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Abstract: Over the past century, oil and gas served an important role in the US
energy sector. The oil industry continually has worked to reduce the drilling cost by
increasing drilling efficiency. Drilling is a time-consuming and costly operation in which
a wellbore is drilled into underground formations to extract the oil and gas from
hydrocarbon reservoirs. In well construction, drilling cost is one of the main parts of the
total well cost. According to the Energy Information Administration (EIA), the average
drilling cost for an onshore well is about 26% of the total well costs (drilling, completion,
and facilities), while for an offshore well, the cost rises to about 40% of the total well costs
(EIA, 2016). As the energy demand increases in the world markets, oil companies are
trying to access resources in more hostile environments, which often increases the time and
cost of drilling. The objective of this study is to improve the ROP estimation for PDC bits
by introducing a novel ROP model for hard rocks. The effect of cutter geometry and wear
flat areas (both PDC and stud) are integrated into the new PDC ROP model. The interfacial
friction angle models for single cutter and full bit are presented and used to improve the
cutter force and ROP model estimation accuracy. A novel PDC wear model is developed
based on the physical work done by the cutter which integrates both the PDC and stud wear
coefficients. This research has numerous potential applications in the drilling industry such
as: developing or integrating into current drilling optimization software, autonomous
drilling decision making, real-time optimization, and problem solver software.



TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ...ttt sttt st sne e e e enee e 1
1. BACKGROUND AND LITERATURE REVIEW........ccovviiiiiiieie e 8
2.1 Polycrystalline diamond compact (PDC) ROP models...........cccccovevviieirennenne. 11
2.1.1 Bingham (1965) ROP MOdel..........cccoiiiiiiiiiiiiccec e 11
2.1.2 Hareland and Rampersad (1994) ROP model ...........cccovveviiieiieieiiennn, 11
2.1.3 Motahhari et al. (2010) ROP model ...........ccoovviiiiiiniiciieeeeee, 13
2.1.4 Kerkar et al. (2014) MOdel ........c.cooveiiiiiiiece e 14
2.2 Single cutter rock interaction MOGEIS...........coovriiiriiiieie e, 16
2.2.1 Ernst and Merchant (1941) Model..........cccoevviieiieie i 16
2.2.2 Merchant (1940) MOdel .........cooiiiii e 17
2.2.3 Glowka (1987) MOdel.........cocoeeieiiee e 18
2.2.4 Detournay and Defourny (1992) model ..., 19
2.2.5 Hanson and Hansen (1995) Model ...........cccoveeiieieiie i 20
2.2.6 YaN (1997) MOMEl........cooviiiiiiiiee s 21
2.2.7 Gerbaud et al. (2006) MOUEL.........ccoeevrieiiiiieecie e 21
2.2.8 Rahmani (2013) MOEN ........cveiieieiiee e 22
2.2.9 Carrapatoso et al. (2015) Model .........coevveiiiieiiee e 23
2.2.10 Cheng et al. (2018) MOdel .........cocoriiiiiiiiie e 24
2.3 Statistical ROP MOGEIS.........cooiiiiiiieiie s 24
2.4 Interfacial friction angle (IFA) ... 27
2.5 ROP 0ptimization WOIKS ........coiviiiiiieccic et 30
2.5.1 SPLEI (1958) ...cuviiiiiiiirie et 30
2.5.2 Graham and Muench (1959).........cccceiiiiiiiiie e 31
2.5.3 Galle and WO00dS (1963).......cccueurrieriiiieriisiiniieeeee e 31
2.5.4 Reed et al. (1972) ..ocoee et 32
2.5.5 Bourgoyne and YOoung (1974) .....cccooeieiiiiiiiieieiee s 33
2.5.6 Maidla and Ohara (1991) .....cccooiie i 33
2.5.7 Rampersad at al. (1994)........coiiiiiiiieie e 34
2.5.8 Rommetveit et al. (2004).......ccooiiiiiiiieiiee e 34
2.5.9 Dupriest and Koederitz (2005) ........ccoveueiiierieiieieese e see e 35
2.5.10 Hareland et al. (2007) .......cooieieiieieeie e 35
2.5.11 Eren and Ozbayoglu (2010) ......ccovereeieiierieeieseese e 36
2.5.12 HAaMIICK (2011) .ooiieiiiiie e 36



Chapter Page

2.5.13 HanKins et al. (2014) ...c.ooiuieeeee ettt 37
[11. PDC ROP MODELING........coiiiiitititiieieeie et 38
3.1 PDC single cutter contact area calculation..............cccccveveiievisce v, 39
3.1.1 PDC single cutter model contact area calculation for sharp cutter .......... 39

3.1.2 PDC single cutter model contact area calculation for blunt cutter........... 40

3.2 Depth of cut CalCUIATION .....cc.oiviiiiiiiieee e 42
3.3 Interfacial friction angle (IFA) MOAEIING.......cccecveiieiiieieee e 47
3.3.1 Single cutter IFA MOGEI ........ooiiieiiie e 47

3.3 2 FUl DIt IFA MO ... e 50

3.4 Single cutter Torce Model ... 51
3.4.1 Single cutter force model for sharp CUtter ...........ccccovvevevieiieve i 51

3.4.2 Single cutter force model for blunt CUtter ..........occovvevevienenie e 52

3.5 New full bit PDC ROP MOdel .......cccooiiiiiiiiiesiceeeeee s 54
3.6 New PDC bit wear MOGEl.........ccoiueiieiiiieiiese e 56
3.7 Metaheuristic Algorithms and Differential Evolution Algorithm (DEA)......... 61
V. RESULTS .ottt ettt besreeseeneeneens 65
4.1 IFA Model FIttING rESUILS .......oovviiiiieieeee e 66
4.2 PDC single cutter force model verification.............ccccceeveiieviive i, 71
4.2.1 Sharp cutter force model Verification............ccocovvviiiiiieninc 72

