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ABSTRACT 

The Midway-Sunset field is located in the West Side fold belt in the San 
Joaquin Basin of California. The structures in the area , including the Midway
Sunset , Buena Vista , and Elk Hills anticlines , were formed during multiple 
episodes of compressive deformation , separated by periods of extension , 
between the Upper Miocene and present . A regional study of a 250 square 
mile area was conducted to understand the structure and stratigraphy within 
the fields on these structures . The study utilized existing geologic maps and 
data from over 400 wells to construct three regional structural and seven 
stratigraphic cross sections. One of the structural sections was kinematically 
reconstructed through time to understand the tectonic history . The Midway
Sunset and Buena Vista structures are interpreted as a series of parallel, 
fault-bounded structures , cored by deeper fault-bend folds. Many of the larger 
structures display overturned or steep flanks. Some of the reservoir units, 
such as the Stevens and Potter deep water turbidite sandstones , were 
deposited in an active tectonic environment , so that the depositional history is 
closely related to the structural events . 

A more detailed structural-stratigraphic study was conducted to evaluate 
an approximately 15 square mile area within the Southern Belgian anticline. A 
three-dimensional structural model was constructed using five closely-spaced 
balanced structural cross sections constrained by dipmeter logs and surface 
structural data . This structural model will provide a tool to evaluate potential 
bypassed reservoirs in the Potter Sandstone , and new targets in deeper 
reservoirs . 

xx 



1. INTRODUCTION 

1.1 General 

This thesis is focused on the Upper Miocene units of the Monterey and 

Etchegoin Formations , represented in The Southern Belgian anticline area by 

deep-water deposits (Quinn , 1990). All the data and economic support for this 

thesis was provided by Berry Petroleum , an independent oil company located 

in Bakersfield , CA. 

1 .2 Location 

This thesis covers two scales of detail ; the sub-regional scale (general 

study area , figure1 , B) which includes three cross sections covering the entire 

north portion of the Midway-Sunset structure , and a detailed scale covering 

the Belgian Anticline area, located in the northeast quarter of (Sections 1- 3, 

10-12, and 13-15) Township 31 South , Range 22 East in Kern County 

Californ ia (figure1 , A). 
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Figure 1. Location and scales of deta il A. South Belgian Anticline area (detailed) . B. Large scale study 
area, note the sub-regional cross sections in dark blue (Midway sunset extension digitized from R. L. 
Gardiner, A. S. Wyl ie, J r., M. J. Gagner., 1996, Pg. 176, Figure 1). 

1.3 Purpose of This Thesis 

The main purpose of this thesis is to construct a detailed geologic 

model to plan future drilling in the South Belgian Anticline area (north Midway

Sunset) and to present a case study that can be used as an analog for similar 

areas of exploration. In more detail , this study is intended to address the 
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structural and stratigraphic evaluation for an area to the north of Midway

Sunset and the relation that exists between the deep basinal depositional 

environments of the Miocene sandstone reservoirs with the upper Miocene 

Belridge Diatomite Member of the Monterey Formation (Sturm, 1996). 

1.4 Significance of the Thesis 

There are various factors influencing the importance of this thesis. The 

following are the main implications that will influence the ongoing 

development of the field . A careful interpretation of the structural framework 

and the stratigraphic distribution of the reservoirs present in the area where 

Berry Petroleum holds leases will ultimately translate into a more efficient 

drilling effort and in a better design for the secondary-recovery-steam-flooding 

program that is currently being conducted. The high resolution geologic 

model , focused on a strong analysis of the structures , will allow the location of 

bypassed areas with new potential. Finally a possible impact of the project is 

to evaluate the prospectivity of deeper zones based on the structural 

interpretation and the relationship that exists with the "continuous turbidite 

sand deposition throughout the upper Miocene " (Gregory , 1996) in the 

Midway-Sunset field . 
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1.5 Previous studies 

A complete description and interpretation regarding the geology, and 

specific information on the Midway-Sunset field can be found in Nilsen, Wylie, 

Jr. , and Gregory (1996). Here, a well documented compilation of papers 

concentrate on the different aspects affecting the evolution of this field. This 

vast understanding and availability of information has motivated the present 

work that intends to evaluate the data and build a complete structural and 

stratigraphic representation for the South Belgian Anticline area, north 

Midway-Sunset. Excellent descriptions on the stratigraphy of the southeastern 

San Joaquin Valley that are used in the present work are found in Taff, 

(1933). 

As a starting point , a cross section presented by Namson and Davis 

(2004 , cross section 16-16', figure 83 in this thesis) was revised and used in 

combination with wells , surface structural data , and formation tops from the 

literature (various authors in Nilsen, 1996) to produce the structural 

interpretation here proposed. 
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1.6 Existing Data 

The data used for this thesis includes good outcrop exposure of the 

formations of interest , more than 1200 surface structural data points (strike 

and dip) , geologic maps from which geologic contacts for all Pre-Pleistocene 

formations were digitized and corrected, a digital elevation model (30m 

resolution) for the area of interest , digital orthophotos (1 m resolution DOQQ) 

covering the entire Midway-Sunset field extension, 19 wells for the sub

regional area of study (see figure 1 ), and 17 wells provided by Berry 

Petroleum Company for the South Belgian Anticline area. The log suite for the 

majority of the wells include GR, SP, resistivity , conductivity and sonic in 

addition to other curves . 
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2. REGIONAL GEOLOGY 

2.1 San Joaquin Basin 

The San Joaquin Basin Province (figure 2) occupies the southern half of 

the Great Valley of California and is an asymmetrical structural depression 

filled with more than 36,000 ft of Upper Cretaceous and Cenozoic , 

predominantly marine elastic sediments (Callaway and Rennie, 1991 in 

Beyer , 1988). 

The province is bordered on the east by the Sierra Nevada Mountains, 

on the south by the northern Transverse Ranges , on the west by the San 

Andreas Fault Zone and southern Diablo Range, and arbitrarily on the north 

by the Stanislaus-San Joaquin County line (Beyer , 1988). It extends for about 

200 mi, averages 65 mi in width , occupies an area of 14,423 square miles 

and contains about 30,000 cubic miles of sedimentary rocks (Callaway , 1971; 

Varnes and Dolton , 1982, in Beyer , 1988). 

The San Joaquin Basin Province is divided into nine confirmed plays 

and one hypothetical play (Beyer , 1988). The area of this study corresponds 

to the West Side Fold Belt sourced by post-Lower Miocene Rocks and a 

portion of the lower section sourced by pre-Middle Miocene Rocks (figure 3). 
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Figure 2. Location of the San Joaquin Basin Province (Midway sunset extension digitized from R. L. 
Gardiner , A. S. Wylie , Jr ., M. J. Gagner ., 1996. Pg. 175-181, Figure 1., San Joaquin boundary from the 
USGS NOGA). 

2.2 West Side Fold Belt Area 

The Midway-Sunset field is located in the West Side Fold Belt. This 

area includes two separate plays (figure 3) . The aspect that differentiates the 

two plays is the origin of the oil . In one play the oil originated from middle 
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Miocene and younger source rocks; the oil from the other play is derived from 

pre-middle Miocene source rocks (Beyer, 1988). 

Most reserves in the field primarily correspond to the post-Lower 

Miocene source rocks play. The portion of the Southern Belgian Anticline 

area (figure 1, A) at the northern limit of the Midway-Sunset field, Sections 2 

and 11, T31 S, R22E (Gardiner , Wylie , Jr., and Gagner, 1996) corresponds to 

the pre-middle Miocene source play. Both parts of the West Side Fold Belt 

Area are confirmed stratigraphic and structural-stratigraphic plays (Beyer, 

1988). Oil and associated gas accumulations of the post-lower Miocene 

source play are found in upper Miocene to Pleistocene sandstone reservoirs 

and in upper Miocene to lower Pliocene fractured siliceous rocks and 

diatomite located in the west side of the San Joaquin Basin (Beyer , 1988) . 

Reservoirs are associated with stratigraphic and combination traps attributed 

to structural deformation , marine transgressive cycles , or both throughout and 

since late Miocene time (Harding , 1976 in Beyer , 1988) . A considerable 

amount of oil has already been found in fields like Midway-Sunset in this level 

of the play , restricting the remaining potential for undiscovered accumulations 

probably to new pool or new area discoveries in existing fields (Beyer , 1988). 

Most future new field discoveries will be subtle stratigraphic traps of moderate 

to small size and will be found at greater depth than discovered 

accumulations (Beyer , 1988). 
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Figure 3. Location of the two play areas in the petroleum system of the Midway-Sunset field in the San 
Joaquin Basin province (Midway sunset extension digitized from R. L. Gardiner, A. S. Wylie, Jr ., M. J. 
Gagner. , 1996. Pg. 175-181 , Figure 1., Play boundaries from the USGS NOGA). 

For the pre-middle Miocene source rocks play, where the Southern 

Belgian Anticline structure is located, oil accumulations and associated gas 

have been discovered in Eocene to middle Miocene sandstone reservoirs and 

Eocene fractured siliceous rocks (Beyer , 1988). Many areas of the play have 

not been thoroughly tested because pre-middle Miocene rocks are at great 

depth or traps are not evident. Even though diagenesis reduces expectations 

for discovery of good quality reservoirs at greater depth, fractured rock 
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reservoirs have potential to be present (Beyer, 1988). Stratigraphic and 

structural complexity of the play suggests that accumulations of moderate to 

small size will continue to be found in subtle stratigraphic, combination 

(structural-stratigraphic), or digenetic traps (Beyer, 1988). 

2.3 Stratigraphy 

The basement in the Temblor Range is represented by metamorphic 

sedimentary rocks generally transformed to serpentine in contact with 

intrusive basic volcanic rocks; these rocks underlie the sedimentary rocks of 

the Cretaceous and the Eocene in the north part of the Temblor Range (Taff, 

1933). To the south the basement is in sharp contact with Cenozoic rocks and 

corresponds to granitic rocks with schist and crystalline limestone inclusions 

(Taff, 1933). 

Cretaceous - Paleogene 

There are no outcrops of the Cretaceous or the Paleocene in the 

Midway-Sunset area (Nilsen, 1996); the closest evidence to corroborate the 

existence of Cretaceous and Eocene rocks in the subsurface is the deep Elk 

Hills 934-29R well in the Naval Petroleum Reserve. This well is the deepest 
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well ever drilled in the San Joaquin Valley, reaching Upper Cretaceous rocks 

at 24,442 feet (Nigrini , 1996). 

The Cretaceous of the 934-29R well is undifferentiated (figure 7B), but 

to the north in the Diablo Range area it is represented by dark shale and 

monotonous sandstone of the Knoxville and Chico Formations with a total 

thickness of approximately 5000 and 4000 feet, respectively (Taff , 1933). The 

Cretaceous and Eocene formations decrease in thickness to the south of the 

Temblor Range in the San Joaquin Valley (figure 4) . 

Unconformably on the Cretaceous (figure 7 B), the fine sandstones 

and siltstones of the Canoas sandstone underlie the Kreyenhagen Shale (E.R 

Atwill , 1935). The Kreyenhagen Shale is an organic shale with occasional 

lenses of fine-grained sandstone and limestone (Von Estorff , 1930). The 

Tumey Formation unconformably overlies the Kreyenhagen shale (figure 7 B) 

represented by a lower sandstone section and a thick section of shales 800 

and 885 feet thick , respectively , in an area north of Arroyo Ciervo (Atwill, 

1935). 
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Figure 4. Location of the Southern Temblor Range area (from Ryder and Thomson, 1989, Fig. 1 in 
Nilsen , 1996, Fig. 2, Pg 12) Geologic symbols sm, Santa Margarita Formation ; rs, Republic sandstone; 
ws, Williams sandstone. Geographic symbols sat, San Andreas fault; rt, Recruit Pass fault. Mc, 
McKittrick ; Fe, Fellows ; T, Taft ; M, Maricopa (Nilsen) . Blue boxes identify the USGS 24k quadrangles 
covering the southern temblor range . 

Oligocene - Lower-Miocene 

The Temblor Formation is unconformable to the Lower-Cenozoic 

marine sedimentary sequence represented by the equivalent Tumey Shale 

and Oceanic Sandstone of the Wagonwheel Formation , the Kreyenhagen 

Shale , and the Point of Rocks Sandstone (Dibblee , 1973). The beginning of 
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diatomite deposition occurred in the upper Oligocene and lower Miocene as 

the shale members of the Temblor Formation were being deposited (Dibblee, 

1973b). These are in stratigraphic order: the Salt Creek Shale, the Phacoides 

Sandstone , the Lower Santos Shale , the Agua Sandstone, the Upper Santos 

Shale , and the Media Shale ; this last unit was used as a marker in the 

present work to identify the top of the Temblor Formation in the stratigraphic 

interpretation (figure 7 and stratigraphic cross sections in pocket). 

Miocene 

Most of the stratigraphic column to the north of Midway-Sunset Field is 

represented by Cenozoic sediments (figure 7 A and B). The Temblor 

formation was deposited in a marine setting that gave rise to an intercalation 

of conglomerates , sandstones , and shales with abundant foraminifers (Taff , 

1933). These sediments accumulated in water depths of 1200 feet to the 

north of the area now occup ied by the Temblor range, and in water depths of 

3000 ft to the south , resulting in sedimentary deposits that range from 200 to 

3000 feet thick in the vicinity of the McKittrick oil field (Taff, 1933). 
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The Monterey Formation 

The name Monterey Formation or Monterey Shale (figure 6 and 7) is 

used for marine sediments of middle to upper Miocene age which are 

characterized by high percentages of biogenic silica (Mercer, 1996). In the 

Maricopa area (figure 4) it is represented by organic shales that accumulated 

to a thickness of 4000 to 5000 feet (Taff, 1933). The basal part of the 

formation consists of brown foraminiferal shales and bentonitic clays that are 

followed conformably by fine laminated siliceous diatomaceous shale, with 

sparse bands of limestone and calcareous concretions (Taff, 1933). At about 

1000 feet below the top of the Monterey Shale there is evidence of an 

emergence of the land to the south of the Temblor Range (figure 4) that 

interrupted the deposition of diatomite; this generated an alternating 

deposition of granitic to arkosic sands with diatomaceous shale. The sand 

strata range from thin layers to lenses that can be up to 100 feet in thickness 

(Taff , 1933). Diatom blooms from marine upwellings that settled on the ocean 

floor deposited thousands of feet of organic-rich diatomaceous mudstones , 

which represent the Monterey Formation (figure 5) In the Midway-Sunset area 

(Gregory , 1996). The siliceous shale members of the Monterey (figure 6) are, 

from oldest to youngest , the Devilwater/Gould , McDonald , Antelope , Belridge, 

and Reef Ridge (Gregory , 1996) with the entire section being over 5000 feet 

thick and interbedded from oldest to youngest (figure 6) with the Williams , 
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Republic , Spellacy, and Potter sandstones (Mercer, 1996). The Monterey 

siliceous shale members are important source beds, particularly along the 

west side of the San Joaquin Valley from the Lost Hills Field (approximately 

2.5 miles north of the study area) to the Midway-Sunset Field (Mercer, 1996). 

All the members of the Monterey Shale are present in outcrops along the 

western edge of the field (Mercer, 1996). 

The Devilwater/Gould Shale (figure 6) is separated from the underlying 

Temblor Formation by an unconformity (Harding, 1976 in Fortier, 1996). The 

age of this unconformity has been dated as at least 16.5 Ma (Bartow, 1991 in 

Fortier , 1996). This places the base of the Devilwater/Gould Shale (figure 7) 

in the Relizian (early Miocene) stage (Fortier, 1996). The lower part of the 

McDonald Shale is assigned to the early Mohnian (late Miocene) stage (Foss 

and Blaisdell , 1968 in Fortier, 1996), for this reason the top of the 

Devilwater/Gould Shale in this area is placed at the Luisian/Mohnian 

boundary at about 13.9 million years in the middle Miocene (Fortier , 1996). 

The McDonald Shale (figure 6) conformably overlies the 

Devilwater/Gould Shale and is assigned to the beginning of the upper 

Miocene by Foss and Blaisdell (1968) ; their work with foraminifers places the 

top of the McDonald Shale at 8.6 million years in the late Miocene (Fortier , 

1996). 
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The contact between the Antelope Shale (figure 6) and the McDonald 

Shale is conformable (Fortier , 1996). Dumont (1993) found that core and local 

outcrop samples from the middle and upper Antelope Shale at Midway

Sunset Field contain diatoms dating from 8.4 to 7.6 million years ; indicating 

that the age of the Antelope Shale and the enclosed producing sands is 

approximately late Miocene and the age of the top of the unit is 7.6 Ma 

(Fortier , 1996). 

Even though it is believed that the contact at the base of the Reef 

Ridge is conformable , the reconstruction of the structural cross-sections and 

the stratigraphic interpretation in this thesis suggests there is an unconformity 

between the two members ; this observation is also suggested by other 

authors (figure 6., Campbell 1996). Pieces of whole core and local outcrop 

samples from this unit contain diatoms from the late Miocene suggesting that 

the age of the Belridge Diatomite and the enclosed Marvic , Spellacy, and 

Monarch Sands is 7.6 Ma to the base and 7.0 Ma to the top of the unit 

(Fortier , 1996). 

The Reef Ridge Shale conformably overlies the Belridge Diatomite in 

the Midway-Sunset area. Kleinpell (1938) assigned the Reef Ridge Shale to 

the latest Miocene age based on studies of foraminiferal assemblages that 

Indicate an age of 7.0 million years for the basal part of the unit and 5.3 

million years for the top of the shale member , placing the enclosed producing 
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Potter , Lakeview , Sub-Lakeview , and Gibson Sands in the late Miocene 

(Fortier , 1996). 

Upper Pliocene-Pleistocene 

Even though the Etchegoin Formation (figures 6, 7) is considered to be 

Pliocene in age , radiometric dating indicates that the lower part of the 

formation may be of late Miocene age (Wylie, and Huntoon , 1996) . The 

Etchegoin Formation has produced most of the first billion barrels of Midway

Sunset's cumulative oil production (Wylie , and Huntoon, 1996). Production 

from the San Joaquin Formation , at the Midway-Sunset field, is minor; the oil 

is 12° to 28° API gravity and is found in both stratigraphic and structural traps 

(Walter , 1996) . The Tulare Formation is divided based on log character into 

upper , middle and lower members (figure 6), the lower member being the one 

that has provided the bulk of production (Campbell , 1996) . The oil produced 

from Tulare reservoirs is heavy with wide ranges of gravity and viscosity 

(Campbell , 1996) . 
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The Etchegoin Formation 

The Etchegoin Formation unconformably overlies the Reef Ridge 

Shale (figure 6) reaching a thickness of approximately 4000 feet in the vicinity 

of the McKittrick field (Taff , 1933) . Molluscan fauna and foraminiferal 

assemblages indicate that it was deposited in nearshore-marine to intertidal 

and estuarine environments (Wylie, and Huntoon, 1996). During the early 

Pliocene , tectonic influences fluctuated and a major structural uplift of the 

Temblor Range occurred , producing rapid changes in the depositional setting 

(Wylie , and Huntoon , 1996). As a result, the sandstone bodies of the 

Etchegoin Formation are generally small, but numerous and generated in 

several depositional environments (Wylie , and Huntoon , 1996). The rise of 

the Coastal Ranges separated the great valley embayment from the Pacific 

Ocean and brought to a close the deposition of marine sediments of the 

Pliocene , ending the deposition of the Etchegoin Formation (Taff , 1933) . 
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Figure 5. Cross section of the San Joaquin Basin across the north section of the Midway-Sunset field 
(extracted from M. F. Mercer in Nilsen , T.H ., Wylie , Jr ., A.S., and Gregory , G.J. , 1996 fig 2 Pg. 97-110). 

The San Joaquin Formation 

The name "San Joaquin Clays" was first used by F. M. Anderson 

(1905) to designate a sequence of banded clays , about 1500 ft thick, in the 

Diablo Range (Walter , 1996). At Midway-Sunset (figure 5) The San Joaquin 

Formation unconformably overlies the Etchegoin Formation (figure 6). The 

section ranges in thickness from 150 ft in the north to 1100 ft in the south 

(Walter , 1996). Reservoir deposits in this unit are represented by clay-rich , 

very fine to fine grained sandstones alternating with siltstone and claystone 

(Walter , 1996). Fossil assemblages indicate shallow water deposition with 

alternating brackish and freshwater conditions (Walter, 1996). The basal part 
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of this unit is assigned to early Pliocene time and is considered to be 

approximately 4.0 Ma. The age assigned for the top of the formation is better 

constrained and is believed to be 2.35 Ma (Fortier, 1996). 

The Tulare Formation 

During Pliocene to Pleistocene times the waters changed from saline 

to fresh giving rise to a period of fresh water sedimentation in the southern 

San Joaquin basin, a region dominated by alluvial and lacustrine 

environments when the Tulare Formation was deposited (Taff, 1933). The 

resulting deposits are the conglomerates , sandstones and shales of the 

lower , middle , and upper informal members (figure 6) of the Tulare Formation 

(Campbell , 1996). The lower member seating unconformably on the San 

Joaquin Formation is dominated by debris flow-rich alluvial fan deposits, the 

middle member is predominately represented by lacustrine mudstones with 

minor sandstones and siltstones , and finally the upper member consists of 

several commonly air-saturated sands (Campbell , 1996). 
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The Tulare Formation is absent in some places to the west of Midway-Sunset 

and its tota l thickness increases to over 2500 feet to the west part of the field 

(Campbell, 1996); it thickness towards the Elk Hills area where it displays a 

thickness in excess of 3000 feet in deep wells at the border of the valley (Taff , 

1933). 
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Figure 7. A. Stratigraphic units from the Temblor Formation to the Tulare Formation in the vicinity of the 
Midway-Sunset filed (modified from Nilsen in Nilsen , T.H ., Wyl ie, Jr ., A.S. , and Gregory , G.J., 1996 fig 
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1996, Michigan Technological University , current research). 
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2.4 Structural Geology 

The San Joaquin Valley has been structurally active throughout its 

history, accounting for the very complex structures that are present. Even 

though the southern San Joaquin basin has the overall aspect of an 

asymmetrical syncline (Nilsen, 1996), it contains many other large structures 

that include a series of anticlines that form the principal structural traps 

(Nilsen, 1996) along the flanks of the basin (figure 10). The formations that 

outcrop in the area commonly display overturned layers and the folds present 

shallow to steep limbs across very short distances (figure 8). 
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Folding , faulting and erosion were active between the Cretaceous and 

the Eocene periods of deposition (Taff, 1933), which is part of the evidence 

that suggests multiple tectonic events occurred during the evolution of the 

basin. The northern portion of the basin was developed as part of a fore-arc 

basin from the Cretaceous to the Paleogene (Beyer , 1988). During the 

Miocene , the Mendocino triple junction (figure 9) was migrating in a northwest 

direction past the San Joaquin basin, changing the tectonic framework from a 

convergent margin to a transform margin (Bent , 1988 in Gregory , 1996) along 

the San Andreas right-lateral fault (Gregory , 1996). The San Joaquin basin 

changed from a forearc convergent basin to a deep subsiding basin northeast 

of the San Andreas Fault (Gregory, 1996). 

