removal efficiencies due to different 

fatty acid compositions. This study confirmed that the intermediate-chain alcohols were promising 

additives in cold water detergency of more than one triacylglycerol semisolid soil. Future work 

will extend these results to a wider range of solid triacylglycerol oils.  
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Figure 2.4 The effect of triacylglycerol soil types on cold water detergency in 0.1 w/v% C14-15-

8PO-SO4Na with the addition of alcohols at a washing temperature of 10°C. These surfactant 

systems were used without salt. 

Optimized surfactant solutions vs. cold water detergency 

The overall goal of this study was to determine the optimized surfactant formulations providing 

good cold water detergency of triacylglycerol semisolid soils. It has previously been shown that 

alcohols modified the nature of surfactant-oil microemulsions such as 

hydrophobicity/hydrophilicity, oil solubilization capacity, rigidity of surfactant-oil interface and 

equilibrium rate (Lim et al., 1992; Graciaa et al., 1993; Tien & Bettahar, 2000; Mondal et al., 

2017). Nguyen & Sabatini (2009) studied microemulsion of diesel using a mixture of SDOSS and 

rhamnolipid (JBR) biosurfactant at 23oC. The study showed that the optimum salinity (S*) was 

reduced from 9.5wt% to 4.25wt% NaCl when 50 mM oleyl alcohol was added to the surfactant 

system. Their results agreed with previous works (Acosta et al., 2003; Sabatini et al., 2003) that 

long-chain alcohols increased hydrophobicity of surfactant-oil mixture meaning that S* was 
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reduced. 

According to previous studies, research was conducted to identify the adjusted S* (S*new) 

corresponding to the optimized surfactant formulation when alcohol was introduced in the 

surfactant formulation. The surfactant systems with added 2-butanol (lowest improved detergency 

performance) and added 1-octanol (most improved detergency performance) were selected to 

investigate the effect of optimizing the surfactant formulations on cold water detergency. Dynamic 

IFT measurements were conducted to determine S*new, since a good correlation between IFT and 

cold water detergency was observed in earlier study. Figure 2.5 shows cold water detergency of 

solid coconut oil in different detergency formulations; DI-water (no surfactant), C14-15-8PO-SO4Na 

with no added alcohol, C14-15-8PO-SO4Na/8w/v% NaCl, C14-15-8PO-SO4Na/2-butanol/7w/v% 

NaCl and C14-15-8PO-SO4Na/1-octanol/4w/v% NaCl. It was found that S*new decreased from 

8w/v% NaCl for no alcohol to 7w/v% NaCl for 90 mM 2-butanol and 4w/v% NaCl for 90 mM 1-

octanol as shown in Fig. 2.5. At optimum salinity, the maximum cold water detergency of solid 

coconut oil increased from 62.1±3.9% removal with no added salt to 95.4±0.2% removal in 

0.1w/v% C14-15-8PO-SO4Na/90 mM 1-octanol/4w/v% NaCl at 10oC. Now that the 

surfactant/alcohol system has been optimized for salinity, the octanol concentration was 

reevaluated by varying 1-octanol concentration using S*new (4w/v% NaCl) in the surfactant 

formulation as shown in Fig. 2.6. It was observed that octanol concentration could be decreased 

from 1.17w/v% (90 mM) to as low as 0.2w/v% with minimal effect on detergency performance 

(i.e., cold water detergency results still exceeding 90%). It is worth noting that in this our final 

optimized system (0.1w/v% C14-15-8PO-SO4Na/0.2w/v% 1-octanol/4w/v% NaCl), the alcohol and 

surfactant are present at a similar concentration (within a factor of 2). While admittedly the salt 

concentration in this system is high for detergency purposes, in past research we have 

demonstrated the ability to adjust the surfactant system design to reduce the salinity value to 

reasonable levels (Attaphong & Sabatini, 2017).  
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Figure 2.5 Cold water detergency performance of coconut oil in different 0.1 w/v% C14-15-8PO-

SO4Na/90 mM alcohol (when present) systems at a washing temperature of 10°C 

 

Figure 2.6 Effect of varying 1-octanol concentration in 0.1 w/v% C14-15-8PO-SO4Na at 4 w/v% 

NaCl on cold water detergency of coconut oil 
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Mean particle size and zeta potential measurements of the optimized surfactant solutions 

Table 2.4 presents the mean coconut soil particle size suspended during detergency studies and the 

corresponding solid particle zeta potentials in the wash solutions at two different times (day 1 and 

day 8). The maximum cold water detergency of the optimized system (C14-15-8PO-SO4Na/1-

octano/4w/v% NaCl) showed the largest removed solid particle sizes (1.25±0.20 for day 1 and 

1.10±0.08 for day 8), while, for the washing system with DI-water, the removed particles were the 

smallest (0.02±0.00 for day 1 and 0.17±0.01 for day 8). These results vary from those of 

Chanwattanakit et al. (2017) where smaller soil particles were observed in the higher detergency 

systems; reasons for this variation in observations are not clear at this time. Anti-redeposition is 

one of required laundry processes for inhibiting the dislocated soil particles to reattach the fabric 

during the laundry process. This mechanism can be explained by dispersion stability. Therefore, 

zeta potential measurements of the detached coconut semisolid particles in washing solutions were 

carried out. Table 2.4 shows the zeta potential of different wash solutions for two different periods 

of time at 10oC. It was observed that when the sole anionic surfactant system was used in the wash 

step, the zeta potential of coconut soil particles became more negative than DI-water due to anionic 

surfactant adsorption. When salt and alcohols were introduced to the anionic surfactant 

formulations, the zeta potential dramatically decreased (less negative). This is due to the fact that 

counterions increase ionic strength resulting in compression of the double layer next to the 

adsorbed surface layer (Gu & Li, 1997). However, the decreased dispersion stability in the 

presence of alcohols can be attributed to the anions of anionic surfactant in the Stern layer were 

replaced by the neutral charge of alcohol resulting in a lowering of Stern potential (Ys) and 

decreased the stability (Dan et al., 2009). Although, the presence of both salt and alcohols 

decreased zeta potential of the suspended soil particles in the washing solutions, the soil particles 

for all studied surfactant formulations were still stable colloids over time because colloidal 

particles with zeta potential values greater than 20 mV typically have high degrees of dispersion 

stability (Tadros, 2015). These results suggested that good dispersion stability is not a responsible 

mechanism to explain the improved cold water detergency observed in this work.  

 



 

 

32 

Table 2.4 Mean coconut solid particle sizes, zeta potentials and detergency of coconut oil at 10°C 

in different washing baths 

Detergency system 

Mean solid particle 

size (µm) 
Zeta potential (mV) 

Detergency 

(%) 

Day 1 Day 8 Day 1 Day 8  

DI-water 0.02±0.00 0.17±0.01 -47.4±3.89 -49.5±2.96 4.7±0.1 

C14-15-8PO-SO4Na 0.17±0.01 0.15±0.02 -137.6±1.01 -109.2±8.31 22.9±2.2 

C14-15-8PO-SO4Na/ 

8w/v% NaCl 
0.28±0.02 0.26±0.01 -32.3±2.15 -42.1±2.00 49.4±2.0 

C14-15-8PO-SO4Na/ 

2-butanol/7w/v% NaCl 
0.17±0.01 0.14±0.01 -21.6±2.12 -35.8±7.99 29.4±0.2 

C14-15-8PO-SO4Na/ 

1-octanol/4w/v% NaCl 
1.25±0.20 1.10±0.08 -32.2±9.23 -43.5±6.05 95.4±0.2 

Conclusions 

Cold water detergency of triacylglycerol semisolid soils is a complicated process. Surfactant-

alcohol adsorptions (wetting) were primarily required to prepare for loosening (penetration) the 

soil molecules, followed by solubilization-emulsification to remove the soils from the fabric. The 

key findings obtained from this study are summarized as follows;  

1) The maximum cold water detergency was achieved when intermediate-chain alcohols (1-

heptanol (C7) or 1-octanol (C8)) were introduced and the optimum salinity was adjusted to account 

for the alcohol (S*new) in the detergency system. 

2) Good cold water detergency of solid coconut oil corresponded to lower values of IFT and 

contact angle. 

3) Intermediate-chain alcohols (1-heptanol, 1-octanol or 1-nonanol) enhanced cold water 

detergency for all three surfactant systems and both soil systems studied, demonstrating robustness 

in this approach. 

4) A decrease in melting point of the soil and dispersion stability of the removed solid particles 
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was not observed to play a significant role on the increased cold water detergency observed in this 

research. 

5) Solid coconut oil removal over 90% was achieved in 0.1w/v% C14-15-8PO-S04Na/0.2w/v% 1-

octanol/4w/v% NaCl at 10oC- a very encouraging result. 

Future research will focus on the effect of varying surfactant structures (alkyl chain length, number 

of PO, number of EO and type of head group) and alcohol structures (linear and branched chains) 

on cold water detergency of coconut oil. In addition, the mixtures of triacylglycerol soil with 

different chain lengths and unsaturation will be conducted to investigate the impact of varying 

semisolid soil on cold water detergency.  
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Chapter 3 The effect of surfactant systems, alcohol types and salinity on cold-

water detergency of triacylglycerol semisolid soil. Part II 

Abstract 

Our prior work found that detergency of coconut oil was relatively poor using C14-15-8PO-SO4Na 

alone but showed promising improvement with the presence of linear intermediate-chain alcohols 

(C7-C9 alcohols) in the surfactant formulation. The maximum detergency exceeded 90% removal 

using 0.1 w/v% C14-15-8PO-SO4Na/0.2 w/v% 1-octanol/4 w/v% NaCl (final optimized surfactant 

system) at 10oC. The current work thus seeks to further investigate surfactant formulations capable 

of providing improved detergency performance. Different 50% linear anionic extended surfactant 

structures (LC14-15-8PO-SO4Na, LC14-15-8PO-3EO-SO4Na, and LC14-15-8PO-7EO-SO4Na) were 

compared with the branched C14-15-8PO-SO4Na previously studied. Detergency of coconut oil 

using C14-15-8PO-SO4Na at 8 w/v% NaCl (S*) still performed more effectively than these new 

surfactant systems. The addition of octanol as a detergency additive was further studied, and it 

showed that S* reduced from 8 w/v% NaCl to 4 w/v% NaCl for 1-octanol and to 2 w/v% NaCl for 

2-octanol and 2-ethyl-hexanol in the C14-15-8PO-SO4Na surfactant formulation. Coconut oil 

removal significantly improved from roughly 49% for no alcohol with 8 w/v% NaCl, to 83% for 

2-ethyl-hexanol with 2 w/v% NaCl, to 95% for 1-octanol with 4 w/v% NaCl, and to 98% for 2-

octanol with 2 w/v% NaCl. Further studies on octanol concentration showed that decreasing 1-

octanol from 1.2% (90 mM) to 0.2% (15.3 mM) and 2-octanol from 1.2% (90 mM) to 0.5% (38.5 

mM) still maintained detergency over 90% removal. In this work, cold water detergency was found 

to correlate with low IFT above the melting point, improved wetting of the semisolid soil, and oil 

solubilization in surfactant micelles. 