4.2.2 Blunt cutter force model verification ............cccoveveniieiniiceen 78

4.3 New full bit ROP model fitting reSultS..........ccooviiiiiiiiiceee e 80
4.4 Sensitivity analysis of the newly developed PDC ROP model.......................... 95
4.5 ROP model VErifiCatioNn..........cooviieiieie e 99
V. CONCLUSIONS AND FUTURE RECOMENDATION.......ccccoceviiririiereen 105
REFERENCES ..ottt sttt st 109
APPENDIX A oottt ettt na s 117
APPENDIX B ..ottt ettt sttt 133
APPENDIX € ..ot bbbttt bbbt 142
APPENDIX D ..ottt ettt sttt 162
APPENDIX E ..o bbb 166
APPENDIX Fo.oeiicieeee ettt sttt 171
APPENDIX G ..ot bbbttt 178



LIST OF TABLES

Table Page
Table 4.1. Cutters details used for developing single cutter IFA model .................. 66
Table 4.2. Bits details used for developing full bit IFA model ............c.cccoevveereennen, 81

Table 4.3. The base case numerical values used for full bit PDC ROP model

SENSITIVITY @NAIYSIS ....viveeiecie et re et e e e 94
Table G.1 Four-Blade bit results in SWG at 100 rpm (Raymond et al., 2015) ....174
Table G.2 Four-Blade bit results in SWG at 150 rpm (Raymond et al., 2015) ......174
Table G.3 Four-Blade bit results in SWG at 200 rpm (Raymond et al., 2015) ......174
Table G.4 Five-Blade bit results in SWG at 100 rpm (Raymond et al., 2015)....... 175
Table G.5 Five-Blade bit results in SWG at 150 rpm (Raymond et al., 2015)....... 175
Table G.6 Five-Blade bit results in SWG at 200 rpm (Raymond et al., 2015)....... 175
Table G.7 Four-Blade bit results in BSS at 100 rpm (Raymond et al., 2015) ........ 176
Table G.8 Four-Blade bit results in BSS at 150 rpm (Raymond et al., 2015) ........ 176
Table G.9 Four-Blade bit results in BSS at 200 rpm (Raymond et al., 2015) ........ 176

Table G.10 Five-Blade bit results in BSS at 100 rpm (Raymond et al., 2015)....... 177

vii



Table page

Table G.11 Five-Blade bit results in BSS at 150 rpm (Raymond et al., 2015).......177
Table G.12 Five-Blade bit results in BSS at 200 rpm (Raymond et al., 2015).......177
Table G.13 Description of cutters used in the laboratory tests (Glowka, 1987).....178
Table G.14 Dry, non-interacting cut test data for BSS (Glowka, 1987)................. 178
Table G.15 Dry, non-interacting cut test data for SWG (Glowka, 1987)............... 179
Table G.16 Averaged forces with varying back rake, chamfer angles and depth of

cut (standard chamfer geometry and alternative chamfer geometry, chamfer angle

forty five and fifteen degree respectively), (Hellvik et al., 2012)............ccccvevenene. 180

viii



LIST OF FIGURES

Figure Page
Figure 2.1. Parameters that influence on drilling rate of penetration (ROP)............ 10
Figure 2.2 A 3D schematic of a PDC cutter (Soares et al., 2016) ..........ccccoevvvennnne. 12

Figure.2.3 Shale ribbons for tests with water at 9000 psi CP and 0.011- inch depth

of cut for polished (left) and non-polished cutter (right)(Smith, 1998).................... 22
Figure 3.1 a schematic of a sharp PDC cutter and its associated areas .................... 40
Figure 3.2 a schematic of a blunt cutter and the associated areas...............c.ccooeuve.ne. 41

Figure 3.3. Schematic of different areas associated with the cutter
penetration CalCUIAtION ............ccviiioie s 46
Figure 3.4 a schematic of a sharp PDC cutter and its associated areas .................... 58

Figure 3.5 A 3D schematic of a PDC cutter and wear flat area from another

PEISPECTIVE ..ttt ettt b e et e et e e e e b e et e et e e b e e e e areenree s 59
Figure 3.6 Schematic of a worn-out section of a PDC cutter ............cccoeevevveiiviennnnnn 61
Figure 3.7 Different MAs classification (Dreo and Candan, 2017)..........cccceevvveeneene 62

Figure 3.8 A contour of a 3D problem with PSO particles (Ephramac, 2017)......... 63

Figure 3.9 The differential algorithm flowchart ... 64



Figure

Figure 4.1 a comparison between models estimated IFA and data for cutter J in BSS.....67
Figure 4.2 a comparison between models estimated IFA and data for cutter K in BSS....68
Figure 4.3 a comparison between models estimated IFA and data for cutter J in SWG ...68
Figure 4.4 a comparison between models estimated IFA and data for cutters

(variable BR, chamfer =45), data from Hellvik et al. (2012) ..........ccociiiiiiiiiicniee 69
Figure 4.5 a comparison between models estimated IFA and data for cutters

