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CHAPTER I 
 

 

INTRODUCTION 

The drilling cost includes rig rental, bits, casing strings, drilling fluids, and service costs. The rig 

rental cost, which is the larger part of the drilling cost, is a direct function of the drilling time. The 

drilling time includes the rotating time, connection time, and tripping time. While the connection 

time is more or less fixed for a specific interval, the rotating time depends on how operational 

parameters (WOB, RPM, etc.) are applied during drilling a well. Therefore, an optimum drilling 

plan should be able to reduce the rotating time by increasing the average drilling ROP and 

decreasing the tripping time (Hareland et al., 2008 b).   Furthermore, horizontal wells allow multiple 

wells to be drilled from the same drilling location. Along with the previously mentioned advantages 

of horizontal wells, the lateral sections of a horizontal well increase the length of the well 

considerably. The rotating time and total cost of drilling increase when the wellbore becomes 

longer, which makes the use of drilling optimization necessary to ensure an economical drilling 

operation. To reduce the rotating time and total cost of the drilling process, the drilling operation 

should be translated into a mathematical model. The model consists of expressing the system, 

entity, or phenomenon using a mathematical language and is the platform for simulation, 

optimization, and design. Engineers in different industries are continually trying to reduce costs 

using modeling and optimization.
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In the drilling industry, the rate of penetration (ROP) is the speed that the drilling bit penetrates the 

formation and is expressed in feet or meters per hour. The drilling ROP affects the drilling time 

and consequently the drilling cost.  

At the present time, the application of drilling simulators has become the leading technology in 

well planning. The ROP models act as the core engine for the drilling simulator and provide an 

estimation for ROP by taking important drilling parameters as input, including WOB, RPM, bit 

details, hydraulics, and formation properties. To achieve a precise ROP simulator, having an 

accurate ROP model is essential. 

Several researchers have presented different ROP models based on the type of drilling bits. Maurer 

(1962) established a model for the roller cone bits at low RPM and WOB, assuming a perfect 

cleaning condition around the drill bit and annular space. Walker et al. (1986) introduced a ROP 

model for insert bits by including the bit weight, well depth and laboratory determined rock 

strength. Warren (1987) proposed a model for the roller cone bits by taking the rock strength, RPM, 

WOB and bit diameter. Winters et al. (1987 b) developed a ROP model for roller cone bits taking 

the bit design, operating conditions, and the rock mechanics into account. They found that the rock 

ductility had a major effect on bit performance. Hareland and Rampersad (1994) developed a ROP 

model for drag bits including wear which comprised of cutter-rock interaction. This model included 

mass conservation and assumed an ideal bit cleaning condition. Motahhari et al. (2010) also 

developed a PDC ROP model based on single cutter rock interaction by assuming perfect bit 

cleaning. Kerkar et al. (2014) developed another ROP model for PDC bits and incorporated the bit 

details such as the number of blades, cutter details, and integrated bit wear and hydraulics.  

Once the desired parameter (e.g. ROP) is expressed in a mathematical equation, the next step is to 

find the global minimum or maximum of such equation, known as optimization. Drilling cost 

optimization has always been one of the major interests of researchers in petroleum engineering. 
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Speer (1958) introduced the drilling optimization using optimum drilling parameters. Galle and 

Woods (1963) introduced a graphical method to find the optimum RPM and WOB for roller cone 

bits. Bourgoyne and Young in 1974 used the minimum cost formula for drilling optimization. They 

showed that maximizing the ROP could reduce the drilling cost (Eren and Ozbayoglu, 2010). Onyia 

(1987) and Rampersad et al. (1994) applied a Geological Drilling Log (GDL) to generate input for 

drilling simulation and optimization. The GDL is calculated by inverting the ROP model for any 

specific bit (e.g. tricone bits, PDC bits). The GDL is then used in conjunction with ROP models for 

any specific bit to simulate the bit penetration rate.  This research showed how the obtained 

information during drilling can be utilized for the optimization of future wells in the same oil field.  

Hareland et al. (2007) developed a drilling simulator software (Optimizer) which estimates the 

Apparent Rock Strength Log (ARSL) based on drilling data. Also, the drilling optimizer application 

in Managed-Pressure Drilling (MPD) was demonstrated (Hareland et al., 2008 a). The software 

simulates the drilling process for multiple drilling bits, pull depths and operational parameters. The 

drilling scenario with the minimum cost is chosen as the optimum drilling scenario. A large 

reduction (more than 30%) in drilling cost was proven just by drilling simulation on conventional 

wells in Canada using the Optimizer software (Hareland et al., 2008 b). 

Most of the systems in engineering are non-linear, multi-dimensional under various complicated 

constraints (Lummus, 1970). This leads to complicated mathematical equations, which are known 

as models. The common way to solve mathematical equations is analytical methods. The analytical 

methods find the exact global minimum/maximum of functions. Although the analytical methods 

give the explicit answers for models, solving such complex equations with numerous constraints 

are hard, time-consuming, and in some cases, impossible.  

Metaheuristic methods can be applied to solve complicated sets of mathematical equations with a 

high degree of nonlinearity and complex constraints. Their applications include multi-objective 



4 
 

function optimization (Urade and Patel, 2012), routing (Shen et al., 2009), scheduling (Pandey et 

al., 2010), partitioning (Erdeljan et al., 2014), pattern recognition (Omran et al., 2006), 

classification such as decision tree (Chen et al., 2014), random forest (Malik et al., 2011) and K 

nearest neighbor (Zhang et al., 2010), image processing (Omran et al., 2006), data mining (Grosan 

et al., 2006) and machine learning (Gaur et al., 2013).  Metaheuristic methods are inspired mostly 

by nature, such as the flight of bird flocks, ant movement strategy, or the flight patterns of bees. 

These methods generate a sample of feasible solutions and try to improve the overall fitness index 

in each iteration.  Metaheuristic methods do not guarantee that the solution found is the global 

optimum. These methods tend to go toward the global optimum quickly, and because of that, they 

can effectively deal with complicated problems. Metaheuristic algorithms are useful in cases in 

which classical methods become stuck in local minima.  

The Differential Evolution Algorithm (DEA) is a powerful, yet simple metaheuristic one. It benefits 

from a simple arithmetic operation and a novel sampling technique which adaptively changes the 

step size during population evolution. It perturbs the best solution value into existing population 

vectors using crossover operation. Price in 1996 tested the performance of DEA on 15 benchmark 

functions. He found that the DEA was the fastest method for solving eleven of them and was 

competitive for the remaining four (Price, 1996). Applying metaheuristic methods is easy in 

comparison to analytical methods and therefore, in this study, the potential application of DEA is 

used to find the constants of single cutter interfacial friction angle (IFA) model taking the data into 

account. In this work the DEA was coded in Python and solved along with the PDC ROP model to 

find the full bit (Internal Friction Angle) IFA model constants. 

Studies have already been done in the drilling optimization and simulation domain. Hareland et al. 

(2008) developed a software (Optimizer) for drilling simulation. The software benefits from 

comprehensive models for both rollercone and PDC bits. The Optimizer software can be used to 

generate rock strength, which provides further input for drilling simulation and optimization. The 
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user can then manually divide a drilling interval into several subsections and apply desired bits, 

WOB, and RPM to reduce drilling costs. Although the user can reduce the drilling costs by using 

the simulator, the learning process is time-consuming and relies on the user’s background 

knowledge, experience, and patience. In addition, finding the most cost-effective drilling scenario 

is almost impossible due to many feasible solutions and multiple local optima. In other words, the 

Optimizer software is good at drilling simulation, but is lacking an optimization tool.  

Self et al. (2017) found the optimum WOB and RPM for a drilling interval and selection between 

two bits. They used the Kerkar et al. (2014) ROP model in conjunction with the Particle Swarm 

Optimization (PSO) algorithm for simulation and optimization.  However, their work was limited 

to a selection between two bits. The Kerkar et al. (2014) model does not take the details such as 

PDC cutter diameter, wear flat areas for stud and PDC, and the interfacial friction between the 

cutter and rock into account. The Kerkar et al. (2014) model also ignored the above-mentioned 

parameters effects on cutter wear which affects the ROP consequently and because of that, their 

optimization results are not very reliable.  

The interfacial friction is referred to as frictional force at the contact area between the PDC cutter 

face and rock (Rahmani, 2013). The interfacial friction concept is included in new single and full 

PDC bit models to improve the full bit ROP model's accuracy. The goal of this study is to propose 

a pure theoretical – empirical model for PDC bits which includes the interfacial friction between 

PDC cutter and rock. It worth to mention that, other than the application in the oil and gas drilling 

industry, the models developed in this study are applicable to the geothermal wells as well. 

The novel features of this thesis which makes it distinct from previous works are as follows: 

❖ The single PDC cutter model analytical equations were developed and used as a base for a 

PDC full bit ROP model. Incorporating the wear flat area details (PDC and stud) makes 

the new ROP model distinct from previous works. 
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❖ The novel PDC wear model is derived based on the physical definition of work.  The unique 

PDC wear model considers the effects of both stud and PDC wear coefficients. The PDC 

wear model also includes the concept of interfacial friction. This aspect makes the new 

wear model unique compared to previously published models. 

❖ The interfacial friction angle (IFA) concept is presented and incorporated in PDC single 

and full bit models to improve models’ estimations.  

❖ A single cutter IFA model was developed based on single cutter data and used along with 

the single cutter force models to improves models force estimations accuracy. 

❖ The differential evolution algorithm (DEA) was used in cooperation with the new proposed 

PDC ROP model to develop a new full bit IFA based model.  

❖ The new full bit IFA model along with new PDC ROP model were verified using data from 

literature. 

This thesis consists of five chapters. Chapter one provides an introduction to the modeling and 

optimization work and proposes the goal of the thesis. Chapter two introduced a review of previous 

works in PDC ROP modeling, single cutter rock interaction modeling, statistical ROP modeling, 

and optimization work. This chapter also discusses the IFA concept. Chapter three, expounds the 

technical approach toward developing a single cutter and full bit models. In chapter three, the cutter 

contacts area equations for sharp and blunt cutter are proposed. A new single cutter PDC model for 

sharp and blunt cutters, two IFA models for single cutter and full bit, and the full bit PDC ROP 

model are proposed. Chapter three presents a novel real-time bit wear model, which incorporates 

the wear flat areas (PDC and stud) and wear constants of both PDC and stud material. In chapter 

three also discusses the cutter depth of cut calculation. In chapter four, the developed IFA models 

(for single cutter and full bit) are presented and verified with data. The full bit ROP model is used 

cooperatively with the full bit IFA model to estimate the ROP of four and five-bladed PDC bits in 

SWG and BSS. Appendices A, B, C, D, and E present developed equations for sharp and blunt 
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cutter contact area, cutter wear flat areas both for PDC and stud, sharp and blunt cutter front area, 

sharp and blunt cutter beneath areas, cutter worn volume, and the wear flat area width and length.  

Appendices F present the Python notebook codes which are used in this research for developing 

two IFA models for single cutter and full bit using a differential evolution algorithm (DEA). 

Appendix G provides all data used in this dissertation. 
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CHAPTER II 
 

BACKGROUND AND LITERATURE REVIEW 

 

This chapter reviews the previous studies and expounds the researches on full bit PDC ROP 

modeling, cutter-rock interaction modeling, IFA concept, and the optimization literature. 

The drilling time is a function of multiple general parameters including drilling hydraulic 

properties, bit details, well geometry, drilling string details, and formation properties (Figure 2.1). 

These parameters have integrated effects on each other, which make the drilling optimization a 

complex process (e.g. the mud properties affect the bit hydraulic, the rock confinement and WOB 

which as consequently influence the ROP). The relationship between the ROP and the above-

mentioned parameters has been an important research topic in drilling engineering for decades.  

Models are developed to demonstrate the effects of different variables on the desired parameter or 

parameters. The models are mostly expressed in mathematical forms (e.g., empirical models, 

analytical models, numerical models, etc.). Nonetheless, they can be expressed in different forms 

known as Machine Learning Algorithms (ML), such as Artificial Neural Network (i.e. ANN, Deep 

Net, and Recurrent Net), Decision Tree, Random Forest, K-Nearest Neighbor (KNN), Logistic 

Regression, Support Vector Machine (SVM), etc. In some cases, it is necessary to use advanced 

optimization methods to find the optimum solution due to the model complexity.
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The rate in which a drill bit penetrates into a formation (ROP) is a critical parameter in drilling 

engineering and well plan. ROP is a function of different parameters including WOB, RPM, hydraulic 

design, bit specifications and other parameters (Figure 2.1). Researchers have developed a variety of 

PDC ROP models (full bit and single cutter), which are provided and discussed in the following 

sections.    
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Figure 2.1. Parameters that influence on drilling rate of penetration (ROP)
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2.1 Polycrystalline Diamond Compact (PDC) ROP models 

2.1.1 Bingham (1965) ROP model  

Bingham (Bingham, 1965) developed a basic ROP model applicable to all bit types. The Bingham 

model is provided in Equation 1. 

ROP = a × RPM × (
WOB

Db
)
b

…… . . Eq. 2.1 

The unit of ROP (rate of penetration) is ft/hr, WOB is in klb, RPM is in revolution per minute and Db 

is bit diameter in inches. The coefficients a and b are representative of the formation drillability and are 

determined for each specific lithology. The Bingham model does not include the bit type, bit wear, 

cutter shape and orientation, drilling hydraulic, and formation details (Soares et al., 2016).  

2.1.2 Hareland and Rampersad (1994) ROP model 

Hareland and Rampersad modeled the drag bits ROP based on cutter-rock interaction in 1994.  

ROP =
14.14 × Nc × RPM × Av

Db
…… . . Eq. 2.2 

In Equation 2.2, Nc is the number of cutters and Av is the area of rock compressed ahead of a cutter in 

square inch. The Av is different for different drag bit cutter shapes. For a PDC cutter the dcis cutter 

diameter. Figure 2.2 provides a schematic of a PDC cutter in 3D. In Figure 2.2, the SR and BR angles 

are shown using α and θ respectively. The area ahead of a PDC cutter is calculated using Equation 2.3. 
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Av = cos (SR) × sin (BR)

× [(
dc
2
)
2

× cos−1 (1 −
4WOB

cos(BR)πdc
2σc

)

− √(
2WOB

cos(BR)πNcσc
−

4WOB2

cos(BR) πNcdcσc
2)(

WOB

cos(BR)πσc
)]…… . . Eq. 2.3 

 
Figure 2.2 A 3D schematic of a PDC cutter (Soares et al., 2016) 

It was noticed that ROP does not show a linear relationship with WOB and RPM, therefore, a correction 

factor (COR) was introduced that is multiplied by the ROP model. The COR Equation is provided in 

Equation 2.4. In COR Equation, the a is representative of an empirical correction factor for lithology, 

the b is representative of the bit rotation correction factor and c denotes the mechanical WOB empirical 

correction factor. 

COR =
a

(RPMb ×WOBc)
…… . . Eq. 2.4 

The bit wear function, Wf is multiplied into the ROP model to give the Hareland and Rampersad model 

(1994) a general form (Equation 2.5). 
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ROP = Wf ×
a

(RPMb ×WOBc)
×
14.14NcRPM 

DB
× cos (SR) × sin (BR)

× [(
dc
2
)
2

× cos−1 (1 −
4WOB

cos(BR)πdc
2σc

)

− √(
2WOB

cos(BR)πNcσc
−

4WOB2

cos(BR) πNcdcσc
2)(

WOB

cos(BR)πσc
)]…… . . Eq. 2.5 

It is important to notice that Hareland and Rampersad used the uniaxial rock strength (σc) in their 

model, which can cause overestimation in ROP calculation.  

2.1.3 Motahhari et al. (2010) ROP model 

Motahhari et al. (2010) developed a model for PDC bits by assuming 100 percent efficient bit cleaning. 

The model is provided in Equation 2.6.  

ROP = Wf × (
G×RPMγ×WOBα

DB×S
) …… . . Eq. 2.6 

The Wf is bit wear function and is calculated using Equation 2.7.  

Wf = Kwf × (
WOB

Nc
)ρ ×

1

Sτ × Aw
ρ+1…… . . Eq. 2.7 

In the previous equations, γ and α are ROP related exponents, G is a coefficient determined by bit 

geometry, cutter size, and cutter design. Kwf is a numerical constant, Nc is the number of cutters, Aw 

is wear flat area, S is the confined compressive strength and is a function of unconfined compressive 

strength (S0) and confining pressure (Pc) through Equation 2.8 (Rampersad et al., 1994). 

S = S0 × (1 − asPc
bs) …… . . Eq. 2.8 
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In Equation 2.8, the as and bs are empirical constants for different lithologies. It is important to notice 

that since the Motahhari model does not take the drilling hydraulics into account, it can cause ROP 

overestimation in some cases.  

2.1.4 Kerkar et al. (2014) Model 

The Kerkar et al. (2014) model is provided in the following set of Equations. This model includes 

drilling hydraulics and bit geometry as well as other parameters to estimate the ROP.  

ROP = [
K1 ×WOBa1 × RPMb1 × cos(SR)

CCSc1 × Db × tan(BR)
] ×Wf × h(x) × b(x)…… . . Eq. 2.9 

In Equation 2.9, K1 is calibration constant, a1, b1, c1are empirical coefficients, Db is bit diameter, CCS 

is confined compressive strength, Wf is bit wear function, h(x) is hydraulic function and b(x) is bit 

blades effect function on ROP.  The Wf, h(x), and b(x) are defined in the Equations 2.10 through 2.14. 

Wf = 1 − a3 × [
BG

8
]
b3

…… . . Eq. 2.10 

BG is the bit dull grade and it can change from 0 for a new bit to 8 for a completely worn out bit. The 

hydraulic effect is included in the ROP model using Equation 2.11.    

h(x) = a2.
(HSI ×

JSA
2Dbit

)b2

ROPc2
…… . . Eq. 2.11 

In the above equation, the HSI is hydraulic square inch for a bit and is calculated by dividing the 

hydraulic horsepower (HHP) to the bit area. The HSI model is provided in Equation 2.12. The JSA is 

the junk slot area and is determined by adding up the surface area between blades in the bit face. The 

a2, b2 are empirical coefficients.  

HSI =

Q × ΔPbit
1714

(
π
4)Dbit

2
…… . . Eq. 2.12 
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The b(x) incorporates the effect of the number of blades into the ROP model and is calculated by 

Equation 2.13. In Equation 2.13, the Nb is the number of blades:  

b(x) =
RPM1.02−0.02Nb

RPM0.92
…… . . Eq. 2.13 

The BG is bit grade and is estimated using Equation 2.14. In this Equation, ∆D is drilling interval length, 

ABR is the abrasiveness of the formation for a drilling interval, a4 and b4 are empirical coefficients 

and Wc is bit wear coefficient: 

ΔBG = Wc ×∑∆Di

n

i=0

×WOBi
a4 × RPMi

b4 × CCSi × ABRi…… . . Eq. 2.14 

The Kerkar et al. (2014) wear function does not take the effect of cutter wear flat area into account. 

Also, the interfacial friction was not included in the Kerkar bit wear model. The interfacial friction 

between PDC cutter and rock affect not only the depth of cut and ROP, but the cutter forces which 

consequently influence the bit wear. 

None of the above-mentioned models take into account the effect of PDC and stud quality on bit wear. 

The PDC layer and stud have different wear coefficients, which should be considered for bit wear 

calculation. The area beneath the bit includes stud and PDC layer wear flat areas. Previous models do 

not incorporate the stud and PDC layer wear flat areas into account. In addition, stud material has a 

lower wear coefficient which causes higher wear rate compared to the PDC material. Therefore, lower 

contact area efficiency is expected for stud. In the new ROP model, the bit stud and PDC layer wear 

quality and wear flat areas are taken into account to improve estimation for drilling ROP. In addition, 

a new real-time bit wear estimation model is developed by taking the physical work that is done by the 

PDC cutter, which provides more realistic values for bit wear. The cutter normal and drag forces are 

calculated using the single cutter force model developed in this study for both sharp and blunt cutters. 

The new single cutter force models included the effect of interfacial friction angle into account. The 
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estimated forces (cutter normal and drag forces) are inserted back into the PDC wear model to achieve 

the cutter work amount. 

2.2 Single Cutter Rock Interaction Models 

There are few studies that explain the cutter rock interaction and their basic concepts (Detournay and 

Defourny, 1992; Glowka, 1987; Gerbaud et al., 2006). The interaction between cutter surface area and 

the rock results in friction, which affects the normal and tangential forces on the cutter. The friction 

between cutter surface area and the rock itself is influenced by rock/cutting properties, cutter surface 

characteristics, cutter BR, cutter velocity, drilling mud properties, and normal force on the cutter 

(Rahmani, 2013).  

2.2.1 Ernst and Merchant (1941) Model 

Ernst and Merchant (1941) assumed a single shear plane between an intact rock and the cut always 

exists during the cutting process. They calculated the tangential and axial force on the cutter by taking 

the cutter geometry and interfacial friction into account.  The tangential and axial forces equations are 

provided in Equations 2.15 and 2.16. 

Ft =
τ × Ac × cos (ψ + θ)

sinα × cos (α + ψ + θ)
…… . . Eq. 2.15 

Fa = Ft × tan (ψ + θ)…… . . Eq. 2.16 

In Equation 2.15, the τ is shear strength, Ac is the area of the cut, and α is the shear angle which is 

determined by taking the principal minimum energy into account. Ernst and Merchant assumed low 

depth of cut for a cutter, and therefore the tangential force, (Ft), is responsible for the entire work that 

is done by the cutter.  A relationship between cutter BR (θ), shear angle (α), and interfacial friction 

angle (ψ) was achieved by taking partial derivation of Equation 2.15 with respect to the shear angle 
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(α). They found that Equation 2.17 governs as a constraint between cutter BR (θ), shear angle (α), and 

interfacial friction angle (ψ). 

2α + ψ + θ =
π

2
…… . . Eq. 2.17 

2.2.2 Merchant (1940) Model 

Merchant’s model was proposed for metal cutting in 1940. The Merchant expressed the tangential and 

axial cutter forces on the shear plane through Equations 2.18 and 2.19. 

Fn = A0 × Ss × (tan (
C + τ − β

2
) + cot (

C − τ + β

2
))…… . . Eq. 2.18 

Ft = A0 × Ss × (tan (
C + τ − β

2
) + cot (

C − τ + β

2
) − 1)…… . . Eq. 2.19 

In  this set of Equations, the Fn and Ft are axial and tangential cutter forces respectively, C is machining 

constant, and it is related to the rate of change in the shear strength of metal, A0 is the cutting area, Ss 

is the shear strength of the material being cut, and β is the rake angle of the cutting tool.  

