
 A SECURE HFO2 BASED CHARGE TRAP EEPROM

WITH LIFETIME AND DATA RETENTION TIME

MODELING

 By

 CHENG HAO

 Bachelor of Science in Electrical Engineering

 North Carolina State University

 Raleigh, NC

 2011

 Master of Science in Electrical Engineering

 Oklahoma State University

 Stillwater, OK

 2016

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 DOCTOR OF PHILOSOPHY

 July, 2019

ii

 A SECURE HFO2 BASED CHARGE TRAP EEPROM

WITH LIFETIME AND DATA RETENTION TIME

MODELING

 Dissertation Approved:

 Dissertation Adviser Dr. Chris Hutchens

 Dissertation Adviser

 Committee Member Dr. Jerzy Krasinski

 Committee Member Dr. Daqing Piao

 Outside Committee Member Dr. Jindal Shah

iii
Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Dr. Chris Hutchens for the guidance

throughout my Ph.D. study. I certainly would not have this achievement without his

effort. I also would like to thank Dr. Jerzy Krasinski, Dr. Daqing Piao and Dr. Jindal

Shah to be my committee members. They have provided me valuable guidance and

suggestions for my work. I would like to thank Air Force Research Laboratory (AFRL),

Rome, NY for the funding of this project.

I would like to thank my parents, my mother Mrs. Ru Jia, my father Mr. Genli Hao and

other family members for being supportive toward my education. I would like to thank

my girlfriend Ms. Hao Guo for being on my side throughout these years. I would like to

dedicate this dissertation to all people that support me these years for this great

achievement.

I would like to thank my MSVLSI lab members Mr. Vishal Reddy Banala and Mr. Juan

Salinas for their help and contributions throughout my study.

iv

Name: CHENG HAO

Date of Degree: JULY, 2019

Title of Study: A SECURE HFO2 BASED CHARGE TRAP EEPROM WITH

LIFETIME AND DATA RETENTION TIME MODELING

Major Field: ELECTRICAL ENGINEERING

Abstract: Trusted computing is currently the most promising security strategy for cyber

physical systems. Trusted computing platform relies on securely stored

encryption keys in the on-board memory. However, research and actual cases

have shown the vulnerability of the on-board memory to physical cryptographic

attacks. This work proposed an embedded secure EEPROM architecture

employing charge trap transistor to improve the security of storage means in the

trusted computing platform. The charge trap transistor is CMOS compatible

with high dielectric constant material as gate oxide which can trap carriers. The

process compatibility allows the secure information containing memory to be

embedded with the CPU. This eliminates the eavesdropping and optical

observation. This effort presents the secure EEPROM cell, its high voltage

programming control structure and an interface architecture for command and

data communication between the EEPROM and CPU. The interface

architecture is an ASIC based design that exclusively for the secure EEPROM.

The on-board programming capability enables adjustment of programming

voltages and accommodates EEPROM threshold variation due to PVT to

optimize lifetime. In addition to the functional circuitry, this work presents the

first model of lifetime and data retention time tradeoff for this new type of

EEPROM. This model builds the bridge between desired data retention time

and lifetime while producing the corresponding programming time and voltage.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. TRUSTED PLATFORM MODULE SECURITY ISSUES3

 2.1 Trusted Platform Module ...4

 2.2 Means of Memory Attacks ...8

 2.2.1 Microprobing Attack ...8

 2.2.2 Cold-boot Attack ...10

 2.2.3 Side Channel Attacks ..11

 2.3 Variety of Hardware Security Means ..13

 2.4 Perspective of This Work...14

III. HFO2 HK DIELECTRIC TRANSISTOR ...16

 3.1 High-k Dielectric Gate Stack ...16

 3.1.1 Why High-k ..16

 3.1.2 Choices of Material ...17

 3.1.3 Gate Stack Structure ...18

 3.2 Defect Levels ...19

 3.3 Carrier Transport ..21

 3.4 Threshold Voltage Instability and Memory Applications24

 3.4.1 Charge Trapping/Detrapping and Threshold Voltage Instability24

 3.4.2 Memory Applications ...27

 3.5 Reliability Issues ..28

 3.5.1 Bias Temperature Instability ...28

 3.5.2 Stress Induced Leakage Current ...29

 3.5.3 Time Dependent Dielectric Breakdown ..30

IV. PROPOSED EEPROM ARCHITECTURE ..33

 4.1 Design Overview ...33

 4.2 CPU/EEPROM Interface ...34

 4.2.1 Input Registers ..34

 4.2.2 CUI ..36

 4.2.3 Controller ..38

 4.3 Interface Operation ..40

 4.3.1 Write ...40

vi

Chapter Page

 4.3.2 Erase ..41

 4.3.3 Read ..42

 4.4 EEPROM Core...42

 4.4.1 EEPROM Cell ...42

 4.4.2 EEPROM Macro Model ...48

V. PROGRAMMING VOLTAGE GENERATION..51

 5.1 LDO Specifications ..51

 5.2 Design Flow ...54

 5.3 Implementation ..61

 5.3.1 Bandgap Voltage Reference ..61

 5.3.2 Gain Boosting ..63

 5.3.3 Boosted Telescopic OTA ...64

VI. EEPROM LIFETIME AND DATA RETENTION TIME TEADEOFF66

 6.1 High-k Dielectric Gate Reliability ...66

 6.2 TDDB Models for SiO2 Gate Stack ...67

 6.2.1 E Model ...67

 6.2.2 1/E Model..69

 6.2.3 Power Law Voltage Model ...70

 6.2.4 √𝐸 Model ..70

 6.3 Advanced TDDB Models for HfO2 Gate Stack ...72

 6.3.1 Progressive Breakdown ..72

 6.3.2 Generated Subordinate Carrier Injection Model75

 6.3.3 A Percolation Model with Different Defect Generation Rates76

 6.3.4 An All-in-one TDDB Reliability Model ...77

 6.4 Proposed Comprehensive Model ...78

 6.4.1 Model Overview ...78

 6.4.2 Block One ...79

 6.4.3 Block Two ...82

 6.4.4 Block Three ...83

 6.4.5 Block Four ..88

VII. RESULTS ...91

 7.1 CPU/EEPROM Interface Simulation ...91

 7.2 LDO Simulation ...95

 7.3 HfO2 Transistor Lifetime Extrapolation Results..98

vii

Chapter Page

VIII. CONCLUSION ...103

REFERENCES ..105

APPENDICES ...113

viii

LIST OF TABLES

Table Page

 3.1 Material being pursued as a potential replacement of SiO217

 3.2 Examples of threshold instability characterization ...26

 4.1 Signal status summary of each memory operation ...46

 4.2 RS[#] signals summary for each memory operation...47

 6.1 Retention characteristics of HfO2/SiO2/Si gate stack with different layer82

ix

LIST OF FIGURES

Figure Page

 2.1Trusted Platform Module chip architecture ...5

 2.2 TPM system boot process from a root of trust ..7

 2.3 (Left) Probing needles land on the chip which is observed by a microscope9

 2.4 The components of a typical successful DPA result ...12

 2.5 Power trance of smart card performing triple DES based operation12

 2.6 Proposed RSA module by P. Choi and D. K. Kim ...14

 3.1 High-k dielectric metal gate stack ...18

 3.2 Gate first and gate last process steps...19

 3.3 Calculated energy levels of oxygen vacancies and oxygen interstitial in HfO2 .20

 3.4 Summary of carrier transport mechanisms in HK gate stacks22

 3.5 Energy band diagram describing charge trapping mechanism for NMOS25

 3.6 Threshold voltage increases when carriers trapped into the HK dielectric27

 3.7 Stress-sense procedure for SILC generation measurement30

 4.1 Top level block diagram of the EEPROM architecture34

 4.2 Initialization register bit allocation ...35

 4.3 Command register bit allocation ...36

 4.4 CUI (command-user interface) schematic ..37

 4.5 State diagram of the controller ..39

 4.6 EEPROM cell with controlling device and control signals44

 4.7 Circuit of a column of storage cell with sense amplifier block45

 4.8 RS[#] signal generation by pside [#] and nside [#] visa level shifters47

 4.9 Full CPU/EEPROM interface schematic ..48

 5.1 On-chip LDO and off-chip DAC for generating programming voltages54

 5.2 L=230nm thick oxide NMOS ...55

 5.3 L=230nm thick oxide PMOS ..56

 5.4 gm, gds, self gain, fTA, Vgs, Vds, and Vth plots ..57

 5.5 Output pole location as a function of load current relative to the GBP58

 5.6 LDO closed-loop small signal equivalent circuit..59

 5.7 Lead-lag compensation achieves pole splitting for closed-loop stability61

 5.8 Bandgap voltage reference circuit diagram ..62

 5.9 Gain boosting circuit topology..63

 5.10 A boosted single ended telescopic OTA schematic ..65

 5.11 Common mode feedback circuit schematic ..65

 6.1 SiO2 molecular structure ..68

 6.2 Progressive breakdown regimes ...72

x

Figure Page

 6.3 All-in-one TDDB reliability for a 0.63nm EOT PMOS77

 6.4 Proposed trap charge based EEPROM lifetime model flow diagram.................79

 6.5 Different groups of defect levels within the bandgap of HK dielectric layer85

 6.6 2D percolation diagram showing SiO2 interfacial layer and HfO2 HK layer86

 6.7 3D kinetic Monte Carlo simulation program flow chart87

 6.8 EEPROM average threshold measurement circuit ...90

 7.1 EEPROM write operation. Control transition from CPU to EEPROM92

 7.2 EEPROM write operation. Operation transition from write to read92

 7.3 EEPROM write operation. Control transition from EEPROM to CPU93

 7.4 EEPROM erase operation. Control transition from CPU to EEPROM93

 7.5 EEPROM erase operation. Control transition from EEPROM to CPU94

 7.6 EEPROM read operation. Control transition from CPU to EEPROM94

 7.7 EEPROM read operation. Control transition from EEPROM to CPU95

 7.8 LDO simulation schematic ...95

 7.9 LDO closed-loop Bode magnitude and phase plots ..96

 7.10 Output transient of the LDO with 0.6V output and 2mA load current97

 7.11 Output transient of the LDO with 2.5V output and 2mA load current97

 7.12 Simulated Weibull distribution of 32nm HfO2 HK gate stack lifetime98

 7.13 Simulated Weibull distribution of 24nm HfO2 HK gate stack lifetime101

 7.14 Simulated Weibull distribution of 15nm HfO2 HK gate stack lifetime102

1

CHAPTER I

INTRODUCTION

Trusted computing is currently the most promising security strategy for cyber physical systems

which demand high level protection on sensitive data, code, and configurations. Trusted

computing has been widely applied to business, e-commerce, medical, industrial, financial

entities, mobile computing and government agencies. The trust is in the sense that the relying

entity is assured any data given to the system is kept confidential or no malware is running on the

platform [1]. Security is bootstrapped from a dedicated secure microcontroller referred to as a

Trusted Platform Module (TPM) which is built into more complex computer systems. Today,

TPM is prevalently integrated into servers, desktops and laptops for hardware secure

authentication. The TPM hardware along with supporting software provides the platform’s root of

trust. Hardware protected storage enables the protection of user’s secret data through the means

of encryption whose decryption can only be performed on a dedicated hardware containing the

private keys. However, as the demand for TPM involved application increases, the security and

trust issues have to be addressed in order not to defeat the original purpose. Research and actual

cases studies have shown TPM is subject to serious security threats. The security threats appear

both in software and hardware. Our work focuses on providing a feasible hardware solution to

protect the TPM structure from hardware attack specifically EEPROM memory attack. We

propose an embedded 10kb secure EEPROM architecture employing charge trapping mechanism

implemented using 32nm HfO2 based SOI CMOS process. The architecture includes EEPROM

2

memory core, fully custom designed communication interface between CPU and EEPROM core, and

programming voltage generator. In addition to the hardware implementation, this work provides the

first model for EEPROM lifetime and data retention time tradeoff for high k dielectric (HfO2) type

EEPROM. The HfO2 based dielectric material reliability modeling is still under research. Many

research groups have proposed different school of thoughts. This work first summarizes models

encountered during initial literature review and then selects a best-fit model among all based on our

understanding and feasibility of applying to our EEPROM lifetime model development. Nonetheless,

our first model will be available and improvement can be made as deeper understanding of the

material physics as the knowledge base grows.

This dissertation is organized as follows: Chapter 2 discusses TPM technology basics, existing

memory attacks that potentially threat TPM data security, proposed solutions in the literature, and the

perspective of our work to the issue. Chapter 3 discusses about the basics of HfO2 based high

dielectric (HK) constant gate stack, carrier transport and trapping mechanisms, and the potential

application for EEPROM. Chapter 4 provides our proposed EEPROM cell structure, CPU/EEPROM

communication interface architecture, and operation. Chapter 5 discusses programming voltage

generation circuitry. Chapter 6 is dedicated to the proposed EEPROM lifetime modeling. This chapter

fist reviews existing SiO2 dielectric device lifetime models followed by HfO2 based HK transistor

lifetime models. Finally the new model is presented. Chapter 7 shows simulation results of major

circuit blocks. Chapter 8 suggests future work.

3

CHAPTER II

TRUSTED PLATFORM MODULE SECURITY ISSUES

Trusted Platform Module (TPM) is designed to provide hardware-based security functions. TPM

is capable of performing number of cryptographic operations. However, TPM is a passive device

meaning it cannot enforce any specified software security polices without an operating platform.

For example, on a trusted desktop platform, the TPM is assisted by the complex software running

from BIOS. TPMs have revealed vulnerabilities can be exploited by skilled malicious users. In

fact research and actual test cases have shown TPM is subject to serious security threats. The

security threats appear both in software and hardware aspects. Software attack may include

Bootloader, BIOS, and system attack. Hardware or physical attack includes memory, bus probing

and side-channel interrogation. Secure means such as encryption of on-chip or embedded

memory, data bus and address bus encryption, sensing meshes for triggering self-destruction and

distributed bus lines over a sea of gates are employed for preventing cryptographic attacks.

Usually embedded firmware and encryption keys are stored in nonvolatile memory. Therefore,

embedded memory security plays a critical role in trusted computing. Our work focuses on

memory security from physical attacks. Our study aims at providing a circuit level feasible

solution to direct probing, power analysis and optical observation. This chapter reviews TPM

technology and introduces different means of memory physical attacks and proposed security

solutions in the literature. Finally a design perspective of our implementation employing

hardware at the transistor level to improve storage security is presented.

4

2.1 Trusted Platform Module

As defined by the Trusted Computing Group (TCG) [2], a TPM is a cryptographic

microcontroller designed to secure the hardware authentication process and counteract software

attack through integrated cryptographic keys. Safe computing is achieved through authentication

and validation. Authentication is the process of proving a platform is what it claims to be and

validation helps to prove a platform is trustworthy and has not been breached. TPM provides the

platform root of trust and extends the trust to the other parts of the platform by building a chain of

trust [1] [3]. The minimum features a trusted platform must employ are protected capabilities,

integrity measurement and integrity reporting. In addition to the basic features, TPM has other

features allows flexible implementation including confidentiality and integrity protection, secure

storage, and process isolation [1]. The following briefly reviews each previously mentioned

feature. The protected capabilities of TPM are reflected in specific crypto functions executed

within the hardware. External hardware and software are prohibited from direct access to those

functions but communicate with I/O ports of the TPM. Integrity measurement is the fundamental

feature of a platform as being trusted. This feature tells how the platform is configured and what

processes are running. TPM’s integrity measurement results in an integrity metric which is

compared with acceptable values for verifying the trusted platform. The metric consists of two

classes of data; one is measured value which is a representation of embedded data or program

code, the other is digests which are Sha-1 cryptographic hash of those measured value [5]. After

an integrity metric is obtained, TPM report is made to requesters who make trust decision

regarding the platform. The integrity metric must be stored in a secure location since it contains

the proof of a trustworthy platform. Confidentiality and integrity protection features allow data

and application code to be protected during both storage and execution by encryption.

Confidentiality requires stored data to be encrypted. Access to the data requires securely stored

cryptographic keys. Process isolation protects data during execution. An isolation kernel between

5

hardware and operating system is provided to create and manage multiple secure compartments

which are in parallel on the same machine. Each compartment runs its own operating system in

parallel to and decoupled from others.

A TPM chip architecture is shown in figure 2.1 [4]. The I/O block manages information flow over

the communication bus. The I/O block provides encoding and decoding for communication and

routes messages to appropriate components. TCG does not specify the I/O architecture and leaves

it up to the developers. Nonvolatile memory mainly stores endorsement keys (EK), storage root

keys (SRK) and owner authorization data. EK consists of a key pair with private component that

is embedded in the TPM and public component contained in the endorsement credential [1]. EK

is used for TPM identification and platform extension. To protect user privacy, EK usage is

Platform Configuration
Register (PCR)

I/O

Attestation Identity
Keys (AIK)

Volatile Memory

Endorsement Key (EK)

Storage Root Key (SRK)

Nonvolatile Memory

SR
AM

EEPROM

Random Number
Generator

RSA Key Generator

SHA1 Hash Engine

Encryption/decryption
signature engine

Cryptographic
Processor

Figure 2.1 Trusted Platform Module chip architecture [4].

restricted and its aliases, the Attestation Identity Keys (AIK), are used for transactions [1]. EK

pair is provided by TPM manufactures and stored in tamper resistant nonvolatile memory

(enhancing this feature as well as others are the goal of this work). An endorsement credential is

generated containing the public EK and security properties of the TPM. A certification authority

known as Trusted Platform Module Entity (TPME) can attest and sign the credential after

6

verifying the public EK whose corresponding private EK stored in the TPM complies with TCG

standards [1]. The TPME could be third party users or manufactures. The endorsement credential

is used to identify and verify the genuine of the TPM based on stored private EK. The public EK

is only used for data encryption during ownership assignment and creating AIK certificates.

Public EK encryption ensures data can only be recovered by the particular TPM identified in the

endorsement credential. As mentioned, AIK can be seen as an alias of EK. Each TPM supports

many AIKs for the TPM user to provide them to different service providers who need to verify

the platform identity. Platform Configuration Registers (PCR) are used to store integrity metrics.

These registers will be reset when a system loses power or restart. A random number generator is

used to construct keys. The SHA-1 engine executes secure hash algorithm used in many

cryptographic procedures such as integrity measurements and when computing digital signatures.

The remaining space of this sub-section is used to present an overview of the TPM services: root

of trust, boot process, integrity measurement and reporting, protected storage, and attestation. The

foundation of TPM services is the concept of “root of trust”. The idea is that a trusted platform

has to have some means of verifying the integrity of the platform. At the same time, the integrity

of the means also need to be verified. Ultimately, there will be some processes that cannot be self

verified [1] [2]. This process is the Root of Trust [1] [2]. This is the starting point of the chain of

trust among parts in the platform. There are three distinct roots of trust defined by TCG standard:

a Root of Trust for Measurement (RTM), a Root of Trust for Storage (RTS) and a Root of Trust

for Reporting (RTR) [1]. RTM is a computing engine that boots early in the boot process to

enable integrity measurement of other components that loaded after it. RTS is a trusted

component that provides protection to keys and data. RTR is a trusted component performing

verification to the platform. System booting starts from CPU execute core root of trust for

measurement (CRTM), which is the first set of instructions executed for a new chain of trust [4].

The integrity measurement performed together with the boot process and CRTM sends an

7

identification value to RTS. CRTM serves as a static root of trust for system booting [5]. After

BIOS is loaded, it takes control and verifies the integrity of OS loader. The loading and

measurement alternatively propagate through the components until applications are loaded. This

procedure is depicted in figure 2.2, is adapted from [5]. The integrity measurement consists of

two classes of data, one is measured value which is a representation of data or program code, the

other is measurement digests which is SHA-1 cryptographic hash of the measured value [5]. The

measurement digests are stored in PCR. The verification process requires recreation of digests

Application
Code

OS Code

OS Loader
Code

CRTM
Code

BIOS boot block
+

Roots of Trust

Ex
ec

u
ti

o
n

5

4

2

3

1
M

ea
su

re
m

en
t

Figure 2.2 TPM system boot process from a root of trust. Source of [5].

and to be compared with PCR stored values. Integrity reporting serves two purposes: open the

shielded-locations to store integrity measurements and attests to the authenticity of stored value

[5]. Protected storage is one of the critical services provided by TPM. A small amount of volatile

memory is used to hold active keys being used for signing and decryption operation. Storage

complies with two key attributes: migratable and nonmigratable. Migratable keys may be

exchanged between TPM devices following the user. A nonmigratable key is permanently

associated with a specific TPM device. Migration of nonmigratable keys will result platform

masquerades each other [5], which defeats the secure purpose of TPM and is not allowed to take

place. Detailed key specification can be found at [4] and [5]. Attestation is a process by which a

8

third party or verifier verifies a users’ operating system and applications are intact and

trustworthy. In order to gain trust from the third party, attestation data should be signed by a TPM

whose key is certified by the certification authority [2].

2.2 Means of Memory Attack

Embedded systems often involve microcontrollers which have integrated memory devices such as

SRAM, ROM, EEPROM and Flash. System-on-chip (SoC) devices, on the other hand, are more

complex compare to microcontrollers and may have multiple processors and/or memory devices

integrated on a single chip. Embedded firmware, instruction code and secure keys are often the

content of these memory devices. As discussed in 2.1 nonvolatile memory in the TPM stores

critical keys for secure device authentication. The ability of sustaining cryptographic attacks

determines the usefulness of a TPM device. On-chip memory has less encryption compared to

off-chip memory for the following reasons. One, complicated encryption requires multiple

instruction fetches which increase latency of program execution. The other reason is strong

encryption requires additional hardware which consumes more silicon area [6]. However, the

weaker encryption of a memory is more susceptible to physical attacks. Physical attack on

encrypted memory can be macroscopically classified into three types: microprobing attack, cold-

boot attack, and side-channel attack. This section reviews the physics of each of the four types

and provides literature review demonstrates the secure effect have spread to trusted computing

applications.

2.2.1 Microprobing Attacks

Microprobing attacks have been known since their application on smartcard processors [7]. It is

an attack that directly accesses chip circuitry to observe, manipulate, and interfere with the

integrated circuit. The general steps are de-packaging the circuit, reconstruct layout, and manual

microprobing or memory content read out [7]. Equipment for carrying out microprobing attack is

9

relative inexpensive and widely available. The most important tool is a microprobing station

which includes a microscope, stage, device test socket, micromanipulators and probe tips [6]. The

microscope ought to have long working distance objectives and enough depth of focus to be able

to capture all the probes and movements [6]. Figure 2.3 [6] provide a glance of generic scenario

of landing probes on a test chip (left) and a microspore image with probes touching the circuit.

Figure 2.3 (Left) Probing needles land on the chip which is observed by a microscope. (Right)

Chip circuit view under a microscope. Marked shadows are probing needle tips. Source of [6].

S. Skorobogatov [6] has demonstrated a successful direct extraction from encrypted embedded

memory in secure chips. The Mask ROMs from two samples are the target attack devices. One is

a smartcard used in banking industry with likely a Hitachi H8/300 compatible CPU core [6]. The

other sample is a custom secure microcontroller used in the car industry with likely a NEC 78K/0

compatible CPU core [6]. After de-capsulation, both chips are found to be fabricated with 0.35um

CMOS process. The smartcard chip has 40kB of Mask ROM and 4kB of EEPROM while the

microcontroller has 32kB of Mask ROM and 256 bytes of EEPROM. Even though both cores

have reduced gaps between metal layer lines and dummy wires, using the technique discussed in

[8] authors were able to de-process the chips down to transistor layer revealing Mask ROMs

structure. Data was injected into the bus coming from the Mask ROM to determine the

correspondence between the encrypted and plain text data. This work raises the question whether

memory encryption is as good as it is claimed to be. Perhaps a new way of implementing

10

embedded memory is in order? K. Kursawe et al. have shown their probing attack to the IBM

ThinkCentre M50 TPM [9]. The Atmel TPM is installed on a daughter board. The

communication interface is easy to probe. The attack was conducted in two phases. The first

phase was using a modified version of the TPM driver to understand the transfer protocols and

meaning of signals on the communication bus. The second phase was to observe traffic during the

TPM startup. A filter device was added in front of logic analyzer to filter signals that only TPM

operation related [9].

2.2.2 Cold-boot Attack

In addition to the microprobing attack, cold-boot attack targets DRAMs which are usually used to

store cryptographic key material in computers. This type of attack does not require physical

access of the internal circuitry. It uses the phenomenon called memory remanence. Memory

remanence means charges stored in DRAM cells do not dissipate away immediately after power

is cut or removing the memory from mother board at normal operating temperature [10]. Memory

contents can persist even longer if the chip is kept at low temperatures. Attackers can extract

RAM contents using three methods with increasing resistance to countermeasures. The simplest

method is to reboot the machine and launch a custom program kernel that gives the attacker

access to the residual memory content. A relatively strong attack is to restore power to the

machine and boot a custom program kernel to extract memory content shortly after power is cut.

This method prevents any chance that memory content is scrubbed before power off. A stronger

attack is transplant the DRAM modules to an attacker prepared PC after power is cut recovering

its data. Data is fully preserved from BIOS or any hardware clearing memory on reboot.

Halderman et al. have demonstrated that even after power is cut, encryption keys can be

recovered by cooling the memory chip prior to cutting power and apply their developed algorithm

for error correction [10].

11

2.2.3 Side Channel Attacks

One of other susceptible secure exploits is side channel attacks. Side channel attacks (SCA)

means monitoring hardware external outputs while cryptographic operations are taking place with

the aim of compromising the protected keys or data of a cryptographic device. Rather than

decapsulated the core IC, SCA seeks to deduce the secret content from the leakage of

information. The assumption behind SCA is outputs of the device, i.e. power supply pins, show

correlation with the internal state of the device when executing cryptographic operations [11].

This is particularly true when data is transmitted on serial buses. Common external outputs

include heat, execution time, electromagnetic radiations and power consumption [11]. This

dissertation reviews exclusively focuses the power analysis attack. Other components of SCA can

be found in [12, 13, 14, 15, 16]. Many research groups have demonstrated the success of power

analysis attack on cryptographic devices [11, 17, 18, 19]. Power analysis attacks are carried out

by measuring the power consumption at the power pins of cryptographic chip. Power analysis

attack can be classified into three categories: simple power analysis (SPA), differential power

analysis (DPA) and correlation power analysis (CPA). SPA directly interprets power

consumption measurements for secure content recovery. It focuses on single power trace or pairs

of power trance comparison [18]. With advanced encryption techniques, it is hard to deduce the

key by SPA alone, but SPA can predict operation type and algorithm both of which are necessary

for key extraction [17]. DPA is more powerful compared to SPA. DPA uses statistical technique

to identify difference in power traces even though the difference is buried in noise. The basic

method is to partition a set of traces into two subsets and compute the difference of the average of

the two subsets. If the choice of which trace is assigned to each subset is uncorrelated, the

difference of the subsets will be averaged to zero. Otherwise, the difference will be nonzero [18].

Since the noise is white, even extremely tiny correlations can be isolated with enough trances

samples. P. Kocher et al. in their publication [18] reported SPA and DPA on AES-128 encrypted

12

smart card. The DPA successfully detect power differences corresponding to LSB values of first

S-box in round one. Figure 2.4 shows the power trace (from top to bottom) of average of the trace

when LSB is 1, LSB is 0, difference of the power and 15 times zoomed difference. The SPA

revealed power trace of the smart card triple DES operation shown by figure 2.5. In addition to

SPA and DPA, CPA captures secret leakage by finding relationship between characteristics of

power trace and a hypothesized power model [11]. The idea is that if a power model is accurate,

there should be a strong correlation between predicted output and actual output. One power

model can be used is

Figure 2.4 The components of a typical successful DPA result. From top to bottom is the average

of the trances where the LSB of the output of first S-box in round one is 1, the average of trances

where the LSB is 0, the difference between the top two traces, and the same difference with Y

axis magnified 15 times. Horizontal axis is time. Source of [18].

Figure 2.5 Power trace of smart card performing triple DES based operation. Source of [18].

the Hamming Weight Power Model. The assumption of using this model is that the number of 1

or 0 of an output correlates to the power consumption [11]. The correlation between power model

13

and actual power consumption can be calculated using Pearson correlation coefficient equation

[11]. O. Lo et al. [11] have demonstrated the feasibility of CPA against the AES-128 algorithm

on Arduino Uno microcontroller by monitoring the power consumption while running

cryptographic operations.

The success of such attacks are based on the observation that pad drive power is more than three

orders magnitude larger than on chip bus power and readily observed when data is transported

from off chip onto a serial bus. The observation becomes much less observable when EEPROMs

are moved on chip with data or keys transported in parallel for the following reasons 1) Bus

power consumption drops by three orders of magnitude or greater when on chip and 2) signal to

noise ratios drop by another two orders of magnitude when transport via a 128 bit parallel bus.

This may not provide total key or data security from recovery however it does make recovery via

power supply monitoring more than five orders of magnitude more difficult excluding the

presence of multicore activity.

2.3 Variety of Hardware Security Means

There are not many countermeasures to physical attacks on the memory of TPM have been

published. Among limited published literatures we select two representative and interesting

countermeasures for discussion in this document. P. A. H. Peterson proposed a software-

encrypted virtual memory manager, cryptkeeper, to mitigate the vulnerability of RAMs [20]. The

idea is to divide a RAM into two parts, one smaller and unsecure segment for immediate memory

use, the other is larger and a secure segment. Even though the paper does not give any

information on cryptkeeper implementation and how it can improve RAM security but only the

performance assessment, it hand waves the concept of secure RAM by swapping free and

occupied memory space. P. Choi and D. K. Kim proposed a new TPM architecture based on a

physical unclonable function (PUF) to protect stored secret keys from physical attacks. The idea

14

Figure 2.6 Proposed RSA module by P. Choi and D. K. Kim. Source of [21].

is to hide the key before it leaves key generator and unhide it when used in cryptographic

modules [21]. Figure 2.6 shows the implementation of PUF with the RAS generator to generate

keys. The public key generated directly goes to data bus. The private key is hidden by XORing

the key with PUF. The PUF is a function based on the random mismatching of electric elements

that is impossible to duplicate [21].

2.4 Perspective of This Work

Beyond the architectural level secure solutions introduced in the literature, we turn our attention

to the fundamental building element, the transistor. The inspiration comes from hiding the key (or

logic 1 and 0) in terms of transistor threshold difference. Threshold difference between two

transistors is used to distinguish logic high and low. The difference of threshold is achieved by

programming transistors. The programming is in the sense of applying higher gate to source

voltage so that the carrier can tunnel through the oxide barrier and trap into the gate dielectric.

This kind of transistor, known as charge trapped transistor (CTT) [22], uses high dielectric

constant (HK) material as gate oxide. F. Khan et al. [22] and C. Kothandaraman et al. [23] have

demonstrated the feasibility of this kind of transistor for potential memory applications. As a

potential solution to the above discussed memory security issues, we propose an on-chip 10-kb

EEPROM architecture employing CTT in this work. One interesting aspect to note is that this HK

transistor is the product of continuous CMOS technology scaling. As transistor dimensions

15

become smaller and smaller, the gate dielectric (SiO2) thickness reduces to the point where gate

leakage and reliability are not acceptable. Therefore, a HK material is introduced to the

technology for smaller equivalent oxide thickness (EOT) but thicker physically to alleviate the

burden of aggressive scaling. However, HK materials have the property of trapping charges in the

dielectric after extended time exposure to normal gate voltage applications or short duration

higher gate voltage. Many researchers including ourselves see this as an opportunity for a

threshold controllable device and a potential “hidden key” memory use. The design presented

here uses 32nm SOI CMOS technology with HfO2 gate dielectric material. The concept of CTT

resembles floating gate technology but requires much lower programming voltages and is CMOS

process compatible. Detailed device operation is discussed in Chapter 3. The proposed EEPROM

uses transistor charge trap property and differential cell structure to distinguish logic one and

zero. There is no additional hardware required for security purpose. The process compatibility

allows the key containing memory to be embedded with the CPU core. This means the TPM and

hosting CPU can be integrated into one chip. This all but eliminates the eavesdropping on the

communication buses and power busses. TPM and hosting CPU can be integrated using ASIC

design methodology which results in a sea of gates and distributed interconnected wires. This

makes locating the storage hardware and reverse engineering the logic a very difficult or an

extremely high cost and difficult task. The power analysis attack is prevented by our design as the

data transferred in parallel between CPU and EEPROM on chip while consuming three or four

orders of magnitude less power or typically 80μ watts in the presents of 100 watts of processor

power. Malicious users may only be able to measure the average power consumption of the

cryptographic operations considering they are attempting to measure microwatts of power. It is

expected to be difficult to observe power fluctuations when cryptographic operations are taking

place due to both the parallel nature and lower power consumption levels relative to the

processor(s). Finally, even if the memory is found, key need only to be updated when a TPM falls

into the wrong hands.