(variable BR, chamfer =15), data from Hellvik et al. (2012) ..........ccoceviiiiiiiiinicee 69
Figure 4.6 a sensitivity analysis on the IFA model for different rock UCSs and

constant cutter VElOCItY = 2.1 IN/SEC.....cc.oiiiiiiiiiieieieee e 70
Figure 4.7 a sensitivity analysis on the IFA model for different cutter velocities

and constant UCS = 15000 PSI....uviureiriierierieriesiesiieieeeeiesee sttt 70
Figure 4.8. Normal and drag forces vs. DOC for sharp cutter J in BSS before and after
applying the TFA MOTEL ..o 72
Figure 4.9. Normal and drag forces vs. DOC for sharp cutter K in BSS before and after
applying the TFA MOEl .........ccooeiecee e e 72
Figure 4.10. Normal and drag forces vs. DOC for sharp cutter J in SWG before and after
applying the TFA MOTEL .........ccoiiiic e 73
Figure 4.11. Normal and drag forces vs. DOC for sharp cutter with BR=5° in TX Granite

(HElIVIK €T al., 2012) ...ttt bbb 73



Figure Page

Figure 4.12. Normal and drag forces vs. DOC for sharp cutter with BR=10°
in TX Granite (Hellvik et al., 2012).......ccoooiiiiiiieiie e 74
Figure 4.13. Normal and drag forces vs. DOC for sharp cutter with BR=15°
in TX Granite (Hellvik et al., 2012).......cccooiiiiiiiieiie e 74
Figure 4.14. Normal and drag forces vs. DOC for sharp cutter with BR=20°
in TX Granite (Hellvik et al., 2012).......ccccoiiiiiiiiiieieee e 75
Figure 4.15. Normal and drag forces vs. DOC for sharp cutter with BR=25°
in TX Granite (Hellvik et al., 2012).......cccooiiiiiiiiieeeee e 75
Figure 4.16. Normal and drag forces vs. DOC for sharp cutter with BR=30°
in TX Granite (Hellvik et al., 2012).......cccoiiiiiiiiiceese e 76
Figure 4.17. Schematic of cutter normal and drag forces and interfacial friction effect...77
Figure 4.18. E-S diagram for blunt cutter D in SWG and friction line............cc.cocceevvennen. 78

Figure 4.19. Comparison between model and data cutter normal and drag force

for blunt cutter D in SWG before and after applying the IFA model and pu........cceeen 79
Figure 4.20. Face view photograph of four-bladed PDC Dit............ccoovviiiiiiiiincie, 80
Figure 4.21. Face view photograph of five-bladed PDC bit..........c.ccocoviiiiiiiiii 80
Figure 4.22. Developing full bit IFA model proCedure ............cooevvriiiiieieie e 83

Figure 4.23. Comparison between the model and data ROP for four-bladed PDC bit at
RPM=100 1N SWG.....occiiiiitieitie ettt ettt ettt e st e e te e sae e e be e saeeebeesreeenneens 84
Figure 4.24. Comparison between the model and data ROP for four-bladed PDC bit at

RPM=150 1N SWG ..ottt 84

Xi



Figure Page

Figure 4.25. Comparison between the model and data ROP for four-bladed PDC bit at

RPM=200 IN SWG.....ciiiiieiieie sttt sttt aen et e et snententeereens 85
Figure 4.26. Comparison between the data and model for four bladed-bit in SWG ......... 85
Figure 4.27. The cutting point and two cutting phases for a four-bladed bit in SWG....... 86

Figure 4.28. Comparison between the model and data ROP for five-bladed PDC bit
At RPM=100 IN SWG ...ttt sttt sara e sbe e s ae e abe e re e nnee s 87
Figure 4.29. Comparison between the model and data ROP for five-bladed PDC bit
At RPM=150 1N SWG ...ttt ettt e ae et e ee e enee s 87

Figure 4.30. Comparison between the model and data ROP for five-bladed PDC bit at

RPM=200 IN SWG ...ttt sttt n e b e 88
Figure 4.31. Comparison between the data and model for five bladed-bit in SWG......... 88
Figure 4.32. The cutting point and two cutting phases for a five-bladed bit in SWG. ....... 89

Figure 4.33. Comparison between the model and data ROP for four-bladed PDC bit

At RPIMI=L100 IN BSS.....oo ettt sne e ste et eneenteeneenneenns 89
Figure 4.34. Comparison between the model and data ROP for four-bladed PDC bit at
RPMZ150 IN BSS......ooo ettt ettt ettt e e st e e be e sae e e be e sbeesbeesreeanreens 90

Figure 4.35. Comparison between the model and data ROP for four-bladed PDC bit at

RPM=Z200 IN BSS.... oottt st ae ettt e b e srenaenteareens 90
Figure 4.36. Comparison between the data and model for four bladed-bit in BSS............ 91
Figure 4.37. The cutting point and phase Il for a four-bladed bit in BSS .............cccc..... 91

Figure 4.38. Comparison between the model and data ROP for five-bladed PDC bit

AL RPM=100 iN BSS ... 92



Figure Page

Figure 4.39. Comparison between the model and data ROP for five-bladed PDC bit
At RPM=150 1N BSS... .ot 92
Figure 4.40. Comparison between the model and data ROP for five-bladed PDC bit
At RPMI=200 IN BSS ... oottt st n et nneenns 93

Figure 4.41. Comparison between the data and model ROP values for five bladed-bit