The southern portion of the basin, and parts of the transform-rifted 

western margin , also subsided to experience Neogene compression 

attributed to plate motions along the active California margin (Beyer , 1988). 

The literature suggests that the main structural regimens that affected trap 

formation in the West Side Fold Belt plays (figure 3) include: Early Oligocene 

compress ion, later Oligocene extension into the early Miocene , late Miocene 

compression , Pliocene extension , and finally Pliocene to Recent compression 

(Harding, 1976; Davis and Lagoe, 1988 in, Beyer, 1988). The work presented 
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here also suggests that there were four main events prior to the late Miocene 

(see petroleum system analysis appendix) . 

CANADA 

U ITEOSTA ES 

North Americ.111 Plate 

R la I motion of 

Figure 9. Approximate present Location of the 
Mendocino triple junction (modified from the 
Department of Geological sciences web page of 
The University of Colorado at Boulder . Migration 
path of the Mendocino triple junction from G. J. 
Gregory. , 1996 fig 18 pg. 74) 

The structure of the Midway-Sunset field is dominated by many small 

synclines and anticlines (figure 10) which generally display a northwest trend 

(Nilsen , 1996). The Midway syncline separates the Midway-Sunset field 

(figure 10) from the Buena Vista field (Nilsen, 1996). 

Many workers have attributed different origins for the folds in the area . 

Early workers suggested a right-lateral transpression along the San Andreas 

Fault (e.g., Harding , 1976 in Nilsen, 1996). They based their interpretation on 

the observation that the axis of the folds are en-echelon with a more easterly 
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trend than the strike of the San Andreas fault (figure 10), the fold terminations 

commonly to the right, and the well-documented large amount of right-lateral

slip along the San Andreas fault (Dibblee , 1973b in Nilsen). Other workers 

have suggested that these folds originated in a compressional fold-and-thrust 

belt primarily as fault-propagation folds, rather than as a result of 

transpression (e.g., Namson and Davis, 1988 in Nilsen, 1996). These 

interpretations are based on the presence of prominent faults in the vicinity of 

the Midway-Sunset Oil field , and the observation of their geometry in the 

subsurface, along regional seismic lines (in Nilsen, 1996). The proper 

identification of the nature of the structures is crucial in this thesis given that 

the folds in combination with major unconformities of the post-Miocene 

succession are the principal traps for hydrocarbon accumulation (Gregory , 

1996) in the area of study. Here all available raw data (surface structural data 

and dipmeter-logs) were analyzed to understand the evolution of the folds , 

and based on this understanding closely spaced balanced cross-sections 

were constructed to develop the structural framework for the north part of 

Midway-Sunset. 
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35 Anuc1· ine 

Figure 10. Main folds and faults in the work area (fold axes and Midway-Sunset field extension 
extracted from G. J. Gregory ., 1996, figure 9, pg 18). 
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3. THE MIDWAY-SUNSET FIELD 

3.1 History 

The name Midway-Sunset Oil Field has its roots in the geographic 

location of the field half-way between the McKittrick and Sunset oil fie lds (Del 

Mar, 1996). The first well was drilled in 1887 by the Sunset Oil Company to a 

total depth of 100 feet ; it was drilled into a Brea outcrop located in section 21, 

T11 N, R23E and produced heavy oil from the Tulare Formation (Del Mar, 

1996). In the early days , much of the heavy oil produced (asphalt) was used 

as pavement for streets (Del Mar, 1996). 

More than 100 gushers roared from 1909 to 1912, increasing greatly 

the daily oil production (Del Mar, 1996). From all the gushers , the Lakeview, 

in section 25, T12N , R24W , is the most famous , blowing wild for 18 months 

and producing approximately 9 million barrels of oil (Rintoul , 1990 in Sturm , 

1996). 

In 1910, the newly discovered reserves in the Buena Vista area were 

included as part of the "Midway Field". By 1920 the area was known as the 

Sunset-Midway Field (Del Mar, 1996). In 1934 the California Division of Oil 

and Gas separated the Midway Field, the Buena Vista field , and the Sunset 
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Field and in 1942, recognized the "Midway Field" and the "Sunset Field" as 

part of the same "Midway-Sunset Field" (Del Mar, 1996). 

In 1968 the Midway-Sunset field became officially a billion barrel field 

(Del Mar, 1996) in the giant category . Currently the Midway-Sunset Field 

holds the 4th position among the largest oil fields in the U.S. (internet source ·) 

ranking in this position since 1953 (Lennon, 1990). 

Between the years 1990 and 1995 the average daily oil production of 

the field was 163,400 barrels , reaching a cumulative production of 2.3 billion 

barrels of oil and 563 billion cubic feet of gas (Gregory, 1996). 

3.2 Drilling activity 

Up to 1995, there were 700 steam injector wells , 4100 shut-in wells 

and 9600 producing wells , accounting for more than 14,400 active wells in the 

Midway-Sunset field (Gregory , 1996). In the past years , more than a 

thousand wells have been plugged and abandoned (Gregory , 1996). The 

northern one-th ird of the field , includes more than 6,000 producing wells 

(1996) from the thermally enhanced oil recovery projects in the Potter 

Sandstone with 95,000 barrels of 1 0 to 17 API gravity oil produced daily 

(Gardiner , Wylie Jr., and Gagner , 1996). The development of the Belridge 
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Diatomite member of the Monterey Formation began in 1984 and continues to 

date with more than 150 wells drilled (Mercer, 1996). Lighter oil (20°- 36° API) 

is produced from deeper sand bodies (e.g. Potter Sand) and fractured 

diatomaceous shales (Gregory , 1996); with depths ranging from 300 to 5000 

feet (Mercer, 1996). 

Thermal history studies conducted in the Elk Hills 934-29R deep well 

by the Michigan Technological University and Digital Petrophysics Inc., 

suggests that reservoirs shallower than approximately 17,000 feet are 

prospective (Nigrini, 1996). This indicates that there is good potential for new 

prospects in the Midway-Sunset area were most of the production currently 

comes from shallower reservoirs. 

3.3 The Potter Sandstone 

The name "Stevens" has been widely used by many writers (e.g. 

MacPherson 1978, Webb 1981, Quinn , 1990) when referring to "deep-water 

turbidites found in the central San Joaquin basin" (Sturm , 1996). In a more 

general way , the name Stevens is used for all upper Miocene turbidite 

sandstones found in the southern San Joaquin basin (Quinn , 1990). 

Therefore , upper Miocene elastic sediment gravity flows referred to as 
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Spellacy and Potter in the subsuriace producing area of Midway-Sunset field, 

are referred to as Stevens in the central basin where they may have had 

continued deposition through the intra-slope environment during the time of 

deposition (Ryder and Thomson , 1989 in Sturm, 1996). This suggests that 

they can be considered equivalent stratigraphic units. 

The Potter Sandstone reservoirs are believed to be deep water 

sediments (Gregory , 1996). These deposits are encased in the diatomaceous 

mudstones of the Belridge Diatomite , which acts as a source rock and a seal 

(Gregory , 1996) in the system. When the Diatomite is fractured , and 

depending upon the depth of burial , it is also considered a reservoir (Gregory , 

1996). 

Based on well-log correlations it is apparent that the Potter pinches-out 

into the Reef Ridge Shale down structural dip to the south and along strike to 

the north (Gardiner , Wylie Jr. , and Gagner , 1996) this is also apparent in the 

strat igraphic interpretation conducted in this thesis. The unit is represented by 

conglome rates and arkosic sandstones 1 (1personal preliminary observation 

on samples taken during visit to Bakersfield) filling apparent submarine 

canyons cut into the older Belridge Diatomite 1 (Gardiner , Wylie Jr. , and 

Gagner , 1996). The Potter sandstone is one of the younger members of the 

Santa Margarita (Gregory , 1996); a name by which it is recognized in outcrop. 
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Outcrop mapping of the Santa Margarita by Nilsen in 1995 (Gardiner, 

Wylie Jr. , and Gagner, 1996) indicates that conglomeratic sandstones "clearly 

fill deeply incised submarine canyons cut into the Belridge Diatomite" in 

contrast to the stratigraphically higher medium and fine grained sandstones 

which have a sheetlike geometry and are interbedded with laterally 

continuous diatomite units (Gardiner, Wylie Jr. , and Gagner, 1996). 

Sandstone and conglomeratic deposits of the Potter interval correspond to 

the upper Miocene , Pliocene and Pleistocene. Dipmeter analysis of this 

section suggests that there was a prevailing northeast depositional direction 

for the early sandstone reservoirs followed by a rotation of the axis of 

deposition to a southeast direction for the upper Potter sandstone (G. J. 

Gregory , 1996). The transport of debris and turbidity flows in a northeast 

direction toward the San Joaquin basin caused "time-transgressive " 

deposition of northwest-stepping submarine fans (Gregory , 1996). 

The Potter producing area is roughly limited to the north part of the 

Midway-Sunset field , (Gardiner , Wylie Jr., and Gagner , 1996) particularly to 

townships 30 and 31 south range 22 east (figure 11 ). 
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Figure 11. Potter produc ing area , note that almost all the area is distributed in townships 31 and 32 
south range 22 east (Midway sunset extens ion and potter producing area digitized from R. L. Gardiner , 
A. S. Wylie , Jr ., M. J . Gagner., 1996, Pg. 176, Figure 1). 
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4. METHODOLOGY 

4.1 Data acquisition and 3D editing of Geologic Data Using GIS 

Valuable geologic data from previous authors that worked the thesis 

area are found in published paper maps and field observation maps. The data 

from these maps is of very good quality and is in fact the starting point of the 

present work. In order to incorporate this data (e.g. geologic contacts) to the 

thesis it has to be digitized and revised using recent digital-orthophotos 

draped on processed digital elevation models to ensure their correct position 

in space. These published paper maps and field geologic maps have to be 

scanned and georeferenced to extract the information in a digital form. Using 

geographically revised base maps that incorporate layers like the Township 

and Range or the county boundaries of an area, it is possible to rectify 

scanned images from geographic areas to a specific coordinate system so 

that they can be used later in the digitization process . 

The success of any project relies strongly on the quality of the data 

used, the efficiency of the processes that are performed , and the organization 

of the data obtained from external sources or the data created in the project . 

The quality of geographic data is most sensitive in terms of accuracy ; a good 
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coordinate system suitable for the specific work area ensures no distortion of 

shapes , and minimizes the error associated with measurements. 

It is important to obtain data from reliable sources, where the data 

accuracy can be trusted (e.g. USGS, University Spatial libraries, and 

Government agencies) . Even though the data obtained may be reliable , it has 

to be tested and revised using known spatial data points to check for errors 

before base maps are created for the georeferencing process. 

Once all geographic data layers were obtained for this thesis, digital 

orthophotos and pre-rectified topographic maps (DRG's digital raster 

graphics) were gathered. These maps and photos are high resolution images 

that aid in the rectification process of the geologic maps. 

The geologic maps for this work are those of Dibblee (1972 , 1973) and 

cropped images from Nilsen, (1995). For more information on these maps see 

bibliography. Two maps (Dibblee 1972, 1973) and 22 images (Nilsen , 1995) 

were scanned at 300 dpi (dots per inch) and rectified to preserve their 

resolution. The maps were then loaded into the project and digitized. In order 

to check the match of the data with the actual terrain , 1 O digital elevation 

models (OEM's) were obtained from the USGS (30 meter resolution) ; these 

were then merged and clipped (figure 25) to match the exact area of interest 

and used to display maps and high resolution orthophotos in 3D. 
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After revising the quality of the data and editing (30) all errors and 

mismatches; it was possible to extract more then 700 geologic contacts, 1266 

surface strike & dip structural data , 172 fold axes , and 292 polygons for the 

areas covered by geologic formations in the work area. Using spreadsheets 

from vendors and state agencies , a database with the location of more than 

20000 wells in the area of interest was created. 

4.2 Data gathering, GIS, and process 

4.2. 1 General 

The purpose of this thesis is to produce a structural and stratigraphic 

interpretation of an area in the San Joaquin valley in southern California. An 

important part of this thesis is to organize a reliable and complete 

geodatabase ; that includes data for location , physical geology, geographic 

data, well-log data , and topographic data from digital elevation models (DEM) 

for terrain modeling . The ability to obtain and maintain position accuracy is a 

priority. To minimize error , all the data acquired and all new data produced or 

edited are projected using the same coordinate system . The Universal 

Transverse Mercator projection ; specifically the North American Datum 

(NAD)1983 UTM Zone 11 N coordinate system , with meters as the linear unit , 
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was used. This coordinate system ensures low distortion of shapes and 

measurement accuracy for the geographic location of the thesis. 

4.2.2 Universal transverse Mercator 

The Mercator projection is a conformal projection; this means that 

angles and shapes in small areas on the terrain are projected as the same 

angles or shapes on a map (UWGB website, 2006). The Transverse Mercator 

projection is very accurate in laterally narrow zones (east to west direct ion). 

For this reason the Universal Transverse Mercator System or UTM System 

was created (UWGB website , 2006) . The UTM System has a cylindrical 

transverse projection ; this means that a cylinder is situated crossways to the 

earth intersecting it at a line, following a North to South direction (figure 12). 

B. Figure 12. 
A) Normal Mercator project ion. 
B) Transverse Mercator projection (extracted from the 
Univers ity of Wisconsin webpage , 2006 ). 

The UTM system is subdivided into 60 zones (figure 13), each covering 6 

decimal degrees in width (longitude) . Each one of these 6 decimal degree 

bands has a separate projected coordinate system which is very accurate and 

useful for geographic areas restricted laterally to a single zone . These zones 
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are numbered in consecutive order to the East from Zone 1 (between 180° 

and 174° West ) to Zone 60 (between 174° and 180° East) , with meters as 

lineal unit. Based on the characteristics mentioned above and the fact that the 

work area lies completely within Zone 11, the NAO_ 1983 UTM Zone 11 N 

coordinate system was selected for the present work (figure 14). 
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Figure 14. 
Location of work area in zone 11 N (modified 
from the Spatial Analysis Laboratory 
webpage, 2006). 

Various layers were obtained from 3 different spatial information 

databases (see references) , these are the California Spatial Information 

Library , ESRl 's Census 2000 Data, and the USGS (GEODE , GIS-Data Depot , 

and NOGA). This intense search of data resulted in a robust database for the 
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present work , with all necessary layers for location (digital vector layers) and 

vast amounts of information of the area (geographic data). 

An important issue in every project in Geosciences, that is often 

overlooked , is data organization. In this thesis , this issue was addressed by 

the implementation of a data hierarchy (A, B, and F in figure 15). All data is 

stored in its original form. The source folders have the name of the data 

provider , and the files inside them have the original names from the raw data. 

Once the data is obtained , it is reprojected into the NAO_ 1983-UTM-Zone11 N 

coordinate system and a new name that is meaningful for the purpose of the 

project is assigned to the new files (figure 16). 

EJ-8 & 
[f l ·OJ DAT A---l±l GJ cal_state _library 

iii -QJ layers iii @] census2000 

iii Q] maps iii--@] DIGITIZED_ OU 

[B-GO raster iii--@] In-progress 

ffi {]] SHAPEFILE UTM 11 nad83 . - -
EJ(b USGS 

Figure 16. 
Example of the reprojected data in 
the SAHPEFIL E_UTM11_nad83 
folder. 

SHAPEFILE_UTMl l _nad83 

24grid_UTMl l _nad83.shp 

'.• all_wells_UTMl l_nad83 .shp 

Cal_counties_UTMl l_nad 83.shp 

city _areas_UTM1 l _nad83.shp 

·.• cross_section_plan_pt_utm 11 _nad83 .shp 

Cross _section_plan_UTM 11 _nad83. shp 

fold_axis _DETAILED _UTM 11 _nad83. shp 

Hydro-lakes _UTM 11 _nad83. shp 

Figure 15. 
Data hierarchy implemented 
for th is thes is; data is 
organ ized by source , type of 
data , and status of the data 
(completed or in progress). 
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Shapefile 

Shapefile 

Shapefile 

Shapefile 

Shapefile 

Shapefile 

Small sample of the vector 
(shapefile) database 
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Other types of data (raster), like digital orthophoto quarter quadrangles 

(DOQQ 's) , digital raster graphics (DRG 's, these are rectified topographic 

maps) , digital elevation models (OEM's) , and coverage files (vector line or 

polygon data) , with more information are stored in the USGS folder (figure 15, 

folder F) organized by data type. A broader explanation on these data types is 

found further in the text. 

4.3.2 Data from Surface Physical Geology 

The best quality geologic maps available were acquired. The first map 

at a scale of 1: 125000 (Dibblee , 1973, USGS geologic investigation MAP 1-

757 , see references) was scanned and gee-referenced in high resolution (300 

dpi) . The second map which is very clear up to a 1 :25000 scale (Dibblee, 

1972) was obta ined from the USGS publications warehouse (see references) 

and the image was then georectified and introduced in the project ; the 

resolution of the maps was carefully preserved taking into account that 

structural dip symbols were to be extracted from the maps and that in order to 

be able to obtain the azimuth angles , the symbols needed to be clearly visible 

(figure 17). Geologic features like faults , formation contacts , and strike-dip 

data were dig itized , revised and edited for the thesis area (figure 17 and 18). 
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Figure 17. A) Georectified version of Geologic map 1 (Dibblee , 1973) . B) level of resolution preserved ; 
note the structural dip symbol (aprox . 0.5 cm in printed copy) . C) Georectified version of Geologic map 
2 (Dibblee , 1972). D) Level of resolution preserved ; all structural dip symbols were preserved in the 
georeferenced map to this level of detail. 
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The formation contacts , fold axes , and faults were digitized from the two 

geologic maps and attributed with names , a brief description , source of the 

data , and a geologic symbol for map labeling (figure 18). The structural dip 

data points were digitized to obtain their position on the map, the angles of 

dip and azimuth were measured from the maps and then introduced as a field 

in the attribute table of the new structural dip data file that was created ; this 

allowed rotation of the dip symbols using the strike as the angle of rotation 

(figure 19). 

To control the quality of the strike-dip data points , three sets of maps were 

used (Dibblee , T.W., Jr. , 1972, OF 72-89. , Dibblee , T.W. , Jr. , 1973, 1-72-89, 

and port ions of Nilsen , 1995) and all non-contradicting data points were 

digitized (figures 17, 18, and 19). 
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Figure 18. A) Complete digit ization of all formation contacts , fold axes , faults , and structural dip data 
obtained from maps . B) Attributed data used for labeling and symbol ization , notice labeling of geologic 
contacts and different symbols for structural dip data . 

44 



... 

Structural Dip Data 

0 Horizontal 

t Overturned 

t Vertical 

~ normal 

main_fold_axis 

Fold_type , SATUS 

◄• Anticline , ? 

...., Anticline , OK 

Anticline , lower Iv. 

◄ • Syncline , ? 

...., Syncline , OK 

Syncline , lower Iv. 

FID Shape' Id 

1115 Point ZM 

1237 Point ZM 

57 Point ZM 

412 Point ZM 

mi 

0 165 330 1.320 

8. 

Rotation of data point using angle of strike 

STATUS status_ num IHCL 

0 normal 25 

0 normal 23 

0 normal 30 

O normal 10 

56 

56 

-=-1.QJ~ 
SOURCE 

325 Dib72 OF _72-89 

12,; Dib72 OF _72-89 ---326 Dib73 Inv - 757 _j 

326 Nilsen, 1995 ... 
~---'- __ _,,__, 

► 

Record: .. !.~J~I 0 _ij!,!j Show: fAil' Selected I Records (0 out of 1266 Selected .) Options • I 
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Note also the number of data points in the attribute table (1266) and the labeling of the fold axes . 
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4.4 Digital Orthophotos and Topographic Data from Digital Elevation 

Models (DEM) For Terrain Modeling 

4. 4. 1 Digital Ortho - Photos 

Digital orthophotos are acquired by remote sensors (airplane). The 

value of these photos lies in the fact that image deformation caused by 

sensor orientation and topographic relief has been removed. These images 

combine the high resolution of a photograph with the geometric quality of a 

map (figure 20). 
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Figure 20. NE, NW, SE, and 
SW Digital Orthophoto Quarter 
Quadrangles (DOQQ 's) 
covering the Fellows 7.5 
minute USGS quadrangle 
(boundary marked by the red 
line) . 



The photographs used for this project have a cell size of 1 meter , (1 m. 

resolution) and cover a quarter of a 7.5 minute USGS quadrangle (figure 20) . 

To cover larger areas, mosaics are created using multiple photos. For this 

reason orthophotos come with additional overlapping bands (minimum of 50 

meters and maximum of 300 meters) to the edges of the photographs (USGS , 

National Mapping Division, 2006) . 
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Figure21 . 
Display of the 29 
DOQQ 's and 9 
USGS 
quadrangles 
covered by the 
work area . 



In order to obtain a complete coverage of the entire area , 29 DOQQ's had to 

be acquired ; they cover completely or in some cases partial areas of 9 USGS 

7.5 minute quadrangles (figure 21 ). The orthophotos come already projected 

to the UTM coordinate system used for the present work. 

4.4.2 Digital Elevation Model (DEM) 

A DEM is a type of DTM (Digital Terrain Model) in raster format, meaning that 

it consists of equal size cells with individual elevation data (figure 22A). 