16

CHAPTER III

HFO2 HK DIELECTRIC TRANSISTOR

The fundamental building transistor of our work is the charge trap transistor based on HfO2 HK

dielectric gate stack structure. A charge trap transistor is able to trap and detrap carriers into and

out of the HK layer under programming or erase gate voltages. The EEPROM cell presented here

uses NMOS for charge storage cell. Therefore, the programming voltage is a positive gate voltage

with respect to source terminal and erase gate voltage is negative. This chapter is dedicated to a

discussion of HfO2 HK transistor. Topics include HK gate stack structure, defect levels in the HK

material, carrier transport mechanisms in the HK gate stack, device threshold instability, memory

application, and reliability issues of the gate stack.

3.1 High-k Dielectric Gate Stack

3.1.1 Why High-k

For decades, the semiconductor industry has made its impact through transistor scaling by

shrinking transistor gate length, gate oxide thickness, and width, improving performance through

lower power, greater speed, and high packing densities. However, continuous scaling will

eventually reach or may have reached its limit where gate leakage and gate oxide reliability are

unacceptable. After thinning gate oxide (SiO2) below 2nm, gate leakage current due to direct

tunneling phenomenon of carriers through the silica becomes too high to continue [24].

Therefore, at the 65nm node and below new gate materials were introduced to continue the

scaling [25]. The solution has replaced SiO2 with higher dielectric constant materials. The

17

concept is summarized in equations (3.1) and (3.2)

𝜀𝑆𝑖𝑂2

𝑡𝑆𝑖𝑂2

= 𝐶𝑜𝑥 =
𝜀𝐻𝐾

𝑡𝐻𝐾
 (3.1)

where 𝜀 is material dielectric constant and t is thickness. For the same equivalent gate capacitance

in accumulation region, the higher dielectric constant material will be physically thicker to reduce

or eliminate the tunneling effects. Silica thickness becomes the equivalent oxide thickness (EOT)

which the new material would provide, as shown by equation (3.2),

𝑡𝑆𝑖𝑂2
= 𝐸𝑂𝑇 =

𝜀𝑆𝑖𝑂2

𝜀𝐻𝐾𝑡𝐻𝐾
 (3.2)

3.1.2 Choices of Material

High k materials generally are defined as those having dielectric constants higher than 9 and

include metals from group III-V, lanthanides and aluminum [25]. Table 3.1 summarizes the

potential silica substitution HK materials that have been studied in the past decade [26] [27]. HK

materials are required to meet gate leakage requirement for low power application. For the first

generation HK gate material, integration has shifted to HfO2 and Al2O3 which leading to an

approximate EOT of 17Å [28] [29]. Continued scaling below EOT of 10Å requires even higher k

material such as La2O3. Criteria for selecting HK oxide materials include [24] (1) enabling

Table 3.1 Material being pursued as a potential replacement of SiO2.

Material k Eg (eV) CBO(eV) VBO(eV)

Si3N4 7 5.3 2.4 1.8

Al2O3 9 8.8 2.8 4.9

La2O3 30 6 2.3 2.6

ZrO2 25 5.8 1.5 3.2

HfO2 25 5.8 1.4 3.3

HfSiO4 11 6.5 1.8 3.6

continuous EOT scaling for a reasonable number of technology nodes, (2) the material has to be

thermodynamically stable with Si, (3) it has to have enough band offset with Si (~ 1eV) to

18

minimize carrier injection [30], (4) minimize threshold instability due to high defect density, (5)

limit mobility degradation, (6) sustain gate reliability, (7) must form good electrical interface with

Si. While seeking a high dielectric constant material is the objective, very large dielectric values

result in an unwanted fringing field from the gate to the source and drain. This fringing field

reduces gate control ability and degrades short channel performances [31].

3.1.3 Gate Stack Structure

Figure 3.1 shows the cross-section view of HK dielectric gate stack structure. It consists of a SiO2

interfacial layer (IL), a deposited HK layer, a metal gate layer, and a poly-Si contact layer. Each

layer serves a specific purpose. The poly-Si layer controls the gate height in the integration

Interfacial Layer

High-k

Metal gate

Poly-Si

P-sub

n+ n+

Figure 3.1 High-k dielectric metal gate stack.

process and prevents excessive oxygen exposure to metal gate and HK layer as well as

minimizing IL thickening and oxidation of the metal gate [32] [33]. The metal gate eliminates the

poly-Si depletion effect and provides work function control [32] [33]. The HK layer is a

deposited oxide providing the EOT requirement [32] [33]. In our application the HK layer serves

the purpose of storing trapped charge for memory operation. The IL (SiO2) is formed by

oxidation during deposition process combined with oxygen diffusion during the subsequent heat

cycle [34]. There are two metal gate/HK transistor integration schemes, gate first and gate last

[26] [35]. Gate first integration involves deposition of HK dielectric and metal gate followed by

poly-Si gate, patterning gate lines, source/drain implants. A dopant activation anneal at 1000°C is

19

carried out. In gate last or replacement gate integration, poly-Si-capped dummy gate stacks is

deposited first. These stacks are patterned for defining gate and source/drain regions. After

implants and the activation anneal, gate materials are replaced with final stack. Figure 3.2 shows

the process steps for gate first and gate last respectively [36].

Figure 3.2 Gate first and gate last process steps. Source of [36]

3.2 Defect Levels

Gate dielectrics are required to have as few as possible electrically active oxide defects.

Electrically active defects are defined as atomic configurations that located within the dielectric

material bandgap capable of trapping carriers [24]. Unlike silica, HK oxide materials have ionic

bonding structure and a high coordination number. Thus, intrinsic defects such as oxygen

vacancies, oxygen interstitials, or oxygen deficiency due to valency of the metal exist in the

lattice [24]. Among these types of defect, oxygen vacancy and oxygen interstitial have the lowest

formation energy in HfO2 [37]. The defect density levels found by amplitude charge pumping

(ACP) correlate linearly with stress voltage that indicating oxygen vacancy is the primary cause

of charge trapping in HfO2 [26]. Xiong et al. have used the screened exact exchange (sX) method

and the weighted density approximation (WDA) to derive the energy levels. The band gap of bulk

HfO2 is calculated to be 5.6eV, 5.95eV, and 5.75eV in sX for cubic, tetragonal, and monoclinic

phases respectively [38].

20

Possible electron traps in the bulk of HfO2 are the oxygen vacancy levels calculated to be 𝑉𝑂
2+,

𝑉𝑂
+, 𝑉𝑂

0, and 𝑉𝑂
− [26] [37] [38] [39]. Figure 3.3 [38] shows the energy levels of oxygen vacancies

and interstitial in the band gap of HfO2 with respect to Si. 𝑉𝑂
2+ is at shallow level which is close

the conduction band (CB) of HfO2 and move to 𝑉𝑂
+ level after trapping an electron. After trapping

another electron, 𝑉𝑂
+ moves to deeper 𝑉𝑂

0 level. One should notice that 𝑉𝑂
0 level is within the Si

bandgap and it contributes to the memory application as will be shown in Chapter 6. Oxygen

interstitials in HfO2 bulk are responsible for hole trapping. The 𝐼𝑂
− level is a half-filled state at

1eV above the valance band (VB) of HfO2. The 𝐼𝑂
0 has two energy state. One is empty σ* state

located at 4.2eV in the upper bandgap. The other is a filled π* state just above the VB edge, as

shown by figure 3.3 [40]. The 𝐼𝑂
+ ion also has an empty σ* state located near the CB edge and

half-filled π* state close to the VB edge [40].

Figure 3.3 Calculated energy levels of oxygen vacancies and oxygen interstitial in HfO2. Source

of [38].

Defect energy levels relative to Si conduction band edge after carrier trapping determines the use

as a memory. Filled defect levels within the Si bandgap are preferred for memory applications.

Charge trapped in these levels have sufficient retention time and can be removed by a negative

gate bias voltage. Filled defect levels above the conduction band edge of Si contributes to fast

charge transfer. Carrier stored in these levels can escape easily after programming voltages are

removed. Filled defect levels below the valance band of Si give rise to the fixed charge which

21

cannot be removed easily with ordinary erase voltages. Thus, the defect energy levels of the

material determines the feasibility of memory application.

3.3 Carrier Transport

Carrier transport mechanisms in HK gate stack can be classified into two categories: intrinsic and

extrinsic mechanisms. The intrinsic transport mechanisms are considered always present even

when defect free dielectric film is assumed. The extrinsic transport mechanisms are considered

when relating to the presence of defects [41]. The intrinsic transport mechanism includes direct

tunneling, Fowler-Nordheim (FN) tunneling, and Schottky emission (SK). The extrinsic transport

mechanisms include carrier elastic/inelastic tunneling into and out of defects known as trap

assisted tunneling (TAT), carrier tunneling between defects known as trap-to-trap tunneling (TT),

and Poole-Frenkel (PK) tunneling which is field enhanced thermal emission of electron from

defects. Figure 3.4 shows the HK gate stack energy band diagram under positive gate voltage

with all the carrier transport mechanisms.

Direct tunneling refers to carrier tunneling through the full barrier height of the SiO2 layer

determined by the conduction band offset of the materials. Tunneling current density is given by

[42]

𝐽𝑑𝑖𝑟 = 𝐴 ∙ 𝐸𝑜𝑥
2 ∙ (

Φ𝐵

𝑉𝑜𝑥
) ∙ (

2Φ𝐵

𝑉𝑜𝑥
− 1) ∙ 𝑒

−

𝐵(1−(1 −
𝑉𝑜𝑥
Φ𝐵

)

3
2

)

𝐸𝑜𝑥 (3.3)

where A and B are constant, 𝐸𝑜𝑥 is the electric field across the dielectric, 𝑉𝑜𝑥 is the voltage

applied to the oxide, Φ𝐵 is barrier potential. At higher applied voltage which results a steeper

band bending. Carriers tunnel through the triangular energy band and results Fowler-Nordheim

22

EF

HfO2
SiO2Metal-gate

Vg = positive

p-sub

Schottky
Emission

Defect
states

Direct
tunneling

Fowler-Nordheim
tunneling

Trap-to-trap
tunneling

Poole-Frenkel
Emission

TAT
(elastic)

TAT
(inelastic) 𝑝ℏ𝜔

Figure 3.4 Summary of carrier transport mechanisms in HK gate stacks.

tunneling as shown in figure 3.4.

The FN tunneling current density is given by [43]

𝐽𝐹𝑁 = 𝐴𝐹𝑁𝐸𝑜𝑥
2 𝑒

−
𝐵𝐹𝑁
𝐸𝑜𝑥 (3.4)

where 𝐴𝐹𝑁 and 𝐵𝐹𝑁 are given as

𝐴𝐹𝑁 =
𝑞2

8𝜋ℎ𝜙0
 (3.5)

and

𝐵𝐹𝑁 = −
4

3
√

8𝜋2𝑚

ℎ2

(𝑞𝜙0)3/2

𝑞
 (3.6)

As the conduction band offset of the SiO2 layer is low, emission of carriers over the SiO2 barrier

into the conduction band of the HK film allows for thermionic emission. For high temperatures

and low electric fields emission of electrons over the SiO2 barrier dominates current contribution,

while for low temperatures and high electric fields tunneling of electrons dominates. The former

case is called Schottky emission and is given by

23

𝐽𝑆𝐾 = 𝐴𝑇2𝑒
−

1

𝐾𝐵
(Φ𝐵−√

𝑞3𝐸𝑜𝑥
4𝜋𝜀𝑜𝑥

)
 (3.7)

where A is a constant, T is temperature, 𝐾𝐵 is Boltzmann constant, Φ𝐵 is barrier potential of

SiO2, 𝜀𝑜𝑥 is oxide permittivity. The latter case is also known as FN tunneling.

Besides direct tunneling and SK emission, which are one-step tunneling processes, defects in the

dielectric layers give rise to tunneling processes based on two or more steps. For our application,

this tunneling component is observed after write-erase cycles due to the generation of more

defects in the dielectric. The increased tunneling current at low gate stress is called SILC and is

mainly responsible for the degradation of the retention time of nonvolatile memory devices [44]

[45] [46]. The SILC formation is explained by TAT [47] [48]. Reference [49] has summarized the

current density for trap-to-trap conduction, equation (3.8) and PF emission, equation (3.9),

𝐽𝑇𝑇 = 𝐶1𝐸𝑜𝑥𝑒
−

𝐸𝑎
𝑘𝐵𝑇 (3.8)

where C1 is a constant, 𝐸𝑎 is activation energy,

𝐽𝑝𝑓 = 𝐸𝑜𝑥 ∙ 𝑒−

𝑞(Φ𝐵−√
𝑞∙𝐸𝑜𝑥

𝜋𝜀𝑖
)

𝑘𝑇 (3.9)

As shown by figure 3.4, write operation is governed by direct tunneling or Fowler-Nordheim

tunneling mechanism depending on the applied electric filed strength. During write operation,

carriers tunnel through the SiO2 interfacial layer and trap into the defect states in the HK layer.

Defect states shift to lower energy state after capturing carriers as discussed in section 3.2.

Depending on the applied electric field strength, the amount of band bending of SiO2 interfacial

layer determines the tunneling mechanism to be direct or Fowler-Nordheim. For high

programming electric filed strength, carriers tunnel through the triangular part of the interfacial

layer conduction band resulting Fowler-Nordheim tunneling. Trap-to-trap tunneling, TAT, and

24

Poole-Frenkel tunneling govern carrier transport with in the HK dielectric and relates to the stress

induced leakage current stage of breakdown process discussed in Chapter 6. As the dielectric

layer is stressed after several programming cycles, new defects are generated with the HK layer.

Carrier’s mean transporting distance is deduced due to the new defect sites. Thus, gate leakage

shows observable increase with the help of Trap-to-trap tunneling and TAT tunneling. As more

defects are generated, gate dielectric material starts wearout process. Knowing the carrier

tunneling mechanisms enhances EEPROM designer’s ability to more accurately predict and

model circuit lifetime.

3.4 Threshold Voltage Instability and Memory Applications

3.4.1 Charge Trapping/Detrapping and Threshold Voltage Instability

As discussed in the previous section, HfO2 HK material possesses pre-existing defects that

contribute to carrier trapping and therefore threshold shifts. The trapping and detrapping occurs in

both the HK and IL layers. The trapping/detrapping can either be fast or slow depends on the

destination defect level. Charge trapping occurs when the gate voltage is ramping up and carriers

gain sufficient energy to tunnel through the IL layer reaching a trap site in the HK layer. Charge

trapping reveals positive (NMOS) threshold shift on Ig-Vg measurements. Charge detrapping

occurs under two conditions. One is during sense measurement where the stress voltage is

removed. This kind of detrapping usually comes from the carriers that are trapped in the shallow

defect levels close to the IL layer tunnel back to the Si-substrate. The other detrapping is achieved

by applying a revers bias to the gate to remove carriers from trap sites. This detrapping is for the

carriers that trapped in the deeper energy levels in the HK layer and relative to EEPROM eraser.

This means detrapping is not spontaneous but needs the assist of an external reverse bias. Figure

3.5 shows HfO2 gate stack energy band diagram for carrier trapping and detrapping into and from

the HK layer.

25

EF

HfO2

SiO2

Metal-gate

Vg = positive

p-sub

tunneling

Defect
states

(a)

EF

p-sub

HfO2

SiO2

tunneling

Defect
states

Metal-gate

Vg = nagative

(b)

Figure 3.5 Energy band diagram describing charge trapping mechanism for NMOS. (a) Positive

gate voltage results carriers tunneling through the SiO2 layer and trapped into the HK HfO2 layer.

(b) Negative gate voltage results carriers de-trap from the HfO2 layer.

As electrons trap and accumulate in the HfO2 dielectric of NMOS, the primary effect is shifting

of the threshold voltage. Similarly, hole trapping results threshold shift in the PMOS. Methods of

studying threshold voltage instability characteristics utilize both DC and AC stress voltages.

Threshold shift due to charge trapping is a function of gate stress, temperature, and stressing time

[29]. Table 3.2 shows some selected examples from literature showing threshold shit

measurements due to charge trapping.

26

Table 3.2 Examples of threshold instability characterization

T
h

re
sh

o
ld

 V
o
lt

ag
e

sh
if

t

D

et
ra

p
p

in
g

 r
es

u
lt

s
V

t
le

v
el

 o
ff

 a
t

 ~
5

0
m

V
 s

u
g

g
es

ti
n

g
 t

h
e

ex
is

te
n

ce
 o

f

 d
ee

p
 t

ra
p

s
w

h
er

e
ca

rr
ie

rs
 r

em
ai

n
.

 I
n

it
ia

l
V

t
is

 -
0

.1
6

V
.

 D
C

 s
tr

es
s

re
su

lt
s

Δ
V

t
=

 1
1
m

V
 –

3
5

m
V

 A
C

 u
n

ip
o
la

r
st

re
ss

 e
x

h
ib

it
s

le
ss

 Δ
V

t.

 H
ig

h
er

 s
tr

es
s

fr
eq

u
en

cy
,

le
ss

 Δ
V

t.

 T
h

re
sh

o
ld

 s
h

if
t

o
f

~
3

0
 –

 5
0

 m
V

 T
h

re
sh

o
ld

 s
h

if
t

as
 a

 f
u

n
ct

io
n

 o
f

g
at

e

st
re

ss
 v

o
lt

ag
e

an
d

 t
em

p
er

at
u

re
.

 A
t

2
5

°C
,

V
t

sh
if

t
=

 ~
1

0
m

V
 a

t
V

g
 =

1
V

.
V

t
sh

if
t

=
 ~

9
0

m
V

 a
t

V
g

 =
 2

V
 f

o
r

st
re

ss
in

g
 1

0
0

0
s.

A
t

1
8

0
 °

C
,

V
t

sh
if

t
=

 ~
8

0
m

V
 a

t
V

g
 =

1
.5

V
 f

o
r

st
re

ss
in

g
 1

0
0

0
s.

S
tr

es
s

C
o
n
d
it

io
n
s

 V
g
 =

 1
.5

V
 f

o
r

~
9
0
0
0
s

u
n
ti

l
~

8
0
m

V
 V

t

sh
if

t.

 F
o
ll

o
w

ed
 b

y
 V

g
 =

 -
0
.7

V
 a

t
ro

o
m

 t
em

p
er

at
u
re

.

 D
C

 s
tr

es
s

1
.5

V
 t

o
 2

.1
V

 d
u
ri

n
g

 1
0
0
0
s.

 T
em

p
er

at
u
re

 r
an

g
e

is
 2

5
 –

 1
2
0
 °

C
.

 A
C

 u
n
ip

o
la

r
st

re
ss

 w
it

h
 5

0
%

 d
u
ty

 c
y
cl

e.

 S
am

e
v
o
lt

ag
e

an
d
 s

tr
es

s
ti

m
e

as
 D

C
.

 F
re

q
u
en

cy
 r

an
g
e

is
 D

C
 t

o
 1

 M
H

z.

 C
o
n
st

an
t

v
o
lt

ag
e

st
re

ss
 (

C
V

S
)

fo
r

1
s.

 M
ax

im
u
m

 e
le

ct
ri

c
fi

le
d
 a

p
p
li

ed
 i

s
5
.5

M
V

/c
m

.

 A
C

 u
n
ip

o
la

r
st

re
ss

 p
u
ls

e.
 V

d
,

se
n

se
 =

 5
0
m

V
.

 V
g
 =

 1
-

2
V

.

 T
em

p
er

at
u
re

 r
an

g
e

is
 2

5
 -

 1
8
0
 °

C
.

G
at

e
S

ta
ck

n
+
 p

o
ly

-S
i/

H
fO

2
/S

iO
x
N

y
/p

-S
i

(1
0
0
)

H
fO

2
 f

il
m

s
ar

e
d

ep
o

si
te

d
 b

y
 a

to
m

ic
 l

ay
er

d
ep

o
si

ti
o

n
 (

A
L

D
)

at
 3

0
0

 °
C

.
In

te
rf

ac
ia

l

la
y

er
 i

s
th

er
m

al
ly

 g
ro

w
n

 i
n

 n
it

ri
c

g
as

am
b
ie

n
t.

H
fO

2
 l

ay
er

 t
h

ic
k

n
es

s
is

 3
n
m

.

S
iO

x
N

y
 I

L
 t

h
ic

k
n
es

s
is

 l
es

s
th

an
 1

n
m

.

n
+
 p

o
ly

-S
i/

H
fO

2
/S

iO
N

/p
-S

i

S
iO

N
 I

L
 f

o
rm

ed
 b

y
 r

ap
id

 t
h
er

m
al

an
n

ea
li

n
g

 i
n
 N

H
3
 a

m
b
ie

n
t

at
 7

0
0
 °

C
 a

ft
er

S
i

su
rf

ac
e

cl
ea

n
in

g
 w

it
h

 H
f

so
lu

ti
o
n
.

H
fO

2
 i

s
d

ep
o

si
te

d
 b

y
 r

ea
ct

iv
e

D
C

m
ag

n
et

ro
n

 s
p

u
tt

er
in

g
 m

et
h
o
d
 i

n
 A

r/
O

2

am
b
ie

n
t.

 F
o
ll

o
w

ed
 b

y
 p

o
st

-d
ep

o
si

ti
o
n

an
n

ea
li

n
g

 (
P

D
A

)
at

 5
0

0
 °

C
.

S
i

su
rf

ac
e

cl
ea

n
in

g
 u

si
n

g
 O

3
 b

as
ed

ch
em

is
tr

y
 r

es
u

lt
s

a
~

1
n
m

 S
iO

2
 I

L
.

H
fO

2
 i

s
d

ep
o

si
te

d
 u

si
n

g
 a

to
m

ic
 l

ay
er

ch
em

ic
al

 v
ap

o
r

d
ep

o
si

ti
o
n

 (
A

L
C

V
D

).

H
fO

2
 th

ic
k

n
es

se
s

ar
e

3
,
4

,
an

d
 6

n
m

.

W
=

2
0

µ
m

,
L

=
2

0
µ

m
.

n
+
 p

o
ly

-S
i/

H
fO

2
/S

iO
2
/p

-S
i

H
fO

2
 i

s
d

ep
o

si
te

d
 b

y
 A

L
D

 w
it

h
 t

h
ic

k
n
es

s

o
f

3
n
m

.
IL

 l
ay

er
 i

s
~

1
.1

n
m

.

L
>

1
u

m
,
W

=
 2

0
 t

o
 5

0
u
m

.

R
ef

er
en

ce

[2

8
]

[5
0
]

[5
1
]

[2
9
]

27

3.4.2 Memory Applications

The concept of a charge trap transistor used for nonvolatile memory has been in existence for

several decades. The gate stack has the structure of a silicon-oxide-nitride-oxide-silicon (SONOS)

[52] [53]. Silicon nitride, tantalum and titanium oxide were commonly used. However, due to the

low conduction band offset of tantalum and titanium oxide, they were gradually removed from

the list [24]. Silicon nitride charge trapping layers in SONOS memory structure were also

investigated extensively with the conclusion they offer poor retention and suffer scaling issue

[54]. Therefore, to improve program/erase speed, vertical scaling and charge retention

characteristics of nonvolatile memory device, hafnium based oxide turns out to be used for charge

trapping layer for newer generation nonvolatile memory device. In the previous sections, we have

discussed trap states existing in the HfO2 band gap and threshold shift due to carrier trapping in

those states. Indeed, HfO2 dielectric multiple-time programmability is possible for nonvolatile

memory application. Khan et al. [22] are the first group to have demonstrated the

programmability of the high k transistor, or charge trap transistor (CTT). Figure 3.6 depicts the

basic operation of CTT. When positive gate voltage is applied, carriers trap into the HK layer

n+ n+

gate

HK

IL

Vds=1.5V

ID

VG

ΔVth

VG

t

n+ n+

gate

HK

IL

Vds=1.5V

ID

VG

erase

VG

t

Figure 3.6 Threshold voltage increases when carriers trapped into the HK dielectric (top) and

decreases when carriers are detrapped (bottom).

28

resulting in a positive (NMOS) threshold voltage shift. When a negative gate voltage is applied,

carriers detrap from the HK layer and threshold voltage shift back to near its native value. To

further investigate the program/erase characteristics, Khan’s group stress 1.2um x 20nm (22nm

SOI technology) devices with a gate ramp voltage of 10ms pulse of 10mV increments [22].

Higher drain voltage and temperature results in enhanced trapping and more stable threshold

shift. This means the effect of programming not only depends on gate stress voltage but also the

drain voltage for supplying hot carriers. One should notice that there is an obvious trade-off

between trapped charge retention and required erase time/voltage. Higher programming voltage

can lead to more stable threshold voltage shift, but requires longer time or higher voltage to erase

[22] [55]. Under the programming and erase conditions Vg, program = 2V, Vd = 1.2V and Vg, erase = -

2V, a memory window of ~120mV is shown even after 800 program/erase cycles [22]. In

addition to Khan’s group, Kothandaraman et al. have shown that 2V gate stress for 1ms with

1.5V drain voltage results excess of 100mV Vth shift [23]. The extrapolated loss in Vth is only

16% over 10 years under 85°C [23]. Jayaraman et al. have shown with ~10ms 2V gate pulse and

1.5V drain voltage, Vth exhibits ~200mV shift and ~100ms gate voltage pulse for ~300mV Vth

shift [56]. More than 10 years lifetime of HfO2 based memory application is also confirmed by

[55].

3.5 Reliability Issues

3.5.1 Bias Temperature Instability

Bias temperature instability (BTI) is a phenomenon that transistor threshold voltage shift due to

carriers trap into the pre-existing defects under constant voltage stress and elevated temperature

[57]. This phenomenon exists for both PMOS and NMOS namely negative BTI (NBTI) for

PMOS and positive BTI (PBTI) for NMOS. PBTI is attributed to carrier tunneling through the IL

layer and trapped into the HK layer causing threshold voltage increase [58] [59]. NBTI, on the

29

other hand, is driven by interface states density and influenced by nitrogen in IL [51] [60]. For

our application, BTI is not a critical issue. In fact we need to uses the programmable threshold to

achieve logic one and zero difference for memory operation. The only major concerns for us is

the minimum threshold shift that can be sensed after a desired storage time and lifetime

degradation due to the threshold programming. Or more specifically what is the least damaging

write protocol within a desired write read cycle for a desired EEPROM cell lifetime. The detail is

embedded into the memory modeling in Chapter 6.

3.5.2 Stress Induced Leakage Current

Stress induced leakage current (SILC) generation is a phenomenon that gate current increase

under the bias temperature stress. It is attributed to random or local defect generation in the HK

layer depending on amorphous or polycrystalline structure of the dielectric and explained by TAT

[47] [48] [61]. An example of SILC study [62] is used here to illustrate the phenomenon. Device

with gate stack structure TiN/HfO2/SiO2/p-Si is stressed by stress-sense procedure as shown in

figure 3.7 [62]. Several interesting and important observations have been noticed. First, SILC is

temperature dependent. At higher temperature, a linear increase in the SILC with stress time is

observed. This linear increase is due to the creation of new defects in the HK layer [62]. The

contribution of the increase may consist of three components: direct tunneling, TAT filling pre-

existing defects and TAT creating defects. Second, SILC is a reversible process. In this example,

after application of reverse bias of range -2V < Vg < -1V, SILC fully relaxes. Larger threshold

shift and high SILC are observed after stress suggesting that new defects are generated. The

damage during the PBTI stress is irreversible [62]. Perhaps the most important consequence of

SILC is its contribution to dielectric breakdown. SILC is referred as time dependent pre-

breakdown degradation of the dielectric [63].

30

Figure 3.7 Stress-sense procedure for SILC generation measurement. Stress voltage Vs is 2.5V. ts

is stress time. τr is stabilization time. τd is discharge time. Source of [62].

3.5.3 Time Dependent Dielectric Breakdown

Time dependent dielectric breakdown (TDDB) is a phenomenon that one or more conducting

path formed in the dielectric material connecting transistor gate and substrate due to a period of

gate voltage stress. The cause is generally understood as defects generated in the bulk of the

dielectric leading to gradually formed percolation paths and eventually making the dielectric

material lose its insulating property. TDDB of SiO2 gate dielectric has been studied for several

decades. Among many proposed models, there are four frequently used models to describe the

TDDB: the E model, the 1/E model, the power law model, and the root-E model. Details of each

model are given in Chapter 6. As the HK materials replacing SiO2 for newer technology nodes,

their TDDB characteristics have to be understood. Significant amount of research effort has been

devoted to understanding and modeling of HK TDDB mechanism. However, a commonly agreed

universal model has yet to be introduced. This section provides an overview of TDDB for a HK

dielectric gate stack. Representative TDDB models for HfO2 HK dielectric from literature and our

TDDB model development for our memory application are given in Chapter 6.

The critical part of TDDB modeling is to detect the first occurrence of dielectric breakdown.

Furthermore, some MOS digital circuits can still function after gate breakdown given that post

31

breakdown resistance is high enough [57]. Thus, it is accurate to separate breakdown into soft

(SBD), progressive (PBD), and hard breakdown (HBD) [57]. For an amorphous structure, SBD

and HBD are randomly distributed over the lattice. For polycrystalline structure, breakdown is

localized [61] [64]. There is controversy on occurrence order of the three breakdown components.

Ribes et al. [57] suggests that SBD is not a precursor of HBD. Both SBD and HBD coexist.

However, Pagano’s group [65] and Bersuker’s group [66] believe otherwise. Regardless the

controversy, progressive breakdown is now the well accepted breakdown mechanism.

The statistics of TDDB obey Weibull distribution [57] [67] given by

ln[− ln(1 − 𝐹)] = 𝛽 ∙ ln(𝑡) − 𝛽 ∙ ln(𝛼) (3.10)

where F is percentage failure, 𝛽 is Weibull slope or shape parameter, 𝛼 is characteristic time-to-

failure. The term on the left is also known as the Weibit. Zero Weibit corresponds to 63.2% of

failure and is usually used to describe the device mean-time-to-failure. Weibull slope, 𝛽,

represents the failure rate behavior,

 𝛽 < 1, failure rate decreases with time

 𝛽 > 1, failure rate increase with time

 𝛽 = 1, failure rate is constant

Different breakdown segments (soft and hard) have different Weibull slopes [68] [69]. The

different Weibull slopes mean breakdown at one site is independent of others sites. It may also

suggest different breakdown rates at different sites. Without knowing the detailed physics of

breakdown mechanism, lifetime of the HK device can be simulated using kinetic Monte Carlo

algorithm. However, in order to use kinetic Monte Carlo method, the defect generation rate(s)

have to be known or assumed. Different generation rate equations have been provided by

different research groups [70] [71] [72]. For serving the purpose of theoretical model

development, we use three dimensional kinetic Monte Carlo method to extrapolate lifetime based

32

on a desired programming electric field. The electric field strength is derived from required data

retention time of the proposed EEPROM. Therefore, an optimal programming electric filed or

programming voltage that balances the tradeoff between lifetime and data retention time can be

obtained from our model. Chapter 6 discusses model details.

33

CHAPTER IV

PROPOSED EEPROM ARCHITECTURE

This chapter documents the implementation of the proposed 10-kb EEPROM. The EEPROM core

consists of four 256x88 bits memory banks. The CPU and EEPROM interface provides data

communication and memory core operation control. The programming voltage generation and

control are design to be achieved by on-chip low-dropout voltage regulators (LDO) and off-chip

DACs. Programming generation block is detailed in Chapter 5. The chapter layout is the

following: design overview, CPU/EEPROM interface, interface operation, the EEPROM core.

4.1 Design Overview

Figure 4.1 shows the top level block diagram of the EEPROM. The CPU/EEPROM interface

provides data communication scheduling between CPU and EEPROM core, programming and

memory operation control. The interface consists of three input registers, CUI (command-user

interface) unit, counters, clock divider, and controller. The on-chip LDOs together with off-chip

DACs provide accurate and adjustable programming voltages that allow programming voltage to

be applied in a ramp fashion to avoid application of excess voltage and protect memory cells. The

proposed write voltage range is from 1.5V to 2.7V across gate to source terminals and the erase

voltage is from 0 to -1.5V. Read voltage range can be from 0.5V to 0.9V. Discrete DACs have

±3V output range. In order to use DAC’s full bits of accuracy discrete summing stage can be

implemented with each DAC to shift the DAC output to the desired voltage range. CPU interfaces

the EEPROM with four signals: data, CPURW, address, and clock. Data contains the information

34

being loaded into the input registers which either be EEPROM operation/setup commands or

actual memory data. CPURW is a flag signal indicating CPU read from or write to the input

registers. Address refers to the address of the input registers.

