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Abstract 

 

It is important to understand the internal molecular structure of molecular monolayers 

because that determines the physical and chemical properties of their surface. Infrared 

spectroscopy is a powerful method to measure the molecular orientation, but to fully harness the 

information, the spectra need to be compared to structural models. A full anisotropic model is 

established for simulating the infrared reflection absorption spectra (IRRAS) of self-assembled 

monolayers (SAMs) based on the methods of Allara and Parikh. The primary focus is to bridge 

the molecular structures from molecular dynamics simulations with the experimental spectra. 

The methylene and methyl group orientation are used in the simulations to calculate the complex 

refractive index tensors in the mid infrared (MIR) using experimental data from a reference 

phase. The Kramers-Kronig relation is used to calculate the frequency dependent refractive index 

tensor in the MIR from the absorption of each mode. The high frequency part of the refractive 

index tensor is calculated from atomic bond vectors in the simulation based on the bond 

polarizabilities. Afterwards, the IRRAS spectra can be computed using the 4×4 transfer matrix 

method. Finally, the IRRAS spectra of MD simulation results based on proposed SAM structures 

are compared. 
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Chapter 1  

Introduction 

Molecular monolayers are of great interest for a very long time due to their enormous 

success in a wide variety of applications in nanotechnology, organic electrons, lithography, 

surface coating for prevention of corrosion, chemical sensing and many other applications.1-11 

Among the most important are the self-assembled monolayers (SAMs), ordered monolayers 

which form by the adsorption and self-assembly of surfactant molecules on solid surfaces. This 

field of SAMs has been of great interest for over 35 years because they form easily and are 

chemically stable. They are used as model systems for studying fundamental phenomena of 

physical chemistry and statistical physics. Since then, many SAM systems have been 

investigated for their potential applications in science and technology. Surprisingly, the details of 

these structures have been yet to be established. Many methods have been used to 

characterization their structure, order, and interfacial properties. Infrared spectroscopy (IRS) has 

proven to be a very powerful tool to measure the molecular orientation and the other structural 

aspects of SAMs experimentally. But to fully harness the information about their unique feature, 

the spectra need to be compared to structural models. This has encouraged us to study and 

establish a full anisotropic optical model of the SAMs to simulate infrared reflection absorption 

spectroscopy (IRRAS) spectrum from molecular dynamics (MD) models and compare them with 

experimental measurements.  

 

1.1 Motivation 

This project is motivated by the need to compare structures produced by MD simulation 

with experimental measurements. We develop a method to bridge this gap using the internal 

structure of the monolayer for the comparison. That region is the most sensitive probe of SAM 

structure, which also determines the physical and chemical properties of their surface. In order to 

fully utilize the wide range of potential applications of the ordered monolayers like SAMs, we 

need to understand the relationship between the properties of the SAMs and their underlying 

structure. Although SAMs have been studied for decades, the details of their structure are still in 

dispute. 
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Many different surface science techniques have been employed to study the structure of 

SAMs. The most widely used characterization tools such as AFM12 and STM13, 14 are particularly 

useful to determine the arrangement of the surface molecular structure by real-space imaging. A 

wide variety of additional techniques have been used to characterize SAMs, He atom15, 16 and X-

ray diffraction,15, 17 electrochemistry,18-20 X-ray reflectivity,21, 22 X-ray photoelectron 

spectroscopy,23-25 wetting,26-28 and infrared spectroscopy (IRS).29-35 Of these, only infrared 

reflection absorption spectroscopy (IRRAS) probes the internal molecular structure of the SAM 

and the key order parameters—alkyl chain tilt and twist. Our approach is to simulate IRRAS 

spectra based on the molecular conformations from MD simulations, which can be compared 

with the experimental spectra. 

 

1.2  Overview of Infrared Reflection Absorption Spectroscopy 

(IRRAS) 

IRRAS is a powerful spectroscopic technique used to study ordered monolayers and thin 

films. It can be broadly applied to supported films on transparent and metallic substrates and can 

be performed in situ in gas and liquid environments. Due to the electromagnetic boundary 

conditions, IRRAS not only provides the typical chemical and structural information, but also 

probes the molecular orientation within the film. This method is particularly suitable for the 

investigation of SAMs on noble metal surfaces such as gold. The reflectance spectrum contains 

the conventional adsorption spectrum but is complicated by the modulation of the reflectivity 

from the refractive index dispersion due to the absorption. The reflection is generally conducted 

near grazing incidence in order to achieve maximum sensitivity. Although, this spectroscopic 

method is primarily used for the characterization of organic films, it is also suitable for the 

analysis of inorganic structures as well. We will briefly discuss the published works which have 

treated the samples with specific constraints and are relevant to our project. 

Yen and Wong34 presented a study of isotropic polymer thin films on semi-infinite 

metallic, non-metallic, and dielectric substrates. The reflectance spectra were modeled in terms 

of transverse optical (TO) and longitudinal optical (LO) modes, which were obtained from 

transmission IR experiments on the bulk phase of material. Based on the work by Berreman on 
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vibrational spectra on thin films, Yen and Wong recognized that while transmission IR 

experiments allow excitation of localized and delocalized TO modes, LO modes can also be 

excited in reflection at oblique incidence, particularly with p-polarized (TM) light for thin films 

adsorbed on a metallic substrate. Although their treatment was not in good agreement with the 

experiment, their approach to the fundamental physics was sound.26 

Another study by Chollet et al. were among the first to compare the quantitative 

relationship between IR reflection spectra of uniaxially oriented monolayers on isotropic metallic 

substrates and the transmission spectra at different incident angles on transparent substrates.35 In 

their treatment, the real part of the complex dielectric constants were assumed to be isotropic and 

constant. They used a 3-layer optical model (air-film-substrate ↔ isotropic-uniaxial-isotropic). 

Although, their treatment was particularly focused on oriented layers of stearamide on 

aluminium oxide, the treatment is not easily adapted for general applications. Ishino et al. 

reported a quantitative method to determine the reflection spectra of thin films of oriented 

organic polymer on non-metallic substrates.36 Their method is applicable specifically to 

uniaxially oriented thin films. Their treatment cannot be extended to biaxial films. 

Based on the formalism by Greenler37 and Hansen,38 Allara et al. demonstrated a general 

procedure for modeling isotropic thin films for IRRAS.31, 32, 39 The dispersion relation of the real 

refractive index was explicitly treated in this study. They established that the dispersion of the 

real refractive index influences the spectral line shapes. Including this effect, they improved the 

model and interpretation of the spectra.31 Isotropic thin films were considered on both metallic31 

and non-metallic32, 39, 40 substrates. They calculated the orientation of the IR active modes of the 

adsorbate molecular groups from the reflection spectra by employing the anisotropy of the 

surface electric field. They noted that the complex refractive index should be formulated as 

tensor instead of a scalar to avoid the smaller changes that could occur in the surface fields. In 

follow up work, Parikh and Allara developed a quantitative simulation technique for uniaxial 

anisotropic multilayered thin films.33 In their study, the samples consisted of small SAM 

domains with random azimuthal orientation, which were modeled as a uniaxial film.33 We base 

our work on their approach and extend it to the full anisotropic (biaxial) treatment, therefore a 

briefly outline of their method is appropriate. 

Modeling the IRRAS spectrum of a SAM begins with a conventional MIR spectrum of a 

reference phase, a randomly oriented polycrystalline sample with a structure and composition 
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closely related to the SAM of interest. The absorption spectrum is scaled to yield the frequency-

dependent imaginary-part of the refractive index (absorption coefficient) and then deconvolved 

into its individual modes. Each mode has a direction (anisotropy) defined by the mode. This 

information is used to construct the frequency dependent complex refractive index tensor based 

upon a guess of the molecular orientations within the SAM. The real part of the refractive index 

is obtained from the imaginary part of the refractive index using the Kramers-Kronig relation. 

The IRRAS spectrum is obtained using the 4×4 transfer matrix optical model to calculate the 

reflectance spectrum, which is compared to the experimental spectrum. The molecular 

orientation is then adjusted and the process is repeated until the model and the experimental 

IRRAS spectra agree.  

We adapt this strategy of comparing the IRRAS spectrum of possible structural models 

with the experimental spectrum. The detailed molecular structure is derived from all-atom MD 

simulations. An IRRAS spectrum can be calculated from these molecular structures following 

the strategies developed by Parikh and Allara33 and then compared to experimental 

measurements. Instead of adjusting the molecular geometry to match the experimental spectra, 

we have modeled the IRRAS spectra from MD simulations. The models that best agree with the 

experimental spectra will be deemed to be the best candidates for the experimentally observed 

SAM structure. The reference phase must be chosen carefully because the details of the relative 

mode intensities, spectral widths, and Fermi resonances can be quite sensitive to inter and 

intramolecular interactions. Features like the IR mode frequency, absorption strength or 

broadening are characteristics which are imported from the reference phase. Adding these effects 

to the model is well beyond the scope of this project. 
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1.3  Overview of the Project 

Our goal is to develop a full anisotropic optical model of the SAM to simulate the IRRAS 

spectrum based on the methods developed by Parikh and Allara.33 In order to treat the full 

anisotropy of the structure, we will extend the calculation of complex refractive index by 

establishing a technique to calculate the high frequency refractive index tensor. The high 

frequency part of the refractive index tensor is calculated using the atomic bond vectors and their 

bond polarizabilities. The high frequency refractive index tensor is a direct summation of the 

bond polarizabilities in the simulated SAM. The complex refractive index tensor in the mid 

infrared (MIR) is calculated for the C-H stretching modes using the CH2 and CH3 group 

orientations in the simulations and the experimental data from the reference phase. In order to 

obtain the real part of the optical tensor, the Kramers-Kronig relation is employed to calculate 

the frequency dependent refractive index tensor in the MIR from the absorption of each mode. 

We construct the anisotropic MIR complex refractive index tensor function for the SAM based 

on the IR spectra of a reference phase, the bond vectors and orientations of the C-H stretching 

mode in the MD simulations. The 4×4 transfer matrix method is used to calculate the IRRAS 

spectrum in the C-H stretching region of the simulated SAM. 

The present study is organized as follows. In chapter 2, a method to construct the 

complex refractive index tensor in the MIR from the bond polarizability and the absorption from 

the IR active modes is presented. The Kramers-Kronig (K-K) transformation relation is also 

introduced with a discussion of the three frequency regimes. In chapter 3, a brief overview of the 

numerical K-K transformation relations is provided. Because the spectrum can be decomposed 

into Gaussian and Lorentzian line shapes, we develop and verify conjugate analytic functions of 

these absorption line shapes for the refractive index dispersion (Kramers-Kronig transformation 

pairs). In chapter 4, formulation of the high-frequency refractive index tensors in terms of atomic 

polarizabilities and bond polarizability tensors is presented. An example of utilizing this method 

to calculate the high-frequency refractive index tensor for a known material is also provided. In 

chapter 5, the background and the implementation of the 4×4 transfer matrix method with the 

verification of special cases are discussed. In chapter 6, we bring all these parts together to 

demonstrate the simulation of IRRAS spectra from an MD model and comparison to the 
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experimental spectrum. In chapter 7, a summary of all our findings and the future direction of 

this project are discussed.  
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Chapter 2  

Construction of the Complex Refractive Index Tensor 

Optical properties such as refractive index of a given crystal is dependent on the direction 

of propagation of the wave as well as the polarization of the incident light. In an isotropic 

material, polarization is induced by the electric field of the incident wave and the direction of the 

polarization is parallel to the applied field. But in an anisotropic crystal, the induced dipoles are 

not necessarily aligned with the electric field. The phase velocity of the light wave in the 

anisotropic medium is dependent on the state and the direction of the polarization. Generally, for 

any given direction of propagation, there exist two waves, with orthogonal polarization 

directions determined by the crystal axes. Therefore, the anisotropic refractive index demands a 

more complex treatment than isotropic medium. A complex refractive index must be introduced 

in order to describe the full anisotropy of a given crystal. The index of refraction of a material 

depends on the symmetry of the structure as well. Evaluation of the complex refractive index 

tensor of an unknown crystal will provide us an insight on the geometry and the molecular 

conformation of the unknown compound as well as the symmetry of the crystal. In our study, we 

are going to model the refractive index of n-alkanethiol self-assembled monolayers (SAMs) in 

the mid-IR region and will calculate the complex refractive index tensor in order to identify the 

structural properties of SAMs. Optical spectroscopy such as infrared reflection absorption 

spectra (IRRAS) measures the refractive index from the reflection absorption spectra from the 

surface of sample. The measured spectra in the mid-IR region are function of polarization and 

angle of incidence. Hence, the dielectric permittivity constant can be derived directly from the 

index of refraction. In the following sections, we present a discussion on how the complex 

refractive index tensor of an anisotropic medium can be constructed from the bond polarizability 

of a molecule and absorption from the IR active modes in the mid-IR region.  