 

______________________________ 

2) Phaodee, P., & Sabatini, D. A. (2020) The effect of surfactant systems, alcohol types, and 
salinity on cold water detergency of triacylglycerol semisolid. Part II. Journal of Surfactants 
and Detergents, 23:423-432. 
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Introduction 

Cold-water detergency of triacylglycerol semisolid soils is challenging because triacylglycerols 

are massive molecules composed of a glycerol bound to three fatty acid molecules. The glycerol 

portion of the molecule is polar, while the long fatty-acid alkyl chains are hydrophobic. Currently, 

the household laundry detergency trend is towards lower washing temperatures. Under these 

conditions, many triacylglycerol soils behave as semisolid soils which contain both solid and liquid 

triacylglycerol matrices (Timms, 1985) with the liquid portion being entrapped in the crystalline 

solid fat portion (Chanwattanakit et al., 2017b). These combined properties limit the ability of 

surfactants to penetrate into the soil, resulting in even poorer detergency performance than for 

hydrocarbon solid soils and fatty acids. 

Semisolid soil removal is a complex process involving multiple removal mechanisms (Cox, 1986). 

Previous work has evaluated detergency removal mechanisms of triacylglycerol semisolid soils at 

washing temperatures below their melting points using a range of surfactants (Beaudoin et al., 

1995; Cox et al., 1987; Scheuing, 1990; Shaeiwitz et al., 1981). Surfactant-water penetration was 

found to be an important process whereby surfactants and water diffused into the solid soil to 

modify the microstructure and promote liquefaction or softening of the soil. In combination with 

the applied agitation force, this could break off parts of the swollen soil and disperse them into the 

washing bath due to the surfactant-induced decline in cohesive forces within the soil matrix. Using 

a Fourier transform infrared spectroscopy (FT-IR) technique, Scheuing (1990) found that tristearin 

was removed through the penetration of surfactant and water into the tristearin, causing the 

formation of a liquid crystalline phase at the interface between the soil and surfactant solution. 

This process then allowed the soil to be removed through surfactant-based emulsification-

solubilization (Cox, 1986). Chanwattanakit et al. (2017) found that a majority of the removed 

methyl palmitate was found in free-semisolid forms, which were dispersed and floated in the 

washing bath along with a small amount of solubilized soil in surfactant micelles. The detergency 

system should therefore be maximized to attain optimum soil removal by optimizing surfactant-

water and surfactant-soil interactions. 

Surfactants have been used as one of the active components in laundry detergents because they 

can reduce surface tension, interfacial tension (IFT), and also increase the wettability of the 
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substrate surface, thereby enhancing the cleaning process (Charoensaeng et al., 2008; Kalak and 

Cierpiszewski, 2015; Rosen and Kunjappu, 2004; Witthayapanyanon et al., 2010). Anionic 

surfactants have been widely used in cleaning applications due to temperature insensitivity 

(Velásquez et al., 2010). Recently, novel anionic surfactants have been synthesized to improve 

properties of conventional surfactants with the intermediate addition of ethylene oxide (EO) 

groups and propylene oxide (PO) groups. Anionic surfactants with the intermediate insertion of 

PO and EO groups are known as anionic extended surfactants which further increase surfactant-

soil interaction with the insertion of PO groups and surfactant-water interaction with the insertion 

of EO groups. An important advantage of anionic extended surfactants over conventional 

surfactants is their ability to achieve higher solubilization capacity and ultralow IFT (<10-3 mNm-

1) with vegetable oils (Do and Sabatini, 2010; Miñana-Perez et al., 1995; Phan et al., 2010), which 

have been shown to be critical in the detergency process. Chanwattanakit et al. (2017) found that 

the cold-water detergency of methyl palmitate, the semisolid soil used in their study, was about 

25% removal at 15°C and 30% removal at 20°C using 0.1 wt% C12-13-4PO-SO4Na at 5 wt% NaCl. 

Similarly, our previous work (Phaodee et al., 2018) reported that cold water detergency of coconut 

oil was approximately 20% removal using 0.1 w/v% C14-15-8PO-SO4Na alone and 50% removal 

using C14-15-8PO-SO4Na at 8 w/v% NaCl (S*) which was found to demonstrate the lowest IFT. 

These prior results demonstrate that cold water detergency of semisolid soils using a single 

surfactant alone is often inadequate.  

Alcohols have been widely used as surfactant additives in many industries; (e.g., enhanced oil 

recovery (EOR), pharmaceutics, and detergency (Krüssmann and Bercovici, 1991; McKarns et al., 

1997; Sabatini et al., 2003)). Acosta et al. (2003) found that adding 90 mM oleyl alcohol (long-

chain alcohol) and 180 mM sodium mono and dimethyl naphthalene sulfonate (SMDNS) to a 4 

w/v% sodium bis(2-ethyl)dihexyl sulfosuccinate (AOT) with 5 w/v% NaCl formulation improved 

motor oil removal efficiency from approximately 30% to over 85%. Thus, alcohols have proved 

to be a valuable additive in surfactant formulations with the role of the alcohol being a function of 

the alkyl chain length (Graciaa et al., 1993; Salager et al., 2005). Intermediate- to long-chain 

alcohols (i.e., octanol) have been shown to partition to the oil-water interface near the surfactant 

tail at sufficient concentrations (sometimes referred to as lipophilic linkers) and have an increased 

interaction with the polar oil molecule thereby altering the nature of the oil-water interface and 
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effectively decreasing the apparent carbon number of the oil (decreasing hydrophobicity of oil) 

(Kahlweit et al., 1990; Salager et al., 2019). The decreasing relative hydrophobicity of the oil with 

the presence of lipophilic linker required lower S* to attain the optimum surfactant formulation 

where a minimum IFT and maximum solubilization were achieved (Acosta et al., 2003; Graciaa 

et al., Lachaise et al., 1993; Sabatini et al., 2003; Salager et al., 1979; Salager et al., 2019). 

Evidence has shown that this behavior correlates with detergency of semisolid triacylglycerol soils 

as well (Mankowich, 1963; Phaodee et al., 2019).  

Our prior work attempted to introduce a series of alcohols in the C14-15-8PO-SO4Na surfactant 

formulation to study the effect of alkyl chain length on detergency of coconut oil and palm kernel 

oil. The results showed that the alcohols with intermediate-chain lengths (C7-C9 alcohols) showed 

greater detergency improvement than did shorter- (C4 and C6 alcohols) and longer-chain alcohols 

(C10 alcohol) in the surfactant formulation. Further, the intermediate-chain alcohols performed 

best for a range of surfactants; C14-15-8PO-SO4Na (anionic extended surfactant), C10-16-7EO-OH 

(alcohol ethoxylate surfactant), and C10-18PO-2EO-SO4Na and dioctyl sodium sulfosuccinate 

(SDOSS) at 0.26/0.74 mole fraction (mixture of anionic surfactant), corresponding to lower IFT 

above the melting point and higher wetting (Phaodee et al., 2018). This is in agreement with results 

of Graciaa et al. (1993) who reported C6-C10 alcohols adsorbed near the surfactant tail and 

provided extra interaction with the oil, thus demonstrating stronger surfactant-soil interaction and 

enhanced oil solubilization capacity, whereas shorter- and longer-chain alcohols behaved 

differently.  

Hence, this current work aims to extend our previous work by attempting to further explore 

surfactant formulations capable of providing good cold-water detergency of coconut oil. The 

effects of anionic extended surfactant structure (e.g., branching degree and number of EO groups) 

and use of branched octanols (2-octanol and 1-ethyl-hexanol) on detergency performance of 

semisolid coconut oil were studied. In addition, IFT above coconut oil melting’s point, contact 

angle measurements, and oil solubilization studies were evaluated.  
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Experimental Procedures 

Materials 

Coconut oil (cocos nucifera, reported melting point = 27.5°C (Phaodee et al., 2018)) and octanols 

(1-octanol, 2-octanol, and 2-ethyl-hexanol) were all purchased from Sigma Aldrich (St. Louis, 

MO, USA). The anionic extended surfactants evaluated in this study, summarized in Table 3.1, 

were provided by Sasol North America, Inc. (Lake Charles, LA, USA). Sodium chloride (NaCl) 

with 99% purity was purchased from Avantor Performance Materials, Inc. (Center Valley, PA, 

USA). Blended 65/35 polyester/cotton (3´4 inch in size) was purchased from Test Fabrics, Inc. 

(West Pittston, PA, USA). All materials and chemicals were used without further purification. 

Table 3.1 Properties of anionic extended surfactants and octanols 

Nomenclature 

Degree of 

linearity 

(%) 

%active 

Molecular 

weight 

(MW, g 

/mole) 

Melting      

point (°C) 

Surfactants     

C14-15-8PO-SO4Na 0 93.84 787 - 

LC14-15-8PO-SO4Na 50 86.4 787 - 

LC14-15-8PO-3EO-SO4Na 50 25.0 919 - 

LC14-15-8PO-7EO-SO4Na 50 25.0 1095 - 

Octanols     

1-octanol  98.0 130.23 -15 

2-octanol  97.0 130.23 -38 

2-ethyl-hexanol  99.6+ 1302.3 -76 

Methodology 

Dynamic Interfacial (IFT) Measurement 

Dynamic IFT experiments were conducted to determine the IFT between the surfactant 
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formulations and melted coconut oil at 30oC (above the melting point) using a spinning drop 

tensiometer purchased from the University of Texas (Model 500). A volume of 1-3 µL melted 

coconut oil was injected into a 300-µL capillary tube which was filled with a surfactant solution 

having different NaCl concentrations and octanol types. Surfactant and octanol concentrations 

were kept constant at 0.1w/v% and 90 mM, respectively. The oil drop radius was recorded for 20 

minutes after oil injection corresponding to the washing cycle length in detergency experiments. 

The IFT was calculated using the following equation given by Vonnegut (1942),  

           

where  is the difference in densities between the heavy and light phases,  is angular velocity 

(radius/second) and R is the radius of the cylindrical drop, as measured in the instrument. 

Detergency Experiments 

Soiling Procedure 

Detergency studies were carried out using 3´4in.-zig zagged swatches of blended 65/35 

polyester/cotton. Coconut oil was heated to 30°C (above its melting point) and mixed at 20% by 

volume chloroform. The swatches were completely submerged in the oil/chloroform solution for 

one minute and hung to dry overnight in a fume hood prior to use. All swatches were freshly 

prepared with the average weight ratio of coconut oil : fabric approximately 0.23 ± 0.01:1 g. 

Detergency Procedure 

Detergency experiments were carried out using a Terg-O-Tometer (Model 7243; USA Testing Co., 

Inc., Hoboken, NF). A 20-minute wash cycle was performed with 1 L surfactant solution, followed 

by a 3-minute first rinse and a 2-minute second rinse with 1 L DI-water (Phan et al., 2010; 

Tanthakit et al., 2010). Washing and rinsing cycles were performed at about 120 rpm agitation 

speed. The bath temperature was kept constant at 10°C during the washing and rinsing steps. After 

the rinse cycles were complete, the washed fabrics were removed and dried by hanging overnight 

using one wooden clothespin per fabric. The detergency was determined by dividing the mass of 

removed soil after wash to the mass of initial oil soiled. All laundry experiments were repeated in 

triplicate and the error bars presented in the detergency results are standard deviations. 
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Contact Angle Measurement 

Measurement of the contact angle through surfactant droplet was measured after 30 seconds at 

ambient temperature of 20 ± 2°C (Chanwattanakit et al., 2017). The contact angle was carried out 

by the sessile drop method using an optical tensiometer (Biolin Scientific). An aliquot of 

approximately 2 µL of the surfactant solution containing the same solutions as those of the selected 

washing solutions was dropped on the solid coconut oil coated on the fabric using a micro-syringe. 