OEM's come in different scales ; the ones used in this thesis are 1 :24.000 

covering a 7.5 minute USGS quadrangle (figure 22C). Each cell represents a 

30 X 30 meter block of terrain , thus producing a 30 meter resolution (figure 

22B) . If a single DEM does not cover the entire area of interest , a new DEM 

mosaic compiling the necessary number of OEM's can be constructed . The 

most common projection is UTM (Universal Transverse Mercator) , in meters 

with a specific point of reference (e.g. Zone 11 N). The elevation is also 

commonly given in meters above sea level (EMRL , 2006) 
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Figure 22. A) Representation of DEM data , each cell corresponds to a unique elevation . B) DEM 
portion at scale of 1 :2400 (7.5 minutes quadrangle ) each black dot represents a cell on the DEM . C) 
Example of one DEM used in the present work (Modified from ; EMRL . April , 2006) . 

Similar to the situation with the OOQQ's, multiple OEM's had to be 

obtained to cover the entire area of interst ; in this case 1 O OEM's were 

required , covering the following USGS 7.5 minute Quarter Quadrangles : 

Reward , West Elk Hills, East Elk Hills, Painted Rock, Panorama Hills , 

Fellows , Taft , Wells Ranch , Elkhorn Hills, and a small portion of Maricopa to 

the southeast (figure 23 and 24). 
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--- Work Area 

Figure 23. 

0 22 
---------------Miles 

11 

0 35.4 

--------------- Kilometers 

17.7 

Main set of OEM's covering the work area , 9 in total. Notice that the sampling of the data is restricted to 
each DEM creating the impression of discontinuity between each digital elevation model. Also notice 
Maricopa is not included in the figure to illustrate the small size of the work area that lies in this 
quadrangle . 

When all the OEM's are displayed at the same time the impression of 

discontinuity between data boundaries is observed. This is due to the fact that 

the program assigns an extreme tone of blue to the minimum value and 

extreme tone of red to the maximum value of each DEM separately. Since the 
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sampling of the data is independent for each DEM file, this apparent 

segmentation is observed (figure 23). 
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Figure 24. 
Display of the DEM 
constructed for the entire 
area covered by the 10 
USGS 7.5 minute 
quadrangles. Notice that 
the DEM for Maricopa is 
also added , as a small 
portion of the study area 
falls inside this 
quadrangle . 

This apparent data discontinuity can be removed by merging all OEM's into a 

new single file for the entire area covered by the previous OEM's (figure 24). 

This file is very convenient for the continuous display of DEM data , but due to 

its large size , it considerably diminishes computer performance and uses a 

considerable amount of disk space. In order to solve this problem , this DEM 

was cropped to exactly match the thesis area , downsizing the DEM file 
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approximately 50%, maintaining the original resolution (30 meters), and 

considerably enhancing the performance of the computer (figure 25). 
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4.5 Location of Wells in the Thesis Area 

Figure 25. 
Cropped DEM; this DEM 
matches the work area 
perfectly , enhancing 
computer performance 
and minimizing storage 
requirements , keeping the 
same resolution of the 
original OEM's. 

Many wells have been drilled in the work area and in order to construct 

the structural cross sections , a high level of well coverage is necessary . The 

data for these wells was spread among various vendors and databases 
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making it necessary to merge these small pieces of information from each 

well (well location , well logs available , maximum depth drilled, cost of 

obtaining LAS files from different vendors , and so forth), into a single and 

coherent file. With the various tools in GIS it was possible to create a master 

spreadsheet with all of the parameters and the location for each well to finally 

create a single attributed shape-file for a large number of wells that were 

introduced in the later stages of this thesis. With this new file created it was 

possible to narrow and reduce the number of wells that needed to be 

acquired for the thesis according to total depth , well path (vertical well being 

preferred) , well log data available , and other parameters. The best wells 

according to the parameters previously mentioned and their strategic location 

were selected for the regional scale study area , and purchased from vendors. 

The database created proved to be very useful in the budget planning 

allowing for the analysis of the wells selected in a map interface observing the 

immediate economic implications of the purchase of each particular well , 

saving time and enabling a more efficient well selection (figure 26) 
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Figure 26. 
Wells purchas ed from vendors after inspection and 
ranking of available wells according to specific 
parameters (TD , verticality , well -logs available , cost 
of LAS files and position with respect to the location 
of the cross-sections ). 

4.6 Terrain Modeling and 3D Geologic Data Editing 

Initially all geologic data was digitized accurately following the geologic 

maps (figure 27) and evaluating the three geologic maps available for the 

best representation in the different zones of the work area . 

400 m. 
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Figure 27. Density of points included 
in the editing process of the geologic 
maps . The original accuracy of the 
maps was preserved through the 
digitization process . 
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Figure 28. All components needed for the 30 display . A) Digital Elevation Model DEM. B) Digital 
Ortho photo Quarter Quadrang les DOQQ's. C) Digitized data : formation tops and fau lts, surface 
structural dip data, and fold axes . D) 30 display of the geologi c data draped on the 30 DOQQ surface . 
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As the digitization process was completed , all the different components 

needed (DEM, DOQQ's, and digitized geologic data) were displayed in 30. All 

the data and the high resolution orthophotos (1 m. resolution) were draped on 

the cropped DEM of the area allowing for a rigorous quality control revision of 

the formation contacts and faults (figure 28). This process is done to make 

sure that all the data is in its correct position, as it allows the observation in 

30 space and facilitates the decision-making on which contacts are 

conformable and coherent to what is observed currently in the terrain (figure 

29). For areas were high detail is a necessity , the resolution of the DOQQ's 

(1 m.) can be maintained , which reduces the speed of processes, but 

considerably improves the detail of the formation boundaries observed in the 

terrain (figure 30). 
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Edited to match photo/DEM 

... 

Q Coinciding locations in all views. Aprox 730 m. 

Figure 29. Adjustment of geologic contact , Pleistocene Paso Robles Formation. The contact was not 
conformable with the terrain. To the left contact prior to 3D edition, 3D edited contact to the right. 

High resolution 3D models of the surface permit the use of rivers, 

drainage , and outcrops in the editing process to validate changes to data from 

the original geologic maps (figure 30). 
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Aprox 250 m. 

Modified contact Ll N 

Stratification EJ 
Original contact ,---. I 

Figure 30. The resolution of the DOQQ's (1 m.) can be maintained ; this reduces computer performance 
but considerably enhances the quality of the display . Note formation boundaries and bedding planes . 
Compare to uninterpre ted image to the right. 
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Figure 31. 3D model of the surface geology in the work area. Note the benefits of using a raster image 
to display the geologic formations. 

With all previously mentioned tasks completed, a corrected digital 

geologic map was created; other tasks like the creation of a shaded relief for 

the area, and a raster version of the geologic map were also completed 

(figure 31 and 32). These new layers provide a much better understanding of 

the surface geologic setting of this structurally complex area , and the tools to 

better interpret the subsurface structural geology in the thesis area . 

All the geologic data that was obtained (surface structural dips , the 3D 

edited geologic contacts and faults) were imported into structural 

interpretation software for the construction of structural cross-sections. All of 
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this was preformed to obtain a better understanding of the structural geometry 

and the fold-fault relationships in the area. The construction of the digital 

geologic map is explained in greater detail later in the text along with the 

construction of the closely spaced cross-sections. 

Main Fold A x is Structural Data Tb< Tsg OT! LJTmb - sb 
W. Sebastian Bayer 

Fold_type , SATUS Q$) Horizontal 
Ott Tsg? o, - Tmg 26 April 2006 

.... Anticline . 7 
_ , Tmb ~/ TAR L Tm, 
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Source: 
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Figure 32. Portion of the geologic map constructed in this thesis (detail explanation on the construct ion 
found further in the text ; see annexed full version of the geologic map). 
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4. 7 Construction of the Geologic Map of the Study area 

The revision and careful modification of the formation tops, fold axes 

and faults from published geologic maps and field observation maps was an 

important stage in this thesis and essential for the construction of the digitally 

corrected geologic map used in the construction of the closely spaced cross

sections. As the digitization honoring all the detail present in the available 

geologic maps was completed (figure 27) , it was imperative to check the data 

and validate its conformity to the real terrain. As mentioned previously, this 

was accomplished through the creation of a 3D model of the current surface 

topography and its integration with high resolution digital orthophotos (figures 

21, 28, and 31 ). 

4.7 .1 Geomorphology 

In order to validate any changes performed to the geologic maps it was 

necessary to gather evidence suggesting that adjustments were necessary, 

represented an improvement to the original hard-copy-maps , and conformed 

to what is currently observed in the field (figures 29 and 30). 

The evidence mentioned above is represented by the relation between 

the geologic data and the topographic relief; the analysis was conducted 
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during the photo-geologic phase of this thesis. It was accomplished using the 

digital elevation model and the high resolution orthophotos to produce a 

realistic view of the terrain similar to that obtained with a stereographic pair of 

aerial photos ; with the advantage that in this case any distortion away from 

the center of the paper photos is removed. Here the occurrence of softer 

lithologies associated with smooth landscapes and resistant lithologies 

related to sharp slopes and more prominent buildups was observed. Other 

pieces of evidence that validate the changes that were performed are the 

relation of Quaternary fluvial deposits with river paths and the presence of 

resistant pre-Pleistocene formations as a control for streams present in the 

field and observed in the aerial photos (DOQQ's). The presence of flatirons in 

places where structural dip data points were extracted from the literature 

served as verification of the dip direction and the approximate slope of the 

bedding planes allowing the revision and validation of the surface structural 

data extracted from the maps. Finally, the verification of sand bodies 

mentioned in the literature and present in the geologic maps was possible 

through the observation of intra-formational lens-shaped bodies in the aerial 

photos , providing confidence in the quality of the geologic maps used and the 

validity of the improvements presented in this thesis . The different 

geomorphologic elements employed to validate the modifications here 

proposed are listed and explained extensively below. 
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4. 7. 1. 1 Lithologic Character of Geologic Formations 

The relative competence of the rocks is a very useful indication of 

changes in the lithology. Changes in relief associated with the competence 

variations of lithologic units were successfully used in this thesis to identify 

the accurate position of formation tops. Competent formations like the Tbw 

(Bitterwater formation) produce prominent mounds, while softer, friable 

lithologies like Tu (unnamed marine sediments) form soft slopes and smooth 

profiles (figure 33, B and D). Sandstone and conglomerate formations like the 

Tsg (Santa Margarita Formation) are represented by resistant morphologies 

that stand out in the terrain when observed in contact with non-competent 

units. Figure 33 illustrates this case; the interpretative sketch (D) shows the 

differences in the topographic profile as the lithology changes. The original 

contacts from the literature were edited and moved to conform to the slope 

changes observed and to fit the morphologies characteristic of each geologic 

unit. The corrected formation tops (figure 33, C) clearly match the topography 

and display natural conformity to the terrain. 
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? 

sx] D notice layers 

Figure 33. A) Geologic contacts observed in the terrain; the vertical exaggeration is 1.5. B) Geologic 
units observed in the terrain ; exaggerated 5 times . C) Representation of the corrected formation tops in 
map view . D) Sketch of the topographic profile produced by the different lithologies . 

Different lithologies produce different topographic profiles; these subtle 

differences are noticeable in the terrain model. Figure 34 shows the 

differences between the original maps (Dibblee , 1972) and the contacts 

obtained after revision of the DOQQ's . In the orthophotos it is possible to 

identify the presence of the Belridge Diatomite as it displays a distinctive 

white color when exposed and weathered (figure 34). These observations are 

not conclusive on their own and to validate these changes , topographic cross-
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sections were constructed. Marked changes produced by different lithologies 

where observed in the profile (figure 35, B). 

780 m. 

Figure 34. The figure to the left shows the original maps (Dibblee, 1972) with the edited geologic 
contacts (Fm. Tops) superimposed . The figure to the right displays the edited geologic contacts 
overlying the orthophotos; notice the difference in color to the center of the photo (white); here the 
Belridge diatomite is exposed . 

The Belridge Diatomite (Tmb); a white porous, fissile diatomaceous shale 

(Dibblee , 1973) produces a soft morphology that is observed as a concave 

slope on a topographic profile (figure 35 B). The Etchegoin Formation (Te) 

composed of marine arkosic sandstone is brown when weathered (Dibblee, 

1973). This lithology produces a sharp edge, resistant to erosion that can be 

observed in the schematic cross-section of figure 35; notice the sharp relief 

present in the contact between Tmb and Te (Te is younger). 
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Figure 35. Geomorphologic differences of lithologies . A) Edited Formation tops overlying the 
orthophotos, also location of the schematic cross-section . B) Schematic cross-section; notice the sharp 
profile that is produced at the contact between Tmb and Te. C) Formation tops draped on the terrain 
model (30 view) notice how the river valley is preferably craved in the soft diatomite , opposed to the 
resistant morphology presented by more competent lithologies (Te). 
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The morphologic differences mentioned above are better observed in the 

terrain model; notice in figure 35 C how the river valley is preferentially carved 

following the soft diatomite; this river path is actually located in the core of an 

anticline. The contact between Tmb and Te is marked by the beginning of a 

soft concave slope or the termination of a small competent cliff produced by 

Te (figure 35 B and C). 

4. 7. 1.2 Response of Streams 

Competent geologic formations represent a barrier to the normal flow 

of rivers down-slope . This simple observation was key in the revision of the 

geologic maps. When the digitized contacts were draped onto the terrain it 

was possible to observe places were river paths were omitted by mapping or 

passed arbitrarily across flood plains (figure 36). This is possibly due to the 

scale at which the geologic maps were done (Dibblee 1972, 1 :25000 and 

Dibblee 1973 scale 1: 125.000) since at such scales smaller details are 

difficult to represent. These problems where not observed in the maps by 

Nilsen (1995, scale 1: 10.000) , unfortunately for this thesis we only had 

access to published segments of the map (see bibliography). 

Streams in the area are controlled by the exposure of competent formations. 

For instance , the river shown in figure 36 is controlled by the outcropping 
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conglomeratic (pebbles to granules) sandstones of the Santa Margarita 

Format ion (Tsg , see figure 37). In the figure , the formation tops were modified 

to fit the limit observed between the steeper slope of Tsg and the smoother 

Quaternary sediments deposited by the river. The numbers in red and black 

indicate the approximate location from where the original contacts where 

moved to the current interpreted position (figure 36) . 

200 m. (Aprox .) 

200 m. (Apro x.) 
ModJned co n 

Strat ification 

Origina l co ntact 

Figure 36. Geologic contacts (formation tops) modified to honor the river path and recent quaternary 
fluvial deposits . Black arrows indicate the original position of the contact , red arrows indicate the new 
position proposed in the present work , and numbers are intended to illustrate the approximate location 

from were the contacts were moved . 
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Detailed observation of the shallow topography produced by recent 

sedimentary (Qa) deposits from rivers, the alluvial deposits of the Tulare (Qtt) 

and Paso Robles (Qtp) formations and comparing it to the more competent 

and prominent geomorphology of the pre-Pleistocene formations permitted 

accurate identification of the boundary that exists between them (figure 37) . 

This sharp edge is also apparent at the limit between the flood plain and 

resistant lithologies (figure 38). Careful search to find these characteristics 

was performed at all principal rivers and streams present in the sub regional 

work area. This allowed for the precise identification of this limit, marked by a 

break in the slope of the topography from steep to shallow (figures 37 and 

38). 

a 

100 m. (Aprox.) 
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Figure 37. Competent formations produce 
prominent morphologies. Bitterwater shale 
(Tbw) ; hard brittle shale interstratified with 
sandstone . Santa Margarita Formation (Tsg); 
conglomerate of granitic and metamorphic 
clasts (boulder to pebble) in a sandstone 
matrix (Dibblee , 1973) . Surficial Quaternary 
sediments (Qa) . 

Red arrows indicate interpreted position of the 
contact between competent formations and 
recent sedimentary Qa deposits . Notice the 
change from steep slope (competent 
lithologies) to shallow slope (recent 
sediments) . 

Vertical exaggeration is X5 for easier 
observation . 



Modified contact [SJ 
Original contact 1-----. I 

Aprox 400 m. 

Figure 38. Rectification of the contact between the Monterrey Mclure shale member (Tm) ; hard brittle 
porcelaineous (Dibblee , 1973) and recent flood plain deposits (Qa). Red arrows indicate interpreted 
position of the contact between competent formations and recent sediments . No vertical exaggeration . 
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4.7. 1.3 Use of flat-irons 

When bedding planes outcrop exposing the stratigraphic top of the 

layers as a flat surface, the true dip of the strata can be obtained. If the 

exposed plane is large enough it can be observed with remote sensors 

(aerial-photos); this exposure is known as a "flat-iron" (figure 39). In this 

thesis flat irons were used to verify structural dip data obtained from the 

geologic maps (figure 40). 

Figure 39. Schematic representation of a flat
iron . Blue layers are competent lithologies like 
sandstones and conglomerates. Pink layers 
represent soft formations like diatomite . 

The dip direction and the strike of the strata became apparent on the terrain 

model allowing for direct comparison to several of the 1000+ data points 

obtained from the literature. The inclination of the bedding is observable for 

features larger than approximately 100 meters. For this reason the data 

obtained provide a general value from the multiple elevation points of each 

30x30 meter cell. The slope of the plane observed is useful to determine and 

verify the dip direction of data points. The flat irons indicate the general dip 
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direction which data points (obtained from the actual bedding plane surface) 

should approximately follow (figure 40). 

500 m. (aprox .) 

Figure 40. Use of flat
irons in this thesis. The 
data-points follow the 
general trend of the 
layers . The layers here 
are steeply dipping to 
the northeast (60-90°). 

The insert to the top left 
corner shows the area 
as it is in the original 
geologic maps . 
Dip-data is extruded 
from its actual surface 
location for better 
observation. 

If a marked discrepancy exists between the general trend of the layers in the 

terrain model and the original data from the geologic maps, it is necessary to 

either remove the data points from the project or go to the field to revise and 

obtain new data. A cautious revision was performed to the data points that 

offered the opportunity for revision and comparison to the strata in the terrain 

model. From this revision it was concluded that good correlation exists 

between what is observed in the field and features observed in the 3D model 

(figure 40). 
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4. 7. 1.4 Rule of V's 

When streams cut through stratigraphic units, a distinctive "V" shape 

pattern is observable in topographic contour lines along the stream. The 

layers also display a "V" shape that is controlled by the dip direction, the 

inclination of the strata and the topographic relief (gradient of the stream) 

represented by the contours along the river (figure 41 ). When the strata are 

horizontal , the contact between two lithologic units precisely resembles the 

shape of the topographic contours (figure 41, A). If the strata are dipping with 

angles around 30° to the opposite direction of the topographic slope along the 

stream (figure 41, B) the beds form a "V" shape that is wider than that shown 

by the topographic contours with the apex of the "V" pointing in the same 

direction as the "V" produced by the contour lines. When the layers are 

vertical they will produce a straight line (band) that cuts across the "V's 

displayed by the contours (figure 41, C). Layers dipping downstream with a 

steeper angle than that of the topographic slope along the stream will produce 

a "V" shape with an apex pointing downstream ; this is opposite to the 

direction of the "V's" formed by the contour-lines (figure 40, D). When beds 

are dipping at angles slightly higher than the gradient of the stream they form 

two bands that broaden upstream until they reach the point where the top and 

the base of the layer is exposed (figure 41, E). 
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Figure 41. Rule of "V's" 
A.) Horizontal beds ; bedding follows the 
contours . B) Bedding dipping to the 
opposite direction of the gradient , the 
bedding crosscuts across the contours 
forming a broad "V". C.) Vertical strata . 
D.) Bedding dipping in the same 
direction of the gradient , "V" of the 
contours and "V" of the bedding pint in 
opposite directions E.) The beds are 
dipping with a slightly higher inclination , 
in the same direction of the gradient. F.) 
Layers dipping with the same inclination 
as that of the gradient. 

Modified from: 
hllp ://www .geology.c wu.edu 
/dept/courses/g360/topo I . jpg 

For the case where layers dip in the same direction and with the same 

inclination as the gradient of the stream , the "V" formed by the strata is similar 

to the one displayed by the contours , with the exception that they cut through 

the contours indicating the strata are not horizontal (Figure 41 , F). 
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Figure 42. 

A.) Case where 
tributaries feed the 
master channel of 
streams . 

The tributaries will run 
at an angle to the dip 
direction; while the 
main channel will run 
parallel to the dip 
direction. 

The steeper the slope 
of the terrain the larger 
the angle will be 
between the main 
channel and the 
tributary (approaching 
the strike of the layer 
when he slope is high). 

B.) Block-diagram 
showing the case 
mentioned above 
(tributaries cross
cutting bedding planes 
perpendicular to the 
dip-direction). 

The tributaries will form 
V's similar to those in 
the block diagram. 



The main channels of streams in the study area cut strata in the dip direction. 

These channels are fed by tributaries which run at an angle to the main 

channel. The steeper the slope of the terrain along the sides of the channel 

the larger the angle will be between the main channel and the tributary (see 

slope of the terrain in figure 42) . This angle will approach 90 degrees and 

follow the strike of the layer in extreme cases where the slope is very steep. 

For some cases in this thesis, some of the smaller streams and tributaries cut 

the strata laterally or oblique to the dip-direction. This required some 

modifications to be performed to the model presented in figure 40 and create 

a diagram for these instances (figure 42). This simple sketch was useful for 

the case mentioned above , in the prediction of the path followed by the 

contacts. 

In order to use concepts previously mentioned , the 30 terrain model 

was contoured ; this permitted the observation of the relationships between 

the "V" shapes formed by the contours and the geologic contacts. This 

relationship , coupled with the difference in color of the lithologies , the 

geomorphologic differences between them mentioned previously , and the 

knowledge of the dip of the strata (obtained from the dip data from the 

geologic maps) allowed for a more accurate interpretation of the position of 

the formation tops (figure 43) . 
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Rule Of V's 

Modified contact [SJ 
Stratification EJ 
Original contact 1----.. I 
Contour lines 

Figure 43. Contouring of the 3D terrain model for observation of the relation between contour-lines and 
format ion tops across streams . 