 

2.1  Complex Refractive Index Tensor 

In this section we discuss the underlying physics behind the refractive index, specifically 

the relationship between the refractive index and optical absorption. In a dielectric medium, the 



 

10 
 

ratio of the speed of light in vacuum, c, to its phase velocity in the medium, vp, is known as the 

refractive index, n 

 
p

c
n

v
=  . (2.1) 

Both the speed of light and the phase velocity are related to the (electric) permittivity and 

(magnetic) permeability in vacuum and the specific medium, respectively. The relationship is 

 
0 0

1
c

 
=     and     

1
pv


=  , (2.2) 

where, ε0 and ε are the permittivity in vacuum and in a medium and μ0 and μ are the permeability 

constants in vacuum and in the medium, respectively. From eq. (2.2) and eq. (2.1), n can be 

expressed in terms of relative permittivity, εr, and relative permeability, μr,  

 
0 0

r rn
 

 
 

= =  . (2.3) 

In our study, we assume the medium is nonmagnetic, therefore, 1r =  and eq. (2.3) 

becomes simply 
rn = . This is a fundamental relationship between the optical property, 

refractive index, and the material property, relative permittivity, εr. The polarization of a material 

in response to an applied electric field is expressed by the permittivity. The greater the 

polarization of a material for a given applied electric field, the greater εr will be. Both the relative 

permittivity and refractive index of a wave are dependent upon the frequency of that wave. If the 

medium is lossy (one that absorbs energy from the wave), the wave propagating through this 

medium will be attenuated by absorption. Lossy materials are generally characterized by a 

frequency dependent complex relative permittivity.  

 ( ) ( ) ( )1 2i     = +  (2.4) 

Here and in the remaining discussion, we drop the “r” subscript and adopt the more 

conventional term for the relative permittivity, the dielectric constant, ε, where ω is the angular 

frequency and ɛ1 and ɛ2 are the real and imaginary parts. The corresponding complex refractive 

index, ñ, is defined1 

 ( ) ( ) ( )n n i   = +   (2.5) 
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where the real part and imaginary parts of ñ(ω) are denoted by n(ω) and κ(ω), respectively. The 

real part, n is defined in eq. (2.1). The imaginary part, κ describes the rate of attenuation of the 

wave in that medium. The response of the material is described by ε, while the wave propagation 

through the medium is described by ñ. We can write the relationship between both these complex 

quantities  

 
( )

2

2

1 2 

n

i n i



  

=

+ = +
 (2.6) 

and between their components 

 
( ) ( )

2 2

1 2

2 21 1
1 1 1 22 2

; 2 ;

; ; .

n n

n

   

       

= − =

= + = − = +
 (2.7) 

We need to make an important distinction between absorption, the loss of energy to the 

medium, which is described by ɛ2, and the attenuation of the wave, which is described by κ. The 

most common example, of wave attenuation with very little energy loss to the medium is wave 

propagation in the good metal (ε1< 0 and ε2 < −ε1). The wave is strongly attenuated upon entering 

the metal (large κ). The negative ε1 describes the response of the metal which generates an 

internal electric field opposing that of the incident wave. The result is conversion of the incident 

wave energy into the reflected wave energy, resulting in strong attenuation without absorption. 

In typical molecular systems, as in our studies (ε1 > 0 and ε2 < ε1), attenuation is caused by 

absorption, thus the distinction is not needed as it is in metals. 

 

2.1.1 Electromagnetic Wave Propagation and Absorption 

Electromagnetic phenomena (e.g. reflection, refraction, transmission, and absorption) are 

described by Maxwell’s equations.2 For an electromagnetic plane wave propagating in the 

positive z-direction through a homogeneous and optically isotropic medium, the strength of the 

oscillating electric field can be written as2 

 ( )0 exp ,E E ikz i t= −  (2.8) 

where k is the wave vector. When the wave is travelling through a medium of refractive index ñ, 

the relationship between the wave vector, k and the angular frequency, ω, is given by 
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0k n nk

c


= =  , (2.9) 

where, k0 is the vacuum wave vector. In media with a complex refractive index eq. (2.9) becomes 

 ( ) 0k n i k= +  . (2.10) 

The imaginary part of ñ introduces a real term into argument of the exponential 

 ( )( ) ( ) ( )0 0 0 0 0exp exp expE E i n i k z i t E k z ink z i t   = + − = − − . (2.11) 

The wave amplitude is attenuated exponentially with distance described by the factor, 

( )0exp k z− . We can connect this result to the Beer-Lambert law which describes how the 

intensity of a wave decreases with distance through an absorbing medium with a decay constant 

α. To compare the amplitude decay constant from eq. (2.11) we must square the amplitude to 

obtain intensity, thereby introducing the factor of 2 into the intensity decay constant. 

 ( ) ( )
2

02

0 0

exp exp 2
I E

z k z
I E

 − = = = −  (2.12) 

Here I is the intensity of the transmitted wave in the medium after propagating a distance z, I0 is 

the initial intensity of the wave. We can write the relationship between α and κ as 

 0

0

4
2k


  


= =  , (2.13) 

where, 
0 02 =k  and λ0 is the free-space wavelength of the light. 

 

2.1.2 Refractive Index Tensor in Anisotropic Medium 

In isotropic media the propagation characteristics of a plane wave are independent of the 

direction of the propagation and the displacement vector D and its associated electric field E are 

parallel to each other 

 
0 D = E  . (2.14) 

Here, ɛo is the permittivity of vacuum and ɛ is the dielectric constant (relative permittivity). In 

isotropic media the dielectric constant is a scalar. In anisotropic media D and E are not parallel in 
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general. The relationship depends on the direction of the electric field in the medium and is 

described by the dielectric tensor, εij. Eq. (2.14) becomes 

 0i ij jD E =  .  (2.14a) 

In matrix form, with respect to three arbitrary orthogonal axes 

 ˆ

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

=  
 
 

 , (2.15) 

Equation (2.14a) can be rewritten as 

 

0

0

0

( )

( )

( )

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

D E E E

D E E E

D E E E

   

   

   

= + +

= + +

= + +

 . (2.16) 

The dielectric tensor must be symmetric such that 

 ij ji =  . (2.17) 

It is a general property of symmetric matrices that they can be diagonalized by a suitable 

choice of the coordinate axes, referred to as the principal axes of the material. The principal 

components along each of the axes, x, y, and z, are referred to as 
x  , y  , and 

z  , respectively. 

The prime, ̂  denotes the tensor in diagonalized reference frame. 

 0

0 0

0 0

0 0

x x x

y y y

z z z

D E

D E

D E



 



    
    =    
        

 (2.18) 

The refractive index of an anisotropic medium is also a tensor. The relationship of ̂  and 

n̂  can only be established between the diagonalized tensors. This implies that ̂   and n̂  have 

the same principal axes. The principal components of the refractive index are then 
xn , yn  and 

.zn  The tensorial form of the refractive index becomes 

 

0 0

ˆ 0 0

0 0

x

y

z

n

n n

n

 
  =  
  

 . (2.19) 
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This relationship extends to the complex dielectric constant and the complex refractive index 

such that 

 
2

i in =  , (2.19a) 

which holds independently for each of the principal axes. Transforming between ̂  and n̂  can 

only be done with the diagonalized tensor. Therefore, starting from a tensor in an arbitrary non-

diagonal coordinate frame requires rotation into the principal coordinate frame for transforming 

between ̂   and n̂  followed by rotating the result back into the original coordinate frame. 

 

2.2 The Kramers-Kronig Relation 

The fundamental principal of physics which states that a material cannot respond before 

it is acted upon is known as the principal of causality. When causality is applied to linear optical 

spectroscopy, significant properties of symmetry and relationships are produced. These 

relationships are very useful in modeling and analyzing different optical properties. As a result of 

these symmetry properties, the real and imaginary part of complex refractive index i.e., n and κ 

are related by the Kramers-Kronig relationship. They can be described as Kramers-Kronig 

transformations pairs. In the following sections, a discussion of the Kramers-Kronig relationship 

and how it is employed to calculate the total complex refractive index tensor are presented. 

 

2.2.1 Calculation of Refractive Index from the Absorption Spectrum 

The K-K transformation relations are widely used in calculating the refractive index 

directly from the frequency dependent absorption in linear and non-linear optics. The 

transformation requires that the frequency dependence of κ be known over a frequency range as 

wide as possible. We can then use K-K relations to find n(ω) from κ(ω)3-5  

 ( )
( )

0 2 2

00

2 d
n

   


  

   
=

 −P  , (2.20) 

where ω´ is the integration variable. Here,  indicates the Cauchy principal value of the integral 

and the singularity has been avoided at ω´= ωo. Experimentally we cannot measure the 
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absorption spectrum from DC to infinite frequency, however we can make some useful 

approximations. We divide the frequency range into three separate regimes and rewrite the 

expression (2.20) as 

 ( )
( ) ( ) ( )

0 2 2 2 2 2 2

0 0 00

2 a b

a b

d d d
n

 

 

           


      

         
= + + 

   − − − 
  P  . (2.21) 

The range ωa and ωb is the region where we know κ(ω) and where we are explicitly 

interested in n(ω). The low frequency region, 0 to ωa, can be ignored because it contributes very 

little to n above ωa. The high frequency region, ωb to ∞, contributes a constant term to n below 

ωb.  

 

2.2.2 Dielectric Dispersion and Frequency Response Regions 

Dielectric constant ε(ω) is the fundamental property of a material which describes the 

ability to polarize a material subjected to a time-varying electric field. The real and imaginary 

parts describe how electromagnetic energy is stored in the material and how the energy is 

dissipated, respectively. Recall that the real and imaginary components of ε(ω) are related to the 

real and imaginary parts of complex refractive index ñ(ω), eq. (2.7). In this section we discuss 

the dielectric dispersion and use that as the basis to reduce the range of frequencies that need to 

be explicitly considered for the K-K relation.  

The processes which describe the polarization response of a material to an applied 

electric field are frequency dependent. The origin of the material response can arise from a 

variety of mechanisms, e.g. electronic, atomic, and dipolar. Each contributes to the dielectric 

constant, but each have a characteristic time scale or resonant frequency. At time scales much 

shorter than the characteristic time scale (far above the resonant frequency), that mechanism 

contributes very little to the dielectric response. Near the resonant frequency, that mechanism 

contributes strongly to the dielectric response, and particularly to the imaginary part. At longer 

time scales (lower frequencies) the mechanism contributes to dielectric response but is 

insensitive to the frequency. 

The three example mechanisms, electronic polarization has the shortest time scale, 

roughly the time it takes for an electron to move from one side of the electron cloud to the other, 

corresponding to the UV frequency region. In this mechanism the applied electric field causes 
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the negatively charged electron cloud to be displaced relative to the positively charged nucleus. 

Atomic polarization has an intermediate time scale corresponding to the MIR region of the 

spectrum. In this mechanism the applied electric field interacts with the changing in dipole 

moment of molecules as their atomic bonds vibrate and bend. Dipolar polarization has the 

longest time scale of the three examples, corresponding to time scales in the microwave region. 

In this mechanism the applied electric field causes dipolar molecules to rotate and orient with the 

field.  

We are interested in the molecular vibrations in the MIR region. We can ignore the low 

frequency region because that will contribute very little to n. The high frequency region will be 

important but does not contribute to the frequency dependence of n in the MIR, thus can be 

treated as a constant. Therefore, the intermediate frequency region in eq. (2.20), ∆n(ω): 

 ( ) 2 2

0

2 ( )b

a

d
n





   


  

  
 =

 −P  . (2.22) 

Similarly, the high frequency region is the high frequency refractive index, n∞  

 
( )

2 2

0

2

b

d
n



   

  





  
=

 −P . (2.23) 

We see that eq. (2.20) can be re-written as a frequency dependent component from the MIR 

contribution, and a high frequency (visible) constant term6-8  

 ( ) ( )n n n  =  +  . (2.24) 

In chapters 3 and 4, we describe a method to calculate n∞ and ∆n(ω), respectively.  
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Chapter 3  

Analytic Function Kramers-Kronig Transform Pairs 

 

The aim of the work in this chapter is to develop a set of analytic function pairs for 

calculation of the real refractive index from a parametrized absorption spectrum. We make use of 

the Kramers-Kronig (K-K) relationship to provide the needed connection. This work was 

inspired by the common practice of fitting the peaks in an absorption spectrum to a linear 

combination of Gaussian-Lorentzian peak shapes. Both functions have analytic representations 

in κ(ω) and the K-K conjugate Δn(ω). We show that linear combinations of these functions are 

also K-K conjugates. In this chapter, we present a brief overview of K-K relations, 

approximations to the direct integration, the analytic functions, and comparison of the analytic 

functions to the direct integration.  

