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Abstract

In this dissertation, we discuss the prospect of discovering flavor changing
neutral Higgs (FCNH) interactions with quarks and leptons at current and future
hadron colliders. Particularly, we have looked for ¢t — ch® and ¢° — 75T, where
#° could be a CP-even scalar |h° (lighter), H? (heavier) | or a CP-odd pseudo-
scalar (A%). A general two Higgs doublet model (¢gTHDM) is used to simulate
t — ch® and ¢° — 7FuT decays. The LHC measurements of the light Higgs
boson (h°) favor the decoupling limit of gTHDM, in which the couplings of h°
approach Standard Model values. In this limit, FCNH couplings of the light Higgs
boson hY are naturally suppressed by a small mixing parameter cos(8 — «), while
the FCNH couplings of heavier neutral Higgs bosons HY, and A° are sustained by
sin(f — «) ~ 1. Promising results are found for the LHC collision energies /s = 13
TeV and 14 TeV. In addition, we study the discovery potential of future pp colliders,
with /s = 27 TeV and 100 TeV. For ¢° — 74T, we evaluate the production
rate of physics background from dominant processes (7H7~, WW, ZZ, Wq, W g, tt)
with realistic acceptance cuts and tagging efficiencies. For ¢t — ch®, where top
is coming from top pair production, we consider h® — WW* — ¢t¢~ + F, and
h® — 7t7= — (*¢~ + P, and another top decaying hadronically to a b quark
and two light jets. For this report we have studied R — WW* and h° — 777~
separately. Our analysis suggests a reach of 50 or better, with integrated luminosity
L =3ab ! and /s = 13, 14 and 27 TeV for A\, < 0.064, under the current ATLAS
limits for both light Higgs decay mode separately. For h® — WW* we have also

presented the discovery potential at 100 TeV.
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Chapter 1
Introduction

1.1 Structure of Standard Model

The Standard Model (SM) of particle physics describes the spectrum of the
elementary particles and their interactions. The SM is a quantum field theory
with gauge group symmetry where particles are classified based on their quantum
properties and their interactions with other particles. As a model it describes our
current understanding of particles making up the visible Universe and has been
the most successful single model to date; explaining nearly every experimental
observation that has been made in particle physics. The SM was first given
this name by Abraham Pais and Sam Treiman in 1975 [1]. But collectively,
the development of the SM is the culmination of decades of work from several
great particle physicists from all over the world. It combines three fundamental
interactions, electromagnetic, weak, and strong interactions, into one particle
physics model.

SM particles form two broad categories, matter particles called quarks and
leptons form the fermions and the interaction mediators form the gauge bosons. A
more technical categorization will be, fermions are particles with spin (2n+1)/2,
with n = 0,1,2.. and they follow the Fermi-Dirac statistics [2, 3|, formulated
by Enrico Fermi and Paul Dirac. Fermions follow the Pauli-exclusion principle,
which means two fermions cannot have the same set of quantum numbers. Bosons
have integer spins and they follow the Bose-Einstein statistics [4], pioneered by
Satyendra Bose and Albert Einstein and do not follow the Pauli-exclusion principle.

There are two different types of fermions: leptons and quarks. Leptons, which

1



leptons

photon

Higgs boson

weak bosons

Figure 1.1: Standard Model (by Eric Drexler, Wikipedia)

consist of the electron (e), the muon (u) , the tau-lepton (7) and the electron-
neutrino (v, ),the muon-neutrino (v, ) the tau-neutrino (v,). Each of these particles
and their corresponding neutrino form a generation of the leptons bringing our
total count of generations to three. Each of these pairs called doublets, also have
matching antiparticle and antineutrino pairs but for simplicity, Fig. 1.1 above
only shows the matter particles and not the antimatter particles. Quarks like
leptons, also form three generations consisting of: {up(u), down(d)}, {charm(c),
strange(s)}, and {top(t), bottom(b)} quarks as I, I and III generations respectively.
The primary difference between each generations is that; the higher the generation

the heavier the particles, as shown in Table. 1.1, from PDG-2016 [5]:



Leptons Mass(GeV /c?) Quarks Mass(GeV /c?)
Ve <1 x1078 u 0.0022 £ 0.0006
e 0.000511 £ 3.1x10~ d 0.0047 £ 0.0005
vy < 1.6 x10™* c 1.27 + 0.03
7 0.1056 + 2.4 x10~8 S 0.096 £ 0.008
Vr < 1.8 x1072 t 173.2 £ 0.51 + 0.71
T 1.776 £ 0.00012 b 4.66 £ 0.04

Table 1.1: Fermion Masses, PDG-2016.

For bosons, there are 8 gluons(g), which are the mediators of strong interactions,

3 mediators of weak interactions, the W* and Z bosons; and finally a photon (7)

for electromagnetic interactions. At last but certainly not least, we have the Higgs

boson as the physical spin-0 particle from the Higgs mechanism that generates mass

for all elementary particles. We will discuss this in full detail in the subsequent

sections.

1.1.1 Leptons

Leptons are different from quarks because:

Leptons received their name from a Greek word “leptos,’

They exist independently in nature,

They carry integer multiple of charge “e”,

They only interact through photons, W+ and Z bosons

They are light (except for the 7-lepton which is heavier than a charm quark).

" meaning thin, delicate,

lightweight. The first lepton was discovered in 1897 [6], by the British physicist J.J

3



Thompson, through cathode ray experiments. He called the particles “corpuscles,”
the particle he discovered was later given its name “electron” by G.F Fitzgerald, J
Larmor, and H.A Lorenz [7].

The muon was discovered by Carl D Anderson and Seth Nedder at Caltech
in 1936 [8]. These two pioneering physicists were studying cosmic radiation when
they stumbled upon a particle that had a wider arc than an electron would when
passed through the same magnetic field. This suggest the particle has the same
charge as the electron but heavier. The new particle was initially called a mesotron
and was misunderstood for a pion (7) [9]. Yung Su Tsai predicted the 7-lepton in
1971 [10], and was later discovered in a series of experiments performed at SLAC
from 1974-77 [11, 12].

Neutrinos are a special set of particles that were initially introduced to conserve
energy in the nuclear beta decay experiments in 1930. These nuclear beta decays
were showing signs of missing energy, because only two particles were observed:
a daughter nucleus and an electron. Just like any other two-body decays, we
would expect electrons to have fixed energy. But, instead their energy showed a
distribution [9] and not a sharp peak. Following this discovery Pauli presented an
idea of an invisible neutral particle, which he named “neutron”, and the following
year Enrico Fermi presented his theory of beta decay by including the Pauli particle,
which he called “neutrino” [13]. What was actually observed is now identified as
an anti-neutrino.

Later in the 1950s, 1960s, and 1970s, it became evident that there are three
kinds of neutrinos because of an upcoming new idea of lepton number conserva-
tion; more specifically, electron number, muon number, and tau-lepton number
conservation. With e~ and v, both having the electron number 1 and same for
other generations [9]. Antiparticles, however, carry the opposite lepton number

as their matter cousins, e.g. -1 is the electron number for the positron and its
4



neutrino pair. One of the limitations of the SM that leads us to believe there is
something more to the picture is that there is no strong reason why this symmetry

should exist.

1.1.2 Antiparticles

In 1927 Paul Dirac was troubled by the fact that for every positive energy
solution coming from the relativistic energy equation, i.e., £? — p?c? = m2c* for
electrons, there were negative energy solutions as well [14]. To explain this, he
postulated that the negative energy solutions form a sea of negative energy states
filled with the electrons. When we supply enough energy to knock one of the
electrons from the sea of the negative energy states, its absence will be seen as a net
positive charge. In 1931 C Anderson [15] and his group discovered the positron, a
twin of the electron, with the same mass but opposite charge. Dirac’s interpretation
was later redefined as an existence of anti-electron or positron carrying a positive
charge and having the same positive energy by Feynman and Stueckelburgh in
1940 [16, 17]. In the following decades, nearly every SM particle and antiparticle
were discovered.