Initialization
Register

Command
Register

EEPROM
Core

Controller

ECC

CPU

80

80

88

88

CLK
divider

Positive
LDOs

Data

Address

R/W

CLK

Counters

Discrete

Data
Register

(16 words)

C
U

I (
co

m
m

an
d

 u
se

r
in

te
rf

ac
e

)

Negative
LDOs

V
w

ri
te

 /
V

re
ad

V
e

ra
se

CPU/EEPROM Interface

VREF

Σ DAC

Vwrite /
Vread

Verase
0 to -2V

EEPROM

0.6 to 1V
and

1.5 to 2.5V

1

0

Figure 4.1 Top level block diagram of the EEPROM architecture with discrete programming

control block.

4.2 CPU/EEPROM Interface

4.2.1 Input Registers

There are three input registers: initialization register, command register, and data register. The

initialization register is 80 bits wide containing clock scaling value and DAC controlled

programming voltage values for write, erase, and read operations respectively. Bit allocation of

the initialization register is shown in figure 4.2. Each voltage value is 16 bits for supporting 16-bit

DACs.

35

VDD2
16 bits

VErs
16 bits

VRead
16 bits

Vm0p8
16 bits

CLK_scale
12 bits

TBD
4 bits

LSB
MSB

Initialization Register

[11:0][27:12][75:60][79:76] [43:28][59:44]

Figure 4.2 Initialization register bit allocation.

The data register is 16 words deep and 80 bits wide. It serves as a shared location for EEPROM

and CPU to have mutually exclusive data communication. This means both EEPROM and CPU

can read and write the data register but in a mutually exclusive manner. Data register outputs are

expanded to 88 bits for supporting ECC function in the future version. Since CPU operates on a

clock frequency much faster than the EEPROM, the data register is a data buffer for CPU to load

and retrieve data after EEPROM processes it.

Command register is 80 bits wide and specifies EEPROM address, programming voltage

stabilization time and application time for write, erase, and read operations, programming voltage

quenching time, a BUSY signal, and memory operating commands. Figure 4.3 shows the bit

allocation of the command register. The EEPROM address is specified by bits CMD [0:9]

including word and bank address. The voltage stabilization time ensures the programming voltage

stability at the output of the LDO before applying to the memory cells. Bits CMD [12:19],

[28:35], and [44:51] specify the time duration for write, erase, and read voltage to become stable

respectively. The voltage application time is the actual programming pulse time. Bits CMD

[20:27], [36:43], and [52:59] specify the values for write, erase, and read respectively. The

programming voltage quenching time, CMD [60:67], are provided as a waiting time for high

programming voltage to switch off before engaging any state transition. The BUSY bit is used by

the CUI to schedule data register access between CPU and EEPROM. When the BUSY bit is set,

EEPROM can read from or write to the data register. When the BUSY bit is cleared, CPU regains

access to the data register. This manner reduces CPU wait time and prevents data conflict. CMD

36

[72:79] specify memory operation, i.e. write, erase, and read. CMD [76:79] specify a block (16

words) operation when loaded with xF and a word operation when loaded with x0. Memory

operation is specified by CMD [72:75]. Write (WR) operation corresponds to x1. Erase (ER)

operation corresponds to x2. Read (RD) operation corresponds to x3. All other combinations of

CMD [72:79] are considered as invalid for this design and reserved for future use. Bits [10:11]

and [68:70] are reserved for future use and no hardware connections to them.

BUSY
1 bits

Address

Row
8 bits

Bnk
2 bits

V_stab_W
8 bits

W_Vapp
8 bits

TBD
2 bits

V_stab_R
8 bits

V_stab_E
8 bits

R_Vapp
8 bits

E_Vapp
8 bits

LSB
MSB

CMD
8 bits

timeout
8 bits

[60:67] [52:59] [44:51] [36:43] [28:35] [20:27] [12:19] [10:11] [0:9]
word [76:79]

CMD [72:75] [71]

TBD
3 bits

[68:70]

Command Register

Figure 4.3 Command register bit allocation.

4.2.2 CUI

CUI, command-user interface, is a logic block that schedules data traffic among CPU, input

registers, and EEPROM core. The CUI circuit diagram is shown in figure 4.4. This unit consists

of multiplexers, a word counter and logic that steers data to the correct destination. The control

signal is the BUSY bit. Three input registers mentioned in 4.2.1 have designated address

specified by the two least significant bits of the CPU address, CPU_addr [0:1]. The CPURW bit

indicates a CPU write to the input registers when it is set and read from them when cleared. The

16-word data register can be accessed by both CPU and EEPROM in a mutually exclusive

fashion depending on the state of BUSY bit. When BUSY bit is reset, CPU has access to the data

register. Whether write or read depends on CPURW bit status. When BUSY bit is set, EEPROM

can either read from or write to the data register depending in the memory operation command. In

this manner CPU and EEPROM can never access the data register simultaneously avoiding data

conflict. The initialization register and command register may be read by the CPU at any time

regardless of the status of the BUSY bit.

37

In addition to the control signals, a 4-bit word counter is used to track the operation progress

through the data register. For a block of data, the word counter is loaded with value xF from the

command register bit CMD [76:79]. For a signal word access, the word counter is loaded with

value x0. During CPU access to the data register, the word counter is enabled when data register

access is granted and decremented according to the CPU clock as data register access advances.

During EEPROM access, the data register is read by the EEPROM under write or erase operation

and written under EEPROM read operation. The word counter is decremented after each word

access is complete indicated by either the signal tWR_done or tRD_done being true. During both

CPU and EEPROM access, when the word counter finishes counting, the overflow bit, Cout, is

set high indicating a completion of operation with data register. Cout signal is also used in the

controller to determine the relevant states.

4
:1

6
d

e
co

d
er

CPU_addr[0:1]

CPURW

CPU_data_in

Initial. Reg

CMD Reg

16 Data Regs

2
:4

 d
ec

od
er 2
:1

 M
u

x
1

6
:1

 m
ux

CPU_data_out

prom_data_out

Reset

QD

RD_DONE

tWR_done

BUSY

BUSY

CPU_addr[0]

CPU CLK

CPU CLK

En_oCout

tRD_done

CPURW

0

1

2

3 TBD

D

En

Q

D

En

Q

D

En

Q

D

En

Q

CMD[79:76]

BUSY = 0 CPU access data registers
BUSY = 1 EEPROM access data registers

CPURW = 0 CPU read from registers
CPURW = 1 CPU write to registers

Hardware reset

input

BUSY

BUSY

BUSY

data_out

En_o

W_in

E_in

CPURW

R_in

En_o

Word
Counter

In Out

Load

CLK

FlagEn

EEPROM
CLK

BUSY

tRD_done

Cout

0

15

CPU_addr[1]

D

En

Q

CPUclk

clkCPU

1

BUSY

BUSY = cmdregout[71]

CMD Reg[71]

1
:2

d

e
m

u
x

0

1

0

1 2
:1

 M
u

x

0

1 2
:1

 M
u

x

(From memory
model output)

0

1 2
:1

 M
u

x0

1 2
:1

 M
u

x

0

1 2
:1

 M
u

x

0

1 2
:1

 M
u

x

Figure 4.4 CUI (command-user interface) schematic.

38

4.2.3 Controller

The controller is a finite state machine controlling state advance throughout memory operation.

Figure 4.5 shows the state diagram of the controller. Each state of operation has a designated

timer, i.e. a counter. The quenching timer is shared between write and erase operation. The write

voltage stabilization timer is loaded in the “Write Starts” state. This timer starts in the “VDD2

V_Stab” state. The write voltage application timer is loaded in “Write Starts” state or reloaded in

the “W_done” state for next word write. The voltage application timer starts in “W_Vapp time”

state. In “W_done” state, signals Cout and t_out are checked to determine whether control should

move on to read operation or continue to write next word. Cout is the overflow bit of the word

counter in the CUI. Logic high Cout bit means there is no more word to write. Otherwise there

are words remaining to be written into the memory. t_out signal is the quenching timer indicator.

It is logic high when quenching time is over. Therefore, combination of Cout = ‘1’ and t_out =

‘1’ shift control to next memory operation. And Cout = ‘0’ and t_out = ‘1’ continues the write

operation. In our design, after write operation is complete, control enters memory read operation

automatically to read out the words just written and store them back to the data register for CPU

to retrieve and confirm.

The erase voltage stabilization timer is loaded in “Erase Starts” state and enabled in “VErs

V_Stab” state. Erase voltage application timer is loaded in “Erase Starts” state and enabled in

“E_Vapp time” state. This design erases a block of words at a time. Thus, the quenching timer

starts at “E_done” state. After the quenching time, read operation starts automatically to confirm

the words just erased. For next block of erase, CPU needs to wait CUI passes control from

EEPROM to CPU to reload new erase command. The block access is consecutive from the first

memory word location on a 16-word boundary. The starting block address must be integer

multiples of 16. This design does not support block operations that overlaps between two memory

banks.

39

Read voltage stabilization timer is loaded in “Read Starts” state and starts in “Vread V_Stab”

state. Read voltage application timer is loaded in “Read Starts” state or reloaded in “R_done”

state for a block word read. The controller also generates signals W_in, E_in, R_in, WR, ER, RD,

and RD_DONE for control purpose. Signal W_in, E_in, and R_in maintain logic high from

voltage stabilization state to x_done state of the respective operation. Signal WR, ER, and RD are

true only at the voltage application state of corresponding operation. RD_DONE is generated

when read operation is complete and used to reset the BUSY so that CUI returns data register

access to the CPU.

CMD 8 bits
W- 01H or F1H

E – 02H or F2H

R – 03H or F3H

0XH – word
FXH – block (16 words)

Other values are invalid
commands

idle

BUSY=0
&

Invalid command

Write
Starts

VDD2
V_Stab

tWR_stab = 0

W_Vapp
time

W_done

tWR_stab = 1

tWR_done = 0

tWR_done = 1

BUSY = 1
CMD=X1H

Reset

Erase
Starts

VErs
V_Stab

tER_stab = 0

E_Vapp
time

E_done

tER_stab = 1

tER_done = 1

BUSY = 1
CMD=X2H

Read
Starts

Vread
V_Stab

tRD_stab = 0

R_Vapp
time

tRD_stab = 1

tRD_done = 0

R_done

tRD_done = 1

BUSY = 1
CMD=X3H

t_out=1
&

Cout=1

Cout=0

t_out=1

tER_done = 0

Cout=0
BUSY=’1'

Figure 4.5 State diagram of the controller.

40

4.3 Interface Operation

4.3.1 Write

Upon starting a write operation the CPU loads the initialization, command, and data registers by

inserting corresponding CPU address and true CPURW bit. CPU_addr [1:0] equals 00, 01, and 10

indicates initialization, command, and data registers respectively. CPU_addr = 11 is reserved for

future use. When loading command register the first time, the BUSY bit (CMD[71]) should be

loaded with 0 indicating CUI grands access to CPU. When CPU is ready to release access to

EEPROM, command register is reloaded with true BUSY bit and other bits remains the same.

This step makes the controller to start the EEPROM operation according to the command bits

CMD [72:79]. The following shows example CPU command set for write operation.

CPURW <= ‘1’;

CPU_addr <= “00”; -- initialization register

CPU_data_in <= x”123456789abcdef12340”;

wait for 10 ns;

CPU_addr <= “01”; -- command register

CPU_data_in <= x”01002050202020202000”; -- BUSY bit is 0, CPU access data register.

wait for 10 ns;

CPU_addr <= “10”; -- data register

CPU_data_in <= x”a0000000000000000000”;

wait for 10 ns;

CPU_addr <= “01”; --reload command register

CPU_data_in <= x”01802050202020202000”; --BUSY bit is set to 1, EEPROM operation starts

Command register bits CMD [72:79] can be x01 or xF1 indicating write one word or a block of

words respectively. When an invalid command is inserted, EEPROM control returns to idle state.

At the same time CUI returns access to CPU. Command register address bit CMD [0:9] is

decoded for accessing the target memory address and bank. When writing a block of words, only

the first word’s address is loaded to the address counter and the word counter in CUI is loaded

41

with xF. After a word is written, the address counter is incremented and word counter is

decremented pointing to the next word in the data register. This process repeats until all 16 words

in the data register are written to the memory. Read operation automatically starts after write

operation. The words written will be read and stored in the data register for CPU to retrieve. After

EEPROM read operation is completed, CUI returns access to CPU by resetting the BUSY bit.

EEPROM control enters idle state. CPU can either recover the data register content or discard it

by over writing with new value.

4.3.2 Erase

Erase operation is performed on a block of words. Erase command is xF2 at CMD [72:79]. Even

though a block of words is erased at the same time, the bits CMD [76:79] need to be loaded with

xF for the word counter to enable 16 words read after erase operation. Erase operation starts when

the BUSY bit is set. Two separate load operations are necessary to the command register for

setting up the word counter and BUSY signal. The starting address of the block to be erased is

determined by decoding the command register bits CMD [4:7]. Read operation automatically

starts after erase operation. The mechanism of CUI passing control from EEPROM to CPU is the

same as write operation in 4.3.1. In order to erase another block, CPU needs to reload the

command register with new address and erase command. The following is an erase command set

example.

CPURW <= ‘1’;

CPU_addr <= “00”; --No need to reload initialization register if its value is unchanged.

CPU_data_in <= x”123456789abcdef12340”;

wait for 10 ns;

CPU_addr <= “01”; -- command register

CPU_data_in <= x”f2002050202020202000”; -- BUSY bit is 0, CMD[76:79] loaded with f.

wait for 10 ns;

CPU_addr <= “01”; --reload command register

42

CPU_data_in <= x”f2802050202020202000”; --BUSY bit is set to 1, EEPROM operation starts.

4.3.3 Read

Read operation command is CMD [72:79] equals xF3 or x03 indicating a block of words read or

a single word read respectively. The command bits CMD [0:9] is decoded for target address and

bank. Memory content at each address is stored in data register after read for CPU to retrieve.

When reading a block of words, the starting memory address is decoded. Address counter

increments after each word is read. The word counter decrements pointing to the next word to be

stored into data register. After read operation is complete, BUSY signal is cleared returning data

register access to CPU. EEPROM now enters idle state.

The following is a read command set example.

CPURW <= ‘1’;

CPU_addr <= “00”; --No need to reload initialization register if its value is unchanged.

CPU_data_in <= x”123456789abcdef12340”;

wait for 10 ns;

CPU_addr <= “01”; -- command register

CPU_data_in <= x”f3002050202020202000”; -- read one block, BUSY bit is 0, CPU access

data register.

wait for 10 ns;

CPU_addr <= “01”; --reload command register

CPU_data_in <= x”f3802050202020202000”; --BUSY bit is set to 1, EEPROM operation starts.

4.4 EEPROM Core

4.4.1 EEPROM Cell

A differential cell structure is the most commonly used structure for differential current sensing.

Research groups [23] and [56] have demonstrated their cell structure using CTT. Our work uses a

similar but modified differential structure to improve programming control. Figure 4.6 shows the

43

cell structure along will controlling devices and control signals. One storage cell (or a bit)

consists of logic device MC1 and MC2 forming the differential structure. The controlling devices

include thick oxide high voltage devices M1, M2, MTp, MTn, and logic device Mn1 and Mn2. M1

and M2 control source voltage of the cell for different memory operations. MTp and MTn forms an

inverter to control cell drain voltage. Mn1 and Mn2 resemble a switch for

connecting/disconnecting cell to sense amplifier. Cell control signals include CS_Bk0 [0:87],

CSbar_Bk0[0:87], N_Bk0 [0:87], Nbar_Bk0 [0:87], TL_Bk0 [0:87], and RS[0:255] for a bank.

These signals are repeated for four banks according to the decoded bank address bits CMD [8:9].

This design has preserved the eight most significant bits of a word for ECC. The above cell

control signals are generated according to the signals Bnk, WR, RD, ER, Data_ECC, which are

generated by the controller. Storage cells have four operational states: low or no voltage idle

state, low voltage read state, high voltage write state, and high voltage erase state. These four

states are summarized in figure 4.7. Figure 4.7(a) depicts the idle state programming node voltage

conditions. When the cell is in idle state, all word lines (RS[n]) are at zero volts. The drain of all

the storage pair transistors is pulled to VSS by the tail inverter composed by MTp and MTn. M1

and M2 are turned off. Write operation voltages are shown in figure 4.7(b). During write

operation the drain of the storage pair is pulled to 1.5V by the tail inverter providing a source of

current to generate hot carriers for trapping. The word line of the cell being written is supplied by

write voltage, Vwrite. Either M1 or M2 will be turned on during write operation depending on the

data applied to trap charges on one side of the differential cell. The side written with trapped

charge will have positive threshold shift relative to the unwritten side. Figure 4.7(c) summarizes

the erase voltage of the cell. The gate of the cell being erased can be supplied by a voltage in the

range of 0V to -1.5V. The drain of the storage pair is 1.5V. Both M1 and M2 are turned on. This

results in a reverse bias in the range of -1.5V to -3V begin applied to the storage transistors

detrapping the carriers from the HK gate dielectric. Figure 4.7(d) shows the cell voltage condition

for read operation. The gate voltage of the word being read is at VDD and at VSS for non-reading

44

words. The drain of the storage cell is pulled to VSS. Both M1 and M2 are off. When the sense

amplifier is enabled, i.e. Mn1 and Mn2 are turned on, current difference in the bit lines due to

programmed threshold difference will be sensed to determine stored logic value.

1p5V

RS0

RS255

ON “1”
OFF “0”

ON “0”
OFF “1”

N_Bk# Nbar_Bk#

Csbar_Bk#CS_Bk#

TL_Bk#
B

L

B
L_b

ar

M1 M2

MTn

MTp

Mn1 Mn2

MC1 MC2

Figure 4.6 EEPROM cell with controlling device and control signals.

In order to ease the discussion of cell control signals generation, these signals are separated into

two groups. One group of signals include CS_Bk0 [0:87], CSbar_Bk0[0:87], N_Bk0 [0:87],

Nbar_Bk0 [0:87], and TL_Bk0 [0:87]. The Bk# in the signal name refers to a bank. For three

other banks, the names are Bk1, Bk2, and Bk3. Generation of these signals depends on decoded

bank select signal Bnk, WR, RD, ER, and Data_ECC. Table 4.1 summarizes signal status for

each memory operation. One important point is that the side of the differential storage cell

trapping carriers has higher threshold voltage relative to the adjacent side. Higher threshold

means less current is sensed. Thus, it results logic zero when read by the sense amplifier.

45

VWrite

B
L_b

ar

B
L

1p5V

RS[255]

MC1 MC2

M1 M2

MTn

MTp

RS[0]

SA

B
L_b

ar

B
L

1p5V

RS[255]

MC1 MC2

M1 M2

MTn

MTp

RS[0]

B
L_b

ar

B
L

1p5V

RS[255]

MC1 MC2

M1 M2

MTn

MTp

RS[0]

B
L_b

ar

B
L

1p5V

RS[255]

MC1 MC2

M1 M2

MTn

MTp

RS[0]

(a) (b)

(d)(c)

VSS

1p5V

VErase (negative)

VDD

1p5V

VRead

VSS

VSS

VSS

VSS

VSS

VTP
VTP

VTPVTP

SA

SA SA

Mn1 Mn2Mn1 Mn2

Mn1 Mn2 Mn1 Mn2

N_Bk# Nbar_Bk#

Csbar_Bk#CS_Bk#

TL_Bk#

N_Bk# Nbar_Bk#

Csbar_Bk#CS_Bk#

TL_Bk#

N_Bk# Nbar_Bk#

Csbar_Bk#CS_Bk#

TL_Bk#

N_Bk# Nbar_Bk#

Csbar_Bk#CS_Bk#

TL_Bk#

Figure 4.7 Circuit of a column of storage cell with sense amplifier block. (a) Idle state control

voltage conditions. (b) Write operation voltage conditions. (c) Erase operation voltage conditions.

(d) Read operation voltage conditions.

46

Table 4.1 Signal status summary of each memory operation.

 Signals Write

WR=1, ER=0,

RD=0

Erase

WR=0, ER=1,

RD=0

Read

WR=0, ER=0,

RD=1

Selected bank

Bnk(#) = 1
CS_Bk# Data_ECC 0 0

CSbar_Bk# Data_ECC_bar 0 0

N_Bk# Data_ECC_bar 1 1

Nbar_Bk# Data_ECC 1 1

TL_Bk# 1 1 0

Non-selected

bank

Bnk(#) = 0

CS_Bk# 0 1 0

CSbar_Bk# 0 1 0

N_Bk# 1 0 0

Nbar_Bk# 1 0 0

TL_Bk# 1 0 0

The other group of signals are the 256 row select (RS[#]) signals which are generated by logic

signal pside[#] and nside[#] via level shifter shown in figure 4.8. RS[#] signals supply

programming voltages to the gates of all storage transistors. Write and read voltages are supplied

by PMOS controlled by pside[#] through p-side level shifter. Erase voltage is supplied by NMOS

controlled by nside[#] through n-side level shifter. Signal status of pside[#] and nside[#] for

memory operations are derived from level shifter logic. Table 4.2 summarizes pside[#], nside[#],

and RS[#] signal status for each memory operation. Signal pside[#] and nside[#] are generated

based on signals WR, ER, RD, decoded address signal addr_decode, and block select signal Blk,

which is decoded address bits CMD [4:7]. Figure 4.9 shows the interface logic circuits. CUI

circuit is given by figure 4.4.

47

Level shifter
P-side

Ab

A

Yb

Y

Level shifter
N-side

Ab

A

Y

Yb

VDD, VDD2

m1p5, VSS

VSSVSS

1p8

VDDVDD

m0p8

RS[0]

synthesis

pside[0]

nside[0]

Figure 4.8 RS[#] signals generation by pside[#] and nside[#] via level shifters.

Table 4.2 RS[#] signals summary for each memory operation.

 pside nside RS

Write (WR=1, ER=0, RD=0, addr_decode=1, Blk=0) 1 0 VDD2

Non write (WR=1, ER=0, RD=0, addr_decode=0, Blk=0) 0 1 VSS

Erase (WR=0, ER=1, RD=0, addr_decode=x, Blk=1) 0 1 m1p5

Non erase (WR=0, ER=1, RD=0, addr_decode=x, Blk=0) 1 0 VDD

Read (WR=0, ER=0, RD=1, addr_decode=1, Blk=0) 1 0 VDD

Non read (WR=0, ER=0, RD=1, addr_decode=0, Blk=0) 0 1 VSS

Idle (WR=0, ER=0, RD=0, addr_decode=0, Blk=0) 0 1 VSS

48

ADDR_CNT 256 words

256 words

Initialization Register

80

Command Register

VDD2
12 bits

VErs
12 bits

VRead
12 bits

Vm0p8
12 bits

CLK_scale
12 bits

TBD
20 bits

VDD2

VSSM1P8

VRd

VSSM0P8

CLK_div

LDO

CLK
divider

EEPROM_Clk

cmdregout[12:19]

cmdregout[20:27]

CMD

Addr[8:9]

D Q

D Q

D Q

D Q

W
E

R
E

cmdregout[44:51]

cmdregout[28:35]

cmdregout[52:59]

cmdregout[36:43]

Addr[0:3] 4

W_stab
Counter

R_stab

Counter

E_stab
Counter

W_app
Counter

R_app
Counter

E_app
Counter

tWR_vdd2_en
wr_vdd2_time

tRD_vread_en

rd_vread_time

tER_vers_en
er_vers_time

tWR_vapp_en

wr_vapp_time

tRD_vapp_en

rd_vapp_time

tER_vapp_en
er_vapp_time

Addrs
Counter

ADDR_EN

ADDR_CNT

DACs

CMD 8 bits
W- 01H or F1H

E – 02H or F2H

R – 03H or F3H

0XH – word
FXH – block (16 words)

Other values are invalid commands
CMD[72:79]

CMD[72:75] operation
CMD[76:79] word/block

Addr[4:7] 4

EEPROM
256x88x4

Bank4

Bank1

Oscillator/
Bus Clk

timeout
Countercmdregout[60:67] t_timeout_en

timeout

Addr[8:9] MUX

Bank3

ECC_comp

BUSY

 ¸2^6

Sense Amp

88

88

80

Controller

WR

CMD[71:79]

Cout

RD

ER

VDD2

VERS

VREAD

RD_DONE

clock
RST

Erase a block at a time
Want to erase next block, load new address[4:7]

BUSY
1 bits

80

A
d

d
re

ss

Row
8 bits

Bnk
2 bits

V_stab_W
8 bits

W_Vapp
8 bits

TBD
2 bits

V_stab_R
8 bits

V_stab_E
8 bits

R_Vapp
8 bits

E_Vapp
8 bits

LSB

MSB

CMD
8 bits

timeout
8 bits

[60:67]

[52:59]

[44:51]

[36:43]

[28:35]

[20:27]

[12:19]

[10:11]

[0:9]

word [76:79]

CMD [72:75]

[71]

TBD
3 bits

[68:70]

D
e

co
d

e
r

CS_Bk0[0:87]

Csbar_Bk0[0:87]

CS_Bk3[0:87]

Csbar_Bk3[0:87]

N_Bk0[0:87]

Nbar_Bk0[0:87]

N_Bk3[0:87]

Nbar_Bk3[0:87]

TL_Bk0[0:87]

TL_Bk3[0:87]

SE

RD

WR

ER

Level shifter
P-side

Ab

A

Yb

Y

RD
WR
ER

Level shifter
N-side

Ab

A

Y

Yb

VDD, VDD2

m1p5, VSS

VSSVSS

1p8

VDDVDD

m0p8

RS[0]

RD

WR

ER

Level shifter
P-side

Ab

A

Yb

Y

RD
WR
ER

Level shifter
N-side

Ab

A

Y

Yb

VDD, VDD2

m1p5, VSS

VSSVSS

1p8

VDDVDD

m0p8

RS[255]

B
lk

[0
]

Addr[8:9] 2
:4

D
e

co
d

e
r

0

3

(cmdregout[8:9])

Bnk(0)

Bnk(1)

Bnk(2)

Bnk(3)

ADDR_load

tRD_load

tRD_load_1

t_timeout_load

tER_vapp_load

tER_load_1

tW_stb

tRD_stab

tER_stab

tWR_done

tRD_done

tER_done

t_out

tWR_vapp_load

tWR_load_1

W_in

R_in

E_in

wr_vdd2_time

rd_vread_time

er_vers_time

wr_vapp_time

rd_vapp_time

er_vapp_time

timeout

ADDR_EN

ADDR_load

8
8

8
8

8
8

8

ER

WR RD

Data_ECC

CS_Bk0[0:87]88

ER

WR RD

CSbar_Bk0[0:87]88

4 banks

ER

WR

RD

CS_Bk3[0:87]

CSbar_Bk3[0:87]

Bnk(0)

LSB

MSB

WR

RD

ER

N_Bk0[0:87]88

WR

RD

ER

Nbar_Bk0[0:87]88Data_ECC

4 banks

ER

WR

RD

N_Bk3[0:87]

Nbar_Bk3[0:87]

Bnk(0)

Block decoder
4:16

Blk[15]

Blk[0]cmdregout[4:7]

WR
ER

RD
En

Blk[1]

Blk[15]

ER

WR

Bnk(0)

TL_Bk0[0:87]

To 88 tail
inverters of

a bank

4 banks
TL_Bk3[0:87]

ER

WR

The selected area is subject to synthesis

ECC_expan

CUI

C
P

U
R

/W

data_out

CPU_data_out

80

C
P

U
 C

lk

CPU_data_in80

prom_data_out

80

tR
D

_d
o

n
e

tW
R

_d
o

n
e

80 Data_ECC88
(From memory
model output)

EE
P

R
O

M
 c

lk

C
P

U
_a

d
d

r

SE

data_out

Figure 4.9 Full CPU/EEPROM interface schematic.

4.4.2 EEPROM Macro Model

In order to verify the logic correctness of design the interface, the EEPROM core is modeled by a

256x88 bits array. This array is repeated four times mimicking four banks. Each array is

controlled by signals CS_Bk#[0:87], CSbar_Bk#[0:87], N_Bk#[0:87], Nbar_Bk#[0:87], and

TL_Bk#[0:87]. The following code describes the control signal status for write, erase, and read

operations.

state_bk0 <=

w_bk0 when

49

 (

 (CS_bk0 /= CSbar_bk0) and (N_bk0 /= Nbar_bk0) and

 (TL_bk0 = x"0000000000000000000000")

)else

 e_bk0 when

 (

 (CS_bk0 = x"0000000000000000000000") and

 (CSbar_bk0 = x"0000000000000000000000") and

 (N_bk0 = x"ffffffffffffffffffffff") and

 (Nbar_bk0 = x"ffffffffffffffffffffff") and

 (TL_bk0 = x"0000000000000000000000")

)else

 r_bk0 when

 (

 (CS_bk0 = x"0000000000000000000000") and

 (CSbar_bk0 = x"0000000000000000000000") and

 (N_bk0 = x"ffffffffffffffffffffff") and

 (Nbar_bk0 = x"ffffffffffffffffffffff") and

 (TL_bk0 = x"ffffffffffffffffffffff")

);

The above code is repeated for four banks. When write operation signal conditions are met,

w_bk# is high. When erase operation signal conditions are met, e_bk# is high. When read

operation signal conditions are met, r_bk# is high. The modeled array is written, read, and erased

based on w_bk#, r_bk#, and e_bk# status respectively. The following code shows memory

operation based on the control signals. Also, this part of the code is repeated four times for four

banks.

prom_bk_one: process(data_ecc, ADDR_CNT, n_encode, clock)

begin

if(clock'event and clock='1') then

 if(state_bk0 = w_bk0) then

50

 prom_bk0(to_integer(unsigned(ADDR_CNT))) <= data_ecc;

 elsif(state_bk0 = r_bk0) then

 data_out_ecc_bk0 <= prom_bk0(to_integer(unsigned(ADDR_CNT)));

 databar_out_ecc_bk0 <= not

prom_bk0(to_integer(unsigned(ADDR_CNT)));

 elsif(state_bk0 = e_bk0) then

 for i in 0 to 15 loop

 prom_bk0((to_integer(unsigned(n_encode)))+i) <=

(others=>'0');

 end loop;

 end if;

 end if;

end process;

51

CHAPTER V

PROGRAMMING VOLTAGE GENERATION

This chapter discusses low dropout voltage regulator (LDO) implementation for generating the

programming voltages. In order to have highly accurate control over the programming voltages,

on-chip LDO and off-chip DACs are employed. The DAC controlled LDO provide fine tuning to

the programming voltages avoiding catastrophic damage to the device due to sudden high

voltages. The following sections discuss LDO specifications, design flow, and implementation.

5.1 LDO Specifications

Parameters that matter to this application are minimum programming voltage step, LDO output

current and voltage control, LDO and DAC accuracy, and LDO stability. The LDO settling time

is not a burden in this application since we have allocated voltage stabilization time in the

interface that provides enough time for the programming voltage to stabilize. With the given

process, the 10μs designed settling time should easily be met. Khan et al. [22] [55] have

suggested 10ms programming pulse with 10mV and 50mV increments. We decided to use 5mV

programming step to achieve fine tuning safety margin on the programming voltages. Two 16 bits

discrete DACs are selected (DAC7631 and LTC1650). The LDO output swing is from 0.6V to

2.5V which covers read and write operations. The erase voltage is generated by a similar LDO

which has negative output. The erase LDO output is negative 1.5V that results a negative 3V

across the storage cell.

52

The main current load to the LDO is storage cell gate leakage of one word. The programming

current of a word is much less compared to the leakage. Fowler-Nordheim tunneling is used to

estimate the programming current. Restate FN tunneling equation (3.4) here,

𝐽𝑛𝐹𝑁 = 𝐴𝑛𝐹𝑁𝐸𝑜𝑥
2 𝑒

−
𝐵𝑛𝐹𝑁

𝐸𝑜𝑥 (5.1)

where AnFN = 6.55x10
-6

 A/V
2
, BnFN = 2.85x10

8
 V/cm [73], and 𝐸𝑜𝑥 =

𝑽𝒈−𝑉𝐹𝐵

𝑡𝑜𝑥
.