TN BSS bR E bRt b ettt e et nenae s 93
Figure 4.42. The cutting point and phase 1 for five-bladed bit in BSS..............cccovnene 94
Figure 4.43. The drilling rate of penetration response to increase in WOB ...................... 95
Figure 4.44. The drilling rate of penetration response to increase in RPM....................... 96
Figure 4.45. The drilling rate of penetration response to increase in bit diameter ............ 97
Figure 4.46. The drilling rate of penetration response to increase in UCS...............coc.... 98
Figure 4.47. The PDC ROP model sensitivity analysis...........c.ccocereririnnieienenencscnee 98
Figure 4.48. variation of Carthage lime CCS Versus CP .........ccccocvireiniiciecieeenee 99

Figure 4.49. comparison between the model ROP and data for 8.5” PDC bit,

RPM=120, UCS=10900 psi, CP=1400 psi, CCS=14654 psi, NOC=49, NOB=7,

Dc=0.5 “, BR=20, ROP-constant=0.55...........ccccccoiiiiiii e 100
Figure 4.50. comparison between the model ROP and data for 8.5 PDC bit,

RPM=170, UCS=10900 psi, CP=920 psi, CCS=103147 psi, NOC=49, NOB=7,

Dc=0.5 “, BR=20, ROP-constant=0.55...........ccccccoiiiiiii e 100
Figure 4.51. comparison between the model ROP and data for 8.5 PDC bit,

RPM=120, UCS=10900 psi, CP=807 psi, CCS=12778 psi, NOC=49, NOB=7,

Dc=0.5 “, BR=20, ROP-CONStaNt=0.55.........ccccoiiiiririiiie e 101



Figure Page

Figure 4.52. comparison between the model ROP and data for 8.5” PDC bit,

RPM=120, UCS=10900 psi, CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7,

Dc=0.5 “, BR=13, ROP-coNStant=0.55..........cccoiiiiiiiiii e 101
Figure 4.53. comparison between the model ROP and data for 8.5” PDC bit,

RPM=175, UCS=10900 psi, CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7,

Dc=0.5 “, BR=13, ROP-coNStant=0.55..........cccoiiiiiiiiie et 102
Figure 4.54. comparison between the model ROP and data for 8.5 PDC bit,

RPM=120, UCS=10900 psi, CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7,

Dc=0.5 “, BR=13, ROP-CoONStant=0.55..........cccoiiiiiiiiie et 102
Figure A.1. The schematic of a sharp cutter front face (left) and side view (right) ........ 115
Figure A.2. The schematic of the depth of cut and threshold depth of cut..................... 116
Figure A.3. A schematic of @ triangle ..........cccooiiiiiiiiie e 116

Figure A.4. A schematic of a cutter face area when the cutter depth of cut is greater
than the threshold depth OF CUL..........ccviiii 119

Figure A.5. A schematic of a blunt cutter front face view (left) and side view

(FTONE) ettt bbb 121
Figure A.6. A schematic of a cutter face areawhenthe BG >4 ... 124
Figure A.7. A schematic of @ DIUNT CULEEN ..........cccoiiiiiiii e 126
Figure A.8. a schematic of the circle segment area (ABCA)........cccvvviviiieniieniieins 128
Figure A.9. A schematic of a Sharp CULer .........cccoveii i 129



Figure Page

Figure B.2. The intersection between the plane and the top and bottom of a cylinder
on the X-Y coordinate (t0P SIAE VIEW).....c..oieiiiiiiiiesieeie et 133

Figure C.1. a 3D schematic of a blunt cutter (assigned number 2) and the worn

section (assigned NUMDET 1) ..o e 140
Figure C.2. a schematic Of CULtEr SIHE VIEW .........cooiiiiieiiieiesic e 141
Figure C.3. cutter front face on X-Y coordinate (front side VIEW) .........cccceveiininiinnnine 142
Figure D.1. A schematic of a cutter in X-Y cOOrdinate ............coovrvieriinieiencnesesene 157

Figure D.2. Wear Flat Area width versus bit grade for a cutter with a 0.52-inch

(0= 11 (=] USSR 159
Figure D.3. A schematic of a cutter wear flat area and its length (red arrow)................. 159
Figure D.4. A 3D schematic of a cutter wear flat area ............ccccocevevviiiciiiciee 160

Figure E.1 a theoretical flat face bit with 2 and 4 cutters mounted at R_1C and
R_2C 1ESPECHIVEIY ... bbb 161

Figure E.2 a theoretical flat face bit with 2 and 4 cutters mounted at R1 and R2 ........... 162

XV



lpsingle cutter
Wtulibit

UppC

Ustud

aave

(04

inch)

NOMENCLATURE

shear angle (degree)

uniaxial rock strength (psi)

interfacial friction angle (degree)

shear strength (psi)

the internal friction angle (degree)

rake angle of cutting tool (degree)

the cutter depth of cut (inch)

drag coefficient (degree)

drilling interval length (ft)

the ratio of the vertical to the horizontal force acting on cutting face (-)
intrinsic specific energy (psi)

PDC layer wear flat areas efficiency (-)

stud wear flat areas efficiency (-)

normalized depth of cut (-)

single cutter interfacial friction angle (degree)

full bit interfacial friction angle (degree)

PDC layer wearing coefficient (ft. Ibg/cube-inch)

stud wearing coefficient (ft. 1b¢/cube-inch)

averaged PDC and stud wearing coefficients (ft. Ibg/cube-inch)

wear constant, the amount of work per unit volume of material (ft. Ibg/cube-

mean flat area temperature of PDC cutter (Celsius)
2
thermal response function (C <)

critical penetrating stress (psi)
the theoretically calculated area beneath the cutter (square inch)

the weighted area beneath the cutter (square inch)