 

3.1  General Overview of Kramers-Kronig Relation  

Optical spectroscopy has been a fundamental technique to investigate materials because it 

is nondestructive. Absorption spectroscopy is the most common method, in which the frequency 

dependence of the optical absorption is measured. It has widespread application in the science, 

industry, and medicine. The Beer-Lambert law describes the relation between optical absorption 

of the material and the attenuation of the transmitted light. Our interest is to study optical 

absorption in monolayer films on metals where absorption spectroscopy cannot be performed in 

transmission mode. These measurements can be performed in reflection mode which is a 

common geometry for MIR spectroscopy. This technique is variously known as reflection 

absorption infrared spectroscopy (RAIRS) or infrared reflection absorption spectroscopy 

(IRRAS). Interpreting the spectrum is more complicated than in the transmission geometry 

because reflection is dependent on both absorption and the real part of the refractive index. 

However, because the real and imaginary part of the refractive index are related by the K-K 

relation, the absorption can be recovered from the reflection absorption spectra. 

Causality is an essential principal in physics. It states that a system cannot react before 

the occurrence of a stimulus. Various definitions of causality are presented by Nussenzveig.1 The 
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central concept of relativistic causality states that no wave can propagate faster than the speed of 

light in vacuum. In optical physics, the refractive index has an analytical continuity in the upper 

half of the complex frequency plane. Using this concept, Kramers proved that the real part of the 

complex refractive index of a medium can be calculated from the spectrum of absorption and this 

satisfies the principal of the relativistic causality.2 Kronig established that it is a necessary and 

sufficient condition for a dispersion relation to exist to satisfy a strict causality.3 Now using the 

established methods by Kramers and Kronig, the fundamental relation between the real and 

imaginary part of the frequency dependent complex linear function can be described which is 

referred to as the K-K transformation relations.2, 3 Hence, if a system satisfies the conditions of  

causality, it will obey K-K relations. The advantage of the causality is that the general properties 

can be applied in such a way that it can extract maximum amount of information about the 

optical properties from experimentally observed spectra. A rigorous discussion establishing the 

relation between the real and imaginary part of the refractive index with the aid of K-K 

transformation is developed in the following section. 

 

3.2  The Kramers-Kronig Integral 

In this section, a detailed analysis of the construction of the refractive index from the 

absorption coefficient through K-K transformation relations is presented. The real and imaginary 

part of the refractive index function, n and κ respectively, are related through the K-K integral 

transformation: 

 ( )
( )1

n d
 

 
  



−


=

 −P  (3.1) 

 ( )
( )1 n

d


  
  



−


= −

 −P  . (3.2) 

Here,  indicates the Cauchy principal value of the integral which is significant because these 

integrals contain a singularity. All causal impulse response functions can be decomposed into the 

sum of an odd and even function, which are interdependent. The real part of the response 

function, n is an even function of frequency and κ is an odd function of frequency.4-6 

The advantage of representing the K-K relations as in eq. (3.1) and (3.2) is that one can 

see immediately that the real part of the complex refractive index can be obtained from the 
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imaginary part and vice versa. Apart from that advantage, it can be tricky to do the numerical 

integration. In most causal physical systems, the response for the positive frequencies is related 

to the response at negative frequencies. Therefore, the K-K integral can be written in another 

form where the integral requires the positive frequencies only. The integral for κ can be split into 

two parts as 

 ( )
( ) ( )0

0

1
n d d

   
  

    



−

  
 = + 

 − − 
 P  . (3.3) 

In the first term of eq.(3.3), a change of variables can be made i.e.,  = −  and by utilizing the 

fact that κ is an odd function, it can be written as ( ) ( )   − = −  which ultimately becomes 

 
( ) ( )0

0

d d
   

 
   



−

 
 =

 − +   . (3.4) 

Applying these changes and the properties of the odd function, the integrations can be collapsed 

into the range of [0, +] and the integral from eq. (3.3) becomes 

 ( ) ( )
0

1 1 1
n d   

    

  
 = +   + −  

P . (3.5) 

Finally, rewriting all the factors and combining them together, the K-K integral becomes 

 ( )
( )

2 2

0

2
n d

  
 

  
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=

 −P  . (3.6) 

Analogously, the absorption coefficient can be obtained using the K-K transformations as 

 ( )
( )

2 2

0

2 n
d

 
  

  

  
= −

 −P  . (3.7) 

As discussed in chapter 2, experimental measurements of the absorption spectrum 

typically are only available over a finite bandwidth. Thus, for the practical purposes, eq. (3.6) 

can be broken into frequency regions, (see eq. (2.24)). The frequency region of interest where the 

frequency dependence is needed is the only region that required integration providing ∆n(ω). 

The frequency region above this contributes a constant term, the high frequency refractive index 

n∞. The region below does not contribute and can be ignored. The method to analyze this high 

frequency refractive index will be described in the next chapter. 
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3.3  Numerical Kramers-Kronig Integration Approximation 

In order to test the analytic functions, we will need to perform the integration in order to 

verify the validity of the transform pairs. The numerical problem is essentially a convolution 

where the integral must be evaluated fully for each point where Δni is needed. The singularity 

must be avoided in the numerical integration, which creates a gap in the sum. Although that can 

be compensated by increasing the density of points for the sum (smaller Δω), this becomes 

computationally expensive when the wavelength range is also large. The gap from the avoided 

singularity is compensated by the two terms on the right of eq. (3.6).7 

 
( ) ( ) ( )

( )2 2 2 2

d2 2 1 1 d

2 d

b j jj j j j i

i i
a

j ij i j i i

n P
       

    
         

 = =  +  + 
− −

   (3.8) 

Here Δω is the frequency interval in the numerical sum. Note that the effect of the right 

two terms become smaller as Δω is decreased. These two terms make the calculation converge 

much faster. 

 

3.4  Absorption Line Shape Models 

In the infrared region molecules interact with light through their vibrations, the stretching 

and bending of the atomic bonds. More generally, these are the normal modes of the molecular 

vibrations. Each mode has a signature absorption frequency depending on the atoms involved 

and the local environment. Thus, the infrared absorption spectrum contains structural 

information about molecules. The frequency width of the absorption of each mode is determined 

by two factors. First, the minimum line width is determined by uncertainty broadening, the 

lifetime of the state, and imparts a Lorentzian line shape. Second, the experiment samples the 

absorption of a large number of molecules, each in a slightly different environment and therefore 

exhibiting a slightly different absorption frequency. The random distribution of absorption 

frequencies about the mean lead to a Gaussian peak shape. The resulting shape is the convolution 

of a Lorentzian with a Gaussian (Voigt function). For simplicity, experimental line shapes can be 

approximated by a linear combination of a Lorentzian and a Gaussian. We would like to use 

convenient parameters for the spectral line shape model viz. the center frequency, peak height, 
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peak area, and peak width. These lines shapes are analytic functions which have K-K transform 

conjugates which are also analytic functions. 

The absorption is related to the width as well as the intrinsic properties of a molecule. If 

all molecules experience the same broadening mechanism and become indistinguishable then the 

observed spectrum of an ensemble consisting a collection of organized molecules is referred to 

have a homogeneous broadening. This broadening is described by the Lorentzian line shape and 

their line centers are also same. When the molecules are placed in an environment with random 

perturbations, in our case, the molecules in the sample are each in a slightly different 

environment, then the natural linewidth gets smeared out, causing inhomogeneous broadening. In 

inhomogeneous broadening, the oscillators have random distribution of center frequencies and 

are described by the Gaussian line shape. Hence, to model the absorption line shape of our 

experiment, we would like to convolute these two types of broadening and define a line shape 

which is the linear combination of a Lorentzian and a Gaussian. 

The Lorentzian distribution can be written analytically7  
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 . (3.9) 

Here, ωo is the center frequency, γ is peak width, the full width half maxima (FWHM), 

and A is peak height. The K-K transformation of eq. (3.9) can be written in analytical form 
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 . (3.10) 

The second terms in eqs. (3.9) and (3.10), are the negative frequency parts required to 

satisfy the following odd and even function symmetry, respectively, required by causality: 

 ( ) ( )   = − −  (3.11) 

 ( ) ( )n n = −  (3.12) 

The functions for κL and ∆nL are show in Figure 3.1.  

The Gaussian broadened absorption profile,8 
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And, the analytic form of the refractive index is given as 
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These analytic expressions in eq. (3.14) are not proper K-K transformation pairs because 

they do not follow the symmetry requirements of causal function pairs.8 However, they can be 

fixed by adding a second term to each equation to correct the symmetry. For convenience, from 

now on we are going to write the absorption coefficient, κ as k. The new analytic form of the 

Gaussian absorption coefficient becomes: 

 ( )
( ) ( )

2 2

0 0

1 1
2 2

log 2 log 2
exp expGk A

   


 

 − +   
 = − − −   
     

 . (3.15) 

A second issue with eq. (3.14) as presented is that while the product of the Gaussian and 

the imaginary error function is well behaved, the latter can return very large numbers away from 

the center of the peak and cause numerical headaches (overflow). The numerical problems can 

be avoided, by rewriting the imaginary error function in terms of the Dawson function.  
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erfi( ) Daw( )xx e x


=  (3.16) 

The leading exponential term now nicely cancels the Gaussian term yielding a simpler 

expression. We write the modified analytic form of ∆nG for a Gaussian absorption line shape, 

which is an odd function of frequency as required by causality 

 ( ) 0 0

1 1
2 2

2
Daw log 2 Daw log 2Gn A

   


 

       − +     
 = − −        

             

 . (3.17) 

The functions for κG and ∆nG are shown in Figure 3.1.  
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3.5  Decomposition of the Absorption Spectrum 

In most condensed phase materials, infrared spectra are composed of bands whose shape 

can be described using Lorentzian functions, Gaussian functions, or a combination of these. 

Observing a pure Lorentzian or Gaussian shape is relatively rare. A more accurate representation 

of the absorption peak shape would be in terms of the Voigt function which is a convolution of 

Lorentzian with the Gaussian shape. But in practical arrangement, the Voigt function is 

computationally expensive. A simple linear combination of Lorentzian and Gaussian line shapes 

Figure 3.1: The analytic function Kramers-Kronig conjugate pairs for the Gaussian (κG and ∆nG) 

and Lorentzian (κL and ∆nL) line shapes. The parameters are: ω0 = 2800 cm−1; γ = 150 cm−1; A = 1. 

Note that κ and ∆n are odd function and even functions of frequency, respectively, as required by 

causality. 
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has been found very satisfactory. In this section, we discuss the decomposition of the absorption 

spectrum into Lorentzian and Gaussian line shapes. 

The goal of our study is to construct a linear combination of the Lorentzian and Gaussian 

functions which will best fit the IR absorption spectrum with variable parameters. In order to 

eliminate the need for numerical integration of K-K transformations, the analytic form of the 

absorption coefficient can be stated by combining the expressions from eqs. (3.9) and (3.15) 

 ( ) ( )1L Gk A Lk L k = + −    , (3.18) 

where, L defines the fraction of Lorentzian line shape which contributes to the ultimate line 

shape profile. For example, when L = 0, the line shape is pure Gaussian and when L = 1, the line 

shape will be purely Lorentzian. Similarly, we obtain the analytic form of ∆n using eqs. (3.10) 

and (3.17) which is the conjugate K-K transformation pair of eq. (3.18) 

 ( ) ( )1L Gn A L n L n = −  + −     . (3.19) 

In the following section, we show that these linear combinations are also a K-K conjugate 

pairs. 