The standard notation for an antiparticle is put a bar on top of the matter
particle or particle symbol. For example, an anti-proton is denoted as p and
an anti-neutrino v. Charged leptons are an exception to this rule, they are de-
noted by e, u™, 7% for anti-electron, anti-muon and anti-tau-lepton, respectively.
Here we can construct a “C” operator, called the charge conjugation operator [9],

which, when applied to any particle state, converts it into its respective antiparticle,

Clp) = |p)- (1.1)

This was the beginning of merging quantum mechanics and special relativity,
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which predicted matter/antimatter symmetry. However, this also introduced some
additional questions because the current state of the Universe is matter dominated.

The only way to reconcile this observation was to introduce an asymmetry.

1.1.3 Quarks, Meson, and Baryons

Quarks are the fermions which do not exist freely in nature. Instead, they either
form confined states or decay before those confined states can be formed. They
carry charges in the multiples of 1/3 of e, which is the electric charge of one electron.
Their existence was first postulated by Gell-Mann [18] and Zweig [19] independently

in 1964 to explain why mesons and baryons fit in octets and decuplets.

qq () S(strange) Meson
(uti - dd)/\/2 0 O 0

ud 1 0 mt

du -1 0 T
(utt + dd — 2s3)/v/6 0 0 n

us 1 1 Kt

ds 0 1 K°

sU -1 -1 K~

sd 0 -1 K°
(utt +dd + s5)/v/3 0 0 n

Table 1.2: Meson octet.

They suggested that mesons and baryons are composed of more elementary
particles, which later became known as quarks. They suggested that there are
three types (or flavors) of quarks u, d, and s (up, down, and strange) that combine

into the mesons and baryons that Gell-Mann and Zweig were studying. A meson
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is a quark and an antiquark-confined state and a baryon is a composite state of
three quarks or antiquarks. The up quark carries a charge of 2e/3, whereas down
and strange quark carry a -1e/3 charge. With this information we can construct
the baryon decuplet and meson octet [9, 20] by just combining the three flavors as
shown in Table. 1.2 for the mesons and Table. 1.3 for the baryons [9, 20]. In the
table below () is the charge operator, with the actual charge of any particle being

@ x e and S denoting how many strange quarks are in the confined states.

qqq @ S Baryon

wuw 2 0 ATT
wvud 1 0 AT
udd 0 0 A°
ddd -1 0 A~
wus 1 -1 X*F
uds 0 -1 X%
dds -1 -1 X*
uss 0 -2 E
dss -1 -2 =*

sss -1 -3 O~

Table 1.3: Baryon decuplet, with charge = QXxe, e is the charge of one electron.

Similarly, neutron and protons are made up of udd and uud. To understand
the difference between them and the A particles, we have to define a new quantum
number, which we will discuss in a bit. First, let’s discuss a more intrinsic property
of the quarks, known as color. The Pauli exclusion principle forbids any fermion
of the same quantum numbers to co-exist, however, in the baryonic state, we have

three up quarks with the same quantum numbers. In order to account for this



seemingly impossible phenomenon a new quantum number, called color, specific
to quarks was introduced. There are three color for quarks: red, blue, and green.
In the example presented above, the quarks in the wuu baryonic state carries
a different color. Similarly, antiquarks carry either minus red, minus blue, or
minus green. As we have seen with normal color, when you mix red, green, and
blue, it gives a white or colorless state. This aligns with the observation that all
naturally occurring particles are colorless. This quantum property only allows for
a state containing either three quark (qqq) or antiquarks (ggq), a pair of quark
and antiquarks (¢g). In the late 1960s and 1970, deep inelastic experiments at
SLAC and CERN indicated that, like an atom, a proton also has a substructure
containing three lumps; this was the first evidence for the quark model. Later in
1974, the J/v [21, 22] meson was discovered indicating the presence of a fourth
quark called charm. B mesons were discovered in 1977 at SLAC [23], which are
bound states of b (bottom) quark. The heaviest quark “top” was discovered at
Tevatron by CDF and D@ in 1995 at Fermilab [24]. This discovery completed the
three generations of quarks just like the leptons.

Discovery of the three new quarks ¢, b, and ¢ opened up the discovery of more
mesons and baryons formed from their combinations in addition to the previously
known quarks. The only quark that has not been found in a bound meson or a
baryon state is the top quark as its mass and instability cause it to decay before
forming such a state.

Another physical observation that lead to the discovery of a new quantum
number is that protons and neutrons have roughly the same mass but different
charge. The new quantum number that was introduced is isospin with the proton
having an isospin of 1/2 and neutron having an isospin of -1/2. Isospin is a different
property than the spin. The primary difference between the proton and a A™

are their isospins, which are 1/2 and 3/2, respectively. Similarly, the A® and the
8



neutron have isospin of -3/2 and -1/2, respectively.

1.1.4 Vector Bosons

Vector gauge bosons are spin 1 particles and the mediator of interactions. The
photon is the carrier of electromagnetic interactions. Photon was first proposed
by Planck in 1900 [25], to explain the UV catastrophe [26]. UV divergent results
were obtained when statistical mechanics was used for explaining the spectrum of
electromagnetic radiation emitted from the black body. Planck suggested that if the
light is quantized, with each quantum carrying an energy F = hv, he can explain
the black body spectrum [25]. However, Planck proposed this quantization of light
specifically for the black body radiation. Later, Albert Einstein modified Planck’s
proposal by postulating that quantization of light is light’s intrinsic property. He
used his postulate to explain the photoelectric effect [26, 27] successfully. He

)

called them “light quantum,” which was later named “photon” by Gilbert Lewis.
The presence of the photon was confirmed via two different experiments, one by
Millikan in 1916 [9, 28] that confirmed Einstein’s explanation for the photoelectric
effect and later by A.H Compton in 1923 via Compton scattering [29].

Just like the photon with the electomagnetic interactions, the W= and Z boson
are the carriers of weak interactions. In 1933 when Enrico Fermi proposed his
theory for nuclear beta decay [9, 13, 26], he assumed point interactions; however,
this approach fails at very high energies, which suggested that theory with a
mediator was needed. Glashow, Weinberg, and Salam proposed their electroweak

interaction theory [30] including W* and Z as a mediator of weak interactions.

We will discuss this in Sec 1.1.7. Using their model, they estimated the mass of



Particle  Year Predicted by Discovered by

e~ 1897 JJ Thompson JJ Thompson
o 1937 H.Yukawa* Anderson &
Neddermeyer

T 1974-77  Yung Su Tsai SLAC

u,d and s 1968 Gell Mann & Zweig SLAC
c 1974 Glashow, Iliopoulos and Maiani SLAC
b 1977 Kobayashi and Masakawa E288 exp,Fermilab
t 1995 Kobayashi and Masakawa CDF & D

W& Z 1983 Glashow,Weinberg and Salam SPS exp, CERN

h° 2012 Higgs/Englert ATLAS and CMS

Table 1.4: Summary of the history of most of the Standard Model particles.
*Actually H Yukawa predicted a pion, it was mis-understood for a muon.

W= and Z to be,

My =82+2 GeV/c?, My, =92+2 GeV/c?.

In January 1983, the UA1 group at CERN discovered the W# boson [31], and
5 months later, they announced the discovery of the Z boson [32] as well. They

measured their masses to be,

My =81+5 GeV/c?, My =952+25 GeV/c>.