XVi



APyt
AD

ag and bg
a;, by, cq
a,, b,
ay, by
Ay

ABR

A, Acurs Ay
Ag
Acontact
Ap

Ay

A,
Aw,ppC

Aw,stud

ABR
b(x)
BR
BHA
BG
BSS
Cy, Cy

CCS
COR

CP
CCS

pressure drop in bit (psi)

drilling interval length (ft)

uniaxial rock strength (psi)

empirical constants for different lithologies (-)
empirical coefficients (-)

empirical coefficients (-)

empirical coefficients (-)

cutter front area (square inch)

formation abrasiveness (-)

area of cut (cutter front area) (square inch)
cutting area (square inch)

area of cutter face that is in contact with rock (square inch)
the area beneath the cutter face (square inch)
total wear flat area (square inch)

weighted wear flat area (square inch)

PDC layer wear flat area (square inch)

stud wear flat area (square inch)

the total area beneath the cutter (square inch)
projection of cutter wear flat area on X-Y plane (square inch)
bit area (square inch)

abrasiveness (-)

bit blade effect function (-)

back rake angle (degree)

bottom hole assembly (-)

bit grade (-)

Berea sandstone

rock type constants (-)

confined compressive strength (psi)

correction factor (effect of WOB and RPM nonlinearity on ROP) (-)
machining constant (-)

number of blade coefficient (-)

confining pressure (psi)

confined compressive strength (psi)

XVii



MSE

cutter diameter (inch)

depth of cut (inch)

normalized depth of cut (-)
differential evolution algorithm (-)
bit diameter (inch)

cutter tangential (drag) force (lbf)
cutter axial (normal) force (Ibf)
cutter penetrating force (Ibf)
coefficient determined by bit geometry, cutter size, and cutter design (-)
hydraulic square inch (HP/sg-inch)
hydraulic function (-)

horsepower (-)

hydraulic horsepower (HP)
interfacial friction angle (degree)
inner diameter (in)

junk slot area (square inch)

cutter-rock friction coefficient (-)

w
rock-formation thermal conductivity (%)

numerical constant (-)

number of nodes representing the rock surface on the vertical plane (-)
Mancos shale

machine learning (-)

mechanical specific energy (psi)

mud weight (ppg)

number of planes (-)

number of cutters (-)

number of blades (-)

rock type constants (-)

outer diameter (in)

confined pressure (psi)
polycrystalline diamond cutter (-)
flowrate (GPM)

the element radius (inch)

XViii



RPM
ROP
RS

SPP
SWG
tepc
™

TX pink
UCS
ucs,
Vo

\'

VWOI‘I’]

Vtotal worn

WOB
Wi
W

revolution per minute (rpm)

rate of penetration (ft/hr)

rock strength (psi)

equivalent radius (inch)

radial coordinate (-)

unconfined compressive strength (psi)
the shear strength of the material being cut (psi)
side rake angle (degree)

confined compressive strength (psi)
standpipe pressure (psi)

Sierra white granite

PDC cutter thickness (inch)
Tennessee marble

Texas Pink Granite

unconfined compressive strength (psi)
normalized unconfined compressive strength (-)
normalized cutter velocity

cutting speed (?)

worn volume (cube inch)

total worn-out section (cube-inch)
weight on bit (Ibf)

bit wear function (-)

bit wear coefficient (-)

W;, W, and Wy cutter drag, normal works (ft. Ib¢)

Wr

cutter total works (ft. Iby)

XiX



CHAPTER I

INTRODUCTION

The drilling cost includes rig rental, bits, casing strings, drilling fluids, and service costs. The rig
rental cost, which is the larger part of the drilling cost, is a direct function of the drilling time. The
drilling time includes the rotating time, connection time, and tripping time. While the connection
time is more or less fixed for a specific interval, the rotating time depends on how operational
parameters (WOB, RPM, etc.) are applied during drilling a well. Therefore, an optimum drilling
plan should be able to reduce the rotating time by increasing the average drilling ROP and
decreasing the tripping time (Hareland et al., 2008 b). Furthermore, horizontal wells allow multiple
wells to be drilled from the same drilling location. Along with the previously mentioned advantages
of horizontal wells, the lateral sections of a horizontal well increase the length of the well
considerably. The rotating time and total cost of drilling increase when the wellbore becomes
longer, which makes the use of drilling optimization necessary to ensure an economical drilling
operation. To reduce the rotating time and total cost of the drilling process, the drilling operation
should be translated into a mathematical model. The model consists of expressing the system,
entity, or phenomenon using a mathematical language and is the platform for simulation,
optimization, and design. Engineers in different industries are continually trying to reduce costs

using modeling and optimization.



In the drilling industry, the rate of penetration (ROP) is the speed that the drilling bit penetrates the
formation and is expressed in feet or meters per hour. The drilling ROP affects the drilling time

and consequently the drilling cost.

At the present time, the application of drilling simulators has become the leading technology in
well planning. The ROP models act as the core engine for the drilling simulator and provide an
estimation for ROP by taking important drilling parameters as input, including WOB, RPM, bit
details, hydraulics, and formation properties. To achieve a precise ROP simulator, having an

accurate ROP model is essential.