Even though the position of the geologic contacts is correct to the 

scale they were constructed (e.g Dibblee , 1973 1:125000), they had to be 

edited for the purpose of constructing a geologic model for the detail study 

area . The contacts were edited to conform to the "V's" expected as the units 

are being cut by the streams (figure 44) . 
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Modified contact [SJ 
Stratification EJ 
Original contact 1----.. I 

Figure 44. Top view of the original contacts showing a general straight path across streams and the 
edited formation tops honoring each one and displaying the expected "V: shape across the streams. 

Figure 44 shows the original contact in blue following a roughly straight path 

and the modified contact in pink showing a more curvilinear path honoring all 

streams cutting across the bedding. 
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4.7.1.5 Verification and Validation of the Geologic Map 

The geologic map presented in this thesis was revised by checking the 

conformity of digitized contacts with the orthophotos draped on the terrain 

model. This method allowed us to verify the existence of rock bodies and geo

forms extracted from the original geologic maps and validate their presence in 

the field . Accomplishing this provided certainty that the revised digital 

geologic map was geomorphologically correct. But it was still necessary to 

confirm that the geologic formations mentioned in the maps were actually 

those present on the terrain. 
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Figure 45. 

Geologic map of the surface locatio n of well-4 
Federal 1-33. The geologic map to the left bottom 
corner is that of G.J . Gregory , 1996 ; it was 
modified from Dibblee , 1973 and revised to 
resolve greater detail for the outcropping Williams 
sandstone . 
The image to the right upper corner is of the 3d 
terrain model to show the resolution of the 
sandstone bodies . 



In order to confirm the presence of the formations presented in the original 

geologic-maps at the correct stratigraphic level, one well was selected; taking 

its surface location into account. This well occurs on the lenticular sandstone 

bodies of the Antelope member of the Monterey Formation (according to the 

geologic maps by Dibblee 1972, 1973 and G. J . Gregory 1996). This well was 

particularly useful for verifying and validating the geologic map for various 

reasons; one is that the Tulare Formation is absent in the area, thus 

preventing it from covering the Monterey Formation. The second reason is 

that the lenses mentioned are very-well visualized in the high-resolution 

orthophotos. Third, the area has been thoroughly studied and the literature 

(G. J Gregory, 1996) provides excellent information and a revised geologic 

map for the well location and surroundings that is very detailed for the 

Williams exposure (Figure 45). 

The Federal 1-33 well is located in the NE-quadrangle of Section 33 of 

Township 32 South Range 23 East (figure 45). Here the Williams sandstone 

of the Antelope member is outcropping . These sandstone bodies are very 

well-recognized in log character (figure 46) and various markers provide 

evidence for the presence of these sandstones from the surface to around 

800 ft-drillers-depth (figure 46). 
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Log-markers of the W illiams sandstone , note that the top of the W illiams falls somewhere above 100 ft 
(MD). The top Will iams marker is not interpreted due to its proximity to the casing limit . 

The markers that indicate the presence of the Williams sandstone are in 

stratigraphic order : "E" SD , "D" SD , "Willmax " SD , "C" SD , "B'' SD , "A" SD -

Top Williams marker , "A 1" SD , and the Stripes Marker (figure 46 , Markers up 
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to "B" SD only). The recognition of these markers and the fact the top of the 

Williams is shown to be shallower than 100 ft (MD) suggests that the 

sandstone bodies present in the surface are in fact the Williams sandstone of 

the Antelope member of the Monterrey Formation. 

The evidence presented above and the fact that the Williams 

sandstone bodies were visualized in the surface as resistant mounds in the 

terrain-model (figure 45) indicates that the data obtained from the original 

geologic maps is very accurate and that the revised-digital-geologic map 

presented in this thesis is a reliable tool for the construction of structural 

cross-sect ions , and a detailed geologic map for future use in the area of this 

thesis . 
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4.8 Construction elements for the Structural cross-sections 

To understand the regional structural framework of the study area , 

three sub-regional cross sections and one strike line were constructed . These 

provided large scale understanding of the structures and a regional tie for the 

five closely-spaced cross sections built in the detailed area (figure 1 ). 

Nineteen wells distributed in the sub-regional area and 17 in the detailed area 

were used to build the cross sections (figure 47) which are located in the 

southern Belgian anticline area to the north of the main Midway-Sunset 

structure . The smaller-scale cross sections provided the frame to build the 

structural geologic model (figure 48). 

A. 
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Figure 47. 
A) Location of the wells used for the sub regional cross-sections . The dark _ blue lines indicate the 
location of cross sections AA', BB', CC' (from south to north), and the strike section. 
B) Location of the wells with dipmeter-logs used for the localized cross sections . 
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The log suite used for the interpretation of the formation tops at the 

selected wells includes resistivity , conductivity , SP, and gamma-ray. 

Additional parameters taken in account for the well selection were that drilling 

depths had to be at least 3000ft , the wells had to be vertical or close to 

vertical , and computed tadpoles from dipmeter logs had to be available for all 

wells. 

Once all the wells were selected , topographic profiles were obtained 

for all the sections. Data points including X, Y (NAD83-UTM-Z11 

coordinates) , and Z values (elevation-meters) were extracted from the DEM 

every 30 meters and projected to the cross sections . Subsequently corrected 

geologic contacts obtained from the 3D edited geologic map were extracted 

at the intersection of the cross sections and the surface. This produced a 

topographic profile with lines that indicate the surface location of geologic 

contacts and constitutes the starting point in the construction of the structural 

cross-sections (figure 49). 

4 



)-~/. 0 

--====--===----
0.5 1 2 

Miles 

~.:: z:, a,- 20 
TULARE B38-2B 

0 

21 
ALICE K VERHEYENBB-7 

0 

Figure 48. Distribution of the localized cross-sections in the Southern Belgian anticline area . 

With the extraction of the topography completed , the next step was to 

project the well paths normal to the vertical plane of the cross sections . This 

is somewhat simple for straight boreholes but more demanding for deviated 

wells. For this reason before deviated wells could be projected they had to be 
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revised; wells 1, 2, 4, 10, 12, 14, and 15 of the regional wells and 11, 354, 26, 

27, 32, 36, 12-35, 15-21, TO-2 , 62, 510, and 549 of the localized wells are 

slanted, requiring the use of the directional surveys to accurately position 

them in space. Since it was only possible to obtain the deviation surveys as 

hard-copy logs, they had to be geo-referenced and rectified to produce an 

accurate X, Y, Z table for the deviation of the well (figure 50). Once the digital 

surveys were completed they were loaded into each well to obtain their 

correct well-paths. With this task ready it was possible to proceed with the 

projection of all the wells to the cross sections. 

1.2 miles (Aprox.) 

Figure 49. 
Segment of the topographic -profile of cross
section A-A' displaying the intersection of the 
geologic contacts at the surface . Note the 
dipmeter tadpoles and the surface structural 
data points projected normal to the vertical 
plane of the cross-section 's. Note the display 
of filtered tadpoles on the well. 

Once all deviated wells were loaded into the structural interpretation 

software , the computed tadpoles were tied to the well paths; for quality control 

a selective scrutiny was performed to the dipmeter data and only tadpole 

calculations reaching a confidence of 60% or more were loaded into the 

project (figure 51). 
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Fin al product: D 
Directional survey 
imported into st ru ctural 
interpretation software 

Derived directional survey, extraction of 
X-Y-Z com po nents 

30 Display 

Directi onal path 

~ 

C 

Comparison to 
vertica l well path 

B 

Sample directional survey . A) hard-copy . B) Digitized and geo-referenced deviation survey . C) 3D 
revision of the directional path . D) deviated well projected to cross-section A-A'. 

Active structural controls and shifting of sand sources throughout the 

depositional history caused stratigraphic thickness to vary significantly within 

short distances in the study area. To prevent errors due to stratigraphic 

thickness changes associated with this phenomenon , the wells were 

projected from a maximum lineal distance of 5 km (3.125 miles). away from 
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the cross sections , providing a higher degree of confidence to the structural 

interpretat ion (figure 52). In addition to the tadpoles from dipmeter-logs , 

selected surface strike and dip data points were also projected to the cross 

sections (figures 49 and 52). 
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3 13.7449 16.3 
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Figure 51. 
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2.5 km. 
A . 

2.5 km. B. 

Figure 52. 
Projection of structural data normal to the vertical plane of the cross sections . A) Projection of surface 
structural data . B) Projection of the wells . The maximum distance from which wells and surface data 
were projected is 5 Km (3.1 miles). 

To construct the large scale structures , the most representative surface dip 

data points were used , this was accomplished by obtaining the average of the 

dip direction and inclination from zoned data points. Regarding the dipmeter 

logs , 2 tadpoles were available each 1 0 feet. This was good since all the data 

was available but the data density was too much for the purpose of display 

and practical use of the data. This was solved by filtering the data at 1 tadpole 

every 20 , 30 , 40 and 100 feet. This procedure was very useful and 

considerably improved the data cluttering observed when using the raw 

dipmeter-logs at regional scales (figure 49) . 
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5. STRATIGRAPHIC EVALUATION 

Nine major formation tops were selected for the stratigraphic studies. 

These tops have good age constraint in the literature and are well identified in 

public reports. The formation-top markers comprise the Kreyenhagen shale, 

the Tumey/Oceanic sandstone, the Temblor Formation, the main members of 

the Monterrey Formation (Gould/Oceanic, McDonald, and Antelope/McClure), 

the Reef Ridge shale, the Etchegoin Formation and the San Joaquin 

Formation . A tenth marker was interpreted in this study for the Basement 

(T Jo). These represent the surfaces that were later used to build the 

structural framework ; other secondary-markers were used for stratigraphic 

position identification . More than 37 secondary-markers identified in 4 type 

wells were selected and used to expand the interpretation (figure 53). These 

wells were used to identify the 9 main tops for 17 regional wells (figure 47 and 

53). Once all recognizable secondary markers were identified and the 

interpretation of the 9 major formation tops was completed , 7 stratigraphic 

cross-sections were constructed to cover the regional area of study and get a 

comprehensive idea of the stratigraphy. The stratigraphic interpretation 

includes the identification of main turbidite sandstone bodies , from the lower 

Phacoides sandstone in the Temblor formation to the Potter and Olig 
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sandstone in the Belridge Diatomite (figures 74-81 , and stratigraphic cross 

sections in pocket). The nine formation tops were additionally used to 

construct three balanced regional cross sections that provided the frame for 

the detailed structural model of the Southern-Belgian Anticline area. 

Well_8 

, l 

5000------

TOP SAN .JOAGl.114 I 1Sl 

TOP ETCHEOON r"?) 2~ 

GUSNl:llt SMO ZOMC 1115 >136 

TOP RHf RIDGE lLtO n 

TMC C720 
N_PT 4i8S 

ANTR.OP-f kse) 52fiO 

0 ' , ..... 

Figure 53. Example of log-picks used ; markers in blue were extracted from the drilling report of well 8, 
markers in black were interpreted in the present work using log character (left side). Location of the 4 
type wells selected for the interpretation , the wells are highlighted with blue circles (right side) . 

Each type well is located on the path of a structural cross-section. 

Well 1 - cross section AA' Well 10 - cross section BB' 
Well 17 - cross section CC' Well 19 - strike section 
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5.1 Type wells 

The log picks present at each one of the type wells and in various 

interpretation wells were obtained from public well drilling reports consigned 

in the State of California Conservation Commission. These markers are 

highlighted in blue , opposed to picks interpreted in the present study that are 

marked in black (figure 53). In this thesis, blue markers are not interpretative 

and considered hard data. They represent markers for which the level of 

confidence is acceptable. The type wells were selected based on the 

availability of good log markers , the depth , and their location. Each one of 

these wells is locate very near or on the path of a structural cross-section 

(figure 53). 

Well #1 is the deepest well used in this study; it reaches a measured 

depth (drillers depth) of 19.900 usable log-footage . This well was selected as 

the primary-type-well (figure 54) for the fact that all the formations of interest 

and most of the intra-formational markers are represented in this well. It is 

also very important to note that no interpretation was conducted in this well 

and that absolutely all the markers were available and existent in the well 

report . 

Well #10 was very useful to obtain constrained-markers in the shallow 

formations since it displays all the formations of interest (blue markers) from 

the San Joaquin Formation to the Antelope member of the Monterey 
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Formation . The Williams sandstone marker was interpreted for this well (see 

stratigraphic cross sections in pocket) to populate missing data and to expand 

the interpretation (figure 55). 
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Figure 54. Main type-well (well # 1 ). Note the depth of the well ; usable measured depth of the log is 
19.900 ft. Data markers in blue obtained from well-report (for location see figure 53). 
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Figure 55. 
Type well (well# 10), Formations 
shallower than the Antelope member 
are well documented in this well. Note 
black marker representing interpretative 
Williams sandstone marker (for location 
see figure 53) . 



Type well #17 has excellent marker representation from the San 

Joaquin Formation to the Point of Rocks Sandstone. This well is particularly 

important because it is possible to observe how the formation tops are at a 

much shallower level to the North, compared to that observed in well # 1; this 

suggests active processes occurred during the deposition, considering that 

there is a relatively short distance (less than 13 mi.) between wells 1 and 17. 
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Figure 56. 
Type well (well #17), Main 
tops and secondary markers 
are very well defined from the 
San Joaquin Formation to the 
Point of Rocks sandstone. 
Secondary markers are 
highlighted in pink; they were 
used to locate adjacent main 
markers (for location see 
figure 53). 

(Light pink used for Trr and 
Top Olig , these are not 
secondary markers) . 
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Well # 17 also has the most intra-formational secondary data markers 

available; these markers are represented with pink lines indicating that they 

are not a formation top or the top of a main sandstone body. These pink

markers were very convenient to locate well log-signature levels adjacent to 

formation tops and contributed in the interpretation of these main markers in 

other wells (figure 56). 
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Figure 57. 
Type well (well #19) , All formations from the basal 
Tulare Formation to the Kreyenhagen shale are 
represented. Note the trend of formations at 
shallower levels to the North (for location see figure 
53) . 

(Light pink used for Trr and Olig sandstone.) 
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All formation tops from the Tulare (Amnicola marker) to the Kreyenhagen 

shale are represented in type well #19. The general trend mentioned before 

of shallower depths for correlative formation tops to the north is also observed 

in this well. Note the top of the Kreyenhagen shale at around 9100 ft. 

compared to 10350 ft. in well #17, and 19850 ft. in well #1 to the South 

(figures 57, 56, and 54). 

5.2 Formation tops 

The age control for the main markers from the base of the 

Gould\Devilwater member of the Monterey formation to the Tulare formation 

was extracted from various authors in Fortier (1996). The base of the Temblor 

formation and the base of the Tumey/Oceanic (contact with top Kreyenhagen 

shale) were inferred from Farley (1990), Dibblee (1973), and Beyer (1988). A 

compilation of the parameters used to assign the ages of the main markers 

are found (Chapter 2.3 of this thesis Stratigraphy). 

The interpretative basement in this study refers to the undifferentiated

sedimentary and igneous rocks of pre-Cretaceous to Jurassic age. The top 

Kreyenhagen was assigned to the top of the Eocene (33.9 Ma.) marking the 

unconformity. The unconformity at the top Tumey/Oceanic marker was 

assigned to the top Oligocene (23.03 Ma.) The marker corresponding to the 

top Temblor was assigned an age of 16.4 million years. Three major 
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subdivisions were established tor the members of the Monterey Formation; 

these are the Gould\Devilwater, the McDonald, and the Antelope Markers; the 

ages assigned were 13.9, 8.9, and 7.0 million years, respectively. The 7.0 

million year mark is very important as it is proposed in this study as an 

unconformity between the Antelope and the Reef Ridge shale . Three main 

uncontormities that are widely recognized in the area were used as time 

constrained markers in this thesis; these are the Reef Ridge (5.3 Ma.), the 

Etchegoin (4.0 Ma.), and the San Joaquin (2.35 Ma.) markers (figure 58). The 

lower-Tulare formation is included in the present study, but no marker was 

identified as this study is focused on the deeper levels of the stratigraphic 

section. 
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Figure 58. 
Generalized stratigraphic column proposed in this thesis . Red lines indicate unconformities . Ages were 
assigned in accordance with the literature and observation of published geologic maps and stratigraph ic 
columns. (Portion from base-temblor to Tulare Formation extracted and modified from : T. H. Nilsen in 
Nilsen , T.H ., Wylie , Jr ., A.S ., and Gregory , G.J. , 1996 fig 10 Pg. 19., Ages added according to J . D. 
Fortier) 
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5.3 Well-log character and interpretation 

The suit of logs selected for the interpretation phase at each one of the 

regional wells includes at least, SP and/or Gamma-Ray (GR), resistivity 

(AT10, AT30, and AT90), conductivity, and dipmeter-logs (tadpole 

computation). These log curves were used to identify characteristic signatures 

of the markers at the type wells to then expand the interpretation into all 

available wells. This stratigraphic interpretation was performed to accurately 

locate the markers of interest at their correct stratigraphic position to then 

provide constrain for the construction of balanced structural cross-sections. 

Selected log-markers are presented here with a comparison to one of the 

type wells; For all the markers interpreted see the well markers portion of the 

stratigraphic cross-sections (in pocket). 
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Figure 59. Correlation between Well # 1 (type well and well# 2 at the Reef Ridge level. Representation 
of the SP-log (right) and GR-log in diatomite rich lithologies ; note that the GR curve shows a similar 
response compared to the clear changes observed in the resistivity and conductivity curves . A better 
response is obtained with the SP-log (well #2). 
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As was mentioned earlier, the west-side of the San Joaquin Basin was 

characterized by active deposition of diatomite during the late Paleogene and 

throughout the Neogene. This produced thick diatomite-shale deposits 

intercalated with sandstone bodies. Diatomite-shales are made of silica and 

are poorly detected with the GR-log. This is possibly due to the lack of 

radioactive elements found in these clean, clay-size sedimentary deposits; 

causing diatomite packets to appear very similar to sandstone lithologies 

when observed using solely the GR-log (figure 59). Since diatomite 

distribution is widely encountered in most of the stratigraphic section, it was 

important to use the full suite of logs available for the correlation. The 

conductivity log along with the SP log proved to be the best logs to 

differentiate lithologies in the study area (figure 59). 
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Figure 60 . 
Location map of well # 1 and 
well # 3. The insert map is a 
geologic map modified from 
Dibblee (1973b) , by Gregory 
(1996) . The map is very 
detailed in presenting the 
surface extent of the 
outcropping Williams 
sandstone (sections 27 and 28, 
see also figure 45) . The 
Williams marker was identified 
in well # 3 from comparison to 
well # 1 and from the literature 
(see also figure 46). 



The outcropping turbidite sandstone bodies of the Antelope Shale are 

excellent examples of the relation between sandstone and diatomite in the 

area (figure 60). These Upper Miocene sandstones are present in type well # 

1 and were interpreted in well # 3, from the Leutholtz Sandstone near the 

base to the Williams Sandstone in the upper-Antelope Shale member. The 

resistivity log was used to identify similar patterns in the signature at detailed 

scales, while the conductivity log was used to validate the correlation to a 

larger scale (figure 61 ). 
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Figure 61. 
Correlation of well # 3 
with Type well# 1. 
Note the similarity of 
the well-log response 
at the Williams 
Sandstone level in the 
Antelope member of 
the Monterrey 
Formation. 



5.3.1 Point of Rocks Sandstone and Kreyenhagen Shale 

The Point of Rocks Sandstone was penetrated by wells 19, 17, and 20 

of the regional wells. It is represented by a series of blocky sandstone 

packages beneath a clear shale line in the SP-log, that are identified as the 

first sandstone bodies (top to bottom) beneath the Kreyenhagen shale (figure 

62). 
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Figure 62. Well -log character of the Point of Rocks marker. Note the blocky pattern of the sandstone in 
the SP-log and the inte rcalation with thin shales at the three wells. 

The marker for the Point of Rocks Sandstone was available in the well

reports of well # 17 and well # 20 (figure 62). This data and the log character 
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provided the confidence to interpret the marker in well # 19. Also, the marker 

for the top-Kreyenhagen was available in well # 19 (see stratigraphic cross 

sections) and the drilling report mentions that the well was completed in the 

Point of Rocks Sandstone (figure 62). 

The Kreyenhagen is a thick continuous shale packet above the Point of 

Rocks Sandstone and is directly beneath the Oceanic Sandstone of the 

Tumey Shale (figure 62 and 62B). Type well # 1, located to the south, 

penetrated the Kreyenhagen, which in logs is represented by an uninterrupted 

SP-shale-line, that suggests a very homogeneous and continuous lithology 

throughout the study area. 
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Figure 62B. Top Kreyenhagen (marker). Note the continuous SP-shale-line directly below the Oceanic 
Sandstone. Note the blocky pattern of the Oceanic sandstone . 
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The Oceanic Sandstone is time equivalent to the Tumey Shale marker and 

when present, the Oceanic Sandstone is a very good marker to obtain 

stratigraphic position as it is the top of a very well defined sandstone packet 

characterized by its blocky appearance. In well # 20 the sandstone is 

observed going out of scale in the SP-log conserving its basic blocky pattern 

(figure 62B and 63). 
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Figure 63. Top Ocea nic Sandstone . Note the textbook blocky pattern of the sandstone packet in the SP 
and conductivity logs . 
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5.3.2 Top Temblor-Media Shale 

Top Temblo r(?)• Media 9220 ft. (WSB lnterp) 
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Figure 64. Log character of the top-Temblor marker (top Media shale) . The arrows indicate coarsening 
upward pattern interpreted form the SP (red) and resistivity (green) logs. 

The top of the Temblor Formation was identified in this thesis as the 

top-marker of the Media Shale. The resistivity log was the main tool used to 

interpret this marker; it is recognized as the base of a high resistivity zone 

roughly 300 ft thick. This high resistive packet displays three zones which are 

interpreted (log character) to be cleaning-upward and separated by shale 

layers (low resistivity zones). Although it is more subtle, the SP-log also 

shows a cleaning upward trend as displayed in wells 4 and 6 (figure 64). 
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5.3.3 Shale Members of the Monterey Formation 

The Gould Member of the Monterey (Tmg) Formation outcrops in the 

surrounding area of well # 6 (figure 65); this indicates with certainty that the 

marker is present in the well. Well # 6 is logged from 400 to 4900 ft, and the 

known marker for the top-Temblor (Media Shale) is located at 785 ft (figure 

64). From observations in other wells the Tmg marker is expected at around 

568 ft above the top Temblor marker (565 ft, well # 4 and 570 ft, well #1) in 

well # 6; this indicates that most probably the Tmg-marked was outside the 

logged interval somewhere around 217 ft (drillers depth). 
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Figure 65. 
Outcrop of the Top
Gould/Devilwater Marker 
(Tmg) near Well # 6. The 
well sits on the upper 
members of the Monterey 
Formation . 