These experiments presented the SM’s triumph, making it the most successful
theory explaining particle and particle interactions to date. In Table. 1.4, we

summarize the discoveries of all the SM elementary particles.

1.1.5 Quantum Electrodynamics (QED)

QED is the simplest gauge invariant theory, as it only consists of one gauge
field. Tt follows U(1) gauge symmetry, and it describes the interaction of a photon

with the fermions. Fermions are charged under a U(1) gauge group, which is
10



popularly referred as electric charge. The simplest gauge invariant Lagrangian £

[20, 30] is given as,
1 uv Iy (5 A/H
L= _ZF’“’F + Y (iv' D, —m)y. (1.2)
Here, F},, is the electromagnetic field tensor,

F,, = 8,4, —0,A (1.3)

vl

and, D, is the covariant derivative, given as,
D, =0,+ieQA,. (1.4)

Where e is the unit of electric charge and @ is the charge operator. Above

Lagrangian is invariant under the local gauge transformations,
1
Y(z) = U(z)Y(x), Au(z) = Au(x)+ E(?M&(:L’) , (1.5)
where U(x) = exp(—ieQa(z)), because a photon (A4,) is massless.

1.1.6 Quantum Chromodynamics (QCD)

Quantum chromodynamics is a non-abelian gauge theory of strong interactions
between quarks and gluons. SU(3) is the gauge group and gluons are the gauge
bosons. Quarks are charged under SU(3), carrying a color charge. There are three
types of colored quarks, forming a triplet under the fundamental representations
of the gauge group. There are eight gluons, and they form the octet as the

adjoint representation of the SU(3) gauge group. The generalized form of the
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Lagrangian [20, 30] is,

1 -y
L= = B Fopw + i (00D, — mguc) (1.6)

Where the indices, a, represents the color, and takes a = 1,...,8. Whereas, ¢ and
j are the sum over different quarks and takes i, j = 1,2,3 values. The covariant

derivative acting on the quark field [30] is:
Dl = 050" +igs(To) 5 Gy - (1.7)

Where G* are the gluon fields, T, are the SU(3) generators, represented by Gell-
mann matrices, and g, is the strong coupling. The Gluon field tensor is given
as [30]:

Fy = 0"Gy = 0"GY = gs fane G G (1.8)

Where fu. are the structure constants of the SU(3) gauge group, following the Lie

algebra of the group generators [30]:
[To, Ty] = i fapeT . (1.9)

This Lagrangian is also invariant under the infinitesimal local gauge transforma-

tions:

(@) = [1 = igsaa(x)Ta]tb(x) (1.10)

Gt () = GH(z) + 0" au(x) + gs fapecr G (1.11)

12



1.1.7 Electroweak Interactions and Higgs Mechanism

The electromagnetic interactions are the most common form of interactions,
and we witness their impact in our day to day life. Strong interactions binds the
nuclei. Weak interactions are responsible for the nuclear beta decays and nuclear
fusion. They are the only source of parity violation (P) and charge conjugation +
parity (CP) violation in the SM.

Weak interactions follow the SU(2) gauge group symmetry, which has the
isospin 7 = 1/2 fields transforming as the isospin doublets of SU(2) gauge group.
Similar to QED, gauge invariance requires symmetry under the infinitesimal local

gauge transformation:

P(z) = [1 —iga(z) - T](x). (1.12)

Where «(z) is an infinitesimal vector in the isospin space and 7 = {1, 75, T3} are

the generators of the SU(2) symmetry transformation. The 7;, follows Lie algebra,

(75, 7] = i€k - (1.13)

The gauge group is non-abelian. The matrix representation of 7; is %ai, here o;
are the Pauli matrices. The gauge invariance follows a similar form as that in the

QED, but here the covariant derivative is given as [30],

D, =0,+1igW, . (1.14)

W, are the Yang-Mills fields and for gauge invariance of the Lagrangian they
transform as,

W, = W, + d,a(z) + ga(z) x W, . (1.15)

13



The a(x) x W, appears because W, is an SU(2) vector and the cross product of

any two vectors @ and b can be written as:

a x g: ZZ Zeijkajbk

and here €;;; is also the structure constant of the SU(2) gauge group.
For every 7; there is a gauge field W;, and the complete gauge invariant

Lagrangian describing the weak interaction is,
1 i T
L= —ZWQWW W 4 h(iy" D), (1.16)

where W, = 0,Wi, — O, Ws,, — g fijuiWi, Wi

Weak interactions have a peculiar property, mainly they only interact with the
left handed fermions. To incorporate this left handedness of the weak interactions,
a left handed SU(2), gauge symmetry is applied to the left handed fermions.

Where the left and right handed fermions are given as,

vo= 3= Yr= (1), (1.17)

Now the fermion mass term is no longer gauge invariant under the SU(2), gauge
transformations, as mn) = m(Yriby + Vrg).

An additional U(1)y gauge symmetry is introduced whose quantum number
is the weak hypercharge, Y. Weak hypercharge, Y plays, an important role in
unifying the electromagnetic interaction with the weak interaction. The weak

hypercharge is specified according to the formula [20, 30]:

1
Q=m+5Y. (1.18)
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Right handed fermions transform under this new U(1)y gauge group only, whereas
left handed fermions transforms under the SU(2),x U(1l)y gauge group, this
structure can incorporate the left-handedness of the weak interactions. Now the
weak quantum numbers for the fermions are given in Table. 1.5, where er =

charged leptons, vy, = neutrinos, ur = up type quarks and dgz = down type quarks.

T 13 Y Q
VL%%JO
e, 3 -+ -1 -1
wobhod
RIS
er 00 -2 -1
uR()O%%
dg 0 0 -2 -3

Table 1.5: Weak quantum numbers of fermions.

With the introduction of new U(1)y gauge symmetry along with SU(2), a new
gauge field B,,, was introduced along with the W;, field. All of these gauge fields
have to be massless under the gauge transformations. The new gauge invariant
Lagrangian is:

1 , 1 _
L= = Wi W = 2By B +in" Dyt (1.19)
Here B,, = 0,8, — 0,B,, and the covariant derivative is:
. 1
D,=0,+igW, -17+1g §BNY. (1.20)

We can expand W, - 7 = Wt + W=7~ + Wi, here W = (W, £ iWW,)/v/2

are the famous W* bosons and 77 (77) are raising(lowering) operators defined
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as 7% = (11 £47)/v/2. The electromagnetic and weak interaction is unified by
equating the i(gWs, 75 + g/%BuY) with ieQ)A,, and then performing a rotation on

W3, and B, to the physical neutral fields A, and Z,,

Ws, cosf, sinf, Z, (1.21)

B —sinf, cos0, A,

I

here 6,, is the weak mixing angle or the Weinberg angle. Using the above mixing

matrix and equations for electroweak unification, we get,
gsinf, =g cosf, =e. (1.22)
So we can write the electroweak interaction Lagrangian as,
—L=eJ'A, + %(J;“W,j +JW) +9:05 7, (1.23)
Where,

Jh, = Y Qu,
JLiM = \/5&7“7%1/1:

Jg = &’Yﬂ[ﬁﬂ - waW,

here g. sin 6, cos 0, = e, and x,, = sin>#é,,.
This model for the electroweak interaction is invariant under the SU(2) gauge

transformations if and only if the W=, Z bosons, and all the fermions are massless.
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Higgs Mechanism and Mass of Vector Bosons