 

3.6  Verification of the Analytic Function Pairs  

In this section we compare the analytic function pairs with the numerical evaluation of 

the K-K integral to verify that the linear combination of the Lorentzian and Gaussian line shapes 

also satisfies the K-K relation. In order to test our hypothesis, we compare ∆n for a 60/40 

Gaussian-Lorentzian line shape starting from the analytic for κ(ω), eq. (3.18). The conjugate 

analytic  
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Figure 3.2: A comparison between ∆n obtained from the analytic function and by 

numerical integration of κ for a 60/40 Gaussian-Lorentzian line shape. The parameters are: 

ω0 = 2800 cm−1; γ = 150 cm−1; A = 1; L = 0.4. A) Comparison of κ with ∆n
a
 (analytic) and 

∆ni (numerical integration, parameters as in B) showing that they are indistinguishable on 

this scale. B-D) The error ∆n
a
−∆ni for different numerical integration parameters, range, 

and interval. B) Comparison between ∆n
e1

 = error for the range from 2000 to 3500 cm−1 

and ∆n
e2

 = error for the range 0 to 20000 cm−1 for ∆ω = 1 cm−1.C) Comparison between 

∆n
e2

  and ∆n
e3

 = error for the range from 0 to 106 for ∆ω = 1 cm−1. D) Comparison between 

∆n
e3

 and ∆n
e4

 = error for the range from 0 to 106 cm−1 for ∆ω = 0.01 cm−1 
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function for ∆na(ω), eq. (3.19), is compared to the result of the numerical integration of the K-K 

transform, ∆ni.  

We compare the results from 2000 to 3500 cm−1 in Figure 3.2A. For this test, the center 

frequency is 2800 cm−1, the FWHM is 150 cm−1, and the peak height is 1. Figure 3.2B the error 

for the range 2000 to 3500 cm−1 is on the order of 10−3 in ∆n near the center but becomes 

dramatically larger at the ends of the range. This is an artifact due to truncation of the K-K 

integral.9-11 We verify this by extending the integration over a larger range, 0 to 20000 cm−1 

where the ends of the range smoothens out. In Figure 3.2C the increased range reduces the 

truncation artifacts to the order of 10−12 in ∆n (not shown). If we also reduce the frequency 

interval to ∆ω = 0.01 cm−1 the error reduces to the double-precision floating point error of the 

calculation, in Figure 3.2.D. If the analytic functions were not K-K conjugate pairs, we would 

expect the error to converge to a non-zero value as the accuracy of the numerical integral is 

increased. Thus, the error we observe are simply an artifact of the numerical integration and not 

due to the analytic functions. We have repeated this test for L = 0 to 1, and verify the linear 

combinations are also KK-conjugate pairs.  

In Figure 3.3, we compare the shapes of n(ω) and κ(ω) for five different linear 

combinations of Gaussian and Lorentzian absorption profiles.  
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In this study, we have established the analytic representation of linear combination of 

n(ω) and κ(ω) and compared it with the direct integration of K-K transformation relations. The 

analytic function pairs and the numerical integration of the K-K transform are in good 

agreement. We conclude the linear combinations are also K-K conjugate pairs. The analytic 

functions eliminate the computational expense and numerical artifacts of the numerical 

integration. 
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Chapter 4  

High-Frequency Refractive Index Tensor 

In this chapter we develop a general method to construct the high-frequency refractive 

index tensor from the structure and conformation of the component molecules. The polarizability 

tensor for the unit cell is constructed from the bond polarizability tensors of the component 

molecules. We describe how the Lorentz-Lorenz equation is applied to anisotropic materials to 

calculate the refractive index tensor from the unit cell polarizability tensor. This method is vetted 

by calculating the refractive index tensor for n-hexatriacontane crystal and comparing our results 

to the experimentally measured refractive index tensor. 

 

4.1  High-Frequency Refractive Index 

The refractive index in the high-frequency region, n∞, is sufficiently far from the 

absorption that it can be assumed to be real and a weak function of frequency. We can use the 

refractive index in the visible spectrum for n∞ because we are interested in the frequency 

dependence of the refractive index in the mid infrared. The refractive index is tabulated for the 

widest range of substances for the sodium D line (589 nm). This is a reasonable approximation 

provided there are no strong absorptions in the intervening region. However, to construct a full 

anisotropic model requires the high frequency refractive index tensor, 𝑛̂∞ which is available from 

the literature for a comparatively small subset of materials. In addition, the tensor is dependent 

not only on the substance, but also on the molecular arrangement within the crystal and, in our 

application, the molecular arrangement within the SAM. In the remainder of this chapter we will 

simply refer to 𝑛̂∞ as 𝑛̂. 

 

4.2  Formulation of Unit-Cell Polarizability 

Electromagnetic waves, with an electric field E, oscillating with frequency ω, 

propagating through a material medium induce a polarization P that is proportional to the electric 

field. 
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 =P E   (4.1) 

The proportionality constant α is defined as the polarizability of the material. In isotropic 

materials α is a scalar. However, many materials are optically anisotropic and therefore exhibit 

polarizabilities dependent on direction of E. For this anisotropic case, the polarizability is a 

second rank tensor, 𝛼̂.  

 ˆ

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

=  
 
 

  (4.2) 

It is a general property of the polarizability tensor that it is a symmetric matrix and 

therefore can always be diagonalized by rotation into an appropriate coordinate frame. The 

orthogonal coordinate axes which diagonalize 𝛼̂ are termed the principal axes. The diagonal 

elements are termed the principal values. This is important because the relationships between 

polarizability, refractive index, and dielectric constant are only defined between the principal 

values. In our discussion we will use 𝛼̂′ to indicate the tensor in the principal coordinate frame. 

The principal values, 𝛼𝑥𝑥
′ , 𝛼𝑦𝑦

′ , and 𝛼𝑧𝑧
′  can be simply written αx, αy and αz.  
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 
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   

      

 (4.3) 

The polarizability tensor can be visualized geometrically as an ellipsoid with three 

orthogonal semi-axes αx, αy and αz.
1 The equation for the ellipsoid is 

 
2 2 2

2 2 2
1

x y z

x y z

  
+ + =  . (4.4) 

We will make use of the additivity of polarizabilities:  the polarizability of a material is 

the sum of the polarizabilities of its constituents. This property has been used to predict the 

polarizability of materials from the known polarizabilities of other materials. The polarizabilities 

of the constituents are deduced empirically. (In some older literature the term refractivity is used 

for polarizability.) The constituents can be defined as atoms, ions, etc. For organic molecules, 

the constituents can be chemical functional groups, CH2, CH3, etc., or chemical bonds, C-H, C-

C, etc. The constituents also can be treated as isotropic or anisotropic entities. Obviously, the 

anisotropic case requires knowledge of the orientation of the constituents. In this work, we adopt 

the bond polarizability approach developed by Denbigh2 where the chemical bonds are the 
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constituents, which is well suited for our anisotropic treatment. The polarizability of the unit cell 

is the sum of the polarizabilities of each bond for all the molecules within it. 

 ˆ ˆ
i

i

 =  (4.5) 

The summation extends over all i bonds. The bond polarizabilities are assumed to have 

cylindrical symmetry with a longitudinal component (α∥) along the bond axis and transverse 

components (α⊥) perpendicular to the bond axis. These are the principal values of the bond 

polarizability tensor. In our work, we define the polarizability tensor for each bond initially 

oriented along the z axis. 
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 
 
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 (4.6) 

To construct the unit cell polarizability, each bond polarizability needs to be oriented in 

the direction of the respective bond using a rotation matrix. We can easily compute the rotation 

matrix if we have two given unit vectors A and B. When A rotates towards B, the rotation would 

be a 2D rotation on a plane with the normal A×B. We need to first define a unit vector A in the 

positive z-axis corresponding to the initial polarizability tensor 

 

0

0

1

 
 

=
 
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A   (4.7) 

Then rotate 𝛼̂  to align with B which would be the direction of each bond in our case. The 

bond vectors for each bond in the molecule are determined from experiment (or simulation). To 

determine the required rotation matrix, we need to apply a 2D rotation on A, then change the 

basis of the matrix and shift it to the new orthogonal basis. Hence, the rotation from A to B in the 

original base can be expressed as 

 1R F GF−= . (4.8) 

The matrix which represents the rotation is expressed is 

 

. 0

. 0

0 0 1

A B A B

G A B A B

 −  
 

=  
 
 

 (4.9) 

and the basis change matrix is represented by F 
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B A B A

−

 −
=  
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. (4.10) 

We employ this rotation matrix R onto each bond polarizability and compute the orientation 

within the unit cell.  

 1ˆ ˆR R  −=  (4.11) 

These rotated tensors are summed to yield the unit cell polarizability in eq. (4.5). The 

sum must also be symmetric because it is the sum of symmetric tensors. Note that the principal 

axes of the unit cell polarizability are not in general aligned with the unit cell axes. Further, 

polarizability is an extensive quantity, thus depends on the definition of the unit cell (or 

molecule).2-5 

 

4.3  Construction of the Refractive Index Tensor 

The macroscopic intensive property, refractive index n, is related to the microscopic 

extensive property, molecular polarizability α, by the Lorentz-Lorenz equation.1, 6-8 

 
2

2

1 4

2 3

n
N

n
 

−
=

+
, (4.12) 

where N is the number of molecules per unit volume. The quantity Nα can be understood as a 

polarizability density. For example, the unit cell polarizability divided by the unit cell volume, as 

we will apply it. Vuks9 has shown how this relationship can be extended to anisotropic materials 

with the proper understanding of how the quantities map from the isotropic to the anisotropic 

case. First the n in the denominator becomes the average refractive index, 𝑛 ̅. Second the 

relationship applies to the principal values of 𝛼̂ and 𝑛̂. 

In the first step we relate 𝛼̅ to 𝑛 ̅, the arithmetic averages of the principal values of the 

respective tensors. This is a straightforward application of eq. (4.12) because the average values 

are scalars. 
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 (4.13) 

The second step relates the principal values, αi and ni, using a slightly modified form of Lorentz-

Lorenz expression. 
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In summary, to relate the polarizability and refractive index tensors. The polarizability 

tensor is first rotated into the coordinate frame that diagonalizes it. The refractive index tensor is 

calculated. The refractive index tensor is then rotated back into the unit cell coordinate frame. 

These rotations are the inverse of each other, that is, we rotate the tensor, perform the 

calculation, then rotate the tensor back. 

 
1 1ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
R R R n R n

n n
 

 
− − = =

 ⎯⎯⎯⎯⎯→  ⎯⎯⎯⎯⎯→  (4.15) 

 

4.4  Refractive Index Tensor for a n-Hexatriacontane Crystal 

 In this section we test the validity of our method for calculating the refractive index 

tensor of an anisotropic material, the orthorhombic crystalline phase of n-hexatriacontane 

(C36H74). First, we calculate the polarizability tensor for each bond in the unit-cell reference 

frame and sum them to construct the unit-cell polarizability tensor, 𝛼̂. After transforming into the 

principal coordinate frame, 𝑛̂′ is calculated from 𝛼̂′. Reversing the rotation returns the refractive 

index tensor to the unit-cell coordinate frame of the unit cell to obtain 𝑛̂. Finally, 𝑛̂ is compared 

with the experimental values in the literature.  

 

Table 4.1: The unit cell dimension of C36H74 

a b c 

7.42 Å 4.96 Å 95.14 Å 

 

The crystal structure of n-hexatriacontane is orthorhombic with unit-cell dimensions is 

listed in Table 4.1.10 The alkyl chains are in the all-trans conformation, with the molecular chain 

axes parallel to the c axis. The plane of the molecular chain makes an angle of 43˚ with the b 

axis. For convenience, crystal c axis is chosen to be along the z axis and the a-b plane is assumed 

to be oriented with respect to the x-y plane in the Cartesian coordinate system. The molecules are 

arranged in two layers so that the c axis is the length of two molecules. Within each layer the C–

C–C planes of the two molecules are nearly orthogonal (82°). The atomic coordinates of the 

carbon atom along with its attached hydrogen atoms of the methylene according to the fractional 
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coordinate system, except for the coordinates of the third hydrogen atoms of the terminal methyl 

which are at n = 0 and n = 18 are listed in Table 4.2(a) and 4.2(b) and similarly the coordinates 

for the 2nd molecular chain is listed in Table 4.2(c) and 4.2(d). The geometry of the C–H bonds 

in the methyl group are estimated as follows. First, we take the existing first and last C–C bonds 

of the molecular chain. For the coordinates of methyl attached to 1st carbon atom, C1, we extend 

the C2–C1 bond vector in the opposite direction of the bond till the bond length of C–H bond is 

achieved. Since we already have the coordinates for the other two C–H bonds of the methyl from 

the literature10, to obtain the final coordinates of methyl, each of these two C–H bonds were then 

twisted 120˚with respect to the plane consisting the alkyl chain and similarly the coordinates of 

the methyl attached to 36th carbon atom is also calculated (see Table 4.2(i)). The coordinates of 

the carbon atoms associated with the attached hydrogen atoms in the terminal methyl are listed in 

Table 4.2(e-h). We then construct the unit cell polarizability tensor. De Jong11 gives the 

transverse and longitudinal polarizabilities of the C–C and C-H bonds. The polarizability tensor 

for each C–C and C–H bonds are constructed from these bond polarizabilities using eq. (4.6).11, 

12 The unit cell polarizability tensor is built up by summing the polarizability tensors for each C–

C and C–H bond after rotated the initial tensor, eq. (4.12) to orient in the direction for the 

respective bonds. To demonstrate how the polarizability tensors are rotated along the bond 

directions, examples of sample C–C and C–H bond directions are shown in Figure 4.1. 