Merchant (1944) also developed a card model for the single cutter and explained that the cuttings are 

generated due to shear forces on the shear plane (Rahmani, 2013).  Merchant also improved the Ernst 

and Merchant model (1941) by incorporating the internal friction angle (IFA). Equation 2.17 was 

modified to Equation 2.20 to include an internal friction angle. Rahmani, in 2013, applied both 

Equations 2.17 and 2.20 to lab data and found that Equation 2.17 provides a better estimation for the 

shear angle. 

2α + ψ + θ =
π

2
− φ…… . . Eq. 2.20 
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2.2.3 Glowka (1987) Model 

In 1987, Glowka developed a single PDC cutter model for estimating the cutter force, temperature, and 

wear. The single cutter data was used to measure the rock drillability and to study the theoretical 

considerations, which account for the interaction between cutters on the bit face. He found that the 

penetrating force on a worn PDC cutter is proportional to the cutter wear flat area at a given depth of 

cut. Also, he observed that for a given depth of cut and wear flat area, a larger worn cutter requires no 

greater penetrating force than a small cutter. The normal force for worn and new cutters is provided at 

Equations 2.21 and 2.22. 

F = Aw × C1 × δ
n1…… . . Eq. 2.21 

F = C2 × δ
n2…… . . Eq. 2.22 

In these equations, F is the cutter penetrating force, Aw is cutter wear flat area, δ is the cutter depth of 

cut, C1, C2, n1 and n2 are rock type constants. The cutter drag force (Fd) is calculated by taking the 

drag coefficient (μd) into account. 

μd =
Fd
F
…… . . Eq. 2.23 

Fd = μd × F…… . . Eq. 2.24 

Glowka (1987) found that the waterjet assistance extends the bit life in hard rocks through reducing the 

bit WOB, torque, and cutter forces. The model was incorporated into a PDC wear computer code to be 

used for general PDC bit analysis. The results were promising in term of estimating the WOB, drilling 

torque, and bit life. The Glowka (1987) model showed that the bits with a sharper profile require less 

WOB than flat profiles. At the same time, the bits with sharper profiles wear faster and require greater 

WOB as the drilling length increases.  
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2.2.4 Detournay and Defourny (1992) Model 

In 1992, Detournay and Defourny assumed plastic failure of rock at a small depth of cut (0.04 inch) 

and developed a single cutter model for sedimentary rocks. They developed a sharp cutter model by 

taking the Ernst and Merchant (1941) cutter geometry into account. They assumed cutter tangential 

force as a function of intrinsic specific energy (ɛ) and the area of cut (Ac). The ɛ is an empirical input 

defined as the minimum required energy to drill rock. They found that the intrinsic specific energy is 

equal to the unconfined compressive strength of the rock at atmospheric pressure (Rahmani, 2013). 

They found also that the intrinsic specific energy is a function of bottom hole pressure, pore pressure, 

rock-cutter interfacial friction angle (ψ), and cutter BRs angle (Detournay et al., 2008). They concluded 

that for a blunt cutter, the angle between the forces acting on cutter wear flat area is close to the internal 

friction angle of rock due to a thin layer of cutting accumulation underneath the cutter wear flat area 

(Rahmani, 2013). 

For a sharp cutter, the cutter tangential and normal force can be calculated as a function of the cross-

sectional area of cut using Equations 2.25 and 2.26. 

Fs
c = ε × Ac…… . . Eq. 2.25 

Fn
c = ς × ε × Ac…… . . Eq. 2.26 

Where ε is intrinsic specific energy, ς is the ratio of the vertical to the horizontal force acting on cutting 

face, and Ac is the cutting area.  Detournay and Defourny introduced a specific energy and drilling 

strength by dividing the tangential and axial force to cutting face. The cutter forces can be back-

calculated using these two quantities once they are known from laboratory data. 
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2.2.5 Hanson and Hansen (1995) Model 

In 1995, Hanson and Hansen developed a numerical bit dynamics model for PDC drill bit under 

conditions of a full-scale drilling simulator test. Their model includes the PDC cutter interaction with 

bottom hole and side wall rock surface, induced vibration of main mechanical components of a full-

scale drilling simulator, the bit impact energy loss, and the friction between the bit gage and hole wall. 

They assumed the N vertical planes emanating from the Z-axis in a spoke-like fashion. The bottom-

hole and side-wall rock surface is represented on vertical planes by the ordered set {Ri, Zi, i = 1,M}, 

where R is the radial coordinate and M is the number of nodes representing the rock surface on the 

vertical plane at that particular time step. They used 9× 106 nodes on each vertical plane to represent 

the bottom hole and side wall surfaces.  

Hanson and Hansen (1995) established two separate PDC cutter force models using the regression 

method, which consists of a simple functional relationship between the normal and tangential force to 

the PDC area of cut, RPM, wellbore pressure, PDC cutter wear flat area, and the cutter BR (Hanson 

and Hansen, 1995). The first single cutter model is based on the data from the single cutter force tests. 

The PDC cutter tangential and axial force was measured for different cutter BR, the area of the cut, 

wellbore pressure, RPM and wear flat areas. The regression analysis was used to fit a physical 

reasonable functional form on single cutter data for a number of rock types, including MS, Pierre shale, 

Solenhofen limestone, Hartz greywacke, and Carthage limestone. Hanson and Hansen (1995) 

developed their second single cutter force model based on full-scale bit simulator experiments in 

Carthage limestone at atmospheric conditions. For a given bit design, ROP, and RPM, they calculated 

the area of cut for an individual cutter. They used a priori functional form as a force cutter model and 

applied the regression analysis to achieve the best fit. Both models have similar accuracy, but the second 

model gives more accurate estimation in Carthage limestone. 
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2.2.6 Yan (1997) Model 

In 1997, Yan studied the single PDC cutter fragmentation mechanism in hard rocks. He used the Forcht 

(1941) model to achieve the stresses caused by the concentrated load in a wedge (Forcht, 1941). Yan 

conducted a two-dimensional analysis of stress fields based on linear elasticity theory to describe the 

behavior of the rock under cutter force. The analysis showed that the entire region in a rock body can 

be divided into two compressive and tensile sub-regions. His theoretical analysis and lab tests showed 

that the cutting process is discontinued process that can be regarded as a repeated cycle. Yan found that 

the two cracks are imposed on the rock in each cycle. The first one is a straight line which is initiated 

at cutter tip and propagated into the rock. The second one is curved, which is propagated toward the 

surface after the first crack has stopped propagation. The straight-line crack is initiated and propagated 

due to tensile strength, while the curved one is propagated due to shear strength. Due to the crack being 

caused by tension at the cutter tip, the crack direction can be determined by taking the principal stress 

at the cutter tip. 

The Yan force model fits the laboratory test data for SWG very well, while it does not fit as well for 

TM and BSS at the high BR and SR angles. The model suggested higher values for vertical cutter forces 

compared to the horizontal one (estimated cutter vertical force is greater than horizontal one). The Yan 

model suggests that the horizontal and vertical forces on cutter are not changed with the change in 

cutter SR. The model prediction for chip size and shape was verified against the lab data and showed 

good agreement in most cases.  

2.2.7 Gerbaud et al. (2006) Model 

Gerbaud et al. (2006) observed that there is a built-up edge of cutting on cutter face in the lab which 

controls the flow of crushed materials. They developed a new single cutter model by taking the buildup 

edge of failed materials on cutting face. They concluded that due to the energy is transferred between 
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cutter face and rock through a built-up edge on cutter face, the shear angle should be independent of 

cutter orientation and friction. Such an assumption is not in accordance with the Smith 1998 

observations in the lab for ductile rocks (shale). Smith, in 1998, observed that the thickness of ribbons 

decreases for polished faced cutters compared to non-polished cutter faces (Figure 2.3).  Therefore, the 

polished cutter has a lower interfacial friction angle (ψ) that increases the shear angle, which 

consequently reduces the size of ribbons. Gerbaud et al. (2006) included the effect of frictional forces 

which are introduced by a chamfer in their single cutter model.    

Figure.2.3. Shale ribbons for tests with water at 9000 psi CP and 0.011-inch depth of cut for polished (left) and 

non-polished cutter (right)(Smith, 1998) 

They considered two different mechanisms at chamfer with respect to the cutter depth of cut. If the 

cutter depth of cut is greater than the chamfer, the cutting is trapped between the chamfer and rock 

surface, which impose additional forces to the cutter. If the depth of cut is lower than the chamfer, the 

chamfer becomes a cutting force with higher BR angle. 

2.2.8 Rahmani (2013) Model 

Rahmani (2013) assumed that the behavior of fine-grained rocks like shale under high CP is more like 

metals. He modified the Ernst and Merchant (1941) model which was for metal cuttings including the 

cutter balling and bit body effects on cutter forces under CP (Rahmani, 2013). For a sharp cutter, they 

added the effect of friction force on the shear plane to the Ernst and Merchant model (1941). The friction 
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angle between the cutting and intact rock at the shear plane was assumed equal to the rock internal 

friction angle. Rahmani (2013) included the effect of CP on cutter tangential force by taking the shear 

plane area and bottom hole pressure into account. Detournay and Defourny in 1992 assumed that the 

total forces on cutter are the product of two uncoupled forces, one on cutter face and another on cutter 

wear flat area. Rahmani (2013) took the same assumption and developed a model for blunt cutters. 

Rahmani (2013) hypothesized that the proportion of maximum normal force to the wear flat area should 

not be greater than rock confined compressive strength. In addition, the contact area friction between 

wear flat and rock is equal to the rock internal friction angle due to broken rock adherence to the cutter 

wear flat area. Such an assumption for the wear flat area friction coefficient is valid, based on the 

Dagrain and Richard (2006) observations for carbonate rocks. 

Rahmani (2013) verified his model for three different rocks including Catoosa shale, MS, and Carthage 

limestone using single test data. The Rahmani single cutter model did not account for the effect of the 

chamfer on cutter axial and tangential forces explicitly. Rahmani (2013) included the chamfer effect by 

calculating an average BR angle from the tip of the chamfer to the rock surface. 

2.2.9 Carrapatoso et al. (2015) Model 

The effect of cutter chamfer geometry, cutter BR, and cutter aggressiveness on a single cutter were 

studied using numerical modeling (Carrapatoso et al., 2015). They applied discrete element modeling 

(DEM) and finite element modeling (FEM) to simulate the effect of cutter BR and cutter chamfer on 

cutting efficiency in Carbonate Rocks. The mechanical specific energy (MSE) was used as a criteria 

for measuring the cutter efficiency.  As defined by Teale in 1965 (Teale, 1965), the MSE is the amount 

of work that should be carried out to excavate unit volume of rock. The cutter aggressiveness was 

defined as the slope of a tangential force to axial cutter force components.  It was found that decreasing 

the chamfer size increases the cutter aggressiveness, which correlated to a higher penetration rate. 

Carrapatoso’s simulations also showed that the cutter aggressiveness is not sensitive to cutter BR. They 
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found that the cutter MSE altered slightly with changing in cutter chamfer size. Therefore, the cutter 

chamfer should not decrease the cutting efficiency in conducted experiments.  The simulation done by 

Carrapatoso et. al. did not take the effect of cutter vertical velocity on cutter performance into account. 

They mentioned that the effect of cutter vertical velocity should be studied separately as it happens 

experimentally.  

2.2.10 Cheng et al. (2018) Model 

In most of the previous single cutter models, the shape of the failure surface was assumed to be a 

straight line. Therefore, all the equilibrium force equations are developed based on straight failure 

surface, which imposes error to the models. In addition, the number of models that take the hydrostatic 

pressure effect on cutting procedure into account, are limited. The bottom hole hydrostatic pressure 

affects the cutting force and mechanical specific energy, which consequently reduces the drilling 

efficiency (Cheng et al., 2018).  Cheng et al. (2018) solved the cutting forces by taking the in-situ stress, 

pore pressure, and hydrostatic pressure into account to develop a new single cutter model. Cheng et al. 

(2018) found the shear failure surface for different depth of cuts, BR, and cohesion strengths, through 

connecting the maximum shear stress points predicted by the model. They found that the failure surface 

is a curved line instead of a straight line, and this was a significant part of their model. The failure 

surface shape was confirmed using 3D surface topography for granite cuts. 

2.3 Statistical Models 

The application of statistical models such as Artificial Neural Network (ANN) in drilling ROP 

simulation and optimization is well established in the literature (Arehart et al., 1989; Mohaghegh et al., 

1995; Karri, 1999; Dashevskiy et al., 1999; Fruhwirth et al., 2006; Marana et al., 2010; Ashrafi et al., 

2018). 
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Bilgesu et al. (1997) applied the ANN to their drilling data to find complex patterns such as WOB, 

RPM, mud flow rate, formation hardness, and the bit type. They used a simulator to generate drilling 

data to eliminate errors coherent to field measurements. The validity of the trained ANN was 

demonstrated with data from the existing field as well as from the drilling simulator.  

Gidh et al. (2012) applied ANN for real-time drilling optimization. They benefited from the huge 

drilling record database (DRB) and geographical bit data filters to find pertinent offset wells. The 

database includes more than 3 million bit runs and was initiated in 1985. The DRB user interface was 

used to filter the data and to identify the offset wells that had used the same bit. A rock strength software 

was used to determine the formation’s rock strength and abrasiveness, and to identify the bit that 

possesses the appropriate combination of durability, gauge protection, and hydraulic configuration. 

Their ANN system learned how the bit drills and wears out in any similar formation. The trained ANN 

then was applied to offer the best combination of WOB, RPM, and flow rate to reduce the drilling cost. 

They reported three days saving in an 8 ½ inch hole section using their new system. 

Ashrafi et al. (2018) applied a hybrid artificial neural network for ROP estimation. They used 1000 

data points collected from mud logging and petrophysical logs and applied four metaheuristic 

algorithms including Particle Swarm Algorithm (PSO), Genetic Algorithm (GA), biogeography-based 

optimizer (BBO), and imperialist competitive algorithm (ICA) to find the ANN parameters. The WOB, 

RPM, pump flow rate, pump pressure, pore pressure, gamma-ray, density log, and shear wave velocity 

were selected as ANN input parameters.   

Hegde and Gray (2018) estimated the ROP using four input parameters including WOB, flow-rate, 

RPM, and rock strength. Ashrafi et al. (2018) developed their ANN model by taking parameters such 

as pump pressure, gamma ray, pore pressure, and shear wave velocity as input.  

The very first and most common mistake in applying machine learning algorithms (i.e. ANN, Random 

forest) in the literature is picking up the wrong input parameters for ROP prediction. The machine 
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learning (ML) algorithms can take any number of arrays of input parameters and map them to one or 

more than one output no matter what those parameters are. From a drilling  engineer’s point of view, 

selecting drilling depth, pump pressure, flow rate, IADC code, drilling torque, plastic viscosity, 

standpipe pressure, shear wave velocity, and flow-rate are not correct for ROP estimation, although 

they have may an effect on ROP in some cases (Soares and Gray, 2018; Hegde and Gray, 2018; 

Elkatatny et al, 2017; Amer et al, 2017; Hegde et al, 2017). The ML algorithms structure (i.e. ANN 

number of layers and number of inputs) can be expanded to fit any size of data with any accuracy which 

can be misleading. 

Conducting sensitivity analysis is one common step to evaluate the accuracy and performance of 

models (either analytical, numerical or statistical). The ML algorithms usually fail the sensitivity 

analysis since they do not comply with solid mathematical equations for their simulation as analytical 

models do. For instance, the ANN is composed of a 1D or 2D network which is inspired by the 

biological brain. The function is defined in the nodes and the model constants are found using iterative 

search algorithms.  Depending on the number, type and arrangement of layers, functions that are applied 

to the network, and the arrangement of layers, different types of  networks with different  functionalities 

are obtained (i.e. ANN, RNN, and CNN).  

Overfitting the ML algorithm is very common.  Overfitting means that although the model error on 

training data is small, the model error on newly introduced data, unseen during training, is high.  

Overfitting happens either when the training set contains noisy instances, or the training instances are 

not a good representative of the instances’ space. Both of these situations are common in real-life 

application (Hindi and Alakhras, 2009). 

During the overfitting, the ML parameters and functions are changed in a way to mimic the training 

data, and therefore the model accuracy for training data would be high. This could be the potential 

reason that some of the statistical ROP models in the literature reported high accuracy.  
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The machine learning (ML) algorithms need a huge amount of data and strongly rely on that. A trained 

network for a ROP estimation is applicable just for that field and is barely applicable for other 

formations. The ML algorithms rely on data and because of that their accuracy and performance will 

be affected by feeding bad data (i.e. noise in data).  

The independent parameters should be selected and separated and used as input to machine learning 

algorithms (i.e. ANN, random forest, etc.). This requires the user to have a deep understanding of 

drilling procedure and details of the mechanism involved underneath the bit.  

The ML algorithms have a huge application in other domains such as image recognition (Deep Neural 

Network), Natural Language Processing (NLP), anomaly detection, autonomous driving vehicles, etc, 

however, it is not suggested in drilling ROP modeling due to above-mentioned insufficiencies.  

2.4 Interfacial friction angle (IFA) 

The relative movement between the cutter face and cutting suggests the existence of a friction force at 

the cutter face, which is known as interfacial friction. The normal element of interfacial friction on the 

cutter face is upward, which reduces the effective normal force on the cutter, and consequently reduces 

the cutter depth of cut. Therefore, to achieve an accurate PDC ROP estimation, it is necessary to have 

an accurate estimation of interfacial friction. The effect of different factors such as cutter size, cutter 

chamfer, cutter BR, cutter wear flat area, cutter face characteristics, rock properties, cutter normal force, 

rock saturation, and drilling fluids on cutter forces and interfacial friction angle (ψ or IFA) were 

investigated by several authors (Smith, 1955; Smith et al., 2002; Kuru and Wojtonowicz, 1992; Smith, 

1998; Richard, 1999; Haung, 1999; Rahmani, 2013; Akbari et al. 2014).  

Experiments have shown that the interfacial friction angle (ψ) is lower for polished cutters, compared 

to the standard ones (Smith, 1955; Smith et al., 2002). Polishing the cutter face area reduces the surface 

roughness, which consequently decreases the coefficient of friction. Smith et al. (2002) conducted a 
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direct interfacial friction test and found that the interfacial friction angle for Twin Creek Siltstone was 

higher compared to the Catoosa shale (Rahmani, 2013). Also, they found that the rock saturation and 

drilling fluid type (oil or water) slightly affected the interfacial friction coefficient. Kuru and 

Wojtonowicz (1992) investigated the effect of drilling fluidtype on the friction coefficient for Nugget 

sandstone, MS, and BSS. They found that the friction coefficient is higher for Nugget sandstone and 

MS in oil-based mud, while for BSS, higher friction coefficient showed up in water-based mud. Hibbs, 

in 1983, found that the cutter velocity slightly affects the friction coefficient. 

The single cutter tests have shown that in Anhydrite, Coal, and sandstone, the bigger the wear flat area 

is, the greater the friction coefficient and lower normal stress at wear flat (Rahmani, 2013).  In contrast, 

the friction coefficient in carbonates remains independent of wear flat roughness due to materials 

sticking to the wear flat area.  This, however, causes rock grain sliding friction rather than cutter wear 

flat on the rock (Dagrain and Richard, 2006). Rahmani conducted triaxial compressive strength tests 

on 20 different rocks and found that the friction angle underneath the cutter is well correlated with the 

internal friction angle of the rock. 

Coudyzer and Richard (2005) studied the influence of BR and SR angles on both the magnitude and 

orientation of the cutter cutting force. They observed that the cutter cutting force is strongly affected 

by the BR angle, while the SR angle has almost no effect. They found that force inclination varies 

strongly with the cutter orientation, indicating that force angle cannot be viewed as a simple interfacial 

friction angle as commonly accepted in the literature. It is also well documented in the literature that 

the BR drastically affects the angle between the normal to the cutter face and the force vector (ψ) 

(Nishimatsu, 1972; Richard, 1999; Akbari et al., 2014; Rostamsowlat et al., 2018). Therefore, ψ is not 

a measure of interfacial friction angle between the rock and cutter face, as it is often considered in the 

literature, and a more complex failure mechanism must be considered (Coudyzer and Richard, 2005). 

Coudyzer and Richard (2005) argued that there is a build-up edge of crushed material on the cutting 

face that controls the failed materials in such a way that the angle between force and velocity is 
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unaffected. They observed that ψ, varies rapidly with BR, while ψ + BR is slowly decreased versus 

depth of cut (DOC). They concluded that the angle between the force vector and normal to the cutter 

face (ψ) cannot be considered as a measurement of the interfacial friction angle between the rock and 

cutter face. 

Akbari et al. (2014) investigated the effect of cutter size, chamfer geometry, and BR angle on PDC 

cutter friction for Carthage marble rock. They found that the interfacial friction angle decreases by 

increasing the cutter BR angle, which is in accordance with previous works (Smith, 1998; Richard, 

1999; Haung, 1999). They hypothesized that at low cutter BR angles, the flow of broken rock in front 

of the cutter face is upward, which introduces an upward tangential frictional force to the cutter surface. 

Increasing the cutter BR angle results in a backward flow of a portion of broken rock that introduces 

another tangential frictional force downward on the cutter face, which consequently, reduces the 

apparent friction force. They concluded that the effect of cutter size on cutter frictional response is 

insignificant. Akbari et al. (2014) concluded that the chamfer size increases the normal force on the 

cutter for the same depth of cut, while it does not change the cutter tangential force response.  

Rostamsowlat et al. (2018) performed a comprehensive set of cutting experiments on a wide range of 

rock samples (Limestone and sandstone). They found that the intrinsic energy is in good agreement 

with rock UCS when the cutter is positioned at BR angle between five to twenty degrees. They observed 

that the interfacial friction angle is independent of the depth of cut for a given BR angle, which was 

also reported by other researchers (Richard and Dagrain, 2012; Richard, 1999).  It was observed that 

the decrease in interfacial friction angle versus BR, follows a universal trend and is independent of rock 

type.  
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2.5 Optimization works 

Once the ROP is expressed through a mathematical Equation, the next step is to find the global 

minimum or maximum of such equation, so-called optimization. Drilling cost optimization has always 

been one of the major interests of researchers in petroleum engineering. Researchers have taken 

different approaches for drilling optimization, which are provided and discussed in the following 

sections. 

2.5.1 Speer (1958)  

Speer (1958) developed an optimization method to reduce the drilling cost by finding the best 

combination of WOB, RPM, and hydraulics. How WOB, RPM, and hydraulics affect the ROP, what 

the upper limits are for these parameters, the interrelation between these three parameters in different 

formations, and their combination that results in lower drilling cost, were answered by Speer. Speer 

(1958) established five empirical models to show the relationship between WOB, RPM, hydraulic 

horsepower, and ROP. These models combined into a chart to determine the optimum drilling 

techniques from field data. He found that there is a direct relation between ROP and WOB for a rock 

if sufficient bottom cleaning is maintained. The optimum WOB has an inverse relation with the 

formation drillability, the optimum RPM varies inversely with WOB, and the ROP varies in direct 

proportion with RPM under laboratory tests. The ROP varies inversely with RPM under field operation, 

in other words, the response of ROP to increase in RPM decreases as rotary speed increases (Speer, 

1958). In addition, the optimum RPM which results in the lowest cost varies inversely with the WOB. 