Threshold voltage is [74]

𝑉𝑡ℎ = 𝑉𝐹𝐵 + 2𝜙𝑓 +
√4𝑞𝑁𝑎𝜀𝑆𝑖𝜙𝑓

𝐶𝑜𝑥
 (5.2)

Substituting (5.2) into (5.1), FN current density can be approximated as

𝐽𝑛𝐹𝑁 ≈ 𝐴𝑛𝐹𝑁(
𝑽𝒈−𝑉𝑡ℎ

𝑡𝑜𝑥
)2𝑒

−
𝐵𝑛𝐹𝑁

𝑽𝒈−𝑉𝑡ℎ
𝑡𝑜𝑥 (5.3)

With 2V write voltage, ~1nm thick IL, and ~0.4V threshold voltage, FN tunneling current density

of one transistor is about

𝐽𝑛𝐹𝑁 = (6.55 × 10−6𝐴/𝑉2) (
2𝑉−0.4𝑉

1𝑛𝑚
)

2
𝑒−

(2.85×
108𝑉

𝑐𝑚
)(1𝑛𝑚)

2𝑉−0.4𝑉 = 308043 𝐴/𝑚2 (5.4)

One cell transistor is 650nm x 40nm. FN tunneling current of one word is

InFN = JnFN x Area = 308043A/m
2
 x 650nm x 40nm x 88 = 704nA (5.5)

Using the typical HVTNFET (high voltage thick NMOS) off current, IOFF, form PDK which is

94nA/μm, leakage current of one word is calculated to be about 10μA. The LDO is designed for

2mA load current for margins.

Accuracy of the LDO is given by

53

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦% ≈
∆𝑉𝐼𝑅+∆𝑉𝐿𝑅+√∆𝑉𝑜,𝑅𝐸𝐹

2 +∆𝑉𝑂,𝑎𝑚𝑝
2 +∆𝑉𝑂,𝑅

2 +∆𝑉𝑇𝐶
2

𝑉𝑜
× 100% (5.6)

where ∆𝑉𝐼𝑅 is line regulation, ∆𝑉𝐿𝑅 is load regulation, ∆𝑉𝑜,𝑅𝐸𝐹 is voltage reference drift, ∆𝑉𝑜,𝑎𝑚𝑝

is error amplifier drift, ∆𝑉𝑜,𝑅 is feedback resistor network tolerance and ∆𝑉𝑇𝐶 is temperature

coefficient ∆𝑉𝑇𝐶 = 𝑇𝐶 ∙ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)𝑉𝑜. Expanding quantities ∆𝑉𝐼𝑅 and ∆𝑉𝐿𝑅, equation (5.7) is

obtained.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦% ≈

1

𝐴∙𝛽
+

𝑅1+𝑅2
𝑔𝑚,𝑝𝑎𝑠𝑠∙𝐴∙𝑅1

+√∆𝑉𝑜,𝑅𝐸𝐹
2 +∆𝑉𝑂,𝑎𝑚𝑝

2 +∆𝑉𝑂,𝑅
2 +∆𝑉𝑇𝐶

2

𝑉𝑜
× 100% (5.7)

where A is error amplifier open loop gain, feedback factor β equals 𝑅𝐼/(𝑅𝐼 + 𝑅𝐹) shown in figure

5.1. To simplify the calculation, we assume the square root term in equation (5.7) is less than the

sum of other terms. Since the DAC (DAC7631) has full scale error of ±1mV, we set 0.33%

accuracy of the LDO to preserve the DAC accuracy when LDO output is 0.6V. The open loop

gain of the error amplifier is obtained using equation (5.7) and is about 133dB.

54

Vref

Vsupply=3V

DAC

Off-chip On-chip

RC CC

Vsupply= -3V

RC CC

Vref DAC

Off-chip On-chip

RF

(b)

(a)

RI

RF

RI

Steering
logic

Steering
logic

Steering
logic

B
L

VTP

B
L_b

ar

Steering
logic

Steering
logic

Steering
logic

B
L

VTP

B
L_b

ar

Figure 5.1 On-chip LDO and off-chip DAC for generating EEPROM programming voltages. (a)

LDO for write and read voltage. (b) LDO for erase voltage.

5.2 Design Flow

Design begins by knowing individual transistors performance capability of different fingers for a

given process. The performance parameters include transconductance, gm, output

transconductance, gds, intrinsic gain, μ, and unity current gain bandwidth, fTA. These parameters

are evaluated with respect to different bias currents and finger count. Analog applications require

that transistors operate in saturation region where they behave as current sources. Therefore, it is

efficient to work with these parameters in terms of current density. Designing in terms of current

density allows devices track each other across process and temperature variations because each

device is formed as a composite identical unit, a finger. Additionally, most designs can be scaled

55

by changing finger ratios. The individual transistor performance is studied via parametric

analysis.

FF, 125°C

TT, 25°C

SS, -55°C

NMOS L=230nm

T0: W=4um, 4 fingers, W0=1um/fig
T1: W=8um, 8 fingers, W0=1um/fig

0.5uA

T0: W=4um, 4 fingers, W0=1um/fig

FF

TT

SS

FF

TT

SS

150mV

180mV 350mV

T1: W=8um, 8 fingers, W0=1um/fig

530mV

320mV 510mV

NMOS L=230nm

(a)

(b)

Figure 5.2 L=230nm thick oxide NMOS. (a) Id-Vgs plot of 4 finger and 8 finger devices across

temperature and process corners. (b) gm-Vgs plot of 4 finger and 8 finger devices threshold

56

extrapolation across temperature and process corners.

FF, 125°C

TT, 25°C

SS, -55°C

PMOS L=230nm

T0: W=8um, 8 fingers, W0=1um/fig
T1: W=16um, 16 fingers, W0=1um/fig

T0: W=8um, 8 fingers, W0=1um/fig

FF
TT

SS

FF
TT

SS

140mV

200mV 385mV

T1: W=16um, 16 fingers, W0=1um/fig

555mV

325mV 520mV

PMOS L=230nm

(a)

(b)

Figure 5.3 L=230nm thick oxide PMOS. (a) Id-Vgs plot of 8 finger and 16 finger devices across

temperature and process corners. (b) gm-Vgs plot of 8 finger and 16 finger devices threshold

extrapolation across temperature and process corners.

57

Several NMOS and PMOS devices with different finger numbers can be investigated. A typical

number of fingers such as 1, 4, 8, and 16 can be used as a starting point. It is important to notice

that all transistors have the same length and width for a unit finger. The parameters mentioned

above are plotted with respected to different bias currents. Bandwidth and extreme settling time

are not required for this application. For this reason, the LDO is designed to operate in

subthreshold region to minimize power consumption. Figure 5.2(a) shows the Id-Vgs plot of thick

oxide NMOS (L=230nm) across temperature and process corners for 4 finger and 8 finger

respectively. Figure 5.2(b) shows the threshold extrapolation for the same device geometry across

temperature and process corners. The purpose of these plots is to determine the overdrive voltage

of the device. Similarly, figure 5.3 shows the same plots for the PMOS. Figure 5.4 shows the gm,

gds, self-gain, and fTA values of typical process corner 8um wide NMOS and 16um wide PMOS

biased at 0.5μA.

T2: NMOS, W=8um, 8 fingers, W0=1um/fig
T3: PMOS, W=16um, 16 fingers, W0=1um/fig

gm

gds

Self gain

fTA

Vgs, Vds, Vth

Vgs, Vds, Vth

Figure 5.4 gm, gds, self gain, fTA, Vgs, Vds, and Vth plots verse Id of 8um wide NMOS and 16um

wide PMOS at typical-typical process corner respectively.

58

After knowing the “unit” transistor performance capability, one can proceed with circuit design.

An LDO design starts by knowing the maximum output load current requirement. As discussed in

section 5.1, LDO in this work is to provide gate programming voltage and current about 2.5V and

704nA respectively. For erase operation, if one word erase current is assumed to be about the

same as write, a block of word erase current is about 12μA. The LDO is designed to support 2mA

current for enough margin. Per the accuracy requirement stated in section 5.1, the error amplifier

ought to have high gain of 133dB for. This high gain leads to the telescopic topology with gain

boost on the cascode p- and n-transistors for the error amplifier. Circuit stability is another critical

design factor. The potential stability issue of LDO appears at minimum load or no load current

conditions. This issue arises from the output pole shift due to load current varies. At minimum

load or no load current situations, the output pole has the potential to fall below the GBP of the

OTA. If this occurs, there would not be enough phase margins to maintain closed-loop stability.

As the result, oscillation, ringing or poor settling take place in the transient response. This issue

can be visualized by using a Bode magnitude plot shown in figure 5.5. In order to maintain

Gain

 [dB]

f (Hz)

0 dB

Pole P2: load

current

dependent

GBP

High IL

Full load

OTA

open-loop gain

Avol

Pass element

2
nd

 stage

Low IL

No load

At least a decade higher than

first stage GBP for stability

Pdom: OTA

output

Figure 5.5 Output pole location as a function of load current relative to the GBP of the OTA.

stability, lead-lag compensation is used to further split the dominant pole and the first

nondominant plot so that there is only the dominant pole present before unity gain frequency.

59

Figure 5.6 shows the closed-loop small signal LDO circuit for stability analysis. In the figure 5.6

(a), gm,ota is the transconductance of the error amplifier. Cpara,ota and ro,ota are error amplifier’s

output capacitance and resistance respectively. The pass PMOS transistor is shown in its small

signal circuit model. RF and RI compose the feedback resistor network. The closed-loop transfer

function is given as

𝑣𝑜

𝑣𝑟𝑒𝑓
=

𝑔𝑚,𝑜𝑡𝑎𝑟𝑜,𝑜𝑡𝑎
2 (𝑅1+𝑅2)(𝑔𝑚,𝑝𝑎−𝐶𝑔𝑑,𝑝𝑎𝑠)

𝐶𝐿𝑟𝑜,𝑜𝑡𝑎𝑠(𝑅1+𝑅2)+𝐶𝑔𝑑,𝑝𝑎𝑟𝑜,𝑜𝑡𝑎𝑠(𝑅2−𝑅1(𝑔𝑚,𝑜𝑡𝑎𝑟𝑜,𝑜𝑡𝑎−1))+𝑅1(𝑔𝑚,𝑜𝑡𝑎𝑔𝑚,𝑝𝑎𝑟𝑜,𝑜𝑡𝑎
2 +1)+𝑅2+𝑟𝑜,𝑜𝑡𝑎

 (5.8)

The output pole can be solved and simplified to

𝑠𝑜𝑢𝑡𝑝𝑢𝑡 = −
1

𝐶𝐿(𝑅1+𝑅2)+𝐶𝑔𝑑,𝑝𝑎(𝑅2−𝑅1𝑔𝑚,𝑜𝑡𝑎𝑟𝑜,𝑜𝑡𝑎)
 (5.9)

gm,ota

Cpara,ota
ro,ota

Cgs,pa gmpavsgpa
ropa

Cgd,pa

Vref

CL

vo

iL

RI

RF

(a)

gm,ota

Cg
ro,ota

gmpavsgpa
ropaVref

CL

vo

iL

RI

RF

CC

(b)

RZ

Figure 5.6 (a) LDO closed-loop small signal equivalent circuit with simplified error amplifier

(OTA). (b) LDO closed-loop small signal equivalent circuit with lead-lag compensation.

60

The minimum output current is determined by minimum output voltage and summation resistance

of feedback resistor network and a keeper current to maintain stability. For 500Ω R2, 1kΩ R1 and

0.6V output voltage, the minimum output current is 0.4mA. For 2.5V output voltage, the

maximum output current is 1.67mA. From simulation, at minimum current condition, gm,ota =

10.7uS, ro,ota = 51.9GΩ, Cgd,pa = 39.9fF. Using equation (5.9), the output pole is at about 7.16 kHz.

This frequency is much lower than the 118 MHz GBP of the OTA which is calculated by

𝐺𝐵𝑃𝑜𝑡𝑎 =
𝑔𝑚,𝑜𝑡𝑎

2𝜋𝐶𝑔𝑠,𝑝𝑎
 (5.10)

where Cgs, pa is the gate capacitance of the pass PMOS and equals 89fF. Therefore, lead-lag

compensation is used to maintain stability.

Figure 5.6 (b) shows the LDO closed-loop small signal circuit with lead-lag compensation. In

figure 5.6(b), Cg is the sum of Cpara,ota and Cgs, pa. CC is the compensation capacitor. RZ is the

nulling resistor to cancel the effect due to right-half plane zero raised from feedforward current in

CC. The right-half plane zero is at frequency

𝜔𝑧𝑒𝑟𝑜,𝑅𝐻𝑃 =
𝑔𝑚,𝑝𝑎

𝐶𝐶
 (5.11)

by adding the null resistor, the zero frequency changes to

𝜔𝑧𝑒𝑟𝑜,𝑛𝑢𝑙𝑙 ≈ −
1

𝐶𝐶(𝑅𝑍−
1

𝑔𝑚,𝑝𝑎
)
 (5.12)

If RZ equals
1

𝑔𝑚,𝑝𝑎
, the RHP zero is pushed to infinity. If RZ is greater than

1

𝑔𝑚,𝑝𝑎
, the RHP zero is

converted to lift-half plane. The effect of compensation can be seen from figure 5.7. The

compensation capacitor reduces the dominant pole to lower frequency and pushes the first

nondominant pole to higher frequency ensuring loop gain approaches unity gain frequency at the

rate of -20dB/dec while keeping all RHP zeros at higher frequencies.

61

AolβFB [dB]

P1

P2

f0dB

f

0 dB

P1,comp

P2,comp

GBPωp1ωp1,comp

GBPcomp

ωp2,comp

ωp2

Figure 5.7 Lead-lag compensation achieves pole splitting for closed-loop stability.

5.3 Implementation

5.3.1 Bandgap Voltage Reference

The LDO uses bandgap voltage reference as bias generator to generate bias current. The basic

idea of bandgap voltage reference circuit is the mutual compensation between PTAT term

(proportional to absolute temperature) and CTAT (complementary to absolute temperature) to

achieve a reference voltage or current (this work) with zero temperature coefficient [74]. Figure

5.8 shows the circuit diagram. As mentioned above, this design is for subthreshold operation.

Drain current is given as

𝐼𝐷 = 𝜇𝐶𝑜𝑥(𝑛 − 1)
𝑊

𝐿
𝑈𝑇

2𝑒
𝑉𝐺𝑆−𝑉𝑡ℎ

𝑛𝑈𝑇 (5.13)

where 𝜇 is mobility, 𝐶𝑜𝑥 is gate capacitance, n is subthreshold slope, W and L are transistor width

and length, UT is thermal voltage. One can write an equation for the loop that consists of

transistor M1, amplifier, R2, and transistor M2 as

62

R2

R1=k·R2M1

M2

M3 M4

M5
M6

vbb

M7

Iref

n·Iref

R1=k·R2

I2

I1

Figure 5.8 Bandgap voltage reference circuit diagram.

𝑉𝐺𝑆1 = 𝐼2𝑅2 + 𝑉𝐺𝑆2 (5.14)

Equation (5.13) and (5.14) can be used to solve current I2,

𝐼2 =
𝑛𝑈𝑇ln (𝑆)

𝑅2
 (5.15)

where S is the transistor width ratio of M2 and M1. As shown by figure 5.8, reference current is

the sum of I2 and I1 and can be written as

𝐼𝑟𝑒𝑓 =
𝑛𝑈𝑇ln (𝑆)

𝑅2
+

𝐼2𝑅2+𝑉𝐺𝑆2

𝑅1
 (5.16)

By substituting 𝑈𝑇 =
𝑘𝑇

𝑞
 into equation (5.16),

𝐼𝑟𝑒𝑓 =
𝑛𝑘𝑇ln (𝑆)

𝑞𝑅2
+

𝑛𝑘𝑇ln (𝑆)

𝑞𝑅1
+

𝑉𝐺𝑆2

𝑅1
 (5.17)

By taking derivative of equation (5.17) with respect to temperature, one can obtain

𝜕𝐼𝑟𝑒𝑓

𝜕𝑇
=

𝑛𝑘ln (𝑆)

𝑞𝑅2
+

1

𝑅1
(

nkln(𝑆)

𝑞
+

𝜕𝑉𝐺𝑆2

𝜕𝑇
) (5.18)

63

By setting equation (5.18) to zero and substituting n=1.4,
𝑘

𝑞
 = 0.085mV/°C, S=4, and

𝜕𝑉𝐺𝑆2

𝜕𝑇
 = -1.165 mV/°C from simulation for the corresponding finger number, resistor ratio

between R2 and R1 can be found as

𝜕𝐼𝑟𝑒𝑓

𝜕𝑇
=

1

𝑅2
(1.4) (

0.085𝑚𝑉

°𝐶
) (1.39) +

1

𝑅1
(−

1.165𝑚𝑉

℃
+ 1.4 ×

0.085𝑚𝑉

℃
× 1.39) = 0 (5.19)

Therefore,

𝑅1

𝑅2
= 6.05 (5.20)

R2 is found using equation (5.16) and (5.20) where VGS2 is taken from ID-VGS characteristic curve.

After reference current, Iref, is determined, a scaled version can be distributed to the reset of the

circuit by adjusting transistor width ratio between M6 and M7 in figure 5.8.

5.3.2 Gain Boosting

The gain boosting technique increases voltage gain by increasing output impedance without

adding more cascode devices [114]. Figure 5.9 shows the circuit topology and its small signal

circuit for output resistance analysis.

Vb

ro

M1

M2

Vin

gm2vgs2 ro2

(a)

Vx

Ix

A

ro1

-AV1

V1

(b)

Figure 5.9 (a) Gain boosting circuit topology [114]. (b) Small signal circuit of (a) for output

resistance analysis.

64

By writing output node current equation

−𝐼𝑥 + 𝑔𝑚2𝑣𝑔𝑠2 +
𝑉𝑥−𝑉1

𝑟𝑜2
= 0 (5.21)

and knowing the relation

𝑉1 = 𝐼𝑥𝑟𝑜1 (5.22)

output resistance can be solved as

𝑟𝑜 = 𝑟𝑜1 + 𝑟𝑜2 + 𝑔𝑚2𝑟𝑜1𝑟𝑜2𝐴 ≈ 𝑔𝑚2𝑟𝑜1𝑟𝑜2𝐴 (5.23)

The output resistance is boosted by the gain of the amplifier.

5.3.3 Boosted Telescopic OTA

To achieve high open-loop gain, a boosted single ended telescopic OTA is used as the error

amplifier. Figure 5.10 shows the circuit topology. The boosting amplifier has gain of

𝐺𝑛 𝑠𝑖𝑑𝑒 = 𝑔𝑚,𝑀𝑛𝑏2
(𝑔𝑚,𝑀𝑛𝑏4

∙ 𝑟𝑜,𝑀𝑛𝑏4
∙ 𝑟𝑜,𝑀𝑛𝑏2

||𝑔𝑚,𝑀𝑛𝑏6
∙ 𝑟𝑜,𝑀𝑛𝑏6

∙ 𝑟𝑜,𝑀𝑛𝑏8
) (5.12a)

𝐺𝑝 𝑠𝑖𝑑𝑒 = 𝑔𝑚,𝑀𝑝𝑏8
(𝑔𝑚,𝑀𝑝𝑏4

∙ 𝑟𝑜,𝑀𝑝𝑏4
∙ 𝑟𝑜,𝑀𝑝𝑏2

||𝑔𝑚,𝑀𝑝𝑏6
∙ 𝑟𝑜,𝑀𝑝𝑏6

∙ 𝑟𝑜,𝑀𝑝𝑏8
) (5.12b)

The overall OTA gain is given as

𝐺𝑜𝑡𝑎 = 𝑔𝑚,𝑀1
(𝐺𝑛 𝑠𝑖𝑑𝑒 ∙ 𝑔𝑚,𝑀4

∙ 𝑟𝑜,𝑀4
∙ 𝑟𝑜,𝑀2

||𝐺𝑝 𝑠𝑖𝑑𝑒 ∙ 𝑔𝑚,𝑀6
∙ 𝑟𝑜,𝑀6

∙ 𝑟𝑜,𝑀8
) (5.13)

The boosting circuit on the n-side is a fully differential structure. Therefore, a common mode

feedback circuit is necessary. Figure 5.11 shows the circuit schematic.

65

M3

M6M5

M4

vin+

Vn1

Vt

vin-

vo

Vc

Vn2

cmfb

Vp1

Vp2

Vp3

M1 M2

M8M7

Ma1

Mt1

Mt2
Ma2

CMFBv1

v2

V1

V2

cmfb

Vn1

Mpb1 Mpb2

Mpb3 Mpb4

Mpb5 Mpb6

Mpb7 Mpb8

Mnb1 Mnb2

Mnb3 Mnb4

Mnb5 Mnb6

Mnb7 Mnb8

Figure 5.10 A boosted single ended telescopic OTA schematic.

M7M6

M3 M4v1 v2

Vt

Vc

vCM

M2

M1

M5

Figure 5.11 Common mode feedback circuit schematic.

66

CHAPTER VI

EEPROM LIFETIME AND DATA RETENTION TIME TRADEOFF MODELING

Further downscaling of CMOS process leads to the replacement of SiO2 by HK dielectric

materials and the replacement of polysilicon gate by metal gate for continuous device scaling

with improved EOT. The physics of defect generation and breakdown mechanism have changed

significantly with the change from SiO2 to HK dielectrics. Understanding and modeling HK gate

dielectric breakdown are still active research areas. Different schools of thought on modeling time

dependent dielectric breakdown (TDDB) of the HK dielectric have been published in literature

attempting to explain the breakdown mechanism. Each of them has great contribution to our

understanding of the kinetics of TDDB phenomenon. This chapter first reviews frequently used

TDDB models for SiO2 gate stack. Then presents advanced TDDB model for HfO2 gate dielectric

followed by our proposed EEPROM lifetime and data retention time tradeoff model.

6.1 High-k Dielectric Gate Reliability

It is well-known that high dielectric constant films have finite number of initial traps. The CMOS

fabrication process further increases initial trap density [75]. Reliability degradations such as

TDDB, bias-temperature instability (BTI) and hot carrier instability (HCI) are believed to be

caused by the high initial defect density [75]. The ultimate source of dielectric reliability issues is

the presence of charge trapping centers or defects located in the HK film. The presence of charge

67

trapping centers is independent of HK film deposition technique [27], however it can be

minimized during post HK deposition annealing and IL optimization [76]. Among all reliability

issues, gate TDDB has been extensively studied. However, there still has not yet a well agreed

universal model describing TDDB for HK dielectrics. Many research groups have their own

views to the problem. Perhaps progressive breakdown is the most sound and prevailed model

among others but still accompanied by opposition, which will be discussed in the following

sections. TDDB of SiO2 dielectric material has been investigated thoroughly. Several models

including the E model, the 1/E model, the power law model, and the root E model have been

development. However, the question that can these models be directly applied to HK dielectric

materials remains. The following sections discuss frequently used TDDB models for SiO2

dielectric and proposed models for HK dielectrics especially HfO2.

6.2 TDDB Models for SiO2 Gate Stack

6.2.1 E Model

The E model supports the perspective that oxygen vacancy is the intrinsic defect for breakdown

and is the primary cause of TDDB. Oxygen vacancy appears because of polarized Si-O bond

breakage under the influence of external applied electric field [77]. This model predicts the

TDDB at low field (<10MV/cm) and high temperature that due to field enhanced thermal bond

breakage [67]. The primary molecular structural unit of solid SiO2 is the tetrahedron structure

shown in figure 6.1(a). The bond strength is greatly reduced and oxygen vacancy can occur when

the Si-O-Si bond angle deviates from the mean value of 150° [77]. When the Si-Si bond replaces

the Si-O-Si bond, oxygen vacancy occurs as shown by figure 6.1(b).

68

Si

O

O

O

O

Si

O

O

O

Φ=109° θ =120° ~ 180° Si

O

O

O
O

Si

O

O

O

Oxygen

vacancy

(a) (b)

Figure 6.1. (a) Unit tetrahedron of solid form SiO2 with bond angle between O-Si-O and Si-O-Si.

(b) Si-Si bond when oxygen vacancy presents.

It is this defect in the intrinsic SiO2 films that is considered as the cause of low-field TDDB.

When Si is bonded with an unlike atom, the ionic bonding contribution to the total bonding

energy increases significantly. This contribution results in polarization of the lattice [77]. In

addition, an applied external electric field across SiO2 dielectric layer shifts the electron cloud of

each oxygen nucleus. This kind of distortion also induces a polarization. These two components

result in a total polarizability of the lattice [77]. A carrier passing through the dielectric

experiences a local net electric field which is the combination of applied external field and the

polarization. This net field can be nearly twice the applied field [77]. Since solid SiO2 films

fracture at ~7% bond distortion [77], the high net field can easily break the bonds and results in a

defect. A 10MV/cm external electric filed can cause about 2% bond distortion which induces a

strong inharmonic coupling with the lattice [77]. This inharmonic coupling interacts with thermal

phonons and therefore causes bond breakage after gaining enough thermal/activation energy. This

is the underlying physics of the E model. Effects of the field weaken the polar molecular bond

and reduce the activation energy making the bonds more susceptible to breakage [67]. As the

result, time-to-failure can be expressed as [67]

69

𝑇𝐹 = 𝐴0 ∙ 𝑒−𝛾∙𝐸𝑜𝑥 ∙ 𝑒
𝐸𝐴

𝐾𝐵𝑇 6.1)

where 𝐴0 is process/material dependent coefficient that makes TF, usually, a Weibull

distribution, 𝛾 is the field acceleration parameter, 𝐸𝑜𝑥 is the electric field in the oxide, 𝐸𝐴 is the

activation energy and 𝐾𝐵 is Boltzmann’s constant (8.62 × 10−5 𝑒𝑉/𝐾). 𝛾 is temperature

dependent and can be described as [67]

𝛾(𝑇) = −
𝜕𝐿𝑛(𝑇𝐹)

𝜕𝐸
=

𝑝𝑒𝑓𝑓

𝐾𝐵𝑇
 (6.2)

where 𝑝𝑒𝑓𝑓 is effective dipole moment in the range of 7-14eÅ for SiO2 and higher for higher

dielectric constant materials.

6.2.2 1/E Model

The 1/E model concludes SiO2 breakdown as a two-stage process [78]. In the first stage oxide is

slowly damaged by electrical stress while the second stage is a rapid runaway process due to

electrical and/or thermal runaway and leads to the formation of permanent conductive path in the

dielectric [79]. The 1/E model predicts dielectric damage due to current flow through the

dielectric by Fowler-Nordheim (FN) tunneling mechanism [67] [78]. During FN injection,

electrons are accelerated through dielectric and cause damage to the lattice because of impact

ionization. A fraction of these electrons reach the anode and excite valance band electrons to

conduction band edge while left behind holes. These hot holes can tunnel back [67] [79] [80] into

the dielectric causing damage due to hole induced trap generation [81] [82] [83]. This process is

known as hot-hole injection. The time-to-failure is expected to have an exponential dependence

on 1/E as [67],

𝑇𝐹 = 𝜏0(𝑇) ∙ 𝑒
𝐺(𝑇)

𝐸𝑜𝑥 (6.3)

70

where 𝜏0(𝑇) is a temperature dependent prefactor and 𝐺(𝑇) is a temperature dependent field

acceleration parameter. 𝜏0(𝑇) is given by [67]

𝜏0(𝑇) = 𝜏0 ∙ 𝑒
[(

−𝐸𝐴
𝐾𝐵

)(
1

𝑇
−

1

300𝐾
)]

 (6.4)

and 𝐺(𝑇) is given by [67]

𝐺(𝑇) = 𝐺0 ∙ [1 + (
𝛿

𝐾𝐵
) (

1

𝑇
−

1

300𝐾
)] (6.5)

6.2.3 Power Law Voltage Model

The power law model is also known as the anode hydrogen release (AHR) model [84]. The Si-H

bond at Si and SiO2 interface can be excited by electrons and results in free hydrogen ions in the

bulk of SiO2, which can lead to defective bound generation, percolation path formation and

TDDB [84]. The dependence of TDDB on voltage is given by [67]

𝑇𝐹 = 𝐵0𝑉−𝑛 (6.6)

where 𝐵0 is a prefactor, exponent n is in the range of 40 to 48 for ultrathin oxide films [67].

However, the limitations of power law model include two aspects. One is that the model does not

take the temperature dependence of TDDB into account and the reduction of activation energy

with applied fields. The other aspect is that thicker oxide would not experience TDDB since the

concentration of released hydrogen is lower compare to ultrathin oxide [84].

6.2.4 √𝐸 Model

Current flow in high quality SiO2 film is nearly always FN conduction and thus the damage

follows 1/E model [67]. For low quality and low k dielectrics, the conduction mechanism may be

Poole-Frenkel or Schottky conduction [67] [85] and results in an exponential dependence of

lifetime on the square root of the applied electric field. There are three distinct root E models that

71

give clear mathematical expression on TDDB in low-k dielectrics [67] [85] [86]. The time-to-

failure is given by equation (6.7) [67], (6.8) [86] and (6.9) [85] respectively.

𝑇𝐹 = 𝐶0(𝑇) ∙ 𝑒−𝛼√𝐸 (6.7)

𝑇𝐹 = 𝐴𝐸−1𝑒
−𝛽√𝐸+𝜑

𝐾𝐵𝑇 (6.8)

𝑇𝐹 = 𝐷𝑒−𝛼√𝐸+
𝛽

𝐸
−𝛾

 (6.9)

Among the three models, the impact damage model, (6.9), gives a possible explanation to the

damage of the dielectric. The idea is that under the applied electric filed, the kinetic energy of

electrons increases and the collision of electrons with lattice atoms creates dangling bonds

originated from the displacement of an atom from its normal position [85]. When a bond is

broken and a lattice atom is moved, a charge trap is created. The probability of collision depends

on the distance an electron can travel before being scattered and the mean free path in the

dielectric. Since the collision is a momentum transfer process, whether the collision is elastic or

inelastic does not matter.

All models predict the same TDDB results for electric field strength above 8 MV/cm while

disparities show up at lower electric field strength [84]. Among all models, the E model gives the

most conservative time-to-failure results, whereas the 1/E model gives the most optimistic results

[84]. Disagreement shows up for low-field TDDB modeling in SiO2 thin films. The E model has

been successfully describing the low-field TDDB data for thick films greater than 4.0nm while in

the thin oxides (< 4.0nm), the direct-tunneling current can be very high and the degradation

mechanism can well be controlled by current [67]. These models are used for describing the

TDDB phenomena in SiO2 film. The direct application of these models to HK dielectric materials

has been in debate. Many research groups proposed advanced TDDB models for HK dielectric

72

materials especially HfO2. The following section introduces some representative school of

thoughts on modeling TDDB of HfO2 gate dielectric in the literature.

6.3 Advanced TDDB Models for HfO2 Gate Stack

6.3.1 Progressive Breakdown

Progressive breakdown model of HfO2 bi-layer gate stack perhaps is the most popular model that

suggested by different research groups [44] [45] [46] [65] [87] [66]. Figure 6.2 shows qualitative

relation between gate current and time throughout progressive breakdown process. The initial

phase in breakdown process is the stress induced leakage current (SILC) phase corresponding to

segment (A) in figure 6.2. During this time period, defects are generated in both IL and HK layer.

Defect clusters start to form in the bulk of gate dielectric as defect sites gradually make

connections. When defect clusters connect to each other, at least one pathway connects gate

electrode with substrate, a percolation path is formed and the transistor is considered at the

starting point of soft breakdown (SBD) indicated by point (B) in figure 6.2. Once the SBD is

Ig
 (

μ
A

)

ttSBD tHBD tfail

(A)

SILC

(B)

SBD

runaway

Post SBD

wear out

(C)

(HBD)

(D)

Figure 6.2 Progressive breakdown regimes. (A) Stress induced leakage current, (B) the starting

point of soft breakdown (SBD), (C) post SBD wear out, (D) current runaway. [44] [45] [46]

reached, an observable sudden small increase in gate leakage current appears. However, SBD is

not necessarily considered with device or circuit failure [44]. Although there is still controversy

73

as to which layer fails first, [88] and [89] suggest HK to be the first to fail and [90, 91, 92]

suggest IL to be first, our model considers HK layer first first and uses SBD to mark the end of

device lifetime to simplify the problem. A similar argument used for current runaway region (D)

discussed next and used to support the selection of HK layer as the first one to breakdown. When

a percolation path formed in the IL, it may not result in catastrophic failure since IL is so thin (~

1nm) that there are not many defect sites in the close vicinity of the percolation path. It takes

relatively longer time to form defect clusters in the IL. However, since the HK layer is about

three to four times thicker than the IL, once a percolation path is formed in HK layer, more defect

sites will be within the vicinity compare to IL. Therefore, Joule Heating has higher probability to

occur near the percolation path. Once the self-enhanced process starts, the HK layer will

breakdown quickly. The third stage in the progressive breakdown model is post SBD wearout or

digital breakdown [45]. During this stage, random jump in the current levels corresponding to

random telegraph noise is observed [45]. This is due to the stochastic capture and emission of

electrons into and from the vacancy defect sites constituting the percolation path [45]. The final

stage of the progressive breakdown model is thermal runaway or hard breakdown (HBD). During

this stage multiple percolation paths are formed and current increases significantly. HBD stage

also involves migration of the metal atoms/ions from the gate into the dielectric and protruding all

the way to the substrates [45]. Device completely fails once the HBD is reached. The following

effort discusses each stage in more details.