 

Table 4.2: The fractional atomic coordinates of C36H74.
10 

 

(a) For the (2n+1)th carbon atoms and its associated hydrogen atoms 

 

 
Atoms x (Å) y (Å) z (Å) 

C 0.014a 0.186b (0.01638 + 0.02672n)c 

H1 0.872a 0.206b (0.01638 + 0.02672n)c 

H2 0.045a 0.976b (0.01638 + 0.02672n)c 
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(b) For the 2nth carbon atoms and its associated hydrogen atoms 

 

 

 

 

 

 

(c) For the (2n+1)th carbon atoms and its associated hydrogen atoms for the 2nd 

molecular chain 

 

(d) For the 2nth carbon atoms and its associated hydrogen atoms for the 2nd molecular 

chain 

 

 

(e) For the methyl attached to 1st carbon atom where n = 0, the coordinates of its 

associated hydrogen atoms 

Atoms x (Å) y (Å) z (Å) 

H1 0.28370 1.11980 -0.5908 

H2 1.7340 1.44890 0.23330 

H3 0.47750 2.59430 0.23330 

 

Atoms x (Å) y (Å) z (Å) 

C 0.092a 0.314b {0.02973 + 0.02672(n-1)}c 

H1 0.061a 0.524b {0.02973 + 0.02672(n-1)}c 

H2 0.234a 0.294b {0.02973 + 0.02672(n-1)}c 

Atoms x (Å) y (Å) z (Å) 

C 0.986a 0.186b (0.01638 + 0.02672n)c 

H1 1.128a 0.206b (0.01638 + 0.02672n)c 

H2 0.955a 0.024b (0.01638 + 0.02672n)c 

Atoms x (Å) y (Å) z (Å) 

C 0.0908a 0.314b {0.02973 + 0.02672(n-1)}c 

H1 0.939a 0.524b {0.02973 + 0.02672(n-1)}c 

H2 0.766a 0.294b {0.02973 + 0.02672(n-1)}c 
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(f) For the methyl attached to 36th carbon atom where n = 18, the coordinates of its 

associated hydrogen atoms 

Atoms x (Å) y (Å) z (Å) 

H1 -0.9476 1.02630 44.83570 

H2 0.3048 -0.11470 44.8360 

H3 0.4974 1.3547 45.6571 

 

(g) For the methyl attached to 1st carbon atom where n = 0, the coordinates of its 

associated hydrogen atoms for the 2nd molecular chain 

Atoms x (Å) y (Å) z (Å) 

H1 -0.2830 + a 1.11980 -0.5908 

H2 -1.7340 + a 1.44890 0.23330 

H3 -0.47750 + a 2.59430 0.23330 

 

 

(h) For the methyl attached to 36th carbon atom where n = 18, the coordinates of its 

associated hydrogen atoms for the 2nd molecular chain 

Atoms x (Å) y (Å) z (Å) 

H1 0.9476 + a 1.02630 44.83570 

H2 0.3048 + a -0.11470 44.8360 

H3 -0.4974 + a 1.3547 45.6571 

 

 

(i) Bond lengths (Å) and bond angles.10 

Bond lengths (Å) Bond angles 

C–C 1.533 C–C–C 119˚ 

C–H 1.07 H–C–H 107˚ 
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Table 4.3: Bond polarizabilities (Å3).11, 12 

 

 

 

 

In Figure. 4.1, initially at first the C–C bond (magenta line) is oriented along z-axis and 

bond orientation of C–C bond with respect to the unit cell frame is in the z-plane (green line). 

The bond along z -axis is rotated towards the oriented bond direction with respect to the 

laboratory coordinate system. Through this process, we obtain the rotation matrix which we 

apply on the polarizability tensor along the z axis which is the black ellipse. Then rotate it 

towards the oriented C–C bond and obtain the rotated polarizability tensor. The orange ellipse 

represents the tensor after it is rotated to align with the C–C bond axis (red/green line). The 

rotation axis is perpendicular to the plane containing the z axis and the C–C bond (green line). 

Similarly, in this way the rotated polarizability tensors for each C–H bonds can be achieved 

(Figure 4.2). The polarizability of the unit cell is the sum of these two component 

Bond α∥ α⊥ 𝛼̅ 

C–C 0.97 0.25 0.497 

C–H 0.78 0.60 0.673 

Figure 4.1. Comparison between the initial (black ellipse) and the rotated (orange ellipse) C-

C bond polarizability tensor. 
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polarizabilities. After obtaining the sum of rotated polarizability tensors for each bond, the unit 

cell polarizability tensor, 𝛼̂ for n-hexatriacontane is determined (Figure 4.4). Afterwards, the 

principal values of the diagonalized unit cell polarizability tensor is obtained (Table 4.4). 

 

 

Figure 4.2. Comparison between the initial (black ellipse) and the rotated (orange ellipse) C-

C bond polarizability tensor. 
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Figure 4.3. The polarizability tensor contributions for the C–C bonds (black ellipse) and C–

H bonds (orange ellipse) for orthorhombic n-hexatriacontane in the unit-cell reference frame.  

Figure 4.4. The unit cell polarizability tensor, 𝛼̂ for orthorhombic n-hexatriacontane in the 

unit-cell reference frame. 
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Table 4.4: The principal values of unit cell polarizability tensor (Å3)  

αx αy αz 𝛼̅ 

254 255 282 264 

 

According to eq. (4.13), to calculate the arithmetic average of the principal values, 𝑛 ̅ of 

the refractive index tensor, we need to take the average of the principal values, 𝛼̅ of the 

respective polarizability tensor which is, 

 
3

x y z  


+ +
=  (4.16) 

Applying the calculated 𝛼̅ in eq. (4.13), we find 𝑛 ̅and the principal values of refractive 

index tensor. Table 4.5 compares the results to the experimental values.4 

 

Table 4.5: The principal values of refractive index tensor for n-Hexatriacontane (C36H74). 

 

 

 

 

 

 

Here, nα, nβ and nγ are the principal indices of the crystal. By convention, these are 

assigned in ascending order of refractive index. Next, the modeled refractive index tensor, 𝑛̂ is 

rotated back to the unit cell frame. The shape of the n-hexatriacontane crystal studied in the 

literature is a rhomboidal plate.10 The longer diagonal of the rhombus shaped crystal plate is 

along unit cell a axis, the shorter diagonal of the plate is along unit cell b axis, and the normal to 

the plate is the unit cell c axis. The principal indices of the crystalline refractive index are 

oriented along the crystal axis. The direction of nα is along the unit cell a axis, nβ is parallel to 

the b axis and nγ is normal to the plate, c axis.  

 

Principal value Calculated Experimental.4 

nα 1.5279 1.514 

nβ 1.5296 1.519 

nγ 1.5758 1.575 
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Table 4.5 shows that the values that we obtained for nα, nβ, and nγ are reasonably in good 

agreement with the experimental values observed from the literature.4 The error is within 0.9% 

for nα, 0.7% for nβ, and 0.05% for nγ. In the study by Bunn et. al, the bond polarizabilities were 

obtained from fitting the data to a large number of systems. Hence, they approximated the values 

of nα, nβ, and nγ.
4, 11-13  Since there is always scope for improvement in these kind of 

approximations and our method approximates the value whose error is within less than 1%, 

hence, our method to calculate the high frequency refractive index tensor, 𝑛̂∞ is in reasonably 

good agreement with the experiment. 
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Chapter 5  

4×4 Transfer Matrix Method 

 

In order to study the optical properties of the anisotropic medium, the 4×4 matrix 

formalism is a powerful tool to describe light wave propagation through stratified anisotropic 

media. In this chapter, a general description of the 4×4 transfer matrix is presented. This 4×4 

matrix formalism is particularly well-suited for calculating the reflectance of anisotropic films on 

gold needed for our project. The algorithm of this matrix formulation has been implemented 

directly in a computer program. It starts with a 6×6 matrix representation of Maxwell’s equations 

which includes optical rotations (Faraday rotation, circular birefringence, and more) and later 

reduces to a 4×4 representation. A description of the relevant electromagnetic theory (EM) and 

formulation of the 4×4 transfer matrix technique is first summarized. We then vet the published 

4×4 code published by Passler and Paarmann by comparing it to Fresnel’s equations for a three-

layer isotropic system. 

 

5.1  Background of 4×4 Transfer Matrix Method 

Treatment of the electromagnetic wave propagation through a layered stack (stratified 

media) depends on the symmetry. Transfer matrix methods are used to model the propagation of 

EM waves in stratified media. In these methods, the properties of each layer are described by an 

interfacial matrix and a propagation matrix. The transmission and reflection of the stack are 

found by multiplying the matrices for all the layers in the stack. In this way the transfer matrix 

method can be easily extended to any number of layers. The most general methods formulated 

the problem in terms of 4×4 matrices. Two modes propagating into the stack (the transmitted 

waves) and two modes propagating out of the stack (the reflected waves).  

We can divide optical materials broadly into isotropic and anisotropic, and the latter into 

sub-types of uniaxial and biaxial. In isotropic materials the three principal components of the 

refractive index are equal, thus can be treated as a scalar. For anisotropic materials, the refractive 

index is a tensor. If two of the principal components are equal, the material is termed uniaxial. If 

all three are unique, the material is termed biaxial. The optics of anisotropic materials are more 
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complex because for any given direction of propagation direction in the crystal there exist two 

orthogonal polarizations each with its own phase velocity. The orientation of these planes of 

polarization is determined by the symmetry and orientation of the crystal. In uniaxial crystals 

these two modes are termed the ordinary ray (o-ray), with its electric field perpendicular to the 

optic axis, and the extraordinary ray (e-ray), with its plane of polarization containing the 

direction of propagation and the optic axis. The o-ray obeys Snell’s law, with its wave vector and 

ray vector in parallel. The e-ray does not obey Snell’s law, thus the wave vector and the ray 

vectors are not parallel. The odd behavior of the e-ray is a manifestation of the fact that E and D 

are not in general parallel in anisotropic materials. In biaxial crystals both rays are in general e-

rays. 

When only isotropic media are involved, the plane of reflection provides a reference 

frame that divides the problem into two orthogonal linearly polarized modes, viz. transverse 

electric (TE) and transverse magnetic (TM). The phase velocity of the TE and TM modes are the 

same in isotropic media, as determined by the refractive index. This problem contains TE and 

TM waves propagating into the stack (the transmitted waves) and TE and TM waves propagating 

out of the stack (reflected waves). For ideal materials and interfaces, there is no mode mixing 

between the TE and TM modes. Therefore, the problem can be separated into two independent 

problems, one for the TE transmitted and reflected waves and another for TM. This simplifies 

the 4×4 transfer matrix problem into two uncoupled 2×2 transfer matrix problems. 

If one or more of the media in the stack are anisotropic, the problem can no longer be 

separated and the handy distinction of TE and TM polarization is no longer valid. The 

anisotropic media now impose their own additional symmetry to the problem. This is because for 

any given direction of propagation direction in the crystal there exist two orthogonal 

polarizations each with the own phase velocity. The orientation of these planes of polarization is 

determined by the symmetry and orientation of the crystal. The boundary conditions at the 

interfaces retain the basic TE and TM symmetry. The result is that the mode mixing can be 

significant and the full 4×4 transfer matrix is required. 

Jones1 and Abelès2, 3 developed 2×2 matrix methods for stratified isotropic material. 