The optimal combination of drilling scenarios could be determined using charts proposed by Speer. 
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2.5.2 Graham and Muench (1959)  

In 1959, Graham and Muench developed an optimization approach to find the best WOB and RPM to 

reduce the total drilling cost. Their cost function included the cost of the rig for both drilling and 

tripping, along with the cost of the bit. Graham and Muench (1959) assumed that the bit life for 

rollercone is limited by bearing failure and the WOB is not limited by considerations such as hole 

deviation and hydraulics. Higher WOB or higher RPM improved the ROP and reduced the drilling cost, 

but they can decrease the bit life and increase the drilling cost by adding the bit and tripping expenses. 

Therefore, they performed a mathematical analysis to find whether or not a change in WOB or RPM 

would reduce the drilling costs. It was concluded that for any drilling condition, there is an optimum 

combination of WOB and RPM which minimizes the total drilling cost. They found that the optimum 

combination of WOB and RPM that decreases the overall drilling time can be achieved by varying a 

constant RPM iteratively while calculating the cost at various depths. The optimum combination of 

WOB and RPM are dependent on rig cost and bit bearing life. 

2.5.3 Galle and Woods (1963)  

In 1963, Galle and Woods developed a graphical method for drilling optimization. Their procedure can 

be used for determining the best combination of constant WOB and RPM, the best WOB for any RPM, 

and the best RPM for any WOB. An optimization approach based on the best combination of WOB and 

RPM is useful when the rig flexibility permits the use of any WOB and RPM. Optimization based on 

the best constant WOB for any RPM is useful when the rig limitations or vibration problems dictate the 

RPM that must be used. Lastly, optimization based on the best constant RPM for any WOB is required 

when the crooked-hole conditions or a limited number of drill collars dictate the maximum applicable 

WOB. For each of these three optimization approaches, the limiting effect of teeth, bearings, and 

drilling rate on bit life was considered separately. Galle and Woods (1963) established mathematical 

relations to achieve the best WOB and RPM for the lowest drilling cost. They also developed graphs 
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and procedures to determine the best combination of constant WOB and RPM, the best constant WOB 

for any RPM, and the best constant RPM for any given WOB. Using their graphs, one can calculate the 

drilling cost, footages, time, and condition of teeth and bearings of the dull bit. Their graphs and charts 

were applicable for rolling cutter rock bits and a wide variety of formations. The field tests 

demonstrated the application of their new optimization method.  

2.5.4 Reed et al. (1972) 

Reed et al. (1972) used the Monte Carlo vibrational approach to obtain the optimum WOB and RPM. 

In this method, a random path for a solution is initialized and the cost is calculated. In the next step, an 

iterative method is introduced by selecting random numbers for every point along the path. The new 

generated paths are evaluated and are kept if the cost is less than the original; however, if the cost is 

higher, the point is given a new random number. This process is repeated until either number of an 

iteration is achieved or a convergence criteria is satisfied. In general, it is difficult to place great 

confidence in the existing drilling equations which are a base for drilling optimization. If the drilling 

equations were developed based on field experience, the overwhelming variety of problems that can 

occur would cause certain doubts. On the other hand, if the equations were established based on the 

laboratory data, then one can question if the essential field conditions have been modeled or simulated 

properly. Another inconsistency in optimization analysis comes from the parameters that are fed into 

the drilling equations. Many tests conducted in the field indicate that formation variability makes it 

difficult to study the effect of different parameters on drilling rate. 

This inconsistency is made greater by the fact that parameters are estimated on one well, whereas 

drilling is optimized on another one. Reed et al. (1972) concluded that despite above-mentioned 

inadequacy and imperfections, the results of the optimization method are still valuable. 
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2.5.5 Bourgoyne and Young (1974) 

Bourgoyne and Young (1974) conducted a study to find the optimal drilling parameters. They 

incorporated the effect of formation properties, compaction, differential pressure, bit diameter, WOB, 

RPM, bit teeth wear, and bit hydraulics, and established a ROP model for roller-type rock bits. The 

ROP model coefficients were obtained by conducting multiple regression analysis on detailed drilling 

data. The optimization was performed on the ROP model by finding the optimum WOB, RPM, and the 

bit hydraulics. Bourgoyne and Young (1974) expressed the drilling cost as a function of bit cost, hourly 

rig cost, trip time, connection time, drilling time, and footage drilled. They derived optimization 

equations from drilling models and used them for the optimization procedure. The risk factors such as 

hole deviation problems, bit balling, mud type, percent solids, hole washout, and variable pump costs 

were ignored in their study. Bourgoyne and Young (1974) optimization model in most cases has shown 

a considerable reduction in drilling cost between a few percent to 30 percent. The optimized WOB and 

RPM are very sensitive to the regression constants. Therefore, model coefficients should be corrected 

with newly gained data from the field, to improve the optimization accuracy. 

2.5.6 Maidla and Ohara (1991) 

Maidla and Ohara (1991) applied dimensional analysis and developed a new ROP model by considering 

the effect of rock compressive strength, formation strength, compaction, differential pressure, WOB, 

RPM, tooth wear, and bit hydraulics. The major difference between their model and the Bourgoyne and 

Young (1974) model was the effect of formation compressive strength.  Multiple regression analysis 

was used to find the coefficients for both models. Both models were checked with the data in two ways. 

The ROP was calculated using the model with the coefficients found for that well and was then 

compared with the actual recorded data for the same well. The data from the previous well was used to 

find the model coefficients for each lithology. These coefficients were averaged considering the 

distance from each well to the one to be predicted and its respective lithology thickness. Maidla and 
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Ohara (1991) developed a computer program for simultaneous selection of a roller-cutter bit, bit 

bearing, WOB, and drill string rotation to minimize the drilling cost.  Their computer program uses the 

drilling cost function to find the best WOB and RPM for a given situation.  The computer program can 

be modified to print out iso-cost and iso-ROP graphs for cost-effective drilling.  

2.5.7 Rampersad at al. (1994) 

Rampersad et.al. (1994) developed a Geological Drilling Log (GDL) for drilling optimization using the 

information obtained while drilling an oil or gas well. The drilling models are used to create a GDL for 

the entire drilling section. The GDL is created by inversion of drilling ROP models specific to the bits 

used for drilling each interval. The method for optimization is to achieve the GDL using the data from 

the field. The calculated GDL along with the ROP model are used for drilling simulation and cost 

analysis. Numerous simulations are conducted to achieve the lowest drilling cost, and the optimum 

drilling parameters are calculated utilizing the learning curve concept. Rampersad et.al. (1994) used a 

GDL to select the bits (Tricone or Natural Diamond) and operating conditions properly for a drilling 

interval. They concluded that the new drilling optimization approach can be used for any pre-planned 

well or post-analysis of wells to minimize the drilling cost. In addition, the GDL approach provides 

certain answers to the drilling engineers and provides guidelines and well-founded conclusions.  

2.5.8 Rommetveit et al. (2004) 

In 2004, Rommetveit et al. (2004) proposed Drilltronics, which was new drilling automation and 

monitoring system. Drilltronics used all available surface and subsurface data for drilling simulation 

and optimization. The system is composed of several elements including software modeling with 

algorithms that reflect the wellbore behavior, real-time drilling data which are logged from at high 

acquisition rate, real-time diagnosis of drilling problems, and a drilling simulator. The Drilltronics 

modules include hole cleaning, downhole pressure, tripping, torque and drag, stick-slip prevention, bit 
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load optimization, integrated drilling simulator, data quality improvement, system monitoring, and 

control. The bit load optimization module’s purpose is to determine the optimum WOB and RPM on a 

bit. This system modulates the WOB and RPM and observes the changes in ROP. The effect of mud 

rheology and pore pressure were included by taking the pump rate and standpipe pressure into account. 

Rommetveit et al. (2004) incorporated the effect of bit wear on ROP by including a bit wear function 

in the bit load optimization module. It is also possible to use the module in automatic mode for real-

time simulation and optimization purposes. They increased the rate of penetration by 15% to 30% by 

preventing the stick-slip by means of activating a stick-slip prevention module. 

2.5.9 Dupriest and Koederitz (2005) 

In 2005, Dupriest and Koederitz used the mechanical specific energy (MSE) concept for drilling 

optimization. The MSE monitoring provides the ability for continuous detection of inefficiency  in a 

drilling system. They used the MSE surveillance to find the founder point which enables the system to 

optimize the ROP. The MSE quantifies the relationship between the amount of input energy and ROP 

(Dupriest and Koederitz, 2005). Teal, in 1965, found that the MSE values are numerically equal to rock 

compressive strength in the lab (Teal, 1965). Therefore, the MSE concept can be used as a reference 

point for drilling efficiency. The bit is efficient when the MSE values are close to the rock confined 

compressive strength. Dupriest and Koederitz (2005) were able to improve the drilling efficiency 

through recognizing the bit and bottom hole assembly (BHA) balling via monitoring the MSE. They 

also found that recognizing the vibrational founder that reduces drilling efficiency, is far more difficult 

to address since fundamental redesign in other features is required.  

2.5.10 Hareland et al. (2007) 

Hareland et al. (2007) applied a simulator for drilling optimization to more than 50 wells in Western 

Canada. The main objective was to reduce the drilling cost and time and improve drilling efficiency. 
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The simulator generates the rock strength using the drilling data which is obtained from the 

optimization of nearby wells. By extending the rock strength to adjacent wells, the optimum drilling 

scenarios were obtained in terms of WOB, RPM, bit types, and pull-out depths. The simulator results 

matched well with the actual field ROP data, as well as with drilling time and costs. They achieved an 

average of 15% to 20% reduction in drilling cost by applying the simulator results.  

2.5.11 Eren and Ozbayoglu (2010) 

In 2010, Eren and Ozbayoglu applied a multiple regression method for drilling optimization. They 

adopted the Bourgoyne and Young (1974) ROP model and used multiple regression to obtain a set of 

coefficients representing the drilling data gathered. They found that the drilling rate of penetration can 

be modeled in a real-time environment as a function of independent parameters such as WOB, RPM, 

mud weight, and formation details. In order to conduct real-time optimization, the real-time data was 

fed to a central computer. The central computer program uses real-time data and calculates the new 

ROP model constants. They determined the optimum drilling parameters by taking the new model 

constants into account. The aim was to find the WOB and RPM for a drilling interval in order to reduce 

the drilling cost per foot. Eren and Ozbayoglu found that the data quality is very important for real-time 

drilling optimization. Another important point is the wellbore inclination consideration in the analysis. 

They used the normalized WOB and obtained higher accuracy for ROP prediction, which consequently 

resulted in more precise optimization designs.  

2.5.12 Hamrick (2011) 

In 2011, Hamrick used a mechanical specific energy (MSE) approach for drilling optimization. The 

MSE is the work that is needed for destroying the unit volume of rock. Hamrick analyzed the MSE to 

obtain the optimal drilling parameters including WOB and RPM.  The parameters that are used for 

calculating the conventional MSE are interdependent. Hamrick (2011) established a mathematical 
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relationship between parameters and rewrote the MSE equation in terms of one independent parameter 

(i.e. WOB). The new MSE form, based on a single independent parameter, can be minimized 

mathematically. Once the optimum WOB was obtained, the other parameters (torque and penetration 

per revolution) were calculated based on the interdependent relationship. He used the first derivation 

of the MSE Equation and minimized the MSE to achieve the optimum WOB. Having the optimum 

WOB, the optimum torque and penetration per revolution could be determined using the developed 

mathematical relationship.  

2.5.13 Hankins et al. (2014) 

Hankins et al. (2014) applied the Hareland and Rampersad PDC ROP model (1994) for drilling 

optimization purposes. They rearranged the ROP model to calculate the rock strength from drilling 

data. The calculated rock strength was used to simulate the nearby well ROP.  Once simulation results 

were validated, the optimum drilling parameters including WOB, RPM, hydraulics, and bit 

specification were found. 
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CHAPTER III 
 

 

PDC ROP MODELING 

 

In this chapter, the contact area equations for sharp and blunt cutters are presented. The contact 

area of a cutter is used for calculating the cutter front area, which later is used for ROP estimation. 

The single cutter interfacial friction angle (ψ) (IFA) model is developed by taking cutter depth of 

cut, cutter velocity, and rock unconfined compressive strength into account. The single cutter force 

model is developed by incorporating the cutter contact areas and the IFA model for sharp cutters. 

The single cutter force model for a blunt cutter includes the effect of cutter wear flat area and 

interfacial friction angle (IFA). The new PDC blunt single cutter model takes the effects of essential 

parameters such as BR and SR angles, cutter size, cutter PDC layer thickness, cutter quality and 

wear flat area of both the stud and PDC layer into account. A full bit IFA model is developed 

similar to the single cutter IFA model however the constants are found utilizing the full bit data. 

The full bit IFA model is solved in the new ROP model to incorporate the effect of IFA and improve 

the accuracy of the ROP model. A new ROP model for PDC bits is introduced in which the volume 

of cut per revolution is calculated for a single cutter and is extrapolated to the cutting face of the 

bit, to achieve the total cutting volume that is cut from the formation. Previous PDC ROP models 

suffer from shortcomings such as deficient wear function model, ignoring the effect of wear flat 

areas (both stud and PDC wear flat areas), ignoring the effect of IFA, and ignoring the orientation 

and geometry of the cutter. 
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3.1 PDC single cutter contact area calculation 

The depth that a cutter penetrates into the rock, along its normal direction is known as depth of cut 

(DOC). The depth of cut is a function of cutter normal force, rock strength, and the area beneath the 

cutter. For a blunt cutter, the area beneath the cutter includes the area beneath the cutter face (Ah in 

Figure 3.1) and wear flat area (C-E in Figure 3.2), while for a sharp cutter it is only the area beneath 

the cutter face (Ah in Figure 3.1). In the following pages, the contact area equations for both sharp and 

blunt cutters are presented. The cutter front area (Av) is then calculated by taking the cutter contact area 

(Acontact) and cutter BR angle into account. 

3.1.1 PDC single cutter model contact area equation for sharp cutter 

In general, it is assumed that the cutter penetrates into the rock until the normal stress beneath the cutter 

face (Ah), satisfies the rock strength. The required area beneath the cutter face (Ah) is calculated by 

dividing the cutter normal force into the rock strength. The area in front of the cutter (Av) and the cutter-

rock contact area (Acontact) can be back-calculated by taking the Ah and cutter BR angle into account. 

It is worth mentioning here that the Av is known as the area of cut (Acut) in the literature. The Acontact, 

which is known as a circle segment area in geometry, is a function of the depth of cut (DOC), and is 

provided in Equation 3.1. The cutter depth of cut (in Equation 3.1) can be found by taking both Acontact 

, Dc, and cutter BR angle into account. A schematic of a sharp (unworn) single PDC cutter is provided 

in Figure 3.1. 
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Figure 3.1. A schematic of a sharp PDC cutter and its associated areas 

Acontact = (
Dc
2
)
2

× Cos−1(

Dc
2 −

DOC
Cos(BR)
Dc
2

)

− (
Dc
2
−

DOC

Cos(BR)
) × √Dc ×

DOC

Cos(BR)
− (

DOC

Cos(BR)
)
2

…… . . Eq. 3.1 

The derivation or the equation of Acontact are provided in Appendix A. 

3.1.2 PDC single cutter contact area equation for blunt cutter 

A schematic of a blunt cutter with bit grade equal to BG is seen in Figure 3.2 (see Appendix A section 

A.1.3) (Winters et al., 1987 a).  
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Figure 3.2. A schematic of a blunt cutter and the associated areas 

The blunt cutter contact area (BC in Figure 3.2), is achieved by subtracting the area of BD from the 

area of CD in Figure 3.2. Therefore, the contact area of a sharp cutter in Figure 3.2 (ADFG) with two 

depth of cuts equal to DOC2 and DOC1 respectively, are calculated using Equation 3.1 and subtracted 

to achieve the blunt cutter contact area. The DOC2 equation is provided at the following (see Equation 

A.44 in Appendix A). 

DOC2 = DOC +
BG × Dc × cos (BR)

8
 …… . . Eq. 3.2 

For a blunt cutter, Equation 3.1 is turned into a general form of Equation 3.3 by taking Equation 3.2 

into account (see section A.1.3 and A.2.2 for details).  
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]…… . . Eq. 3.3 

3.2 Depth of cut calculation 

Two parameters (𝒜1 and 𝒜2) are defined as follows and are used to calculate the depth of cut. 𝒜1 is 

the theoretically calculated area beneath the cutter and is calculated using Equation 3.4. 𝒜1 should be 

used to achieve force balance between weight on cutter (downward) and the rock reaction (upward) 

force. In Equation 3.4, the WOB is in lbf, RS is rock strength in psi, and Nc is the number of cutters. 

The RS can be either unconfined compressive strength or confined compressive strength (CCS) 

depending on drilling conditions. 

WOB
Nc
RS

=  𝒜1…… . . Eq. 3.4 

The stud material wear coefficient is lower than of the PDC layer, and because of that, it wears faster 

and causes less contact area. Therefore, 100% ideal contact area between stud and rock is not expected. 
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Ignoring the efficiency of stud wear flat area may cause error in ROP estimation. The weight on the 

cutter is turned into the depth of cut by taking the area beneath the cutter into account. Therefore, 

ignoring the stud wear flat area efficiency causes overestimating of the area beneath the cutter, which 

results in underestimating the depth of cut. Underestimating the depth of cut resulted in underestimation 

for ROP. The new model takes the efficiency of stud wear flat area into account to provide a realistic 

estimation of ROP.  

𝒜2 is the weighted area beneath the cutter and is a summation of the weighted wear flat area (Aw′) and 

area beneath the cutter face (Ah). 𝒜2 is calculated using Equation 3.5 and should attain a sum equal or 

close to 𝒜1 by adjusting the depth of cut (DOC) value. The DOC is reported as a cutter depth of cut. 

𝒜2=Aw′ + Ah…… . . Eq. 3.5 

Aw′ is the weighted wear flat area and is calculated using Equation 3.6. The cutter wear flat area 

includes the stud and PDC wear flat areas. The stud material has lower wearing resistance compared to 

the PDC layer, and because of that, it wears faster. Therefore, there is not 100% contact between the 

stud wear flat area (Aw,stud) and rock during drilling to compare to the PDC layer wear flat area 

(Aw,PDC). ω1 and ω2 are PDC layer and stud wear flat areas efficiency. The efficiency of stud wear flat 

area (ω2) is determined through lab experiments.  

Aw
′ = ω1. Aw,PDC +  ω2. Aw,stud…… . . Eq. 3.6 

The total wear flat area (Aw), PDC layer wear flat area (Aw,PDC), and the stud wear flat area (Aw,stud) 

are calculated using Equation 3.7, 3.8, and 3.9. Note that for a sharp cutter, there is no wear flat area 

and 𝒜2 in Equation 3.5 and is equal to the area beneath the cutter face (Ah).  
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 …… . . Eq. 3.8 

Aw,Stud = Aw − Aw,PDC  …… . . Eq. 3.9 
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The area of the cutter face that is in contact with the rock is the cutter contact area (Acontact) which is 

calculated using Equation 3.1 or 3.3 depending on the bit grade.   

The cutter contact area (Acontact) is turned into the area beneath the cutter face (Ah) by taking the cutter 

BR into account (Equation 3.10).   

Ah = Acontact. Sin(BR) …… . . Eq. 3.10 

Figure 3.3, shows the different areas including stud wear flat area (Aw,stud), PDC wear flat area 

(Aw,PDC), total wear flat area (Aw), cutter contact area (Acontact), the area in front of cutter face (Av), 

and the area beneath the cutter face (Ah). 

Two parameters, DOC and BG are needed to estimate the PDC bit rate of penetration. The DOC is 

increased from zero continuously, and the following sequences of calculations are performed until the 

weighted area beneath the cutter (𝒜2 ) in Equation 3.5 becomes close enough or equal to the 

theoretically calculated area beneath the cutter (𝒜1) in Equation 3.4. Each time the DOC in conjunction 

with BG is used to calculate the cutter contact area (Acontact) in Equation 3.1 or 3.3 (depending on 

BG), it gives the area beneath the cutter face (Ah) using Equation 3.10.  The area beneath the cutter 

face (Ah) is used in conjunction with the weighted wear flat area (AW′) in Equation 3.6, to calculate the 

weighted area beneath the cutter (𝒜2) using Equation 3.5. The depth of cut is accepted once the 

difference between 𝒜2 and  𝒜1 is achieved within a tolerance. 

Once the DOC is achieved, the cutter contact area (Acontact) is calculated using Equation 3.1 or 3.3. 

The cutter contact area (Acontact) is turned into the area in front of cutter face (AV) using Equation 3.11 

theoretically. 

Av = Acontact. Cos(BR) …… . . Eq. 3.11 
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Figure 3.3. Schematic of different areas associated with the cutter penetration calculation 
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3.3 Interfacial friction angle (IFA) modeling 

3.3.1 Single cutter IFA model 

The interfacial friction coefficient can be recorded either by conducting direct shear tests (Smith, 1995; 

Smith et al., 2002) or single cutter tests in the lab (Richard, 1999). The direct shear test is one of the 

earliest and simple method for measuring the soil shear strength and shear strength between rock and 

contact surface (Smith et al., 2002). Although, the direct test device proved to be simple and rapid test 

device, it has all disadvantages of a direct shear tester apparatuses such as severe problems with 

controlling stress concentration on edges of the sample and potential for sample jamming and crushing 

within the carrier (Smith et al., 2002). The interfacial friction can be determined indirectly using single 

cutter tests in the lab maintaining constant PDC cutter depth of cut and velocity. To measure the 

interfacial friction angle (ψ or IFA) for a particular rock, the cutter axial and tangential forces are 

recorded while the cutter moves at a constant depth of cut and velocity on a sample of rock. The 

recorded cutter forces then can be used to calculate the interfacial friction angle using the Detournay 

and Defourny (1992) model. The Detournay and Defourny (1992) interfacial friction angle model is 

provided in Equation 3.12. 

ψ = Tan−1 ( 
Fn
Ft
) − BR …… . . Eq. 3.12  

Coudyzer and Richard in 2005 argued that the force angle cannot be viewed as a simple interfacial 

friction angle and more complex failure mechanisms (i.e. build-up edge of crushed material in cutting 

face) must be considered (Coudyzer and Richard, 2005). In this study, the single cutter data in 

conjunction with the Detournay and Defourny (1992) model (Equation 3.12) are used to estimate the 

IFA. 