(A) SILC

When a HK gate stack transistor is stressed by voltage and/or temperature, defects are randomly

generated in the bulk of dielectrics. Excess current is induced and causes deviation of IV

characteristic from theoretical tunneling mechanism. This phenomenon corresponds to the SILC

stage. During this stage, gate current follows a power law relation with time and the time

exponent is in the range from 0.3 to 0.7 [47] [93]. As more and more defects are generated, more

74

electrons are able to reach the gate by means of trap-assisted tunneling (TAT) [94] [95]. As

defects are gradually generated, defect clusters form in the bulk of dielectric which reduces the

average tunneling distance of electrons (when considering NMOS at inversion). This increases

tunneling probability and results in current flow. The tunneling probability is exponentially

dependent on the barrier height and governed by the Wentzel-Kramers-Brillouin (WKB)

approximation [96]. Cartier and Kerber suggest that SILC is a recoverable phenomenon with

negative gate voltage applied to the HK gate stack [62].

(B) SBD

As SILC stage continues, more defects are generated and clusters of defects start to form. At the

moment one particular combination of clusters connects the gate and the substrate, a percolation

path appears [97]. For dielectric thickness larger than about 4 to 5nm, TDDB is the end point of

oxide lifetime due to fast transition to thermal runaway. The percolation results in nonreversible

damage to the gate dielectric leading to device malfunction [45]. For thin dielectric films of

thickness is less than 2 to 3nm, the breakdown process is soft, which means the catastrophic

failure does not appear abruptly but undergoes a wearout period [45]. The reason for this

difference is that defect density is much higher in the thicker dielectric and many defects

surround the percolation path eases the occurrence of Joule Heating process [45]. This can easily

result in positive feedback on the wearout process that aggravates further defect generation until

the dielectric breaks down. For thinner oxide, few defects present within the vicinity of the

percolation path and alleviate the breakdown process [45].

(C) Post SBD Wearout

Continuing stress on the dielectric post percolation path has formation results in observable

random gate current jump corresponding to random telegraph noise [45]. The current jump is due

to carriers capture and emission into and from the vacancies. This is also known as the band to

75

band tunneling. According to some researchers, post SBD wearout is a safe region to continue

operate the transistor but will enter breakdown gradually [45].

(D) Current Runaway

Further defect generation in the post SBD wearout process, especially close to the percolation

path, leads to increase of local temperature due to Joule Heating. The rise in temperature

enhances subsequent defect generation which again increases temperature and current density.

The positive feedback mechanism will dilate percolation path and thin down the oxide vertically

[45]. Eventually the dielectric loses its insulating property and becomes conductive indicating the

end of lifetime.

6.3.2 Generated Subordinate Carrier Injection Model

K. Okada et al. [89] proposed a Generated Subordinate Carrier Injection Model (GSCI), which

attributes dielectric degradation and breakdown to the subordinate carriers. The argument is that

the subordinate carrier charge is constant with respect to gate stress voltage. Thus, the

degradation and breakdown are caused by subordinate carriers. However, with one exception that

electron charge density varies with low gate voltage values for HfALOX samples. At higher stress

voltages, the electron charge density is constant. Authors consider the cause of the exception is

the presence of a trap-assisted conduction current component, ITA, in the subordinate carrier

current. Subordinate carrier current consists of two components, one is the trap-assisted

conduction component, and the other is dominating carrier component, IDC, responsible for

dielectric degradation and breakdown [89]. Authors presume the ITA component does not

contribute to the defect generation and the breakdown, only the IDC does. The GSCI model can be

summarized into three aspects: 1) the subordinate carrier controls the degradation and breakdown

of the device, 2) breakdown occurs when injected dominating carriers reach the breakdown

threshold, 3) both electrons and holes can be the dominating carrier [89].

76

6.3.3 A Percolation Model with Different Defect Generation Rates

Advanced Micro Devices (AMD) group, T. Nigam [70], made observations that HK dielectric

gate stacks are characterized by short breakdown times and shallow Weibull slopes. These

observations are explained by a percolation model with different defect generation rates in the

HK layer and IL. The difference in defect generation rate results a bimodal distribution with a

transition from a shallow to steep Weibull slope [70]. Test device area range is from 0.006 um
2
 to

1000 um
2
 and stressed at 125°C. Two different IL thickness were investigated (paper does not

specify values) with 2nm thick HK layer. Results shows that for both NMOS and PMOS, larger

area devices have larger Weibull slopes. NMOS devices show significant current increase prior to

breakdown which is due to either a progressive component or SILC. Using an AC stress where

devices are allowed to discharge at a fixed negative gate voltage, no significant increase in gate

current is observed. Therefore, authors conclude the absence of progressive component. And the

increase of gate current is attributed to SILC and defects generated in the HK layer. Similar

results apply to PMOS as well. The progressive component may be used for explaining the

transition of Weibull slope [70]. Since this work shows no progressive component, different

defect generation rates in the IL and HK layer are used to explain the transition. Three

dimensional kinetic Monte Carlo simulations are performed. Observations made from simulation

results are (1) an increasing defect generation rate in the HK layer decreasing time to breakdown,

and (2) TDDB distributions are bimodal for non-uniform defect generation in the HK layer and

the IL. Transition occurs at lower Weibits since the defect generation rate of the HK layer is

higher than the IL. Area effect on TDDB can be summarized as (1) for small areas, defect density

in the HK layer is high and the time to breakdown and Weibull slope are limited by the IL, (2) for

large areas, Weibull slope is determined by the complete stack thickness.

77

6.3.4 An All-in-one TDDB Reliability Model

Researchers T. Kauerauf, R. Degraeve et al. [98] [99] have presented an all-in-one TDDB

reliability predicting model. Authors suggest that the constant voltage stress (CVS) extrapolation

of SBD is challenged because (1) due to low breakdown voltages and low Weibull slope, the

extrapolated SBD maximum applicable voltage for 10 years is significantly below the operating

voltage, (2) high intrinsic gate leakage current comparing to the percolation current makes the

SBD and its trigger moment hard to observe. In order to overcome the limitations, a combined

TDDB extrapolation including both SBD and HBD is presented. Lifetime is no longer plotted as a

function of the applied gate voltage but as dielectric area vs. gate voltage plot including three

regions: SBD free region, region of multiple SBD (wearout) and HBD region, shown by author’s

figure 6.3. It predicts no SBD on 0.1cm
2
device after 10 years if VG<0.52V.

Figure 6.3. All-in-one TDDB reliability for a 0.63nm EOT PMOS. Adapted from source [98].

If VG=0.9V more than 1000 SBDs will be created after 10 years and for VG=1V, 0.01% of the

chips will fail due to HBD. Figure 6.3 is generated using reliability parameters from the SBD and

wearout distributions: the Weibull slopes βSBD and βWO, the 63% values ηSBD and ηWO and voltage

acceleration power-law exponents nSBD and nOW. There relation to the HBD is given as [98]

[99]

78

𝐹𝐻𝐵𝐷[𝑡] = 1 − exp [− (
𝜂𝑊𝑂

𝜂𝑆𝐵𝐷
)

𝛽𝑆𝐵𝐷
∙ ∫ (

𝑡

𝜂𝑊𝑂
− 𝑢

1

𝛽𝑆𝐵𝐷)
𝛽𝑆𝐵𝐷

∙ 𝑒−𝑢𝑑𝑢
(

𝑡

𝜂𝑊𝑂
)

𝛽𝑊𝑂

0
] (6.10)

6.4 Proposed Comprehensive Model

6.4.1 Model Overview

This model is expected to project long term EEPROM lifetime and data retention time tradeoff

with respect to different programming voltages in order to establish optimal programming

protocols for the trap charge based EEPROM. The proposed comprehensive model block diagram

is shown in figure 6.4. The key parameters that connect the EEPROM data retention time and

lifetime are programed threshold shift, ΔVth,programed, programming electric field, ξprogramming, across

the gate oxide indicated as orange circle v1 and v2 respectively in figure 6.4. Block 1 relates the

desired EEPROM data retention time to the programed threshold shift ΔVth,programed. Data retention

requirement or stored charge loss is raised from trapped carriers gradually detrapped from the

gate dielectric because of thermal agitation and thermally activated tunneling [100]. After the

programed threshold shift is obtained, current transport mechanisms of carriers tunneling through

HK-IL-Si barriers are used to find corresponding programming electric field, ξprogramming. Different

charge transport mechanisms are discussed in section 3.3. Fowler-Nordheim tunneling is used in

our model. This part of the model is depicted by block 2 in figure 6.4. Block 3 is considered as

the heart of our comprehensive model. It provides lifetime with respect to different programming

electric field strength. It has been discussed in section 6.3 that there are many different proposed

HK dielectric device lifetime models in the literature. In order to avoid any bias of different

models, we use 3D kinetic Monte Carlo (kMC) method to extrapolate the lifetime of the device.

The only potentially controversial point is the defect generation rate used in the 3D kMC.

Different rate equations are given by different research groups [70] [71] [72]. We have selected

the one we considered the most consistent with other literatures based on our understanding. The

79

three blocks constitutes the comprehensive lifetime - data retention time tradeoff model. In

addition to the model itself, we suggest that the average threshold of each EEPROM die should

be measured to improve device lifetime. Since transistor threshold voltage varies due to

technology process and mismatch and the programming relies on threshold voltage modification,

the threshold variation has to be taken into account for programming. For this reason, we

introduce block 4 that is able to measure the average threshold voltage of each EEPROM die at

the beginning of its operation. Detailed implementation of each bock is introduced in the

following sub-sections.

Trapped
charge

retention
model

Long term read success

Vread,
Vos, cell,
Vos, SA,

σW/E residual

Desired

EEPROM Data

Retention time

ΔVth, programming

ΣQtrap = ΔVth,programming·COX,eq

Current transport mechanisms

Vprogramming

TDDB Model
(HfO2 dielectric)

EEPROM lifetime

or

Mean Time to Failure

(MTTF)

i.e. the 63% failure time

EEPROM die mean
threshold measurements
(for improving lifetime)

Programming time

tprogram

Programming

ξprogramming

Proposed Comprehensive Model

Jtran = ΣQtrap/(tprogram·A)

1

2

3

v1

v2

4

Figure 6.4 Proposed trap charge based EEPROM lifetime - data retention time tradeoff model

flow diagram.

6.4.2 Block One

Block 1 in figure 6.4 serves the purpose of relating desired EEPROM data retention time to the

required programed threshold shift, ΔVth,programed, needed to achieve the desired data retention

80

time. The desired programed threshold shift is determined by the long term charge retention loss,

required read voltage and input offset voltage of the storage cells and sense amplifier as shown by

equation (6.11)

∆𝑉𝑡ℎ,𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑑 ≥ 𝑉𝑟𝑒𝑎𝑑 + √𝑉𝑜𝑠,𝑐𝑒𝑙𝑙
2 + 𝑉𝑜𝑠,𝑆𝐴

2 + 𝜎𝑊/𝐸,𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2 + ∆𝑉𝑡ℎ,𝑙𝑜𝑠𝑠 (6.11)

where 𝑉𝑡ℎ,𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑑 is the programmed threshold shift, 𝑉𝑟𝑒𝑎𝑑 is the input voltage the sense

amplifier to achieve the desired read time, 𝑉𝑜𝑠,𝑐𝑒𝑙𝑙 and 𝑉𝑜𝑠,𝑆𝐴 are the offset voltage of the storage

cell and sense amplifier respectively, 𝑉𝑊/𝐸,𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is write/erase residual variation and ∆𝑉𝑡ℎ,𝑙𝑜𝑠𝑠

is undesired threshold shift due to trapped charge loss over time. From [23] and [56], the residual

variation is small compare to the programming threshold shift and has negligible effect on

memory operation. The desired read voltage is derived from [101]

𝑡 ≈
1

𝜔𝑡
ln (

∆𝑉𝑓𝑖𝑛𝑎𝑙

∆𝑉𝑟𝑒𝑎𝑑
) (6.12)

Offset voltages of the storage cell and sense amplifier are given by [102]

𝑉𝑜𝑠,𝑐𝑒𝑙𝑙 =
𝐴𝑉𝑇,𝑛

√𝑊𝐿
 (6.13a)

and

𝑉𝑜𝑠,𝑆𝐴 =
𝐴𝑉𝑇,𝑝

√𝑊𝐿
 (6.13b)

respectively, where 𝐴𝑉𝑇,𝑛 and 𝐴𝑉𝑇,𝑝 are Pelgrom coefficients for NMOS and PMOS transistors

respectively. The 32nm SOI CMOS process has 𝐴𝑉𝑇,𝑛 approximately 2.3 mV·μm and 𝐴𝑉𝑇,𝑝

approximately 3.4 mV·μm. Offset voltage can be reduced by increasing transistor area according

to equation (6.12). ∆𝑉𝑡ℎ,𝑙𝑜𝑠𝑠 in equation (6.11) is threshold shift due to trapped charge loss from

the HK dielectric layer after several years. It is the characterization of charge retention. Ten years

81

is selected as a standard retention criterion for nonvolatile memory applications. Retention

characteristics are important to nonvolatile memory devices. The charge loss is determined by

tunneling leakage under weak fields. Possible causes of charge loss include defects in the tunnel

oxide, i.e. the interfacial layer (of minimal concern), defects in the blocking layer, mobile ion

contamination, and detrapping through charge trapping layer surrounding insulation [103]. The

experiment conducted for studying data retention is the Arrhenius test. Arrhenius testing is an

accelerated test method completed at elevated temperature to accelerate device aging and extract

lifetime or other characteristics under normal operating temperature for device. To understand the

retention characteristics of HK nonvolatile memory, flatband voltage shift as a function of time

for various baking temperatures (85 - 225°C) is measured. Certain carriers captured by the traps

close to SiO2/HfO2 interface in the HfO2 layer have shorter capture times. Carriers captured by

deep traps whose energy levels are within the HfO2 bandgap are desired for memory applications

as will be discussed in section 6.4.4. Table 6.1 summarizes several retention results for

HfO2/SiO2/Si gate stack from selected publications. Reference [56] uses the fabrication process

that identical to our work and reported 16% Vth loss, which will be used to determine the required

programmed threshold shift.

82

Table 6.1. Retention characteristics of HfO2/SiO2/Si gate stack with different layer thickness

Reference Process IL layer material

and thickness

HK layer

material and

thickness

Stress

conditions

Projection of 10

years retention

time

[104] 160nm SOI-

NMOS

ONO (oxide-

nitride-oxide),

2/2/2 nm

HfO2, 3nm Vg, program = 16V

tprogram = 2.5ms

estimate 14%

charge loss

[56] 32/22nm

SOI

SiO2, 1nm HfO2, 3nm Vg, program = 2V

tprogram = 10ms

16% Vth loss,

baked at 85°C

[105] - SiO2, 3nm HfO2, 8 - 2nm Vg, program = 18V

tprogram = 1s

30.8% Vth loss

[106] - SiO2, 5nm HfO2, 25nm Vg, program = 13V

tprogram = 1s

~34% charge

loss, baked at

85°C

[107] - SiO2, 4.5nm HfO2, 6nm Vg, program = 18V

~44% Vth loss,

baked at 200°C

6.4.3 Block Two

With required threshold shift found from equation (6.11), the total amount of trapped charge can

be calculated using relation

 Σ𝑄𝑡𝑟𝑎𝑝 = ∆𝑉𝑡ℎ,𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑑 ∙ 𝐶𝑜𝑥,𝑒𝑞 (6.14)

where 𝐶𝑜𝑥,𝑒𝑞 is the equivalent gate oxide capacitance. The current density due to these

transported charges can be calculated using

𝐽𝑡𝑟𝑎𝑛 =
 Σ𝑄𝑡𝑟𝑎𝑝

𝑡𝑝𝑟𝑜𝑔𝑟𝑎𝑚∙𝐴
 (6.15)

where 𝑡𝑝𝑟𝑜𝑔𝑟𝑎𝑚 is the time duration of programming gate applied, A is gate oxide area. Using

Fowler-Nordheim tunneling mechanism, the electric field strength across the gate oxide

corresponding to the transport current density can be found by [49] [73]

𝐽𝑡𝑟𝑎𝑛 = 𝐽𝐹𝑁 = 𝐴𝐹𝑁ξprogramming
2 𝑒

−
𝐵𝐹𝑁

ξprogramming (6.16)

83

where 𝐴𝐹𝑁 and 𝐵𝐹𝑁 are given as

𝐴𝐹𝑁 =
𝑞2

8𝜋ℎ𝜙0
 (6.17)

and

𝐵𝐹𝑁 = −
4

3
√

8𝜋2𝑚

ℎ2

(𝑞𝜙0)3/2

𝑞
 (6.18)

In equation (6.17) and (6.18), m is electron mass, 𝜙0 is barrier height of oxide-silicon interface, h

is Planck’s constant. This electric filed is the required programming electric field strength

corresponding to the desired data retention time stated in block one. This electric field strength is

used in block three for lifetime extraction.

6.4.4 Block Three

As discussed in Chapter 3, oxygen vacancy creation, transportation, and extinction are relevant to

the degradation of HK gate dielectric and the lifetime of nonvolatile memory which using the HK

device. Many models have been introduced in literature. For our model development, we have

decided to use three dimensional kinetic Monte Carlo (3D kMC) algorithm to extrapolate the

dielectric lifetime for a required programming electric field. The general idea is first dividing the

bulk dielectric material into small cubes in a 3D grid according to the dielectric geometry and

defect size. Each cube represents a lattice site that has the potential of turning into a defect by the

programming electric field. Then, using a random generator to randomly generate defects (a

marked or occupied lattice location) in the 3D lattice grid according to a generation rate. Once a

defect appears at a lattice location its surrounding lattice locations will have higher chance to

become the next defect location because of higher local electric field strength. The generation rate

at the surrounding locations will then be updated. When one or more neighboring locations

become defective, a defect cluster forms. All touching clusters have the same cluster label. When

84

a new defect location joints two un-touching clusters, they all form a new cluster and chose the

lowest-numbered label of the cluster as this new cluster label. When the same cluster label

appears in both the top layer and bottom layer of the lattice, there is a percolation path connecting

the top and bottom layers. This percolation path marks the SBD stage of the dielectric as

discussed in section 6.3.1. This process of checking cluster formation and percolation path is

known as the Hoshen-Kopelman algorithm [108] which is based on union-finding algorithm

[109]. For the purpose of this work, simulation terminates when a percolation path formed and we

consider the soft breakdown as the end of device lifetime. The key parameter for the kMC

simulation is the defect generation rate. It is mainly a function of applied electric field and is

given by [110] [111]

𝑟𝑑𝑒𝑓𝑒𝑐𝑡 = 𝜈 ∙ 𝑒
−

𝐸𝑎−𝑝𝑒𝑓𝑓∙
2+𝜀

3
∙ξprogramming

𝐾𝐵𝑇
 ∙𝑡

 (6.19)

where 𝜈 is lattice vibration frequency, 𝐸𝑎 is the activation energy, 𝑝𝑒𝑓𝑓 is effective dipole

moment, 𝜀 is dielectric constant and t is time elapsed. The activation energy is defined as the

energy difference between the trap site and the conduction band of Si-substrate [112]. Defect

levels in the HfO2 HK dielectric layer can be classified into three groups according to their

locations within the bandgap relative to the Si-substrate conduction band and valence band [112].

Figure 6.5 shows the simplified energy band diagram of group allocation. Trap levels in group 1

are considered as shallow levels where trapped carriers can easily de-trap after programming

voltage is removed. This group of traps does not provide long term memory functionality. Group

2 levels whose energy span maps to the Si-substrate bandgap are the desired trap energy states.

Under non-programming condition, carriers trapped in group 2 energy levels detrap slowly to the

Si-substrate (if NMOS is considered) based on their physical distance from the substrate, the

activation energy and the quality of the dielectric material. Threshold shifts due to carriers

trapped in there levels are suitable for memory application. Group 3 trap levels shown in figure

85

6.5 are levels below the valance band of Si-substrate. Carriers trapped in there levels give rise to

the fixed oxide charges [112] and are difficult to remove under normal erase voltages. The

desired trap energy is about 1.2eV to 2.3eV below the conduction band edge of the HfO2

dielectric as shown in figure 6.5.

High-k layer

ECB

EVB

Interfacial
 layer

Si-sub

ECB

EVB

ECB

EVB

Desired trap
energy band

~5.99 eV

~1.5 eV

~1.1 eV

Group 1

Group 2

Group 3

Figure 6.5. Different groups of defect levels within the bandgap of HK dielectric layer [112].

After the defect generation rate is determined, 3D kMC algorism can be applied to extrapolate the

lifetime of the device. In 3D kMC simulation, dielectric material is divided into a volume of small

cubes shown by figure 6.6 inset. Each cube represents a lattice site that has the potential to

become a defect under the stress of programming electric field. Number of layers assigned to HK

layer and IL are determined by the physical thickness and defect size. The physical thickness of

HK layer and IL layer used is 4nm and 1nm respectively. Defect size is about 0.6nm [71] [70].

Thus, there are 6 layers used in our simulation. Each layer is a 30 x 30 cube array. For easing

illustration purpose, figure 6.6 shows a two dimensional kMC percolation diagram. Our modeling

86

HfO2 layer

SiO2 layer

Pre-existing traps
Stress induced

defects
Percolation path

Figure 6.6 2D percolation diagram showing SiO2 interfacial layer and HfO2 HK layer.

procedure uses the basic 3D kMC algorithm [113] with some modifications and summarized as

the following:

1. Initialize parameters and set time to zero

2. Assign initial defect generation rate ri to each lattice site.

3. Calculate the cumulative partial sum of each defect generation rate associated with a lattice

site, 𝑟𝑝𝑎𝑟,𝑗 = ∑ 𝑟𝑖
𝑁
𝑗=1 for i = 1, …, N where N is the total number of lattice sites or the cubes.

4. Generate a uniform random number, 𝑢1, between 0 and 1.

5. Mark the first lattice site that satisfies 𝑟𝑝𝑎𝑟,𝑗 > 𝑢1 ∙ 𝑟𝑡𝑜𝑡𝑎𝑙, where 𝑟𝑡𝑜𝑡𝑎𝑙 is the sum of all site

generation rates.

6. Generate a new uniform random number, 𝑢2, between 0 and 1.

7. Calculate time elapse 𝑡 = 𝑡 + (−
𝑙𝑜𝑔𝑢2

𝑟𝑡𝑜𝑡𝑎𝑙
).

8. Update defect generation rate at all defect locations according to equation (6.19).

87

9. Check for percolation path.

10. If no percolation path has formed, return to step 3. Otherwise simulation ends.

This procedure is simplified to a program flow chart shown by figure 6.7. The simulated lifetime

or mean time to failure is plotted on a Weibull plot. MATLAB code for the model

implementation is in the appendix part II.

Start

Initialize parameters

Calculate defect
generation rate and

determine a new defect
location

End

Breakdown
happen?

NO

YES

Update local permittivity
and E field

Calculate time evolution

Update cluster status

Figure 6.7 3D kinetic Monte Carlo simulation program flow chart.

88

6.4.5 Block Four

As mentioned above, the knowledge of average threshold voltage of a die can improve EEPROM

lifetime and yield when different dies from a same wafer or from different wafers are considered.

The remaining of this section is dedicated to explain the proposed method for threshold

measurement. To illustrate the idea, we use the 1/E model. We rewrite the 1/E time-to-failure

equation in terms of programming voltage as

𝑇𝐵𝐷 ≅ 𝜏0𝑒
𝐾 𝑡𝑜𝑥

𝑉𝑔−𝑉𝑡ℎ (6.20)

where K is associated with the carrier tunneling and τ0 is a temperature dependent pre-factor [84].

This equation reveals an exponential relationship between the transistor lifetime and gate

overdrive voltage, 𝑉𝑔 − 𝑉𝑡ℎ. Therefore, accurately controlling the gate voltage and knowing the

threshold variation are critical for lifetime improvement. There are two sources of contribution to

threshold variation; one is transistor variability mainly due to channel dopant fluctuation and line

edge roughness, the other is threshold variation due to fabrication process gradient. Transistor

variability dominates when considering silicon area less than about 200µm diameter. Threshold

variation due to process gradient dominates for area larger than about 200µm diameter. In this

application, the result of transistor variability is threshold mismatch of the differential storage

cell. Our four EEPROM banks are laid out in an area about 260µm x 268µm. Therefore,

threshold mismatch dominates over the EEPROM banks. The threshold mismatch is given by

(6.13a). As shown by equation (6.13a), threshold mismatch between each cell is reduced by

designing the cell with sufficient area. As shown by equation (6.11), the threshold mismatch

needs to be less than the write/erase residual so that the write/erase residual is the dominant error

contribution comparing to threshold mismatch. In addition to the threshold mismatch, threshold

variation due to process gradient is considered for lifetime improvement. When dealing with

threshold variation due to process, the four banks are seen as a single entity and the average

89

threshold voltage across it is measured. The average threshold of each EEPROM die (four banks)

from different region of a wafer or from different wafers is different because of process variation.

Thus, the ability of measuring the average threshold for each die can reduce lifetime degradation

shown by equation (6.20). This means the programming voltage can be adjusted for targeted

programming threshold shift according to the measured average native threshold. The choice of a

universal programming voltage can be avoided to improve memory lifetime.

We proposed a simple method that enables the average threshold measurement across four banks.

Figure 6.8 shows the conceptual diagram. Four test transistors are placed at the four corners of the

full EEPROM bank. These test transistors have a sufficient number of fingers that the threshold

mismatch between them is negligible comparing to threshold variation due to process while

satisfying silicon area constraint. The four test transistors are connected in parallel and their

average threshold is measured using circuit shown in figure 6.8(b). The reference current in figure

6.8(b) is the current at which the threshold is measured. The top current mirror output is scaled

down four times to average the current sum of the four test transistors. As the DAC sweeps the

gate voltage of the test transistors, their average current will be compared with the reference

current. The result is converted to logic level by a comparator. Once knowing this mean threshold

for each die, the programming voltage can be adjusted accordingly such that the low threshold

dies will not be stressed as hard as high threshold dies. Lifetime is therefore prolonged. This

section gives the overview of proposed MTBF model and an average threshold measurement

method for a die. Next section shows the LDO implementation for generating the programming

voltages.

90

EEPROM
Bank

EEPROM
Bank

2
5

0
μ

m EEPROM
Bank

EEPROM
Bank

260μm

Test
transistor

Test
transistor

Test
transistor

Test
transistor

Dummy transistors at the four corners of

the memory banks

DAC

Vo

current mirror

(a)

(b)

Iref

current mirror

Iref

Im

φ

Figure 6.8 (a) Four test transistors are placed at four corners of the full EEPROM bank for Vth

measurements. (b) Proposed threshold voltage measurement circuits.

91

CHAPTER VII

RESULTS

This chapter presents the results of this work. These results consist of three parts. The first part is

CPU/EEPROM interface functional simulation waveforms. These waveforms capture the

interface and EEPROM activity to show the functional correctness of memory operations and the

interface logic. The second part is LDO simulation. This part includes LDO closed-loop AC

simulation waveform and output transient simulation waveforms. The third part is the HfO2 gate

stack lifetime extrapolation using 3D kMC algorithm.

(Run directory: ~/VHDL/EEPROM_2018/top/top.xise)

(Run TopTB-behavior (TopTB.vhd))

(Simulate Behavior Model)

7.1 CPU/EEPROM Interface Simulation

This section presents the behavioral simulation of the CPU/EEPROM interface. The behavioral

activity is depicted by memory state transitions among different operations. The BUSY signal is

used to verify the CUI operation for CPU and EEPROM exchange control. Figure 7.1 shows the

interface behavior for a block write operation. The operation begins with CPU load the

initialization, command, and data registers. Since there are 16 words (i.e. a block) to be written as

92

an example, it takes 16 cycles for CPU load the data register. This results the staircase like

waveform in the figure. After the data register is loaded, control is passed from CPU to EEPROM

and write operation starts. The BUSY signal is set indicating EEPROM has control to CUI and its

operation starts.

CPU writes to the data register Writing to EEPROM

BUSY signal

Figure 7.1 EEPROM write operation. Control transition from CPU to EEPROM.

It takes 16 cycles for the EEPROM to write the block of word. To avoid redundancy, not all 16

cycles are shown in the captured waveform but only the moment of memory making state

transitions. Figure 7.2 shows the memory operation transition from write to read. As discussed in

Chapter 4, in order to enable CPU to verify data correctness, read operation stats automatically

after write. This transition is indicated by the red line in figure 7.2.

Writing to EEPROM Reading from EEPROM

Figure 7.2 EEPROM write operation. Operation transition from write to read.

93

After read operation is complete, EEPROM return CUI control to CPU by reset the BUSY signal

as indicated in figure 7.3. After BUSY signal is reset, CPU can access data register to recover the

data just written to the EEPROM and EEPROM enters idle state. CPU can also discard the

information in the data register by overwrite it with new value.

Read from EEPROM
EEPROM enters idle state
CPU has control

BUSY signal

Figure 7.3 EEPROM write operation. Control transition from EEPROM to CPU.

Figure 7.4 shows erase operation waveform. After BUSY signal is set, control is passed from

CPU to EEPROM and erase operation starts. A block of word is erased in one operation. The

waveform in figure 7.4 shows the first block of words of bank0 is erased. After erase operation,

read operation starts. The transition from erase to read is marked in figure 7.4.

EEPROM Erase Operation

CPU passing
CUI
control to
EEPROM EEPROM Read Operation

BUSY signal

Erase the first block of Bank0

Figure 7.4 EEPROM erase operation. Control transition from CPU to EEPROM. Operation

transition from erase to read.

94

After read operation is complete, data is written to the data register for CPU to recover. This part

of process is identical to the write operation. When read is complete, BUSY signal is reset, CPU

regain control from EEPROM. EEPROM enters idle state. This is shown in figure 7.5.

EEPROM Read Operation
CPU regain access to CUI
EEPROM enters idle state

BUSY signal

Erased results written to
data register

Figure 7.5 EEPROM erase operation. Control transition from EEPROM to CPU.

For the completeness purpose, read operation alone is shown in figure 7.6 and 7.7. The operation

is similar to write and erase. To avoid unnecessary detailed description, only the transition

moment of read operation are presented for showing the interface correct functionality.

EEPROM Read Operation

CPU passing
CUI
control to
EEPROM

BUSY signal

Figure 7.6 EEPROM read operation. Control transition from CPU to EEPROM.

95

EEPROM Read Operation
CPU regain access to CUI
EEPROM enters idle state

BUSY signal

Figure 7.7 EEPROM read operation. Control transition from EEPROM to CPU.

7.2 LDO Simulation

Figure 7.8 shows the simulation schematic of the LDO. The main circuit block includes start up

circuit, bandgap voltage reference, bias circuit, single-ended boosted telescopic OTA, common

mode feedback circuit, second stage pass transistor, and feedback resistor network. The circuit is

simulated at typical-typical process corner. Figure 7.9 shows closed-loop Bode magnitude and

phase plots. The closed-loop gain, i.e. LDO gain, is 1.5. Closed-loop GBP is 638.68kHz. Phase

margin is 131°.

Start up

Bandgap Reference Bias Circuit

Boosted Telescopic OTA Common Mode Feedback

Second Stage

Figure 7.8 LDO simulation schematic.

96

Figure 7.9 LDO closed-loop Bode magnitude and phase plots.

Figure 7.10 and figure 7.11 show the transient response of the LDO for 0.6V output and 2.5V

output respectively. The load current pulse is 2mA with edge time of 10μs. Its period is 20ms

with 50% duty cycle. For 0.6V output, LDO has 2.5% overshoot on the falling load current

transition and 2% overshoot on the raising load current transition. The LDO settling time of

falling and raising load current edge is 12μs and 11μs respectively. For 2.5V output, LDO has

0.13% overshoot on the falling load current transition and 0.14% overshoot on the raising load

current transition. The LDO settling time of falling and raising load current edge is 12μs.