Midway sunset extension 
and potter producing area 
digitized from R. L. 
Gardiner , A. S. Wylie , Jr. , 
M. J. Gagner ., 1996, Pg. 
176, Figure 1. 



To calculate the expected location of the marker in the well, the known 

position of the surface marker was projected to the well path taking into 

account the elevation of the Kelly bushing (from DEM), the surface elevation 

of the contact (using DEM & DOQQ) and the linear distance from the well to 

the contact at approximately the dip direction of the beds. With these 

parameters , the location of the marker was interpreted using the tangent of 

the dip angle to match the wells. The result was then transformed to feet 

(figure 66). 
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• TAIi ncuon In Excel ts used 1n radians 

Result= 83 meters or 272 .3 ft. 

Figure 66. Estimation of the approximate location of Tmg in the borehole. 
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The Gould/Devilwater marker was interpreted at the Foraminite level. The 

Foraminite is defined paleontologically by the appearance of Siphogenerina 

branneri (Relizian-Luisian age); its stratigraphic position lies between the 

McDonald and Media Shales (Campbell , 2001 ). In the present work it was 

identified by comparative correlation to wells were the Foraminite-marker was 

available (figure 67). 
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Figure 67. Well log representation of the top-Gould /Oevilwater marker ; notice the log character of the 
SP-log at the fo raminate level (red arrows) and the strat igraphic position below the MacDonald shale . 

The top McDonald marker was interpreted at the base of a noticeably 

resistive sandstone body displaying a coarsening upward character. The 

marker is located stratigraphically above the Tmg marker and is available in 

the drilling report of type well #1, wells 17, and19 (figure 67). 
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Figure 68. Top Antelope -marker ; recognized by log character and its stratigraphic position with respect 
to secondary markers (obtained in well-reports) . This marker was also interpreted at the top of known 
sandstone packets from the literature (insert stratigraphic column from : Reid , 2001 ., figure 2, pg 171.) 

Various secondary markers from the type wells were used to locate the 

position of main markers ; these display characteristic log signatures 

recognizable in other wells (see log markers in pocket) . The top Antelope 
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marker was identified by its position below the P _PT secondary marker and 

above the Q-PT along with other secondary markers; it was also interpreted 

at the top of sandstone bodies like the 242-Sand as recognized in the 

literature (Reid, 2001 ), in the Stevens oil-zone of the Elk-Hills field (figure 68). 

Multiple sandstone bodies were interpreted in this thesis for the Monterey 

level; these are the Stevens, the Leutholtz, and the Williams sandstones. 

Regarding their stratigraphic distribution it is important to note that the 

"Stevens" is recognized here as a broad zone of multiple sandstone packets 

in the Monterrey shale. Even more, it is important to note that some of these 

packets are denoted with different names in different fields (e.g 242 and 26R 

in Elk-Hills) and that the name Stevens has been widely used in the literature , 

as noted by Quinn (1990), in reference to upper Miocene turbidite sandstones 

reaching as high in the stratigraphic column as the Belridge diatomite level in 

the Reef Ridge formation . This is explained in more detail in the stratigraphic 

cross sections . 

5.3.4 Top Reef Ridge Marker 

The Reef Ridge Marker comprises the Belridge Diatomite and the 

Bitterwater Shale. It defines the limit between a log section characterized by a 

serrated and sandier pattern in the SP-log and resistivity logs (Olig 

sandstone) and the more constant log pattern of the lower Etchegoin 
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Formation (sub-Gusher Sandstone level). This marker also represents the 

Upper-M iocene Unconformity , broadly recognized in the literature (figure 69). 

Sandstone bodies in the Reef Ridge terminate against this unconformity, 

which is responsible for the absence of the Reef Ridge shale to the north of 

the study area (see model , figure 117). The Potter Sandstone and the Olig 

Sandstone were interpreted and are identified as extensive continuous 

sandstone bodies beneath the Reef Ridge marker (see stratigraphic cross 

sections). 

Gusher sand zones (intra-Etchegoin) 
1.) 2975-2995 ft. 
2 ) 3005 -3035 ft. 
From well completion report 

iC 

g 
"' z ,., 

WELL# 8 
ILD 

Figure 69. Reef Ridge marker ; serrated (red) more constant pattern (blue). Insert , modified from: 
Ingram, 1964 plate IV. 
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The Olig-Potter level, known as the Santa Margarita Formation in outcrop, is 

characterized by large lens-shaped sandstone bodies embedded in diatomite. 

This is the Belridge Diatomite level (Tmb) located stratigraphically beneath 

the Reef Ridge marker. In the field 1 these lens extend tor approximately 100 

feet laterally and they are observed encased into the diatomite , cutting into 

the substrate to the base and overlain by diatomite to the top. 

From actual observations in the field (personal field observation during 

visit to Bakersfield 1
) and the analysis of the stratigraphic and structural 

interpretation in this thesis, it is proposed that multiple events of sandstone 

deposition followed by diatomite deposition, tied to the evolution of a major 

fault-bend-told to the west of the study area , were active during the deposition 

of the later Stevens sandstone bodies. As a response to this major structural 

event , these sediments were deposited in a northeast direction , becoming 

more prominent to the central part of the study area. This will be observed in 

the stratigraphic cross-sections and analyzed in more detail in the structural 

analysis of this study. 

113 



5.3.5 Top Etchegoin and San Joaquin Markers 

The limit between the Etchegoin and the San Joaquin 

Formations is not easily interpreted in well-logs. Furthermore , to accurately 

locate this marker it is necessary to obtain a proper biostratigraphic analysis 

to identify the unconformity that lies between these two formations. In this 

study the limit was interpreted by carefully observing the log character of the 

type wells which had the limit available , studying published well-logs in the 

literature, and identifying these observations in the interpretation wells . 

Well_11 Type Well_ 10 

ILD 

~ I· .. · .-::~.j' 
r I , ..-
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+---+~~..;..;.+--,?-_~r-i~-r -:-:=-r---H :ht ttt±tt--t,tt-il~~~::t:::-ttfiitlt::H Top Etchegoln 
3420 

- - ) 

Figure 70. Log character of the Etchegoin marker (note resistivity change above the Etchegoin ). 
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A complete large scale (600 ft) comparative correlation analysis was 

conducted to identify correlative log signatures. This provided an acceptable 

level of confidence to then observe detailed features in the well logs to locate 

the top-Etchegoin marker representing the unconformity that separates the 

Etchegoin and the San Joaquin Formations (figure 70). At a larger scale it 

was a subtle fining-upward trend above the Reef-Ridge marker , noticeably 

terminating where a more constant SP-log is characteristic . This was 

observed in the type wells were the top-Etchegoin was available (blue

markers). With this in mind, the limit between the San Joaquin and the 

Etchegoin Formations was interpreted (figure 71 ). 
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Figure 71. Wide-range log-character interpretation showing the fining upward character of the 
Etchegoin (blue arrow) and the more constant SP-log signature of the lower San Joaquin Formation 
(red arrow s). 
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The top San-Joaquin-marker was interpreted at the point where a 

general trend resembling a funnel (SP-Resistivity) terminates into a more 

constant SP-log character in the San Joaquin Formation. This prominent 

coarsening upward characteristic in the SP-log of the lower Tulare Formation 

has been extensively illustrated in the literature, marking the unconformable 

contact between the Tulare and the San Joaquin Formations. This renowned 

aspect was used to identify the Top San Joaquin-marker in this thesis (figure 

71 ). 

WELL# 8 
SP ILD 

-~ 
f, • 

~ : I i 

T 
u 
L 
A 
R 
E 

s 

j 

0 
A 
Q 

- - - -0 
1-14 

[ \,. ,, ... 
---= 

-

-

116 

z a ,,, ::D (.0 

z ! 
,,, Figure 72. Identification of the top a, ::D ,,, 111 San Joaquin marker. Note the ::D 0 (.0 

z marked coarsening upward 
character of the SP-log in the Tulare 
Formation . In the insert figure , the 
red and green arrows illustrate the 

-a funnel shape character formed by 
r the Sp-log and the resistivity log in ... ,., 

C en this level ; the SP-log goes out of 
r ... 

scale in well # 8 in the Tulare J> 0 
::D 0 Formation . ,,, ,,, 

z ,,, 
Insert , modified from : Ingram , 1964 

UNC 
plate IV. 

(.0 ,, 
~ r 
<.. 0 
0 0 
J> ,,, 
0 z 
C ,,, 
z 



5.4 Stratigraphic Cross-Sections 

The stratigraphic datum selected for the seven cross-sections is the 

top-Etchegoin marker . The datum and the location of the sections were 

selected to understand more clearly the depositional direction and the 

distribution of the upper-Miocene sandstones in the study area. 

0 1 2 6 8 

,,,. 
Cross-section 1 

'"i' B' ... 

5.4. 1 Stratigraphic Cross -Section 1 

Figure 73. 
Genera l location map of the seven stratigraph ic 
cross-sections. 

Geologic contacts rectified from Dibblee , 1972-
73. , Midway sunset extension and potter 
producing area digitized from R. L. Gardiner , A. 
S. Wylie , Jr ., M. J . Gagner ., 1996, Pg. 176, 
Figure 1. 

Cross -sect ion 1 extends for approximately 11.6 km (7.25 mi.) and 

includes wells 19, 18, 17, 16, and 14; it is located to the North , at the 

uppermost corner of the study area . This was selected as the starting point of 

the correlation for the excellent marker availability and the short distance 
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between the wells . Having numerous data-markers (blue) in a reduced area 

ensured a less interpretative starting point with less log-signature variability. 

Wells 19 and 17 are type wells and include data markers for all the 

formations from the San Joaquin to the Kreyenhagen marker. The remaining 

wells include some data markers and TD within the Antelope member. This 

section shows a general thickening to the Northeast for the formations above 

the McDonald member of the Monterey Formation. Earlier formations like the 

Temblor display a relatively constant thickness, with a subtle general 

thickening to the west , apparent from well 15 to 17 in the Carneros Sandstone 

(figure 74). 

5.4.2 Stratigraphic Cross-Section 2 

The southernmost limit of the study area is covered by cross-section 2. 

It crosses the middle part of the Midway-Sunset structure where the main 

stratigraphic markers mentioned in the literature are present and available in 

type well # 1, present in this cross-section. This well is the deepest well used 

in this study. Two reverse faults are presented in this cross-section ; the one 

at the base of the Tumey Shale in type well # 1 was obtained from the report , 

and the one in well # 3 was interpreted in the present study (see well markers 

in pocket). 
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Figure 74. Cross -section 1; format ions above the top-McDonald marker are thickening to the northeast. The Temblor formation is slightly 
thickening to the west . (for more detail and well-log markers see the full scale stratigraphic cross-sections in pocket) 



Cross-section 2 shows the exposure of the Antelope to the southwest 

and the absence of the Etchegoin and the San Joaquin Formation in well # 3; 

this coupled with the progressive wedging of the San Joaquin, Etchegoin, 

Reef Ridge, and the Belridge Diatomite markers against the Monterrey 

Formation to the west, can be related to the active emergence of land during 

the upper-Miocene and into the Pliocene (figure 78) as these formations were 

being deposited. Also documented in this cross section is the unconformable 

termination of the Monterey markers against the Belridge-diatomite, indicating 

that the unconformity between the Antelope and the Reef Ridge Shale 

recognized in outcrop and in the literature (see figure 6, outcrop stratigraphic 

nomenclature, Antelope level) with uncertainty, is also present in the 

subsurface and is recognized in the present thesis. Due to insufficiency of 

data (well TD), the formations below the Phacoides Sandstone in well # 4 and 

below the top-Devilwater marker in well # 2 were not interpreted (figure 75). 

5.4.3 Stratigraphic Cross-Section 3 

This cross-section goes southwest-northeast across the study 

area, extending for approximately 20.1 km (12.5 mi.). It connects the eastern 

portion of cross-section 1 to the western part of the study area. 
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The characteristic thickening of the Temblor Formation to the west, 

opposed to a thickening of the upper-Monterrey (see wells 6 and 21) and 

Reef Ridge Shale to the northeast is noticeable here as well. It is also 

important to point out the outcrop of the Antelope level to the west and the 

progressive wedging of the upper-Miocene to Pliocene formations against the 

Monterey in an east to west direction . One possibility for these observations is 

the existence of a southwest axis of deposition , transporting the sediment 

from the ancestral Sierra Nevada (Reid, 1988., in Nilsen 1996), located to the 

east of the Midway-Sunset oil filed. This was possibly the main sedimentary 

source feeding the sandstones in the Temblor Formation during the early

Miocene . Following this event , an opposite direction is observed for sediment 

deposition that matches very well with a progressive emergence of the 

ancestral Temblor Range to the west. In this thesis it is proposed that as this 

structure evolved from the upper-Miocene and into the Pliocene, massive 

amounts of sediment were deposited locally, feeding the upper-Miocene 

turbidite sandstones in the Antelope and the Reef Ridge Shale, following a 

northeast depositional direction (figure 78). This is valid for the Midway

Sunset field and its surroundings ; structural activity further west may have 

allowed for the "Stevens" sedimentation to continue its southwestern 

depositional direction into the upper Miocene. This will be explained in the 

structural restoration of the structural evolution (figure 76). 
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(ancestral Sierra Nevada) . The thickening of the sandstone bodies in the Antelope member and the thickening of the Reef Ridge shale 
indicate a sedimentary source to the west (Temblor Range). See full-scale stratigraphic cross-sections in pocket. 



5.4.4 Stratigraphic Cross-Section 4 

This cross section extends along the northern half of the Midway

Sunset field, approximately following the general strike of structural heighs in 

the area. The extension of the turbidite sandstone bodies and their continuity 

is shown here. 

The thickness of sandstone bodies in the Temblor Formation appear to 

be less variable compared to sandstone bodies in the Antelope member of 

the Monterey Formation and the Reef Ridge Shale. The depositional setting 

for the sandstones in the Temblor could be viewed as that of an unconfined 

setting as described by Weimer and Slatt (2004), where the sediments could 

travel further and deposit broadly; opposed to what is observed In the Upper 

Miocene , where the setting changed to a confined environment where 

sandstone deposition was controlled by the structural events that were active. 

This produced the observed thickness increase of the upper-Miocene to 

Pliocene formations (Antelope - Reef Ridge Shale) from the north to the 

south. The data presented here suggests that a structural event produced an 

uplift that was more pronounced to the north, generating an axis of sediment 

deposition to the southeast during the upper Miocene; this is a component of 

the northeast to southeast depositional area (figure 78). The source that 

produced the thickening of sandstones to the southeast is interpreted to be 

the ancestral Temblor range to the west of the study area (figure 77). 
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5.4.5 Stratigraphic Cross-Section 5 

Figure 78 . 

Schematic representation of the interpreted northeast 
to southeast depositional area that was active 
throughout the deposition of the turbidite sandstones 
of the Antelope and Reef Ridge shales . 

Geologic contacts rectified from Dibblee, 1972-73 ., 
Midway sunset extension and potter producing area 
digitized from R. L. Gardiner , A. S. Wylie , Jr ., M. J. 
Gagner ., 1996, Pg. 176, Figure 1. 

The presence of considerable structures and active folding during 

upper Miocene deposition is evident in this cross-section. Here, the Potter 

Sandstone is truncated against the Antelope near well #10, the Olig 

sandstone continuing further east , as synclines were filled and the 

paleotopography became progressively smoother. A marked thinning of the 

Reef Ridge Shale to the southwest (well # 10) and to the northeast (well # 14) 

indicate that a positive relief was present at these locations as the formation 

was being deposited; further , the fact that the Etchegoin Formation also 

shows a reduction in thickness to the southwest and northeast suggests that 

the folding remained active into the Cenozoic (figure 79). 

126 



N 
-..) 

SW 

W-8 W-10 W-12 

I •- ·- 1 

...-1-----....b!":=-:;;;-=::;-==-~'--;:==::;---------I ! 2,35 Ma I .--------, 

Stratigraphic Cross-section 5 

12 Km (Aprox.) 

NE 
W-14 

~--: r 

Figure 79. Cross-section 5; the decreased thickness of the Reef Ridge shale to the southwest and the northeast could be attributed to the 
presence of positive relief at these locations . The coincident thinning of the Etchegoin Formation at the same locations indicates that the 
activity remained active into the Cenozoic (see full-scale stratigraphic cross-sections in pocket) . 



5.4. 6 Stratigraphic Cross-Sections 6 and 7 

These cross-sections represent the northeastern (section # 7) and 

southwestern (section # 6) limits of well log coverage in the study area. The 

overall observation of these cross-sections show a relatively simpler and 

more-quiescent horizontal deposition to the northeast of Midway-Sunset 

compared to a more active southwestern portion of the field. 

Section # 7 (figure 81) is located in the Elk-Hills area. A smoother 

stratigraphic correlation here suggests a more tranquil structural realm to the 

northeast of the Midway-Sunset oil field. Section # 6 (figure 80) with an "L" 

shaped geometry ties two wells where intense uplifting is evidenced by the 

outcrop of the Antelope shale, to a well located approximately at the center of 

Midway-Sunset structure . This well reveals a clear wedging of the Reef Ridge 

and younger formations against the Monterrey to the west and to the south

southeast ; this interpretation, emphasizes the presence of the Antelope-Reef 

Ridge unconformity in the subsurface . 

The analysis of these cross-sections , especially the relationship between 

uplifting and deposition evidenced to the west of the study area (figure 80), 

and the marked decrease in structural uplift to the northeast (figure 81) 

suggests a structural evolution that was active during the sedimentary 

deposition of the upper Miocene turbidite sandstones following a northeast to 

southeast direction (figure 78). 
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Figure 80. Cross-section 6; "L" shaped , ties two wells to the east of the Midway-Sunset structure to one in the middle of the oil field. Notice the 
wedging of the Reef Ridge and younger formations against the Monterrey Formation , and the presence of the unconformity between the 
Antelope and the Reef Ridge shales (see full-scale stratigraphic cross-sections in pocket) . 
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Figure 81. Cross -section 7; note the smother correlation of the markers to the northeast of the Midway-Sunset field . This section is located in 
the Elk-Hills area (see full-scale stratigraphic cross-sections in pocket) . 



The above stratigraphic interpretation indicates that internally , the 

formations of interest are very heterogeneous , and that the units include 

many types of deposits (e.g. conglomeratic sandstones filling deeply incised 

submarine canyons in contrast to medium and fine grained sandstones with a 

sheet-like geometry) . These deep water reservoir elements (Weimer and 

Slatt , 2004) changed their nature in response to the paleo-morphology of the 

substrate on which they were deposited , and the accommodation space 

available at the time of deposition . The main control over these parameters is 

the relative water-depth in response to local structural events (e.g. confined or 

unconfined setting. , Weimer and Slatt , 2004) , and to a lesser extent the 

regional eustacy . In the study area the main structural event occurred 

simultaneously with upper Miocene deep water sand deposition . 
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6. STRUCTURAL FRAMEWORK 

The main structures in the study area are a series of anticlines where the 

Midway-Sunset , the Buena Vista , and the Elk hills oil fields are located (figure 

82). The Midway-Sunset and the Buena Vista oil fields are interpreted in this 

study as a series of parallel , fault-bounded structures , cored by deeper fault

bend folds. The timing , and evolution of the complex structural features 

observed in the northern part of the Midway-Sunset field (Southern Belgian 

anticline area) are addressed here. The evolution is examined in relation to 

the deposition of the upper Miocene turbidite sandstones . 

To identify the events , which are directly responsible for the complexities 

present in the detailed study area , it was necessary to understand the 

structural evolution from a regional perspective (three regional cross sections) 

to explain the origin of the Midway-Sunset field and related structures , and 

then focus in the local area (five detail cross-sections) where the structural 

geologic model was built (figure 82). 
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Figure 82. 
A. Generalized map 
show ing the regional 
and detail areas of 
study. 

B. Sketch showing 
the oil fields covered 
by the regional cross 
sections completed in 
this thesis (light blue ), 
and the location of 
the main cross 
sections used from 
the literature (dark 
blue). The base map 
of the oil-fields and 
the location of cross 
sections 5-5' and 16-
16' are the actual 
location map from 
Namson (1998). 
The length of each of 
the regional cross 
sections is 18.3 miles 
(aprox ). 

Notice the orientation 
of the cross -sections 
(N40°E) following the 
average dip direction 
of the Midway-Sunset 
main structure . 

Upper figure (A); The 
Midway -Sunset field 
bounda ries were 
extracted from R. L. 
Gardin er, A. S. Wyl ie, 
Jr., M. J . Gagn er., 
1996, Pg. 176, Figure 
1 . ) 

Lower figure (B) ; 
modified from 
Namson, 200 1 
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Figure 83. Namson (2000) structural cross-section 16-16'. The fault at the detachment of a well developed fault-bend fold to the west cuts 
across an earlier normal fault that is reversed to accommodate the slip . To the east a normal fault with considerable displacement is shown at 
the western margin of the Elk Hills oil field . The studies carried in this thesis agree with the fold bend fold presented here to the west and with 
the normal fault at Elk Hills , but disagrees with the faulted and reversed normal fault to the center of the section and the abrupt termination of 
the upper detachment in the Temblor formation . 



6.1 Geologic Background 

To evaluate the current understanding of the structural geology of the 

area , various structural cross-sections in the literature were gathered. These 

cross sections had to include good ties to the surface geology of the area and 

to be based on sufficient well-log data. Various structural styles were 

analyzed and compared with the surface geology , obtaining a good 

conformity of the interpretation to the mechanical stratigraphy observed in the 

study area . 