The fabric samples with coated coconut oil were dried in a fume hood for 24 hours before use 

which was identical to the soiling procedure in detergency experiments. All contact angle 

measurements were repeated in triplicate and the error bars presented in the contact angle results 

are standard deviations.  

Oil Solubilization Study 

Selected surfactant solutions were freshly prepared and an excess amount of solid coconut oil was 

then added in the surfactant solutions. This experiment was conducted for 20 minutes at 120 rpm 

and 10oC using a Terg-O-Tometer to simulate oil solubilization capacity in the detergency 

experiments (Chanwattanakit et al., 2017). After 20 minutes, the surfactant mixtures containing 

solubilized coconut oil in the surfactant solution and excess solid coconut oil were filtered through 

0.2-micron filter papers. The filtrates were diluted to measure the amount of oil solubilization 

based on total organic carbon (TOC) content using a Multi N/C 2100S analyzer (Analytik Jena, 

Jena, Germany). The amount of solubilized coconut oil was calculated by subtracting the TOC 

value of surfactant and solubilized coconut oil (post solubilization study) with the TOC value of 

surfactant alone. All solubilization studies were repeated in triplicate. 

Results and Discussion  

Effect of linear chain and number of EO of surfactant on IFT and S* 

Different C14-15-8PO-SO4Na based-surfactant structures were evaluated for their detergency 

performance; C14-15-8PO-SO4Na (previously studied), LC14-15-8PO-SO4Na, LC14-15-8PO-3EO-

SO4Na, and LC14-15-8PO-7EO-SO4Na. The IFT and S* results for these surfactants and coconut 

oil are shown in Fig. 3.1. Comparing the effect of branched chain on S*, S* increased slightly from 
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8 w/v% NaCl for C14-15-8PO-SO4Na to 9 w/v% NaCl for LC14-15-8PO-SO4Na. The minimum IFT 

value (at S*) of C14-15-8PO-SO4Na was slightly lower than that of LC14-15-8PO-SO4Na. Previous 

research indicated that increased branching could form larger aggregates (bilayer or vesicles) 

which favored middle phase microemulsion formation and ultralow IFT with triacylglycerol soils 

(Phan et al., 2011). The results in Fig. 3.1 also show that S* increased with the presence of EO 

groups in the 50% linear chain surfactants (13 w/v% with the presence of 3(EOs) and 16 w/v% 

with the presence of 7(EOs)). These results demonstrated that higher degrees of ethoxylation (EO 

groups) increases the hydrophilicity of the surfactant system, thus requiring higher S* to obtain 

optimum surfactant formulation (Phan et al., 2011). In addition, the insertion of EO group in the 

50% linear surfactants tended to increase minimum IFT values which is undesirable for 

detergency.  

 

Figure 3.1 IFT between coconut oil and different anionic extended surfactant systems through 

dynamic IFT measurement at 30°C. The minimum IFT of each surfactant corresponds to its S* as 

denoted by ¯. All surfactant concentrations were constant at 0.1 w/v%. 
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Detergency of coconut oil using various surfactant systems without and with added salt at S* 

Previous studies have demonstrated that detergency performance can be affected by surfactant 

structure (Kabin et al., 1998; Kanasaki et al., 2016; Tanthakit et al., 2010; Weerawardena et al., 

2000). This current work thus attempts to further explore the efficacy of anionic extended 

surfactant structures (e.g. linear versus branching and number of EO groups) on removal efficiency 

as presented in Fig. 3.2. The detergency of coconut oil at 10°C increased with the presence of S* 

in all surfactant systems studied. Interestingly, coconut oil removal using previously studied C14-

15-8PO-SO4Na without and with added salt at S* was still better than those of the new surfactant 

systems evaluated. The maximum coconut oil removal was approximately 49% using the C14-15-

8PO-SO4Na at 8 w/v% (S*) (Fig. 3.2) corresponding to the lowest minimum IFT (IFT = 0.06 

mNm-1) (Fig. 3.1). For the 50% linearity surfactants, even though the minimum IFT was below < 

1 mN/m range (Fig. 3.1), which has been shown to be a desired IFT range for detergency of various 

soils (Attaphong and Sabatini, 2017; Phaodee et al., 2018; Tongcumpou et al., 2003), the 

detergency performance was still much lower than for the branched C14-15-8PO-SO4Na surfactant. 

There is an evidence that branched-extended surfactant with the insertion of PO group showed 

lower IFT, thus better detergency (Fig. 3.2). However, these results demonstrated that IFT alone 

did not capture the entirety of the detergency behavior using different C14-15PO8SO4Na 

propoxylated structures varying degrees of linearity and ethoxylation. Other mechanisms (e.g., 

wetting and solubilization) should be further considered.  
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Figure 3.2 Cold water detergency of coconut oil using different anionic extended surfactant 

systems at 10°C. All surfactant concentrations were constant at 0.1 w/v%. Numbers indicate in the 

figure are S* for each surfactant formulation. 

Effect of octanol type on S* 

Since the previously studied C14-15-8PO-SO4Na showed better coconut oil removal than other 

surfactant systems studied, the effect of branched octanols on detergency performance was next 

studied with the C14-15-8PO-SO4Na surfactant. Studies previously found that alcohols modify 

properties of microemulsion systems including relative hydrophilicity, oil solubilization, 

coalescence rate, and the rigidity of the interface (Acosta et al., 2003b; Lim et al., 1992). The 

modification in relative hydrophilicity suggested that S* might require adjustment for the alcohol 

being considered. Salager et al. (1979) found that a change in S* associated with the alcohol type. 

The IFT measurement at 30°C was therefore conducted to determine adjusted S* with the presence 

of octanol in the surfactant formulation. Results in Fig. 3.3 demonstrate that adding linear octanol 

(1-octanol) as previously studied decreases the S* from 8 to 4 w/v% NaCl. Interestingly, the 
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addition of branched octanols further decreased S* to 2 w/v% NaCl for both 2-octanol and 2-ethyl-

hexanol. The decrease in S* with these alcohols is attributed to the evidence that the alcohols 

altered the composition of the oil interface, which decreased the effective carbon number of the 

interface (Kahlweit et al., 1990) and thus reducing the S* required (Kahlweit et al., 1990; Salager 

et al., 2013). The IFT results showed that the addition of 1-octanol or 2-octanol to the surfactant 

systems reduced the minimum IFTs (at S*) to as low as 0.03 mNm-1 which was even lower than 

that of C14-15-8PO-SO4Na at 8 w/v% NaCl studied before (0.06 mNm-1).  

 

Figure 3.3 IFT between coconut oil and C14-15-8PO-SO4Na with added different octanol types 

through dynamic IFT measurement at 30°C. The minimum in IFT of each surfactant corresponds 

to its S* as denoted by ¯. Surfactant and octanol concentrations were constant at 0.1 w/v% and 90 

mM, respectively. 
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removal. When surfactant was introduced in the washing bath, improved detergency was attained 

(49% removal for C14-15-8PO-SO4Na at 8 w/v% NaCl). However, the detergency is still below 

desirable levels. The addition of 1-octanol in the surfactant system was studied in previous work 

and exhibited significant improvement in detergency (approximately 60% removal without salt 

and over 95% removal with 4 w/v% NaCl (S*)). In this work, branched octanols (2-octanol and 2-

ethyl-hexanol) as detergency additives were explored to evaluate detergency of coconut oil with 

C14-15-8PO-SO4Na. In the absence of salt, the addition of 2-octanol or 2-ethyl-hexanol in the C14-

15-8PO-SO4Na further enhanced detergency performance, exceeding 80% removal compared to 

approximately 60% removal using 1-octanol (Fig. 3.4). In the presence of adjusted S*, detergency 

performance further improved to over 95% removal using the surfactant systems with added 1-

octanol (95.5 ± 0.2% removal) or 2-octanol (98.3 ± 2.4% removal) but not with added 2-ethyl-

hexanol (83.0 ± 3.0% removal). Exploring this further, 1-octanol or 2-octanol with added salt at 

S* lowered IFT by almost an order of magnitude, while this lower IFT was not observed for 2-

ethyl-hexanol (Fig. 3.3). It should be further noted that over 95% coconut oil removal was observed 

with IFTs of 0.03 mNm-1 or higher, suggesting that ultralow IFT (10-3 mNm-1) was not required 

for good coconut oil removal. The results in Figs 3.3 and 3.4 also revealed that the minimum IFTs 

of optimized surfactant formulations were in the same IFT range, but the detergency was 

significantly improved with the addition of octanol in the surfactant system, suggesting that 

mechanisms beyond IFT reduction are necessary to explain the alcohol effect on detergency 

improvement.  
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Figure 3.4 Cold water detergency of coconut oil using C14-15-8PO-SO4Na with added various 

octanol types at 10°C. Surfactant and octanol concentrations were constant at 0.1 w/v% and 90 

mM, respectively. Numbers indicate in the figure are S* for each surfactant formulation. 

Correlation between detergency and contact angle 

Previous research has demonstrated a correlation between detergency and contact angle for 

semisolid soils. The improved detergency of semisolid soils is attributed to surfactant-water 

penetration; higher penetration of surfactant solution (better wetting) has been shown to correlate 

with lower contact angle (Rosen and Kunjappu, 2004). Figure 3.5 illustrates the correlation 

between detergency and contact angle of various optimized surfactant formulations. Using a C14-

15-8PO-SO4Na at 8 w/v% NaCl system showed high contact angle (70°) indicating that the 

semisolid coconut oil was poorly wet by the surfactant-water system corresponding to low 
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0

20

40

60

80

100

DI-water (no
surfactant)

no alcohol 1-octanol 2-octanol 2-ethyl-hexanol

D
et

er
ge

nc
y 

(%
)

C14-15-8PO-SO4Na (no added salt)

C14-15-8PO-SO4Na (with added S*)

8%

4% 2%

2%



 

 

54 

contact angle of C14-15-8PO-SO4Na/2-ethyl-hexanol at 2 w/v% NaCl was higher (42.6° ± 2.5°) 

presenting 83% removal. These results suggested that higher detergency corresponded to lower 

contact angle and thus better wetting. Previous research has suggested that improved wetting could 

be a potential mechanism to improve detergency and thus be used in design of optimized 

detergency systems for semisolid soils (Chanwattanakit et al., 2017b; Kalak and Cierpiszewski, 2015). 

The possible reason why detergency with added 2-ethyl-hexanol and salt at S* was not as high as 

those of 1-octanol and 2-octanol is hypothesized to be that 2-ethyl-hexanol, which has only six 

carbons on a linear chain, did not penetrate into the solid coconut oil molecule as deep as those of 

1-octanol or 2-octanol which have eight carbons on the linear chain; the poorer surfactant 

penetration is hypothesized to cause higher contact angle (Fig. 3.5) as well as poorer detergency. 

