Towards Exascale DNS Solver for Hypersonic Boundary-Layer Receptivity to Solid Particulates Furkan Oz¹ and Kursat Kara¹

¹Mechanical and Aerospace Engineering, OSU

The prediction of hypersonic boundary-layer transition location from a laminar to a turbulent state is vital to the development of hypersonic vehicles because of the first-order impact on aerodynamic heating, drag force, engine performance, and vehicle operation.

Preliminary Considerations

- Particulate size is modelled as 10 µm.
- Particulates density is modelled as 10³ kg m⁻³.
- Process is assumed adiabatic.
- We assumed that collision does not change surface roughness.
- Particulate is assumed as spherical.

Reservoir Temperature	T ₀	475 °	F
Contact Information:	foz@okstate.edu,	kursat.ka	ra@okstate.edu

Objective

The small particulates that enter the boundary layer causes nonlinear be investigated with physics-based DNS tool.

0.2

0.4

0.6

0.8

Solid Particulates

Solid particulates that are suspended in the air has a great impact on this