97

12 us

11 us

Figure 7.10 Output transient of the LDO with 0.6V output and 2mA load current.

12 us

12 us

Figure 7.11 Output transient of the LDO with 2.5V output and 2mA load current.

98

7.3 HfO2 Transistor Lifetime Extrapolation Result

This simulation provides HfO2 gate stack lifetime which is the third constructing block of the

comprehensive model discussed in Chapter 6. The simulation uses the 3D kMC algorithm

combined with defect generation given by equation (6.19) [110] [111] and restated here,

𝑟𝑑𝑒𝑓𝑒𝑐𝑡 = 𝜈 ∙ 𝑒
−

𝐸𝑎−𝑝𝑒𝑓𝑓∙
2+𝜀

3
∙ξprogramming

𝐾𝐵𝑇
 ∙𝑡

 (7.1)

Even though there are other defect generation rate studies [70] [72] in the literature, this rate is

selected because it connects defect generation rate with external electric filed which relates to

programming voltage.

Figure 7.12 Simulated Weibull TDDB distribution of 32nm HfO2 HK gate stack lifetime with

respect to programming voltage.

As discussed in Chapter 6, section 6.3.1, HK layer breakdown first is assumed. Based on 0.6nm

defect size [70] [71] and a 4nm thick HfO2 HK layer, the dielectric bulk is divided into 6 layers in

the simulation. Also, the dielectric bulk is divided into 30 segments along channel direction and

99

30 segments along width direction. The means the HK bulk is divided into 5400 cubes. Each cube

represents a site that has the potential to become defective according to the defect generation rate

specified by equation (7.1). Total 200 sample run is simulated. Each sample represents a

transistor. Total are 1080000 cubs representing defect sites. Figure 7.12 shows the Weibull

distribution of the gate stack. The 63% failure is extrapolated to be about 4.7 years. The 70%

failure is extrapolated to be about 6.3 years.

The programming voltage can be calculated by equating equation (7.1) to the simulation line fit

equation

𝑟𝑎𝑡𝑒 = 0.9 × 10−7𝑒−0.26×10−7𝑡 (7.2)

as

𝐸𝑎−𝑝𝑒𝑓𝑓∙
2+𝜀

3
∙ξprogramming

𝐾𝐵𝑇
= 0.26 × 10−7 (7.3)

The activation energy 𝐸𝑎 for HfO2 is 4.4eV [111] which is equivalent to 7.04 × 10−19 𝐽, the

effective diploe moment 𝑝𝑒𝑓𝑓 is 10.2eÅ [111] which is equivalent to 1.63 × 10−28 𝐶 ∙ 𝑚.

Boltzmann constant 𝐾𝐵 is 1.38 × 10−23 𝐽/𝐾. HfO2 dielectric constant 𝜀 is 25. With these

parameters in hand and assuming room temperature, the programming (or externally applied)

electric field ξprogramming is calculated to be 4.79MV/cm. The programming voltage is applied

across 5nm “effective” gate oxide thickness which includes 4nm HfO2 layer and ~1nm IL layer.

Therefore, the programming voltage is calculated to be

Vprogramming = thickness ∙ ξprogramming

= 5nm ∙ 4.79 MV/cm = 2.395V

This result consists with the programming voltages predicted by [22] [23] [56]. The simulated

Weibull distribution shows a curve up around Weibit of 0.45 which is not addressed by any

literature publications. The upwards curving means higher defect generation rate towards the end

100

of device lifetime and the gate stack failling faster. We believe the reason of the upward curving

is due to the simulation algorithm. Observe that when a lattice site becomes defective, there is an

increase in the defect generation rates of its surrounding cells. As the defection generation rate is

a function of time, the rate of increase is faster as more defects occure and as time passes. This is

more obvious toward higher Weibit because many higher defect generation rate clusters are being

connected. An alternate way of thinking is the gate oxide is becoming saturated with defects. The

up curving of the plot is also graphically consistent with the observed Joule Heating phenomenon

during thermal runaway before HBD. However, the actual physics reflected by the plot should be

further investigated.

This model is also capable of providing lifetime extrapolation for 24nm and 15nm process nodes

by reducing the number of cubes in the lattice. This work uses constant electric field, i.e. constant

programming voltages, with scaled transistor geometry to demoenstrate the lifetime reduction due

to the scaling. The simulated Weibull plots in figure 7.13 and figure 7.14 show the lifetime

estimation for 24nm and 15nm transistors under the same programming condition as in figure

7.12. As the programming voltage remains the same, smaller geometry devices reveal shorter

lifetime as expected. The reason is that the electric field across the dielectric is stronger for

smaller devices under the same voltage. The 24nm node device lifetime simulation uses a 4 layer

3D grid to represent the HK dielectric. In addition the smaller oxdie volumes reach defect

saturation levels more quickly due to smaller volumers and faster defect generation rates. Each

layer consists of 20 cubes in the channel direction and 20 cubes in the transistor width direction.

The number of samples is 200. The 63% failure time is simulated to be about 1.58 year as shown

in figure 7.13. The 15nm node device lifetime simulation uses a 2 layer grid with 10 cubes in the

channel direction and width direction respectively. The number of samples is 200 as well. The

63% failure time is simulated to be about 0.47 year as shown in figure 7.14. On the potentially

101

positive side as the gate volume becomes small quantum effects may come into play resulting in

the gate oxide initial material being defect or near defect free.

Figure 7.13 Simulated Weibull TDDB distribution of 24nm node HfO2 HK gate stack lifetime

with respect to programming voltage same as in figure 7.12.

102

Figure 7.14 Simulated Weibull TDDB distribution of 15nm node HfO2 HK gate stack lifetime

with respect to programming voltage same as in figure 7.12.

103

CHAPTER VIII

CONCLUSION

The story begins from the vulnerability issues of the EEPROM used in trusted computing

platforms that containing cryptographic information such as secure keys and user data. Evidence

have shown the possibility of retrieving protect content by means of hardware attacks. Some of

the attack methods do not require expensive tools and relatively easy to be conducted by skilled

malicious users. Thus, a new EEPROM solution to the security issues for the trusted platform is

in demand. At the same time, CMOS technology scaling with SiO2 gate oxide has reached its

limit for the unacceptable gate leakage, power consumption, and reliability. Therefore, HfO2 gate

dielectric material is introduced to CMOS technology. The HfO2 certainly solves the down

scaling issue but it has the special property of trapping carriers into the defects. Coincidentally,

this trapping mechanism is possibly a good way to hide secure information in hardware circuits,

therefore, possibly solve the trusted platform memory vulnerability issue. With this envision, we

proposed the embedded EEPROM with charge trap transistors. In order to make this idea reality,

two issues needs to be addressed. One is the communication interface between CPU and the

charge trap based EEPROM. The other is the lifetime estimation of the EEPROM under the stress

of programming voltages. This work proposed the charge trap based EEPROM core and designed

an interface that achieved EEPROM core operational control and CPU communication. While the

lifetime of HfO2 dielectric transistor modeling is still an active area of research, this work builds a

comprehensive model that provides data retention time and lifetime tradeoff using 3D kinetic

Monte Carlo algorithm from lifetime extrapolation. Even though the model employs the defect

104

generation rate of HfO2 from literature, the first step has been made for connecting lifetime and

programming protocol of the charge trap based EEPROM. The future work could be refining the

model when experimental lifetime data of the EEPROM is obtained and/or more widely accepted

HfO2 lifetime mode is derived.

105

REFERENCES

[1] A. Tomlinson, “Introduction to the TPM,” Smart Cards, Token, Security and

Applications. Springer US, 2008, pp. 155-172.

[2] http://www. trustedcomputinggroup.org

[3] S. Bajikar, “Trusted platform module (TPM) based security on notebook PCs - white

paper,” Mobile Platforms Group, Intel Corporation, June 20, 2002.

[4] https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-

Architecture-01.38.pdf

[5] TCG, “TCG Specification Architecture Overview,” TCG Specification Revision 1.4,

The Trusted Computing Group, Portland, OR, USA, Aug. 2007.

[6] S. Skorobogatov, “How Microprobing Can Attack Encrypted Memory,” 2017

Euromocro Conference on Digital System Design (DSD), Vienna, 2017, pp. 244-251.

[7] O. Kommerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard

processors,” USENIX Workshop on Smartcard Technology, Chicago, Illinois, USA, May

1999.

[8] F. Beck, Integrated Circuits Failure Analysis: A Guide to Preparation Techniques,

John Wiley & Sons, 1997.

[9] K. Kursawe, D. Schellekens, and B. Preneel, “Analyzing trusted platform

communication,” in Proc. ECRYPT Workshop Cryptographic Advances Secure

Hardware, 2005, pp. 1-8.

[10] J. Halderman et al, “Lest we remember: code-boot attacks on encryption keys,”

Communications of the ACM, vol. 52(5), pp. 91-98, May 2009.

[11] O. Lo, W. J. Buchanan, and D. Carson, “Power analysis attacks on the AES-128 S-

box using differential power analysis (DPA) and correlation power analysis (CPA),” J.

Cyber Security Techn., vol. 1, no. 2, pp. 88-107, 2017.

[12] D. Agrawal, B. Archambeault, J. R. Rao, P. Rohatgi (2003) The EM Side-

Channel(s). In: B. S. Kaliski, K. Koc, C. Paar (eds) Cryptographic Hardware and

Embedded Systems - CHES 2002. CHES 2002. Lecture Notes in Computer Science, vol.

2523. Springer, Berlin, Heidelberg.

[13] JJ. Quisquater, D. Samyde (2001) ElectroMagnetic Analysis (EMA): Measures and

Countermeasures for Smart Cards. In: I. Attali, T. Jensen (eds) Smart Card Programming

and Security. E-smart 2001. Lecture Notes in Computer Science, vol. 2140. Springer,

Berlin, Heidelberg.

[14] D. Brumley and D. Boneh, “Remote timing attacks are practical,” the 12
th

 Usenix

Security Symposium, 2003.

[15] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems,” in Proc. CRYPTO’96, vol. LNCS 1109, pp. 104-113, 1996.

106

[16] S. Skorobogatov, "Local heating attacks on Flash memory devices," 2009 IEEE

International Workshop on Hardware-Oriented Security and Trust, Francisco, CA, 2009,

pp. 1-6.

[17] P. Kocher, J. Jaffe and B. Jun, “Differential power analysis,” Annual International

Cryptology Conference, CRYPTO 1999: Advances in Cryptology, pp. 388-397.

[18] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, ‘‘Introduction to differential power

analysis,’’ J. Cryptogr. Eng., vol. 1, no. 1, pp. 5–27, 2011.

[19] U. Banerjee, L. Ho, and S. Koppula, “Power-based side-channel attack for aes key

extraction on the atmega328 microcontroller,” 2015.

[20] P. A. H. Peterson, "Cryptkeeper: Improving security with encrypted RAM," 2010

IEEE International Conference on Technologies for Homeland Security (HST), Waltham,

MA, 2010, pp. 120-126.

[21] P. Choi and D. K. Kim, "Design of security enhanced TPM chip against invasive

physical attacks," 2012 IEEE International Symposium on Circuits and Systems, Seoul,

2012, pp. 1787-1790.

[22] F. Khan, E. Cartier, J. C. S. Woo and S. S. Iyer, "Charge Trap Transistor (CTT): An

Embedded Fully Logic-Compatible Multiple-Time Programmable Non-Volatile Memory

Element for High- k -Metal-Gate CMOS Technologies," in IEEE Electron Device

Letters, vol. 38, no. 1, pp. 44-47, Jan. 2017.

[23] C. Kothandaraman et al, “Oxygen vacancy traps in Hi-K/Metal gate technologies

and their potential for embedded memory applications,”2015 IEEE International

Reliability Physics Symposium, Monterey, CA, pp. MY.2.1-MY.2.4., 2015.

[24] S. Mohsenifar and M. H. Shahrokhabadi, “Gate Stack High-κ Materials for Si-Based

MOSFETs Past, Present, and Futures,” Microelectronics and Solid State Electronics, vol.

4 No. 1, pp. 12-24, 2015.

[25] R. D. Clark, “Emerging Applications for High k Materials in VLSI Technology,”

Materials, vol. 7, no. 4, pp. 2913-2944, 2014.

[26] J. Robertson and R. Wallace, “High-K materials and metal gates for CMOS

applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, Feb.

2015.

[27] A. S. Oates, "Reliability issues for high-k gate dielectrics," IEEE International

Electron Devices Meeting 2003, Washington, DC, USA, 2003, pp. 38.2.1-38.2.4.

[28] E. P. Gusev and C. P. D’Emic, “Charge detrapping in HfO2 high-k gate dielectric

stacks,” Applied Physics Letters, vol. 83, no. 25, Dec. 2003, pp. 5223-5225.

[29] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related

threshold voltage instabilities in high permittivity gate dielectric stacks,” J. App. Phys.,

vol. 93, no. 11, pp. 9298-9303, 2003.

[30] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future

electronic devices,” J. Vac. Sci. Techno. B, vol. 18, iss. 3, pp. 1785-1791, 2000.

[31] G. He and Z. Sun, High-k Gate Dielectrics for CMOS Technology, Wiley-VCH

Verlag GmbH & Co. KGaA, 2012.

[32] T. Nigam and A. Kerber, "Reliability modeling of HK MG technologies,”

Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA,

2014, pp. 1-8.

107

[33] A. Kerber and E. A. Cartier, "Reliability Challenges for CMOS Technology

Qualifications With Hafnium Oxide/Titanium Nitride Gate Stacks," in IEEE

Transactions on Device and Materials Reliability, vol. 9, no. 2, pp. 147-162, June 2009

[34] B. H. Lee, "Unified TDDB model for stacked high-k dielectrics," 2009 IEEE

International Conference on IC Design and Technology, Austin, TX, 2009, pp. 83-87.

[35] M. M. Frank, "High-k/metal gate innovations enabling continued CMOS

scaling," 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki, 2011, pp. 50-58.

[36] Y. Nara, IEEE/AMAT Seminar, Nov. 14 2008.

[37] A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and

interstitial defects in hafnia,” Phys. Rev. B 65, pp. 174117, 2002.

[38] K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, “Defect energy levels in HfO2

high-dielectric-constant gate oxide,” App. Phys. Lett., vol. 87, iss. 18, pp. 183505, 2005.

[39] J. L. Gavartin, A. L. Shluger, A. S. Foster, and G. Bersuker, “The role of nitrogen-

related defects in high-k dielectric oxides: Density-functional studies,” J. App. Phys., vol.

97, iss. 5, pp. 053704, 2005.

[40] K. Xiong and J. Robertson, “Point defects in HfO2 high k gate oxide,” Microel.

Engin., vol. 80, pp. 408-411, 2005.

[41] G. C. Jegert, Modeling of leakage currents in high-k dielectrics, Technische

Universitat Munchen, Dissertation.

[42] W. Lee and C. Hu, "Modeling CMOS tunneling currents through ultrathin gate oxide

due to conduction- and valence-band electron and hole tunneling," in IEEE Transactions

on Electron Devices, vol. 48, no. 7, pp. 1366-1373, July 2001.

[43] S. N. Mohammad, G. Fiorenza, A. Acovic, J. B. Johnson and R. L. Carter, “Fowler-

nordheim tunneling of carriers in mos transistors: two-dimensional simulation of gate

current employing FIELDAY,” Solid-state Electronics, Vol. 38, No. 4. pp. 807-814,

1995.

[44] S. Sahhaf, R. Degraeve, P. J. Roussel, B. Kaczer, T. Kauerauf and G. Groeseneken,

"A New TDDB Reliability Prediction Methodology Accounting for Multiple SBD and

Wear Out," in IEEE Transactions on Electron Devices, vol. 56, no. 7, pp. 1424-1432,

July 2009.

[45] N. Raghavan, K. L. Pey, and K. Shubhakar, “High-k dielectric breakdown in

nanoscale logic devices - Scientific insight and technology impact,” Microelectronics

Reliability, vol. 54, iss. 5, pp. 847-860, May 2014.

[46] F. F. Aghdam and H. Liao, "Reliability study on high-k bi-layer dielectrics," 2017

Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, 2017, pp. 1-7.

[47] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak and G. Groeseneken, "Correlation

between Stress-Induced Leakage Current (SILC) and the HfO2 bulk trap density in a

SiO2/HfO2 stack," 2004 IEEE International Reliability Physics Symposium. Proceedings,

Phoenix, AZ, USA, 2004, pp. 181-187.

[48] R. O’Connor et al, “SILC defect generation spectroscopy in HfSiON using constant

voltage stress and substrate hot electron injection,” International Reliability Physics

Symposium, pp. 324-329, 2008.

[49] M. Rieth and W. Schommers, Handbook of Theoretical and Computational

Nanotechnology, vol. 10, pp. 469-543, ISBN: 1-58883-052-7.

108

[50] S. J. Rhee and J. C. Lee, “Threshold voltage instability characteristics of

HfO2 dielectrics n-MOSFETs,” Microelectronics Reliability, vol. 45, iss. 7-8, pp. 1051-

1060, 2005.

[51] A. Kerber et al., "Origin of the threshold voltage instability in SiO2/HfO2 dual layer

gate dielectrics," in IEEE Electron Device Letters, vol. 24, no. 2, pp. 87-89, Feb. 2003.

[52] Xuguang Wang and Dim-Lee Kwong, "A novel high-k SONOS memory using

TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation," in IEEE

Transactions on Electron Devices, vol. 53, no. 1, pp. 78-82, Jan. 2006.

[53] P. H. Tsai et al, “Novel SONOS - type nonvolatile memory device with stacked

tunneling and charge trapping layers,” Solid-state Electronics, vol. 52, iss. 10, pp. 1573-

1577, 2008.

[54] S. Maikap, “Charge trapping characteristics of atomic-layer-deposited HfO2 films

with Al2O3 as a blocking oxide for high-density non-volatile memory device

applications,” Semicond. Sci. Technol., vol. 22, no. 8, pp. 884-889, 2007.

[55] F. Khan, E. Cartier, C. Kothandaraman, J. C. Scott, J. C. S. Woo and S. S. Iyer, "The

Impact of Self-Heating on Charge Trapping in High-k-Metal-Gate nFETs," in IEEE

Electron Device Letters, vol. 37, no. 1, pp. 88-91, Jan. 2016.

[56] B. Jayaraman et al., "80-kb Logic Embedded High-K Charge Trap Transistor-Based

Multi-Time-Programmable Memory With No Added Process Complexity," in IEEE

Journal of Solid-State Circuits, vol. 53, no. 3, pp. 949-960, March 2018.

[57] G. Ribes et al., "Review on high-k dielectrics reliability issues," in IEEE

Transactions on Device and Materials Reliability, vol. 5, no. 1, pp. 5-19, March 2005.

[58] F. Arnaud et al., "32nm general purpose bulk CMOS technology for high

performance applications at low voltage," 2008 IEEE International Electron Devices

Meeting, San Francisco, CA, 2008, pp. 1-4.

[59] E. Cartier et al., "Fundamental aspects of HfO2-based high-k metal gate stack

reliability and implications on tinv-scaling," 2011 International Electron Devices Meeting,

Washington, DC, 2011, pp. 18.4.1-18.4.4.

[60] S. Krishnan et al., “Mechanistic understanding of breakdown and bias temperature

instability in high-k metal devices using inline fast ramped bias test,” IEEE International

Reliability Physics Symposium Technical Digest, pp. 4A.5.1-4A.5.5, 2011.

[61] G. Bersuker et al., “Mechanism of high k dielectric-induced breakdown of the

interfacial SiO2 layer,” Proc. IEEE Int. Rel. Phys. Symp., pp. 373-378, 2010.

[62] E. Cartier and A. Kerber, "Stress-induced leakage current and defect generation in

nFETs with HfO2/TiN gate stacks during positive-bias temperature stress," 2009 IEEE

International Reliability Physics Symposium, Montreal, QC, 2009, pp. 486-492.

[63] C. D. Young et al., “New insights into SILC-based life time extraction,” Proc. IEEE

Int. Rel. Phys. Symp., pp. 5D.3.1-5D.3.5, 2012.

[64] N. Raghavan, K. L. Pey, K. Shubhakar, X. Wu, W. H. Liu and M. Bosman, "Role of

grain boundary percolative defects and localized trap generation on the reliability

statistics of high-κ gate dielectric stacks," 2012 IEEE International Reliability Physics

Symposium (IRPS), Anaheim, CA, 2012, pp. 6A.1.1-6A.1.11.

[65] R. Pagano et al., “A novel approach to characterization of progressive breakdown in

high-k/metal gate stacks,” Microelectronics Reliability, vol. 48, iss. 11-12, p. 1759, 2008.

109

[66] G. Bersuker, N. Chowdhury, C. Young, D. Heh, D. Misra and R. Choi, "Progressive

Breakdown Characteristics of High-K/Metal Gate Stacks," 2007 IEEE International

Reliability Physics Symposium Proceedings. 45th Annual, Phoenix, AZ, 2007, pp. 49-54.

[67] J. W. McPherson, Reliability Physics and Engineering Time-to-Failure Modeling,

2
nd

 Ed., Springer, 2013.

[68] Y. H. Kim et al., “Hard and soft-breakdown characteristics of ultrathin HfO2 under

dynamic and constant voltage stress,” IEDM Tech. Dig., pp. 629-632, 2002.

[69] M. Koyama et al., “Degradation mechanism of HfSiON gate insulator and effect of

nitrogen composition on the statistical distribution of the breakdown,” IEDM Tech. Dig.,

pp. 849-852, 2003.

[70] T. Nigam, A. Kerber and P. Peumans, "Accurate model for time-dependent dielectric

breakdown of high-k metal gate stacks," 2009 IEEE International Reliability Physics

Symposium, Montreal, QC, 2009, pp. 523-530.

[71] N. Raghavan, K. Shubhakar and K. L. Pey, "Monte Carlo evidence for need of

improved percolation model for non-weibullian degradation in high-κ dielectrics," 2013

Proceedings Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL,

2013, pp. 1-7.

[72] H. Xu et al, “Temperature- and voltage-dependent trap generation model in high-k

metal gate MOS device with percolation simulation,” Chin. Phys. B, vol. 25, no. 8, pp.

087306, 2016.

[73] S. Oh and Y. T. Yeow, “A modification to the Fowler-Nordheim tunneling current

calculation for thin MOS structures”, Solid-State Electronics, Vol. 31, Issue. 6, June

1988, pp. 1113-1118.

[74] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3
rd

 ed. IEEE Press,

Wiley, 2010.

[75] Kenji Okada, Hiroyuki Ota, Toshihide Nabatame and Akira Toriumi, "TDDB and

BTI reliabilities of high-k stacked gate dielectrics - Impact of initial traps in high-k layer

-," 2008 IEEE International Conference on Integrated Circuit Design and Technology

and Tutorial, Austin, TX, 2008, pp. 87-90.

[76] G. D. Wilk et al., "Improved film growth and flatband voltage control of ALD HfO2

and Hf-Al-O with n+ poly-Si gates using chemical oxides and optimized post-

annealing," 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat.

No.01CH37303), Honolulu, HI, USA, 2002, pp. 88-89.

[77] J. W. McPherson and H. C. Mogul, “Underlying physics of the thermochemical E

model in describing low-field time-dependent dielectric breakdown in SiO2 thin films,” J.

Appl. Phys., vol. 84, No. 3, p. 1513, 1998.

[78] Ih-Chin Chen, S. E. Holland and Chenming Hu, "Electrical Breakdown in Thin Gate

and Tunneling Oxides," in IEEE Journal of Solid-State Circuits, vol. 20, no. 1, pp. 333-

342, Feb. 1985.

[79] K. F. Schuegraf and C. Hu, "Hole injection SiO2 breakdown model for very low

voltage lifetime extrapolation," in IEEE Transactions on Electron Devices, vol. 41, no. 5,

pp. 761-767, May 1994.

[80] K. F. Schuegraf and C. Hu, "Hole injection oxide breakdown model for very low

voltage lifetime extrapolation," 31st Annual Proceedings Reliability Physics 1993,

Atlanta, GA, USA, 1993, pp. 7-12.

110

[81] S. K. Lai, “Interface trap generation in silicon dioxide when electrons are captured

by trapped holes,” J. Applied Phys., vol. 54, no. 5, pp. 2540, 1983.

[82] H. Uchida and T. Ajioka, “Electron trap center generation due to hole trapping in

SiO2 under Fowler-Nordheim tunneling stress,” Appl. Phys. Lett., vol. 51, no. 6, pp.433,

1987.

[83] S. Ogaea, N. Shiono, and M. Shimaya, “Neutral electron trap generation in SiO2 by

hot holes,” Appl. Phys. Lett., vol. 56, no. 14, pp. 1329, 1990.

[84] J. W. McPherson, “Time dependent dielectric breakdown physics – models

revisited,” Microelectronics Reliability, vol. 52, pp. 1753-1760, 2012.

[85] J. R. Lloyd, "On the physical interpretation of the impact damage model in TDDB of

low-k dielectrics," 2010 IEEE International Reliability Physics Symposium, Anaheim,

CA, 2010, pp. 943-946.

[86] N. Suzumura et al., "A New TDDB Degradation Model Based on Cu Ion Drift in Cu

Interconnect Dielectrics," 2006 IEEE International Reliability Physics Symposium

Proceedings, San Jose, CA, 2006, pp. 484-489.

[87] A. Kerber, M. Rohner, T. Pompl, R. Duschl and M. Kerber, "Lifetime Prediction for

CMOS Devices with Ultra Thin Gate Oxides Based on Progressive Breakdown," 2007

IEEE International Reliability Physics Symposium Proceedings. 45th Annual, Phoenix,

AZ, 2007, pp. 217-220.

[88] R. Degraeve et al., "Degradation and breakdown of 0.9 nm EOT SiO2 ALD HfO2

metal gate stacks under positive constant voltage stress," IEEE InternationalElectron

Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 408-411.

[89] K. Okada, H. Ota, T. Nabatame and A. Toriumi, "Dielectric Breakdown in High-K

Gate Dielectrics - Mechanism and Lifetime Assessment," 2007 IEEE International

Reliability Physics Symposium Proceedings. 45th Annual, Phoenix, AZ, 2007, pp. 36-43.

[90] G. Bersuker et al., "Breakdown in the metal/high-k gate stack: Identifying the “weak

link” in the

multilayer dielectric," 2008 IEEE International Electron Devices Meeting, San Francisco,

CA, 2008, pp. 1-4.

[91] G. Ribes et al., "High-K gate stack breakdown statistics modeled by correlated

interfacial layer and high-k breakdown path," 2010 IEEE International Reliability

Physics Symposium, Anaheim, CA, 2010, pp. 364-368.

[92] D. Choi et al., "Interfacial-Layer-Driven Dielectric Degradation and Breakdown of

HfSiON/SiON Gate Dielectric nMOSFETs," in IEEE Electron Device Letters, vol. 32,

no. 10, pp. 1319-1321, Oct. 2011.

[93] M. Houssa, P. W. Mertens and M. M. Heyns, “Relation between stress-induced

leakage current and time-dependent dielectric breakdown in ultra-thin gate oxides,”

Semiconductor Science and Technology, vol. 14, No. 10, pp. 892-896, 1999.

[94] A. Ojha and N. R. Mohapatra, "Trap-assisted carrier transport through the multi-

stack gate dielectrics of HKMG nMOS transistors: A compact model," 2017 47th

European Solid-State Device Research Conference (ESSDERC), Leuven, 2017, pp. 200-

203.

[95] F. Jimenez-Molinos, F. Gamiz, A. Palma, P. Cartujo, and J. A. Lopez-Villanueva,

“Direct and trap-assisted elastic tunneling through ultrathin gate oxides,” J. Applied

Phys., vol. 91, No. 8, pp. 5116-5124, 2002.

111

[96] K. H. Gundlach and J. G. Simmons, “Range of validity of the WKB tunnel

probability, and comparison of experimental data and theory,” Thin Solid Films, vol. 4,

iss. 1, pp. 61-79, July 1969.

[97] J. H. Stathis, “Percolation models for gate oxide breakdown,” J. Applied Phys., vol.

86, no. 10, pp. 5757-5766, 1999.

[98] T. Kauerauf et al., "Methodologies for sub-1nm EOT TDDB evaluation," 2011

International Reliability Physics Symposium, Monterey, CA, 2011, pp. 2A.2.1-2A.2.10.

[99] Ph. J. Roussel, R. Degraeve, S. Sahhaf and G. Groeseneken, “A consistent model for

the hard breakdown distribution including digital soft breakdown: the noble art of area

scaling,” Microelectronic Engieering, vol. 84, iss. 9-10, Sep.-Oct. 2007, pp. 1925-1928.

[100] T. Wang, H. C. Ma, C. H. Li, Y. H. Lin, C. H. Chien and T. F. Lei, "Charge

Retention Loss in a HfO2 Dot Flash Memory via Thermally Assisted Tunneling," in IEEE

Electron Device Letters, vol. 29, no. 1, pp. 109-110, Jan. 2008.

[101] B. Goll and H. Zimmermann, Comparators in Nanometer CMOS Technology,

Springer, 2015.

[102] M. J. M. Pelgrom, Analog-to-digital Conversion. 3
rd

 ed., Springer, 2010.

[103] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, "Introduction to flash

memory," in Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003.

[104] T. Adiono, S. Harimurti and G. Meliolla, "Design and simulation of hafnium

dioxide based charge trapping flash memory device," 2017 6th International Conference

on Electrical Engineering and Informatics (ICEEI), Langkawi, 2017, pp. 1-4.

[105] H. W. You and W. J. Cho, “Charge trapping properties of the HfO2 layer with

various thicknesses for charge trap flash memory applications,” Applied Phys. Lett., vol.

96, iss. 9, pp. 093506, 2010.

[106] M. C. Kim, et al., “Nonvolatile memories using deep traps formed in HfO2 by Nb

ion implantation,” J. Applied Phys., vol. 109, iss. 5, pp. 053703, 2011.

[107] F. Driussi, S. Spiga, A. Lamperti, G. Congedo and A. Gambi, "Simulation Study of

the Trapping Properties of HfO2 -Based Charge-Trap Memory Cells," in IEEE

Transactions on Electron Devices, vol. 61, no. 6, pp. 2056-2063, June 2014.

[108] A. Al-Futaisi and T. W. Patzek, “Extension of Hoshen-Kopelman algorithm to non-

lattice environments,” Physica A: Statistical Mechanics and its Applications, vol. 321,

iss. 3-4, pp. 665-678, 2003.

[109] R. Sedgewick and K. Wayne, Algorithms, 4
th

 ed., Addison-Wesley, 2011.

[110] S. Mei, N. Raghavan, K. Shubhakar, M. Bosman and K. L. Pey, "Multiphysics

based 3D percolation framework model for multi-stage degradation and breakdown in

high-κ — Interfacial layer stacks," 2016 IEEE International Reliability Physics

Symposium (IRPS), Pasadena, CA, 2016, pp. 7A-2-1-7A-2-6.

[111] J. McPherson, J. Kim, A. Shanware, H. Mogul and J. Rodriguez, "Proposed

universal relationship between dielectric breakdown and dielectric constant," Digest.

International Electron Devices Meeting,, San Francisco, CA, USA, 2002, pp. 633-636.

[112] N. A. Chowdhury and D. Misra, “Charge trapping at deep states in Hf-silicate

based high-k gate dielectrics,” Journal of The Electrochemical Society, 154 (2), pp. G30-

G37, 2007.

[113] K. E. Sickafus, E. A. Kotomin and B. P. Uberuaga, Radiation Effects in Solids,

NATO Science Series, Springer, pp. 1-23, 2007.

112

[114] B. Razavi, Design of Analog CMOS Integrated Circuits, TATA McGraw-Hill,

2002.