Figure 3.5 Correlation between detergency and contact angle of various optimized surfactant 

systems. Surfactant and octanol concentrations were 0.1. w/v% and 90 mM, respectively. 
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oil solubilization capacity in different optimized surfactant formulations in our research are 

summarized in Table 3.2. The experiment was carried out at 10°C to simulate oil solubilization in 

the washing bath. The results indicated that the optimized surfactant formulations with added 

octanols increased oil solubilization from 13 mg/L (no alcohols) to approximately 53 mg/L with 

an increase in detergency from around 49% to over 95% removal, respectively. Our results were 

consistent with Chanwattanakit et al. (2017) showing that methyl palmitate removal using C12-13-

4PO-SO4Na was increased from roughly 40 to 70 % at 20°C with increased oil solubilization from 

approximately 21 to 23.5 mg/L. While, detergency was shown to improve with increasing 

solubilization, on a mass basis only a small amount of solubilized soil was observed in the washing 

solution. In our work, approximately 690 mg of solid coconut oil was coated on the 

polyester/cotton fabrics in 1 L surfactant solution. The maximum solubilized oil was 53.89 mg/L 

as listed in Table 3.2. The percentage of soil solubilized is calculated to be only 8% of the total 

amount of removed soil (98% removal of the 690 mg added soil). Our results are in a good 

agreement with previous work (Kabin et al., 1996) who observed that around 10% of abietic acid 

(highly viscous liquid soil) was removed into nonionic surfactant micelles for 4 hours of contacting 

time using a quartz crystal microbalance (QCM) technique. Rather than being solubilized, a 

significant portion of removed semisolid soil was dislodged from the fabric as solid particles by 

surfactant penetration which is consistent with results of Scott (1963). Thus, improved 

solubilization and semisolid dispersion appear to be correlated. 

Table 3.2 Oil solubilization study 

Surfactant systems Oil solubilization (mg/L) 

0.1%C14-15-8PO-SO4Na+8w/v%NaCl 13.08 ± 1.21 

0.1%C14-15-8PO-SO4Na+90mM 1-octanol+4%NaCl 52.12 ± 0.85 

0.1%C14-15-8PO-SO4Na+90mM 2-octanol+2%NaCl 53.89 ± 3.61 

Comparing optimal concentration of 1-octanol and 2-octanol in C14-15-8PO-SO4Na 

formulations 

Based on past research, octanol concentrations have thus far been held constant at 90 mM (1.17 

w/v%) as a reference system for the all detergency experiments. We now study the impact of lower 
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octanol concentrations in the surfactant formulations. Two detergency formulations (C14-15-8PO-

SO4Na/1-octanol/4 w/v% NaCl and C14-15-8PO-SO4Na/2-octanol/2 w/v% NaCl) demonstrating 

superior detergency performance were selected to examine the impact of varying octanol 

concentrations on detergency. As depicted in Fig. 3.6, the detergency reached a plateau at 0.2 

w/v% (15.3 mM) for 1-octanol and 0.5 w/v% (38.5 mM) for 2-octanol. Further, the optimized 

detergency performance still exceeded 90% removal. These studies demonstrated that using linear 

octanol required higher S* and lower concentration than branched octanols suggesting that there 

is a trade-off between using linear and branched alcohol. Currently, the reasons why 2-octanol 

requires higher concentrations than 1-octanol is not well understood and should be evaluated in 

further research. 

 

Figure 3.6 The effect of varying additive concentrations on cold-water detergency of coconut oil 

at 10°C. Surfactant concentration was kept constant at 0.1 w/v%. 
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Conclusions 

This work extended our prior research focused on surfactant formulations, providing optimum 

cold-water detergency of semisolid coconut oil. Using new surfactant systems (LC14-15-8PO-

SO4Na, LC14-15-8PO-3EO-SO4Na, and LC14-15-8PO-7EO-SO4Na) did not show higher coconut oil 

removal than C14-15-8PO-SO4Na previously studied, demonstrating that increased linearity and 

EO groups did not improve detergency. In the presence of octanol in C14-15-8PO-SO4Na systems, 

the S* decreased from 8 w/v% for no added octanols to 4 w/v% for 1-octanol and to 2 w/v% for 

both 2-octanol and 2-ethyl-hexanol. Improved detergency exceeding 90% removal was observed 

using the C14-15-8PO-SO4Na formulations with added 1-octanol or 2-octanol and salt at its S*. 

Further, decreasing 1-octanol and 2-octanol concentrations from 1.17 w% (90 mM) to 0.2% (15.3  

mM) and to 0.5% (38.5 mM), respectively, still achieved high detergency performance (over 90% 

removal). In this work, improved cold-water detergency of coconut oil was correlated with bath-

soil surface modification (i.e., wetting and IFT reduction) and oil solubilization in surfactant 

micelles in the bulk aqueous solution. This research thus supports the addition of intermediate-

chain alcohols as a promising additive to achieve desired cold-water detergency of triacylglycerol 

semisolid soils. Future work will study the effect of surfactant concentration on cold-water 

detergency of coconut oil and employ the hydrophilic-lipophilic deviation (HLD) to predict 

detergency for a variety of soils. 
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Chapter 4 Correlation between detergency of different oily and solid non-

particulate soils and hydrophilic-lipophilic deviation (HLD) 

Abstract  

This research examined the correlation between the detergency of soils with varying equivalent 

alkane carbon numbers (EACNs) and hydrophilic-lipophilic deviation (HLD) values. The 

detergency of oily soils with EACNs ranging from 5.2 to 16.6 was evaluated using C10-4PO-

SO4Na as a primary surfactant system and a 1:1 binary mixture of C10-4PO-SO4Na and AOT as a 

confirmatory surfactant system (with 65/35 polyester/cotton at 25°C). These surfactant systems 

were characterized using HLD concepts which showed that C10-4PO-SO4Na was more hydrophilic 

(had a higher negative Cc value) than that of the mixed surfactant system. Detergency of the 

selected soils was evaluated at different salinities corresponding to HLDs ranging from negative 

to positive values. The results showed that detergency of all soils increased with increasing salinity 

(starting with an HLD = -3.0 (Winsor Type I microemulsion), reached the maximum at widely 

different optimum salinity (S*) but at an identical HLD value of zero (optimum Type III), and then 

decreased with further increasing salt levels corresponding to positive HLD values (Type II). The 

preferred HLD range from -3.0 to 0.0 showed detergency levels exceeding 80% removal with 

interfacial tension values (IFTs) below 1 mNm-1 for all oily soils studied. Detergency of 

octadecane (EACN = 18, solid at 25°C) was further conducted and demonstrated that performing 

detergency at HLD = -3.0 to 0.0 likewise revealed superior soil removal (over 80%) versus systems 

with HLD values outside this range. Thus, this work highlighted the utility of using the HLD 

approach in designing surfactant formulations for detergency of soils with widely varying EACNs. 

______________________________ 

3) Phaodee, P., Harwell J. H., & Sabatini, D. A Correlation between detergency of different oily 
and solid non-particulate soils and hydrophilic-lipophilic deviation (HLD) accepted in Journal 
of Surfactants and Detergents, May 27th 2020. 
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Introduction 

Surfactants are a major component of laundry detergents, being as high as 15 - 40% of the total 

detergency formulation (Scheibel, 2004). Surfactants, in particular anionic surfactants, have been 

extensively utilized to remove soils such as motor oil, liquid triglycerides (cooking oils), and 

semisolid triglycerides (butters) from fabrics. The dominant removal mechanisms of oily soil 

removal have been demonstrated to be rollup and snap-off (emulsification-solubilization) (Miller 

and Raney, 1993; Tongcumpou et al., 2005). In general, surfactant molecules adsorb on the oil-

bath interface and reduce the role of cohesion, thereby facilitating the oil droplet detachment from 

itself on the fabric surface. These mechanisms are facilitated by the low interfacial tension (IFT) 

between the oil and the washing bath (surfactant solution) and the mechanical energy from the 

agitation cycle (Childs et al., 2005; Rosen and Kunjappu, 2004; Tongcumpou et al., 2005). In 

contrast, the removal mechanism for solid non-particulate soils has been shown to be different 

from oily soils. Penetration of surfactant and water into the solid soil matrix has been considered 

as a primary mechanism, thereby disordering or liquefying of the solid soil to facilitate the soils 

displacement from the fabric surface (Chanwattanakit et al., 2017; Cox, 1986; Cox et al., 1987; 

Phaodee et al., 2019; Scheuing and Hsieh, 1988).  

Microemulsions are thermodynamically stable mixtures of oil, water, and surfactant and are 

typically classified into four types. A Winsor Type I microemulsion has oil solubilized in normal 

micelles within the water phase. In a Winsor Type II microemulsion, however, surfactant-

solubilized water exists in reverse micelles within the oil phase. In a Winsor Type III 

microemulsion, also referred to as a middle phase microemulsion, surfactant, oil, and water are 

solubilized in the middle phase with the excess oil and water phases in equilibrium with the middle 

phase. When the middle phase volume increases and becomes a single phase with increasing 

surfactant concentration, it is known as a Winsor Type IV microemulsion. Microemulsion phase 

behavior transitions from Winsor Type I, to Type III and to Type II (hydrophilic to hydrophobic 

systems) with increasing salinity level for ionic surfactants and temperature for nonionic 

surfactants (Rosen and Kunjappu, 2004). Previous work has determined the relationship between 

microemulsion type and detergency and found that microemulsion phase behavior impacts 

detergency (Do et al., 2015; Tongcumpou et al., 2003). Excellent detergency of motor oil was 
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observed with decreasing IFT using a surfactant system in the Type I region but close to a Type 

III microemulsion, and at the optimum Type III microemulsion (optimum salinity (S*) 

(Tongcumpou et al., 2003). The detergency results showed that the mixed surfactant system 

required different salinity ranges for soils with varying hydrophobicity (5 – 8% NaCl for 

hexadecane (EACN = 16) and 12 - 16 % NaCl for motor oil (EACN = 23.5)) to attain good soil 

removal (Tongcumpou et al., 2003). In studying detergency of canola oil (EACN = 17) using 

different surfactant formulations, the maximum removal was observed at 14% NaCl using C14-15-

8PO-SO4Na (Phan et al., 2010), whereas Do et al. (2015) found the maximum detergency at S* of 

2.5 w/v% NaCl using a binary surfactant mixture of C10-18PO-2EO-SO4Na and dioctyl sodium 

sulfosuccinate (AOT) at 26:74 molar ratio. The optimum surfactant formulation (S*) is thus 

observed to be influenced by the hydrophilic/hydrophobic nature of the surfactant system and the 

EACN of the oil.  

Although the correlation between detergency and microemulsion phase behavior has been 

extensively studied, the correlation between detergency and hydrophilic-lipophilic deviation 

(HLD) has not been studied systematically. Thus, the motivation of the current work is to utilize 

the HLD concept for evaluating detergency of soils with widely varying equivalent alkane carbon 

numbers (EACNs) at different surfactant-system HLD values. In this work, C10-4PO-SO4Na was 

selected as the primary surfactant based on previous work (Budhathoki et al., 2016), which showed 

that it could form a middle phase microemulsion with varying-EACN oils. The binary surfactant 

mixture of C10-4PO-SO4Na and AOT was also investigated as a confirmatory system to 

demonstrate the optimum HLD range for a second detergency system. Detergency of five different 

oily soils with different hydrophobic/hydrophilic natures were evaluated; 1) Soygold1100 

(SG1100) and canola oil mixture at 1:1 by volume, 2) isopropyl myristrate (IPM), 3) SG1100 and 

canola oil mixture at 2:3 by volume, 4) IPM and canola oil mixture at 1:1 by volume, and 5) 

hexadecane and canola oil mixture at 1:1 by volume, all at 25°C. In addition, IFT measurements 

were conducted to examine its correlation with detergency. Lastly, detergency of octadecane 

(EACN = 18, solid non-particulate soil at 25°C) was performed to evaluate if the optimum HLD 

found for oily soils can be employed for a solid non-particulate soil as well. 