In 1987, Glowka conducted multiple single PDC cutter tests on different rock types including BSS, 

SWG, and TM. The single cutters with a constant velocity equal to 2.1 inches per second with different 
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diameters and wear flat areas were tested. Glowka (1987) applied a constant depth of cut and recorded 

the cutter normal and tangential (drag) forces. Hellvik et al. (2012) conducted tests on the PDC cutter 

with standard and variable chamfer (45 and 15-degree chamfer angle respectively) in the lab. They used 

a Vertical Turret Lathe (VTL) with a rock pie including Torrey buff sandstone, red sandstone, and TX 

pink granite. The VTL rotary speed was between 75 to 125 rpm, which gives a cutter velocity between 

134 inches per second to 220 inches per second with an average speed equal to 177 inches per second. 

They reported the cutter forces for different BR angles and DOC for both standard and alternate cutters 

in TX pink granite.  

The BSS and SWG (with unconfined compressive strength 7100 psi and 21500 psi respectively) from 

Glowka (1984) tests and the TX pink granite (with 19400 psi unconfined compressive strength) from 

Hellvik et al. (2012) were chosen to develop the single cutter IFA model. The potential parameters that 

affect the IFA are DOC, cutter diameter, cutter velocity, rock strength, mud type, cutter wear, and 

chamfer angle. In this study, the single cutter IFA model is developed by taking the cutter depth of cut, 

cutter velocity, and rock unconfined compressive strength into account. Akbrai et al. (2014) found that 

the PDC cutter diameter does not affect the frictional response considerable. The cutter velocity will 

affect the rock strain rate, and consequently the rock strength. In the single cutter IFA model, the UCS 

is representative of rock type and compressive strength. The single cutter IFA model has included the 

effect of strain rate, by taking simultaneously both UCS and cutter velocity into account. 

The general shape of a single cutter IFA model is provided in Equations 3.13 through 3.20. The IFA 

model shape was selected considering the single cutter IFA behavior versus cutter depth of cut. It is 

observed that the IFA values begin with high values and it exponentially decreases versus depth of cut 

(phase I). After a threshold depth of cut, the IFA descending trend shifts from exponential to a smooth 

declining one (phase II). The selected IFA model can simulate both phases successfully.  
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Note that for soft rocks (i.e. BSS) the IFA model should be able to generate only a declining trend 

versus depth of cut (phase II). This is because of shearing mechanism comparing to the chipping one 

underneath the cutter. Depend on the rock UCS and cutter velocity, the IFA model can show phase II 

behavior for all depth of cuts as it is seen in the rocks like BSS. The normalized values are used in the 

model to avoid conflict of dimension between parameters. Based on the experimental data (Hellvik et 

al., 2012) the summation of IFA and BR is almost constant. Therefore, in the IFA model, the IFA value 

is summed up with the BR and both show up at the left side of Equation 3.13. 

The a, b, and c are written with a similar shape as Equation 3.13. The reason for selecting a similar 

structure is that increasing the normalized cutter velocity and UCS should affect the IFA model 

behavior into some limits. In other words, increasing the cutter velocity or UCS, the Equation 3.17, 

3.18, and 3.20 approach to a limit and because of that, the whole IFA model will be limited to 

boundaries that are determined using data. 

In Equation 3.13, the ψsingle cutter is single cutter interfacial friction angle, the δn is the normalized 

depth of cut (taking the cutter diameter into account, i.e. 0.5 inch), and a, b, and d are a function of 

normalized cutter velocity and normalized unconfined compressive strength. 

ψsingle cutter + BR = a + (
b

δn
c + d

)…… . . Eq. 3.13  

δn =
δ

Dc
…… . . Eq. 3.14 

Vn =
Vc
2.1

…… . . Eq. 3.15 

UCSn =
UCS

5000
…… . . Eq. 3.16 
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a = w0 +
w1

Vn
w2 +w3

… . . Eq. 3.17 

b = w4 +
w5

Vn
w6 +w7

… . . Eq. 3.18 

c = w8… . . Eq. 3.19 

d = w9 +
w10

UCSn
w11 +w12

… . . Eq. 3.20 

The a, b, c, and d are used to fit the single cutter IFA model (Equation 3.13) with the Glowka (1987) 

and Hellvik et al. (2012) data points for BSS, SWG and TX pink granite. The differential evolution 

algorithm (DEA) is applied to the set of data (Glowka 1984; Hellvik et al. 2012) to search the space of 

solutions and to find the best a, b, c, and d with their associated constants.  

3.3.2 Full bit IFA model 

A separate IFA model for full bit application is suggested to consider the effect of IFA on ROP 

performance. The full bit IFA model is similar to the single cutter IFA model (Equation 3.13 through 

3.20) but has different constants. The reason for developing a separate full hole IFA model besides the 

single cutter IFA model is that the equivalent cutter concept introduced by Hareland and Rampersad 

(1994) is an approximation for simplification in the full hole model. The depth of cut of an individual 

cutter on bit face is a function of cutter distance from the bit center and the number of cutters. In essence, 

the number and arrangement of the cutter on the bit face affects the forces and DOCs of each individual 

cutter (see Appendix E). The cutter normal force is calculated by dividing the WOB to the number of 

cutters and is used for calculating the equivalent DOC and the final ROP. Therefore, calculating the 

IFA for the equivalent cutter on a bit face using the average WOC introduces potential errors to IFA 

estimations, and consequently, to the ROP estimations. The full bit IFA model set of equations are as 

follows. 
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ψfull bit + BR = a + (
b

δn
c + d

)…… . . Eq. 3.21  

δn =
δ

Dc
…… . . Eq. 3.22 

Vn =
Vc
2.1

…… . . Eq. 3.23 

UCSn =
UCS

5000
…… . . Eq. 3.24 

a = w0 +
w1

Vn
w2 +w3

… . . Eq. 3.25 

b = w4 +
w5

Vn
w6 +w7

… . . Eq. 3.26 

c = w8… . . Eq. 3.27 

d = w9 +
w10

UCSn
w11 +w12

… . . Eq. 3.28 

3.4 Single cutter force model  

3.4.1 Single cutter force model for sharp cutter 

The sharp cutter normal and drag forces are calculated by multiplying the cutter projected contact area 

(Equation 3.1) on the X and Y axis with rock unconfined compressive strength (see Equation 3.29 and 

3.30). Note that the cutter projected area is calculated by taking both the cutter BR and IFA into account. 

Fn = ((
Dc
2
)
2

× Cos−1(

Dc
2 −

DOC
Cos(BR)
Dc
2

) − (
Dc
2
−

DOC

Cos(BR)
) × √Dc ×

DOC

Cos(BR)
− (

DOC

Cos(BR)
)
2

)

× Sin(BR + ψsingle cutter) × UCS …… . . Eq. 3.29 
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Fd = ((
Dc
2
)
2

× Cos−1(

Dc
2
−

DOC
Cos(BR)
Dc
2

) − (
Dc
2
−

DOC

Cos(BR)
) × √Dc ×

DOC

Cos(BR)
− (

DOC

Cos(BR)
)
2

)

× Cos(BR + ψsingle cutter) × UCS …… . . Eq. 3.30 

3.4.2 Single cutter force model for blunt cutter 

The blunt cutter normal and drag forces are calculated using the following equations 3.31 and 3.32. The 

projection of cutter contact area on X and Y axis (for normal and drag forces respectively) are calculated 

by taking the cutter BR and IFA angles into account. The cutter wear flat area is multiplied with the 

UCS to achieve the additional normal force needed for cutter penetration (see Equation 3.31). The blunt 

cutter drag force model is provided in Equation 3.32. The additional normal force needed for the blunt 

cutter is calculated and multiplied with the rock internal friction coefficient to achieve the horizontal 

component. The cutter drag force is calculated by taking the additional horizontal force component into 

account (see Equation 3.32). 
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× Cos(BR + ψsingle cutter) × UCS + μ × Aw × UCS …… . . Eq. 3.32 

In the previous set of equations, μ is rock internal friction coefficient and Aw is cutter wear flat area. 

Because of CP during the drilling, UCS in Equation 3.29 through 3.32 becomes CCS which is rock 

confined compressive strength. 

3.5 New full bit PDC ROP model 

The radius at which the bit areas are equal inside and outside the radius is called effective radius (Re). 

The amount of rock volume that is cut by the bit inside and outside the effective radius is equal 

(Hareland and Rampersad, 1994).  The equivalent bit radius concept is used in the new model to 

estimate the PDC bit ROP.  Average BR and SR values are calculated from all the bit face cutters and 

assigned to a cutter traveling at the equivalent radius. 

In the new ROP model, the volume of rock that is cut by the cutter at an effective radius is calculated 

theoretically. This volume is a direct function of the area in front of the cutter, which itself is a function 
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of the depth of cut. The area in front of the cutter (Av) is multiplied by the effective radius and RPM to 

attain an estimation of cutting volume per minute. Two important assumptions when developing the 

ROP model include: The area in front of the cutter is constant for each rotation, and the geometric 

center of the cutter front area is fixed and rotates at a radius equal to the effective radius. The calculated 

cutting volume per minute is divided by the face area of the bit to achieve the ROP. The new model 

ROP is provided in Equation 3.33 and 3.34. In Equation 3.33, CB  is the  number of blade normalized 

correlation coefficient, NOC is the number of  cutters at bit face, RPM is the  revolutions per minute, 

the Re is equivalent radius in inches, Av is the projected contact area in front of the cutter in a square 

inch, Db is the bit diameter in inches and the ROP is in feet per hour. 

ROP = CB × NOC × (
5 × RPM × π × Re × Av

π
4
DB 

2
)      …… . . Eq. 3.33 

The cutter front area is a projection of cutter contact area (Equation 3.3) by taking the cutter BR, SR, 

IFA, and BG into accounts and is provided in Equation 3.34.  
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× Cos(BR + ψfull bit)

× Cos(SR)…… . . Eq. 3.34 

 

3.6 New PDC bit wear model 

Bit wear is one of the most important factors in ROP modeling. Bit wear gradually increases during 

drilling from zero BG (new bit) to 8 BG (completely worn out) based on the International Association 

of Drilling Contractor (IADC) system (Winters et al., 1987 a) and influences on the drilling 

performance. Therefore, having a well-developed bit wear estimation function is necessary for ROP 

modeling.  

In general, the PDC cutter wear is divided into two categories. The abrasive wear, which is associated 

with the development of uniform wear flat and is a function of normal force on the cutter, cutter 

temperature, cutter velocity, formation properties (e.g. abrasiveness and lubricity) and cutter quality. 
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The second wear category is due to dynamic forces applied to the cutter. Chipped, broken and lost 

cutter typifies the wear caused by dynamic forces (Sinor and Warren, 1989).  In this study, only abrasive 

wear is taken into account for developing a novel PDC bit wear model. 

Cutter normal and drag forces influence the cutter during the cutting process and cause cutter abrasive 

wear. During the cutting process, the rock breaks and moves ahead and beneath the cutter face. The 

relational movement of cutting beneath the cutter face results in frictional force at cutter face, which is 

known as interfacial friction. The interfacial friction has a great influence on the cutter normal (Fn) and 

drag (Fd) force. Ignoring the interfacial friction phenomena results in under and overestimations for 

cutter normal and drag forces respectively. The physical work that is done by a single cutter is 

calculated by taking into account both cutter normal and drag forces. The amount of work that the cutter 

drag force does is proposed in Equation 3.33. 

W1

min
= 0.083 × Fd ×  RPM × 2πRe…… . . Eq. 3.33 

The amount of work that is done by normal force at cutter is calculated in Equation 3.34. 

W2

min
=
Fn × ROP

60
…… . . Eq. 3.34 

The summation of these two works gives the total work that is done by cutter (Equation 3.35). In 

Equation 3.33 and 3.34, the Fn and Fd is cutter normal and drag forces (lbf), RPM is revolution per 

minutes, Re is effective radius (inch), ROP is in 
ft

hr
, and the W1, W2 and WT are works in ft. lbf. The 

cutter normal and drag forces for sharp and blunt cutters (Equation 3.29 through 3.32) are developed 

using the single cutter data in chapter 4.  

WT = W1 +W2…… . . Eq. 3.35 
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The wear constant (α) is the amount of work in ft. lbf that should be done to wear off the unit volume 

of the cutter in cubic inches. The total work done by the cutter is turned into the worn volume Vworn in 

cubic inch, by taking the cutter wearing constant. The cutter is composed of PDC and stud material 

with different wear constants. Therefore, the total work should be turned into the cutter worn volume 

(Vworn) by taking an average of the PDC layer and stud wear constants (αPDC and αstud) into account. 

It is assumed that the PDC layer and stud volumes that are exposed to formation are proportional to 

their wear flat areas (thickness of the worn layer is very small at each revolution).  

Figure 3.4 shows a schematic of a blunt cutter and its associated areas. The total area beneath the cutter 

(AH) is composed of cutter wear flat area (Aw) and the area beneath the cutter face (Ah). In Figure 3.4, 

the Aw is cutter total wear flat area which is composed of PDC wear flat area (Aw,PDC), and stud wear 

flat area (Aw,STUD).  

 
Figure 3.4. A schematic of a blunt PDC cutter and its associated areas 
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In Figure 3.5, a 3D representation of Figure 3.4 is provided. For a blunt cutter, the wear flat area can 

be assumed as a product of intersection between a tilted plane and a cylinder (Aw). In Figure 3.5, the θ 

and BR are complementary angles, the a is the depth of wear, and the intersection between the plane 

and cylinder is representative for the wear flat area (Aw) 

 

Figure 3.5 A 3D schematic of a PDC cutter and wear flat area from another perspective 

The projection of cutter wear flat area (A′′w) is a sector of a circle on the X-Y plane. The A′′w can be 

found by taking the integral of an equation of a circle within the boundaries. The wear flat area detailed 

equations for both PDC (Aw,PDC) and stud (Aw,stud) are provided in Appendix B. The total cutter wear 

flat area (Aw) and PDC wear flat area (Aw,PDC) are calculated using Equation 3.7 and 3.8. The cutter 

stud wear flat area can be calculated by subtracting total wear flat area from PDC wear flat area in 

Equation 3.9. 
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In Equation 3.36, an average of the cutter wear coefficient is calculated by taking the volume fraction 

and wear coefficients of PDC and stud layer into account. In Equation 3.37, the cutter total work is 

divided into the average wear coefficient to achieve the cutter worn volume. Note that at the beginning 

of drilling, there is no wear flat area and the total work is turned into the cutter worn volume by taking 

only the PDC layer wear coefficient (αPDC) into account.  

αave = ((
Aw,PDC
Aw

) × αPDC + (
Aw,STUD
Aw

) × αstud) …… . . Eq. 3.36 

Vworn =
WT

αave
 …… . . Eq. 3.37 

The cutter total worn volume (cubic inch) geometrically is calculated using Equation 3.37. The cutter 

worn volume in Equation 3.38, gives the cutter worn volume (cubic inch) by taking the cutter diameter 

(inch) and BR for a given bit grade. The cutter BG is back-calculated by replacing the cutter worn 

volume from Equation 3.37 into Equation 3.38. 

Vtotal worn = −[
(
Dc
2
)
3

Tan(BR)
[(

(
Dc
2
)−(

BG.Dc
8

)

(
Dc
2
)

) × arccos (
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8

)

(
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2
)

) − √1 − (
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8

)

(
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2
)

)

2

] +

(
Dc
2
)
3

3Tan(BR)
(√1− (

(
BG.Dc
8

)−(
Dc
2
)

(
Dc
2
)

)

2

)

3

]…… . . Eq. 3.38  

In the above set of equations, the DOC is the depth of cut (inch), BG is bit grade, Dc is cutter diameter 

(inch), AV is the area in front of cutter (square inch), Db is bit diameter (square inch), and  Vworn is 

worn volume in cubic inch. Figure 3.6 shows the schematic of the total worn-out section Vtotal worn of 

a PDC cutter.  
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Figure 3.6. Schematic of a worn-out section of a PDC cutter  

3.7 Metaheuristic Algorithms and Differential Evolution Algorithm (DEA) 

Metaheuristic Algorithms (MAs) are procedures developed to find a sufficiently good solution to an 

optimization problem. The MAs create a set of feasible sample solutions for a problem and then try to 

increase the candidate’s fitness iteratively. It is noticeable that using these methods to solve problems 

does not guarantee finding a global optimum answer. According to the search strategies classification, 

metaheuristics can be classified into local and global searches. The local search algorithms, such as 

hill-climbing, try to improve the fitness of an answer on a simple local domain and do not guarantee 

finding a global optimum answer.  

The global search algorithms such as Ant Colony Optimization (ACO), Differential Evolutionary 

Algorithms (DEA) and Particles Swarm Optimization (PSO) were designed to achieve the global 

optimum answer. In another classification, the MAs can be divided into single-solution versus 

population-based searches. The single-solution algorithms, such as Simulated Annealing (SA), iterated 

local search, variable neighborhood search, and guided local search are used to improve the fitness of 

an individual in the population of candidates. 
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However, the population-based algorithms such as evolutionary computation, Genetic Algorithm (GA), 

and Particle Swarm Optimization (PSO) benefit from the population information to guide the algorithm 

toward the optimum solution (Bianchi et al., 2009 and Blum and Roli, 2003). In some applications, an 

algorithm (MAs) is combined with another one (so called-hybridization) to improve the searchability. 

The classification of MAs is shown in Figure 3.7.  

  
Figure 3.7. Different MAs classification (Dreo and Candan, 2017) 

Storn and Price developed the Differential Evolution Algorithm (DE) in 1997 (Storn and Price, 1997). 

The DE algorithm is an iterative method that is used for optimization. The DE algorithm initiates by 

generating random candidates by taking the problem’s assumptions, constraints, and limitations into 

account. In Figure 3.8, the candidates begin from random initial points and iteratively are guided toward 

the global optimum according to the DE algorithm formula. The algorithm flowchart is provided in 

Figure 3.9.  

DE algorithm begins with a population of random candidate solutions and improves the fitness of 

population using its simple mathematical equation iteratively. As seen in Figure 3.9, the DE algorithm 

chooses a target vector (X1) randomly, which is selected to be manipulated by the algorithm. The DE 

algorithm benefits from two weighting and crossover factors. The weighting factor, which is shown by 
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F, regulates the amplification of differential variation among candidates (Atashnezhad et al., 2017). 

The crossover factor determines the amount of recombination between two individual candidates.  

 
Figure 3.8 A contour of a 3D problem with PSO particles (Ephramac, 2017) 

The algorithm selects two more vectors randomly (X2, X3) and calculates the difference (X3 − X2). The 

weighting factor is multiplied to the difference (X3 − X2) to achieve weighted difference vector 

F × (X3 − X2).  The F value is primary within the range of 0.5 to 2 (Atashnezhad et al., 2017). A 

random vector (X4), is chosen and added to the weighted difference vector to achieve the noisy random 

vector. In the end, a crossover is applied to the noisy random vector and target vector to achieve the 

trial vector. The fitness of the trial vector is compared to the target vector (X1) and is replaced if it has 

higher fitness. This process can be repeated until a predetermined criterion, such as the number of 

iterations or fitness, is achieved.  

In this study, the differential evolution algorithm (DEA) is applied to find the constants of single cutter 

and full bit interfacial friction models (Appendix F). 
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Figure 3.9. The differential algorithm flowchart 
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CHAPTER IV 

 

 

RESULTS 

This chapter shows the fitting results, verifications and application of the developed models 

including the single cutter model, the single cutter IFA model, full bit IFA model, and the newly 

developed full bit ROP model. The verification of the developed models is discussed utilizing sets 

of data for single cutter and full bit laboratory experiments. The sets of single cutter data are 

extracted from Glowka (1987) and Hellvik et al. (2012) single cutter experiments. The single cutter 

tests were conducted on cutters with different diameters, velocities and rock lithologies. The single 

cutter IFA model was fit on the single cutter data utilizing differential evolution algorithm (DEA) 

and the results was provided. A computer program was written in Python which solves the full bit 

IFA and the full bit ROP models simultaneously. The DEA used the computer program to develope 

the full bit IFA model using a set of full bit experiments data from Sandia National Lab (SNL) 

conducted in 2015, assuming zero CP and perfect drill bit hydraulic cleaning. Solving the 

developed full bit IFA model along with the PDC ROP model resulted in a very good estimation 

for ROP.  
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4.1 IFA model fitting results 

The single cutter IFA model was developed using the Glowka (1987) and Hellvik et al. (2012) single 

cutter tests. The cutter details including BR angle, chamfer angle, diameter size, and cutter velocity are 

provided in table 4.1. The Detournay and Defourny (1992) model (DD model) (Equation 3.13) was 

applied to find the cutter IFA for each case in table 4.1 (see appendix G). 

Table 4.1. Cutters details used for developing single cutter IFA model  

 

The calculated IFA from the DD model hereafter is considered as IFA data. The single cutter IFA model 

(Equation 3.13 through 3.20) coefficients were found utilizing the differential evolution algorithm 

(DEA) and the sharp single cutter data (see table 4.1). The single cutter IFA model was used for the 

cutter normal and drag forces calculations, and to estimate the cutter interfacial friction angle (for data 

sets in table 4.1). An objective function was written in Python (see Appendix F) to perform the 

calculation for all cases in table 4.1 and to return the absolute difference between model and data points. 

The DEA algorithm was applied to the objective function to find the IFA model constants and reduce 

the absolute difference between data and model.  

The single cutter IFA model and the coefficients are seen in Equation 4.1 through 4.4. 
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ψsingle cutter + BR = a + [
b

(DOCn)
1.24 + d

]…… . . Eq. 4.1 

a = (70.66 −
130.09

(Vn)0.99 + 2.77
)…… . . Eq. 4.2 

b = (0.49 +
19.62

(Vn)1.15 + 40
)…… . . Eq. 4.3 

d = (0.014 +
0.99

2.09 + (UCSn)2.72
)…… . . Eq. 4.4 

Figures 4.1 through 4.8 compare the estimated IFA from the model (Equation 4.1 through 4.4) with the 

experimental data from all sharp cutter cases in table 4.1. 

Figure 4.1 shows a comparison between the model-estimated IFA and the experimental data (achieved 

using DD model) for the cutter J in BSS (Glowka,1987). 

 
Figure 4.1. A comparison between model-estimated IFA and experimental data for cutter J in BSS  

Figure 4.2 shows a comparison between the model-estimated IFA and the experimental data for the 

cutter K in BSS (Glowka,1987). 
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Figure 4.2. A comparison between model-estimated IFA and the experimental data for cutter K in BSS 

Figure 4.3 shows a comparison between the model-estimated IFA and the experimental data for cutter 

J in SWG (Glowka,1987). 