Gauge symmetry is the heart of any quantum field theory. But, with the
discovery of massive W+ and Z gauge fields, the electroweak Lagrangian is no
longer symmetric under the gauge transformation described in Eq 1.15. One way
out of this problem is ignorance, which means forcefully keeping the mass terms,
but that would make the theory non-renormalizable; in other words, it cannot
predict any observable at very high energies like the GUT scale (~ 101¢ GeV).
Another way would be to introduce a “Hidden symmetry” and then spontaneously
break this symmetry to generate the mass of the vector bosons. Let’s give this
idea a technical explanation. To introduce the mass terms for the vector bosons
W+ and Z, we introduce a scalar doublet ¢ [33],

N
¢ = a (1.24)

¢0
The doublet above follows the self-interaction Lagrangian of the Higgs field is given

as,

L) =0"0'0,0 =V (9), (1.25)

here,

V(9) = 51610 + A6 (1.26)

V(¢) do not have a global minimum at |¢°| = 0, if 4* < 0, as shown in Fig. 1.2(b).
Instead, it has a global minimum at ¢° = +v, where v :\/TZ//\. For the
convergence of the perturbative expansion, we should expand the above Higgs
potential around v. In other words, it means that the Higgs field has a non zero

vacuum expectation value (VEV). This way of choosing a particular VEV ¢° = v

makes the Higgs potential asymmetric in the weak isospin - hypercharge space,
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which “spontaneously breaks” the SU(2),x U(1)y gauge symmetry.

We can redefine the scalar doublet as [30],

@) -7, ! . (1.27)

20"\ (0 + b)) V2

Such that h(z) and e(x); (i = 1,2, 3) have zero VEV. A finite gauge transformation
under the SU(2), given by a(x) = £(x) /v the phase factor of ¢(x) can be eliminated
from appearing in the Lagrangian by redefinition of the scalar fields. When we
substitute this into V(¢), it is no longer symmetric under a Z, transformation of
h(z), i.e. h(x) — —h(z) as shown in Fig. 1.3.

At this point it is important to state the Goldstone theorem, which says that:
“mass-less spin-0 particles appear in a theory whenever a continuous symmetry is
spontaneously broken”.

The massless Goldstone bosons represents the ground state excitation’s [30, 34|
of the Higgs field. When the Higgs mechanism breaks the local gauge symmetry,
three massless Goldstone bosons are eaten away in the scalar-sector, and they
reappear as three massive gauge bosons which are W+ and Z [30, 34].

We can express the covariant derivative on the scalar doublet in terms of the

physical A, W*, and Z fields [30],

1 1
Dy =0, +ieQA, +i—=g(T" W, + 7 W) +igz(573 — 2,Q)Z,.  (1.28)

\/59( i

In the Unitary gauge, where ¢(z) only has the neutral component,

o= " | (1.29)
V2 v+ h(z)
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for convenience we write H(z) — H, the covariant derivative from Eq 1.28, when

operated on ¢(z) from Eq 1.29 gives,

1. +
1 —=igW(v+h
vt (v 1) (1.30)

D,p=—
V2 \ on - Lig.Z,(v + h)
Expanding the Lagrangian with this covariant derivative after replacing 0, — D,

in Eq 1.25 we get,

1 1 1
Ly = 5(6h)2 + ZgszW+W_ + gggszZ
1 1 1 1
+ 192h2W+W_ + ggihQZZ + §g2th+W_ + ngthZ
1 1
- GH@+R?+w+h)h).

The mass terms for W+ and Z bosons are My = %gv and M, = %gzv. L, does

not have any mass term for photons, or even an interaction term between photons

and the Higgs boson, so even with this mechanism the photon stays massless.
(b) V(9), p*<0

(a) V(9), 1*>0

/ \\\ /
/ \ / \ /
NI /)

¢o

Figure 1.2: Higgs potential with (a) p? > 0, and, (b) p? < 0.
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V(h), <0

-
—— —_—

h

Figure 1.3: Higgs potential after symmetry breaking.

Mass Generation for Fermions

In the SU(2),x U(1)y electroweak model, a fermion mass term m (1,1 p+1rir,)
breaks the gauge symmetry. When the Higgs doublets spontaneously breaks the
electroweak symmetry, it also breaks the SU(2),x U(1)y gauge symmetry for the
fermions, which generates the mass terms for the fermions.

For leptons, we can write there interaction with the doublet in the following

form [30],
I RN 7
Lye=—ye| (7, 0)1 lp+Llr(9™,9") . (1.31)
¢° 4
L
Substituting Eq 1.29 here, we get,
Yo = Vi Ye , 7 7
Ly¢=—"=v(lp+lrly) — —=h(llg + (rlL), (1.32)

V2 V2

here ¢ = electron, muon and tau-lepton. The mass of leptons is given as m, =
yev/v/2. The y, is popularly known as the Yukawa couplings and the Lagrangian
describing these interactions is known as the Yukawa Lagrangian.

For quarks, the masses are generated by the Yukawa couplings with the Higgs
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doublet. The weak eigenstates of quarks in the unbroken gauge group are,

Uj .
QjL = 7ujRade7 J = 1a273'
d;
L

The most general SU(2),x U(1)y invariant Yukawa Lagrangian for the quarks

is [30], .
Lyg=—>_>_ {ﬁjum&*@ﬂ +Yidird' Qi1 | + Hec., (1.33)
i=1 j=1
here,
b =ity = »
— &~

After spontaneous symmetry breaking of the gauge symmetry, we get the mass

terms of up-type and down-type quarks as,

Ui
(ﬂl,ﬂg,ﬂg)RMu U9 + H.C,

Uus

dy
(dv,do,d3)pMqa | dy | +H.c..

ds

Where, M,;; = \%ﬁj and My;; = \%fflj are quark mass matrices and they are not
hermitian. The above Yukawa matrices can be transformed to diagonal matrices

by a unitary transformation, that takes the quarks from the interaction basis to
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the physical mass basis in the broken phase.

(75} u d1 d
U =ULr | c ; dy =DrLr|s]|, (1.34)
us t dg b

LR L.R

and the mass matrices transforms as,

mg 0 O

D'MuDr=1| 0 m, 0

0 0 my
The weak eigenstates u; and d; are the linear mixture of the mass eigenstates wu,
c t and d, s, b with different relations for left and right chirality. Rewriting the

Yukawa Lagrangian in the broken phase and mass basis for quarks, we get:

1 _ _ _ —
»CYQ — _E ﬁquququh + qudqdqdh + Kq, Vququ + Kq V4444

Where ¢, = u,c,t, g = d,8,b, kg, = \/§mu/v and kg, = ﬂmd/v. The diagonal-
ization of the mass matrix removes any mixing between the mass eigenstates and
the weak eigenstates in the fermion mass basis. Another outcome of this mixing

between the weak eigenstates and the mass eigenstates is on the charged-current
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weak interaction. We encounter:

dy d
(@1, U2, u3) LY | dy o (ﬁ,é,f)LUzDLW s
ds b

L L

We define, V = U] Dy, this matrix is also known as the CKM matrix (Cabibo (C),
Kobayashi (K) and Maskawa (M)).

1.1.8 Flavor Symmetry and GIM Mechanism

Flavor refers to different types of charged fermions. Conservation of the flavor
quantum number plays a crucial role in restricting several interactions at tree level
in the SM. Every charged lepton and quark consists of a flavor quantum number,
which is conserved in every tree level neutral SM interactions. For the charged
interactions, due to CKM mixing, we see flavor changing charged interactions
involving the W* boson and quarks.

Let’s consider the following decays, = — e~ v.v,, here u~ carries a muon flavor
quantum number L,= 1, similarly e~ and v, carries an electron flavor quantum
number L, = 1 and -1 respectively. For this decay process, on the LHS we have
L,=1, L. =0 and on the RHS, we have L, = 1(e”) 4+ —1(%) =0 and L, = 1(v,,).
Hence the flavor quantum number remains conserved for this muon decay. This
flavor symmetry forbid processes like, u — ey, 7 — py, at tree-level in the SM.