As stated in the objective, the current work aims to demonstrate a correlation between detergency 

of widely varying EACNs of soils and surfactant-system HLD values. The HLD equation was first 
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proposed by Salager et al. (1979) to describe microemulsion phase behavior. The HLD value 

indicates the deviation of the surfactant formulation from the optimum condition (S*) (Acosta et 

al., 2008; Budhathoki et al., 2016; Zarate-Munoz et al., 2016) where an equal amount of water and 

oil are solubilized in the middle phase, the coalescence rate is fastest, the IFT is minimum (denoted 

as IFT*), and the solubilization capacity (SP) is highest (SP*). Negative, zero, and positive values 

of HLD correspond to Winsor Type I, III and II microemulsions, respectively. Two HLD equations 

exist depending on the nature of the surfactant head group; ionic surfactants and nonionic 

surfactants. Since all surfactants used in this work are anionic surfactants, the appropriate HLD 

equation for anionic surfactants is described below 

HLD = ln(S) – K ´ EACN - f(A) - aDT + Cc   (4.1) 

Where S is salinity of the aqueous phase (g NaCl/100 mL), K is a function of anionic surfactant 

head group and is reported to range from 0.004 - 0.17 (Acosta et al., 2008; Hammond and Acosta, 

2012; Salager et al., 1979; Velásquez et al., 2010; Witthayapanyanon et al., 2008). EACN is the 

equivalent alkane carbon number describing the hydrophobic/hydrophilic nature of the oil; for 

example, hexane has an ACN (EACN) of 6 and canola oil has an EACN of 17 (Do et al., 2009). 

The hydrophobicity of oil increases with increasing EACN. f(A) is a function of alcohol or 

cosolvent, if present, and depends on the alcohol type and concentration. a is the temperature 

coefficient (typically is 0.01 K-1 for most surfactants (Broze, 1999; Hammond and Acosta, 2012; 

Salager et al., 1979)). DT is the difference between the studied temperature and reference 

temperature (T-25°C). The Cc value describes the relative hydrophilic/lipophilic nature of the 

surfactant. A negative Cc value corresponds to a hydrophilic surfactant which preferably forms 

normal micelles in the aqueous phase. In contrast, a positive Cc corresponds to a hydrophobic 

surfactant which favors the formation of reverse micelle in oil phase (Acosta et al., 2012; 

Witthayapanyanon et al., 2008).  

A salt scan is performed to attain the optimum formulation (S*) for ionic surfactants. If the 

optimum condition (S*) is obtained without alcohol (f(A) = 0), and at 25°C (DT = 0), the HLD is 

equal to 0 (HLD = 0) and the general HLD equation can be rewritten as shown below 

ln(S*) = K ´ EACN – Cc    (4.2) 



 

 

67 

In order to obtain K and Cc values of a studied surfactant system, microemulsion phase behavior 

studies of reference oils (known EACNs) are conducted to determine S* to construct a linear plot 

of ln(S*) against EACN. From the plot, K and negative Cc are the slope and y-intercept of that 

studied surfactant, respectively. 

Experimental Procedures 

Materials 

The anionic extended surfactant studied in this work, C10-4PO-SO4Na (28% purity), was supplied 

by Sasol North America, Inc. (Lake Charles, LA, USA). The C10-4PO-SO4Na is a commercial 

grade surfactant which is a polydisperse mixture of a variety of EO group with a mole average of 

4 EO groups – it should be noted that the surfactant characteristics (K and Cc values) can be 

influenced by surfactant polydispersity. The anionic conventional surfactant studied, a waxy solid 

dioctyl sodium sulfosuccinate (Aerosol OT (AOT)), 100% purity), was purchased from Fisher 

Scientific. Hexane, octane, decane, dodecane, hexadecane, octadecane, and isopropyl myristate 

(IPM) were all purchased from Sigma Aldrich (St. Louis, MO, USA). Canola oil was purchased 

from a local grocery store. Soygold 1100 (SG1100), which is a methyl soyate, was received from 

Ag Processing Inc. (APG) (Omaha, NE, USA). Blended 65/35 polyester/cotton swatches (3´4 inch 

in size) were purchased from Test Fabrics, Inc. (West Pittston, PA, USA). All materials and 

chemicals were used without further purification. 

Methodology 

Microemulsion phase behavior studies 

Microemulsion phase studies of all studied oils were performed in 15 mL flat-bottom vials 

with Teflon-lined screw caps. Five milliliters of 2 w/v% surfactant in aqueous phase were prepared 

at different salinities, then 5 mL of studied oil was added in the vial to obtain an aqueous surfactant 

solution-to-oil volumetric ratio of unity. All vials containing the mixtures were mixed well by hand 

once a day for 3 days and placed in a temperature-controlled water bath at 25°C. The S* was 

visually observed and determined after simultaneously shaking all the vials in the phase scan. The 
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surfactant formulation with shortest coalescence time for each set of phase scan was defined as the 

S* (Budhathoki et al., 2016; Zarate-Munoz et al., 2016).  

Dynamic IFT Measurements 

Dynamic IFT measurements were performed to determine the IFT between the surfactant 

formulations and the oil and to confirm S* obtained through the microemulsion phase study. The 

IFT experiments were carried out using a spinning drop tensiometer purchased from the University 

of Texas (Model 500). A volume of 1-3 µL studied oil was injected into a 300 µL capillary tube 

filled with a freshly prepared surfactant solution for 20 minutes at 25°C after oil injection 

corresponding to the washing timeframe in detergency experiments. The surfactant formulation 

with the lowest IFT was defined as the optimum formulation (S*). 

Detergency Experiments 

Soiling Procedure 

Detergency experiments were performed using 3´4-inch swatches of blended 65/35 

polyester/cotton. All studied oily soils were mixed at 20 vol% chloroform whereas octadecane 

(reported melting point obtained from the manufacturer = 26 - 29°C) was heated to 35°C before 

mixing with chloroform. The swatches were completely soaked in the oil/chloroform solution for 

1 minute, then the soiled swatches were hung using one wooden clothespin per fabric to dry and 

allowed chloroform evaporate off overnight in a fume hood prior to use (Do et al., 2015).  

Detergency Procedure 

Detergency experiments were carried out at 25 ± 1°C using a Terg-O-Tometer (Model 7243; USA 

Testing Co., Inc., Hoboken, NF, USA). A 20-min wash cycle was performed for washing with 1 

L surfactant solution. A 3-min first rinse and a 2-min second rinse were performed with one L of 

deionized (DI) water. The agitation speed during washing and rising cycles was approximately 

120 rpm. The bath temperature was kept constant during the washing and rinsing steps. After the 

rinse cycles were complete, washed fabrics were then hung using a wooden clothespin to dry 

overnight in a fume hood. The detergency performance was determined gravimetrically by 

weighing the pre-soiled, soiled and washed fabrics directly on the mass scale as per past research 

(Do et al., 2015; Attapong and Sabatini, 2017). The percentage of oil removal was determined by 
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dividing the mass of removed soil after wash by the mass of initial oil soiled and multiplied by 

100. All laundry experiments were repeated in triplicate and the error bars presented in the 

detergency results represent standard deviations. 

Results and Discussion 

Determinations of K and Cc-values for studied surfactant systems 

Microemulsion phase behavior studies were conducted at 25°C with five paraffinic oils (hexane, 

octane, decane, dodecane, and hexadecane which have respective EACN values of 6, 8, 10, 12, 

and 16) to determine surfactant characteristics (K and Cc values) using the HLD equation for ionic 

surfactants. The optimum salinities (S*) of the selected oils were first determined using 2 w/v% 

surfactant concentration (C10-4PO-SO4Na and a binary mixture of C10-4PO-SO4Na and AOT at 

1:1 by molar ratio) as identified in Table 4.1. From Table 4.1, it can be observed that the S* of 

both surfactant systems increased with increasing EACN of the oil. The S* determined for each 

surfactant system with five different EACNs of oils were then used to construct a graph of ln(S*) 

against EACN as presented in Fig. 4.1. The results showed the R2 value of linear fitting for both 

surfactant systems studied was 0.97 suggesting that the linear fit was in very good agreement with 

the data. According to eq. 4.2, the slope of the linear plot fit to this data is the K-value and the y-

intercept is the negative Cc value for the respective surfactant systems. Results in Fig. 4.1 suggest 

that the K and Cc values for C10-4PO-SO4Na surfactant were 0.053 and -2.29, respectively, which 

is consistent with previous work by Budhathoki et al. (2016) who reported K and Cc values of 

0.069 and -2.15, respectively, for the same surfactant. The K and Cc values for the C10-4PO-SO4Na 

and AOT mixture were found to be 0.090 and -0.80, respectively. The Cc values for these 

surfactant systems studied suggest that the single C10-4PO-SO4Na surfactant system was more 

hydrophilic than the C10-4PO-SO4Na and AOT mixture; this was as expected as the AOT is a more 

hydrophobic surfactant. 
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Table 4.1 S* for each studied oil using different surfactant systems  

Paraffinic oils EACN 
C10-4PO-SO4Na 

C10-4PO-SO4Na+AOT at 1:1  

by molar ratio 

S* (w/v%) ln(S*) S* (w/v%) ln(S*) 

Hexane 6 13.0 2.56 3.5 1.26 

Octane 8 15.3 2.73 4.8 1.58 

Decane 10 17.5 2.86 5.7 1.73 

Dodecane 12 18.6 2.93 7.0 1.94 

Hexadecane 16 22.4 3.11 9.0 2.19 

 

Figure 4.1 Plot of ln(S*) against EACN to determine surfactant characteristics (K and Cc values) 

for studied surfactant systems 

Determination of EACNs of studied oils for detergency study 

In this work, five different soils were studied consisting of a variety of oils with different EACN 

values (while initially the plan was to study varying ratios of a binary triglyceride mixture, forming 
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middle phase microemulsions with these systems proved to be problematic). Before studying 

detergency of the five soils, the S* of each soil was determined using the C10-4PO-SO4Na 

surfactant as a primary surfactant using microemulsion phase behavior studies at 25°C. In addition, 

the S* and IFT* between the oil and surfactant were then determined through dynamic IFT 

measurement at 25°C as a confirmatory step, as shown in Table 4.2. The microemulsion phase 

behavior results showed that middle phase microemulsion was visually observed using 2% C10-

4PO-SO4Na for all oils studied. Their coalescence rates varied from 30 seconds to several minutes 

(all fairly rapid) depending on the molecular structure of oil and mixing ratio. The slowest 

coalescence rate was observed with the oil mixture having the highest canola oil ratio. 

Furthermore, S* for a mixture of 1:1 v/v hexadecane and canola oil (EACN = 16.6) from phase 

behavior studies, for example, was observed to be 23.8% w/v NaCl which was identical to S* 

based on IFT results. Results in Table 4.2 show that the S* obtained through the IFT measurements 

varied from 13.0 w/v% NaCl for the mixture of SG1100 and canola oil at 1:1 by volume to 23.8 

w/v% NaCl for the mixture of hexadecane and canola oil at 1:1 by volume. Further, the IFTs* for 

the studied soils were all observed to be in the ultralow IFT range (10-3 mNm-1) which corroborates 

the presence of middle phase microemulsions in the phase behavior studies. The EACN of each 

soil was then determined using eq. 4.2 where the S* and HLD parameters (K = 0.053 and Cc = -

2.29) for the C10-4PO-SO4Na surfactant were known. The EACNs of the soils were found to vary 

from 5.2 to 16.6 suggesting that the latter was most hydrophobic, based on its highest EACN value 

in this work.  