 
Figure 4.3. A comparison between model-estimated IFA and the experimental data for cutter J in SWG 

Figures 4.4 and 4.5 show a comparison between the model-estimated IFA and the experimental data in 

TX pink granite with BR angles varying between 5º to 30º and chamfer angle 45º and 15º respectively. 
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Figure 4.4. A comparison between model-estimated IFA and the experimental data for cutters (variable BR, 

chamfer =45), data from Hellvik et al. (2012) 

Figure 4.5. A comparison between model-estimated IFA and the experimental data for cutters (variable BR, 

chamfer =15), data from Hellvik et al. (2012) 

 

Figures 4.6 and 4.7 show the sensitivity analysis of the IFA model for different unconfined compressive 

strengths and cutter velocities respectively for a specific drilling condition. 
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Figure 4.6. A sensitivity analysis on the IFA model for different rock UCSs at constant cutter velocity = 2.1 

in/sec 

 
Figure 4.7. A sensitivity analysis on the IFA model for different cutter velocities at constant UCS = 15000 psi 
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4.2 PDC single cutter force model verification 

Glowka, in 1987, conducted single cutter experiments and monitored the cutter axial and tangential 

forces. In this study, different cutters with different BG were dragged on SWG and BSS rock slabs at 

a constant depth of cut and velocity (2.1 inches/sec). For each cutter, the normal and drag forces were 

recorded. The results of single PDC cutter tests in SWG and BSS from Glowka (1987) were used for 

model fitting results.  

Hellvik et al. (2012) conducted a series of tests on the chamfered cutters with a variety of BR angles 

ranging between 5º to 30º. A set of single cutter data from Hellvik et al. (2012) with a 15º chamfer 

angle were used for cutter normal and drag force estimation.  The cutter depth of cut was used as an 

input variable and normal and drag forces were calculated based on the rock UCS. The cutter contact 

area for a sharp cutter at a constant depth of cut was calculated using Equation 3.1  

For each test, the underneath and front area of the cutter were calculated based on the contact area and 

BR angle. The normal and drag forces were calculated by multiplying the underneath and front areas 

of the cutter by the rock UCS. The results would be the estimated normal and drag forces of the cutter 

without including the effect of interfacial friction. 

In addition, the IFA model was applied to incorporate the effect of IFA in cutter forces estimation. The 

IFA model generates an estimation for interfacial friction angle by taking the cutter depth of cut, cutter 

velocity, and unconfined compressive strength into account (see Equation 4.1 through 4.4). The cutter 

contact area was turned into the cutter beneath and front areas by taking the summation of BR and IFA 

into account. Similarly, the normal and drag forces of a cutter were calculated by multiplying the cutter 

beneath and front areas with the rock UCS (Equations 3.29 and 3.30). 
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In the following pages, the DOC versus cutter normal and drag forces (Fn and Fd respectively) plots 

are presented before and after applying the single cutter IFA model. Note that, the IFA from data 

represent those values that were calculated using the DD model for all the cases in table 4.1.  

4.2.1 Sharp cutter force model verification 

Figures 4.8 to 4.16 show the estimated normal and drag forces versus the depth of cut for each cutter 

before and after applying the single cutter IFA model. The sets of tests from Glowka (1987) and Hellvik 

et al. (2012) were used to find the single cutter IFA model constants. Note that the cutters with 45º 

chamfer set data from Hellvik et al. (2012) were used. 

 
Figure 4.8. Normal and drag forces vs. DOC for sharp cutter J in BSS before and after applying the IFA model 
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Figure 4.9. Normal and drag forces vs. DOC for sharp cutter K in BSS before and after applying the IFA model 

Figure 4.10. Normal and drag forces vs. DOC for sharp cutter J in SWG before and after applying the IFA model  
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Figure 4.11. Normal and drag forces vs. DOC for sharp cutter with BR=5º in TX Granite (Hellvik et al., 2012) 

 
Figure 4.12. Normal and drag forces vs. DOC for sharp cutter with BR=10º in TX Granite (Hellvik et al., 2012) 
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Figure 4.13. Normal and drag forces vs. DOC for sharp cutter with BR=15º in TX Granite (Hellvik et al., 2012) 

 

 
 Figure 4.14. Normal and drag forces vs. DOC for sharp cutter with BR=20º in TX Granite (Hellvik et al., 2012) 
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Figure 4.15. Normal and drag forces vs. DOC for sharp cutter with BR=25º in TX Granite (Hellvik et al., 2012) 

 

Figure 4.16. Normal and drag forces vs. DOC for sharp cutter with BR=30º in TX Granite (Hellvik et al., 2012) 

As shown in Figure 4.8 to 4.16, the model underestimates and overestimates the cutter normal force 

and drag force respectively before applying the single cutter IFA model. The model provides an 

acceptable estimation for cutter forces after applying the single cutter IFA model. Theoretically, the 

cutter penetrates into the rock until the normal force over the area beneath the cutter becomes equal to 
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rock strength. For a fixed DOC, the ratio of the cutter front area to the underneath area with 20º BR is 

2.74 (
1

tan(20)
), however, this is true before the cutter begins cutting the rock. The interaction between 

the cutter face and rock results in interfacial friction. The direction of interfacial friction is upward and 

parallel to the cutter face. The interfacial friction can be translated to horizontal and vertical components 

as shown in Figure 4.17. The horizontal component of interfacial friction is in the same direction with 

theoretically calculated cutter drag force and therefore, it offsets a fraction of theoretically calculated 

cutter drag force. The normal component of interfacial friction is in the opposite direction of 

theoretically calculated cutter normal force and will be added to the cutter normal force (see Figure 

4.17). Theoretically, it is expected that the BR angle governs the ratio of the cutter drag force to normal 

forces, while in practice, the ψ + BR appears as a governing angle. The ψ is called interfacial friction 

angle (IFA) and is calculated using the DD model. In Figure 4.17, the Fn and  Fd are cutter normal and 

drag forces during the cutting process.  

 
Figure 4.17. Schematic of cutter normal and drag forces and interfacial friction effect 
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4.2.2 Blunt cutter force model verification 

Cutter D from Glowka (1987) single cutter tests (see table 4.1) was included in set of data as a 

representative for the blunt cutter for fitting the single cutter IFA model. The cutter D with a total wear 

flat area of 0.02 square inch and 20º BR angle was dragged on the SWG slab at a constant velocity of 

2.1 inches per second. For a blunt cutter, the wear flat area affects the cutter forces beside the interfacial 

friction. In this case, the cutter forces are calculated before and after applying the IFA model as shown 

in Figure 4.18. The cutter wear flat area is multiplied with the rock UCS to calculate the additional 

normal penetration force needed for cutter D to achieve the DOC (Equation 3.31 and 3.32). The 

additional normal force is added to the calculated normal force (after applying single cutter IFA model) 

to incorporate the effect of the wear flat area.  

Also, the additional normal force (wear flat area times UCS) is multiplied with the rock internal friction 

angle to achieve the frictional force (due to rock internal friction) at the wear flat area.  

The friction coefficient at cutter wear flat– rock contact area is assumed equal to rock internal friction 

angle. This is due to adhesion of a thin layer of broken rock cuttings into the cutter wear flat area which 

was observed for carbonate rock by Dagrain and Richard in 2006 (Dagrain and Richard, 2006) and 

therefore, the interfacial friction is only function of rock and not wear flat area surface finish (Rahmani, 

2013). 

Detournay and Defourny in 1992 plotted the E-S diagram for BSS for Glowka single cutter tests. The 

plots give a straight line for BSS with slop equal to the friction coefficient at rock-wear flat contact 

area, which it is equal to 0.82 for BSS. They mentioned that this value (0.82) is close to rock internal 

friction coefficient and it is unusually high compared to reported values of the contact friction 

coefficient between tungsten carbide and sandstone.  

Similar approach was used to calculate the SWG internal friction angle which is used in Equation 3.31 

and 3.32 to calculate the cutter normal and drag forces. In Figure 4.18, the E-S diagram for cutter D 
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data from Glowka (1987) tests is shown. The slope of friction line is Figure 4.18 is close to 0.6 (0.5947) 

and it is used as SWG internal friction angle in single cutter model for blunt cutters (Equation 3.31 and 

3.32) to calculate the cutter normal and drag forces. 

 

Figure 4.18. E-S diagram for blunt cutter D in SWG and friction line 

The resultant frictional force at the cutter wear flat area is in the opposite direction of cutter movement 

and therefore is added to the cutter estimated drag force from the previous step (after applying the IFA 

model). The final estimation for cutter normal and drag forces are seen at the bottom of Figure 4.19. 
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Figure 4.19. Comparison between model and data cutter normal and drag force for blunt cutter D in SWG 

before and after applying the IFA model and 𝜇 

4.3 New full bit ROP model fitting results 

The full bit test data in SWG from Sandia National Lab was used for developing full bit IFA model 

(Raymond et al., 2015). Two Ulterra bit designs were tested, one with four and one with five blades 

with 3.75-inch diameter which had been used for testing at the Sandia National Laboratories (SNL) 

Hard Rock Drilling Facility (HRDF). Both PDC bits have twelve cutters at bit face and the equivalent 

cutters have an average of 20º BR and a 0.5-inch diameter. Figure 4.20 and 4.21, show the face view 

of the four and five-bladed PDC bits respectively.  
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Figure 4.20. Face view photograph of four-bladed PDC bit 

 
Figure 4.21. Face view photograph of five-bladed PDC bit 

The bit details including the number of cutters, cutters diameter, equivalent cutter BR angle, and rock 

types are shown in table 4.2 (see appendix G). 



 
 
 

82 
 

Table 4.2. Bits details used for developing full bit IFA model 

 

The differential evolution algorithm (DEA) was used to solve the full bit IFA model (Equation 3.21 

through 3.28) and ROP models simultaneously. The goal is to find the constants of the full bit IFA 

model that will improve the model ROP estimation for all tests in table 4.2.   

The following steps are taken to solve the ROP model (Equation 3.33) and the full bit IFA model 

(Equation 3.21 through 3.28) simultaneously.  

The DEA generates a predetermined number of full bit IFA model constants (step 1 in Figure 4.22) in 

preset ranges which will be used to estimate the ROP for all cases in table 4.2 by the computer program 

(see Figure 4.22). 

The computer program chose a full bit IFA model in step 1 and utilized the full bit data (data points) to 

calculate the fitness through step 2 and 3. In step 3, the computer program  changed  ψ1, ranging 

between 0 to 70 (BR complementary angle) in 0.1 step intervals, and each time it calculated the absolute 

different between ψ1 and ψ2 (see Figure 4.22, step 3). The ψ1 values were used to adjust the cutter 

front area (Av), which is plugged into Equation 3.33 to calculate the ROP. The ROP value was divided 

by the RPM to obtain DOC, and the DOC was used along with the UCS and cutter velocity to calculate 

a new IFA (ψ2) using a full bit IFA model selected in step 2.  
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The ψ2 in step 3, is the full bit IFA model output which was selected in step 2. The ψ1 that resulted in 

minimum absolute difference between ψ1 and ψ2 was selected as the best ψ value and was saved in the 

table in step 4 for each data point. The computer program used the next data point in step 2 and repeated 

the procedure in step 3 and 4 to find the best ψ value. The best ψ values were used to adjust the cutter 

front area and to calculate the PDC bit ROP. The summation of absolute difference between data and 

model ROP was calculated and reported as the full bit IFA model fitness. The procedure was written 

in Python and provided in Appendix F. The computer program took the same approach toward all full 

bit IFA models (step 1) and calculated a fitness value. The DEA used the full bit IFA model fitness and 

generated a new set of full bit IFA models which were later used for ROP calculation. Note that a 

condition should be applied to the program to make sure descending IFA values versus WOB are 

achieved. This is because the IFA decreases with an increase in cutter DOC as seen in the single cutter 

experiments.  

The procedure was repeated until the algorithm received a maximum number of iterations, in this case 

300. The full bit IFA model is provided in Equations 4.5 through 4.11. 

ψfull bit + BR = a + [
b

(DOCn)
1.58 + d

]…… . . Eq. 4.5 

a = (57.3 −
96.44

(Vn)0.753 + 2.22
)…… . . Eq. 4.9 

b = (1.886 +
0.48

(Vn)1.6 + 0.79
)…… . . Eq. 4.10 

d = (
1.07

(UCSn)1.9 + 3
)…… . . Eq. 4.11 
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Figure 4.22. Developing full bit IFA model procedure 

 

 

 

 

The blade coefficients of 0.9 and 1.07 were used to incorporate the blade effect in the ROP model for 

four and five bladed bits respectively. Figure 4.23 through 4.25 compares the ROP model estimation 

with reported ROP for four-bladed bits at different RPMs.  
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Figure 4.23. Comparison between the model and data ROP for four-bladed PDC bit at RPM=100 in SWG 

 
Figure 4.24. Comparison between the model and data ROP for four-bladed PDC bit at RPM=150 in SWG 
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Figure 4.25. Comparison between the model and data ROP for four-bladed PDC bit at RPM=200 in SWG 

The comparison between the data and model are shown in Figure 4.26. In Figure 4.26, the red and black 

lines are representative for 10% up and down margin for a perfect match of the ROP values. It is 

observed that all model predictions are in the ± 10% margin of data points. 

 
Figure 4.26. Comparison between the data and model for four bladed-bit in SWG 
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In Figure 4.27, three lines are fit on the model predictions (100 RPM, 150 RPM, and 200 RPM) for a 

four bladed bit in SWG and plotted along with the data points. It is observed that the lines intersect at 

a point (shown with yellow arrow) around 2420 lbf and two phases are recognized which are 

representative for the inefficient and efficient drilling process. Detournay et al. (2008) characterized 

the phase I by increasing the contact of wear flat area as the depth of cut slowly increases with the 

WOB (Spencer et al., 2017). The phase II begins once a threshold depth of cut has been achieved such 

that the rock cannot support the additional normal stress on cutter wear flat area. Therefore, applying 

additional normal stress results in driving the cutter further into the rock, which finally causes the bit 

to increase as if perfectly sharp (Spencer et al., 2017). The effective drilling occurs in phase II, and thus 

represents the target operating region. 

 
Figure 4.27. The cutting point and two cutting phases for a four-bladed bit in SWG 
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Figure 4.28 through 4.30 compare the ROP model estimation with reported ROP for a five-bladed bit 

at different RPMs in SWG.  

 
Figure 4.28. Comparison between the model and data ROP for five-bladed PDC bit at RPM=100 in SWG 

 
Figure 4.29. Comparison between the model and data ROP for five-bladed PDC bit at RPM=150 in SWG 
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Figure 4.30. Comparison between the model and data ROP for five-bladed PDC bit at RPM=200 in SWG 

Similar to four bladed bits in SWG, it is observed that most model predictions are in the ± 10% 

margin of data points (see Figure 4.31). 

 
Figure 4.31. Comparison between the data and model for five bladed-bit in SWG 
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In Figure 4.32, three lines are fit on the model predictions (100 RPM, 150 RPM, and 200 RPM) for 

five bladed bit in SWG and plotted along with the data points. 

 
Figure 4.32. The cutting point and two cutting phases for a five-bladed bit in SWG 

Figure 4.33 through 4.35 compare the ROP model estimation with reported ROP for a four-bladed bit 

at different RPMs in BSS.  

 
Figure 4.33. Comparison between the model and data ROP for four-bladed PDC bit at RPM=100 in BSS 
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Figure 4.34. Comparison between the model and data ROP for four-bladed PDC bit at RPM=150 in BSS 

 
Figure 4.35. Comparison between the model and data ROP for four-bladed PDC bit at RPM=200 in BSS 

The model predictions are in the ± 10% margin of data points as is shown in the Figure 4.36. 
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Figure 4.36. Comparison between the data and model for four bladed-bit in BSS 

In Figure 4.37, three lines are fit with the model predictions (100 RPM, 150 RPM, and 200 RPM) for 

the four bladed bits in BSS and plotted along with the data points. 

 

Figure 4.37. The cutting point and phase II for a four-bladed bit in BSS 
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Figure 4.38 through 4.40 compares the ROP model estimation with reported ROP for a five-bladed bit 

at different RPMs in BSS. The model provides a good estimation for data points (all estimations are in 

± 10% margin) as is shown in the Figure 4.41.  

 
Figure 4.38. Comparison between the model and data ROP for five-bladed PDC bit at RPM=100 in BSS 

 
Figure 4.39. Comparison between the model and data ROP for five-bladed PDC bit at RPM=150 in BSS 
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Figure 4.40. Comparison between the model and data ROP for five-bladed PDC bit at RPM=200 in BSS 

 
Figure 4.41. Comparison between the data and model ROP values for five bladed-bit in BSS 

In Figure 4.42, three lines are fit on the model predictions (100 RPM, 150 RPM, and 200 RPM) for a 

five bladed bit in BSS and plotted along with the data points. As is expected for soft rocks, there is no 

phase I and a linear relation between WOB and ROP exists.  
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Figure 4.42. The cutting point and phase II for five-bladed bit in BSS 

4.4 Sensitivity analysis of the newly developed PDC ROP model 

A sensitivity analysis was performed on the newly developed PDC ROP model to investigate the effect 

of operational parameters (WOB and RPM) and bit design parameters. The analyzed parameters 

included WOB, RPM, bit diameter, and rock strength. The base cases for the aforementioned 

parameters were selected to run the analysis as shown in table 4.3.  

Table 4.3. The base case numerical values used for full bit PDC ROP model sensitivity analysis 
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The drilling rate of penetration functionality also was plotted and displayed Figures 4.43 through 4.46. 

 

Figure 4.43. The drilling rate of penetration response to increase in WOB 

The analysis of sensitivity of the rate of penetration on WOB shows that the drilling rate of penetration 

increases with an increase in WOB. The two drilling phases which are representative for inefficient and 

efficient drilling are detectable. The model was developed based on 100% efficient bottom hole 

cleaning and does not include the effect of hydraulics, yet. Therefore, the ROP model does not show 

decline in ROP curve once the flounder point is achieved.   

The graph below (Figure 4.44) shows that the drilling rate of penetration increases versus RPM, 

however, the ROP-RPM trend is different for low and high RPM values. At lower RPM, the amount of 
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et al. in 1981. In this study, it was assumed that the cutter velocity influenced the cutter interfacial 

friction angle, and therefore the cutter velocity was included in the IFA model. 

 

Figure 4.44. The drilling rate of penetration response to increase in RPM 

Figure 4.45 shows the sensitivity analysis of bit diameter on PDC rate of penetration. Increase in bit 

diameter results in decrease in drilling rate of penetration as shown in the following graph. As the bit 

diameter increases at constant WOB, the larger volume is needed to be drilled by the bit per unit time, 

which consequently reduces the drilling rate. 
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Figure 4.45. The drilling rate of penetration response to increase in bit diameter 

Figure 4.46 shows the effect of rock compressive strength on PDC rate of penetration. As it is expected, 

the drilling rate of penetration decreases versus rock compressive strength. At constant WOB, the 

harder the rock (higher UCS values) is, the lower cutter DOC and ROP would be. In this case, it is 

observed that for UCS higher than 30,000 psi, zero drilling rate of penetration is achieved. For UCS 

values higher than 30,000 psi, the average stress on each PDC cutter (30 in this case) is so small that it 

results in small DOC values. The small DOC values result in higher interfacial friction angle (close to 

cutter complementary angle, i.e. 70º). The higher the IFA values are, the lower the adjusted cutter front 

area would be.  
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Figure 4.46. The drilling rate of penetration response to increase in UCS 

The normalized sensitivity analysis of all above parameters are provided in the Figure 4.47. 

 

Figure 4.47. The PDC ROP model sensitivity analysis  
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performance of the 8.5-inch PDC bit in Carthage lime stone. The Winters et al. (1987 b) measured the 

rock compressive strength under different CP (see Figure 4.48). 

The developed ROP Model in this study is applied along with the full bit IFA model for ROP estimation 

and the results are provided in the Figure 4.49 through 4.54. The Carthage limestone CCS was 

calculated taking the data from Winters et al. (1987 b) test data and CP into account. The CCS was used 

in the both ROP model and full bit IFA model models.   

 

Figure 4.48. variation of Carthage lime CCS versus CP 
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Figure 4.49. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi, 

CP=1400 psi, CCS=14654 psi, NOC=49, NOB=7, Dc=0.5 “, BR=20, ROP-constant=0.55  

 

Figure 4.50. comparison between the model ROP and data for 8.5” PDC bit, RPM=170, UCS=10900 psi, 

CP=920 psi, CCS=103147 psi, NOC=49, NOB=7, Dc=0.5 “, BR=20, ROP-constant=0.55  
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Figure 4.51. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi, 

CP=807 psi, CCS=12778 psi, NOC=49, NOB=7, Dc=0.5 “, BR=20, ROP-constant=0.55  

 

Figure 4.52. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi, 

CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7, Dc=0.5 “, BR=13, ROP-constant=0.55  
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Figure 4.53. comparison between the model ROP and data for 8.5” PDC bit, RPM=175, UCS=10900 psi, 

CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7, Dc=0.5 “, BR=13, ROP-constant=0.55  

 

Figure 4.54. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi, 

CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7, Dc=0.5 “, BR=13, ROP-constant=0.55  
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As it is seen in Figure 4.49 through 4.54 the model provides a good estimation for PDC ROP at 

different RPM, CCS, and BR values in Carthage limestone.  
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CHAPTER V 

 

 

CONCLUSIONS AND FUTURE RECOMENDATION 

CONCLUSIONS 

The conclusions of this thesis are provided as follows. 

• The flow of cut moving ahead and beneath the cutter results in a frictional force at the 

cutter face, known as interfacial friction. The interfacial friction plays an important role in 

the interaction between cutter and rock. Interfacial friction affects both cutters drag and 

normal forces considerably. The interfacial friction shows up as an angle known as the 

interfacial friction angle (IFA), and is calculated using the DD model (Equation 3.12) for 

a sharp cutters. In this study, a single cutter IFA model was developed for sharp cutters 

using the data from literature. The single cutter IFA model takes the cutter velocity, cutter 

depth of cut, and velocity into account. The cutter IFA model is used cooperatively with 

the single cutter force models to estimate the cutter drag and normal force, which has 

potential application for simulating cutter wear (real-time bit wear model). 

• The single cutter tests show that the cutter chamfer does not have a great effect on the IFA. 

• A single cutter analytical force model was developed for sharp and blunt cutters that 

generate promising estimation for cutter normal and drag forces in BSS, SWG, and TX 

pink granite lithologies.
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• The single cutter model was scaled up and used for developing a full PDC bit ROP model. 

A full bit IFA model was developed and used to adjust the effect of friction on cutter depth 

of cut and to improve the PDC ROP model estimations. The new PDC ROP model is solved 

with the full bit IFA model, and therefore, it has included the effect of interfacial friction 

force. In the new full bit ROP model, the effect of the number of blades is shown in a 

constant, CB , which was found equal to 0.9 and 1.07 respectively for the four and five 

bladed bits. 

• The developed full bit model along with developed full bit IFA model were verified for 

new bits at three RPM, two equivalent BR angles, and four CPs with 100% perfect bit 

cleaning. 

• The effect of RPM on the ROP model was incorporated in the new full bit model. 

Increasing RPM will increase the volume of cut per unit time and consequently result in 

higher ROP values. However, the higher RPM will result in higher cutter velocities, which 

increases the cutter IFA, and decreases the cutter depth of cut and ROP.  