6. 1. 1 Structural Cross Sections in the Literature 

A valuable starting point was obtained from Namson (2000). Namson 's 

cross section 16-16', includes the Goyer oil field (Temblor range) to the west , 

the Midway-Sunset and Buena Vista oil fields to the center and a portion of 

the Elk Hills oil field to the east (figure 82). The deepest well in this cross 

section is the BECHTEL PET # 326-9G , reaching approximately -11,500 

feet (TD) , in the Antelope Shale member of the Monterey Formation . It is 

located to the northeast in the syncline that separates the Buena Vista and 

the Elk Hills oil fields . The major structures include a large fault-bend fold to 

the west displaying normal faults in the back-limb of the fold . The main fault is 

initiated in a lower detachment level in the Kreyenhagen (Tk) Shale and 

connects into an upper detachment in the mid section of the Temblor 
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Formation (Tt). Moving to the east, as the fault slip is transferred along the 

detachment , Namson presents an ancient normal fault that is cut by the 

detachment and reversed in response to the compressive stress . It is not 

clear where the displacement is transferred as the detachment is rapidly 

truncated and stops beneath the Buena Vista structure. Further west a major 

normal fault is shown separating two structural realms at the western limit of 

the Elk Hills oil field (figure 83). The studies conducted in this thesis agree 

with the fault-bend fold model presented that was responsible for the 

evolution of the Temblor Range to the west. The present interpretation also 

suggests that a considerable increase in thickness (growth sediments) is 

observed for the Monterey Formation to the west of Elk Hills suggesting an 

agreement with the normal fault interpreted at the eastern margin of the field. 

The structural interpretation in the present study differs with Namson's idea of 

the faulting and inversion of a normal fault to the center of the section, and 

the abrupt termination of the upper detachment in the Temblor Formation. 

Also , the fault slip carried by this detachment from the compressive stress of 

the fault-bend fold to the west is not clearly explained by the interpretation 

presented in cross section 16-16'. Based on the evidence provided in type 

well # 1 (see figure 54 fault @ 18420 ft) , it is recognized in this thesis that this 

detachment extended further east and was an important factor in the 

evolution of the series of parallel fault-bounded structures present in the study 



area. Type well # 1 was drilled to 19,904 (TVD of - 19,053 ft) feet, reaching 

total depth in the Kreyenhagen Shale. 

A published location map shows cross section 5-5' (Namson 1998) 

going across the northern part of the Midway-Sunset field (figure 82). 

Unfortunately, it could not be used in the present study because it actually 

lacks structural interpretation to the northeast of the San Andreas fault, where 

the Midway-Sunset structure is located (figure 84). 
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Figure 84. Easternmost portion of cross-section 5-5' (modified from Namson , 1998) ; the blue 
interrogation sing indicates missing structural interpretation (green line) ; location of the northern portion 
of the Midway-Sunset and Buena Vista fields (light green in insert map) . 
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Other geologic information comes from structural cross sections in 

development geology studies, which are supported by detailed 

biostratigraphic correlations, and well log interpretations of closely spaced 

production wells , conducted by other interpreters in the area. 

Cross section AA' (Callaway, 1968 in Strum, 1996) cuts across the mid 

section of the Midway-Sunset and Buena Vista fields (figure 82). It includes 

the interpreted tops for the Monterey members down to the McDonald Shale, 

and a general interpretation of the basic structure and sandstone body 

distribution in the fields . This cross-section shows a very well developed 

anticline to the west, where the lower members of the Monterey Formation 

are found at relatively shallow depths. This anticline has a steep eastern 

forelimb on which smaller higher frequency folds are interpreted. Cross 

section AA-AA ' continues to the east, presenting a smooth anticline in the 

Buena Vista field which is separated from the Midway-Sunset field by a broad 

syncline (figure 85). A very interesting observation in cross-section AA-AA' is 

the clear depositional back-stepping turbidite sandstones in the Reef Ridge 

level as the broad syncline mentioned above was progressively being filled. 

This is in agreement with the stratigraphic interpretation presented in this 

thesis which suggests a continuous sediment deposition in a northeast to 

southeast direction during the upper-Miocene and into the Pliocene in 
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response to an active tectonic setting accountable for the evolution of the 

ancestral Temblor Range (series of fault-bend folds) to the west of the study 

area. From observations in cross section 16-16' (Namson 2000) and the 

interpretation conducted in this thesis we believe that a reverse, eastern

dipping fault is present near the steep-dipping forelimb, resulting from the 

uplift observed to the west. In this thesis, the smooth anticline in the Buena 

Vista field is interpreted to be associated with a deeper thrust fault originated 

in a lower detachment. 

Cross section K-K' (Strum, 1996) represents the shallow part of the 

Republic Anticline area in great detail (figure 82). The interpretation by Strum 

(1996) is tied to 17 wells located in a section less than 1 mile across. This 

cross section was very useful to understand and validate the terminations of 

unconformities (e.g. Top Miocene, Etchegoin-San Joaquin) in the western 

part of cross section A-A'. Near the crest of the anticline, it shows the 

truncation of the upper-Miocene sandstone bodies of the Monterrey 

Formation (Spellacy) against the top-Miocene unconformity. (figure 86). The 

cross sections mentioned above and many others with comparable 

parameters were used in this thesis to constrain the extension of the 

interpretation to areas where well data was not available. All comments 

mentioned above will be explained in the description of the balanced 

structural cross sections. 
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Figure 85. Structural cross-section AA-AA ' Strum (1996). A well developed anticline displaying a steep eastern forelimb is presented . To the 
east it continues into the Buena Vista field forming a smooth anticline separated from the midway sunset field by a broad syncline. 
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Figure 86. Cross section K-K' (Strum , 1996) located near Regional Cross-Section A-A' (Republic 
Ant icline ). The cross section is less than 1 mile across and is tied to 17 wells ; notice the termination of 
the upper-Miocene sandstone (Spellacy ) against the Top Miocene Unconformity . 

For the structural interpretation presented here, the kink-band method 

was used. This method is applicable to angular folds with planar limbs and 

sharp hinges (Mitra , 2004) . Kink band folds display sharp bends of layered 

strata across planar surfaces known as kink axial planes (Mitra , 2004); these 

axial planes separate two planar panels , which are drawn parallel to the dip 

data (Mitra ,2004). Two panels are separated by their bisector angle , which in 
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turn marks the location of an axial surface (figure 87). Various folds in nature 

closely display paralle l geometries , with planar limbs and sharp , narrow 

hinges; as a result , the kink band method is recognized as an effective tool for 

interpret ing the geometry and understanding the kinematic evolution of folds 

(Mitra, 2004 ). 

740 m. 

Figure 87. The kink band method , used to construct the balanced cross-sections . Dip data points were 
projected normal to the cross section to construct the planar panels parallel to the dip. 

142 



6. 1.2 Fault-bend Folds 

These folds are characterized by a stair-step trajectory where a thrust 

fault follows a bedding-parallel detachment within incompetent horizons, 

climbing through competent units along ramps (Suppe, 1983). A quantitative 

theory that describes the geometry of ramp-related fault-bend-folds was 

developed by Suppe in 1983 and applied to the interpretation of numerous 

map-scale folds (Suppe and Namson, 1979; and Suppe, 1983). The theory 

assumes uniform bed thickness and a parallel fold geometry, where the 

primary deformation mechanism is flexural slip along bedding planes (Suppe, 

1983). 

A. B' B , 

,------it -z/_,_/x_' ----, 
B. B' A 

C. 

Figure 88. 
Progressive evolution of a fault-bend fold . 

A.) Hanging wall moves over ramp . B.) Structural 
relief and limb lengths of fold increase , the crest 
length decrease. C.) Hanging wall cutoff reached 
upper detachment. No further increase in structural 
relief occurs , fold crest length increases . 

Figure extracted from Suppe (1983 , 1985) in Namson 
(2004 ). 
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Figure 88 shows a fold that starts to develop (part A). As the hanging 

wall moves over the ramp, the structural relief and limb lengths of the fold 

(AA' and BB') progressively increase , while the crest (A-B') width decreases 

(part B). Once the entire hanging wall faulted segment is transferred from the 

lower to the upper detachment, no further increase in structural relief or limb 

length occurs (part C). This stage is evidenced by the progressive increase in 

crest width (Suppe, 1983). 

6. 1.4 Fault-propagation Folds 

The fold shape is determined by the fault configuration (Suppe , 1985). 

A fault-propagation fold is better understood if analyzed through deformation 

phases. In each phase the strata on the hanging wall moves along a lower 

fault plane. The fault is not connected to a plane at the upper level as in fault

bend folds . Here it is replaced by an asymmetric syncline inverted to the 

direction of transport and connected to a complementary anticline fold on the 

hanging wall (Suppe , 1985). As the fault propagates , the folded strata are 

progressively faulted (Fig. 89). 

Three different zones with different prevalence of structural mechanism are 

recognized . A lower part where a reverse thrust fault dominates , a middle part 

where a faulted fold is generated , and an upper part where cont inuous folding 

prevails (Suppe , 1985). 
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Figure 89. Progressive evolution of a fault-propagation fold . A.) As the fault propagates it migrates 

upward . B, C.) The fault tip is replaced by an inverted syncline wile on the hanging wall a 

complementary anticline is formed . The axial plane of this anticline is steeper than the principal fault. • 
Figure extracted from Suppe (1985) in Namson (2004). 

Fault-bend folds are interpreted in this thesis to core the structures 

observed to the west of the study area in the Temblor Range. As the faulted 

portion of the main fault-bend structure reaches the upper detachment it 

continues to ride to the east were progressively younger fault-propagation 

folds are developed to accommodate fault slip (figure 90). 
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5 Km. (Aprox.) 

Figure 90. 

Portion of Structural cross-section BB' 
showing the transfer of fault slip as 
the hanging wall of the fault-bend fold 
(blue arrows) rides over the upper 
detachment supporting the 
progressive formation of fault
propagation folds to the east (red 
arrows). Note the similarity to wedge 
structures. 

The block to the right connects the 
lower detachment with the upper 
detachment level 

FBF-fault-bend fold 
FPF-fault-propagation fold 

Fault-propagation folds interpreted in the present study differ from the 

conventional model in that the ramps are steeper and their development is 

directly controlled by the fault slip transferred from the main fault-bend fold 

that developed to the west. 

6. 1.5 Wedge Structures 

Continuous deformation along a detachment that is connected to a 

ramp produces fault displacement and transfer of slip in the direction of 

transport. If the slip transfer is restrained and the ramp thrust connects to an 

existent upper-detachment, a wedge structure can develop. The ideal 

stratigraphic setting for these type of structures is that of interlayered 

competent and ductile units; thick Shales favor the development of multiple 
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detachment levels (figure 91, A). Initially, fault slip is transferred from a lower 

detachment into a ramp, the fault develops until its ability to propagate is 

restrained and an upper detachment level is connected (figure 91, B). Once 

this setting is accomplished, the wedge starts to advance (figure 91, C). As 

the process continues the fault slip is transferred to an opposite verging thrust 

(Medewedeff, 1988, in Mitra, 2004). Two axial surfaces are present in the 

frontal part of the structure. To the right (figure 91 C) an active axial surface 

advances with the wedge. To the left, a second one that is active within the 

advancing wedge and inactive in the hanging wall of the opposite verging 

thrust, is found. 

Slip A. Slip A.= Slip B. 
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Figure 91. 
Fundamental geometry of a 
wedge structure . 

A.) Stratigraphic units (colors 
are for easier comparison to 
stratigraphic units in this 
thesis). 

B.) Wedge advancement into 
an upper detachment level. 
Transfer of fault slip from the 
lower detachment to the ramp 
and into an opposite verging 
trust 

C.) Detail of the frontal part of 
a wedge structure. Note the 
active and inactive axial 
surfaces , and the growth 
strata in response to the 
wedge advancement into the 
upper detachment. 

• Figure modified from 
Medwedeff (1988) in Mitra 
(2004) . 



Some structures in the study area display a similar mechanism as that 

of wedge structures. In figure 90, the fault slip from the lower detachment 

(blue arrows) is transferred to opposite verging thrusts (red arrows). Further 

east a hanging-wall block is interpreted to connect the lower detachment level 

in the Kreyenhagen with the upper detachment level in the Temblor 

Formation enabling fault-slip transfer (figure 90). 

6. 1.6 Normal Growth Faults 

In this structural style, sedimentation occurs continuously during the 

course of faulting. Low topographic areas create more accommodation space, 

thus receiving the greatest amount of sediment during deformation. In 

response to this process, patterns of growth fault sedimentation are 

developed (Davis and Reynolds, 1996). Layers deposited as this process 

takes place are called synfault layers (growth-strata) and display dramatic 

thickness changes . This is evident in the hanging-wall where the thickness of 

growth strata significantly increases in the direction of faulting (Davis and 

Reynolds, 1996). On the contrary, prefault layers (pre-growth strata) show 

uniformity in terms of thickness (Davis and Reynolds, 1996) in the foot-wall 

and across the fault into the hanging-wall (figure 92). 
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Xiao and Suppe, 1990 

NE 
A. 

B. 5 Km. {Aprox) 

Figure 92. A.) Geometry of growth units and growth axial surfaces in listric growth faults (Xiao and 
Suppe , 1990) . B.) Part A modified to better match the interpretation in this thesis . Red lines indicate 
growth realm , blue lines indicate pre-growth realm . Light green and dark green lines are for thickness 
comparison on both sides of the fault (Modified from Xiao and Suppe, 1990) . 
C.) Comparable characteristics of growth fault in structural cross-section AA'. 

Figure 92A, extracted from Xiao and Suppe (1990) presents growth 

faulting as sedimentation and fault slip increase (figure 92A). Figure 92B was 

modified for better comparison to the structural interpretation in this thesis. 

The blue lines represent the normal faulting mechanism that started after pre-
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growth units (green and light blue strata) were deposited. Pre-growth units 

display uniform thickness in both the footwall and hanging wall (see dark 

green lines in figure 92B). As faulting continued , the synfault (growth) 

members of the Monterrey Formation (orange units) were deposited , 

switching the structural setting to that of normal growth faulting (red lines, 

figure 92 B and C) evidenced by the dramatic thickness change observed in 

these units across the fault (compare light green lines in figure 92B) . 

Comparable characteristics are observed to the northeast of section AA' and 

along the eastern margin of the study area (figure 92C). This interpretation 

agrees with cross section 16-16' (Namson , 2000) , near well BEC # 326-9G 

(marked in red), between the Buena Vista and Elk Hills oil fields (figure 83). 

tructural ross-section A-A' 

Sea level 

5 Km (Aprox.) 

Figure 93. Southwest port ion of section AA' . Blue lines (pre-growth faulting) . Norma l listric fault ing 
occu rred during a period of extension, after the Monterey formation was deposited. 
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Episodes of normal faulting also occurred during the later stages of the 

structural evolution posterior to the deposition of the Monterey Formation. 

This is evidenced in the western part of the study area where the cross 

sections show normal listric faults affecting the hanging wall of the major fault

bend fold coring the structural trend of the Midway-Sunset oil field (figure 93). 

6.2 Balanced Structural Cross-Sections 

The regional cross sections are uniformly distributed along the 

northern part of the Midway-Sunset oil field , and were oriented to the average 

regional dip direction of the structure (N40°E). They extend for 29.4 

kilometers (18.3 miles aprox.) across the Midway-Sunset and the Buena-Vista 

oil fields to the south of the study area, and across the Southern Belgian 

Anticline and part of the Elk Hills oil field to the north (figure 82). 

The localized structural cross sections are oriented parallel to the 

regional cross sections and focus on the Southern Belgian Anticline area to 

the north of the Midway-Sunset field. Cross-sections BC_ 1-1' and BC_S-5' 

that represent the southern and northern limits of the detailed area (figure 82) 

share a segment with regional cross sections BB' and CC' respectively , 

providing a good tie to the large-scale geology of the area (figure 94). 
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6.2. 1 Structural Cross-section A-A' 

Figure 94. Display of the relationship 
between the regional (insert) and 
detailed area of study ; the tie between 
localized cross-sections BC_ 1-1' and 
BC_5-5' to regional cross sections BB' 
and CC' respectively provides a good tie 
to the regional geology . 

This cross-section is located roughly four miles northwest of cross

section 16-16', near the southeastern limit of the regional area of study (figure 

82). From southwest to northeast , a small portion of the upper Temblor 

Formation is visible between two outcropping faults. Near these faults, to the 

southwest , a normal fault outcrops putting the Santa Margarita Formation in 

contact with the Monterey shale. Structural dip data for the western half of the 

cross-section are of good quality , exposures of the Monterey Formation down 

to the Devilwater/Gould member are present. The Upper Monterey is in 

contact with the Belridge diatomite to the northeast ; past the Santa Margarita 
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outcrop (Tsg) a sharp contact with the Tulare formation is present covering 

the Pliocene formations from this point to the eastern limit of the section . 

Patches of Quaternary sediment are present above the Tulare Formation 

(figure 95). 

i 
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Tbw Tl:>w 
/ ~ 

Tbw Tb .g• Tow wr 
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Miles 
Figure 95 . Surface geology across cross-section AA'. A normal fault to the southwest puts the 
Bitterwater shale (younger) in contact with the Monterrey shale (older). There is good exposure of the 
Monterrey formation and good dip-data for structural control. Past the contact with the Belridge 
diatomite to the northeast the area is covered by the Tulare Formation. 
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Figure 96. Regional structural cross-section AA'. A major fault-bend fold is interpreted to the west. A secondary fault-bend fold is interpreted 
in relation to the Midway-Sunset structure. An upper level of detachment transfers the fault slip to the east connecting a series of northeastern 
dipping fault propagation folds and an early formed fold -accommodation fault. To the northeastern margin of the cross section a normal fault 
that was originated early in the structural evolution is presented . 
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In the subsurface , a major fault-bend fold is interpreted; the western 

flank of this fold is affected by a normal fault that formed after the Monterey 

Formation was deposited. An episode of compression produced the minor 

pop-up block to the west of the normal fault, moving the upper Temblor 

Formation to the surface. A secondary fault-bend fold was interpreted to 

develop as compression continued. This secondary structure is responsible 

for the lesser uplift to the east, where the Midway-Sunset oil field is located. 

The fault slip from this fault-bend fold was transferred to an upper level of 

detachment in the lower Temblor Formation, connecting the fault slip to the 

east and progressively creating a series of northeastern dipping fault

propagation folds. Further east an early formed fold-accommodation fault 

(Mitra , 2002) puts the Gould\Devilwater unit over the McDonald member of 

the Monterey Formation ; part of the evidence suggesting the existence of this 

fault is the marked change in the dip inclination of the tadpoles near the 

bottom of well # 2. This fault is interpreted to be connected to the fault-bend 

folds to the west through the Temblor detachment , from where the fault slip 

was transferred. The interpretation here presented differs from that by 

Namson (2000) in cross section 16-16' were there is no clear explanation for 

the fault slip past the reversal of the normal fault near the center of the 

section (compare figures 83 and 96). To the northeastern margin of cross 

section AA', the interpretation in the present study is in agreement with 
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Namson (2000) where a normal fault that was originated early in the structural 

evolution is present. This fault is interpreted to have started some time after 

the Temblor Formation was deposited and to continue its activity as a growth 

normal fault (figure 93) at least until the end of the deposition of the McDonald 

member of the Monterrey Formation (figure 96). The Antelope member is 

interpreted to be in unconformable contact with the Reef Ridge unit, based on 

the variability of its lateral thickness across the structural cross section 

(thickness revised with the dipmeter and the directional survey), and 

observation of dipmeter tadpoles near this contact in well #3 (Figures 96 and 

97). 
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Figure 97. Interpreted 
unconformity at the contact 
between the Antelope member and 
the Reef Ridge shale . 

The tops for the Reef Ridge shale , the Etchegoin Formation, and the San 

Joaquin Formation are interpreted to be unconformable. This concurs with the 
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literature where these units are presented pinching out to the west in the 

study area (figures 83, 85, and 96). 

6.2.2 Structural Cross-section 8-8' 

The normal fault that puts the Temblor Formation in contact with the 

Santa Margarita Formation is better exposed here. To the east of this fault , 

steep dips and overturned layers within the upper-Temblor Formation are 

exposed , suggesting the presence of an overturned syncline involving the 

Temblor and the lower members of the Monterrey Formation. Continuing 

east, the contact between the Antelope member and the Belridge Diatomite is 

present, here more homogeneous and gentle dips (32° average dip) are 

found. At the Tsg-Qtt contact, the Tulare Formation covers earlier rocks 

(figure 98). 
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Figure 98. 
Surface geology across cross-section BB'. 
The normal fault between the Temblor and 
the Santa Margarita formations is well 
exposed . To the east dip data suggests the 
presence of an overturned fold involving 
the Temblor and the Monterrey formations. 
Structural data in the Belridge Diatomite 
indicates homogeneous and gentler dipping 
folds . 
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Figure 99. Regional structural cross-section BB'. Two normal faults affect the western limb of the fault -bend folds. The seco ndary fault-bend 
fold is considerably more developed produc ing the reverse fault at the forelimb of the structure and the well developed fault propaga tion folds 
to the east. A less deve loped fold-ac comodation fault in this section can be attributed to the considerab le amount of slip consumed by the 
reverse fault that is connected to the lower detachment. The large scale normal fault separates an intense structural sett ing in Midway-Sunset 
from a moderate setting in the Elk Hills area. 



Two normal faults are present in the western limb of the fault-bend 

folds . The fault to the left displays greater slip, putting the Santa Margarita 

Formation in contact with the Temblor Formation at the surface. The earlier 

fault-bend fold shows considerably reduced slip compared to that observed in 

section AA'. In contrast , the fault responsible for the secondary fold carried a 

significant amount of slip in response to a greater deformation event that is 

evidenced by the full development of the second fault-bend fold. This 

development is interpreted to have produced the reverse fault at the forelimb 

of the fold , displacing the normal limb of an overturned syncline exposed at 

the surface. A possible explanation for the random tadpoles observed in the 

dipmeter-log of well # 6 is its location in the steep fore limb of the structure. 

East of this structure , the fault-propagation folds are well developed and the 

fault that connects to the lower detachment in the Kreyenhagen Shale is 

interpreted to have greater displacement than that observed in cross-section 

AA'. The fold-accommodation fault is less developed . The normal fault that 

was also interpreted in cross section AA' separates an intense structural 

setting of the Midway-Sunset area from a simpler structural geology observed 

in the western portion of the Elk Hills structure (figure 99). 
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6.2.3 Structural Cross-section C-C' 
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Figure 100. 