We have also witnessed this symmetry in the previous section with the Higgs
boson interactions with the fermions. The diagonalization of the mass matrix of
the quarks removed any possible off-diagonal interaction couplings or in other
words flavor changing neutral Higgs (FCNH) couplings at tree level for quarks.

For leptons there weren’t any either.
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Another interesting feature of the SM is that, even at one loop level these
FCNH interactions are suppressed due to the GIM mechanism, postulated by
Glashow, Iliopoulos and Maiani in the early 1970s [35]. This mechanism led to
the prediction of the charm quark. GIM mechanism was introduced to explain
the suppression of K — u*pu~ decays in the SM. At that time only u, d, and s
quarks were known, with only u < d transition, where d was introduced as a

mixed state of d and s quarks, given as,

d = dcos 0.+ ssinf,,

here 6, is the quark mixing angle, also known as the Cabibo angle [20]. In the SM
the Feynman diagram responsible for, K — pp~ transition is given in Fig. 1.4,
with only contribution coming from the u quarks. That prediction was in excess

of the observed [20, 35],

D(Kp = ptp”)

=26x1077.
['(K? — allmodes)
e [ L L, € .
d ——p Np—— 5 f——— 5
W .
i, U, O w W
W )
8 ——— 00—t 3 - - - d
siny &, oo i,
(a) (b)

Figure 1.4: Two contributions to K9 — pu~.

But, with the introduction of a charm quark, the two diagrams destructively
interfere and suppress each other’s contributions. In the modern interpretation of

GIM mechanism, Cabibbo angle is a part of the CKM mixing matrix. Following,
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the Wolfenstein parametrization of the CKM mixing matrix [36], we get,
3
> ViV =0. (1.35)
J

This particular property of the CKM, also known as the CKM unitarity [37],
suppresses the flavor violating decays like t — ch® or t — ¢y at the one-loop level
in the SM. Let’s elaborate on this with an example of t — ch® decay. The Feynman
diagrams contributing to this channel from the SM is shown in Fig. 1.5.

If we assume mg = m, = my, then the scattering amplitudes for the three

diagrams can be written as,

M= Mg+ Mg+ My x VigVy, + VisVie + Vi Ve

]
]
1
I
i
K
1
I
i
]
]

Figure 1.5: One loop contributions for ¢ — ch® decay.

Following Eq 1.35, M ~ 0. Since, m, # mg # my, the decay width for
t — ch® o< O(10~14) [38-40], in the SM.

1.1.9 Recent Flavor Anomalies

In the SM, W — ev, and W — puv, decays or Z — ete” and Z — putp~

decays have the same probability. This is termed as the Lepton Flavor Universality
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(LFU). Several experimental collaborations like the BABAR, BELLE, LHCDb have
been testing LFU, especially in the B meson decays. Global analysis of B decays
hint at a violation of LFU.

For b — s{™¢~ decays, the ratio of B branching fractions of two different flavor
final states,

B(Bt — Ktutu™)
B(Bt — Ktete™)

B(BO - K*OM+M_)

Ry =
K B(B® — K*0ete™)’

RK*O =

(1.36)

is ~ 1 [41], if LFU holds. However the current measurements of Ry by LHCb
is [42],
Ry = 0.7451002 4 0.036,

which deviates from the SM prediction by 2.60. Rg+o is in good agreement with
the SM for most part, but shows some deviations in the low ¢? regions. The current

measurements for Ry-o are [43],

i 0.667041 +0.03:0.045 < ¢® < 1.1, GeV?/c*
K*0 —

0.697007 £ 0.05: 1.1 < ¢* < 6 GeV?/ct.
Flavor anomalies are also present in the charge current transitions, especially in
b — clv, decays. The rates of B meson decays to 7 and pu is expected to be
different, because of the large 7 — p mass difference. To measure and test LFU,

the following observables are measured,

_ B(B — Drvy,) _
ki = B(B — Dlw,) Rpe =

B(B — DYWry,)
B(B — D"y,

(1.37)

with ¢ = e, u. The measured values of Rp and Rp- exceeds the SM expecta-

tions [44] by 2.3 and 3.0 standard deviations, resulting in a combined deviation of
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3.80 [45, 46],

Rp = 0.407 4+ 0.039 £ 0.024(exp), Rp =0.299 £+ 0.003, (th),

Rpe = 0.304 £ 0.013 £ 0.007(exp), Rp+« = 0.258 £ 0.005 (th).

All of these deviations suggests that the flavor symmetry of the SM is not an exact

symmetry of nature.

1.2 Introduction to General Two Higgs Doublet

Model

The minimal scalar sector of the SM, with only one SU(2), doublet, has been
extremely successful in explaining most of the experimental results. At the same
time there are some tensions; like the flavor anomalies of the previous section, no
particle candidate for dark matter, and the excessive CP violation in the Universe
(matter dominated Universe) to name a few. An extended scalar sector with one
additional Higgs doublet can provide the following:

(i) Modifications of 125 GeV Higgs boson properties

(ii) New scalar states

(iii) Extra sources of CP violation.

One of the key modifications is the introduction of tree-level off-diagonal couplings
in the Yukawa sector which leads to an enhancement in the flavor changing neutral

Higgs (FCNH) interactions.
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1.2.1 Modified Higgs Potential

The most general gauge invariant Higgs potential for the two Higgs doublet

extension of the SM is given by [47],

Vrupmw = m%gb{qbl + m§2¢£¢2 — [mfggﬂqﬁg + H.c]

+ %Al(cﬂqﬁl)? + %/\z(¢£¢z)2 A (0]61) (L) + Aa(610) (] 650)
* {%)\5@%2)2 + [)‘G(wal) + )‘7(¢£¢2)]¢§¢2 + H.c.} )

Here ¢, and ¢, denote complex Y = 1, SU(2);, doublet scalar fields. In general,
m2,, A5 6.7 can be complex, where as the rest of the couplings are real. The doublets
can be expressed as,

¢F >

o1 = ; G2 =
A 3
After electroweak symmetry breaking (EWSB), there are two possibilities, (I)
Both the doublets have a non zero VEV, v; (i = 1, 2), and, (II) Only one has a
non zero VEV, v = 246.1 GeV. Case 1, is the Yukawa basis [47] and Case II is the
Higgs basis as used in the Ref. [48]. Under case I the doublets are defined as,
¢F 2

¢ = 7 P2 =
Z5(1 +v1 + ilmg) T5(05 + va + ilmg))

Here v? + v = v?, are the two VEVs (tanf8 = vy/v; ). Which also satisfies:

v cosff —sinf v
Y = . (1.38)

Vg sinf3 cospf 0
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We perform a rotation by an angle 5 to diagonalizes the mass matrix of ¢* and

Im¢?’,
oF cos 3 —sinf3 G+
b3 sinf  cosf H*
Im ¢? cosff —sinfp| [ G°
Tm ¢ sinf  cosf A°

To diagonalize the mass matrix of the real parts, ¢? and ¢) we rotate the mass
matrix by an angle «,
@Y cosa —sina | [ H°

— . (1.39)
o sina cosa RO

After EWSB we have five scalar states, two neutral scalars H° and h°, two charged
scalars H* and one pseudoscalar A°. Whereas, G* and G are the three Goldstone
bosons, that are eaten up by W+ and Z°. With these rotations we can express

the two doublets [47],

GJFCﬁ - HJFSﬁ
o1 = : (1.40)
T5(H o — h¥sq + veg +iGO%q — iA%sp)
G+83 + HJFCﬂ
Oy = , (1.41)
T5(H s0 + h¥co + vsg + 1G5 + 1A%;)

here s, = sin 3, sinc, and cg, = cos 3, cosa. We can derive the mass matrix

by substituting Eq 1.40 and Eq 1.41 in the Higgs potential, Vrgpar. m2, and m3,
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can be eliminated using the potential minimum conditions given as [47],