• The new model can be used for detecting phase II in drilling, which is representative for 

efficient drilling. In this case, the ROP model should be solved at two different RPMs to 

achieve the intersect WOB. The WOBs less than intersection WOB happen in phase I while 

the WOBs over intersection point are in phase II. 

• The differential evolution algorithm (DEA) was applied to develop two IFA models for 

single cutter and full bit. The DEA was written in Python notebook and provided in 

Appendix F. The python is an open-source, integrated high level, general-purpose 

programing language.  
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FUTURE RECOMMENDATIONS 

• In the new PDC ROP model the effect of cutter arrangement, interaction, and exposure 

were ignored. These factors can be integrated into future models to improve ROP 

simulation accuracy.  

• The efficiency of PDC and stud wear flat areas is not equal, due to having different material 

and quality. An attempt should be made to consider the effect of wear flat area efficacy on 

cutter depth of cut, and consequently the ROP. 

• The CP is an important parameter which affects the cutter forces tremendously during 

drilling. The effect of CP on single cutter forces should be studied for different rock 

hardness and lithologies which later can be used for improving single cutter and full bit 

IFA models. 

• An attempt should be made to find a relationship between the single cutter and full bit IFA 

models. The potential implication of a single cutter IFA model placed directly into the ROP 

model can be studied. It is suggested to modify the equivalent cutter definition based on 

Appendix E and use it for estimating the accurate equivalent normal force and depth of cut.  

• The effect of drilling fluid, cutter surface finish, chamfer angle, and cutter balling should 

be studied for single and full bit IFA models. It is expected that mentioned parameters 

affect the IFA model, which is a key element for estimating the ROP accurately.   

• The blade effect was incorporated into ROP by multiplying constant CB into the model. An 

attempt should be made to investigate the effect of the number of blades on PDC bit 

performance.  

• The model should be verified for bits with different diameters. 

• The IFA model was developed based on DOC, UCS, and cutter velocity. It is noteworthy 

to mention that in the IFA model, the UCS was replaced with CCS because of the having 
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CP. However, the potential of including the CP effect into the IFA model as a separate 

parameter should be investigated in the future works. It is expected that the frictional 

behavior of soft rock under CP be different than those rocks with higher UCS. In other 

words, two rocks with same CCS and different UCS (under two different CP) can behave 

differently just because of their lithologies. Having separate UCS and CP in the IFA model 

will give model more room for simulating more sophisticated behaviors. 
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APPENDIX A 
 

Cutter contact area calculation 

 

A.1 Approach 1 

A schematic of a cutter face (sharp) is seen in Figure A.1. In Figure A.1, the r is cutter radius 

(half of the cutter diameter-Dc), θ is half of triangle vertex angle (is seen in green), Z is the 

height of the triangle, L is the projection of cutter depth of cut (DOC) on cutter face, X is the 

base of triangle, and the Z’ is the projection of Z by taking the cutter BR angle into account. 

 
Figure A.1. The schematic of a sharp cutter front face (left) and side view (right) 

The area of a circle sector and the triangle in Figure A.1 are calculated using Equations A.1 

and A.2.  

Asector =
2θ

360
πr2…… . . Eq. A. 1 

Atriangle =
ZX

2
…… . . Eq. A. 2 

The depth when the cutter penetrates half the cutter diameter of the cutter is the threshold depth 

of cut (DOC T).The threshold depth of cut is defined in the Equation A.3 and is seen in Figure 

A.2. 
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DOCT =
Dc
2
Cos(BR)…… . . Eq. A. 3 

 

Figure A.2. The schematic of the depth of cut and threshold depth of cut 

The triangle in Figure A.1 is seen in Figure A.3. Using Pythagorean Theorem (see Figure A.3): 

r2 = Z2 +
X2

4
 …… . . Eq. A. 4 

 
Figure A.3. A schematic of a triangle 

 

A.1.1 Cutter Contact area calculation for sharp cutter 

A.1.1.1 Calculations for Z when the DOC <  DOCT 

The Z in Figure A.1 is equal to the difference between the cutter radius (r) and L (see Equation 

A.5). 

Z = r − L …… . . Eq. A. 5 

Replacing the r and L will give Equation A.6. 

Z =
Dc
2
−

DOC

Cos(BR)
 …… . . Eq. A. 6 

A.1.1.2 Calculations for X when the DOC <  DOCT 

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 is achieved. 
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X2

4
= r2 − Z2…… . . Eq. A. 7 

Rearranging Equation A.7, the Equation A.8 is achieved. 

X = 2√r2 − Z2…… . . Eq. A. 8 

Replacing r with half of the cutter diameter, and Z from Equation A.6 into Equation A.8 the X is 

calculated using Equation A.9. 

X = 2√
Dc

2

4
− (

Dc
2
−

DOC

Cos(BR)
)2  …… . . Eq. A. 9 

A.1.1.3 Calculations for θ when the DOC < DOCT 

The θ is calculated using Equations A.10 (see Figure A.1). 

Tan(θ) =

X
2
Z
…… . . Eq. A. 10 

Rearranging Equation A.10 will result in Equation A.11. 

θ = Tan−1 (
X

2. Z
)…… . . Eq. A. 11 

Replacing the X and Z into the Equation A.11, the θ is calculated for the DOC<DOCT  

θ = Tan−1

(

 
 
 √

Dc
2

4 − (
Dc
2 −

DOC
Cos(BR)

)
2

Dc
2 −

DOC
Cos(BR)

)

 
 
 

…… . . Eq. A. 15 

A.1.1.4 Calculations cutter contact area when DOC <  DOCT 

The cutter contact area is calculated using Equation A.16. 

Acontact = ASector − ATriangle  …… . . Eq. A. 16 

The cutter sector area and triangle area were calculated in Equation A.1 and A.2. The triangle 

area (Equation A.2) is turned into Equation A.17 by replacing the Z and X (see Equations A.6 and 

A.9). 
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Atriangle =

(

 
 
 
 (
Dc
2 −

DOC
Cos(BR)

 ) . (2√
Dc

2

4 − (
Dc
2 −

DOC
Cos(BR)

)2 )

2

)

 
 
 
 

…… . . Eq. A. 17 

The cutter contact area is calculated using Equation A.18.  

Acontact =

(

 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 

Tan−1

(

 
 
 √

Dc
2

4 − (
Dc
2 −

DOC
Cos(BR)

)
2

Dc
2
−

DOC
Cos(BR)

)

 
 
 

)

 
 
 
 

πDc
2

720

)

 
 
 
 
 
 
 
 
 
 
 

−

(

 
 
 
 (
Dc
2 −

DOC
Cos(BR)

 ) × (2√
Dc

2

4 − (
Dc
2 −

DOC
Cos(BR)

)2 )

2

)

 
 
 
 

…… . . Eq. A. 18 

 

A.1.1.5 Calculations cutter contact area when DOC =  DOCT 

When the DOC = DOCT, the cutter penetrated by half and, therefore the cutter contact area would 

be half of total cutter face area and it is seen in Equation A.19. 

Acontact = π
Dc
8

2

 …… . . Eq. A. 19 

 

A.1.1.6 Calculations for Z when the DOC >  DOCT 

A schematic of a cutter when the DOC is greater than the threshold DOC is seen in Figure A.4. 



 
 
 

121 
 

 
Figure A.4. A schematic of a cutter face area when the cutter depth of cut is greater than the threshold 

depth of cut 

When the DOC is greater than the threshold depth of cut, the Z is calculated using Equation A.20. 

Z = −r + L…… . . Eq. A. 20 

Replacing the r and L will give Equation A.21. 

Z = −
Dc
2
+

DOC

Cos(BR)
 …… . . Eq. A. 21 

A.1.1.7 Calculations for X when the DOC >  DOCT 

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 was achieved 

(see Equation A.7). Rearranging Equation A.7, the Equation A.8 is achieved (see Equation A.8). 

Replacing the r with half of the cutter diameter, and Z from Equation A.21 into Equation A.8 the 

X is calculated in Equation A.22. 

X = 2√
Dc

2

4
− (−

Dc
2
+

DOC

Cos(BR)
)2  …… . . Eq. A. 22 

A.1.1.8 Calculations for θ when the DOC > DOCT 

The θ is calculated using Equations A.10 (see Figure A.1). Rearranging Equation A.10 will result 

in Equation A.11 (see Equation A.11). Replacing the X (Equation A.22), and Z (Equation A.21) 

into the Equation A.11, the θ is calculated in Equation A.23. 
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θ = Tan−1

(

 
 
 √

Dc
2

4 − (−
Dc
2 +

DOC
Cos(BR)

)
2

−
Dc
2
+

DOC
Cos(BR)

)

 
 
 

…… . . Eq. A. 23 

A.1.1.9 Calculations cutter contact area when DOC >  DOCT 

The cutter contact area is calculated using Equation A.24. 

Acontact = ASector + ATriangle  …… . . Eq. A. 24 

The cutter sector area is calculated in the Equation A.25. 

ASector = πr2 −
2θ

360
πr2  …… . . Eq. A. 25 

The triangle area is calculated in Equation A.26. The Equation A.2 is turned into Equation A.26 

by replacing the Z and X (see Equations A.21 and A.22). 

Atriangle =

(

 
 
 
 (−

Dc
2
+

DOC
Cos(BR)

 ) × (2√−
Dc

2

4
+ (

Dc
2
−

DOC
Cos(BR)

)2 )

2

)

 
 
 
 

…… . . Eq. A. 26 

The cutter contact area is calculated using Equation A.27. 
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Acontact =

(

 
 
 
 
 
 
 
 
 
 
 

π(
Dc
2
)
2

−

2

(

 
 
 
 

Tan−1

(

 
 
 √−

Dc
2

4
+ (

Dc
2
−

DOC
Cos(BR)

)
2

−
Dc
2 +

DOC
Cos(BR)

)

 
 
 

)

 
 
 
 

360
π(
Dc
2
)
2

)

 
 
 
 
 
 
 
 
 
 
 

+

(

 
 
 
 (−

Dc
2
+

DOC
Cos(BR)

 ) × (2√−
Dc

2

4
+ (

Dc
2
−

DOC
Cos(BR)

)2 )

2

)

 
 
 
 

…… . . Eq. A. 27 

A.1.2 Cutter worn area calculation for a blunt cutter 

A.1.2.1 Calculations for Z when the BG < 4 

A schematic of a cutter face (blunt) is seen in Figure A.5. In Figure A.5, the r is cutter radius (half 

of the cutter diameter-Dc), θ is half of triangle vertex angle (is seen in green), Z is the height of the 

triangle, the hwis the cutter wear length, the hw′ is the projection of hw on the vertical axis, the X 

is the base of the triangle, and the Z’ is the projection of Z by taking the cutter BR angle into 

account. 

 
Figure A.5. A schematic of a blunt cutter front face view (left) and side view (right) 
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The area of a circle sector and the triangle in Figure A.5 are calculated using Equations A.1 and 

A.2.  

The Z in Figure A.5 is equal to the difference between cutter radius (r), and length of wear (see 

Equation A.28). 

Z = r − hw  …… . . Eq. A. 28 

The hw is equal to bit grade times cutter diameter divided by 8. Replacing the hw in Equation A.28 

will results in Equation A.29. 

Z = r −
BG. Dc
8

 …… . . Eq. A. 29 

Replacing the r with half of the cutter diameter will result in Equation A.30. 

Z =
Dc
2
−
BG. Dc
8

  …… . . Eq. A. 30 

A.1.2.2 Calculations for X when the BG < 4 

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 is achieved. 

Rearranging Equation A.7, the Equation A.8 is achieved. Replacing the r with half of the cutter 

diameter, and Z from Equation A.30 into Equation A.8 the X is calculated using Equation A.31. 

X = 2√
Dc

2

4
− (

Dc
2
−
(
BG. Dc
8

)

Cos(BR)
)2  …… . . Eq. A. 31 

A.1.2.3 Calculations for θ when the BG < 4 

The θ is calculated using Equations A.10 (see Figure A.1). Rearranging Equation A.10 will result 

in Equation A.11. Replacing the Z and X from Equation A.30 and A.31 into the Equation A.11, 

the θ is calculated for     BG < 4. 

θ = Tan−1

(

 
 
 √

Dc
2

4 − (
Dc
2 −

(
BG. Dc
8 )

Cos(BR)
)2 

Dc
2 −

BG. Dc
8   

)

 
 
 

…… . . Eq. A. 32 

A.1.2.4 Calculations cutter worn area when BG < 4 

The cutter worn area is calculated by subtracting the circle sector area from triangle as seen in 

Figure A.5. The cutter sector area and triangle area were calculated in Equation A.1 and A.2. The 
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triangle area (Equation A.2) is turned into Equation A.33 by replacing the Z and X (see Equations 

A.30 and A.31). 

Atriangle =

(

 
 
 
 
 (
Dc
2
−
BG. Dc
8

  ) . (2√
Dc

2

4
− (

Dc
2
−
(
BG. Dc
8

)

Cos(BR)
)2 )

2

)

 
 
 
 
 

…… . . Eq. A. 33 

The Equation A.32 is replaced into Equation A.1, and using Equation A.33 and A.16, the cutter 

worn area is achieved (see Equation A.34).  

Aworn =

(

 
 
 
 
 
 
 

(

 
 
Tan−1

(

 
√Dc

2

4
− (

Dc
2
−
BG. Dc
8

)
2

Dc
2
−
BG. Dc
8 )

 

)

 
 
πDc

2

720

)

 
 
 
 
 
 
 

−

(

 
 
(
Dc
2
−
BG. Dc
8

) × (2√
Dc

2

4
− (

Dc
2
−
BG. Dc
8

)2 )

2

)

 
 
…… . . Eq. A. 34 

A.1.2.5 Calculations cutter worn area when BG = 4 

When the BG = 4, the cutter is half worn therefore the cutter worn area would be half of total 

cutter face area and it is seen in Equation A.35. 

Aworn = π
Dc
8

2

 …… . . Eq. A. 35 

A.1.2.6 Calculations for Z when the BG > 4 

A schematic of a cutter when the BG is greater than 4 is seen in Figure A.6. 
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Figure A.6. A schematic of a cutter face area when the BG > 4 

When the BG > 4, the Z is calculated using Equation A.36. 

Z = −r + hw…… . . Eq. A. 36 

Replacing hw in Equation, A.36 will give Equation A.37. 

Z = −r +
BG. Dc
8

  …… . . Eq. A. 37 

Replacing the r with half of the cutter diameter will result in Equation A.38. 

Z = −
Dc
2
+
BG. Dc
8

  …… . . Eq. A. 38 

A.1.2.7 Calculations for X when the BG > 4 

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 is achieved. 

Rearranging Equation A.7, the Equation A.8 is achieved. Replacing the r with half of the cutter 

diameter, and Z from Equation A.38 into Equation A.8 the X is calculated using Equation A.39. 

X = 2√
Dc

2

4
− (−

Dc
2
+
BG. Dc
8

)
2

 …… . . Eq. A. 39 

 

A.1.1.8 Calculations for θ when the BG > 4 

The θ is calculated using Equations A.10 (see Figure A.1). Rearranging Equation A.10 will result 

in Equation A.11 (see Equation A.11). Replacing the X (Equation A.39), and Z (Equation A.38) 

into the Equation A.11, the θ is calculated in Equation A.40. 
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θ = Tan−1

(

 
√Dc

2

4
− (−

Dc
2
+
BG. Dc
8

)
2

−
Dc
2
+
BG. Dc
8 )

 …… . . Eq. A. 40 

 

A.1.2.9 Calculations for cutter worn area when BG > 4 

The cutter worn area is calculated using Equation A.41. 

Acontact = ASector + ATriangle  …… . . Eq. A. 41 

The cutter sector area is calculated in the Equation A.25. The triangle area is calculated in Equation 

A.26. The Equation A.2 is turned into Equation A.42 by replacing the Z and X (see Equations A.38 

and A.39). 

Atriangle =

(

 
 
(−

Dc
2 +

BG. Dc
8  ) × (2√−

Dc
2

4 + (
Dc
2 −

BG. Dc
8 )

2

  )

2

)

 
 
…… . . Eq. A. 42 

The Equation A.40 is replaced into Equation A.1, and using Equation A.42 and A.25, the cutter 

worn area is achieved (see Equation A.43).  

 

Aworn =

(

 
 
 
 
 
 
 

π(
Dc
2
)
2

−

2

(

 
 
Tan−1

(

 
√−

Dc
2

4
+ (

Dc
2
−
BG. Dc
8

)
2

−
Dc
2
+
BG. Dc
8 )

 

)

 
 

360
π(
Dc
2
)
2

)

 
 
 
 
 
 
 

+

(

 
 
(−

Dc
2 +

BG. Dc
8 ) × (2√−

Dc
2

4 + (
Dc
2 −

BG. Dc
8 )

2

 )

2

)

 
 
…… . . Eq. A. 43 

 

A.1.3 Cutter contact area calculation 

A sharp cutter contact area is calculated using Equations A.27. Figure A.7 shows a schematic of a 

blunt cutter. A blunt cutter contact area (BC) is calculated by subtracting the contact area of a sharp 
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cutter (BD) with a depth of cut equal to DOC2 from the cutter worn area (CD) of a blunt cutter with 

a depth of cut equal to DOC and reported BG (see Figure A.7). The DOC2 equation is provided in 

Equation A.44. 

DOC2 = DOC +
BG × Dc × cos (BR)

8
 …… . . Eq. A. 44 

Therefore, to calculate the contact area of a blunt cutter (BC) with a depth of cut equal to DOC, 

and wear equal to BG the following steps should be taken. 

1) The contact area of a sharp cutter with a depth of cut equal to DOC2 (BD) is calculated 

using Equation A.18 or A.27 (check the condition, whether the DOC is less or greater than 

threshold DOC). 

2) The worn area of a blunt cutter (CD) with reported BG is calculated using Equation A. 34 

or A.43 (check the condition, whether the BG is less or greater than 4). 

3) The area from step 1 is subtracted from the area in step 2 to achieve the blunt cutter contact 

area (BC). 

 
Figure A.7. A schematic of a blunt cutter 

 

A.2 Approach # 2 

The circle segment area is calculated as a function of cutter depth of cut and cutter BG. In the 

following the circle segment area calculations are provided. Circle segment calculations reference: 

http://mathworld.wolfram.com/CircularSegment.html 

http://mathworld.wolfram.com/CircularSegment.html
http://mathworld.wolfram.com/CircularSegment.html
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Figure A.8. A schematic of the circle segment area (ABCA) 

The cutter radius is provided in the Equation A.45. 

r = L + Z…… . . Eq. A. 45 

The circle arc is achieved using Equation A.46. 

s = r(2θ)…… . . Eq. A. 46 

Base on trigonometry, the Equations A.47 and A.48 are achieved.  

Z = r. cos(θ)…… . . Eq. A. 47 

Z  =
1

2
. X. cot(θ)…… . . Eq. A. 48 

Taking the triangle in Figure A.8 into account, the Equation A.49 is achieved. 

Z =
1

2
√4r2 − X2…… . . Eq. A. 49 

Moreover, the length of the chord (see the triangle AOC in Figure A.8) can be written in the form 

of Equations A.50 to A. 53. 

X = 2r. sin(θ)…… . . Eq. A. 50 

X = 2Z. tan(θ)…… . . Eq. A. 51 

X = 2√r2 − Z2…… . . Eq. A. 52 

X = 2√L(2r − L)…… . . Eq. A. 53 

From elementary trigonometry, the angle θ obeys the following relationships provided in 

Equations A.54 to A.57. 

http://mathworld.wolfram.com/Trigonometry.html
http://mathworld.wolfram.com/Trigonometry.html
http://mathworld.wolfram.com/Angle.html
http://mathworld.wolfram.com/Angle.html
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2θ =
s

r
…… . . Eq. A. 54 

2θ = 2cos−1(
Z

r
)…… . . Eq. A. 55 

2θ = 2tan−1(
X

2Z
)…… . . Eq. A. 56 

2θ = 2sin−1(
X

2r
)…… . . Eq. A. 57 

The area of the segment (ABCA) is then simply given by the area of the circular sector (the entire 

wedge -ABCOA) minus the area of the bottom triangular portion (ACOA). 

Asegment = ASector − Atriangle…… . . Eq. A. 58 

Replacing in the sector and triangle areas into the Equation A.58 will result in Equation A.59. 

Asegment =
1

2
r2(2θ − sin2θ)…… . . Eq. A. 59 

Note that the angle θ is in radian and should be turned into a degree. Expanding the Equation A.59, 

and replacing 2θ from Equation A.46 into the first section and replacing the second part will result 

in Equation A.60. 

Asegment =
1

2
(rs − XZ)…… . . Eq. A. 60 

Replacing s, Z, and X from Equations A.46, A.49, A.53, and A.55 into Equation A.60 will result 

in Equation A.61. 

Asegment = r2cos−1 (
Z

r
) − Z√r2 − Z2…… . . Eq. A. 61 

Replace Z from Equation A.45 into Equation A.61 will result in Equation A.62. 

Asegment = r2cos−1 (
r − L

r
) − (r − L)√2rL − L2…… . . Eq. A. 62 

Replace the circle radius with cutter diameter will results in Equation A.63 (Note that the segment 

area is equal to cutter contact area). 

Acontact = (
Dc
2
)
2

. Cos−1(

Dc
2 − L

Dc
2

) − (
Dc
2
− L) .√2. (

Dc
2
) . L − (L)2…… . . Eq. A. 63 

 

A.2.1 Cutter Contact area calculation for a sharp cutter 

http://mathworld.wolfram.com/Area.html
http://mathworld.wolfram.com/Area.html
http://mathworld.wolfram.com/CircularSector.html
http://mathworld.wolfram.com/CircularSector.html
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For a sharp cutter, the L (see Figure A.8) in Equation A.63 is equal to L1 (see Figure A.9). The 

L1 is calculated in Equation A.64. 

L1 =
DOC

Cos(BR)
…… . . Eq. A. 64 

Replacing L1 (see Equation A.64) into L (see Equation A.63) will result in Equation A.65. The 

Equation A.65 is used to calculate the cutter contact area for a sharp cutter when the DOC,Dc, 

and BR are known. 

Acontact = (
Dc
2
)
2

× Cos−1(

Dc
2 −

DOC
Cos(BR)
Dc
2

)

− (
Dc
2
−

DOC

Cos(BR)
) × √Dc ×

DOC

Cos(BR)
− (

DOC

Cos(BR)
)
2

…… . . Eq. A. 65 

 
Figure A.9. A schematic of a sharp cutter 

A.2.2 Cutter Contact area calculation for a blunt cutter 
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For a blunt cutter, similar to section A.3, (see Figure A.7), a blunt cutter contact area (BC) is 

calculated by subtracting the contact area of a sharp cutter (BD) with a depth of cut equal to DOC2 

from the cutter worn area (CD) of a blunt cutter with reported BG (see Figure A.7). The DOC2 

equation is provided in Equation A.44. 