Extension to stratified anisotropic media, where the symmetry of the medium is low, requires a 

4×4 matrix technique was first introduced by Teitler and Henvis4 where all the field variables, 

(e.g., two electric and two magnetic fields) throughout the computation were employed to solve 
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the problem. In recent years, the phenomena of the generalized theory of propagated 

electromagnetic wave for stratified anisotropic media has been studied by several workers.5-8 The 

4×4 transfer matrix formalism developed by Berreman9 and Yeh6-8 have been founded to be the 

most complete among all these studies. Yeh’s formalism was adopted by Parikh and Allara10 so 

it was the approach we first tried to employ. Unfortunately it suffers from singularities due to 

optical degeneracies.11 Berreman’s method has been found to be more tractable.11 

Mathematically, solving for the modes in each layer is a separate quartic eigenvalue problem. 

The challenge is to consistently assign the eigen modes of each layer to its 4×4 matrix. (The 

failure to do this properly, is termed “discontinuities” in the literature.12) Since we began this 

work, Passler and Paarmann published a 4×4 matrix formalism and its Matlab implementation 

using Berreman’s method.9, 12 Their algorithm eliminates any numerical instabilities and 

discontinuities and can accommodate any number of arbitrarily isotropic or anisotropic layers. In 

the following section, we summarize the method. 

 

5.2  Implementation of 4×4 Transfer Matrix Method 

A multilayered thin film structure consisting of N semi-infinite planar slabs where each 

layer has a definite thickness, di, is modelled here. The light propagating through the stratified 

layered media is an infinite homogeneous, monochromatic plane wave with a frequency, ω. The 

magnetic permeability, μ is considered as a scalar. The coordinate system is oriented with the z-

axis perpendicular to the slab. The incident beam, originating in layer 0, propagates toward the 

slab and the multilayer surface is parallel to the xy-plane. The angle of incidence on the sample is 

 . The plane of incidence is the azimuthal angle, , from the coordinate system. The thickness of 

each layer is di. Each layer of medium has an individual dielectric tensor, 𝜀̂. In this treatment, the 

initial medium is isotropic. The incident wave is propagating in the xz-plane with a wave vector 

𝑘⃗ ,  

 ( ),0,k q
c


=  (5.1) 

where, the x-component of 𝑘⃗  is sin  =  and the z-component of the wave vector scaled by 

ω/c is q, thus dimensionless. The transverse wavevector ξ, also scaled by ω/c, is conserved 

throughout the multilayer medium (momentum conservation). 



 

47 
 

 

If the system is described with a diagonal dielectric tensor that is symmetric with 

principal dielectric constants εx, εy and εz, then the crystal orientation can be rotated along the lab 

frame 

 1 1

0 0

ˆ ˆ 0 0

0 0

x

x

x

R R R R



  



− −

 
 = =  
 
 

 , (5.2) 

where R is the rotation matrix defined in eqs. (4.8). 

We will briefly summarize the problem presented by Berreman9 and by Passler and 

Paarmann.12 Generally, there is are four eigenmodes which are the four possible solutions for the 

propagating electromagnetic wave for each layer. Maxwell’s equations are written in Gaussian 

units in the 6x6 matrix form, 

Figure 5.1: N semi-infinite parallel-layer sample of definite thickness, di. The light 

beam enters the surface of phase 1 at an incidence angle, θ and with an azimuthal 

angle, φ in the xz plane. The direction of the electric field for s and p polarization for 

the incident and reflected beam are shown. The propagation vector, k for the reflected 

beam is also shown. 
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. (5.3) 

where the electromagnetic field vectors are denoted by E, H, D and B and the velocity of light in 

vacuum is c. R is a symmetric matrix with four quadrants. The first quadrant is the curl operator 

on H. The third quadrant is the negative curl operator on E. After performing the time 

derivative, Maxwell’s equation in the abbreviated form becomes  

 
i

RG C
c


= −  . (5.4) 

A linear relation between G and C can be written as follows: 

 
1

2

ˆ ˆ

ˆ ˆ
C MG G

 

 

 
=   

 
 . (5.5) 

Here, 𝜌̂1 and 𝜌̂2 of M are optical rotation tensors in the first and third quadrants 

 1 , 3ij i jM +=  (5.6) 

and 2 3,ij i jM += , i, j = 1, 2, 3 (5.7) 

The dielectric tensor, 𝜀̂ is in the second  

 ij ijM = , i, j = 1, 2, 3 (5.8) 

Lastly, the permeability tensor, 𝜇̂ is in the fourth quadrant 

 3, 3ij i jM + += , i, j = 1, 2, 3 (5.9) 

By combining eq. (5.4) and (5.5),  
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i

Rg Mg
c


= −  (5.10) 

where g is the spatial part of G such as, exp( )G g i t= − . 

A classical treatment of wave propagation in optically active isotropic media was 

described by Drude13: 

 
1 H

E
c t


 = −


 (5.11) 

and  ( ) ( )
E

H E
c t c t

  
−  = − + 

 
 , (5.12) 

where both ε and γ in general dependent on frequency. We eliminate curl E from eq. (5.12) and 

incorporate the time dependence. Hence the equations become, 

 
i H

E
c


 =  (5.13) 

and  ( ) ( )( )H i E c i c i H c  −  = −  (5.14) 

Comparing equations (5.13) and (5.14) to equations from (5.6) to (5.10) it can be shown that, the 

four quadrants of M are 

 

( )1

2

ˆ

ˆ

ˆ

i c I

I

I

 

 





=

=

= 

=

 (5.15) 

Here, the identity matrix is denoted as I and the null matrix as O.  

To pursue the solution of eq. (5.4), we need to write up a special form of the first 

quadrant of R which contains the curl operator, 

 
1

0 0

0

0 0

z

R i
z

i





 
− 

 
 = −

 
 
 
 
 

 (5.16) 
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and the third quadrant which is −curl i.e., the transpose of R1 is denoted by R3. 

After substituting eq. (5.16) into (5.4), it is observed that among the six components of g, 

the normal field projections, 3 zg E=  and 6 zg H= can be solved in terms of the other four 

components and hence, can be eliminated. Therefore, the other four first-order linear differential 

equations from eqs. (5.4) and (5.16) take the forms: 

 
6

5 1

1

i i

i

ic
g M g

z =


− =


  (5.17) 

 
6

4 2 6

1

i i

i

ic c
g M g g

z



 =


− = −


  (5.18) 

 
6

2 4

1

i i

i

ic
g M g

z =


− =


  (5.19) 

and  
6

1 5 3

1

i i

i

ic c
g M g g

z



 =


− = +


  (5.20) 

The two linear algebraic equations may be written as 

and 

( )

( )

6

5 3

1

6

2 6

1

i i

i

i i

i

c g M g

c g M g

 

 

=

=

− =

− =




 (5.21) 

Solving for g3 and g6 in terms of the other parameters give 

and 

3 31 1 32 2 34 4 35 5

6 61 1 62 2 64 4 65 5

g a g a g a g a g

g a g a g a g a g

= + + +

= + + +  (5.22) 
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where  

( )

( ) 

( )

( ) 

( )

( ) 

( )

( ) 

31 61 36 31 66

32 62 36 32 66

34 64 36 34 66

35 65 36 35 66

61 63 31 33 61

62 63 32 33 62

64 63 34 33 64

65 63 35 33 65

33 36 63 66

,

,

,

,

,

,

,

0

a M M M M d

a M M M M d

a M M M M d

a M M M M d

a M M M M d

a M M M M d

a M M M M d

a M M M M d

a a a a









= −

= − −

= −

= − +

= −

= − −

= −

= + −

= = = =

 (5.23) 

and  

 33 66 36 63d M M M M= − . (5.24) 

In order to eliminate g3 and g6 and to have four first-order differential equations, it is 

required to substitute both the eqs. (5.22) and (5.23) into eqs. (5.17-20) so that these four linear 

combinations can be written in 4×4 matrix form as 

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

x x

y y

x x

y y

E E

E Eic
s

H Hz

H H



    
    

−     − =
    −
       

    

 . (5.25) 

To get an equivalent equation like eq. (5.24), it is convenient to change the order of the 

variables and sign on Hx by multiplying the matrix from the left side of eq. (5.24) by its own 

inverse matrix which becomes 

 

41 44 42 43

11 14 12 13

31 34 32 33

21 24 22 13

x x

y y

x y

y x

E S S S S E

E S S S S Hi

H S S S S Ez c

H S S S S H



−    
    

−     =
    − − −
      − −   

 , (5.26) 

which can be abbreviated as, 

 i
z c


 


= 


 (5.27) 

where the dimensionless field vector is, 
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

 
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 =
 
 
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 (5.28) 

Therefore, the elements of ∆ are defined exactly defined in terms of M and obtained from 

eqs. (5.17-20), (5.22) and (5.23), 
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 = − − −
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 (5.29) 

The four eigenvalues of ∆ are represented by the z-components of the wave vectors of the 

four eigenmodes in the structure 

 ( ) ( )ij ijq i i =   (5.30) 

where, qij are the eigenvalues indexed j for each layer i, and the eigenmodes as ψij in the medium. 

To ignore unstable solutions and any discontinuities, the four solutions need to be ordered in an 

explicit manner. First, the modes are required to be divided into two parts, e.g. transmitted 

(forward) and reflected (backward) propagating waves. Transmitted wave correspond to the 
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modes with 0ijq   and ( )Im 0ijq   and reflected modes to 0ijq   and ( )Im 0ijq  . The modes 

are sorted in this way because real wave vectors point in the direction of propagation and 

exponentially damped waves are defined by complex wave vectors. Moreover, it needs to be 

determined that the solutions are computed without any discontinuities. qi1, qi2 are referred to the 

transmitted waves, and qi3, qi4 are referred to the reflected waves. Hence, the eigenvectors of eq. 

(5.30) of each layer may be written as follows14, 

 

2

1

2 2

1 3

( )
ij

ij

ij ij

C q


 
=

+
  (5.31) 

Finally, the four eigenvalues are sorted in the following way where qi1 and qi3 are 

described as the p-polarized, and qi2 and qi4 are the s-polarized waves, transmitted and reflected, 

respectively, 

 ( ) ( )1 2i iC q C q  and ( ) ( )3 4i iC q C q  (5.32) 

For birefringent media where there is at least one principal axis which is neither in the xz-

plane or along the y-axis in the anisotropic dielectric tensor, discontinuity can arise. In such 

cases, instead of analyzing electric fields, Poynting vector needs to be used in eq. (5.31),  

 

2

2 2
( )

ijx

ij

ijx ijy

S
C q

S S
=

+
 (5.33) 

where,  

 

ijx ijy ijz ijz ijy

ij ijy ij ij ijz ijx ijx ijz

ijz ijx ijy ijy ijx

S E H E H

S S E H E H E H

S E H E H

   −
   

= =  = −   
   −   

 (5.34) 

Comparing with eq. (5.28), 1 3 4 2, , ,ijx ij ijy ij ijx ij ijy ijE E H H   = = = − = , 

and 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

31 32 34 35

61 62 64 65

,ijz ijx ijy ijx ijy

ijz ijx ijy ijx ijy

E a i E a i E a i H a i H

H a i E a i E a i H a i H

= + + +

= + + +
 (5.35) 

In order to deal with singularities, the study presented by Xu et al. was  employed.11 The 

method from their study was applied in the case of non-optically active media with isotropic 

magnetic permeability and to match that approach, the matrix from eq. (5.5) was set up as, 
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ˆ I = and 
1 2

ˆ ˆ = =  , with I and O as the unity and null matrix. Then the electric field 

vectors γ of the four eigenmodes for each layer i was set up in order to set up the transfer matrix 

corresponding to where the qij are sorted accordingly 

 

1

2

3

ij

ij ij

ij



 



 
 

=  
 
 

 . (5.36) 

Therefore, the values which are free of singularities in γijk are written in the following forms 

 11 22 42 31 1,i i i i   = = = − =   

 ( ) ( )
( )( )

1 2
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23 31 1 21 3312 1 2
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

+ − −= 


− − −

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q q
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q q
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
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31 3
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33 33
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 (5.37) 

All these solutions are continuous and finite for both anisotropic and isotropic media. 