1
mi, = miyts— B {)\10% + >\345S?3 + 3X¢spcs + /\75%%} , (1.42)

1
myy = m%ﬂgl 5 {)\25% + >\345C% + 3A7spcs + )\Gcét?} . (1.43)

Using the above conditions the mass matrix for the charged scalar and

pseudoscalar 2,

1 m?
mie) _ ({30 ) )
m? ;;i;—A5v2

Following the same ideology the mass matrix for the neutral scalars (h° and HY)

is given as,

AIUQC% + m%th —m%Q + )\3451)2655,3

M? = : (1.45)

2
2 2 mi, 2.2
—Miy + A3a50°Ca5p 0 + AU S5

with A3q5 = A3+ As+ A5. This matrix can be diagonalized by performing a rotation

of «, this gives the mass terms for the neutral scalars m? and m? to be,

my = s2{(m3 + AsvP)ch + )\2023%} + 2 {(m} + Asv?)sh + Mol )

«

—  CaSaS2s {m4 — (A3 + A0},

mi = o {(m4+ Asv)ch + Xov?sh ) 4 52 {(md 4+ Asv?)sh 4+ MoPch )

— CaSaS2s {m4 — (A3 + A)v7} .

Figure. 1.6 (a), shows how the Higgs potential would look like in gTHDM in the

aFor most of our analysis we have kept \¢ = A7 = 0, this is also related to preserving Zs
symmetry,which is keeping the Higgs potential invariant under the following transformations,

@1 — ¢1 and ¢g — —¢o
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[#°, ¢9] plane. We can see multiple bumps, which are the signs of non zero VEVs.
In Fig. 1.6 (b) we set ¢o — 0, and observe that the Higgs potential converges to

the SM Higgs potential.

(b) Vrrom, @3 -0

(@) VrHom

o

!

Figure 1.6: Higgs potential in gTHDM, with myg = ma = myg+ = 300
GeV,cos f —a = 0.1, and A¢ = A; =0 is shown in (a) and the Higgs potential
when ¢9 is very close to 0 is shown in (b).

In the Higgs basis, only one doublet takes a VEV we can rewrite the Higgs

potential as [48],

Verpy = ME®ID, + ML, — [MEP] 0y + Heel
1 1
+ 51\1(@1@1)2 + §A2(¢£‘I’2)2 + Ag(D] 1) (BLDs) + Ay(B] Do) (0] Dy)

1
+ {51\5(@{@2)2 + [Ag(®ID)) 4+ Ar(DLD,) ]| DI D, + H.C.} .
With doublets ®; defined as,

G* H*
) q)Z -

5 (Hy + v +iGY) 5 (Hy +1iA°%)

(I)lz

An important observation here is that in this basis tan (5 is either 0 or oo, or in other
words not defined. Which makes tan 8 an unphysical parameter in the gTHDM [49].

Hence we won’t be using this as a part of our independent parameters.
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1.2.2 Corrections to the Yukawa Sector and FCNH

In the gTHDM we can express the interaction of the doublets with the fermions

in the most generic basis as,
L = YjuirgpQsr + Yiidirgj Qs + He.. (1.46)

Where 7, 7 are sum over different flavors of charged fermions and k is the sum
over both the doublets. Here we have two Yukawa matrices, Y' and Y?2. If we

diagonalize any one matrix through a rotation of # to mass basis Y,
Y'® = R(O)Y*R'(6).

However, there is no symmetry in the gTHDM that could force both the matrices
to diagonalize simultaneously.

We perform a rotation of angle 8 on Y*! and Y2 to put them in the mass basis
from the generic basis i.e.,

Yt cosfp —sinp | [ K"
= . (1.47)

Y? sinf cospf ot

The x matrices are diagonal and fixed by fermion masses, k" = v/2mp /v with
v ~ 246 GeV, while p* matrices are in general not diagonal. With a bit of algebra,

we get the following Lagrangian [50],

-1 Z F{ [/{st;_a + pF05_a} hY + [/{FCﬂ_a — stlg_oJ H° — isgn(QF)pFAO}PRF
\/5 F=U,D,E
—U [Vp"Pr— p"'VP | DHY — v [p"Pr| EH' + Hec..
(1.48)
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Here s(3_o) = sin(8 — a), c(g—a) = cos(f—a), and PLp = (1F5)/2. U, D and E
stands for up-type quarks, down-type quarks and charge leptons, respectively. We
have derived the above interaction Lagrangian without putting any symmetries
to restrict the interaction of the two doublets with the fermions. An outcome of
that is the presence of tree-level FCNH couplings coming from off-diagonal terms
in the p matrix. This is in clear contradiction with the flavor symmetry of the
SM and as a result a natural flavor conservation (NFC) scheme was proposed by
Pashchos-Glashow-Weinberg [51]. In the NFC scheme, we impose some additional
symmetries to avoid the mixing of the two doublets in the Yukawa sector. Following
the NFC scheme, we have Type I, Type II, Lepton Specific and Lepton Flipped
models of the THDM. Table. 1.6, describes which doublet is allowed to interact
with the up quarks, down quarks and charged leptons following [52]. In Table. 1.7,
we present the effective factors multiplied to x. All the off-diagonal terms of p’

are zero in these models.

Model up dp e
Type I P2 P2 P
Type 11 o2 P11
Lepton-specific  ¢2 @2 ¢
Flipped P2 91 P2

Table 1.6: NFC Models in 2HDM.

Yukawa Type I Type 11 Lepton-Specific Flipped
K} cosa/sinff  cosa/sin 3 cos v/ sin 3 cos v/ sin 3
K cosa/sinf  —sina/cosS  cosa/sinf —sina/ cos
K cosa/sinff —sina/cosff  —sina/cosf cosa/sin

Table 1.7: Yukawa Couplings of SM Higgs in NFC models.
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However, these versions of the THDM have struggled to simultaneously explain
the deviations in the measurements of Rp and Rp«. In addition, they have also
failed to explain the deviations in the low ¢* region for Ry and Rg+0. With the
current constraints, even the gTHDM struggles to explain all of the above anomalies,
but it does a better job as suggested in [53]. Apart from these anomalies, the SM
flavor symmetry still holds in most of the scenarios to current experimental precision.
One way to suppress this tree-level flavor changing couplings in the gTHDM is
by choosing cos f — a ~ 0, which will remove the off-diagonal interactions for
h°, which is commonly identified with the SM Higgs boson; this is known as the
decoupling limit [47]. A correct definition of the decoupling limit is to decouple
the additional Higgs scalar from interacting with the vector bosons at tree level.

In the gTHDM the Higgs to vector boson coupling is given as [47],

ghvy = gsmsin(B —a),  guvy = gsm cos(fB — ). (1.49)

Where, V.= W¥*, Z and gga; = g from Eq 1.28. gpvv is the h? coupling to vector
bosons in the gTHDM, and gz is the H° coupling to the vector bosons. For
the rest of this dissertation, we will keep cos (8 — ) ~ 0. Complementary to this
is that the off-diagonal terms for H° survives because of p’ sin 3 — a and for A°
there is no factor of sin (8 — «) or cos 3 — a with the p?. In this dissertation, we
have performed collider phenomenological studies for ¢° — 7 with ¢° = A%, H°
and we have kept m%, m% > m?, which suppresses the production cross-section
of both the heavier states, we present a detailed study in Chapter 3, with our
predictions. Chapter 4 is for the FCNH with the third generation of quarks, i.e.,

t — chP.
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Chapter 2

Discovery Channels and Analysis Strategies

The main goal of this dissertation is to present the discovery reach for two
kinds of FCNH channels, i.e., t — ch®, and ¢° — 7u. Here t = top quark, ¢ =
charm quark, and A" is the SM-Higgs, whereas ¢ refers to the Heavy scalar (H°),
and pseudoscalar (A%) from the gTHDM. In Chapter 3, we discuss the discovery
reach for ¢ — 7p in much more detail. In Chapter 4, we present the discovery

reach of t — ch® for two different SM-Higgs decay channels.