Several researchers have presented different ROP models based on the type of drilling bits. Maurer
(1962) established a model for the roller cone bits at low RPM and WOB, assuming a perfect
cleaning condition around the drill bit and annular space. Walker et al. (1986) introduced a ROP
model for insert bits by including the bit weight, well depth and laboratory determined rock
strength. Warren (1987) proposed a model for the roller cone bits by taking the rock strength, RPM,
WOB and bit diameter. Winters et al. (1987 b) developed a ROP model for roller cone bits taking
the bit design, operating conditions, and the rock mechanics into account. They found that the rock
ductility had a major effect on bit performance. Hareland and Rampersad (1994) developed a ROP
model for drag bits including wear which comprised of cutter-rock interaction. This model included
mass conservation and assumed an ideal bit cleaning condition. Motahhari et al. (2010) also
developed a PDC ROP model based on single cutter rock interaction by assuming perfect bit
cleaning. Kerkar et al. (2014) developed another ROP model for PDC bits and incorporated the bit

details such as the number of blades, cutter details, and integrated bit wear and hydraulics.

Once the desired parameter (e.g. ROP) is expressed in a mathematical equation, the next step is to
find the global minimum or maximum of such equation, known as optimization. Drilling cost

optimization has always been one of the major interests of researchers in petroleum engineering.



Speer (1958) introduced the drilling optimization using optimum drilling parameters. Galle and
Woods (1963) introduced a graphical method to find the optimum RPM and WOB for roller cone
bits. Bourgoyne and Young in 1974 used the minimum cost formula for drilling optimization. They
showed that maximizing the ROP could reduce the drilling cost (Eren and Ozbayoglu, 2010). Onyia
(1987) and Rampersad et al. (1994) applied a Geological Drilling Log (GDL) to generate input for
drilling simulation and optimization. The GDL is calculated by inverting the ROP model for any
specific bit (e.g. tricone bits, PDC bits). The GDL is then used in conjunction with ROP models for
any specific bit to simulate the bit penetration rate. This research showed how the obtained

information during drilling can be utilized for the optimization of future wells in the same oil field.

Hareland et al. (2007) developed a drilling simulator software (Optimizer) which estimates the
Apparent Rock Strength Log (ARSL) based on drilling data. Also, the drilling optimizer application
in Managed-Pressure Drilling (MPD) was demonstrated (Hareland et al., 2008 a). The software
simulates the drilling process for multiple drilling bits, pull depths and operational parameters. The
drilling scenario with the minimum cost is chosen as the optimum drilling scenario. A large
reduction (more than 30%) in drilling cost was proven just by drilling simulation on conventional

wells in Canada using the Optimizer software (Hareland et al., 2008 b).

Most of the systems in engineering are non-linear, multi-dimensional under various complicated
constraints (Lummus, 1970). This leads to complicated mathematical equations, which are known
as models. The common way to solve mathematical equations is analytical methods. The analytical
methods find the exact global minimum/maximum of functions. Although the analytical methods
give the explicit answers for models, solving such complex equations with numerous constraints

are hard, time-consuming, and in some cases, impossible.

Metaheuristic methods can be applied to solve complicated sets of mathematical equations with a

high degree of nonlinearity and complex constraints. Their applications include multi-objective



function optimization (Urade and Patel, 2012), routing (Shen et al., 2009), scheduling (Pandey et
al., 2010), partitioning (Erdeljan et al., 2014), pattern recognition (Omran et al., 2006),
classification such as decision tree (Chen et al., 2014), random forest (Malik et al., 2011) and K
nearest neighbor (Zhang et al., 2010), image processing (Omran et al., 2006), data mining (Grosan
et al., 2006) and machine learning (Gaur et al., 2013). Metaheuristic methods are inspired mostly
by nature, such as the flight of bird flocks, ant movement strategy, or the flight patterns of bees.
These methods generate a sample of feasible solutions and try to improve the overall fitness index
in each iteration. Metaheuristic methods do not guarantee that the solution found is the global
optimum. These methods tend to go toward the global optimum quickly, and because of that, they
can effectively deal with complicated problems. Metaheuristic algorithms are useful in cases in

which classical methods become stuck in local minima.

The Differential Evolution Algorithm (DEA) is a powerful, yet simple metaheuristic one. It benefits
from a simple arithmetic operation and a novel sampling technique which adaptively changes the
step size during population evolution. It perturbs the best solution value into existing population
vectors using crossover operation. Price in 1996 tested the performance of DEA on 15 benchmark
functions. He found that the DEA was the fastest method for solving eleven of them and was
competitive for the remaining four (Price, 1996). Applying metaheuristic methods is easy in
comparison to analytical methods and therefore, in this study, the potential application of DEA is
used to find the constants of single cutter interfacial friction angle (IFA) model taking the data into
account. In this work the DEA was coded in Python and solved along with the PDC ROP model to

find the full bit (Internal Friction Angle) IFA model constants.

Studies have already been done in the drilling optimization and simulation domain. Hareland et al.
(2008) developed a software (Optimizer) for drilling simulation. The software benefits from
comprehensive models for both rollercone and PDC bits. The Optimizer software can be used to

generate rock strength, which provides further input for drilling simulation and optimization. The
4



user can then manually divide a drilling interval into several subsections and apply desired bits,
WOB, and RPM to reduce drilling costs. Although the user can reduce the drilling costs by using
the simulator, the learning process is time-consuming and relies on the user’s background
knowledge, experience, and patience. In addition, finding the most cost-effective drilling scenario
is almost impossible due to many feasible solutions and multiple local optima. In other words, the

Optimizer software is good at drilling simulation, but is lacking an optimization tool.

Self et al. (2017) found the optimum WOB and RPM for a drilling interval and selection between
two bits. They used the Kerkar et al. (2014) ROP model in conjunction with the Particle Swarm
Optimization (PSO) algorithm for simulation and optimization. However, their work was limited
to a selection between two bits. The Kerkar et al. (2014) model does not take the details such as
PDC cutter diameter, wear flat areas for stud and PDC, and the interfacial friction between the
cutter and rock into account. The Kerkar et al. (2014) model also ignored the above-mentioned
parameters effects on cutter wear which affects the ROP consequently and because of that, their

optimization results are not very reliable.