Acontact = [(
Dc
2
)
2

. Cos−1(

Dc
2
− (

DOC2
Cos(BR)

)

Dc
2

)

− (
Dc
2
− (

DOC2
Cos(BR)

)) .√2. (
Dc
2
) . (

DOC2
Cos(BR)

) − (
DOC2
Cos(BR)

)
2

]

− [(
Dc
2
)
2

. Cos−1 (

Dc
2
− (

BG. Dc
8

)

Dc
2

)

− (
Dc
2
− (

BG.Dc
8

)) .√2. (
Dc
2
) . (

BG. Dc
8

) − (
BG.Dc
8

)
2

]…… . . Eq. A. 66 

Replacing the DOC2 using Equation A.44 in Equation A.66 will result in Equation A.67. 

Acontact

=

[
 
 
 
 
 
 
 

(
Dc
2
)
2

. Cos−1

(

 
 
 
 
 
Dc
2
− (

(DOC +
BG × Dc × cos (BR)

8
)

Cos(BR)
)

Dc
2

)

 
 
 
 
 

−

(

 
 Dc
2

− (
(DOC +

BG × Dc × cos (BR)
8

)

Cos(BR)
)

)

 
 
.√2. (

Dc
2
) . (

(DOC +
BG × Dc × cos (BR)

8
)

Cos(BR)
) − (

(DOC +
BG × Dc × cos (BR)

8
)

Cos(BR)
)

2

]
 
 
 
 
 
 
 

− [(
Dc
2
)
2

. Cos−1 (

Dc
2
− (

BG.Dc
8

)

Dc
2

) − (
Dc
2
− (

BG. Dc
8

)) .√2. (
Dc
2
) . (

BG. Dc
8

) − (
BG. Dc
8

)
2

]…… . . Eq. A. 67
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APPENDIX B 

 

Wear Flat Area Calculations 

 

B.1 Approach 1 

In Figure B.1, a plane and a cylinder are shown. The plane intersected with the bottom side of 

the cylinder on the X-Y-Z coordinate. In Figure B.1, the Aw is the cutter wear flat area and the 

Aw′ is the projection of cutter wear flat area on the X-Y plane. Note that the Y and Y’ are laid 

on each other and X’-Y’-Z’ can rotate around its fixed Y’ axis. 

 
Figure B.1. A 3D schematic of a cylinder and a plane intersection and details areas
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In the following equations, the L is the height of cutter (cylinder), the r is cutter radius, “a” is the 

depth of worn, and the θ is the rotation degree between the two X’-Y’-Z’ and X-Y-Z coordinates. 

The plane is in the X’-Y’-Z’ coordinate and its equation is provided at the Equation B.1.  

Z′ = a …… . . Eq. B. 1 

The X’-Y’-Z’ coordinate rotates θ degree counter-clockwise to match with the X-Y-Z coordinate. 

The new equation of the plane in the new coordinate is calculated at the following. 

[
Cosθ Sinθ
−Sinθ Cosθ

] [
X′ Z′
1 0
0 1

] = [
X Z

Cosθ −Sinθ
Sinθ Cosθ

]…… . . Eq. B. 2 

Thus  

X = X′. Cosθ + Z′. Sinθ…… . . Eq. B. 3 

Z = −X′. Sinθ + Z′. Cosθ…… . . Eq. B. 4 

Multiplying Equation B.3 & B.4 by Sin (θ) and Cos (θ) respectively 

X. Sinθ = X′. Cosθ. Sinθ + Z′. Sinθ2…… . . Eq. B. 5 

Z. Cosθ = −X′. Sinθ. Cosθ + Z′. Cosθ2…… . . Eq. B. 6 

Adding up Equation B.5 and B.6 

Z′ = X. Sinθ + Z. Cosθ…… . . Eq. B. 7 

Plugging the Equation B.1 into the Equation B.7, the plane equation in X-Y-Z coordinate would 

be: 

 a = X. Sinθ + Z. Cosθ …… . . Eq. B. 8 

The cylinder is perpendicular to the plane X-Y-Z. The image of intersection between the plane and 

cylinder in the X-Y-Z coordinate is provided at Figure B.2. In Figure B.2, the AE is representative 

of the bottom intersection between the plane and the X-Y, and the BD is the projection of the plane 

intersected with the top of the cylinder on X-Y.  
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Figure B.2. The intersection between the plane and the top and bottom of a cylinder on the X-Y coordinate 

(top side view) 

The two vertical lines show the intersection between the bottom and the top of the cylinder on the 

X-Y plane. The intersection points are calculated using the following equations. The bottom and 

top intersection are calculated using Equation B.8 when the Z=0 and L respectively. 

at Z = 0 then X =  
a

Sinθ
…… . . Eq. B. 9 

at Z = L then X =  
a − L. Cosθ

Sinθ
…… . . Eq. B. 10 

The conditions are:  

 0 <
a − L. Cosθ

Sinθ
<  

a

Sinθ
< Dc…… . . Eq. B. 11 

In the above equations, the Dc is cylinder diameter (cutter). The area of the intersection 

(representation of cutter wear flat area) between the plane and cylinder in the X-Y-Z coordinate 

can be calculated by taking integral between the boundaries (Equation B.9 and B.10) and circle 

equation in the X-Y plane (Equation B.12). The circle equation is provided in the following. 

(X − r)2 + Y2 = r2…… . . Eq. B. 12 

To find the ABDEA surface area in Figure B.2 (which is representative of projected wear flat area), 

the Equation B.13 is used which is representative of the DE curve derived from Equation B.12.  
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Y = √−X2 + 2rX …… . . Eq. B. 13 

The Wear flat area is calculated using Equation B.14. The area between Equation B.13 and the X-

axis is calculated by taking the integral of Equation B.13 with specified boundaries (see Equation 

B.11) and then it is doubled and is divided by the Cos (θ) to come up with the wear flat area (Aw). 

The θ is both the cutter BR complementary angle and the rotation angle between two X-Y-Z and 

X’-Y’-Z’ coordinates (see Figure B.1). 

Aw =
2

Cos(θ)
∫ √−X2 + 2rX dx

a

Sinθ
a−L.Cosθ

Sinθ

 …… . . Eq. B. 14 

Solving integral: 

∫√−X2 + 2rX dx …… . . Eq. B. 15 

Rewrite Equation B.15. 

2rX − X2 = −(X2 − 2rX + r2) + r2…… . . Eq. B. 16 

Rewrite Equation B.16 to Equation B.17 (similar to Pythagorean theorem). 

= r2 − (X − r)2…… . . Eq. B. 17 

Change the parameter X to θ. 

X − r = r. Sinθ…… . . Eq. B. 18 

Take derivation from both sides of Equation B.18. 

dX = r. Cos(θ). dθ…… . . Eq. B. 19 

Rearrange Equation B.18 and rewrite it in Equation B.20. 

Sinθ =
X − r

r
…… . . Eq. B. 20 

Plugging the Equation B.17, B.18 and B.19 into Equation B.15 will result in Equation B.21. 

= ∫√r2 − r2. Sin2θ . r. Cosθ dθ …… . . Eq. B. 21 

Rewrite Equation B.21 into Equation B.22 

= ∫r2. Cos2θ dθ …… . . Eq. B. 22 

Rewrite the Cos in Equation B.22 using trigonometry rules. 
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= ∫r2.
1 + Cos2θ

2
 dθ …… . . Eq. B. 23 

Solve the integral in Equation B.23. 

=
r2

2
(θ +

Sin2θ

2
)…… . . Eq. B. 24 

Open the Equation B.24 using trigonometry rules. 

=
r2

2
(θ + Sinθ. Cosθ)…… . . Eq. B. 25 

Replace the θ in Equation B.25 using Equation B.18 and the Pythagorean theorem. 

=
r2

2
(Sin−1(

X − r

r
) +

X − r

r
.
√2rX − X2

r
)…… . . Eq. B. 26 

Introduce the integral boundaries into the Equation B.27. 

=
r2

2
(Sin−1(

X − r

r
) +

(X − r)√2rX − X2

r2
) [

a

Sinθ
a − L. Cosθ

Sinθ

…… . . Eq. B. 27 

Replacing the boundaries and assuming the lower bound is zero and doubling the surface area and 

returning the surface area to the original one (by multiplying with 
1

Cosθ
) then: 

Aw =

(

  
 

(

 
 r2

2

(

 Sin−1(
(
a

Sinθ) − r

r
) +

(
a

Sinθ − r)√2r(
a

Sinθ) − (
a

Sinθ)
2

r2

)

 

)

 
 

−

(

 
 r2

2

(

 Sin−1(
(
a − L. Cosθ

Sinθ ) − r

r
)

+
(
a − L. Cosθ

Sinθ − r)√2r(
a − L. Cosθ

Sinθ ) − (
a − L. Cosθ

Sinθ )2

r2

)

 

)

 
 

)

  
 

×
2

Cosθ
…… . . Eq. B. 28  

The r is equal to half of the cutter diameter then, 
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Aw =

(

  
 

(

 
 (
Dc
2
)
2

2

(

 Sin−1(
(
a

Sinθ) −
Dc
2

Dc
2

) +
(
a

Sinθ
−
Dc
2
)√2(

Dc
2
) (

a
Sinθ

) − (
a

Sinθ
)2

(
Dc
2 )

2

)

 

)

 
 

−

(

 
 (
Dc
2
)
2

2

(

 Sin−1(
(
a − L. Cosθ

Sinθ
) −

Dc
2

Dc
2

)

+
(
a − L. Cosθ

Sinθ
−
Dc
2
)√2(

Dc
2
) (
a − L. Cosθ

Sinθ
) − (

a − L. Cosθ
Sinθ

)2

(
Dc
2
)
2

)

 

)

 
 

)

  
 

×
2

Cosθ
 …… . . Eq. B. 29 

a = (
BG. Dc. Cos(BR)

8
)…… . . Eq. B. 30 

Replacing the θ with (90-BR) and depth of wear (a) using Equation B.30 will result in Equation 

31. 
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Aw

=

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

(
Dc
2
)
2

2

(

 
 
 
 
 
 
 

Sin−1

(

 
 
 
 
 (

(
BG.Dc. Cos(BR)

8
)

Sin(90 − BR)
) −

Dc
2

(
Dc
2
)

)

 
 
 
 
 

+

(
(
BG.Dc. Cos(BR)

8
)

Sin(90 − BR)
−
Dc
2
)√2(

Dc
2
)(

(
BG.Dc. Cos(BR)

8
)

Sin(90 − BR)
) −(

(
BG.Dc. Cos(BR)

8
)

Sin(90 − BR)
)

2

(
Dc
2
)
2

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

−

(

 
 
 
 
 
 
 
 

(
Dc
2
)
2

2

(

 
 
 
 
 
 
 

Sin−1(

(
(
BG.Dc. Cos(BR)

8
) − L. Cos(90 − BR)

Sin(90 − BR)
) −

Dc
2

(
Dc
2
)

)

+

(
(
BG.Dc. Cos(BR)

8
) − L. Cos(90 − BR)

Sin(90 − BR)
−
Dc
2
)√2(

Dc
2
)(

(
BG.Dc. Cos(BR)

8
) − L. Cos(90 − BR)

Sin(90 − BR)
) −(

(
BG.Dc. Cos(BR)

8
) − L. Cos(90 − BR)

Sin(90 − BR)
)

2

(
Dc
2
)
2

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

×
2

Cos(90 − BR)
 …… . . Eq. B. 31 

Conditions are: 

The integral upper boundary is 
a

Sinθ
< Dc 

Integral lower boundary is 
a − L. Cosθ

Sinθ
> 0 

If the 
a−L.cosθ

sinθ
 = 0 then the cutter wear flat area is calculated using Equation B.32. 
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Aw

=

(

 
 
 
 
 
 
 
 

(
Dc
2
)
2

2

(

 
 
 
 
 
 
 

Sin−1

(

 
 
 
 
 (

(
BG. Dc. Cos(BR)

8 )

Sin(90 − BR)
) −

Dc
2

(
Dc
2
)

)

 
 
 
 
 

+

(
(
BG. Dc. Cos(BR)

8 )

Sin(90 − BR)
−
Dc
2 )

√2(
Dc
2
)(

(
BG. Dc. Cos(BR)

8 )

Sin(90 − BR)
) −(

(
BG. Dc. Cos(BR)

8 )

Sin(90 − BR)
)

2

(
Dc
2 )

2

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

×
2

Cos(90 − BR)
 …… . . Eq. B. 32 

Conditions are: 

The integral upper boundary is 
a

Sinθ
< Dc 

The integral lower boundary is 0 

If the length of the cylinder (L) assume equal to PDC thickness length then the PDC wear flat 

area is calculated by replacing the PDC thickness (tPDC) with L in the Equation B.31 and it is 

seen in the Equation B.33. 
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Aw,PDC

=

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

(
Dc
2
)
2

2

(

 
 
 
 
 
 
 

Sin−1

(

 
 
 
 
 (

(
BG.Dc. Cos(BR)

8
)

Sin(90 − BR)
) −

Dc
2

(
Dc
2
)

)

 
 
 
 
 

+

(
(
BG. Dc. Cos(BR)

8
)

Sin(90 − BR)
−
Dc
2
)√2 (

Dc
2
)(

(
BG.Dc. Cos(BR)

8
)

Sin(90 − BR)
) − (

(
BG. Dc. Cos(BR)

8
)

Sin(90 − BR)
)

2

(
Dc
2
)
2

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

−

(

 
 
 
 
 
 
 
 

(
Dc
2
)
2

2

(

 
 
 
 
 
 
 

Sin−1(

(
(
BG. Dc. Cos(BR)

8
) − tPDC. Cos(90 − BR)

Sinθ
) −

Dc
2

(
Dc
2
)

)

+

(
(
BG. Dc. Cos(BR)

8
) − tPDC. Cos(90 − BR)

Sin(90 − BR)
−
Dc
2
)√2 (

Dc
2
)(

(
BG. Dc. Cos(BR)

8
) − tPDC. Cos(90 − BR)

Sin(90 − BR)
) − (

(
BG. Dc. Cos(BR)

8
) − tPDC. Cos(90 − BR)

Sin(90 − BR)
)

2

(
Dc
2
)
2

)

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

×
2

Cos(90 − BR)
 …… . . Eq. B. 33 

 

The wear flat area beneath the cutter stud is calculated by subtracting the total wear flat area 

(Equation B.32) from PDC wear flat area (Equation B.33). 

Aw,Stud = Aw − Aw,PDC  …… . . Eq. B. 34 

B.2 Approach 2 

The total wear flat area projection on the X-Y-Z plane is a segment of a circle. The circle segment 

area was calculated in Equation A.63. The Equation A.63 can be applied to calculate the segment 

area of a circle in Figure B.2. Once the circle segment was calculated, it can be projected by taking 

the cutter (θ) into account to achieve the cutter wear flat area. 
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APPENDIX C 
 

Cutter Worn Volume Calculations 

 

The goal of this section is to find the volume of the worn-out section of a cutter. The worn-out 

section for a cutter is seen (assigned number 1) in Figure C.1. 

 

 
Figure C.1. A 3D schematic of a blunt cutter (assigned number 2) and the worn section (assigned 

number 1)  
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Figure C.2. A side view schematic of a cutter  

Figure C.2 shows a cylinder (cutter) laid down on Z-axis. The face of the cylinder is on the X –Y 

and is shown in Figure C.3. The Y-axis is perpendicular to X and Z plane and it comes out of X-Z 

origin (point O). In Figure C.2, the line that connects point 1 to point 2 is a 2D representation of a 

plane in the X’-Z’ coordinate. In Figure C.2, the L is the length of the cylinder. The L’ is the length 

of the line between O and point 2. The goal is to calculate the volume of a worn wedge (assigned 1 

in Figure C.1) that is seen as a 2D triangle between point O and points 1 and 2 in Figure C.2. The 

circle segment area can be calculated using Equation C.1 (see appendix A.2). 

Asegment = (
Dc
2
)
2

. Cos−1(

Dc
2 − X

Dc
2

) − (
Dc
2
− X) . √2. (

Dc
2
) . X − (X)2…… . . Eq. C. 1 
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Figure C.3. Cutter front face on X-Y coordinate (front side view) 

The area of the circle segment in Figure C.3 is a function of X (see Equation C.1). The variable X 

in the circle can be written as a function of Z (see Equation C.7). The cutter worn volume can be 

found by taking an integral of circle segment area (Equation C.1) and between Z=0 and Z=b (point 

1 and 2 in Figure C.2). For the above integral, the lower boundary is calculated by X=0 in-plane 

Equation (Equation C.2). The Equation C.2 is achieved by replacing θ with the 90-BR in Equation 

B.8 (see appendix B). 

a = X. Sin(90 − BR) + Z. Cos(90 − BR) …… . . Eq. C. 2 

The L’ is calculated using Equation C.3 (see Figure C.2). 

L′ =
a

Cos(90 − BR)
 …… . . Eq. C. 3 

In the Equation C.3, the a is the depth of worn and it is calculated in Equation C.4. 

a = (
BG. Dc
8

) . Cos(BR)…… . . Eq. C. 4 

Replacing a from Equation C.4 into Equation C.3 will result in Equation C.5. 
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L′ =
(
BG. Dc
8

) . Cos(BR)

Cos(90 − BR)
=
(
BG. Dc
8

) . Cos(BR)

Sin(BR)
= Cot(BR). (

BG. Dc
8

) …… . . Eq. C. 5 

The X in Equation C.1 is provided in the following. 

X = f(z)…… . . Eq. C. 6 

Replacing a line equation into Equation C.6 will results in Equation C.7. 

X = A. Z + B…… . . Eq. C. 7 

To achieve the coefficients of the line in Equation C.7, two points are needed. 

C.1 Cutter worn volume calculation (including PDC and STUD) 

In this case, the point 2 intersection is less than cylinder length and then 

Condition: L′ < L 

Intersection points (point 1 and 2 in Figure C.2) are: 

(

intersection points
point1 =
point2 =

)

(

 
 

X Z
BG. Dc
8

0

0 L′ = Cot(BR). (
BG. Dc
8

)
)

 
 

 

The A and B are found by taking the above intersection points and Equation C.7 into account (see 

Equations C.8 and C.9). 

A = −Tan(BR)…… . . Eq. C. 8 

B = (
BG. Dc
8

)…… . . Eq. C. 9 

Equation C.7 is turned into Equation C.10 using Equation C.8 and C.9. 

X = −Tan(BR). Z + (
BG. Dc
8

) …… . . Eq. C. 10 
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Replacing X from Equation C.10 into Equation C.1 will result in Equation C.11. 

Asegment

= (
Dc
2
)
2

. arccos

(

 
 

Dc
2
− (−Tan(BR). Z + (

BG. Dc
8

))

Dc
2

)

 
 

− (
Dc
2
− (−Tan(BR). Z

+ (
BG. Dc
8

)) .√2. (
Dc
2
) . (−Tan(BR). Z + (

BG. Dc
8

)) − (−Tan(BR). Z + (
BG. Dc
8

))

2

 …… . . Eq. C. 11 

The cutter worn volume then is calculates by taking an integral from Equation C.11 between 

boundaries. The integral boundaries are seen in Equation C.12.  

∫ A(Z)dZ
Cot(BR).(

BG.Dc
8

)

0

…… . . Eq. C. 12 

The above integral is simplified by separating and defining new variables at the following. The 

parameters A, D, C and X are defined in Equation C.13. 

A = (
Dc
2
) , D = −Tan(BR) , C = (

BG. Dc
8

) , X = Z…… . . Eq. C. 13 

Replace the A, D, C, and X into the Equation C.13 will result in Equation C.14. 

Ι = ∫A2 arccos (
A − (DX + C)

A
)dX

− ∫(A − (DX + C)).√2A(DX + C) − (DX + C)2dX…… . . Eq. C. 14 

The above integral is composed of two separate integrals and it is shown in Equation C.15. 

Ι = Ι1 − Ι2…… . . Eq. C. 15 
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Integral Ι1 is seen Equation C.16. 

Ι1 = ∫A2 arccos(
A − (DX + C)

A
)dX…… . . Eq. C. 16 

The base integral for Equation C.16 is Equation C.17. Therefore, the Equation C.17 is solved at 

the following. 

Ι = ∫arccos (θ)dθ…… . . Eq. C. 17 

Assume u as follow 

u = arccos (θ)…… . . Eq. C. 18 

Take derivation from u in Equation C.18 will results in Equation C.19. 

du =
−dθ

√1 − θ2
…… . . Eq. C. 19 

Change the parameters 

dv = dθ → v = θ…… . . Eq. C. 20 

Note that: ∫udv = uv − ∫vdu 

Rewrite the integral 

Ι = θ. arccos(θ) + ∫
θ. dθ

√1 − θ2
…… . . Eq. C. 21 

Change the parameters (introduce t) and take derivation 

t = 1 − θ2; dt = −2θdθ…… . . Eq. C. 22 

Replace t into Equation C.22 

= θ. arccos(θ) −
1

2
∫
dt

√t
…… . . Eq. C. 23 
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Rewrite the Equation C.23 

= θ. arccos(θ) −
1

2
∫ t

−1
2 dt…… . . Eq. C. 24 

Solve and rewrite Equation C.24 

= θ. arccos(θ) −
1

2
.
t
1
2

1
2

…… . . Eq. C. 25 

Replace t with θ in Equation C.25 (see Equation C.22). 

Ι = θ. arccos(θ) − √1 − θ2…… . . Eq. C. 26 

Therefore, the integral (see Equation C.17) solution would be  

∫arccos (θ)dθ = θ. arccos(θ) − √1 − θ2…… . . Eq. C. 27 

Replace the parameters into integral C.17 

Ι1 = ∫A2arccos (
A − C

A
−
DX

A
)dX…… . . Eq. C. 28 

Taking the A2 out of integral 

Ι1 = A2∫arccos (
A − C

A
−
DX

A
)dX…… . . Eq. C. 29 

In Equation C.29, the X coefficient (
D

A
) in arccos comes out of integral and will be multiplied with 

A2 as it is shown in the Equation C.30.  

The solution of integral Ι1 is provided at the following 

Ι1 =
−A3

D
((

A − (DX + C)

A
) . arccos (

A − (DX + C)

A
) − √1 − (

A − (DX + C)

A
)2)…… . . Eq. C. 30 
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The second part of the integral Ι (Equation C.14) is seen in the Equation C.31. The following steps 

should be taken to solve Equation C.31. 