Table 4.2 S* based on IFT measurements, IFT*, and calculated EACNs for all five oils studied 

Studied oils 
S*  

(w/v%) 

IFT* 

(mNm-1) 

EACN 

(ln(S*) = 0.053×EACN+2.29) 

1:1 v/v SG1100+canola oil 13.0 2.0´10-3 5.2 

Isopropyl myristate (IPM) 14.7 1.1´10-3 7.5 

2:3 v/v SG1100+canola oil 16.9 2.0´10-3 10.1 

1:1v/v IPM+canola oil 19.5 2.7´10-3 12.8 

1:1v/v hexadecane+canola oil 23.8 3.3´10-3 16.6 
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Detergency results: Correlation between detergency of soils, salinity, HLD and IFT using C10-

4PO-SO4Na surfactant as a primary surfactant study 

The detergency of the five oily soils was measured with 65/35 polyester/cotton blend and at a 

washing temperature of 25°C. The detergency was evaluated at different salinities corresponding 

to HLD values varying from negative to zero to positive (Type I, III and II microemulsions, 

respectively) as shown in Fig. 4.2a-e. Detergency of SG1100 and canola oil mixture at 1:1 by 

volume (EACN = 5.2), for example, significantly increased at 0.1 w/v% NaCl with an IFT value 

of 0.7 mNm-1 corresponding to HLD = -5.0, plateaued at NaCl concentrations between 0.2 w/v% 

with an IFT value of 0.3 mNm-1 and 13.0 w/v% (S*) with a minimum IFT value (IFT*) of 2.0´10-

3 mNm-1 corresponding to HLDs ranging from -4.0 to 0.0, and then declined at NaCl concentrations 

greater than 13.0 w/v% corresponding to HLDs > 0.0 and with IFT values > IFT*. The maximum 

oil removal for EACN = 5.2 (>90% removal) was observed at 13.0 w/v% NaCl (S*) corresponding 

to the HLD = 0.0 formulation with IFT* of 2.0´10-3 mNm-1, as shown in Fig. 4.2a. The correlation 

between detergency, HLD and IFT was found to follow a similar trend for the other soils studied 

(Fig. 4.2b-e).  

In general, the correlation between detergency of studied soils and salinity demonstrated that 

detergency increased with increasing salinity levels, reached the maximum at its S* (over 90% 

removal), then decreased at salinity levels higher than the S* with significant drop in detergency 

at salt concentrations further away from the S*. The S* was found to increase with increasing 

EACNs of the soil (S* varied from 13 w/v% NaCl for EACN = 5.2 to 23.8 w/v% for EACN = 

16.6). It is especially interesting to note that good detergency (>80% removal) was observed in 

widely varying salt concentration ranges (i.e., 0.2 - 13.0 w/v% NaCl for EACN = 5.2 and 0.4 - 

23.8 w/v% NaCl for EACN = 16.6 (Fig. 4.2a and 4.2e)) suggesting that different salinity ranges 

are required for detergency of soils with varying EACN values. 

The correlation between detergency and IFT demonstrated increased detergency corresponding to 

lower IFT values. Improved detergency (>80% removal) could be achieved with IFT values in the 

0.1 to 1.0 mNm-1 range for all studied soil systems. Further, maximum detergency was correlated 

with the attainment of IFT* values which were found to be in an ultralow IFT range (<10-2 mNm-

1) for all soils studied as depicted in Fig. 4.2a-e. Attaphong and Sabatini (2017) found good 
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detergency of canola oil (approximately 80% removal) using anionic extended surfactant with 

Type I formulation at an IFT value between 0.1 and 1.0 mNm-1. Likewise, Thompson (1994) also 

showed that maximum detergency occurred near the S* for an anionic surfactant with triolein. 

Similar results could be observed in other studies (Tanthakit et al., 2010; Tongcumpou et al., 2005). 

It was worth noting that IFT < 1 mNm-1 appeared to be sufficiently low to facilitate oil detachment 

by rollup and snap-off mechanisms with the introduction of agitation force during the detergency 

process (Attaphong and Sabatini, 2017; Tongcumpou et al., 2005). Therefore, the attainment of 

ultralow IFT (< 10-2 mNm-1) is not necessary to achieve good detergency (defined here as > 80% 

removal) of oily soils. 

Subsequently, studied salt concentrations were converted to HLD values using the HLD eq. (K 

and Cc values for C10-4PO-SO4Na). The detergency of all studied soils at HLDs varying from 

negative to positive (Type I, III, and II microemulsions) is also demonstrated in Fig. 4.2a-e. 

Increased detergency was achieved with increasing HLD values from negative to zero (Type I to 

optimum Type III microemulsions) and maximum detergency was observed in the vicinity of HLD 

= 0. These results were in good agreement with previous studies (Do et al., 2015; Tongcumpou et 

al., 2005) that found increasing oil removal efficiency as the microemulsion phase approached the 

optimum Type III region (HLD = 0). Improved detergency of oily soils had been observed in Type 

I/III microemulsion boundary system (HLD approaching 0) where the IFT was relatively low (< 1 

mNm-1), thereby favoring rollup and snap-off mechanisms and resulting in superior oil removal 

efficiency (Acosta et al., 2003; Thompson 1994; Tongcumpou et al., 2003; Wu et al., 2000). A 

reduction in detergency was found when detergency was conducted at a salinity value above the 

optimum formulation (HLDs > 0) suggesting that a Type I approaching to a Type III surfactant 

formulation (HLD £ 0) is the preferred region for detergency. In this research, we were unable to 

systematically study the effect of oily soil structure on detergency vs HLD – this should be 

evaluated in future research. 
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Figure 4.2 Correlation between detergency, salinity, HLD, and IFT for different EACNs of studied 

soils. a) EACN = 5.2, b) f EACN = 7.5, c) EACN =10.1, d) EACN =12.8, and e) EACN = 16.6. 

Detergency studies (bar charts) and dynamic IFT measurements (line charts) were all conducted 

using 0.1 w/v% C10-4PO-SO4Na at 25 ± 1°C. The horizontal dash lines indicate IFT with 1 mNm-

1. 

Correlation between detergency and HLD  

Fig. 4.3 presents the combined detergency results of all studied soils with respect to system HLD 

values varying from negative to positive. The high positive HLD values (i.e., HLDs = 0.5, 0.7, and 

0.8) could not be performed for the higher EACN oils due to the solubility limit of NaCl for the 

C10-4PO-SO4Na surfactant formulation. The general trend of results showed significant 

detergency (>80% removal) at HLDs ranging between -3.0 and 0.0 and maximum soil removal 

(>90%) was achieved at the HLD = 0 for all oils studied. These results demonstrate that good 

detergency was found in widely varying salt concentration ranges (ranging from 0.6% to 23.8% 

NaCl) but collapsed to a similar HLD range (-3.0 to 0.0) for all soils studied. Granted, there are a 

few exceptions (e.g., EACN = 7.5 was > 80% removal at HLD = -4.0 to -5.0) but overall the -3.0 

to 0.0 range appears best for the majority of the systems. More importantly, these results 

corroborate the hypothesis that an optimal HLD range exists for desirable detergency performance. 
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Figure 4.3 Correlation between detergency and HLD for all studied soils using 0.1 w/v% C10-4PO-

SO4Na. Washing temperature was kept constant at 25 ± 1°C. The horizontal lines indicate a 

location of 80% removal. The vertical dash lines indicate an HLD region between -3.0 and 0.0. 

Correlation between detergency of selected soils with EACNs of 5.2 and 16.6, salinity and HLD 

using a binary surfactant mixture (C10-4PO-SO4Na and AOT at 1:1 by molar ratio) as a 

confirmatory surfactant system 

To further corroborate the trends observed using C10-4PO-SO4Na alone, we next evaluated the 

detergency of the two soils with lowest and highest EACNs (EACNs = 5.2 and 16.6) at different 

NaCl concentrations using a binary mixture of C10-4PO-SO4Na and AOT at 1:1 by molar ratio as 

a confirmatory surfactant system (Fig. 4.4a-b). The NaCl concentrations used in this work for the 

mixed surfactant system were calculated using the selected HLD range as shown in Fig. 4a-b and 

HLD parameters for the mixed surfactant system (K = 0.090 and Cc = -0.80, data obtained from 

Fig. 4.1). The relationship between detergency, salinity, and HLD of the mixed surfactant system 

likewise showed that detergency increased with increasing salinities (negative HLDs), reached a 
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plateau at different salinity levels (HLDs approaching 0), and decreased with further increasing 

salinity levels beyond its S* (HLDs > 0). Once again, from Figure 4.4, it is observed that the best 

detergency (>80% removal) occurred for HLD values ranging from -3.0 to 0.0, corroborating our 

initial results. In a comparison of optimum salinity ranges of the same oil for two different 

surfactant systems, the detergency performance of EACN values = 5.2 and 16.6 using the C10-

4PO-SO4Na and AOT surfactant mixture required lower salinity levels than those of C10-4PO-

SO4Na (Figs. 4.2a, 4.2e, 4.4a, and 4.4b). For instance, optimum salinity range for oil with EACN 

= 5.2 was in a range of 0.2– 21.4 w/v% NaCl for the C10-4PO-SO4Na and 0.2 - 3.6 w/v% NaCl for 

the C10-4PO-SO4Na and AOT mixture. This is consistent with previous discussion that the mixed 

surfactant system was more hydrophobic than the single surfactant due to less negative Cc value 

resulting in requiring lower amount of salt to drive the surfactant towards the oil-water interface 

and reach the optimum formulation (HLD = 0). 

Figure 4.4 Detergency of soils with EACNs of a) 5.2 and b) 16.6 at various salinity levels and 

corresponding HLD values using a binary surfactant mixture of C10-4PO-SO4Na and AOT at 1:1 

by molar ratio. Washing temperature was kept constant at 25 ± 1°C. The horizontal lines indicate 

a location of 80% removal. The vertical dash lines indicate an HLD region between -3.0 and 0.0. 
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Correlation between detergency of solid octadecane (EACN = 18) and HLD using a binary 

surfactant mixture between C10-4PO-SO4Na and AOT at 1:1 by molar ratio 

The HLD concept is thus seen to be a valuable tool for designing detergency performance of 

studied oily soils using two different anionic surfactant systems. As one final step, we employed 

the HLD concept with detergency of octadecane (EACN = 18, melting point = 26 - 29°C) which 

behaved as a solid non-particulate soil at a washing temperature of 25°C. From Figure 4.5, it can 

be observed that detergency of octadecane significantly increased at NaCl concentration of 0.6 

w/v% (HLD = -3.0), reached a plateau at NaCl concentration range between 0.6 and 11.2 w/v% 

(HLDs = -3.0 to 0.0) with soil removal efficiency approximately 90%, and declined at salt levels 

beyond the S* (HLDs > 0). It is important to note that while the removal mechanisms of oily and 

solid non-particulate soils have been shown to be different (Chanwattanakit et al., 2017; Phaodee 

et al., 2019; Thompson, 1994; Tongcumpou et al., 2003), these preliminary results indicate that 

the HLD range between -3.0 and 0.0 still held for octadecane removal. Future research should 

further explore the HLD-detergency behavior of solid non-particulate soils. 
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Figure 4.5 Correlation between detergency of octadecane (solid non-particulate soil), salinity and 

HLD using the binary surfactant mixture of C10-4PO-SO4Na and AOT at 1:1 by molar ratio. 