113

APPENDICES

Part I CPU/EEPROM Interface VHDL Code

--

-- Company:

-- Engineer:

--

-- Create Date: 15:04:26 04/30/2018

-- Design Name:

-- Module Name: top - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use ieee.std_logic_unsigned.all;

-- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity top is

 Port (clock: in STD_LOGIC;

 Reset: in STD_LOGIC;

 CPU_data_ in : in STD_LOGIC_VECTOR(79 downto 0);

 CPURW : in STD_LOGIC;

 CPU_addr : in STD_LOGIC_VECTOR(1 downto 0);

 CPU_data_out : out STD_LOGIC_VECTOR(79 downto 0);

 VDD2 : out STD_LOGIC;

114

VDD2 : out STD_LOGIC;

VERS : out STD_LOGIC;

 VREAD : out STD_LOGIC;

 SE : out STD_LOGIC);

end top;

architecture Behavioral of top is

--------------------------- input registers ------------------------------

 signal decoder_2_to_4_out : std_logic_vector(3 downto 0);

 signal addren : std_logic_vector(1 downto 0); -- address enabling

 signal mux_2_to_1_out : std_logic_vector(79 downto 0);

 signal cmdreset : std_logic;

 -- Data register side signals

 signal wdcntout : std_logic_vector(3 downto 0);

 signal decoder_4_to_16_out : std_logic_vector(15 downto 0);

 signal dataregen : std_logic_vector(15 downto 0);

 signal datain : std_logic_vector(79 downto 0); -- data from either CPU or

eeprom

 type dataregoutput_type is array(0 to 15) of std_logic_vector(79 downto 0);

 signal dataregout : dataregoutput_type;

 signal clkctrl : std_logic; -- data register clock input

 signal mux_16_to_1_out : std_logic_vector(79 downto 0);

 signal En_o : std_logic;

 signal demux_1_to_2_out1 : std_logic_vector(79 downto 0);

 signal CPUdata : std_logic_vector(79 downto 0);

 signal trictrl : std_logic;

 -- Counter and clock part signal

 signal clkCPU : std_logic;

 signal wd_cnt_en : std_logic;

 signal wdcnten : std_logic;

 signal clkout : std_logic;

 signal Cout : std_logic;

 signal CPUload : std_logic;

 signal memload : std_logic;

 signal load : std_logic;

 signal data_reg_clk : std_logic;

 signal or_out : std_logic;

 signal or_out_delay : std_logic;

 signal nor_out : std_logic;

 signal nor_out_delay : std_logic;

 signal initregout : std_logic_vector(79 downto 0);

 signal cmdregout : std_logic_vector(79 downto 0);

 signal prom_data_out : STD_LOGIC_vector(79 downto 0);

------------------------------ Finite State Machine ----------------------------

 -- state definitions

115

 constant idle : std_logic_vector(4 downto 0) := "00000";

 constant wr_start : std_logic_vector(4 downto 0) := "01000";

 constant wr_vdd2 : std_logic_vector(4 downto 0) := "01001";

 constant wr_vapp : std_logic_vector(4 downto 0) := "01010";

 constant wr_done : std_logic_vector(4 downto 0) := "01011";

 constant er_start : std_logic_vector(4 downto 0) := "10000";

 constant er_vers : std_logic_vector(4 downto 0) := "10001";

 constant er_vapp : std_logic_vector(4 downto 0) := "10010";

 constant er_done : std_logic_vector(4 downto 0) := "10011";

 constant rd_start : std_logic_vector(4 downto 0) := "11000";

 constant rd_vread : std_logic_vector(4 downto 0) := "11001";

 constant rd_vapp : std_logic_vector(4 downto 0) := "11010";

 constant wr_data_reg : std_logic_vector(4 downto 0) := "11011";

 constant r_done : std_logic_vector(4 downto 0) := "11100";

 signal curr_state : std_logic_vector(4 downto 0);

 signal next_state : std_logic_vector(4 downto 0);

 -- timer enables and loads

 signal tWR_load_1 : std_logic;

 signal tWR_load_2 : std_logic;

 signal tWR_load : std_logic;

 signal tWR_vdd2_en : std_logic;

 signal tWR_vapp_en : std_logic;

 signal tWR_vapp_load : std_logic;

 signal tWR_timeout_en : std_logic;

 signal tER_load : std_logic;

 signal tER_vers_en : std_logic;

 signal tER_vapp_load : std_logic;

 signal tER_vapp_en : std_logic;

 signal tER_timeout_en : std_logic;

 signal tRD_load_1 : std_logic;

 signal tRD_load_2 : std_logic;

 signal tRD_load : std_logic;

 signal tRD_vread_en : std_logic;

 signal tRD_vapp_en : std_logic;

 signal t_timeout_load : std_logic;

 signal t_timeout_en : std_logic;

 signal RD_DONE : std_logic;

 -- timer counts (or counter output)

 signal wr_vdd2_time : std_logic_vector(7 downto 0);

 signal wr_vapp_time : std_logic_vector(7 downto 0);

 signal er_vers_time : std_logic_vector(7 downto 0);

 signal er_vapp_time : std_logic_vector(7 downto 0);

 signal rd_vread_time: std_logic_vector(7 downto 0);

 signal rd_vapp_time : std_logic_vector(7 downto 0);

 signal timeout : std_logic_vector(7 downto 0);

 --timing flags

 signal tWR_stab : std_logic;

 signal tWR_done : std_logic;

116

 signal tER_stab : std_logic;

 signal tER_done : std_logic;

 signal t_out : std_logic;

 signal tRD_stab : std_logic;

 signal tRD_done : std_logic;

 -- voltage reg enable D sides

 -- test board interaction

 signal en_wr_2p5v : std_logic;

 signal en_er_m1p8v : std_logic;

 signal en_rd_0p7v : std_logic;

 -- register enables signals

 signal ADDR_EN : std_logic;

 signal ADDR_load : std_logic;

 signal ADDR_CNT : std_logic_vector (7 downto 0);

 signal R_in : std_logic;

 signal W_in : std_logic;

 signal E_in : std_logic;

 signal RD : std_logic;

 signal WR : std_logic;

 signal ER : std_logic;

 signal SER : std_logic;

 signal tWR_timeout_load : std_logic;

 signal ADDR_incre_rd : std_logic;

---------------------------- control signals -------------------------------

 signal addr_decode : std_logic_vector(255 downto 0);

 signal enable : std_logic;

 signal blk : std_logic_vector(15 downto 0);

 signal bnk : std_logic_vector(3 downto 0);

 signal data_ecc : std_logic_vector(87 downto 0);

 signal pside : STD_LOGIC_VECTOR(255 downto 0);

 signal nside : STD_LOGIC_VECTOR(255 downto 0);

 signal CS_bk0 : STD_LOGIC_VECTOR(87 downto 0);

 signal CSbar_bk0 : STD_LOGIC_VECTOR(87 downto 0);

 signal N_bk0 : STD_LOGIC_VECTOR(87 downto 0);

 signal Nbar_bk0 : STD_LOGIC_VECTOR(87 downto 0);

 signal TL_bk0 : STD_LOGIC_VECTOR(87 downto 0);

 signal CS_bk1 : STD_LOGIC_VECTOR(87 downto 0);

 signal CSbar_bk1 : STD_LOGIC_VECTOR(87 downto 0);

 signal N_bk1 : STD_LOGIC_VECTOR(87 downto 0);

 signal Nbar_bk1 : STD_LOGIC_VECTOR(87 downto 0);

 signal TL_bk1 : STD_LOGIC_VECTOR(87 downto 0);

 signal CS_bk2 : STD_LOGIC_VECTOR(87 downto 0);

 signal CSbar_bk2 : STD_LOGIC_VECTOR(87 downto 0);

 signal N_bk2 : STD_LOGIC_VECTOR(87 downto 0);

 signal Nbar_bk2 : STD_LOGIC_VECTOR(87 downto 0);

117

 signal TL_bk2 : STD_LOGIC_VECTOR(87 downto 0);

 signal CS_bk3 : STD_LOGIC_VECTOR(87 downto 0);

 signal CSbar_bk3 : STD_LOGIC_VECTOR(87 downto 0);

 signal N_bk3 : STD_LOGIC_VECTOR(87 downto 0);

 signal Nbar_bk3 : STD_LOGIC_VECTOR(87 downto 0);

 signal TL_bk3 : STD_LOGIC_VECTOR(87 downto 0);

-------------------------------- EEPROM signals ---------------------------------

 signal data_out : STD_LOGIC_VECTOR(79 downto 0);

 signal databar_out : STD_LOGIC_VECTOR(79 downto 0);

 type mem_type is array(0 to 255) of std_logic_vector(87 downto 0);

 signal prom_bk0: mem_type;

 signal prom_bk1: mem_type;

 signal prom_bk2: mem_type;

 signal prom_bk3: mem_type;

 signal data_out_ecc_bk0: std_logic_vector(87 downto 0);

 signal databar_out_ecc_bk0: std_logic_vector(87 downto 0);

 signal data_out_ecc_bk1: std_logic_vector(87 downto 0);

 signal databar_out_ecc_bk1: std_logic_vector(87 downto 0);

 signal data_out_ecc_bk2: std_logic_vector(87 downto 0);

 signal databar_out_ecc_bk2: std_logic_vector(87 downto 0);

 signal data_out_ecc_bk3: std_logic_vector(87 downto 0);

 signal databar_out_ecc_bk3: std_logic_vector(87 downto 0);

 signal data_out_bk0: std_logic_vector(79 downto 0);

 signal databar_out_bk0: std_logic_vector(79 downto 0);

 signal data_out_bk1: std_logic_vector(79 downto 0);

 signal databar_out_bk1: std_logic_vector(79 downto 0);

 signal data_out_bk2: std_logic_vector(79 downto 0);

 signal databar_out_bk2: std_logic_vector(79 downto 0);

 signal data_out_bk3: std_logic_vector(79 downto 0);

 signal databar_out_bk3: std_logic_vector(79 downto 0);

 signal state_bk0 : std_logic_vector(7 downto 0);

 signal state_bk1 : std_logic_vector(7 downto 0);

 signal state_bk2 : std_logic_vector(7 downto 0);

 signal state_bk3 : std_logic_vector(7 downto 0);

 constant w_bk0 : std_logic_vector(7 downto 0) := "00000001"; --x01

 constant r_bk0 : std_logic_vector(7 downto 0) := "00000010"; --x02

 constant e_bk0 : std_logic_vector(7 downto 0) := "00000011"; --x03

 constant w_bk1 : std_logic_vector(7 downto 0) := "00000100"; --x04

 constant r_bk1 : std_logic_vector(7 downto 0) := "00001000"; --x08

 constant e_bk1 : std_logic_vector(7 downto 0) := "00001100"; --x0c

 constant w_bk2 : std_logic_vector(7 downto 0) := "00010000"; --x10

 constant r_bk2 : std_logic_vector(7 downto 0) := "00100000"; --x20

 constant e_bk2 : std_logic_vector(7 downto 0) := "00110000"; --x30

 constant w_bk3 : std_logic_vector(7 downto 0) := "01000000"; --x40

118

 constant r_bk3 : std_logic_vector(7 downto 0) := "10000000"; --x80

 constant e_bk3 : std_logic_vector(7 downto 0) := "11000000"; --xc0

 signal p_encode: std_logic_vector(7 downto 0);

 signal n_encode: std_logic_vector(7 downto 0);

 signal nside_mask : std_logic_vector(255 downto 0);

 -- used in EEPROM model

 function encode_8bit(

 in_vec: std_logic_vector(255 downto 0)

)

 return std_logic_vector is

 variable enc: std_logic_vector(7 downto 0) := "00000000";

 begin

 for i in 0 to 255 loop

 if in_vec(i) = '1' then

 enc := enc or std_logic_vector(to_unsigned(i, 8));

 end if;

 end loop;

 return enc;

 end function;

begin

----------------------------- input registers ------------------------------

-- CPU, Initial. Reg., CMD Reg. part of the circuit

U_decoder_2_to_4_1: entity work.decoder_2_to_4(decoder_2_to_4bhv)

 port map(

 a => CPU_addr,

 b => decoder_2_to_4_out);

U_Register_CE_1: entity work.Register_CE(Registerbhv)

 generic map(width => 8)

 port map(

 CE => addren(1),

 D => CPU_data_in(79 downto 72), -- BUSY bit is the [71] of command register

 Q => cmdregout(79 downto 72), -- command register

 Clock => clock,

 Reset => Reset);

U_Register_CE_4: entity work.Register_CE(Registerbhv) -- Isolate [71] bit for BUSY since

using

 generic map(width => 71) -- different reset logic

 port map(

 CE => addren(1),

 D => CPU_data_in(70 downto 0),

 Q => cmdregout(70 downto 0),

 Clock => clock,

 Reset => Reset);

U_Register1bit: entity work.register1bit(register1bitBhv) -- 'Ready' bit register use different reset

logic

119

 port map(-- separate this 1st bit

 CE => addren(1),

 D => CPU_data_in(71),

 Q => cmdregout(71),

 Clock => clock,

 Reset => cmdreset);

 cmdreset <= RD_DONE or Reset;

U_Register_CE_2: entity work.Register_CE(Registerbhv)

 generic map(width => 80)

 port map(

 CE => addren(0),

 D => CPU_data_in(79 downto 0),

 Q => initregout(79 downto 0), -- initialization register

 Clock => clock,

 Reset => Reset);

U_mux_2_to_1_1: entity work.mux_2_to_1(mux_2_to_1bhv)

 generic map(width => 80)

 port map(

 sel => CPU_addr(0),

 in0 => initregout,

 in1 => cmdregout,

 output => mux_2_to_1_out);

 addren(0) <= decoder_2_to_4_out(0) and CPURW;

 addren(1) <= decoder_2_to_4_out(1) and CPURW;

-- Data register part of the citcuit

U_decoder_4_to_16: entity work.decoder_4_to_16(decoder_4_to_16bhv)

 port map(

 a => wdcntout,

 b => decoder_4_to_16_out);

 -- 16 data registers and enable signals

 gen_dataregen: for i in 0 to 15 generate

 dataregen(i) <= (decoder_2_to_4_out(2) or cmdregout(71)) and

decoder_4_to_16_out(i);

U_Register_CE_3: entity work.Register_CE(Registerbhv)

 generic map(width => 80)

 port map(

 CE => dataregen(i),

 D => datain,

 Q => dataregout(i),

 Clock => clkctrl,

 Reset => Reset);

end generate;

U_mux_16_to_1: entity work.mux_16_to_1(mux_16_to_1bhv)

120

 generic map(width => 80)

 port map(

 sel => wdcntout,

 in0 => dataregout(0),

 in1 => dataregout(1),

 in2 => dataregout(2),

 in3 => dataregout(3),

 in4 => dataregout(4),

 in5 => dataregout(5),

 in6 => dataregout(6),

 in7 => dataregout(7),

 in8 => dataregout(8),

 in9 => dataregout(9),

 in10 => dataregout(10),

 in11 => dataregout(11),

 in12 => dataregout(12),

 in13 => dataregout(13),

 in14 => dataregout(14),

 in15 => dataregout(15),

 output => mux_16_to_1_out);

U_demux_1_to_2: entity work.demux_1_to_2(demux_1_to_2bhv)

 generic map(width => 80)

 port map(

 En => En_o,

 sel => cmdregout(71),

 input => mux_16_to_1_out,

 out0 => demux_1_to_2_out1,

 out1 => prom_data_out);

U_tristate: entity work.tristate(tristateBhv)

 generic map(width => 80)

 port map(

 input => CPUdata,

 output => CPU_data_out,

 en => trictrl);

U_mux_2_to_1_3: entity work.mux_2_to_1(mux_2_to_1bhv)

 generic map(width => 80)

 port map(

 sel => CPU_addr(1),

 in0 => mux_2_to_1_out,

 in1 => demux_1_to_2_out1,

 output => CPUdata);

-- tristate control logic

 trictrl <= ((not CPURW) and decoder_2_to_4_out(0)) or ((not CPURW) and

decoder_2_to_4_out(1)) or ((not CPURW) and decoder_2_to_4_out(2));

-- En_o logic

121

 En_o <= ((not R_in) and (not E_in) and (not CPURW)) or ((not R_in) and (W_in or

E_in));

U_mux_2_to_1b_3: entity work.mux_2_to_1_1b(mux_2_to_1_1bBhv)

 port map(

 sel => cmdregout(71),

 in0 => clkCPU,

 in1 => tRD_done,

 output => data_reg_clk);

 clkctrl <= (not En_o) and data_reg_clk;

U_mux_2_to_1_2: entity work.mux_2_to_1(mux_2_to_1bhv)

 generic map(width => 80)

 port map(

 sel => cmdregout(71),

 in0 => CPU_data_in,

 in1 => data_out, --from memory modle mux output

 output => datain);

-- clock logic

U_mux_2_to_1b_1: entity work.mux_2_to_1_1b(mux_2_to_1_1bBhv)

 port map(

 sel => cmdregout(71),

 in0 => clkCPU,

 in1 => clock,

 output => clkout);

 clkCPU <= clock and decoder_2_to_4_out(2);

-- counter enable

U_mux_2_to_1b_4: entity work.mux_2_to_1_1b(mux_2_to_1_1bBhv)

 port map(

 sel => cmdregout(71),

 in0 => decoder_2_to_4_out(2),

 in1 => wdcnten,

 output => wd_cnt_en);

 wdcnten <= tWR_done or tRD_done;

-- counter load

U_mux_2_to_1b_2: entity work.mux_2_to_1_1b(mux_2_to_1_1bBhv)

 port map(

 sel => cmdregout(71),

 in0 => CPUload,

 in1 => memload,

 output => load);

 or_out <= wdcntout(0) or wdcntout(1) or wdcntout(2) or wdcntout(3);

 nor_out <= ((wdcntout(0) nor wdcntout(1)) nor wdcntout(2)) nor wdcntout(3);

122

U_Register1bit_2: entity work.register1bit(register1bitBhv)

 port map(

 CE => '1',

 D => or_out,

 Q => or_out_delay,

 Clock => clkCPU,

 Reset => Reset);

 CPUload <= decoder_2_to_4_out(2) nand or_out_delay;

 memload <= nor_out and Cout;

-- The word counter

U_wd_counterv2: entity work.wdcounterv2(wdcounterv2Bhv)

 port map(

 countin => cmdregout(79 downto 76),

 countout => wdcntout,

 load => load,

 en => wd_cnt_en,

 reset => Reset,

 clk => clock,

 cout => Cout);

--------------------------------- FSM -------------------------------------

 U_fsm_reg : entity work.register_vs(register_vsBhv)

 generic map(width => 5)

 port map(

 D => next_state,

 Q => curr_state,

 CE => '1',

 CLK => clock,

 RESET => Reset);

 next_state <=

 -- wirte sequence

 wr_start when

 (

 (curr_state=idle and (cmdregout(79 downto 72)=x"f1" or cmdregout(79

downto 72)=x"01") and cmdregout(71)='1')

)else

 wr_vdd2 when

 (

 ((curr_state=wr_start) or (curr_state=wr_vdd2 and tWR_stab='0'))

)else

 wr_vapp when

 (

 (curr_state=wr_vdd2 and tWR_stab='1') or

 (curr_state=wr_vapp and tWR_done='0') or

123

 (curr_state=wr_done and Cout='0')

)else

 wr_done when

 (

 (curr_state=wr_vapp and tWR_done='1') or

 (Cout='1' and t_out='0')

)else

 -- erase sequence

 er_start when

 (

 (curr_state=idle and (cmdregout(79 downto 72)=x"f2" or

cmdregout(79 downto 72)=x"02") and cmdregout(71)='1')

)else

 er_vers when

 (

 ((curr_state=er_start) or(curr_state=er_vers and tER_stab='0'))

)else

 er_vapp when

 (

 (curr_state=er_vers and tER_stab='1') or

 (curr_state=er_vapp and tER_done='0')

)else

 er_done when

 (

 (tER_done='1' and t_out='0')

)else

 --read sequence

 rd_start when

 (

 (curr_state=idle and (cmdregout(79 downto 72)=x"f3" or

cmdregout(79 downto 72)=x"03") and cmdregout(71)='1') or

 (curr_state=wr_done and t_out='1' and Cout = '1') or

 (curr_state=er_done and t_out='1')

)else

 rd_vread when

 (

 ((curr_state=rd_start) or (curr_state=rd_vread and tRD_stab='0'))

)else

 rd_vapp when

 (

 (curr_state = rd_vread and tRD_stab = '1') or

 (curr_state = rd_vapp and tRD_done = '0') or

 (curr_state= r_done and Cout='0' and cmdregout(71)='1')

)else

 r_done when

 (

 (curr_state = rd_vapp and tRD_done = '1')

)else

 idle;

124

 -- Timer loads/enables

 -- load wr timers in wr_start

 -- "01000"

 tWR_load_1 <= (not next_state(4)) and next_state(3) and (not next_state(2)) and

 (not next_state(1)) and (not next_state(0));

 -- en write vdd2 timer

 -- "01001"

 tWR_vdd2_en <= (not next_state(4)) and next_state(3) and (not next_state(2)) and

 (not next_state(1)) and next_state(0);

 -- en write vapp timer

 -- "01010"

 tWR_vapp_en <= (not next_state(4)) and next_state(3) and (not next_state(2)) and

 next_state(1) and (not next_state(0));

 -- "01011"

 tWR_timeout_en <= (not next_state(4)) and next_state(3) and (not next_state(2)) and

 next_state(1) and next_state(0) AND Cout;

 -- re-load voltage application timer for next word at "01011" write_done state

 tWR_load_2 <= (not next_state(4)) and next_state(3) and (not next_state(2)) and

 next_state(1) and next_state(0) and (not Cout);

 tWR_load <= tWR_load_1 or tWR_load_2;

 tWR_vapp_load <= tWR_load or tRD_load_1; -- OR with tRD_load_1 to bring

tWR_done back to 0

 -- load erase timers in er_start = "10000"

 tER_load <= next_state(4) and (not next_state(3)) and (not next_state(2)) and

 (not next_state(1)) and (not next_state(0));

 -- enable er vers timer

 -- "10001"

 tER_vers_en <= next_state(4) and (not next_state(3)) and (not next_state(2)) and

 (not next_state(1)) and next_state(0);

 -- en er vapp timer

 -- "10010"

 tER_vapp_en <= next_state(4) and (not next_state(3)) and (not next_state(2)) and

 next_state(1) and (not next_state(0));

 -- "10011"

 tER_timeout_en <= next_state(4) and (not next_state(3)) and (not next_state(2)) and

 next_state(1) and next_state(0);

125

 tER_vapp_load <= tER_load or tRD_load_1; -- OR with tRD_load_1 to bring tER_done

back to 0

 -- timeout timer enable and load signals

 t_timeout_en <= tWR_timeout_en or tER_timeout_en;

 --t_timeout_load <= tWR_load_2 or tER_load_2 OR tRD_load_1;

 t_timeout_load <= tWR_load_1 or tER_load;

 -- load read timer in rd_start = "11000"

 tRD_load_1 <= next_state(4) and next_state(3) and (not next_state(2)) and

 (not next_state(1)) and (not next_state(0));

 -- en read vread timer = "11001"

 tRD_vread_en <= next_state(4) and next_state(3) and (not next_state(2)) and

 (not next_state(1)) and next_state(0);

 -- en read vapp timer = "11010"

 tRD_vapp_en <= next_state(4) and next_state(3) and (not next_state(2)) and

 next_state(1) and not(next_state(0));

 -- enable read done for RD_DONE state

 RD_DONE <= curr_state(4) and curr_state(3) and curr_state(2) and

 not(curr_state(1)) and not(curr_state(0)) and Cout;

 -- re-load voltage application timer for next word at "11100" state

 tRD_load_2 <= next_state(4) and next_state(3) and next_state(2) and (not next_state(1))

 and (not next_state(0));

 tRD_load <= tRD_load_1 or tRD_load_2;

 -- W, E, R signals

 -- R is high during "11001", "11010", "11100"

 R_in <= next_state(4) and next_state(3) and (next_state(2) xor next_state(1) xor

next_state(0));

 -- E is high during "10001", "10010", "10011"

 E_in <= next_state(4) and (not next_state(3)) and (not next_state(2)) and

 (next_state(1) or next_state(0));

 -- W is high during "01001", "01010", "01011"

 W_in <= (not next_state(4)) and next_state(3) and (not next_state(2)) and

 (next_state(1) or next_state(0));

 -- Read application state "11010"

 RD <= curr_state(4) and curr_state(3) and (not curr_state(2)) and curr_state(1) and (not

curr_state(0));

 -- Write application state "01010"

126

 WR <= (not curr_state(4)) and curr_state(3) and (not curr_state(2)) and curr_state(1) and

(not curr_state(0));

 -- Erase application state "10010"

 ER <= curr_state(4) and (not curr_state(3)) and (not curr_state(2)) and curr_state(1) and

(not curr_state(0));

 -- Timers

 --write voltage stable time counter

 U_tWR_vdd2_count: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(19 downto 12),

 countout => wr_vdd2_time,

 load => tWR_load_1,

 en => tWR_vdd2_en,

 clock => clock,

 reset => Reset);

 tWR_stab <= (

 (not wr_vdd2_time(7)) and (not wr_vdd2_time(6)) and

 (not wr_vdd2_time(5)) and (not wr_vdd2_time(4)) and

 (not wr_vdd2_time(3)) and (not wr_vdd2_time(2)) and

 (not wr_vdd2_time(1)) and (not wr_vdd2_time(0))

);

 --Write voltage application time counter

 U_tWR_vapp_counter: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(27 downto 20),

 countout => wr_vapp_time,

 load => tWR_vapp_load,

 en => tWR_vapp_en,

 clock => clock,

 reset => Reset);

 tWR_done <= (

 (not wr_vapp_time(7)) and (not wr_vapp_time(6)) and

 (not wr_vapp_time(5)) and (not wr_vapp_time(4)) and

 (not wr_vapp_time(3)) and (not wr_vapp_time(2)) and

 (not wr_vapp_time(1)) and (not wr_vapp_time(0))

);

 --Erase voltage stable time counter

 U_tER_vers_count: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(35 downto 28),

 countout => er_vers_time,

 load => tER_load,

127

 en => tER_vers_en,

 clock => clock,

 reset => Reset);

 tER_stab <= (

 (not er_vers_time(7)) and (not er_vers_time(6)) and

 (not er_vers_time(5)) and (not er_vers_time(4)) and

 (not er_vers_time(3)) and (not er_vers_time(2)) and

 (not er_vers_time(1)) and (not er_vers_time(0))

);

 --Erase voltage application time counter

 U_tER_vapp_count: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(43 downto 36),

 countout => er_vapp_time,

 load => tER_vapp_load,

 en => tER_vapp_en,

 clock => clock,

 reset => Reset);

 tER_done <= (

 (not er_vapp_time(7)) and (not er_vapp_time(6)) and

 (not er_vapp_time(5)) and (not er_vapp_time(4)) and

 (not er_vapp_time(3)) and (not er_vapp_time(2)) and

 (not er_vapp_time(1)) and (not er_vapp_time(0))

);

 -- Timeout timer for wirte and erase

 U_t_timeout_count: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(67 downto 60),

 countout => timeout,

 load => t_timeout_load,

 en => t_timeout_en,

 clock => clock,

 reset => Reset);

 t_out <= (

 (not timeout(7)) and (not timeout(6)) and

 (not timeout(5)) and (not timeout(4)) and

 (not timeout(3)) and (not timeout(2)) and

 (not timeout(1)) and (not timeout(0))

);

 --Read voltage stable time counter

 U_tRD_vread_count: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

128

 countin => cmdregout(51 downto 44),

 countout => rd_vread_time,

 load => tRD_load_1,

 en => tRD_vread_en,

 clock => clock,

 reset => Reset);

 tRD_stab <= (

 (not rd_vread_time(7)) and (not rd_vread_time(6)) and

 (not rd_vread_time(5)) and (not rd_vread_time(4)) and

 (not rd_vread_time(3)) and (not rd_vread_time(2)) and

 (not rd_vread_time(1)) and (not rd_vread_time(0))

);

 --Read voltage application time counter

 U_tRD_vapp_count: entity work.counter(counterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(59 downto 52),

 countout => rd_vapp_time,

 load => tRD_load,

 en => tRD_vapp_en,

 clock => clock,

 reset => Reset);

 tRD_done <= (

 (not rd_vapp_time(7)) and (not rd_vapp_time(6)) and

 (not rd_vapp_time(5)) and (not rd_vapp_time(4)) and

 (not rd_vapp_time(3)) and (not rd_vapp_time(2)) and

 (not rd_vapp_time(1)) and (not rd_vapp_time(0))

);

 SER <= (

 (not rd_vapp_time(7)) and (not rd_vapp_time(6)) and

 (not rd_vapp_time(5)) and (not rd_vapp_time(4)) and

 (not rd_vapp_time(3)) and (not rd_vapp_time(2)) and

 (not rd_vapp_time(1)) and rd_vapp_time(0)

);

 -- Address counter

 ADDR_load <= tWR_load_1 or tER_load or tRD_load_1 or Cout;

 process(Cout, tWR_done, tER_done, tRD_done)

 begin

 if(Cout='0' and (tWR_done='1' or tER_done='1' or tRD_done='1')) then

 ADDR_EN <= '1';

 else

 ADDR_EN <= '0';

 end if;

 end process;

129

 U_addr_upcount: entity work.upcounter(upcounterBhv)

 generic map(width => 8)

 port map(

 countin => cmdregout(7 downto 0),

 countout => ADDR_CNT,

 load => ADDR_load,

 en => ADDR_EN,

 clock => clock,

 reset => Reset);

 --test board voltage application indicator signal

 --apply voltage when they are high

 -- write vdd2, write vapp

 -- "01001", "01010"

 en_wr_2p5v <= (not next_state(4)) and next_state(3) and (not next_state(2))

 and (next_state(1) xor next_state(0));

 -- erase vers, erase vapp

 -- "10001", "10010"

 en_er_m1p8v <= next_state(4) and (not next_state(3)) and (not next_state(2))

 and (next_state(1) xor next_state(0));

 -- read vread, read vapp

 -- "11001", "11010"

 en_rd_0p7v <= next_state(4) and next_state(3) and (not next_state(2))

 and (next_state(1) xor next_state(0));

 U_VDD2_reg : entity work.register_1bit_vs(register_1bit_vs_Bhv)

 port map (

 D => en_wr_2p5v,

 Q => VDD2,

 CE => '1',

 CLK => clock,

 RESET => Reset);

 U_VERS_reg : entity work.register_1bit_vs(register_1bit_vs_Bhv)

 port map (

 D => en_er_m1p8v,

 Q => VERS,

 CE => '1',

 CLK => clock,

 RESET => Reset);

 U_VREAD_reg : entity work.register_1bit_vs(register_1bit_vs_Bhv)

 port map (

 D => en_rd_0p7v,

 Q => VREAD,

 CE => '1',

 CLK => clock,

130

 RESET => Reset);

 U_SE_reg : entity work.register1bit(register1bitBhv)

 port map (

 D => tRD_vapp_en,

 Q => SE,

 CE => '1',

 Clock => clock,

 Reset => SER);

------------------------- EEPROM control signals -------------------------

U_addr_deco_8_to_256: entity work.addr_deco_8_to_256(addr_deco_8_to_256Bhv)

 generic map(width => 8)

 port map(

 input => ADDR_CNT,

 output => addr_decode

);

U_decoder_4_to_16_en: entity work.decoder_4_to_16_en(decoder_4_to_16_enBhv)

 port map(

 a => cmdregout(7 downto 4),

 en => enable,

 b => blk

);

 enable <= (not RD) and (not WR) and ER;

 -- signals before level shifter to generate RS

 -- level shifter logic has taken into account

 process(RD, WR, ER)

 begin

 for i in 0 to 255 loop

 pside(i) <= ((not blk(i/16)) and ER) or (addr_decode(i) and RD) or

(addr_decode(i) and WR);

 nside(i) <= blk(i/16) or ((not addr_decode(i)) and (not ER)) or ((not WR) and

(not ER) and (not RD));

 end loop;

 end process;

 -- bank select

U_decoder_2_to_4_2: entity work.decoder_2_to_4(decoder_2_to_4bhv)

 port map(

 a => cmdregout(9 downto 8),

 b => bnk

);

 data_ecc <= x"00" & prom_data_out;

131

process(bnk, ER, WR, RD)

begin

 for i in 0 to 87 loop

CS_bk0(i) <= ((not bnk(0)) and (not RD) and (not (WR and data_ecc(i))) and ER) or

 (bnk(0) and (not RD) and (WR and data_ecc(i)) and (not ER));

CSbar_bk0(i) <= ((not bnk(0)) and (not RD) and (not (WR and (not data_ecc(i)))) and ER) or

 (bnk(0) and (not RD) and (WR and (not data_ecc(i))) and (not ER));

CS_bk1(i) <= ((not bnk(1)) and (not RD) and (not (WR and data_ecc(i))) and ER) or

 (bnk(1) and (not RD) and (WR and data_ecc(i)) and (not ER));

CSbar_bk1(i) <= ((not bnk(1)) and (not RD) and (not (WR and (not data_ecc(i)))) and ER) or

 (bnk(1) and (not RD) and (WR and (not data_ecc(i))) and (not ER));

CS_bk2(i) <= ((not bnk(2)) and (not RD) and (not (WR and data_ecc(i))) and ER) or

 (bnk(2) and (not RD) and (WR and data_ecc(i)) and (not ER));