Surface geology of 
cross-section CC'. The 
normal fault between the 
Temblor (Tt ) and the 
Santa margarita (Tsg) 
formations can be 
traced to here . The 
folded and eroded fault 
plain of the recruit pas 
fault is present. This 
area has the best 
exposure of the 
Cenozoic formations. To 
the east the outcrop of 
the Etchegoin formation 
and structural dip data 
indicate the presence of 
a steep to overturned 
fold in the subsurface 
(see insert ). 

The exposure of pre-Pliocene formations becomes more extensive to 

the north of the study area . The west dipping normal fault between the 

Temblor and Santa Margarita Formations continues to be present here. A 

fault pane (Recruit Pass fault ) that was folded and eroded is present. Near 

this area , dip data indicate the existence of closely spaced anticlines and 

synclines , presenting steep to moderately dipping flanks . To the east , a 
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relatively large area that extends to the contact with the Etchegoin Formation, 

displays much gentler and wider folds. Past this point at the outcrop of the 

Etchegoin Formation and the Belridge Diatomite, the strongly inclined dip 

data (overturned dips in the Tulare formation to the Northwest) , indicates the 

presence of a steep to overturned fold (figure 100). 

In the subsurface , low stratigraphic units are present at shallower 

depths than previously observed; indicating that the structural uplift was 

progressively greater to the northwest , as the Temblor Range was rising. This 

could be associated with the reduced area available for the structures to 

develop during deformation , complicating the transfer of fault slip along the 

detachments. The normal fault that can be traced at the surface to cross 

section BB' displaces the back-limb of a well developed duplex structure. In 

the frontal part of the primary (older) fold, a reverse fault displacing the 

Temblor Formation and part of the Gould/Devilwater member is present . East 

of this fault , two fault-propagation folds connected to the upper detachment 

level were formed . At this location , a block detached from the Kreyenhagen 

Shale overrides an eastern-dipping ramp, creating a wedge-like structure . At 

the same time , the upper portion of the section was uplifted and a thrust fault 

was created in response to the relative compression that was formed against 

the fault-bend folds to the west. Part of the fault slip in this fault was 

transferred to a secondary frontal thrust that displaces the Reef Ridge unit 
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and the Etchegoin Formation ; these units created a small scale overturned 

fold to the east. The large scale normal fault , interpreted to have a southeast 

to northwest strike direction according to its position within the regional cross 

sections , represents a major boundary that restricted the complex structural 

setting to the southwest part of the study area, where the Midway-Sunset oil 

field is located. This allowed for a much gentler structural geology in the 

vicinity of the Elk Hills oil field. It is important to point out that in order to 

confirm this last statement it is necessary to perform a detailed structural 

analysis of the Elk Hills area, which is outside of the scope of this thesis 

(figure 101 ). 

6.2.4 Localized Structural Cross-Sections 

Cross sections BC_ 1-1' and BC_S-5' are located along regional cross

sections BB' and CC'. In Section BC_ 1-1 a thrust fault that is connected to a 

lower detachment level in the Kreyenhagen Shale progressively loses fault 

slip into the Temblor and Monterrey Formations. To the east , a portion of a 

fold-accommodation fault initiated in an upper detachment is presented. The 

Belgian anticline , an open-parallel fold , overlies these features. 

Stratigraphically higher , the unconformable contacts of the Antelope and later 

formations display moderate erosion (figure 102A). 
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SW Structural Cross-section C-C' NE 
Southern Belgian Anticline Elk-Hills Oil Field 

29.4 Km (18.3 miles Aprox.) 

Figure 101. Regional structural cross-section CC'. Structural uplift was more intense to the northwest allowing for deep stratigraphic units to 
be present at shallower depths . To the west a normal fault displaces the back-limb of a duplex structure. In the vicinity of the two fault 
propagation folds to the east , a block detached from the Kreyenhagen shale overrides an eastern-dipping ramp , creating a wedge-like 
structure . As it developed a thrust fault was created in response to the relative compression that was formed against the duplex to the west . 
The large scale normal fault near the middle of the section represents a major boundary that restricted the complex structural setting to 
southwest part of the study area . 



In section BC_2-2', the hanging-wall block of the thrust fault previous ly 

mentioned is displaced further over the foot wall. The lower block is 

enveloped by the thick Kreyenhagen Shale at the detachment level. The 

anticline retains a very similar geometry but the thrust fault accommodating 

the fold deformation is observed at a higher structural level. Erosion is greater 

in this section , significantly reducing the thickness of the Etchegoin and Reef 

Ridge Formations (figure 102B). 

SW Deta il Structura l Cross-sect ions NE 

4.471 Km 

Figure 102. Detailed structural cross-sections . A) A thrust fault connected to a lower detachme nt 
progressively looses fault slip up section . B) A hanging-wall block is displaced further over a footwall 
that is enveloped by the thick Kreyenhagen shale at the detachment level. An anticline shows an open
parallel fold geometry and the trust that accommodates the fold deformation is observed at a higher 
level. C) The footwall block resembles a wedge structure . The Etchegoin and Reef Ridge formations 
display a reduced thickness to the southeast were they disappear . D) An early formed large scale 
normal fault is interpreted to go across the detailed study area . Displacement on the ramp is more 
advanced . The fold accommodation fault is at its maximum development. e) The principal reverse fault 
is associated to the overturned strata of the Reef Ridge (Belridge Diatomite ) and the Etchegoin 
formations outcropping at the surface . 
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The hanging wall block previously mentioned is fully developed in 

cross-section BC_3-3 '. Here it goes over the ramp onto a footwall block that 

now resembles a wedge structure. The fold-accommodation fault located 

higher in the structure presents a steeper angle (37°) compared to that 

observed in previous sections (5°), and also presents an increase in 

displacement. The Etchegoin and Reef Ridge Formations show a reduction in 

thickness to the southwest were they disappear near a small bulge at the 

Antelope member level. This could be associated with erosion or/and to a 

pinching out of these units in response to an active uplift to the southwest 

(ancestral Temblor Range) that produced a progressively shallower 

accommodation space in this direction as the formations were being 

deposited (figure 102C). 

A large scale normal fault , formed early in the structural evolution 

(post-Temblor Formation) , is interpreted to go across the detailed study area . 

Its position in the cross sections indicates a strike direction of approximately 

100° (figure 102 B, C, D, and E). This preexistent fault plane extends 

progressively further west from cross section BC_ 1-1' to BC_5-5', reducing 

the space available for structures to develop. 

In cross section BC_ 4-4', the displacement observed on the ramp at 

the Kreyenhagen level is more advanced , with the first bend of the 

detachment located very close to the large scale normal fault (figure 102D). 
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The fold-accommodation fault located now at the crest of the lower hanging 

wall block , presents the steepest dip angle (45°) observed , reaching the point 

of maximum development in this section. The hanging wall of the fold 

accommodation fault that involves the upper- Temblor Formation and the 

members of the Monterey Formation show the most significant displacement 

in this cross section (figure 102D). This fault is interpreted to distribute the slip 

into two faults creating an upper fault-block. As the principal fault (higher 

level) was developed , the Belridge Diatomite and the Etchegoin Formations 

that are outcropping in the surface were overturned (figure 100, 102D, and 

103). The lower fault is presented in cross sections BC_ 4-4' and 5-5' 

displacing the Etchegoin and Reef Ridge units . In cross section 5-5' the 

secondary fault displaces the crest of a small anticline to the east of the large 

scale normal fault (figure 102E). 

In the small anticline previously mentioned , the thickness of the 

Gould/Devilwater , the McDonald , and the Antelope members of the Monterrey 

Formation is considerably reduced compared to the western side of the fault ; 

this indicates that the fault was a normal growth fault in the later stages of 

evolution (figure 102E). 
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Figure 103. 

Cross -section showing an 
overturned fold in the north 
Midway-Sunset area . Note 
the reverse fault interpreted 
to the left. 
Notice that the Potter is 
shown on top of the 
Etchegoin indicating that the 
fold is overturned . 

Figure extracted from Panek 
(1998) 

In the regional and detailed cross sections it is possible to observe two 

gradients of gradual thickness change in the Temblor Formation . From cross

section AA ' to CC ' the formation becomes thicker in a southeast direction . In 

the localized cross sections to the north (figure 102 D, E) and in regional 

cross section CC' , the Temblor Formation is observed becoming thicker away 

from the large scale normal fault towards the northeast and southwest (figure 

101 ). This indicates that the north-central part of the study area was 

structurally higher when the Temblor Formation was deposited . 

The structural deformation observed in the Midway-Sunset area was 

limited by the large scale normal fault to the northeast of the study area . As 

deformation continued , the space available became progress ively reduced to 
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the northwest , forcing the fault slip from the wedge-like structure that was 

developing to be transferred into upper levels of the stratigraphic section , 

generating southwest-dipping thrust faults (McKittrick) to the north of the 

study area. The mechanism that generated these faults is accountable for the 

overturned folds at the Etchegoin stratigraphic level observed in outcrop. 

Figure 102 shows various black dots in the cross-sections. These are 

the location of 400+ well-log picks from a separate interpretation study 

(Boljen , 2005). These picks were used to perform a blind-test to the 

interpretation presented in this thesis . The study includes markers down to 

the McDonald Shale. The match between the two interpretations is very good, 

enabling the use of the picks to refine the interpretation and populate the 

surfaces of the structural model in areas located between cross sections. 

6.3 Kinematic Reconstruction of Regional Cross-Section AA' 

To validate the balanced structural cross-sections , a restoration 

through time was performed. The kinematic reconstruction shows the main 

events that generated the structures proposed in this thesis . Nine stages are 

presented , from 16.2-16.5 million years (top Temblor ) to the Present (figure 

104). 
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Figure 104. 

Kinematic reconstruction of structural 
cross-section A-A' 

Light blue lines : future location of 
faults . 
Dark blue lines : detachment locations . 
Red lines : active fault or detachment 
Grey lines : faults that were active , no 
current movement . 

A-Temblor Formation , tranquil 
horizontal morphology. 

B- A normal fault is formed after the 
Temblor Formation was deposited. The 
units gradually subsided to the 
northeast (growth normal fault) . 

C-The Gould/Devilwater member 
becoming thicker to the northeast , was 
deposited as the growth fault 
developed. 

0-The normal fault came to a stop. The 
tectonic setting changed from extensive 
to compressive . 

E-The main event of compressive 
deformation took place. As the hanging 
wall of the primary fault-bend fold went 
past the ramp to the northwest , a fault-
propagation fold was developed . 

F-A short period of extension creates a 
normal fault that affects the backlimb of 
the fault-b end fold . 

G-Erosion of the Antelope sha le. A 
compressive episode reactivates the 
secondary fault-bend fold . 

H-The event of compression intensified . 
The lower detachment level breaks-
through the ramp, transferring slip into 
a ramp developing a wedge- like 
structure that pushed the over lying 
units up-and-forward . 

I- depos ition occurred in an active 
tecton ic setting , as the remaining units 
where depos ited . 

· See text for full explanation . 



In the kinematic reconstruction , light blue lines indicate the location of faults 

prior to their occurrence , dark blue lines mark detachment levels before they 

become active , red lines indicate that the fault or detachment level is 

undergoing movement , and grey lines indicate faults that were active showing 

no movement at a particular stage (figure 104). 

The Temblor Formation deposited late in the Oligocene and into the 

early Miocene , presented a tranquil horizontal morphology at 16.2 - 16.5 (?) 

million years. As a matter of fact , earlier units were deposited in this same 

manner (Figure 104A). 

A normal fault was formed after the Temblor Formation was deposited . 

As the units were gradually subsiding in response to the active growth normal 

fault , the units to the southwest remained at their original level, creating an 

early topographic high. The Gould/Devilwater member of the Monterey 

Formation was deposited in this setting , creating an area of no deposition 

near the western boundary of the section (paleo-high) and becoming 

progressively thicker to the northeast . This leveled the phisiography prior to 

the deposition of the McDonald Shale around 13.9 million years ago (105B) 

Growth sedimentation cont inued as the McDonald Shale was 

deposited . The rate of subsidenc e recorded in the growth sediments (light 

orange ) remained comparable to what was observed before , with the 
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variation that the downward movement of the units was nearly constant for 

the area to the southwest of the normal fault (figure 104C). 

The Antelope Shale began to be deposited around 8.9 million years 

ago . The normal fault , that was still active , came to a stop in the early stages 

of Antelope deposition. At this point the tectonic setting changed from 

extension to compression , giving rise to early folding to the west and the 

formation of a reverse fault to the northwest that accommodated the 

deformation (figure 104D). 

The deposition of the Antelope Shale concluded 7 million years ago in 

the late-Miocene (Tortonian) . The main compressive deformation then took 

place. Here , the first fault-bend fold to the southwest was developed . As the 

hanging wall of this large structure made its way past the ramp to the 

northwest , a high angle , eastern-dipping fault-propagation fold was 

developed . During this phase , the early stages of the forward evolution of a 

second fault-bend fold also took place . Further east the fold-accommodation 

fault that was formed earlier continued its development. This was enhanced 

by a reverse fault formed in the Kreyenhagen Shale that connected the upper 

and lower detachment levels and produced a local uplift of the overlying units 

(figure 104E) . 
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An episode of relaxation gave rise to a short period of extension that 

created a normal fault affecting the backlimb of the primary fault-bend fold. All 

compressive features were "momentarily" inactive (figure 104F). 

The Antelope Member of the Monterey Formation underwent 

significant erosion during the active deformation that took place as the Reef 

Ridge Shale was deposited. A new compressive episode reactivated the 

secondary fault-bend fold , displacing the hanging wall over the detachment in 

the Kreyenhagen Shale. This deformation created displacement on the upper 

detachment of the Temblor Formation , reactivating the fault-propagation fold 

and the fold-accommodation fault in the eastern segment of the cross section 

(figure 104G). 

As the Etchegoin formation was deposited the event of compression 

intensified , reactivating a portion of the ramp of the original fault-bend fold 

and generating a popup block that exposed the upper-Temblor Formation to 

the surface . This compression enabled the lower detachment level to 

breakthrough the ramp of the secondary fault-bend fold where it connected 

the upper detachment level. This generated displacement that was distributed 

to the preexistent fault-propagation fold and a newly formed thrust fault . The 

remaining slip went down into a ramp, developing a wedge-like structure that 

pushed the overlying units up-and-forward , creating displacement in the fold

accommodation fault (figure 104H). 
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The deposition of the Reef Ridge Shale and the Etchegoin Formation 

occurred in an active tectonic setting where erosion from structural highs 

(Temblor Range) fed sediment into the basin . In a similar way , the San 

Joaquin and the Tulare formations were deposited in a structurally active 

environment , with the difference that the depositional environment changed 

from alternating brackish to fresh-water conditions in the San Joaquin 

Formation (Walter , 1996) to alluvial and lacustrine environments (Taff , 1933) 

for the Tulare Formation . In this stage (figure 1041) compression was still 

active , but less intense . Some time after the Etchegoin Formation was 

deposited , the upper detachment was disconnected from the fold

accommodation fault to the east. As this occurred , a new fault-propagation 

fold developed , extending the ramp located to the northeast into the lower 

members of the Monterrey Formation . This is the last fault that was formed to 

make up the series of fault bounded structures observed at the surface (figure 

1041). 

This restoration satisfactorily explains all the events that took place 

and are responsible for the structures found in the study area . This permitted 

a complete understanding of the mechanisms accountable for what is 

observed in the detailed study area , and translates it into a 30 model to 

assess the structural complexity present . 
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7. STRUCTURAL GEOLOGIC MODEL 

The Southern Belgian anticline is a structurally complex area where the 

Tulare Formation unconformably overlies the pre-Pliocene geologic units. All 

surface geologic data represent recent structural events , after the San 

Joaquin Formation was deposited . The structural geologic model in this area 

was tied to two regional balanced cross-sections (BB' and CC'), and 

populated with 5 localized cross sections constrained by dipmeter logs and 

surface structural data (figure 105). 

Figure 105. Area of the structural model. Most of the surface geology is covered by the Tulare 
Formation, to the north Tmb and Te are exposed . Notice the distribution of the localized cross sections . 
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The interpretation of the regional geology in cross sections BB' and CC' (see 

section 6.2) to the southeast and the northwest , respectively , was used to 

build the geologic surfaces (faults, unconformities, and time markers) in the 

detailed area (figure 106). The interpretation between the two cross sections 

was constructed using 5 localized cross sections and 17 wells, with dipmeter 

logs to control the slope and the direction of the geologic surfaces (figure 

107). To correctly connect faults and detachment levels, a specific 

nomenclature was given to each interpreted line (figure 108). The deep 

structure is based on the structural characteristics interpreted from correlation 

to the regional framework; deeper wells should be drilled in the study area to 

evaluate possible prospective areas that are proposed in this thesis. 
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Figure 106. 

Regional cross
sections CC' and 
BB' showing the 
southeast (red) and 
northwest (blue) 
limits of the detailed 
study area . 



BC 5-5 ' BC_4-4 ' BC_3-3 ' BC 2-2 ' BC_1-1 ' 

4457 m. 

Figure 107. Localized cross-sections between regional cross-sections BB' and CC' showing the 
interpretation of the deep structure ready to be exported for the construction of the model. 

BC 5-5' BC 1-1' 

INWI ~ 

B 

Figure 108. Display of fault and detachment levels . A) Position in space . B) Nomenclature to connect 
the interpretation between sections BC_ 11' and BC_55' . 
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7.1 Modeled Structural Surfaces 

Eleven time markers and seven interpreted faults were modeled. 

These provided a better perception of the structure from the basement to the 

surface allowing the recognition of various fault bocks that exist in the Belgian 

Anticline area . 

7. 1. 1 Basement 

The early normal fault is the only structural element affecting the 

basement. Two structural highs are presented in the model. They were 

formed during the major compressive deformation event. The normal fault 

separates the hanging wall to the south from the basement in the foot wall to 

the north (figure 109) 

7. 1.2 Top Kreyenhagen and Top Tumey/ Oceanic 

The Kreyenhagen and Tumey surfaces are very similar. The Tumey 

Shale is a relatively thin , continuous unit (figure 111) overlying the 

Kreyenhagen Shale that laterally changes to the Oceanic Sandstone . Fault 

F2 starts in Detachment level F3 within the Kreyenhagen Shale (figure 110) 
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Basement 

2 Miles 

Figure 109. Basement surface . Notice the normal fault displacing the surface . 

Top Kreyenhagen 

2 Miles 

Fault plane 
Normal fault 

Fault F2 

Figure 110. Top Kreyenhagen surface . Detachment .F3 is located within this unit. 

178 



Top Tumey/Oceanic (Wagonwheel) 

Structural 
High 1---"'lll!fflll!! 

Fault F2 
2 Miles 

Figure 111. Top Tumey/Oceanic surface . Note the morphologic similarity to the Kreyenhagen surface . 

7. 1.3 Top Temblor 

Two structural highs are observed on this surface. This is an important 

observation since various levels of potentially prospective sandstone units are 

widely identified in the literature for the Temblor Formation . Detachment F6 is 

located near the base of this unit where fault F7 begins . This formation is also 

affected by fault F2 to the south of the detailed area (figure 112). 

7. 1.4 Top Gould/Devi/water and Top McDonald 

The footwal l block of the normal fault displays the Gould/Devilwater 

(figure 113) and the McDonald (figure 114) members of the Monterey 
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Formation considerably reduced in comparison to the hanging wall . These 

units record the sedimentary growth that took place at this early-formed 

normal fault , after the Temblor Formation was deposited. Two structural highs 

are presented in the model. The one to the north is at a higher level than the 

one to the south ; indicating that the displacement on the faults was 

progressively increasing to the north as the structures developed (figures 113 

and 114). 

Top Temblor 

I Fau lt FS 

Fault F2 
2 Miles 

Figure 112. Top Temblor . Two structu ral highs are presented in the model for these level, where 
various potentia lly prospective sandstone bodies are identified in the literature . Detachment level F6 is 
in this unit . Fault F? starts in this level. 
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2 Miles 

Figure 113. Top Gould/Devilwater . The structural high to the north is at a shallower depth , indicating 
that the disp lacement on the faults was increasing to the north . 

Top McDonald 

FilUlt F7 

2 Miles 

Figure 114. Top McDonald . The sedimentary grow1h that took place at the normal fault after the 
Temblor formation was deposi ted is recorded in this unit. 
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7.1.5 Top Antelope 

This surface marks the unconformity between the Antelope member 

and the Belridge Diatomite. The northwest portion of the model shows a 

smooth relief compared to that observed to the southeast where the southern 

Belgian Ant icline area is located . This unit is affected by faults F7 and F8 to 

the north creating smaller but interesting compartments in this area. A marked 

th ickness change observed in the wells and within the unit in the geologic 

model suggests that this level was affected by erosion (figure 115). 

Unconformit y 
Top Antelope 

Structural 
High 
Belgian 
Anticline 

2 Miles 

Figure 115. Top Antelope . Unconformable contact with the Belridge Diatomite . Thickness change in 
wells and across the unit in the model indicates possible erosion . 
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7. 1.6 Top Reef Ridge 

This surface represents the upper Miocene unconformity; most of the 

production in the Northern Midway-Sunset field comes from sandstone bodies 

in the underlying unit. This surface also represents an important factor in the 

trapping mechanism of the petroleum system , where multiple combination 

(structural and stratigraphic) traps occur at this level. These traps are formed 

at the lateral termination of sandstone bodies against this surface that acts 

like a seal. To the northwest of the model , the unit (includes Tmb, Tbw and 

Trr) was eroded or not deposited . Many cross-sections in the literature display 

the Potter and the Oilg sandstones becoming thinner to the northeast against 

the Antelope surface and terminating unconformably at the contact with the 

base of the Etchegoin Formation (figure 116). 