Detergency experiment was done at 25 ± 1°C. Reported melting point temperature of octadecane 

is 26 - 29°C. The horizontal lines indicate 80% removal. The vertical dash lines indicate an HLD 

region between -3.0 and 0.0. 

Conclusions 

Detergency of oily soils with EACNs varying from 5.2 to 16.6 and solid octadecane (EACN = 18) 

on polyester/cotton using different anionic surfactant systems was studied at a washing 

temperature of 25°C. Detergency exceeding 80% removal was accomplished at widely varying 

salinity values (0.6 – 23.8 w/v% NaCl for C10-4PO-SO4Na and 0.2 – 9.9 w/v% NaCl for mixed 

C10-4PO-SO4Na and AOT at 1:1 by molar ratio). Maximum detergency was demonstrated at 

optimum conditions (S*) for all soils studied. When the results were interpreted using the HLD 

equation, good detergency was found to be in the same HLD range of -3 to 0 (Type I to optimum 

Type III microemulsions) for both liquid and solid nonparticulate soils with the maximum 

detergency at the HLD = 0. The significant improvement (>80% removal) in detergency of oily 

soils was found to correlate with IFT values less than 1 mNm-1. Further, detergency of solid 

octadecane likewise demonstrated that the HLD range of -3 to 0 showed superior detergency 

performance versus surfactant systems outside this HLD region. The current work thus supports 

the HLD method as a valuable tool for designing an optimum detergency formulation for widely 

varying EACN of oily and solid non-particulate soils.  
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Chapter 5 Conclusions 

Although the effects of surfactant, temperature and removal mechanisms on detergency of oily 

soil have been extensively studied, additional research is required to examine the correlation 

between detergency and existing HLD concept. Currently, the study on detergency of solid-non 

particulate soil is still limited. The goals of this dissertation were to design and characterize 

detergency formulations of a wide range of soils while also providing a basis for a removal 

mechanism concept. This research was divided into 2 main topics. The first topic was to investigate 

surfactant systems capable of significantly improving detergency of triacylglycerol solid non-

particulate soils below their melting point. This work studied the effects of surfactant, alcohol 

additives, and relevant removal mechanisms of the soil (Chapters 2 and 3). The second topic was 

to assess the utility of HLD concept as a design approach for detergency of varying types of soils 

(Chapter 4). In a move towards addressing the second research problem, this study examined 

detergency of widely varying EACN values and states of soils at different HLD values using two 

different surfactant systems. 

In Chapter 2, a branched C14-15-8PO-SO4Na surfactant was selected as a primary surfactant system 

to evaluate detergency of coconut oil below its melting point. Cold-water detergency of coconut 

oil at 10°C was found to be poor using the surfactant alone. With regards to salt concentration, this 

study found that detergency improved with increasing salt concentrations and reached maximum 

efficiency at S* (Figure 2.1). This study found that the efficacy of detergency decreased while 

further increasing salt concentrations beyond the S*. Improved detergency was observed with the 

addition of intermediate-chain alcohols (Figure 2.2). The S* required in the surfactant system 

decreased from 8 w/v% NaCl for no alcohols to 4 w/v% NaCl for 1-octanol. Exceeding 90% 

removal reached with the addition of 90 mM 1-octanol (initial concentration) in a 0.1 w/v% C14-

15-8PO-SO4Na with added salt at 4 w/v% NaCl (the S*) system (Figure 2.5). Further studies 

showed that decreasing 1-octanol concentration from 90 mM (1.2 w/v%) to 15 mM (0.2 w/v%) 

still maintained detergency over 90% removal (Figure 2.6). Specifically, enhanced cold-water 

detergency of coconut oil was found to correlate with a reduction in IFT and improve wetting of 

the soil surface (Figure 2.2 and Table 2.2). However, melting point alteration of the soil, removed 

soil particle size, and dispersion stability did not appear to be an important factor in detergency 
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improvement (Tables 2.3 and 2.4). The use of intermediate-chain alcohols also provided robust 

results for other surfactant systems studied (C10-16-7EO-OH and a mixture of C10-18PO-2EO-

SO4Na+SDOSS at 0.24/0.76 molar fraction with 0.5 w/v% NaCl), in addition another solid non-

particulate soil (in this case, palm kernel oil) was examined (Figures 2.3 and 2.4). 

In Chapter 3, this work further explored optimized surfactant systems capable of providing cold-

water detergency comparable to that of systems presented in Chapter 2. The effects of anionic 

extended surfactant structure (e.g., linearity degree and number of EO groups), use of branched 

octanols as a presentative of intermediate-chain alcohols on the detergency performance of 

coconut oil, were studied. The presence of linearity and insertion of EO groups in the C14-15-8PO-

SO4Na base-surfactant molecule did not improve coconut oil removal (Figure 3.2). Thus, the 

branched C14-15-8PO-SO4Na surfactant was continued, for use, in investigating the effect of 

branched alcohols (2-octanol and 2-ethyl-hexanol). Branched octanols further reduced S* required 

from 4 w/v% NaCl (1-octanol) to 2 w/v% NaCl (2-octanol and 2-ethyl-hexanol) (Figure 3.3). 

Comparing linear octanol to branched octanols in the surfactant system with added salt at its S*, 

detergency with the presence of 2-octanol was comparable to that of 1-octanol; whereas, 

detergency slightly decreased with the addition of 2-ethyl-hexanol (Figure 3.4). The concentration 

of 2-octanol was then evaluated as a final optimized surfactant system step. Decreasing 2-octanol 

concentration from 90 mM (1.2 w/v%) to 38.5 mM (0.5 w/v%) maintained detergency exceeding 

90% removal (Figure 3.6). Improved cold-water detergency of coconut oil corresponded to a 

combination of lowering IFT and improving wetting (Figures 3.1 and 3.5). In addition, detergency 

of coconut oil was found to increase with increasing solubilization (Table 3.2).  

In Chapter 4, this work assessed the correlation between detergency of a wide range of soils and 

optimal HLD values. A single anionic surfactant system (C10-4PO-SO4Na) was used as a primary 

surfactant to conduct detergency of five oily soils with widely varying EACNs from 5.2 to 16.6 at 

a washing temperature of 25°C. The detergency of all oily soils studied increased with rising NaCl 

concentrations and decreased with further elevating NaCl concentrations over the S* (Figure 4.2). 

Exceeding 80% removal of all soils was observed across a wide range of salt concentrations, and 

maximum detergency was attained at its S* (Figure 4.2). When the optimal NaCl concentrations 

were converted to HLD values, the surfactant systems corresponded to an identical HLD range 

between -3 and 0 (Figures 4.2 and 4.3). Improved detergency was found to correlate with a 
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reduction in IFT (less than 1 mNm-1) (Figure 4.2). Detergency of oily soils with lowest and highest 

EACNs of 5.2 and 16.6 was then evaluated using a binary surfactant mixture between C10-4PO-

SO4Na and AOT at 1:1 by molar ratio as a confirmatory surfactant. Likewise, detergency over 

80% was found at different NaCl concentrations corresponding to HLD values between -3 and 0 

(Figure 4.4). Finally, detergency of a solid non-particulate (octadecane) was performed using the 

mixed surfactant systems, demonstrating that surfactant systems with HLD values between -3 and 

0 showed the most effective detergency comparing to other HLD values (Figure 4.5). Thus, the 

results of this study support that the utilization of the HLD concept in detergency application is 

proven to be a potential tool to design optimum detergency formulations for a wide range of soils. 

Recommendation for future research 

The results of this research showed that cold-water detergency of solid non-particulate soils can 

be significantly improved with the addition of intermediate-chain alcohols in the surfactant 

formulations. Further research is required for mixed surfactant systems between anionic extended 

surfactant and nonionic surfactant to possibly reduce the use of alcohol in the detergency 

formulation. In addition, animal-based fat solid non-particulate soils (e.g., bacon grease, lard, and 

tallow) and cosmetic-based solid non-particulate soils (e.g. lipstick) require further investigation. 

To further demonstrate HLD-detergency behavior, the HLD concept can be modelled by two 

different equations depending on the charge of surfactant head group. The use of single nonionic 

surfactant should be evaluated to determine an optimal HLD range and then move to more 

complicated surfactant system (e.g., a mixture between anionic and nonionic surfactant systems 

which will be close to the commercial detergent formulation). The current research did not evaluate 

varying soil-fabric types and their potential influence on the optimal HLD range. Therefore, the 

detergency effect on different types of fabric should be considered for future research.
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Appenddix A Evaluating the effect of crystal form of solid triacylglycerol on 

detergency 

Parichat Phaodee, David Scheuing, Brian P. Grady, David A. Sabatini 

 

If the COVID-19 pandemic had not interrupted, this work would have been one of the chapters in 

this dissertation. 

Introduction 

Fats are primarily composed of triacylglycerols or triglyceride (TAG). A TAG consists of three 

fatty acids bounded with triester of glycerol. The fatty acids are found in a wide variety of forms, 

which include short and long chain, saturated and unsaturated, odd or even carbon number, trans- 

or cis-, linear or branched combination (Small, 1986). Polymorphism is a unique characteristic of 

fat networks that affects their rheological characteristics. Polymorphism is the capability of solid 

fats to orient into several crystalline forms with identical chemical compositions in their liquid 

state (Widlak et al., 2001). Polymorphic forms are typically able to pack into three different crystal 

structures (alpha, beta prime, and beta) (Garti and Sato, 1988). The transition pathway of TAG is 

liquid to alpha, to beta prime and eventually to the optimum packing of the molecules which is 

beta form (Widlak et al., 2001). The alpha polymorph is most readily formed from the melt during 

the crystallizations at high cooling rates. The alpha is packed in a loose hexagonal subcell 

conformation which has a low density of the loose packing of the TAG molecules causing lowest 

crystal phase (Widlak et al., 2001). However, the alpha crystal remains small for a short period of 

time regarding its low stability and will eventually transform through the melt or molecular 

reorientation in the solid state to be the more stable beta prime phase (Ten Grotenhuis et al., 1999). 

The beta prime polymorph conformation can be obtained through the melt or alpha transition at 

intermediate cooling rates. The beta prime arranges in either a double- or triple-chain configuration 

and reorients in a more dense orthorhombic subcell structure of the beta polymorph (Breitschuh 

and Windhab, 1998). The beta form is the most stable form reflecting largest crystal in size, highest 

packing density, and highest melting point temperature. The beta structure can be formed directly 
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through the melt or beta prime transition under very slow heating rates. Practically, beta form is 

only obtained from solvents (Hernqvist, 1990).  