CSbar_bk2(i) <= ((not bnk(2)) and (not RD) and (not (WR and (not data_ecc(i)))) and ER) or

 (bnk(2) and (not RD) and (WR and (not data_ecc(i))) and (not ER));

CS_bk3(i) <= ((not bnk(3)) and (not RD) and (not (WR and data_ecc(i))) and ER) or

 (bnk(3) and (not RD) and (WR and data_ecc(i)) and (not ER));

CSbar_bk3(i) <= ((not bnk(3)) and (not RD) and (not (WR and (not data_ecc(i)))) and ER) or

 (bnk(3) and (not RD) and (WR and (not data_ecc(i))) and (not ER));

 end loop;

end process;

process(bnk, ER, WR, RD)

begin

 for i in 0 to 87 loop

N_bk0(i) <= ((not bnk(0)) and WR) or (WR and (not data_ecc(i))) or (bnk(0) and ER) or (bnk(0)

and RD);

Nbar_bk0(i) <= ((not bnk(0)) and WR) or (WR and data_ecc(i)) or (bnk(0) and ER) or (bnk(0)

and RD);

N_bk1(i) <= ((not bnk(1)) and WR) or (WR and (not data_ecc(i))) or (bnk(1) and ER) or (bnk(1)

and RD);

Nbar_bk1(i) <= ((not bnk(1)) and WR) or (WR and data_ecc(i)) or (bnk(1) and ER) or (bnk(1)

and RD);

N_bk2(i) <= ((not bnk(2)) and WR) or (WR and (not data_ecc(i))) or (bnk(2) and ER) or (bnk(2)

and RD);

Nbar_bk2(i) <= ((not bnk(2)) and WR) or (WR and data_ecc(i)) or (bnk(2) and ER) or (bnk(2)

and RD);

N_bk3(i) <= ((not bnk(3)) and WR) or (WR and (not data_ecc(i))) or (bnk(3) and ER) or (bnk(3)

and RD);

Nbar_bk3(i) <= ((not bnk(3)) and WR) or (WR and data_ecc(i)) or (bnk(3) and ER) or (bnk(3)

and RD);

end loop;

end process;

132

process(WR, ER, bnk)

begin

 for i in 0 to 87 loop

 TL_bk0(i) <= ((not WR) and (not ER)) nor ((not WR) and (not bnk(0)));

 TL_bk1(i) <= ((not WR) and (not ER)) nor ((not WR) and (not bnk(1)));

 TL_bk2(i) <= ((not WR) and (not ER)) nor ((not WR) and (not bnk(2)));

 TL_bk3(i) <= ((not WR) and (not ER)) nor ((not WR) and (not bnk(3)));

 end loop;

end process;

----------------------------------- EEPROM model ---------------------------------

--------------------- Bank 1 ------------------------

 p_encode <= encode_8bit(pside);

 nside_mask <= nside and

x"0001000100010001000100010001000100010001000100010001000100010001";

 -- the memory loaction of the 1st address of the active erase block

 n_encode <= encode_8bit(nside_mask);

 state_bk0 <=

 w_bk0 when

 (

 (CS_bk0 /= CSbar_bk0) and (N_bk0 /= Nbar_bk0) and

 (TL_bk0 = x"ffffffffffffffffffffff")

)else

 e_bk0 when

 (

 (CS_bk0 = x"0000000000000000000000") and

 (CSbar_bk0 = x"0000000000000000000000") and

 (N_bk0 = x"ffffffffffffffffffffff") and

 (Nbar_bk0 = x"ffffffffffffffffffffff") and

 (TL_bk0 = x"ffffffffffffffffffffff")

)else

 r_bk0 when

 (

 (CS_bk0 = x"0000000000000000000000") and

 (CSbar_bk0 = x"0000000000000000000000") and

 (N_bk0 = x"ffffffffffffffffffffff") and

 (Nbar_bk0 = x"ffffffffffffffffffffff") and

 (TL_bk0 = x"0000000000000000000000")

);

--------------------- Bank 2 -------------------------

 state_bk1<=

 w_bk1 when

 (

 (CS_bk1 /= CSbar_bk1) and (N_bk1 /= Nbar_bk1) and

 (TL_bk1 = x"ffffffffffffffffffffff")

133

)else

 e_bk1 when

 (

 (CS_bk1 = x"0000000000000000000000") and

 (CSbar_bk1 = x"0000000000000000000000") and

 (N_bk1 = x"ffffffffffffffffffffff") and

 (Nbar_bk1 = x"ffffffffffffffffffffff") and

 (TL_bk1 = x"ffffffffffffffffffffff")

)else

 r_bk1 when

 (

 (CS_bk1 = x"0000000000000000000000") and

 (CSbar_bk1 = x"0000000000000000000000") and

 (N_bk1 = x"ffffffffffffffffffffff") and

 (Nbar_bk1 = x"ffffffffffffffffffffff") and

 (TL_bk1 = x"0000000000000000000000")

);

-------------------------- Bank 3 ----------------------------

 state_bk2<=

 w_bk2 when

 (

 (CS_bk2 /= CSbar_bk2) and (N_bk2 /= Nbar_bk2) and

 (TL_bk2 = x"ffffffffffffffffffffff")

)else

 e_bk2 when

 (

 (CS_bk2 = x"0000000000000000000000") and

 (CSbar_bk2 = x"0000000000000000000000") and

 (N_bk2 = x"ffffffffffffffffffffff") and

 (Nbar_bk2 = x"ffffffffffffffffffffff") and

 (TL_bk2 = x"ffffffffffffffffffffff")

)else

 r_bk2 when

 (

 (CS_bk2 = x"0000000000000000000000") and

 (CSbar_bk2 = x"0000000000000000000000") and

 (N_bk2 = x"ffffffffffffffffffffff") and

 (Nbar_bk2 = x"ffffffffffffffffffffff") and

 (TL_bk2 = x"0000000000000000000000")

);

------------------------------ Bank 4 -------------------------------

 state_bk3<=

 w_bk3 when

 (

 (CS_bk3 /= CSbar_bk3) and (N_bk3 /= Nbar_bk3) and

 (TL_bk3 = x"ffffffffffffffffffffff")

)else

 e_bk3 when

 (

 (CS_bk3 = x"0000000000000000000000") and

134

 (CSbar_bk3 = x"0000000000000000000000") and

 (N_bk3 = x"ffffffffffffffffffffff") and

 (Nbar_bk3 = x"ffffffffffffffffffffff") and

 (TL_bk3 = x"ffffffffffffffffffffff")

)else

 r_bk3 when

 (

 (CS_bk3 = x"0000000000000000000000") and

 (CSbar_bk3 = x"0000000000000000000000") and

 (N_bk3 = x"ffffffffffffffffffffff") and

 (Nbar_bk3 = x"ffffffffffffffffffffff") and

 (TL_bk3 = x"0000000000000000000000")

);

 prom_bk_one: process(data_ecc, ADDR_CNT, n_encode, clock)

 begin

 if(clock'event and clock='1') then

 if(state_bk0 = w_bk0) then

 prom_bk0(to_integer(unsigned(ADDR_CNT))) <= data_ecc;

 elsif(state_bk0 = r_bk0) then

 data_out_ecc_bk0 <=

prom_bk0(to_integer(unsigned(ADDR_CNT)));

 databar_out_ecc_bk0 <= not

prom_bk0(to_integer(unsigned(ADDR_CNT)));

 elsif(state_bk0 = e_bk0) then

 for i in 0 to 15 loop

 prom_bk0((to_integer(unsigned(n_encode)))+i) <= (others=>'0');

 end loop;

 end if;

 end if;

 end process;

 data_out_bk0 <= data_out_ecc_bk0(79 downto 0);

 databar_out_bk0 <= databar_out_ecc_bk0(79 downto 0);

 prom_bk_two: process(data_ecc, ADDR_CNT, n_encode, clock)

 begin

 if(clock'event and clock='1') then

 if(state_bk1 = w_bk1) then

 prom_bk1(to_integer(unsigned(ADDR_CNT))) <= data_ecc;

 elsif(state_bk1 = r_bk1) then

 data_out_ecc_bk1 <=

prom_bk1(to_integer(unsigned(ADDR_CNT)));

 databar_out_ecc_bk1 <= not

prom_bk1(to_integer(unsigned(ADDR_CNT)));

 elsif(state_bk1 = e_bk1) then

 for i in 0 to 15 loop

 prom_bk1((to_integer(unsigned(n_encode)))+i) <=

(others=>'0');

 end loop;

135

 end if;

 end if;

 end process;

 data_out_bk1 <= data_out_ecc_bk1(79 downto 0);

 databar_out_bk1 <= databar_out_ecc_bk1(79 downto 0);

 prom_bk_three: process(data_ecc, ADDR_CNT, n_encode, clock)

 begin

 if(clock'event and clock='1') then

 if(state_bk2 = w_bk2) then

 prom_bk2(to_integer(unsigned(ADDR_CNT))) <= data_ecc;

 elsif(state_bk2 = r_bk2) then

 data_out_ecc_bk2 <=

prom_bk2(to_integer(unsigned(ADDR_CNT)));

 databar_out_ecc_bk2 <= not

prom_bk2(to_integer(unsigned(ADDR_CNT)));

 elsif(state_bk2 = e_bk2) then

 for i in 0 to 15 loop

 prom_bk2((to_integer(unsigned(n_encode)))+i) <=

(others=>'0');

 end loop;

 end if;

 end if;

 end process;

 data_out_bk2 <= data_out_ecc_bk2(79 downto 0);

 databar_out_bk2 <= databar_out_ecc_bk2(79 downto 0);

 prom_bk_four: process(data_ecc, ADDR_CNT, n_encode, clock)

 begin

 if(clock'event and clock='1') then

 if(state_bk3 = w_bk3) then

 prom_bk3(to_integer(unsigned(ADDR_CNT))) <= data_ecc;

 elsif(state_bk3 = r_bk3) then

 data_out_ecc_bk3 <=

prom_bk3(to_integer(unsigned(ADDR_CNT)));

 databar_out_ecc_bk3 <= not

prom_bk3(to_integer(unsigned(ADDR_CNT)));

 elsif(state_bk3 = e_bk3) then

 for i in 0 to 15 loop

 prom_bk3((to_integer(unsigned(n_encode)))+i) <=

(others=>'0');

 end loop;

 end if;

 end if;

 end process;

136

 data_out_bk3 <= data_out_ecc_bk3(79 downto 0);

 databar_out_bk3 <= databar_out_ecc_bk3(79 downto 0);

U_4_to_1_mux_1: entity work.mux_4_to_1(mux_4_to_1Bhv)

 port map(sel0 => cmdregout(8),

 sel1 => cmdregout(9),

 in0 => data_out_bk0,

 in1 => data_out_bk1,

 in2 => data_out_bk2,

 in3 => data_out_bk3,

 output => data_out);

U_4_to_1_mux_2: entity work.mux_4_to_1(mux_4_to_1Bhv)

 port map(sel0 => cmdregout(8),

 sel1 => cmdregout(9),

 in0 => databar_out_bk0,

 in1 => databar_out_bk1,

 in2 => databar_out_bk2,

 in3 => databar_out_bk3,

 output => databar_out);

end Behavioral;

Part II MATLAB Code of 3D kMC Simulation

clear all

close all

%% Variable declaration

%% Define lattice size

column_dir_min = 1; % column represents transistor channel direction

column_dir_max = 30;

row_dir_min = 1; % row represents transistor width direction

row_dir_max = 30;

layer_min = 1; % layer represents vertical direction, perpendicular to the channel

layer_max = 6;

%% Defect generation and defect generation rate related variables

temp_defect = [];

defect = [];

coordinate = [];

defect_W = 0;

defect_L = 0;

defect_Z = 0;

initial_rate = 0. 000000045; % initial defect generation rate

rate_sum = 0; % ktot

137

rate_array = []; % holds defect generation rate of each lattice site

rate_array_inter = [];

rate_coordinate = [];

rate_par_sum = []; % generation rate partial sum array

rate_par_sum_index = 1;

rate_par_sum_index_max = 0;

time_elapse = 0;

index = 0;

flag = 0;

temp = 0;

%% Checking breakdown related variables

breakdown = 0;

breakdown_track = 0;

lattice = zeros(row_dir_max, column_dir_max, layer_max);

bottom_layer_cluster = 0;

top_layer_cluster = 0;

count = 0;

%% Plot related variables

target = 0;

cluster_max = 0;

B1 = [];

B2 = [];

B3 = [];

%% Number of Monte Carlo run

num_run = 100;

TTF = [];

num_sample_count = 0;

vertical_axis = [];

time_elapse_BD_one_time = 0;

BD_time = 0;

%%

c1 = 0. 00000007;
c2 = -0.000000026;

%% Code

for w = 1:num_run

 % Initialize defect generation rate at each lattice site

 % Create coordinate for each lattice site.

 % Create order array for tracking rate_array and rate_par_sum

 for z = 1:layer_max

138

 for y = 1:column_dir_max

 for x = 1:row_dir_max

 coordinate = [coordinate; [x y z]];

 rate_array = [rate_array; initial_rate];

 end

 end

 end

 while breakdown ~= 1

 %% Defect generation

 % calculate partial sum of each site defect generation rate

 for k = 1:layer_max

 for j = 1:column_dir_max

 for i = 1:row_dir_max

 index = index + 1; % Indexing rate_array

 rate_sum = rate_sum + rate_array(index);

 rate_par_sum = [rate_par_sum; rate_sum];

 end

 end

 end

 r = rand(1,1);

 temp = r*rate_sum;

 [rate_par_sum_index_max, donot_care_3] = size(rate_par_sum);

 % Generate a defect and store coordinate in defect[]

 for i = 1:rate_par_sum_index_max

 if((temp < rate_par_sum(i+1))&(i ~= rate_par_sum_index_max))

 defect_W = coordinate(i,1);

 defect_L = coordinate(i,2);

 defect_Z = coordinate(i,3);

 flag = 1;

 elseif((temp >= rate_par_sum(i+1))&(i ~= rate_par_sum_index_max))

 defect_W = 999;

 defect_L = 999;

 defect_Z = 999;

 flag = 0;

 else

 disp('Iteration of rate partial sum array is complete');

 flag = 0;

 end

 if(flag == 1)

 break

 end

 end

 temp_defect = [defect_W defect_L defect_Z];

 defect = [defect; temp_defect];

139

 %disp(defect) % <--------------------->

 rd = rand(1,1);

 defect_time_temp = -log(rd)/rate_sum;

 time_elapse_BD_one_time = time_elapse_BD_one_time + defect_time_temp;

 %disp(time_elapse_BD_one_time) % <--------------------->

 % Update defect generation rate at each site

 % map convert a defect coordinate to rate_array index

 out = map(defect_W, defect_L, defect_Z, row_dir_max, column_dir_max, layer_max);

 %disp(out); % <---------------------->

 % Set the rate of newly generated defect location to zero for avoiding

 % repetitive defect generation at the same location

 rate_array(out) = 0;

 % Update 18 neighboring sites generation rate

 % 18 = face and edge touching

 % 26 = face, edge and corner touching

 % touching x-dirction faces

 out_x_1 = map(defect_W-1, defect_L, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_x_1 ~= out) % checks lattice boundary

 if(~ismember([defect_W-1 defect_L defect_Z], defect, 'rows')) % check if this location

already a defect

 x1 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_x_1) = x1;

 else

 rate_array(out_x_1) = 0;

 end

 else

 rate_array(out_x_1) = 0;

 end

 out_x_2 = map(defect_W + 1, defect_L, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_x_2 ~= out)

 if(~ismember([defect_W+1 defect_L defect_Z], defect, 'rows'))

 x2 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_x_2) = x2;

 else

 rate_array(out_x_2) = 0;

 end

 else

 rate_array(out_x_2) = 0;

 end

 % touching y-direction faces

 out_y_1 = map(defect_W, defect_L - 1, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_y_1 ~= out)

 if(~ismember([defect_W defect_L-1 defect_Z], defect, 'rows'))

 y1 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_y_1) = y1;

140

 else

 rate_array(out_y_1) = 0;

 end

 else

 rate_array(out_y_1) = 0;

 end

 out_y_2 = map(defect_W, defect_L + 1, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_y_2 ~= out)

 if(~ismember([defect_W defect_L+1 defect_Z], defect, 'rows'))

 y2 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_y_2) = y2;

 else

 rate_array(out_y_2) = 0;

 end

 else

 rate_array(out_y_2) = 0;

 end

 % touching z-direction faces

 out_z_1 = map(defect_W, defect_L, defect_Z - 1, row_dir_max, column_dir_max,

layer_max);

 if(out_z_1 ~= out)

 if(~ismember([defect_W defect_L defect_Z-1], defect, 'rows'))

 z1 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_z_1) = z1;

 else

 rate_array(out_z_1) = 0;

 end

 else

 rate_array(out_z_1) = 0;

 end

 out_z_2 = map(defect_W, defect_L, defect_Z + 1, row_dir_max, column_dir_max,

layer_max);

 if(out_z_2 ~= out)

 if(~ismember([defect_W defect_L defect_Z+1], defect, 'rows'))

 z2 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_z_2) = z2;

 else

 rate_array(out_z_2) = 0;

 end

 else

 rate_array(out_z_2) = 0;

 end

 % touching top edges

 out_top_1 = map(defect_W - 1, defect_L, defect_Z + 1, row_dir_max, column_dir_max,

layer_max);

 if(out_top_1 ~= out)

 if(~ismember([defect_W-1 defect_L defect_Z+1], defect, 'rows'))

 top1 = c1*exp(c2*time_elapse_BD_one_time);

141

 rate_array(out_top_1) = top1;

 else

 rate_array(out_top_1) = 0;

 end

 else

 rate_array(out_top_1) = 0;

 end

 out_top_2 = map(defect_W, defect_L + 1, defect_Z + 1, row_dir_max, column_dir_max,

layer_max);

 if(out_top_2 ~= out)

 if(~ismember([defect_W defect_L+1 defect_Z+1], defect, 'rows'))

 top2 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_top_2) = top2;

 else

 rate_array(out_top_2) = 0;

 end

 else

 rate_array(out_top_2) = 0;

 end

 out_top_3 = map(defect_W + 1, defect_L, defect_Z + 1, row_dir_max, column_dir_max,

layer_max);

 if(out_top_3 ~= out)

 if(~ismember([defect_W+1 defect_L defect_Z+1], defect, 'rows'))

 top3 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_top_3) = top3;

 else

 rate_array(out_top_3) = 0;

 end

 else

 rate_array(out_top_3) = 0;

 end

 out_top_4 = map(defect_W, defect_L - 1, defect_Z + 1, row_dir_max, column_dir_max,

layer_max);

 if(out_top_4 ~= out)

 if(~ismember([defect_W defect_L-1 defect_Z+1], defect, 'rows'))

 top4 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_top_4) = top4;

 else

 rate_array(out_top_4) = 0;

 end

 else

 rate_array(out_top_4) = 0;

 end

 % touching side edges

 out_side_1 = map(defect_W - 1, defect_L - 1, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_side_1 ~= out)

 if(~ismember([defect_W-1 defect_L-1 defect_Z], defect, 'rows'))

 side1 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_side_1) = side1;

142

 else

 rate_array(out_side_1) = 0;

 end

 else

 rate_array(out_side_1) = 0;

 end

 out_side_2 = map(defect_W - 1, defect_L + 1, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_side_2 ~= out)

 if(~ismember([defect_W-1 defect_L+1 defect_Z], defect, 'rows'))

 side2 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_side_2) = side2;

 else

 rate_array(out_side_2) = 0;

 end

 else

 rate_array(out_side_2) = 0;

 end

 out_side_3 = map(defect_W + 1, defect_L + 1, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_side_3 ~= out)

 if(~ismember([defect_W+1 defect_L+1 defect_Z], defect, 'rows'))

 side3 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_side_3) = side3;

 else

 rate_array(out_side_3) = 0;

 end

 else

 rate_array(out_side_3) = 0;

 end

 out_side_4 = map(defect_W + 1, defect_L - 1, defect_Z, row_dir_max, column_dir_max,

layer_max);

 if(out_side_4 ~= out)

 if(~ismember([defect_W+1 defect_L-1 defect_Z], defect, 'rows'))

 side4 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_side_4) = side4;

 else

 rate_array(out_side_4) = 0;

 end

 else

 rate_array(out_side_4) = 0;

 end

 % Touching bottom edges

 out_bottom_1 = map(defect_W - 1, defect_L, defect_Z - 1, row_dir_max, column_dir_max,

layer_max);

 if(out_bottom_1 ~= out)

 if(~ismember([defect_W-1 defect_L defect_Z-1], defect, 'rows'))

 bottom1 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_bottom_1) = bottom1;

 else

143

 rate_array(out_bottom_1) = 0;

 end

 else

 rate_array(out_bottom_1) = 0;

 end

 out_bottom_2 = map(defect_W, defect_L + 1, defect_Z - 1, row_dir_max, column_dir_max,

layer_max);

 if(out_bottom_2 ~= out)

 if(~ismember([defect_W defect_L+1 defect_Z-1], defect, 'rows'))

 bottom2 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_bottom_2) = bottom2;

 else

 rate_array(out_bottom_2) = 0;

 end

 else

 rate_array(out_bottom_2) = 0;

 end

 out_bottom_3 = map(defect_W + 1, defect_L, defect_Z - 1, row_dir_max, column_dir_max,

layer_max);

 if(out_bottom_3 ~= out)

 if(~ismember([defect_W+1 defect_L defect_Z-1], defect, 'rows'))

 bottom3 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_bottom_3) = bottom3;

 else

 rate_array(out_bottom_3) = 0;

 end

 else

 rate_array(out_bottom_3) = 0;

 end

 out_bottom_4 = map(defect_W, defect_L - 1, defect_Z - 1, row_dir_max, column_dir_max,

layer_max);

 if(out_bottom_4 ~= out)

 if(~ismember([defect_W defect_L-1 defect_Z-1], defect, 'rows'))

 bottom4 = c1*exp(c2*time_elapse_BD_one_time);

 rate_array(out_bottom_4) = bottom4;

 else

 rate_array(out_bottom_4) = 0;

 end

 else

 rate_array(out_bottom_4) = 0;

 end

 flag = 0;

 rate_sum = 0;

 rate_par_sum = [];

 index = 0;

 rate_coordinate = [rate_array coordinate];

 rate_coordinate = sortrows(rate_coordinate, 1);

 rate_array = rate_coordinate(:,1:1);

 coordinate = rate_coordinate(:,2:4);

144

 %% Check breakdown

 % Lattice position is a defect, set this position is 1,

 % Lattice position is not a defect, set this position is 0.

 for c = 1:layer_max

 for b = 1:column_dir_max

 for a = 1:row_dir_max

 if(ismember([a b c], defect, 'rows')==1)

 lattice(a,b,c) = 1;

 else

 lattice(a,b,c) = 0;

 end

 end

 end

 end

 % Cluster formation

 % 18 = face and edge touching --> same cluster number

 % 26 = face, edge and corner touching --> same cluster number

 Lb = bwlabeln(lattice,18);

 bottom_layer = []; % clear for next iteration

 top_layer = []; % clear for next iteration

 % store top and bottom layer information

 for x = 1:row_dir_max

 for y = 1:column_dir_max

 if(Lb(x, y, layer_min) ~= 0)

 bottom_layer = [bottom_layer; Lb(x, y, layer_min)];

 else

 bottom_layer = bottom_layer;

 end

 end

 end

 for x = 1:row_dir_max

 for y = 1:column_dir_max

 if(Lb(x, y, layer_max) ~= 0)

 top_layer = [top_layer; Lb(x, y, layer_max)];

 else

 top_layer = top_layer;

 end

 end

 end

 % 'bottom_layer_cluster' holds the matrix size

 [bottom_layer_cluster, donot_care_1] = size(bottom_layer);

 % 'top_layer_cluster" holds the matric size

 [top_layer_cluster, donot_care_2] = size(top_layer);

 % Check if top and bottom layers have the same cluster number.

 % If it has, breakdown happens i.e. a connected or conductive path

 % connecting top and bottom layer.

145

 if((bottom_layer_cluster >= top_layer_cluster)&(bottom_layer_cluster ~=

0)&(top_layer_cluster ~= 0))

 count = top_layer_cluster;

 for i = 1:count

 if(ismember(top_layer(i), bottom_layer, 'rows') == 1)

 breakdown_track = breakdown_track + 1;

 else

 breakdown_track = breakdown_track + 0;

 end

 end

 elseif((bottom_layer_cluster < top_layer_cluster)&(bottom_layer_cluster ~=

0)&(top_layer_cluster ~= 0))

 count = bottom_layer_cluster;

 for i = 1:count

 if(ismember(bottom_layer(i), top_layer, 'rows') == 1)

 breakdown_track = breakdown_track + 1;

 else

 breakdown_track = breakdown_track + 0;

 end

 end

 elseif((bottom_layer_cluster == 0)|(top_layer_cluster == 0))

 breakdown_track = breakdown_track + 0;

 end

 if breakdown_track > 0

 breakdown = 1;

 else

 breakdown = 0;

 end

 end

 BD_time = BD_time + time_elapse_BD_one_time;

 TTF = [TTF; BD_time];

 num_sample_count = num_sample_count + 1;

 percentage_failure = num_sample_count/num_run;

 if(percentage_failure ~= 1)

 percentage_failure = percentage_failure;

 else

 percentage_failure = 0.99;

 end

 Weibit = log(-log(1-percentage_failure));

 vertical_axis = [vertical_axis; Weibit];

 breakdown = 0;

end

%% Plot Weibull

figure(1)

146

semilogx(TTF, vertical_axis, 'b--o');

title('Weibull TDDB Distribution by kMC Model')

xlabel('Time [second]')

xlim([0 10^9])

ylabel('ln[-ln(1-F)]')

ylim([-3 3])

hold on

grid on

FT = polyfit(log(TTF(1:30)), vertical_axis(1:30), 1);

fitvertical_axis = polyval(FT, log(TTF));

Slope = FT(1);

Intercept = FT(2);

hold on

grid on

semilogx(TTF, fitvertical_axis, 'r-.', 'LineWidth', 1.5);

%% Plot breakdown path

figure(2)

% obtaining cluster number indicating breakdown

if((bottom_layer_cluster >= top_layer_cluster)&(bottom_layer_cluster ~= 0)&(top_layer_cluster

~= 0))

 count = top_layer_cluster;

 for i = 1:count

 if(ismember(top_layer(i), bottom_layer, 'rows') == 1)

 target = top_layer(i);

 else

 target = target;

 end

 end

elseif((bottom_layer_cluster < top_layer_cluster)&(bottom_layer_cluster ~=

0)&(top_layer_cluster ~= 0))

 count = bottom_layer_cluster;

 for i = 1:count

 if(ismember(bottom_layer(i), top_layer, 'rows') == 1)

 target = bottom_layer(i);

 else

 target = target;

 end

 end

else

 target = target;

end

% Find the max cluster number

for k = 1:layer_max

 for j = 1:column_dir_max

 for i = 1:row_dir_max

 if(Lb(i,j,k) > cluster_max)

 cluster_max = Lb(i,j,k);

 else

147

 cluster_max = cluster_max;

 end

 end

 end

end

% Plot defects

for t = 1:cluster_max

 for k = 1:layer_max

 for j = 1:column_dir_max

 for i = 1:row_dir_max

 if((Lb(i,j,k)~=0)&(Lb(i,j,k)==t)&(target~=t))

% A1 = [A1;i];

% A2 = [A2;j];

% A3 = [A3;k];

 plot3(i,j,k,'--

o','MarkerEdgeColor','none','MarkerFaceColor',rand(1,3),'MarkerSize',11);

 xlabel('Transistor Width Direction')

 xlim([1 11])

 ylabel('Channel Direction')

 ylim([1 8])

 zlabel('Vertical Direction')

 zlim([1 7])

 grid on

 hold on

 elseif((Lb(i,j,k)~=0)&(Lb(i,j,k)==t)&(target==t))

 B1 = [B1;i];

 B2 = [B2;j];

 B3 = [B3;k];

 plot3(B1,B2,B3,'--o','Color','r','LineWidth',1.5,'MarkerSize',12);

 %plot3(B1,B2,B3,'--

o','MarkerEdgeColor','none','MarkerFaceColor','r','MarkerSize',12);

 xlabel('Transistor Width Direction')

 xlim([1 11])

 ylabel('Channel Direction')

 ylim([1 8])

 zlabel('Vertical Direction')

 zlim([1 7])

 grid on

 hold on

 end

 end

 end

 end

end

%% Prior to MATLAB R2016a version function in separate file

function output = map(x, y, z, xmax, ymax, zmax)

 if((x<1)&&(y>=1)&&(y<=ymax)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(y-1)*xmax+1;

 elseif((x>xmax)&&(y>=1)&&(y<=ymax)&&(z>=1)&&(z<=zmax))

148

 output=(z-1)*ymax*xmax+(y-1)*xmax+xmax;

 elseif((x>=1)&&(x<=xmax)&&(y<1)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(1-1)*xmax+x;

 elseif((x>=1)&&(x<=xmax)&&(y>ymax)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(ymax-1)*xmax+x;

 elseif((x>=1)&&(x<=xmax)&&(y>=1)&&(y<=ymax)&&(z<1))

 output=(1-1)*ymax*xmax+(y-1)*xmax+x;

 elseif((x>=1)&&(x<=xmax)&&(y>=1)&&(y<=ymax)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(y-1)*xmax+x;

 elseif((x<1)&&(y<1)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(1-1)*xmax+1;

 elseif((x>xmax)&&(y>ymax)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(ymax-1)*xmax+xmax;

 elseif((x<1)&&(y>ymax)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(ymax-1)*xmax+1;

 elseif((x>xmax)&&(y<1)&&(z>=1)&&(z<=zmax))

 output=(z-1)*ymax*xmax+(1-1)*xmax+xmax;

 elseif((x<1)&&(y>=1)&&(y<=ymax)&&(z<1))

 output=(1-1)*ymax*xmax+(y-1)*xmax+1;

 elseif((x>xmax)&&(y>=1)&&(y<=ymax)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(y-1)*xmax+xmax;

 elseif((x<1)&&(y>=1)&&(y<=ymax)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(y-1)*xmax+1;

 elseif((x>xmax)&&(y>=1)&&(y<=ymax)&&(z<1))

 output=(1-1)*ymax*xmax+(y-1)*xmax+xmax;

 elseif((x>=1)&&(x<=xmax)&&(y<1)&&(z<1))

 output=(1-1)*ymax*xmax+(1-1)*xmax+x;

 elseif((x>=1)&&(x<=xmax)&&(y>ymax)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(ymax-1)*xmax+x;

 elseif((x>=1)&&(x<=xmax)&&(y<1)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(1-1)*xmax+x;

 elseif((x>=1)&&(x<=xmax)&&(y>ymax)&&(z<1))

 output=(1-1)*ymax*xmax+(ymax-1)*xmax+x;

 elseif((x<1)&&(y<1)&&(z<1))

 output=(1-1)*ymax*xmax+(1-1)*xmax+1;

 elseif((x<1)&&(y<1)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(1-1)*xmax+1;

 elseif((x<1)&&(y>ymax)&&(z<1))

 output=(1-1)*ymax*xmax+(ymax-1)*xmax+1;

 elseif((x<1)&&(y>ymax)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(ymax-1)*xmax+1;

 elseif((x>xmax)&&(y<1)&&(z<1))

 output=(1-1)*ymax*xmax+(1-1)*xmax+xmax;

 elseif((x>xmax)&&(y<1)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(1-1)*xmax+xmax;

 elseif((x>xmax)&&(y>ymax)&&(z<1))

 output=(1-1)*ymax*xmax+(ymax-1)*xmax+xmax;

 elseif((x>xmax)&&(y>ymax)&&(z>zmax))

 output=(zmax-1)*ymax*xmax+(ymax-1)*xmax+xmax;

 else

 output=(z-1)*ymax*xmax+(y-1)*xmax+x;

149

 end

end

VITA

Cheng Hao

Candidate for the Degree of

Doctor of Philosophy

Dissertation: A SECURE HFO2 BASED CHARGE TRAP EEPROM WITH

 LIFETIME AND DATA RETENTION TIME MODELING

Major Field: Electrical and Computer Engineering

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Electrical and

Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in

July, 2019.

Completed the requirements for the Master of Science in Electrical and

Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in

2016.

Completed the requirements for the Bachelor of Science in Electrical and

Computer Engineering at North Carolina State University, Raleigh, NC in 2011.

Experience:

 Research assistant at Oklahoma State University, Jan. 2014 – May 2019

 Teaching assistant at Oklahoma State University, Jan. 2014 – May 2017