Ι2 = ∫(A − (DX + C)). √2A(DX + C) − (DX + C)2dX…… . . Eq. C. 31 

Change the parameter as it is provided in the Equation C.32 

y = DX + C…… . . Eq. C. 32 

Take derivation from Equation C.32 

dy = DdX…… . . Eq. C. 33 

Replace the Equations C.32 and C.33 into Equation C.34 

Ι2 =
1

D
∫(A − y). √2Ay − y2dy…… . . Eq. C. 34 

Rewrite the Equation C.34 

Ι2 =
1

D
∫(A − y). √A2 − (y − A)2dy…… . . Eq. C. 35 

Change the parameters using Equation C.36 (similar to Pythagorean theorem). 

y − A = A. Sin(θ)…… . . Eq. C. 36 

Take derivation from Equation C.36 

dy = A. Cos(θ)…… . . Eq. C. 37 

Replace the Equation C.36 and C.37 into Equation C.35 

Ι2 =
1

D
∫A. Sin(θ). √A2 − A2. Sin(θ)2 . A. Cos(θ)dθ…… . . Eq. C. 38 

Taking the constant out of integral 
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Ι2 =
A3

D
∫Sin(θ). Cos2(θ)dθ…… . . Eq. C. 39 

Change the parameters and define u as following 

u = Cos(θ)…… . . Eq. C. 40 

Take integral from Equation C.40 

du = −Sin(θ). dθ…… . . Eq. C. 41 

Replace the Equation C.40 and C.41 into Equation C.39 

= −
A3

D
∫u2du…… . . Eq. C. 42 

Solve the Integral in Equation C.42 and replace the u 

A3

D
.
u3

3
=
A3

D
.
Cos3(θ)

3
…… . . Eq. C. 43 

Rewrite and replace the θ (see Equation C.36) as it is provided at the following 

= −
A3

3D
(√1 − Sin2(θ))3 =

A3

3D
(√1 − (

y − A

A
)2)3…… . . Eq. C. 44 

Replace the y (see Equation C.32) and rewrite the Equation C.44  

Ι2 = −
A3

3D
(√1 − (

DX + C − A

A
)2))

3

…… . . Eq. C. 45 

The integral Ι answer is provided in Equation C.46. 
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Ι =
−A3

D
((

A − (DX + C)

A
) . arccos (

A − (DX + C)

A
) − √1 − (

A − (DX + C)

A
)2)

+
A3

3D
(√1 − (

DX + C − A

A
)2))

3

…… . . Eq. C. 46 

Replacing A, D, C, and X (from Equation C.13) into Equation C.46 will result in Equation C.47. 

Note the boundaries should replace the Z to achieve the final answer (note boundaries in Equation 

C.47). 

 

Vc = Cutter Volume

=

{
 
 

 
 
−(

Dc
2
)
3

−Tan(BR)

[
 
 
 
 
 

(

 
 
(
Dc
2
) − (−Tan(BR) Z + (

BG. Dc
8

))

(
Dc
2
)

)

 
 
. arccos

(

 
 
(
Dc
2
) − (−Tan(BR) Z + (

BG.Dc
8

))

(
Dc
2
)

)

 
 

−

√
  
  
  
  
  

1 −

(

 
 
(
Dc
2
) − (−Tan(BR) Z + (

BG.Dc
8

))

(
Dc
2
)

)

 
 

2

]
 
 
 
 
 

+
(
Dc
2
)
3

−3Tan(BR)
(√1 − (

−Tan(BR) Z + (
BG.Dc
8

) − (
Dc
2
)

(
Dc
2
)

)2))

3

}
 
 

 
 

[Cot(BR). (
BG.Dc
8

)

0

 …… . . Eq. C. 47 

Replace the boundaries into Equation C.47 will result in Equation C.48. 
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Vc = Cutter Volume

=
−(

Dc
2
)
3

−Tan(BR)

[
 
 
 
 
 

(

 
 
(
Dc
2
) − (−Tan(BR) . Cot(BR). (

BG.Dc
8

) + (
BG.Dc
8

))

(
Dc
2
)

)

 
 
. arccos

(

 
 
(
Dc
2
) − (−Tan(BR) . Cot(BR). (

BG.Dc
8

) + (
BG.Dc
8

))

(
Dc
2
)

)

 
 

−

√
  
  
  
  
  

1 −

(

 
 
(
Dc
2
) − (−Tan(BR) . Cot(BR). (

BG.Dc
8

) + (
BG.Dc
8

))

(
Dc
2
)

)

 
 

2

]
 
 
 
 
 

+
(
Dc
2
)
3

−3Tan(BR)

(

 
 
√1 − (

−Tan(BR) . Cot(BR). (
BG.Dc
8

) + (
BG.Dc
8

) − (
Dc
2
)

(
Dc
2
)

)

2

)

 
 

3

−

[
 
 
 
 
 
− (

Dc
2
)
3

−Tan(BR)

[
 
 
 
 
 

(

 
 
(
Dc
2
) − ((

BG.Dc
8

))

(
Dc
2
)

)

 
 
. arccos

(

 
 
(
Dc
2
) − ((

BG.Dc
8

))

(
Dc
2
)

)

 
 
−

√
  
  
  
  
  

1 −

(

 
 
(
Dc
2
) − ((

BG.Dc
8

))

(
Dc
2
)

)

 
 

2

]
 
 
 
 
 

+
(
Dc
2
)
3

−3Tan(BR)

(

 
 
√1 − (

(
BG.Dc
8

) − (
Dc
2
)

(
Dc
2
)

)

2

)

 
 

3

]
 
 
 
 
 

 …… . . Eq. C. 48 

The cutter volume Equation is provided in the Equation C.49. 
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Vc = Cutter Volume

= −

[
 
 
 
 
(
Dc
2
)
3

Tan(BR)

[
 
 
 
 

(
(
Dc
2
) − (

BG. Dc
8

)

(
Dc
2 )

) . arccos(
(
Dc
2
) − (

BG. Dc
8

)

(
Dc
2 )

)

− √1− (
(
Dc
2
) − (

BG. Dc
8

)

(
Dc
2 )

)

2

]
 
 
 
 

−
(
Dc
2 )

3

3Tan(BR)

(

 
 
√1− (

(
BG. Dc
8 ) − (

Dc
2 )

(
Dc
2 )

)

2

)

 
 

3

]
 
 
 
 

 …… . . Eq. C. 49 

C.2 PDC worn volume calculation 

In this case, the point 2 intersection is greater than cylinder length and then 

Condition: L′ > L 

Writing the X as a function of Z. 

X = f(z)…… . . Eq. C. 50 

Replacing line Equation into Equation C.50. 

X = A′. Z + B′…… . . Eq. C. 51 

Intersection points are: 

(

intersection points
point1
point2

)

(

 
 

X Z
BG. Dc
8

0

(
a − L. cos (90 − BR)

sin (90 − BR)
) L

)

 
 
…… . . Eq. C. 52 
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Replacing the a from Equation C.4 into Equation C.52. 

(

intersection points
point1
point2

)

(

 
 
 
 

X Z
BG. Dc
8

0

(
(
BG. Dc
8

) . Cos(BR) − L. cos (90 − BR)

sin (90 − BR)
) L

)

 
 
 
 

…… . . Eq. C. 53 

The slope of the line in Equation C.51 is achieved by taking the intersection points (see Equation 

C.53) into account. 

A′ =
point2(X) − point1(X)

point2(Z) − point1(Z)
…… . . Eq. C. 54 

The Y-intercept of Equation C.51 is provided in Equation C.55. 

B′ = point1(X)…… . . Eq. C. 55 

Replacing point 1 and point 2 values into Equation C.54 and C.55 will result in Equation C.56 and 

C.57. 

A′ =

(
(
BG.Dc
8 ) . Cos(BR) − L. cos (90 − BR)

sin (90 − BR)
) −

BG. Dc
8

L
…… . . Eq. C. 56 

B′ =
BG. Dc
8

…… . . Eq. C. 57 

Therefore, the Equation C.51 can be written in the following Equation. 

X =

(

 
 
 
 (

(
BG.Dc
8 ) . Cos(BR) − L. cos (90 − BR)

sin (90 − BR)
) −

BG. Dc
8

L

)

 
 
 
 

. Z + (
BG. Dc
8

)…… . . Eq. C. 58 
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Replacing X (Equation C.51) into Equation C.1, results in Equation C.59. 

ASegment = (
Dc
2
)
2

. arccos(

Dc
2 − (A′.Z+B')

Dc
2

)

− (
Dc
2
− (A′.Z+B')) . √2. (

Dc
2
) . (A′.Z+B') − (A′. Z + B′)2  …… . . Eq. C. 59 

Renaming variables and replacing into Equation C.59 using Equation C.60, would result in 

Equation C.61. 

A = (
Dc
2
) , D = A′, C=B', X = Z…… . . Eq. C. 60 

Ι = ∫A2 arccos (
A − (DX + C)

A
)dX

+ ∫(A − (DX + C)).√2A(DX + C) − (DX + C)2dX…… . . Eq. C. 61 

Solving the above integral results in Equation C.62. 

Ι =
−A3

D
((

A − (DX + C)

A
) . arccos (

A − (DX + C)

A
) − √1 − (

A − (DX + C)

A
)

2

)

−
A3

3D
(√1 − (

DX + C − A

A
)
2

))

3

…… . . Eq. C. 62 

Replacing variables, A, D, C, and X (check out Equation C.60) into Equation C.62 results in 

Equation C.63. 

Replacing the integral boundaries into the Equation C.63 will result in Equation C.64. The 

Equation C.64 can be used to find the volume of PDC by replacing the L with the PDC thickness. 
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Vc = Cutter Volume

=

{
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D
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−
(
Dc
2
)
3

3D
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[
L
0
 …… . . Eq. C. 63 
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Vc = Cutter Volume =

[
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−
(
Dc
2
)
2
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−
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 …… . . Eq. C. 64. 
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APPENDIX D 
 

Cutter Wear Flat Area Length and Width 

 

The goal of this section is to find the wear flat area length (L) and width (W).  

D.1 Wear Flat Area Width Calculations 

Assume Figure D.1. shows a schematic of a PDC cutter in X-Y coordinate and point C is the center 

of the circle. The circle equation in the Cartesian coordination is expressed as Equation D.1  

 
Figure D.1. A schematic of a cutter in X-Y coordinate



 
 
 

163 
 

 𝑋2 + (𝑌 − (
𝐷𝑐

2
))

2

= (
𝐷𝑐

2
)
2
…… . . 𝐸𝑞. 𝐷. 1 

In Figure D.1, the BG (bit grade) is representative of cutter worn length section on the cutter face, 

the AB is the cutter wear flat area width (W). The cutter wear flat area width (AB) is calculated as 

follows. 

Rearrange Y in the Equation D.1. 

𝑋2 = (
𝐷𝑐
2
)
2

− (𝑌 − (
𝐷𝑐
2
))

2

…… . . 𝐸𝑞. 𝐷. 2 

Rewrite the Equation D.2. 

𝑋2 = −𝑌2 + 2 × (𝑌) ((
𝐷𝑐
2
))…… . . 𝐸𝑞. 𝐷. 3 

Replace Y using Equation D.4 into Equation D.3. 

𝑌 = (
𝐵𝐺 × 𝐷𝑐

8
)…… . . 𝐸𝑞. 𝐷. 4 

𝑋2 = −(
𝐵𝐺 × 𝐷𝑐

8
)
2

+ 2 × ((
𝐵𝐺 × 𝐷𝑐

8
))((

𝐷𝑐
2
))…… . . 𝐸𝑞. 𝐷. 5 

Therefore, X is calculated using Equation D.6. The Equation D.6 gives the X coordinate of points 

A and B with negative and positive signs respectively. 

𝑋 = ±√(−(
𝐵𝐺 × 𝐷𝑐

8
)
2

+ 2 × ((
𝐵𝐺 × 𝐷𝑐

8
))((

𝐷𝑐
2
)))…… . . 𝐸q. 𝐷. 6 

The wear flat area width then is calculated using Equation D.7. 

𝑊 = 2 ×√(−(
𝐵𝐺 × 𝐷𝑐

8
)
2

+ 2 × ((
𝐵𝐺 × 𝐷𝑐

8
))((

𝐷𝑐
2
)))…… . . 𝐸𝑞. 𝐷. 7 

The Equation D.7 was applied to a cutter with the 0.52-inch diameter and the results are shown in 

Figure D.2. 
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Figure D.2. Wear Flat Area width versus bit grade for a cutter with a 0.52-inch diameter 

 

D.2 Wear Flat Area Length Calculations 

In Figure D.3, a cutter wear flat area is shown from the bottom side perspective. The cutter wear 

flat area length is seen with a red arrow in Figure D.3. 

 
Figure D.3. A schematic of a cutter wear flat area and its length (red arrow) 

In a 3D perspective, Figure D.4 shows the wear flat area (𝐴𝑤), the L (BC) is wear flat area length, 

α is cutter BR complementary angle, and the OB is the length of wear on cutter face. The BG is 

turned into OB length using Equation D.8. 
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𝑂𝐵 = (
𝐵𝐺 × 𝐷𝑐

8
)…… . . 𝐸𝑞. 𝐷. 8 

The OB is turned into the L (BC) by taking the cutter complementary angle (α), using Equation 

D.9. 

 
Figure D.4. A 3D schematic of a cutter wear flat area 

The cutter wear flat area length is calculated using Equations D.8 and D.9. 

𝐿 =
𝑂𝐵

𝑐𝑜𝑠 (𝛼)
…… . . 𝐸𝑞. 𝐷. 9 

In case that the cutter wear flat area is known, the Equation A.63 can be used to back-calculate the 

BC (cutter wear flat area length). In this case, the cutter wear flat area first should be turned into 

the 𝐴𝑤′′ by taking the α into account. The 𝐴𝑤′′ then is used in conjunction with the Equation A.63 

to back-calculated the OB length. The OB length is turned into the BC by taking the α into account 

(see Equation D.9).



 
 
 

166 
 

APPENDIX E 

 

The PDC cutters are assumed to penetrate with the same rate as the bit into the formation. The 

rate of penetration is used to show that the cutters depth of cut is function of the number of 

cutters and arrangement on the bit face. Assume a theoretical flat face PDC bit in Figure E.1, 

with 2 cutters and 4 cutters mounted to a maximum radius R1 and R2 respectively. In Figure 

E.1, 𝑅1𝐶 and 𝑅2𝐶 are the distance between the bit axis and cutter centers mounted at R1 and 

R2 respectively. 

 

Figure E.1. A theoretical flat face bit with 2 and 4 cutters mounted at R1C and R2C respectively
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The rate of penetration (ROP) for all of these cutters arrangement at radius equal to R1 and R2 are 

equal and it is proposed in Equation E.1. 

ROP =
5 × RPM × (NOC × AV × 2π × Re)

π × (R2)
… . . Eq. E. 1. 

In Equation E.1, the R is bit radius, 𝑅𝑒 is equivalent radius,  𝐴𝑉 is equivalent cutter front area, RPM is 

revolution per minute, and NOC a is the number of cutters. 

The two cutters close to the bit center axis are drilled the cylindrical core (labeled A) as it is depicted 

in Figure E.2. The rest of cutters (four cutters) drill the hollow cylindrical shape core (labeled B) 

numbers 2 in Figure E.2. 

 

Figure E.2. A theoretical flat face bit with 2 and 4 cutters mounted at R1 and R2 

The cutters drill cylindrical shapes (A is a solid cylinder and B is a hollow cylinder in Figure E.2) 

simultaneously and therefore the rate of penetration for cutters mounted at the radius 𝑅1𝐶 is the same 

as 𝑅2𝐶. Assuming the volume of A=B, Equation E.2 can be derived. 

5 × RPM × (NOCR1 × AV1 × 2π × R1C)

π × R1
2 =

5 × RPM × (NOCR2 × AV2 × 2π × R2C)

π × (R2
2 − R1

2)
… . . Eq. E. 2. 

In Equation E.2, NOCR1 and NOCR2 are number of cutters at the radius equal to R1 and R2 respectively. 

The R1C and R2C equations are provided at the following.  

R1C =
R1
2
… . . Eq. E. 3. 
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R2C = R1 + (
R2 − R1

2
)… . . Eq. E. 4. 

For cutters mounted at radius J the RjC is defined as 

RjC = Rj−1 + (
Rj − Rj−1

2
)… . . Eq. E. E. 5. 

Simplifying Equation E.2 

(NOCR1 × AV1 × R1C)

R1
2 =

(NOCR2 × AV2 × R2C)

(R2
2 − R1

2)
… . . Eq. E. 6. 

Replacing Equations E.3 and E.4 in Equation E.7 

(NOCR1 × AV1 × (
R1
2
))

R1
2 =

(NOCR2 × AV2 × (R1 + (
R2 − R1

2
)))

(R2
2 − R1

2)
… . . Eq. E. 7. 

Rearranging Equation E.7 

AV1
AV2

=

NOCR2 × (R1 + (
R2 − R1

2 )) × R1
2

NOCR1 × (
R1
2
) × (R2

2 − R1
2)

… . . Eq. E. 8. 

Using the same assumption and expanding to more than two radiuses (R1,R2, … Rj), the Equation E.8 

is turned into Equation E.9. 

AV1
AVj

=

NOCRj × (Rj−1 + (
Rj − Rj−1

2 )) × R1
2

NOCR1 × (
R1
2 ) × (Rj

2 − Rj−1
2 )

… . . Eq. E. 8. 

The area in front of cutters at the radius equal to R1 is related to the other cutters through Equation 

E.9. 
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AVj =

(

 
 NOCR1 × (

R1
2
) × (Rj

2 − Rj−1
2 )

NOCRj × (Rj−1 + (
Rj − Rj−1

2
)) × R1

2

)

 
 
× AV1… . . Eq. E. 9. 

The area beneath all cutters can be calculated using Equation E.10.  

NOCR1 × AB1 + NOCR2 × AB2 +⋯+ NOCRj × ABj =
WOB

CCS
… . . Eq. E. 10. 

When the depth of cut is known, the area in front of the cutter can be achieved using Equation E.11. 

tan(BR) =
AB
AF

… . . Eq. E. 11. 

Following set of equations can be driven to achieve the area in front of cutter at radius R1 (Equation 

E.18). The Equation E.10 and Equation E.11 result in Equation E12. 

NOCR1 × AV1 + NOCR2 × AV2 +⋯+ NOCRj × AVj =
WOB

CCS × tan(BR)
… . . Eq. E. 12. 

Simplifying Equation E.12 into Equation E.13. 

NOCR1 × AV1 +∑ NOCRj × AVj
n

j=2
=

WOB

CCS × tan (BR)
… . . Eq. E. 13. 

Rearranging Equation E.13 into Equation E.14. 

NOCR1 × AV1 +∑ NOCRj ×

(

  
 

(

 
 NOCR1 × (

R1
2
) × (Rj

2 − Rj−1
2 )

NOCRj × (Rj−1 + (
Rj − Rj−1

2
)) × R1

2

)

 
 
× AV1

)

  
 n

j=2
=

WOB

CCS × tan (BR)
… . . Eq. E. 14. 

The NOCRj is goes away with NOCRj at denominator results in Equation E.15. 

NOCR1 × AV1 +∑

(

  
 

(

 
 NOCR1 × (

R1
2
) × (Rj

2 − Rj−1
2 )

(Rj−1 + (
Rj − Rj−1

2
)) × R1

2

)

 
 
× AV1

)

  
 n

j=2
=

WOB

CCS × tan (BR)
… . . Eq. E. 15. 
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Rearranging Equation E.15 to Equation E.16. 

NOCR1 × AV1 + (NOCR1 × AV1)∑

(

  
 

(

 
 (

R1
2
) × (Rj

2 − Rj−1
2 )

(Rj−1 + (
Rj − Rj−1

2
)) × R1

2

)

 
 

)

  
 n

j=2
=

WOB

CCS × tan (BR)
… . . Eq. E. 16. 

Rearranging Equation E.16 to Equation E.17. 

NOCR1 × AV1 ×

(

 
 
1 +∑

(

  
 

(

 
 (

R1
2
) × (Rj

2 − Rj−1
2 )

(Rj−1 + (
Rj − Rj−1

2
)) × R1

2

)

 
 

)

  
 n

j=2

)

 
 
=

WOB

CCS × tan (BR)
… . . Eq. E. 17. 

Rearranging Equation E.17 to Equation E.18. 

AV1 ×=
(

WOB
CCS × tan (BR)

)

NOCR1 ×

(

 
 
1 + ∑

(

  
 

(

 
 (

R1
2
) × (Rj

2 − Rj−1
2 )

(Rj−1 + (
Rj − Rj−1

2
)) × R1

2

)

 
 

)

  
 

n
j=2

)

 
 

… . . Eq. E. 18. 

 

The cutter depth of cut relates to cutter beneath and front area. The cutter front area is related to other 

cutters number and arrangement (see Equation E.18). 

• Note that the above equations was developed using the following assumptions. There is not 

interaction between cutters at different radiuses. 

• There is zero exposure between cutters at the same radius. 
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APPENDIX F 

The codes are provided at  

https://github.com/Atashnezhad/OOP/blob/master/curvefit-gh-allcases-dea-oop.ipynb.  

docker pull atashnezhad/developeifa:latest 

 

 

https://github.com/Atashnezhad/OOP/blob/master/curvefit-gh-allcases-dea-oop.ipynb
https://github.com/Atashnezhad/OOP/blob/master/curvefit-gh-allcases-dea-oop.ipynb
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APPENDIX G 

 

 

The full bit data and single cutter data used in this study are provided at the following 

tables. 
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Table G.1 Four-Blade bit results in SWG at 100 rpm (Raymond et al., 2015) 

 

 Table G.2 Four-Blade bit results in SWG at 150 rpm (Raymond et al., 2015) 

 

Table G.3 Four-Blade bit results in SWG at 200 rpm (Raymond et al., 2015) 
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 Table G.4 Five-Blade bit results in SWG at 100 rpm (Raymond et al., 2015) 

 

 Table G.5 Five-Blade bit results in SWG at 150 rpm (Raymond et al., 2015) 

 

 Table G.6 Five-Blade bit results in SWG at 200 rpm (Raymond et al., 2015) 
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Table G.7 Four-Blade bit results in BSS at 100 rpm (Raymond et al., 2015) 

 

Table G.8 Four-Blade bit results in BSS at 150 rpm (Raymond et al., 2015) 

 

Table G.9 Four-Blade bit results in BSS at 200 rpm (Raymond et al., 2015) 
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Table G.10 Five-Blade bit results in BSS at 100 rpm (Raymond et al., 2015) 

 

Table G.11 Five-Blade bit results in BSS at 150 rpm (Raymond et al., 2015) 

 

Table G.12 Five-Blade bit results in BSS at 200 rpm (Raymond et al., 2015) 
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Table G.13 Description of cutters used in the laboratory tests (Glowka, 1987) 

 

Table G.14 Dry, non-interacting cut test data for BSS (Glowka, 1987) 
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Table G.15 Dry, non-interacting cut test data for SWG (Glowka, 1987) 
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Table G.16 Averaged forces with varying BR, chamfer angles and depth of cut (standard 

chamfer geometry and alternative chamfer geometry, chamfer angle forty five and fifteen 

degree respectively), (Hellvik et al., 2012) 
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