These crystal forms can be distinguished by the difference in long spacing using X-ray diffraction 

(XRD) (Ahmadi et al., 2008; Garti and Sato, 1988). In addition, the differential scanning 

calorimetry (DSC) technique has been also used to characterize TAG mixtures and crystal phase 

formation regarding the difference in melting point of each polymorphic form (Himawan et al., 

2007; Windbergs et al., 2009). DSC has been extensively utilized to understand TAG behavior and 

phase transition under different conditions in food industry (Garti et al., 1982; Maruyama et al., 

2014). However, only limited research has shown that thermal analysis using DSC apparatus was 

a reliable technique to analyze crystal phase formation and also trace amount of residue after 

washing cycle in the detergency process. Yatagai et al., (1989) found a DSC endothermic peak 

decreased with increasing washing time indicating higher oily soil removal. After the contact of 

an aqueous surfactant (5% SDS solution), a broad endothermic peak appeared between the melting 

peaks of oily soils and frozen water suggesting a formation of ternary liquid crystal. Later, Yatagai 

et al., (1992) studied tripalmitin removal on fibrous and non-fibrous surfaces using a DSC 

technique. This work studied tripalmitin removal (obtained from solvent solution) which yielded 

beta tripalmitin crystal on the surface. The beta tripalmitin was conducted detergency at 20°C 

(solid non-particulate at the wash condition) and the results showed that the endothermic peak area 

declined with an increase in washing time and corresponded higher soil removal (Yatagai et al., 

1992).  

The current research is motivated by Scheuing’s work which studied tristearin removal using 

Fourier transform infrared spectroscopy (FT-IR) (Scheuing, 1990). After the soil contacting with 

nonionic surfactant, alpha tristearin was readily removed and alpha to beta transition was also 

shown. However, beta tristearin was more resistant to removal indicating lower soil removal 

(Scheuing, 1990). Most of previous work on detergency of solid non-particulate soil were 

dissolved in solvents, which yielded beta crystal phase after the solvents evaporated off (Hernqvist, 

1990). There has been limited work on quantitatively studying the effect of individual TAG 

polymorphic form on cleaning efficiency. Thus, this work attempts to investigate detergency of 

alpha and beta TAG and also evaluate the effect of substrate (DSC aluminum surface, cotton, 65/35 
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polyester/cotton blend, and polyester) on two forms of solid TAG removal. DSC is carried to 

analyze crystal formation and phase transition after detergency process. 

Experimental Procedures 

Materials 

Tristearin (>99%) and tetrahydrofuran were supplied by Sigma Aldrich. The anionic extended 

surfactant (C14-15-8PO-SO4Na) with 93.84% active was received from Sasol North America, Inc. 

(Lake Charles, LA, USA). Bleached pure cotton, 65/35 polyester/cotton blend, and spun polyester 

Type 54 were purchased from Test Fabrics, Inc. (West Pittston, PA, USA). Aluminum DSC pans 

and covers were purchased from Perkin Elmer. 

Methodology 

Thermal analysis 

Thermal analysis was performed to analyze the tristearin crystal formation and phase transition 

using a DSC Q100 (TA). Tristearin samples (approximately 1 mg) were weighted into DSC 

aluminum pan. The apparatus was heated from 40°C to 100°C with a heating rate of 70°Cmin−1. 

All experiments were conducted triplicate.  

Detergency experiments 

Sample preparation on fabric procedure 

Five (5) w/v% tristrearin solutions were prepared in tetrahydrofuran (THF). The oil solution 

(approximately 10 mL) was then dropped onto the fabric. After that, the soiled samples were left 

for 10 minutes to allow the THF to evaporate off which left the solid tristearin on the fabric. 

Alpha sample preparation on fabric  

The post-soiling samples were re-melted at 100°C for 10 minutes to allow the tristearin to 

completely melt, then the temperature was adjusted to 60°C for 5 minutes on an isothermal 

temperature hotplate, and cooled down under ambient condition. After the cooling down process, 

the samples were kept for another 10 minutes prior to detergency experiments.  
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Beta sample preparation on fabric  

The post-soiling samples were re-melted at 100°C for 10 minutes to allow the tristearin to 

completely melt. This step was carried out on an isothermal hotplate. The samples were then placed 

in an isothermal temperature oven at 60°C for 30 minutes. After 30 minutes, the samples were 

taken out of the oven and cooled down under ambient conditions. After cooling down, the samples 

were kept for another 10 minutes prior to detergency experiments. 

Detergency Procedure 

For aluminum surfaces, and to avoid the samples hitting the spindle mixing stick and bouncing 

off, the DSC covers were adhered, using mounted glue, to the bottom of the washing bucket for 

the entire detergency experiments. However, the fibrous samples were freely submerged in the 

washing solution. Detergency was carried out at temperatures of 25±1°C (below the melting points 

of alpha and beta samples) using a Terg-O-Tometer (Model 7243; USA Testing Co., Inc., 

Hoboken, NF, USA). A 20-min wash cycle was performed for washing with 1 L surfactant 

solution. A 3-min first rinse and a 2-min second rinse were performed with 1 L DI-water. Washing 

and rising cycles were at a 120 rpm agitation speed. The bath temperature was kept constant during 

the washing and rinsing steps. After wash and rinse cycles, washed samples were laid down for 

aluminum surfaces, and hung to dry, using a clothespin, for 2 hours for fabrics. The detergency 

was determined by dividing the mass of removed soil, after wash, to the mass of initial oil soiled. 

All laundry experiments were repeated in triplicate and the error bars presented in the detergency 

results were standard deviations. Total detergency experiment duration (counting from sample 

preparation to drying step after wash) were completed within 4 hours to prevent phase transition  

Results and Discussion 

Heating rate selection for evaluating tristearin crystal formation 

Approximately 1 mg tristearin was prepared on a DSC aluminum pan and then heated to 100°C, 

held at 67°C for 2 hours, and cooled to 25°C using cooling rate of 0.2°C/min to evaluate crystal 

formation. Heating rates were varied from 30°C/min (Fig. A-1a), 50°C/min (Fig. A-1b), and to 

70°C/min (Fig. A-1c) to suppress the recrystallization of alpha to beta (peak appeared at around 
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67°C). The DSC thermograms showed that the recrystallization downward peak (exotherm) of 

alpha to beta (circled in Fig. A-1a and b) was prevented using a higher heating rate (70°C/min). 

Thus, a 70°C/min heating rate was selected to determine the individual amount of alpha and beta 

present in the samples (the maximum capacity of the DSC apparatus used is 100°C/min). This 

heating rate is reasonably high for DSC, but previous work has proven that the use of high heating 

rate is reliable (Danley et al., 2008; Goth et al., 2003; Gramaglia et al., 2005; Pijpers et al., 2002). 

 

 

 

 

 

 

 

Figure A-1 Effect of heating rate on DSC thermogram of tristearin. About 1 mg tristearin was 

heated to 100°C, held at 67°C for 2 hours, and cooled to 25°C using cooling rate of 0.2°C/min. 

The samples were then heated to 80°C using heating rates of a) 30°C/min b) 50°C/min c) 

70°C/min, respectively. Upward peak indicates endotherm and downward peak indicates 

exotherm. 
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Crystal formation Results 

Pure alpha formation  

About 1 mg solid tristearin was added on a DSC aluminum pan, heated to 100°C for 10 minutes, 

and cooled to 60°C for 5 minutes. These steps were all conducted using a hotplate. Then the sample 

was cooled under ambient temperature and aged for additional studied times: no aging, 12 hours, 

and 24 hours (Fig. A-2), respectively. This experimental procedure resulted in a formation of pure 

alpha with the melting point about 55°C (Windbergs et al., 2009) as shown in Fig. A-2. Comparing 

the aging time, a transition of alpha to beta was observed after aging for 24 hours under an ambient 

condition. Thus, this preparation method would be carried out to prepare the alpha on fabrics and 

detergency of alpha would be completed within 12 hours to further the transition of alpha to beta. 

 

 

 

 

 

 

 

 

 

 

 

Figure A-2 Effect of aging time on alpha to beta tristearin transition using heating rate of 70°C/min 

Pure beta formation  

About 1 mg solid tristearin was put on an aluminum DSC pan, heated to 100°C for 10 minutes 

using a hotplate and cooled to 60°C for 30 minutes in an isothermal incubator. Then the sample 
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was cooled under an ambient temperature and aged for an additional period of time: no aging and 

24 hours (Fig. A-3). This experimental procedure showed a formation of pure beta form with 

melting point of 73.7°C (Windbergs et al., 2009) and revealed that the beta form is time 

independent within 24 hours (Fig. A-3) due to the most stable form. 

 

 

 

 

 

 

 

 

 

 

 

Figure A-3 Effect of aging time on beta tristearin formation using heating rate of 70°C/min 

Preliminary detergency results on aluminum surface 

 The alpha and beta samples were next utilized in preliminary detergency studies to 

determine the effect of crystal form on removal efficiency in 0.1 w/v% C14-15-8PO-SO4Na. The 

results show that neither the alpha nor beta samples was removed from the aluminum surface in a 

wash solution with varying washing times up to 40 minutes. However, the post-wash alpha 

samples were further analyzed in a crystalline phase transition using DSC heating cycle as shown 

in Fig. A-4. The results showed that there was a slight transition of alpha to another phase at 69.2°C 

with the presence of the surfactant. Scheuing (1990) also observed a phase transition of alpha to 

beta with the exposure of nonionic surfactant using FT-IR.  
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Figure A-4 DSC thermogram of post-wash alpha sample. Detergency was carried out for 20 

minutes at 20°C. Heating rate was 70°C/min. 

Next Steps 

If the COVID-19 pandemic had not interrupted my research, the next steps would have been 

1) performing detergency of alpha and beta tristearin on cotton, 65/35 polyester/cotton, and 
polyester 

2) measuring contact angle through a surfactant droplet on each substrate using sessile drop 
analysis 
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Appenddix B Effect of surfactant concentration on detergency of different 

coconut oil states 

AppendixB 

Surfactant formulation : branched C14-15-8PO-SO4Na with added salt at S* (8 w/v% NaCl) 

The IFT measurement results showed critical micelle concentration (CMC) and critical 

microemulsion concentration (CµC) of C14-15-8PO-SO4Na with 8 w/v% NaCl were 0.007 w/v% 

(700 ppm) and 0.6 w/v% (6000 ppm) as shown in Fig. B-1. 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1 IFT measurements using C14-15-8PO-SO4Na with 8 w/v% NaCl at 30°C 
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Surface tension measurements were carried out using a Wilhelmy  plate method to determine CMC 

between aqueous and air at 30°C. The interception of the linear lines was a value of CMC which 

found to be 0.0015 w/v% (Fig. B-2).   

 

 

 

 

 

 

 

 

 

Figure B-2 Surface tension measurements at 30°C. Surfactant system studied was C14-15-8PO-

SO4Na with 8 w/v% NaCl 

 

Figure B-3 shows detergency of semisolid coconut oil at 10°C, liquid coconut oil at 30°C, and IFT 

measurements at different surfactant concentrations with added NaCl at 8 w/v%. Generally, 

detergency of semisolid coconut oil was poorer than that of liquid coconut oil using all studied 

surfactant systems. The optimal detergency of liquid coconut oil (~80% removal) was observed at 

CMC obtained through IFT measurements. However, higher surfactant concentration (0.1 w/v% 

C14-15-8PO-SO4Na) was required to attain optimal detergency of semisolid coconut oil.  
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Figure B-3 Correlation between detergency of liquid and semisolid coconut oil and IFT at different 

surfactant concentrations. Surfactant concentrations of C14-15-8PO-SO4Na was varied with the 

addition of salt at 8 w/v% NaCl. 
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