2.1 Discovery Channels

2.1.1 Motivation for ¢" — Tu

In 2015 CMS [54] reported a 2.40 excess in the h® — 7u channel, sparking our
interest to look for this FCNH channel. Unfortunately, the excess disappeared
with the Run-2 data [55], and CMS put a limit on the branching fraction B(h° —
i) < 0.25% with 1o standard deviation. This can be treated as a blessing in
disguise, if you study this decay mode with the additional Higgs scalars from
gTHDM. In the decoupling limit, cos (8 — o) ~ 0 (which means sin (5 — o) ~ 1)
so the off-diagonal terms in the pf” matrix for H° survives, which can be confirmed

from the following interaction Lagrangian:

—\/Eﬁw =1, {,ow cos (B — a)h® + prpsin (5 — a)H — z'vg,pmAO} Priy, + H.c.,
(2.1)
here Pp = (14 7s5)/2.

The off diagonal terms for h° almost vanishes, which explains the null results
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from the CMS experiment. In Chapter 3, we present a detailed study of ¢° — 7 for
150 < my,ma < 500 GeV, where my(m4) are the mass of scalar (pseudoscalar).
We keep all the experimental constraints coming from 7 — vy, u — ey and from
the B-mixing measurements to choose an experimentally favourable parameter

space.

2.1.2 Motivation for t — ch®

In Sec 1.1.8, I mentioned that t — ch® is highly suppressed at 1-Loop level be-

cause of the CKM unitarity, but the current limits from the ATLAS-experiment [56],
Bt — ch®) < 1.1 x 1072, (2.2)

is nearly 10 orders of magnitude higher than the theoretical estimate from the
SM, which is of the order O(107*) [38-40]. The gTHDM extension of the SM has
tree-level flavor off-diagonal Yukawa terms in the p!” matrix, which can enhance
this decay at tree level and can come close to the experimental limits. We can

write the interaction Lagrangian for this process [50], from Eq 1.48, as,

_\/éﬁtch - {ptc COs (6 - Q)QZ;CPthhO + Pet COS (ﬁ - O‘)&tPch} + H.c..

Another experimental motivation comes from the flavor anomalies in the R(D)
and R(D*) measurements as discussed in Sec.1.1.9. These flavor anomalies suggest
that there might be some extra flavor violation present in nature that is absent in
the SM. Even the NFC models that we discussed in Sec 1.2.2 haven’t been able
to provide an explanation for these anomalies, as pointed in Ref. [57]. A more
unconstrained Yukawa sector is required and the gTHDM seems to provide that.

As pointed in Ref. [53], that for p;. ~ +1 and non zero p,, with mj; = 500 GeV,
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the current measurements of R(D) and R(D*) anomalies can be explained up to

lo as shown in Fig. 2.1.

0.32
i my+ =my =m, = 500 GeV
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Figure 2.1: The predicted values for R(D) and R(Dx) from 2HDM-II (right)
and (left) from 2HDM-III for different values of r, = |p""/p"| = 1.6(orange
triangle),2(cyan quadrangle) 2.7(open pink quadrangle) and 4(greenx)

Iguro. et. al (Nucl. Phys. B. 2017.10.014).

Interestingly, the SM satisfies all the Sakharov conditions [58] but not in
the amount required for a successful electroweak baryogenesis. The electroweak
baryogenesis is one of the models that can potentially explain the matter-antimatter
asymmetry of the Universe. The Sakharov conditions are:

1) C and CP violation
2) Baryon number violations
3) Interactions out of thermal equilibrium.

A detailed discussion on how the SM satisfies the Sakharov conditions is out of
the scope of this dissertation, please see Ref. [59] for more details. We will briefly
discuss one requirement: CP violation in the SM. In the SM, CP violation comes
from the CKM phase [59, 60]. CP violation was first observed in neutral kaon

(K°) decays [61]. From Table. 1.2 we get K° = ds, and it was pointed out by
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Gell-Mann and Pais that K is not an eigenvector of CP [62], i.e.

PIK®) = —|K"), (2.3)
C|K®) = |K°), (2.4)
CP|K") = —|K°). (2.5)

They defined two CP eigenstates by linear combination of K° and K°, which is

given as [9)],

K1) = (K% = |K%),  (CP = even) (2.6)

1

|[K2) = 7

(| K% + | K°Y), (CP —odd), (2.7)

K decays to two pions and the K5 decays to three pions. Both the K, and K,
were observed in 1956 at Brookhaven National Laboratory [63], with K5 having
a longer lifetime than K;. In 1964, Cronin and Fitch counted the number of
events with three pion decays. They used the difference in the lifetimes of the
two kaons to setup their experiment. After performing their counting experiment
they found that out of 22700 three pion events there were 57 two pion events [61].
This was a clear indication of CP-violation in the SM, with CKM acting as the
source. But CKM just cannot provide enough CP-violation required to explain
the matter-antimatter asymmetry [59].

In gTHDM, the extra top Yukawa couplings, especially p;; and pq., can provide
additional sources of CP violation. In addition to CP violation, p;. can also drive
the electroweak baryogenesis as mentioned in Ref. [64]. Figure. 2.2 presents their

results, which shows the impact on Yp from py and py., where Yp is:

Yy =B (2.8)



here np is the baryon number density and s is the entropy density. Y2 is
the present value of the baryon number density as observed by Planck, Y5 =
8.59 x 107! [65]. They showed that for small values of py, ps. of O(1) can drive

electroweak baryogenesis as shown in Fig. 2.2.

100

10

Y/ Y

W

|ptt|

Figure 2.2: Impact of py and ps. on the ratio of Yz/Y3" Fuyuto.et.al (Phys.
Lett. B. 2017.11.073 ).

In light of collider phenomenology, studying p,. through the t — ch® decay is
quite promising. In Chapter 4 we present a collider study for this decay channel

for two different h° decays, namely WW* and 77

2.2 Analysis Tools and Strategies

2.2.1 Integration Method

The biggest challenge is calculating the cross-section of the signal and the
backgrounds. Our discovery channels have 4-8 outgoing particles, which gives us

an integral of dimensions ranging from 10 to 22. Performing a definite integral
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analytically is nearly impossible. We use Monte-Carlo (MC) [66] integration to
perform these multidimensional integrals. MC uses random numbers generated
from a probability distribution to estimate the value of the definite integral. There

are different ways to sample these random numbers, to name a few,
e Uniform sampling [67],
e Stratified Sampling [68],
e Importance Sampling [69].

MC integration calculates the integrating function for a set of random numbers
sampled using one of the above ways. It tries to estimate the correct value of the
integral with each iteration, by improving the sampling of random numbers and
minimizing the variance.

Consider a multidimensional integral,

[:/Qf(x)dx, (2.9)

where 2 is an N-dimensional hyper volume. The integral above takes an expectation
value of E for the random variable X, which is an /N-dimensional random variable

with a uniform distribution. The Monte-Carlo expectation of the integral is [66]:

o %Z Fai), (2.10)

here z; is an independent set of random numbers taken from X and n is the total

number of sets. By the law of large numbers, the larger the number of sets the
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better the estimate. The variance for the above E is [66],

n

1 1 —
()= [(a) = D¥a 23 (F (@)~ B = 13 o)’ ~ B = 7)),
i—1 i=1
(2.11)
An important thing to note here is that the error = /o2(f) o n~/2, not

on the dimension N of the integral, which is the biggest advantage of using MC
methods for multidimensional integrals over the other numerical integration as the
scale of their error increases with the dimension of integrals.