7. 1. 7 Top Etchegoin and San Joaquin 

The top of the two units is marked by unconformities ; to the northwest 

the units become thinner and pinch out against the Antelope Formation near 

a central high at the Southern Belgian Anticline (figures 117 and 118). Form 

this point to the east , the top of the San Joaquin Formation displays a 

smoother relief and a shallower slope (figure 118) compared to the Etchegoin 

and the Reef Ridge surfaces . This indicates that the active fold ing mechan ism 

progressively decreased its intensity as the formations were deposited . 
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To the northeast corner of the modeled area a smaller overturned fold 

is located near the outcrop of the McKittrick Fault. The deformation that 

produced fault FS is also responsible for the inversion of this fold (figure 119). 

Upper M iocene 
Unconformity 

Structural High 
Belgian Ant icline 
*Antelope 

2 Miles 

Figure 116. Top Reef Ridge . Represents the upper Miocene unconformity. Sandstone bodies terminate 
laterally against this surface that acts as a seal. 

7. 1.8 Ground-Surface (The Tulare Formation) 

Various heavy oil deposits are found in this formation. The upper 

member is characterized by air sands and hardened-tar caps ; this level is 

also more competent than the adjacent alluvial deposits . This surface was 

directly extracted from the DEM. Previous modeled surfaces show good 

correlation to outcrops presented in the literature (figure 119). 
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Top Etchegoin 
Unconformity 

structural High 
Belgian Anticline 
•Antelope 
•Reef Ridge 

2 Miles 

Figure 117. Top Etchegoin (unconformity) . Becomes thinner to the northwest against the Antelope 
formation. 

Top San Joaquin 
Unconformity 

Reef Ridge 
vest iges 

Structural High 
Belgian Anticline 
•Antelope 
•Reef Ridge 
•Etchego in 

2 Miles 

~ FaultFS 

overturned Fold 

FaultF7 

Figure 118. Top San Joaqu in (unconformity ). Fault F8 at the northeastern corner of the model is 
associated to an overturned fold . To the east of this fold the McKittrick thrust is exposed . 
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The various faults present in the model compartmentalize the 

structure , creating at least 6 fault blocks, many of which had not been 

previously interpreted. The aim of this structural model is to provide a tool to 

evaluate potentially bypassed reservoirs in the Potter Sandstone, and new 

targets in deeper reservoirs (figure 120). 

Ground Surfilce 

Outcrop 
Anle lope 

2 Miles 

Outcrop 
Antelope 

Topograph ic 
High (competent) 
Tulare Formation 

Figure 119. Ground-surface (Tulare Formation) . The Tulare is recognized for being more competent 
than the Quaternary alluvial deposits . Notice the agreement betwee n the geologic map of Dibblee 
( 1973) and the intersect ion of the Ground surface with previous modeled surfaces . 
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Figure 120. Completed structural model (left) . Six fault blocks interpreted in this thesis create 
compartments in the structure . 
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ANNEX 1: PETROLEUM SYSTEM ANALYSIS 

To understand the petroleum system responsible for the outstanding 

reserves in the Midway-Sunset field , 3 wells were analyzed along the 

structure of the Midway-Sunset field and a pseudo well was included to the 

east of the field . The analysis indicates an early maturity stage that started at 

14.4 million years. Mid-oil maturation started around 9.0 million years to the 

center of the field and at 7.0 million years to the north of the field. High 

potential for hydrocarbon generation is proposed for the post-Temblor units, a 

detailed heat flow analysis (outside of the scope of this thesis) could indicate 

the extent to which these formations contributed to the vast proven reserves 

of this field. A quantitative assessment of the 10 petroleum system criticals 

indicates a confidence of 84% for projects in this area. 

It is very important to note that this analysis is very general and was 

only intended to provide a basic understanding of the petroleum system. It is 

a recommendation in this thesis to perform an in-depth proper basin analysis 

using the geologic model and the cross-sections here presented. The data 

used for this brief evaluation comes from published wells from figures in the 

literature , and in no case from any of the data in the actual wells used in the 

thesis. 
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The wells used in the present analysis are located in the central and 

north part of the structure; the pseudo well is located down-dip to the east of 

the field (figures 1 and 5). In the following paragraphs the results obtained for 

these locations are presented. 
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Figure 1, Location of the selected places along the structure (wells) and the pseudo-well (Midway 
sunset field extension from G. J . Gregory p. 67 figure 8., Geologic map from USGS 1-512) 
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Midway-Sunset 

WEST Pseudo-well 

: 1 ! i 
~ ; V ~, 
I I I f 

INtWlllOLOI% I 

Figure 5, Cross-section trough the North part of the San Joaquin basin , the orange oval indicates the 
location of the actual wells , the pseudo-well was created to take in account the migration from down dip 
formations to the East of the field (mod ified from M. F. Mercer in Nilsen, T.H ., Wylie , Jr ., A.S ., and 
Gregory , G.J. , 1996 fig 2 Pg. 97-110) 

For this project 2 wells were analyzed in the center and 1 well to the 

north along the main structure of the Midway-Sunset field (figure 1 ). A 

pseudo -well was created to take in account the thicker formations located to 

the center of the basin to the east to the field . The location was included to 

account for migration which originated down dip , assuming that these rocks 

have produced large quantities of oil that migrated up-dip into the Midway

Sunset field (figure 5). 
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SOUTH CENTRAL PART OF BASIN Tectonic Subsidence And Burial History 

Figure 10. Pseudo-well , the red arrows indicate compression and the blue arrows extension note the 7 
events in relation to the tectonic subsidence. 

The pseudo-well represents the thicker section down-dip to the east of 

the Midway-Sunset field (figure 5). The tectonic subsidence curve presented 

here for this well is assumed to be representative for the southwestern portion 

of the San Joaquin Basin (figure 1 O and 5). Overall the curve shows a steady 

slope of subsidence that is interrupted by seven main events of tectonism 

(figure 1 O, and table 5 annex). This part of the structure reached early 

generation at 14.2 Ma in the Middle Miocene and main oil generation was 

reached at around 6.5 Ma at the closing of the Monterey deposition . Late 
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maturity was reached during the Pleistocene (0.8 Ma) as more space became 

available for sediment deposition and the bulk of rock was greater. 
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(1) CENTRAL PART OF THE STRUCTURE Burial History 

Figure 12. Central part of the field (central 1 see figure 1 ). Tectonic events presented here at the top . 
The Monterey formation is divided in its members. 

The central part of the field shows an interesting change at the start of 

mid-maturity (figures 12 and 13); central part 1 reaches mid-maturity at 9.0 

(my) contrasting with central part 2 which doesn 't enter mid-maturity until 6.8 

(my). This , coupled with the reduced vertical extent of the oil window that is 

observed for this well (figure 13), could indicate that there was a structural 

high in the vicinity of central part 2 at the time of deposition , preventing the 

same course of burial that is evidenced in central part 1 (figure 12). 
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Something very interesting that is also observed in the burial history curve of 

central part 2 is the smoother slope of the lines marking the top and base of 

the Temblor Formation . This gentler slope indicates that the sediments here 

remained at shallower depths than the sediments in central part 1 throughout 

the entire depositional history. This is consistent with the idea of central part 2 

being structurally higher during the Cenozoic. 
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(2) CENTRAL PART OF THE STRUCTURE Burial History 

Figure 13. Central part of the field (central 2 see figure 1 ). Notice how reduced the oil window is 
compared to central part 1 . 

Comparing the slope of the burial curves along the field reveals how 

the slope of the burial lines become gentler to the north. A much stronger 

sediment deposition was occurring to the south compared to the north. This 
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could be related to the gradual shift of the sediment source further north 

through time (?). This is also consistent with the gradient observed in 

balanced cross-section C-C compared to the regional cross sections to the 

south. 
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NORTH PART OF THE STRUCTURE Burial History 

Figure 14. North part of the field. Notice the gentler slope of the burial curves . 

The literature indicates six main events of compression or extension 

(figure 15). The work presented here agrees with a late Miocene 

compression , an early Pliocene extension and a final Pliocene compression 

that is still active (see #'s 5, 6, and 7 in figure 10). It is also suggested that 
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there were four main events prior to the late Miocene. There was a late 

Oligocene compressional event (see #1 in figure 10) followed by an early 

Miocene extension (#2 in figure 10). Compression is evident in all the wells by 

the decrease of burial depth observed from 17.5 Ma to 16.5 Ma at the closing 

of early Miocene time (#3). And finally a long period of extension took place 

from 17.5 Ma to 10.5 Ma (#4) before entering into the late Miocene 

compression. 

Early Oligocene 
Late Oligocene 
Early Miocene 
Late Miocene 
Pliocene 
Pliocene to recent 

(Harding, 1976) 
(Davis and Lagoe, 1988) 

compression 
extension 
extension 
compression 
extension 
compression (active) 

Figure 15. Summary of the six main 
events of compression / extension 
suggested in the literature (in L. A. 
Beyer 1988) 

An important aspect to take in account when evaluating the potential of 

this field is that there is another petroleum system located in the same area of 

extent (figure 3) and corresponds to all the formations deposited before the 

Temblor Formation . This petroleum system has produced large amounts of 

hydrocarbons and for some plays, the origin of the hydrocarbon is not 

restricted to a single system. One place that fits this characteristic is the 

southern Belgian Anticline area located in the north part of Midway-Sunset 

(figure 1 North) ; here it is believed that the hydrocarbons come from both 

levels of the West Side Fold Belt play (L. A. Beyer) . 
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THE TEN PETROLEUM SYSTEM CRITICALS AND QUALITATIVE 

"TRAFFIC LIGHT" ASSESSMENT 

1 Srgv (Source Rock Generation Volume) 

The volume of source rock for this petroleum system is outstanding not only 

because the majority of units are thick organic shales but also because these 

are enveloped around the reservoirs. 

Quantity rating 

2 Srq (Source rock Quality) 

The rocks responsible for the generation are thick units composed primarily of 

marine organic shale, their TOC values (calculated from the relation to 

sedimentation rate) range from 2 to 4.8; this classified the quality of the rock 

in terms of generation as very good to excellent. 

Quality Rating I LT Green 

The quality was assigned to light green since more data from the actual 

rocks, like TOC values obtained in the lab, are necessary ; this new data 

would probably push the rating to green. 

3 Srm (Source Rock Maturity) 

Here the Temblor Formation produced the bulk of oil and gas generation , it is 

important to notice that a better assessment of the heat flow through time 

would give rise to a more realistic model where post Temblor formations also 

reached maturity and generated hydrocarbons. In the present work light 

green was given to the maturity due to the uncertainty of a more reliable heat 

flow analysis . 
Maturity ~I _L_T_G_r_e_e_n___, 
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4 Rrhcv (Reservoir rock-hydrocarbon volume) 

The reservoir rocks here are of various types; one is characterized by 

extensive sheet sands deposited in unconfined settings (Strum, 1996), a 

second type includes deep water turbidite channels and incised canyons 

(Gardiner et al. 1996) that were filled with sand , that were abundant and due 

to the intense tectonic events and uplifts that were mentioned earlier (erosion 

in the mountains and intense deposition in the basins See figure 1 O numbers 

1 to 7). Finally the Tulare Formation , mainly composed by coarse continental 

sandstones, and deposited as alluvial fans in continental settings (Nilsen, 

1996) is a third type of reservoir rock. Note that the Tulare is considered as a 

good reservoir since in the literature it is mentioned that it is capped by thick 

layers of tar (Nilsen, 1996) that hardened in the pore space forming a good 

seal for heavy oils. 

Volume of reservoir 

5, 6 Rrsq (reservoir Rock and Seal Quality) 

For the deeper formations like the Potter Sandstone , the porosity and the 

permeability are good. In terms of seal, most of these sand packets are caped 

by mudstones . In the case of the Potter Sandstone the cap rock is the 

Belridge Diatomite , which not only acts as a seal but also as a source. In 

terms of trapping , there are stratigraphic , structural , and combination traps 

that formed throughout the history of deposition ; this is coupled with intense 

hydrocarbon generation charging the structures constantly since the middle 

Miocene. 

Reservoir and seal quality 
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7 Mpv (Migration pathway) 

This system is located in an elastic, tectonically active basin, where the 

source rocks have been fractured and compressed creating pathways for 

hydrocarbons. This basin is overcharged as evidenced by the vast amount of 

hydrocarbons that have reached the surface through multiple gushers and 

seeps , with seeps and tar pits still present in the area. 

Pathway Volume 

8 Mpq (Migration Pathway Quality) 

The migration here is mainly vertical, with a lateral component for short 

distances in the case of channels being charged by the mudstones in which 

they are embedded. A drawback here is the low API gravity of the oil 

(Campbell, 1996) that has to be moved; which is predominantly heavy oil (11 ° 
avg.) for the shallow formations. Higher quality oil (18-30 API) is expected for 

deeper prospects. 

Pathway quality I Yellow I 

The yellow tag here is for the present projects to be conducted in the shallow 

formations, and due to the heavy oil secondary methods of recovery that are 

necessary and active in the area. 

9 Mpr (Migration Pathway Rate flux) 

The rate here is assessed using the modeled fluid velocity. In the graph the 

first major spike indicates good conditions but not important for this study 

since oil generation did not start until 14.4 Ma. What is interesting to see is 

the fluid velocity of 15 to 20 m/my that is maintained from 14 to 7 million years 

for the Temblor Formation (figure 17). At around 6 Ma the upper units show 

excellent fluid velocities ; this is very important if we keep in mind that these 
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formations have high potential for hydrocarbon generation (figure 16) and 

very likely have generated hydrocarbons throughout their history (a better 

heat flow analysis is necessary for evaluation). 

Rate flux 

rn P • 
JOO -+---------'--- .i....._; 

f g 200 

~ Temblor Fm. 
8 
j 100 
"C 
-=, 
u:: E 1000 

23 
~ r-,-.,....,;c'.'.:;=:;:::;=;==r=,= =,--,,-.I,.....,:~ ~~ 

19 " .. 
Age (my) 

Figure 17 Note the flow velocity of 
20 mlmy. at around 13.2 Ma., 
Present day rates are very similar for 
the upper units ranging 
from 5 to 17 ml my. 

0:::, 
(1) 

.0 

al 
.c 
a. 
c3 2000 

10 15 20 

Fluid Velocity (m/My) 

10 PStw (Petroleum System Time Window) 

Fm 

t = 0 

Fm 

San Joaquin Fm 

Etchegol n Fm 

Reef Ridge Shale 

Morle rey Fm (ant. Sh) 

Temblor Fm 

This is a unique petroleum system in terms of timing since oil production was 

not only vast in terms of volume , but also very constant throughout the history 

of the basin. This can be attributed to the high quality of source rocks that are 

predominantly organic (e.g diatomite and foraminiferal-shale) and to the 

mixed deposition of good reservoirs in contact with high quality source rocks 

that also serve as seal. 

Petroleum system time window 

Petroleum system totals: 84% Light Green PROCEED! 
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8. CONCLUSIONS 

Geographic information systems provide multiple tools that reduce the 

time needed to organize and acquire the data needed for any geoscience 

project. Furthermore it facilitates the processes which need to be performed 

to the surface geologic data in hard copy, and from the field. Through the 

incorporation of 3D editing in the geologic mapping work-flow, a more 

accurate positioning of elements like geologic contacts and faults can be 

achieved . This produces a better map that accurately conforms to the 

topography. Additionally a GIS simplifies the understanding of the geology in 

complex areas by the construction of surface 3D models and the 

implementation of remote sensing techniques. 

The stratigraphic interpretation that was performed revealed that the 

formations of interest are very heterogeneous , and that the units include 

various levels and many types of deposits. Based on log character and 

outcrop observations these deposits range from conglomeratic sandstones 

filling deeply incised submarine canyons to medium-grained and fine-grained 

sandstones with a sheet-like geometry . These sandstone reservoirs changed 

their nature in response to the morphology of the substrate that was present 
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when they were being deposited, the accommodation space available, and 

the structural setting. 

The structural interpretation presented here differs from other 

interpretations in the literature, where there is no clear explanation for the 

fault slip that is transferred to the east in response to the development of two 

large-scale fault bend folds to the west of the study area. We believe that a 

detachment in the Basal Temblor Formation extended further east and was 

an important factor in the evolution of the series of parallel fault-bounded 

structures present in the study area. 

From the northwest margin to the southeast edge of the study area, 

the Temblor Formation becomes thicker. This is also observed in the detailed 

area of study from cross-sections BC_ 4-4' and BC_5-5' near the location of a 

large scale normal fault, where towards the northeast and southwest the 

thickness of the Temblor Formation also increases. This indicates that the 

north-central part of the study area was already a structural high prior to the 

deposition of the Temblor Formation. 

To the northeastern margin of cross section AA', the interpretation is in 

agreement with the existence of a normal fault that originated early in the 
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structural evolution after the Temblor Formation was deposited. This large 

scale fault continued its evolution as a growth normal fault at least until the 

end of the deposition of the McDonald member of the Monterrey Formation 

and acted as a structural control in the system reducing the space available 

for structures to develop. This structural barrier forced the fault slip from the 

lower levels to be transferred to the east into upper stratigraphic levels, 

generating southwest-dipping thrust faults (McKittrick) to the north of the 

study area. This mechanism is accountable for the overturned folds at the 

Etchegoin stratigraphic level observed in outcrop in the southern Belgian 

Anticline area. 

Normal faulting also took place during the later stages of the structural 

evolution posterior to the deposition of the Monterey Formation and is evident 

to the west of the study area where the back limb of a duplex structure is 

faulted . For this reason and the subsequent reactivation of compressive 

episodes, we believe that the structural deformation occurred in pulsating 

events that varied in strength through the structural evolution. 

Various cross-sections in the literature present a clear back-stepping of 

turbidite sandstones in the Reef Ridge level. Even more, the interpretation 

presented here both in the stratigraphic and structural cross-sections shows a 

thickening of the Reef Ridge unit towards the broad syncline that separates 

the Midway-Sunset and Buena Vista field where the cross sections mentioned 
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above are located. These observations indicate that the structural uplift of the 

Temblor Range that was produced by the fault bend folds developed to the 

west , remained active during the deposition of these formations and 

represented a local source that shed sediment to the northeast and southeast 

as this sandstones were deposited. Additionally, a decrease in slope of the 

Etchegoin surface compared to the Reef Ridge surface suggests that the 

folding mechanism progressively decreased its intensity through time . 

Various deepwater sandstone bodies are observed in the stratigraphic 

section. Sandstones in the Temblor and in the Monterey formations are 

laterally continuous and fairly homogeneous in thickness. On the other hand, 

the well-log correlation of sandstone bodies in the Reef Ridge Shale suggests 

that their thickness is very variable and that they are not as laterally 

extensive. In the field, the sandstone bodies in the Belridge Diatomite appear 

to be lenticular in shape and cutting into the diatomite. Laterally continuous 

and homogeneous sandstones present in the Temblor Formation and the 

upper members of the Monterey Formation suggest a deposition in an 

unconfined setting , where no major barriers controlled the sediment 

distribution. After the Antelope shale was deposited , a major deformation 

event that took place during the late Miocene created a confined setting, 

where structural highs controlled the sediment distribution. 
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The rise of the Temblor Range became a sediment source that locally 

modified the depositional axes , generating a northeast to southeast area 

where the Potter and Olig Sandstones where deposited . A combination of 

depositional and structural events controlled the framework that is present in 

the study area. Through a careful study of the data these factors were 

recognized and introduced in the construction of the structural geologic 

model. 

Sedimentary growth is recorded in The Gould/Devilwater and the 

McDonald members of the Monterey Formation ; this is clear near the large 

scale normal fault that separates the thinner members in the foot wall to the 

east at Elk Hills, from the enlarged upper Monterrey members present in the 

Buena Vista oil field . 

Important parts of the trapping mechanism in the petroleum system are 

the unconformities. The most important is the upper-Miocene unconformity 

since various combination traps are found at the lateral termination of many 

sandstone bodies against this surface that acted as a seal. 

The Belgian Anticline area is structurally complex ; here, sandstone 

bodies are separated by faults that create compartments in the structure . 

Many of the fault blocks presented in the geologic model had not been 

previously interpreted . The aim of this thesis is to enhance the steam flooding 
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project that is active in the area by providing a tool to evaluate potentially 

bypassed reservoirs in the Potter Sandstone, and propose additional 

development possibilities represented by new targets in deeper reservoirs. 

8.1 Petroleum system 

From the wells used to analyze the petroleum system, it is suggested 

that subsidence was greater to the south of the field as is evidenced by 

steeper burial curves to the south that progressively become gentler to the 

north. Probably a high was present very early in the system, affecting 

deposition from the central part all the way to the northern limit of the field. 

This controlled to some extent the amount of sediment that was deposited. 

Development projects to find new pools or bypassed oil have good 

chances of success based on the qualitative assessment of the 1 O petroleum 

system criticals. It is important to notice that even though the probability of 

success is 84% , caution has to be taken in the delimitation of sandstone 

bodies and the reservoirs in general; as their delineation and accurate 

position in space is the major risk factor in a play like this, where exploration 

is in the late mature stages. 
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9. RECOMMENDATIONS 

It is recommended to Conduct a restoration of the 2 remaining regional 

cross-sections to model and understand the main hydrocarbon generation 

and migration events for all the sandstone members in the Tumey (Oceanic), 

Temblor (Phacoides , Agua, Carneros, and others), Monterrey, and Reef 

Ridge formations. This will provide a better understanding of the charging 

mechanism of these sandstone bodies , and the Stevens equivalent 

(Leutholtz, Williams, Republic, Spellacy, and Potter) deepwater sandstones. 

According to thermal history studies , the San Joaquin basin is an 

overcharged system and plays shallower than 17,000 ft are prospective. This 

is an incentive to aim for deeper targets where the quality of oil is also better 

(18-30 API). 

New wells drilled to the center of the detailed area could reach lower 

interpreted blocks of the structure with potential in the Monterey lower 

members and the Temblor formation . 
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The structural geologic model presented in this thesis is a tool that 

should be updated as more data becomes available; this is an iterative 

process that constantly improves the model. For a structurally complex area 

as the Belgian Anticline, it is important to tune the model, introducing more 

wells with dipmeter-logs and, if possible, seismic data. The recommendation 

here is to use a minimum of 25 wells per cross section, using deeper wells 

where markers like the Point of Rocks Sandstone, the Kreyenhagen Shale, 

the Tumey Shale, the Top Temblor and the top of the Devilwater member of 

the Monterrey Formation are constrained. 
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