The interfacial friction is referred to as frictional force at the contact area between the PDC cutter
face and rock (Rahmani, 2013). The interfacial friction concept is included in new single and full
PDC bit models to improve the full bit ROP model's accuracy. The goal of this study is to propose
a pure theoretical — empirical model for PDC bits which includes the interfacial friction between
PDC cutter and rock. It worth to mention that, other than the application in the oil and gas drilling

industry, the models developed in this study are applicable to the geothermal wells as well.

The novel features of this thesis which makes it distinct from previous works are as follows:

+» The single PDC cutter model analytical equations were developed and used as a base for a
PDC full bit ROP model. Incorporating the wear flat area details (PDC and stud) makes

the new ROP model distinct from previous works.
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+«+ The novel PDC wear model is derived based on the physical definition of work. The unique
PDC wear model considers the effects of both stud and PDC wear coefficients. The PDC
wear model also includes the concept of interfacial friction. This aspect makes the new
wear model unique compared to previously published models.

«»+ The interfacial friction angle (IFA) concept is presented and incorporated in PDC single
and full bit models to improve models’ estimations.

«» Asingle cutter IFA model was developed based on single cutter data and used along with
the single cutter force models to improves models force estimations accuracy.

«» The differential evolution algorithm (DEA) was used in cooperation with the new proposed
PDC ROP model to develop a new full bit IFA based model.

¢+ The new full bit IFA model along with new PDC ROP model were verified using data from

literature.

This thesis consists of five chapters. Chapter one provides an introduction to the modeling and
optimization work and proposes the goal of the thesis. Chapter two introduced a review of previous
works in PDC ROP modeling, single cutter rock interaction modeling, statistical ROP modeling,
and optimization work. This chapter also discusses the IFA concept. Chapter three, expounds the
technical approach toward developing a single cutter and full bit models. In chapter three, the cutter
contacts area equations for sharp and blunt cutter are proposed. A new single cutter PDC model for
sharp and blunt cutters, two IFA models for single cutter and full bit, and the full bit PDC ROP
model are proposed. Chapter three presents a novel real-time bit wear model, which incorporates
the wear flat areas (PDC and stud) and wear constants of both PDC and stud material. In chapter
three also discusses the cutter depth of cut calculation. In chapter four, the developed IFA models
(for single cutter and full bit) are presented and verified with data. The full bit ROP model is used
cooperatively with the full bit IFA model to estimate the ROP of four and five-bladed PDC bits in

SWG and BSS. Appendices A, B, C, D, and E present developed equations for sharp and blunt
6



cutter contact area, cutter wear flat areas both for PDC and stud, sharp and blunt cutter front area,
sharp and blunt cutter beneath areas, cutter worn volume, and the wear flat area width and length.
Appendices F present the Python notebook codes which are used in this research for developing
two IFA models for single cutter and full bit using a differential evolution algorithm (DEA).

Appendix G provides all data used in this dissertation.



CHAPTER II

BACKGROUND AND LITERATURE REVIEW

This chapter reviews the previous studies and expounds the researches on full bit PDC ROP

modeling, cutter-rock interaction modeling, IFA concept, and the optimization literature.

The drilling time is a function of multiple general parameters including drilling hydraulic
properties, bit details, well geometry, drilling string details, and formation properties (Figure 2.1).
These parameters have integrated effects on each other, which make the drilling optimization a
complex process (e.g. the mud properties affect the bit hydraulic, the rock confinement and WOB
which as consequently influence the ROP). The relationship between the ROP and the above-

mentioned parameters has been an important research topic in drilling engineering for decades.

Models are developed to demonstrate the effects of different variables on the desired parameter or
parameters. The models are mostly expressed in mathematical forms (e.g., empirical models,
analytical models, numerical models, etc.). Nonetheless, they can be expressed in different forms
known as Machine Learning Algorithms (ML), such as Artificial Neural Network (i.e. ANN, Deep
Net, and Recurrent Net), Decision Tree, Random Forest, K-Nearest Neighbor (KNN), Logistic
Regression, Support Vector Machine (SVM), etc. In some cases, it is necessary to use advanced

optimization methods to find the optimum solution due to the model complexity.



The rate in which a drill bit penetrates into a formation (ROP) is a critical parameter in drilling
engineering and well plan. ROP is a function of different parameters including WOB, RPM, hydraulic
design, bit specifications and other parameters (Figure 2.1). Researchers have developed a variety of

PDC ROP models (full bit and single cutter), which are provided and discussed in the following

sections.
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2.1 Polycrystalline Diamond Compact (PDC) ROP models
2.1.1 Bingham (1965) ROP model

Bingham (Bingham, 1965) developed a basic ROP model applicable to all bit types. The Bingham

model is provided in Equation 1.

b

WOB
ROP = a X RPM X (D—) v EQL 2.1
b

The unit of ROP (rate of penetration) is ft/hr, WOB is in klb, RPM is in revolution per minute and Dy,
is bit diameter in inches. The coefficients a and b are representative of the formation drillability and are
determined for each specific lithology. The Bingham model does not include the bit type, bit wear,

cutter shape and orientation, drilling hydraulic, and formation details (Soares et al., 2016).