For variance reduction, we use an algorithm known as VEGAS, which performs
MC integration and uses importance sampling for reducing the variance iteratively.
The VEGAS algorithm was introduced by G.P Lepage in the following paper [70] in
1978. It is an adaptive multidimensional MC integration algorithm, which samples
points from a probability distribution estimated using the integrating function.
The main idea is to sample those random numbers where the contribution from
the function is concentrated the most.

The VEGAS algorithms approximate the probability distribution function (pdf)
by making several estimates of the function f(z) inside the integration domain
and then creates a distribution. This estimated distribution is used as an input
for the estimation of the pdf for the next iteration. Asymptotically this procedure
converges to the desired distribution, which in turn gives a pretty accurate estimate

of the integral.

2.2.2 Phase Space Integration and Event Generation

For our analysis, our integral for the differential cross-section takes the following
form [26, 34],

_ (M2
 2E,2By|v, — v

do ddy | (2.12)
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where do is the differential cross-section for any particle physics scattering/production
process. Here |[M|? carries the information of the particle interactions, couplings,
and propagators involved in the process. |M?| is the square of the scattering
amplitude of initial colliding particles to final state particles. E, and Ej, are the

energies of the colliding particles, and d® is the phase space integral given as:

N
dq)N(pmplvp27 “'pN) - H

(2

dgpi

W(2”)454(pa =Y P (2.13)

as mentioned above, we are dealing with a multidimensional integral. We perform
MC integration using the VEGAS algorithm from GP Lepage, implemented in
FORTRAN. We rewrite the momentum of each final state particle in terms of the
random numbers between 0 and 1. Our next step is known as the phase space

reduction. We can rewrite an N-dimensional phase space integral as:

dq)N(ponphan 7pN) = (277-)_1d(1)N—1(pa7p127 7pN) X dq)lZ(plZ;plapQ)deZ )
(2.14)

here d®,5 is a 2-dimensional phase space integral, representing a process with two

outgoing particles in the final state, given as:

d’py d*ps
(27T)32E1 (27T)32E2

ddqy = (27T)454(P12 — D1 — p2) (2-15)

and pi, = (p1 + p2)? = —M%,. This integral can be simplified with the help of the
Dirac delta function §%(py2 — p; — pa), which was introduced by Paul Dirac [9] and

it has the following property:

/_OO dzx—a)F(x) = F(a). (2.16)

e 9]
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After performing the integration we get,

-2 )\1/2(512,mf,m%)

d(I)lg = (271') dQl, (2.17)

8812

here A(x,y,2) = 22 +y? + 22 — 2zy — 2yz — 222, 12 = p’y and m; are the masses
of the outgoing particle labeled as i. df2; is an integration over the solid angle,
which is equal to 47, and we can also replace it with dQs if we integrate d®p;
first using the Dirac delta function. Using the above 2-dimensional phase space
integration, and with the help of Eq 2.14, we can simplify N-dimensional phase
space integration in an iterative manner.

To explain what I mean by iterative manner, lets take the case of 4 particle
final states, i.e. a process with 4 outgoing particles. We can express the d®y,

using Eq 2.13, as,

d®4(Pas 1, P2; P3,P4) = (27) " dP3(pa, P12, D3, Pa) X AP 12(pra, p1, p2)d M7y, (2.18)

here p, and p,, are the momenta of the colliding particles and p; (i = 1 —4) are the
momentum of the final state particles, with p;o = p; + po. We can again rewrite

d®; from the above equation using Eq 2.14, as

d%(Pmpm,P&m) = (277)_16@2(%,2912,]?34) X d(I>34(p34,p3,p4)dM§4, (2-19)

here p3y = p3 + ps. We can follow the same steps to simplify any dimensional
phase space.

After this, our next step is to figure out |M|?. Now, this depends on the process
and the underlying theory. Most of the processes that we deal with contain multiple
Feynman diagrams, ranging from 10 to more than 100,000 diagrams at tree level.

Each diagram corresponds to a M, which is extremely time-consuming to calculate.
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Secondly, there is also a possibility of missing some diagrams. To overcome this
problem, we use Madgraph [71] to generate all the possible tree-level Feynman
diagrams and then use HELAS subroutines (HELicity Amplitude Subroutines) [72]
to create the matrix elements to calculate M. These matrix elements for M are
summed over the spins of the outgoing particles as well as the incoming particles
and averaged over the spins, colors, and helicities of the incoming particles. We
perform MC integration over phase space to estimate the cross-section using the
VEGAS algorithm, as discussed before, and generate MC events for any process at
the parton level®.

I have used a code that combines VEGAS routines and the matrix elements
generated from the HELAS subroutines and performs the steps we followed for
the phase-space reduction.

While performing the MC integration for any process, importance sampling
generates random numbers in the most probable region. Usually, some processes
can have certain divergences, especially with the QCD processes. We could have
infrared (integral — oo when |p] — 0) or collinear divergences (When the angular
separation between two outgoing particles — 0). These divergences would blow
up our estimates for the cross-section. We apply some basic cuts to remove those
points from the phase-space. These cuts are applied on the following variables,
a) Transverse momentum of the outgoing particles (p2 = p2 + pz, and the z-axis is
along the beam length)

b) Pseudo rapidity 7, which is given as, n = — Intan /2.

c) AR;; = \/(An)%j + (A¢)?, Here A¢;; and An;; is the difference in azimuthal

ij>
angle and pseudorapidity, respectively between the two outgoing particles ¢ and j.

This quantity measures the angular separation between two particles.

aParton means free quarks or gluons, hence parton level means when the quarks and gluons
are in the free state after pp collisions
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Till now, we have only been able to perform tree-level or leading order (LO)
calculations. For a realistic phenomenological study; it is important to include the

higher-order corrections. We use K factors (K'), which are defined as follows,

K — onLo(oNNLO) 7 (2.20)
0LO
where onpo(onNLO) s the cross-section after including the higher-order corrections
to tree level estimates; NLO(NNLO) stands for next to leading order (next to
next leading order). We use some special packages to calculate onpo, that will be
discussed in Chapter 3 and 4.
After estimating the cross-sections, we can estimate how many events for that

process can (ideally) be observed at the detector, using [73],
N=ox” (2.21)

here £ is known as the integrated luminosity, which is the integral of luminosity
with respect to time and has dimensions of the number of events per unit area.
The integrated luminosity depends upon the properties of the two colliding beams.
If we assume that the two beams densities are uncorrelated and collide head-on,

the luminosity can be expressed as [73]:

+00
L =2N Ny fN, ////_ p1x<x);01y(y)pls (s — s0) sz(l')/)zy(wpzs (s + s0) dzdydsdsy,
(2.22)

where p;(z), are the time-dependent density functions of the colliding beams. To a
good approximation, we can assume a Gaussian distribution for all the densities,

and upon integration, we get [73],
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N1 Ny f N,
L= NiNof Ny (2.23)
dro,oy

above is a well-known expression of the luminosity of two Gaussian beams. Here
N; and N, are the number of particles per bunch, f is the revolution frequency,
Ny is the number of bunches and o, o, are the bunch lengths in 2 and y directions
(transverse plane). We have assumed that both the bunches have the same lengths.

The next step is to generate events for the signal and the backgrounds. For

this dissertation, we ha