Hence, they formulated a generalized and stable transfer matrix using these solutions. To achieve 

that, boundary conditions between two adjacent layers i and i-1 are applied for electric and 

magnetic fields for all four modes simultaneously, 

 1 1i i i iA E A E− − =  (5.38) 

where Ai is computed using γijk by ref. 11, 

 

11 21 31 41

12 22 32 42

1 11 13 2 21 23 3 31 33 4 41 43

1 12 2 22 3 32 4 42

1 1 1 1

i i i i

i i i i

i i i i i i i i i i i i
i

i i i i

i i i i i i i i

q q q q
A

q q q q

   

   

       

   

   
   

 
 
 
 − − − −

=  
 
 
 
 

 (5.39) 

Furthermore, the electric field for the whole multilayered structure, the dimensionless 

four-component electric field vector of the solution is 

 

p

t

s

t

p

r

s

r

E

E
E

E

E

 
 
 
 
  
 

 , (5.40) 
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where, the in-plane field amplitudes of the s and p-polarized, transmitted and reflected fields, are 

represented by, 𝐸𝑡
𝑠(𝑝)

 and 𝐸𝑟
𝑠(𝑝)

. From both sides of eq. (5.38), 𝑨𝑖
−1 is multiplied to obtain the 

following relation where the interface matrix Li is described explicitly 

 1

1 1i i i i i iE A A E L E−

− −=   (5.41) 

It becomes clear after analyzing eq. (5.39) that the columns from matrix Ai resemble with 

four eigenmodes ψij of each respective layer, although the elements now have the order of Ex, Ey, 

Hx and Hy. Hence, the solution of the electric field vector which is projected onto the eigenmodes 

of the layer is represented by the matrix operation of Ai𝐸⃗ i , while the projection of the 

eigenmodes in layer i onto those of layer i-1 is being depicted by Li. The different order of the 

elements from the column vector must be taken into account after comparing with eq. (5.36). 

This can be achieved after the transfer matrix is formulated for the full multilayer structure. 

The propagation matrix, Pi from Yeh 6 contains the phase factor due to propagation 

through each layer. 

1

2

3

4

exp 0 0 0

0 exp 0 0

0 0 exp 0

0 0 0 exp

i i

i i

i

i i

i i

i q d
c

i q d
c

P

i q d
c

i q d
c









  
−  
  

  
−  
  =

  
−  
  

  
−  
  

 (5.42) 

Utilizing this matrix, the transfer matrix Ti for each layer is written as following where 

the matrix contains the parts from the enclosing interface matrices and the propagation matrix, 

 1

i i i iT A P A−=  (5.43) 

Therefore, the total transfer matrix of all N layers can be computed by determining 

 
1

N

tot i

i

T T
=

=  (5.44) 

The transfer matrix of the full system, TN is obtained using the total transfer matrix which 

contains the propagation as well as interface matrices in order to show the equivalence with the 

methods observed from the literature,6, 7, 9, 11 
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+

+

=

=

=

=

 (5.45) 

 

The first line of eq. (5.45) can easily be implemented in a computer program and it 

directly shows the computation of the transfer matrix of a single interface which is 1

0 0 1T A A−= . 

The last line describes how the propagation of electromagnetic waves through multilayer 

structure can be solved by stringing together the interface matrices, Li and propagation matrices, 

Pi in sequence.  

In order to calculate the transmitted and reflected coefficients for both s and p-

polarization, the following formula from Yeh7 is being used 

 
0 1N NE T E− +

+=  (5.46) 

where 𝐸⃗ 𝑖−1
−  and 𝐸⃗ 𝑖

+ represent the electric fields on both the sides of the interface which is in 

between layer i -1 and i. In order to obtain the coefficients, the TN needs to be transformed in 

such a way that the order of the field components is in the following the order: 
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r
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E
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E

E

 
 
  =
 
  
 

. (5.47) 

Therefore, the transformation that is consistent with the formalism of Yeh is, 

 1

1324 1324N NT T− =    (5.48) 

where, 

 1324

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 
 
  =
 
 
 

 (5.49) 
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The components of TN´ are employed to determine the amplitude reflection coefficients: 

rss and rpp for s and p-polarized waves, and rps and rsp for the mode coupling: 

 21 33 23 31

11 33 13 31

pp

T T T T
r

T T T T

   −
=

   −
 (5.50) 

 11 43 41 13

11 33 13 31

ss

T T T T
r

T T T T

   −
=

   −
 (5.51) 

 41 33 43 31

11 33 13 31

ps

T T T T
r

T T T T

   −
=

   −
 (5.52) 

 11 23 21 13

11 33 13 31

sp

T T T T
r

T T T T

   −
=

   −
 (5.53) 

Similarly, the amplitude transmission coefficients are15:  
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11 33 13 31
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T T T T


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 (5.54) 
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
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11 33 13 31

ps

T
t

T T T T
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=
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 (5.56) 

 13

11 33 13 31

sp

T
t

T T T T

−
=

   −
 (5.57) 

The intensity reflectivity, R and the intensity transmissivity T the polarizations are : 

and  

2

2

mn mn

mn mn

R r

T t

=

=
 (5.58) 

where the subscripts m an n correspond polarizations as defined for r and t.  Note that the total 

transmission of the multilayer structure is distinct from T since the energy conservation also 

needs to be considered. In the following section, the reflectivity and transmittivity of a sample 

isotropic multilayered structure will be compared with the 4×4 transfer matrix to verify the 

formalism. 
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5.3  Fresnel’s Equations: Reflection and Transmission for 3-layer 

Isotropic Media 

We will test the 4×4 matrix method by comparing it to the simpler isotropic treatment 

using Fresnel’s equations. This formulation of the Fresnel reflection and transmission 

coefficients is taken from Born & Wolf and summarized here.3 The layers in the stack are 

indexed 1, 2, 3, with the wave incident from layer 1. The angle of propagation to the surface 

normal in each medium is θi. The complex refractive indices of each layer are ñi. The thickness 

of layer 2 is d and the optical path length in layer 2 is β. The wavelength in vacuum λ0 and d are 

the only length scales in the problem and must be in the same units. The amplitude reflection and 

transmission coefficients for the stack are rm and tm, respectively, for TE and TM polarized 

modes as indicated by the subscripts. The corresponding power reflection and transmission 

coefficients for each mode are Rm and Tm, respectively. The amplitude reflection and 

transmission coefficients for each interface in the stack are indexed in the order traversed by the 

incident wave, j and k, and the mode m. Thus 12

TEr  and 12

TEt  are the amplitude reflection and 

transmission coefficients for the interface between layers 1 and 2 for the TE polarized mode. 

Note the power transmission coefficients are not simply the modulus of the amplitude squared. 

This is because the magnitudes of the electric and magnetic fields inside each medium, for the 

same intensity, depend on the refractive index. The transmission coefficients compare the fields 

between two different media, where the reflection coefficients compare the field in the same 

medium. The pre-factors are required to account for the different magnitudes. 
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 (5.59) 

 

For non-absorbing media, eqs. (5.59) must satisfy the law of conservation of energy such 

that, 1m mR T+ = . In the case of normal incidence (
1 0 = ), there is no distinction between TE 

and TM polarization and we drop the subscripts. The amplitude and power reflection coefficients 

for this special case simplify to: 
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1 2 1 2
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= =

+ +
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= =   

+ +   

 . (5.60) 

 

5.4  Testing of 4×4 Transfer Matrix for the Isotropic Case 

The transfer matrix formalism presented by Passler and Parrmann12 are applicable to any 

number of layers and any wavelength where each layer would be presented by an arbitrary 

dielectric tensor. To test the generality of this formalism, a direct comparison with isotropic 

formalism is discussed in this section. 

Since, the Fresnel coefficients for reflection are dependent on the angle of incidence and 

if a plane wave with a mixture of TE and TM waves is incident at a dielectric interface at a 

particular angle of incidence where the reflected radiation gets linearly polarized with the electric 

field vector perpendicular to the incident plane (Brewster’s angle). Their rp vanishes and the p-

polarized incident wave is completely transmitted at this certain angle of incidence, 
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 1 2

1

tanB

n

n
 −  

=  
 

 (5.61) 

 

 

In order to verify our method for three layered media with the Fresnel formulas, it is 

compared with different setups consisting typical glass (n = 1.5) and air (n = 1). The angle of 

incidence started from 0° to 90°. The power reflectance should be 4% at the normal incidence 

according to eq. (5.60) and in Figure. 5.2, 5.3, 5.4 and 5.5, it is shown that the reflectance for TE 

modes at normal incidence is also 4%. The Brewster’s angle from air to glass is at 56˚ and for 

both Figure. 5.2 and 5.3, θB is at 56˚. Their critical angles for glass to air is at 41.81˚ and that 

Figure 5.2: Comparison between the reflectance and transmittance of TE and TM modes 

for 3-layer system (air-air-glass). 
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verifies in the Figure 5.4 and 5.5, also. Similarly, Brewster’s angle is 56˚ for TM modes at 

normal incidence as well and all of them satisfy, 1m mR T+ = .  

 

Figure 5.3: Comparison between the reflectance and transmittance of TE and TM modes 

for 3-layer system (air-glass-glass). 
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Figure 5.4: Comparison between the reflectance and transmittance of TE and TM 

modes for 3-layer system (glass-air-air). 
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Figure 5.5: Comparison between the reflectance and transmittance of TE and TM modes 

for 3-layer system (glass-glass-air). 
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In order to verify the interference for the case of air-glass-air and glass-air-glass, we let 

the optical thickness of layer 2 vary from 0 to 2 wavelengths at normal incidence. From Figure 

5.6 and 5.7, it is demonstrated that R and T oscillate in thickness with a period of half the 

wavelength in layer 2 and at zero thickness, R =0 and T =1. When layer 2 is air in Figure 5.7, 

there are two complete oscillation, whereas in Figure 5.6, when layer 2 is glass, the number of 

oscillation increases from two to three. Therefore, with increasing thickness of layer 2, the 

number of oscillations also increases. This satisfies 1m mR T+ =  also. 

 

Figure 5.6: Comparison of R and T over varying thickness in the unit of wavelength 

for air-glass-air where the thickness of glass and the wavelength is 1.0 μm. 
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Next, to test the 4×4 matrix formalism by Passler and Parrmann, we calculated the 

reflection using the Fresnel’s formula and compared both of them.12, 15 The calculation of 

reflectivity of Au in the mid-IR will be very relevant in this case. In order to do that, reflectance 

of both the TE and TM waves, e.g., RTE and RTM are measured from a structure of three layer 

consisting air-air-gold at an incident angle of 30˚ and compared them with the reflectance from 

both the polarizations e.g., RTEp and RTMp which are calculated using 4×4 matrix formalism.  

Figure 5.7: Comparison of R and T over varying thickness in the unit of wavelength 

for glass-air-glass where the wavelength is 1.0 μm. 
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For these isotropic test cases, we showed that the 4×4 matrix formalism is in good 

agreement with the simpler Fresnel’s formulas for reflectance and transmittance of three layer 

media. In following chapter, few anisotropic structural media will be measured and compared 

with the theoretical method. 
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Chapter 6  

Infrared Reflection Absorption Spectroscopy (IRRAS) 

Simulated from Molecular Dynamics (MD) Models 

 

In this chapter, the primary focus is to bridge the theoretical approaches with the 

experimental technique and therefore the IRRAS spectra is being simulated using the molecular 

dynamics (MD) models. In order to simulate IRRAS from MD models, it is important to 

understand the basic principal and the underlying theory of interaction of photons with the thin 

films and surfaces. So first in this chapter, we start with the basis on which IRRAS is developed, 

then the strategies required to simulate the spectra from the MD models followed by the practical 

approaches to obtain reflectivity and transmittivity from experimental spectrum of anisotropic 

multilayer structure. 

 

6.1  Basic Theory of IRRAS 

IRRAS is specifically useful optical tool to study thin films such as SAMs adsorbed on 

reflective noble materials e.g. gold. It provides the most definitive means of identifying the 

molecular groups of the thin film as well as their orientation with respect to the surface of gold. 

Experimentally, it measures absorption spectra of the substrate in the MIR region which arise 

due to the bond stretching and bending of molecules. On the metal substrate, the vibrational 

modes of adsorbates are subject to the selection rule which states that the vibrational modes 

which give rise to an oscillating dipole perpendicular to the surface can be detected as active IR 

mode. This system follows this selection because when the system has a metal substrate, the 

transition dipole of a bond forms a quadrupole with the image dipole and the tangential 

components gets suppressed due to image charges. Hence, the transition dipole of the bond forms 

a stronger dipole with the image dipole and the perpendicular components become enhanced. 

The best sensitivity of IRRAS on metal is achieved when the IR light is incident at a grazing 

angle. Next, the absorption causes dispersion in refractive index and it also changes the 

reflectivity close to the absorption region. This change causes the effect of shifting the apparent 
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absorption. These electromagnetic effects are taken into account by Fresnel’s equation and by the 

4×4 transfer matrix methods.1, 2 

 

6.2  Quantitative Analysis of Spectroscopic Intensities 

To understand the process of interaction with a stack of film in terms of a standing wave 

propagating through the entire structure while the incoming beam is dividing some of its 

intensity between reflection and transmission at each interface, a system with three layer stack is 

demonstrated. 

 

The illustrated multilayered system consists of N semi-infinite, parallel, planar slabs with 

a thickness of tN for each layer and the general reflection and transmission experiment will be 

discussed considering this system. The slab surface is chosen to be in the xy-plane and the xz-

plane contains the plane of incidence. Therefore, the incoming beam can be rotated at any 

direction around the xy-plane and along that direction, the plane of incidence can be rotated 

Figure 6.1: Schematic diagram of a plane wave impinging on a planar film at an 

angle of incidence, φ and thickness of film is d. The structure consists of layer of 

ambient medium (1), a top layer (2, grey) and an infinite layer (3, yellow)  
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azimuthally at an angle φ from the x-axis. The direction of the electric field vector of the incident 

beam with respect to the plane of incidence defines the state of polarization of the beam. A 

fraction of the incident beam is transmitted through the sample and, if the layers of the sample 

are transparent sufficiently to the radiation, then some part of the initial beam leaves the last 

layer and transmits into an infinite, adjacent medium. The remaining fraction of the incident 

beam is reflected from the planar surface. Since, pure s and p-polarized incident beam usually 

interact differently with the sample, and hence for an elliptically polarized incident light 

consisting both s and p-elements, the polarization will be altered upon leaving the sample.  

A light beam with an intensity I1 propagating through non-absorbing medium 1 which is 

generally air or vacuum, impinges at the interface between media 1 and 2 at an angle of 

incidence φ. A reflected specular beam with an intensity IR1 is generated which returns to 

medium 1 with the same angle φ and a beam is also refracted with an intensity IT1 into medium 2. 

This refracted transmitted beam will continue to go through the sample and leave from the other 

side of the last layer of the sample if both media 2 and 3 are appropriately non-absorbing enough. 

The incident beam which is getting reflected and transmitted within the phase boundaries at the 

interfaces generates constructive and destructive interferences of the electric fields and 

absorption is also produced due to excitation of quantum states. Together they regulate the total 

intensity of the output beam of light. 

In order to regulate the spectral computation, the most thorough and meticulous approach 

so far is the 4×4 transfer matrix method formalism. In this method, the electric and magnetic 

field vectors at any depth in the sample are calculated by obtaining relative values at the outer 

interfaces of the sample. This can be achieved by operating a sequential matrix operation across 

each interface. This matrix formalism has been discussed rigorously in the previous chapter. 

Now, we are going to employ this method to simulate IRRAS from molecular dynamics model. 

 

6.3  Testing 

Since multiple modes of excitations reside in the same spectral region, polyatomic 

molecular spectra become complicated and it may cause overlapping bands. In the mid-IR 

region, stretching vibrations of C-H bonds become complicated due to the overlapping of methyl 

and methylene absorption mode. Along with the overlapped modes, a broad Fermi resonance 
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peaks with the overtones of lower frequency modes are also superimposed.3 The envelope of the 

absorption of spectra is constructed basically by taking a direct sum of the intensities which are 

contributing to the absorption line, i.e., ( )
n

i

i j

k 
=

 where ki(ω) is the k starting from the ith 

excitation mode in the jth frequency interval which is centered at the frequency ωj.  

In order to test our model, we calculated the IRRAS spectra of a n-decanethiol (C10H22S) 

molecular chain. The laboratory coordinate system is chosen to have the backbone of the 

molecular chain along z-axis and the alkyl tilt chain in the xz-plane. Later, the molecular 

coordinates of each transition dipole moments are transformed into the surface frame by 

applying the proper rotation matrix (discussed in chapter 4). The C–H stretching modes for n-

decanethiol, the anisotropic k per mode and the direction of the transition dipole moments 

associated with the fundamental vibrational modes are extracted from Parikh and Allara.4 The 

assignments of the modes and along with the peak shape are listed in Table 6.1. Using the 

analytic pair function of Lorentzian and Gaussian line shape (discussed in chapter 3), ∆n tensor 

per mode were calculated from the anisotropic k tensor per mode. Then, the ∆n tensor and k 

tensor were rotated back to the surface frame and were diagonalized to obtain the principal 

values ∆n and k. A comparison between them is demonstrated in Figure. 6.2.  
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Table 6.1: Assignment of the frequencies of the maximum value of k per C-H stretching mode 

absorptions of n-Decanethiol.4 

Peak 

Frequency 

(cm−1) 

 

FWHM 

(cm−1) 

 

L Fraction 

 

Description of mode 

Anisotropic k 

per mode 

2850 9.21 0.229 CH2 sym. str. d+ 0.332 

2853 9.21 0.898 Alpha-CH2 sym. str. da+ 0.0694 

2862 9.54 0.843 Beta- CH2 sym. str. db+ 0.0492 

2879 11.2 0.665 CH3 sym. str. r+ 0.0541 

2895 14.5 0.868 FR of CH2 sym. str. dFR+ 0.00521 

2907 11.2 0.842 FR of CH2 sym. str. dFR+ 0.00521 

2918 11.2 0.446 CH2 asym. str. d− 0.0578 

2925 12.5 0.709 Alpha-CH2 asym. str. da− 0.216 

2935 10.5 0.653 FR of CH3 sym. str. rFR+ 0.0295 

2954 7.89 0.565 CH3 asym. str. op. rop− 0.0738 

2964 13.8 0.611 CH3 asym. str. ip. rip− 0.0885 

FWHM = Full width at half maxima obtained from the measured band resolution. 

sym. = symmetric,  

asym. = asymmetric 

str. = stretching  

FR = Fermi resonance  

op. = out of plane  

ip. = in plane.  
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Next, the high frequency refractive index tensor, n∞, is calculated by applying the method 

discussed in chapter 4 using the bond polarizabilities, bond lengths and angles from the 

literature.5, 6 And we obtain the complex refractive index tensor, n for the thin film. Afterwards, 

n is transformed back into the principal coordinates of n∞ by applying the rotation matrix which 

was used previously to calculate n∞. The principal values of the real part of n are defined as nα, nβ 

and nγ where α, β and γ refers to the principal axes of n∞ and the convention they follow is as nα< 

nβ < nγ..The calculated principal values are listed in Table 6.2.  

 

 

 

Figure 6.2: A sample plot of k and the calculated ∆n from k of n-decanethiol (C10H22S) 

SAM from Table. 6.1. 
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Table 6.2: The calculated principal values of n∞ for n-decanethiol SAM. 

nα nβ nγ 

1.5321 1.5391 1.5768 

 

 

 

 
 

Figure 6.3: n and k of n-decanethiol SAM. (A) Comparison between the principal 

values of n and (B) comparison between the principal values of k. 
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The problem that we encountered while diagonalizing n of the anisotropic system is that the total 

complex refractive index tensor cannot be diagonalized because the real and imaginary parts of 

the complex refractive index have different principal axes and cannot be simultaneously 

diagonalized. But it is close enough to the principal axes of n∞ as n∞ has the largest contribution 

to the total refractive index, n. This hypothesis is tested in Figure 6.4 by diagonalizing n at each 

wavelength. The plots are indistinguishable. Therefore, we choose to pick the fixed reference 

frame of n∞ which relates directly to the alignment of the molecular chain and our method of 

calculating the rotation matrix as well as the diagonalization is viable. The issue regarding the 

diagonalization requires further investigation and because of that we could only determine the 

isotropic model of IRRAS of the n-decanethiol (C10H22S) SAM from MD simulations. 

Figure 6.4: n and k of n-decanethiol SAM. (A) Comparison between the principal 

values of n and nloc, diagonalized n at each wavelength and (B) comparison between 

the principal values of k and kloc, diagonalized k at each wavelength. 
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Since, the complex refractive index tensor, n cannot be diagonalized, the attempt of 

taking the square of the complex principal components of n and rotating it back to the reference 

frame in order to calculate the complex dielectric constant was unsuccessful. The computation of 

complex dielectric constant resulted in negative imaginary parts in the regions with strong 

absorption. This result is obviously unphysical and causes the 4×4 transfer matrix method to 

yield unreasonable results. In Figure 6.5, the isotropic dielectric constant is calculated from the 

Figure 6.5: Comparison between the reflectance obtained for TE and TM mode using 

different combinations of ∆n and k for the isotropic model of IRRAS for n-decanethiol 

SAM. 
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complex refractive index tensor. The real and imaginary parts are separately diagonalized at each 

wavelength and then the rms averages are combined in order to construct the average complex 

refractive index, i.e., the isotropic complex refractive index. This refractive index is next squared 

in order to compute the isotropic complex dielectric constant at that wavelength. 

In future work, we plan to further investigate this issue of diagonalizing the complex 

refractive index and dielectric tensor by pursuing a slightly different approach to construct the 

complex polarizability tensor. Then in order to calculate the complex dielectric constant, we plan 

to adapt the approach of Vuks.7 
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Chapter 7  

Conclusion 

The motivation of our study is to establish a full anisotropic treatment for simulating the 

IRRAS of SAMs from all-atom MD simulations and construct a technique to bridge the result 

from the simulation to the experimental measurements. In the effort to understand the detailed 

structure of SAMs, a full anisotropic model is described in this study to simulate IRRAS spectra 

in mid-IR which is based on the work done by Parikh and Allara.1 

To fully harness the useful information from the IRRAS spectra in MIR, a complex 

refractive index tensor is needed to be calculated in mid-IR. The refractive index tensor can be 

described as a sum of the partial molar refraction tensor of each component. In our case, the sum 

of the atomic bond polarizabilities is used to calculate the high frequency refractive index tensor, 

n∞ and a sum of different modes of absorptions is employed calculated the complex refractive 

index tensor in MIR, ∆n.  

Kramers–Kronig (K-K) transformation pairs find the contribution of refractive index by 

the absorption from IR active modes. Since the numeric K-K integration is computationally 

expensive, we established analytic function pairs using the Gaussian and Lorentzian line shapes. 

The K-K transform analytic function pairs for Gaussian and Lorentzian absorption profiles match 

the result from numeric K-K integration. The error which we encountered in this process was due 

to the artifacts that occur when the integration range is truncated. We verified that this error goes 

away and converges to zero as we increase range point density of the integration. This analytic 

function as K-K transformation pairs are computationally less expensive and can easily be used 

instead of K-K transformation pairs. 

In order to calculate the high frequency refractive index tensor, first the bond 

polarizabilities need to be employed to calculate the molecular polarizability tensor. Then the 

polarizability tensor is rotated into the coordinate frame that diagonalizes it and the refractive 

index tensor is calculated. Next, the refractive index tensor is rotated back again into the unit cell 

coordinate frame. We tested our model for n-hexatriacontane (C36H74). The anisotropic principal 

refractive indices, nα, nβ, and nγ are calculated using the crystal structure from the literature and 

they are in good agreement with the experimental measurements.2 
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To calculate the reflectance and transmittance of the anisotropic material, we used the 

4×4 matrix formalism by Passler and Paarmann.3, 4 To verify the 4×4 matrix formalism, we 

tested their method for some special cases with Fresnel’s formalism for 3-layer system. The 

results for Brewster’s angle and critical angle from both the formalisms are same and they match. 

Another test is conducted for the interference with varying thickness and it verifies that R and T 

oscillate in thickness with a period of half the wavelength in the 2nd layer. Therefore, the 4×4 

matrix formalism is viable to employ in the calculation of the simulation of IRRAS spectra. 

Next, the model from our study to simulate the IRRAS spectra is verified by computing 

the IRRAS spectrum of n-decanethiol (C10H22S) on gold substrate. The IR active modes were 

measured from the MD simulations. The complex refractive index tensor was calculated by 

determining n∞, ∆n and k. The complex refractive index and dielectric tensor cannot be 

diagonalized using this method because the real and imaginary parts of them have different 

principal axes. This is planned to be investigated in our future work. The isotropic model of 

IRRAS spectra for both TE and TM modes are calculated using the 4×4 matrix formalism for 

different combinations of ∆n and k and it helps us to understand the contribution of each of the 

properties. We wanted to understand if there are any significant influence on the IRRAS while 

using the 4×4 matrix method from two different directions of observation. 

Therefore, in order to develop the full anisotropic model for simulating the IRRAS 

spectra of SAMs, more investigations are required regarding the diagonalization of complex 

tensors. With the further investigation, the method can be established as an effective 

experimental tool to bridge the MD simulations with experimental measurement. 
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