2.1.2 Hareland and Rampersad (1994) ROP model

Hareland and Rampersad modeled the drag bits ROP based on cutter-rock interaction in 1994.

14.14 X N, X RPM X A,
ROP = S wn.Eq.2.2
b

In Equation 2.2, N, is the number of cutters and A, is the area of rock compressed ahead of a cutter in
square inch. The A, is different for different drag bit cutter shapes. For a PDC cutter the d.is cutter
diameter. Figure 2.2 provides a schematic of a PDC cutter in 3D. In Figure 2.2, the SR and BR angles

are shown using o and 6 respectively. The area ahead of a PDC cutter is calculated using Equation 2.3.

11



A, = cos(SR) X sin(BR)
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X
Figure 2.2 A 3D schematic of a PDC cutter (Soares et al., 2016)

It was noticed that ROP does not show a linear relationship with WOB and RPM, therefore, a correction
factor (COR) was introduced that is multiplied by the ROP model. The COR Equation is provided in
Equation 2.4. In COR Equation, the a is representative of an empirical correction factor for lithology,
the b is representative of the bit rotation correction factor and c denotes the mechanical WOB empirical

correction factor.

COR ...Eq.24

~ (RPMP x WOB®) ™

The bit wear function, W is multiplied into the ROP model to give the Hareland and Rampersad model
(1994) a general form (Equation 2.5).

12



a 14.14N_RPM
X
(RPMP x WOB®) Dg

de\? » 4WOB
X (—) X cos 1- 5
2 cos(BR) d.“o,

( 2WOB 4WO0B?2 > ( WOB ) Eq 2.5
— — .. EQ. 2.
cos(BR)TNG,  cos(BR) TN d.o,?/ \cos(BR) o,

ROP = W; X X cos(SR) x sin(BR)

It is important to notice that Hareland and Rampersad used the uniaxial rock strength (o) in their

model, which can cause overestimation in ROP calculation.

2.1.3 Motahhari et al. (2010) ROP model

Motahhari et al. (2010) developed a model for PDC bits by assuming 100 percent efficient bit cleaning.

The model is provided in Equation 2.6.

GXRPMYXWOB®

ROP = W; x (7~

) un..Eq.2.6

The W, is bit wear function and is calculated using Equation 2.7.

We= K WOB 0 1
= X X
F = Kyt X ( N ) STX AP

...Eq.2.7

In the previous equations, y and o are ROP related exponents, G is a coefficient determined by bit
geometry, cutter size, and cutter design. K¢ is a numerical constant, N. is the number of cutters, A,,
is wear flat area, S is the confined compressive strength and is a function of unconfined compressive

strength (S,y) and confining pressure (P.) through Equation 2.8 (Rampersad et al., 1994).

S=S,x (1—agP.’)......Eq.2.8
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In Equation 2.8, the a5 and by are empirical constants for different lithologies. It is important to notice
that since the Motahhari model does not take the drilling hydraulics into account, it can cause ROP

overestimation in some cases.

2.1.4 Kerkar et al. (2014) Model

The Kerkar et al. (2014) model is provided in the following set of Equations. This model includes
drilling hydraulics and bit geometry as well as other parameters to estimate the ROP.

ROP — K1 x WOB?! x RPMP! x cos(SR) « We x h(x) X b(x) Ea.2.9
- CCSeT X Dy, X tan(BR) A

In Equation 2.9, K1 is calibration constant, a;, by, c;are empirical coefficients, Dy, is bit diameter, CCS
is confined compressive strength, W is bit wear function, h(x) is hydraulic function and b(X) is bit
blades effect function on ROP. The W, h(x), and b(x) are defined in the Equations 2.10 through 2.14.

BG1Ps
Wi=1-asX [?] . Eq.2.10

BG is the bit dull grade and it can change from 0 for a new bit to 8 for a completely worn out bit. The

hydraulic effect is included in the ROP model using Equation 2.11.

JSA b
HSI X 5=—)"2
( ZDbit)

h(x) = a,. ROP©2

. Eq.2.11

In the above equation, the HSI is hydraulic square inch for a bit and is calculated by dividing the
hydraulic horsepower (HHP) to the bit area. The HSI model is provided in Equation 2.12. The JSA is
the junk slot area and is determined by adding up the surface area between blades in the bit face. The
a,, b, are empirical coefficients.

Q X APpj¢
1714

(3) P

14

HSI = .. EQ.2.12



The b(x) incorporates the effect of the number of blades into the ROP model and is calculated by

Equation 2.13. In Equation 2.13, the Ny, is the number of blades:

RPM 1.02—-0.02Np

b(X) = RPM 0.92 '

wun..Eq.2.13

The BG is bit grade and is estimated using Equation 2.14. In this Equation, AD is drilling interval length,
ABR is the abrasiveness of the formation for a drilling interval, a, and b, are empirical coefficients
and W, is bit wear coefficient:

n

ABG = W, x EADi x WOB;* x RPM,* x CCS; X ABR, ... .....Eq.2.14

i=0
The Kerkar et al. (2014) wear function does not take the effect of cutter wear flat area into account.
Also, the interfacial friction was not included in the Kerkar bit wear model. The interfacial friction
between PDC cutter and rock affect not only the depth of cut and ROP, but the cutter forces which
consequently influence the bit wear.
None of the above-mentioned models take into account the effect of PDC and stud quality on bit wear.
The PDC layer and stud have different wear coefficients, which should be considered for bit wear
calculation. The area beneath the bit includes stud and PDC layer wear flat areas. Previous models do
not incorporate the stud and PDC layer wear flat areas into account. In addition, stud material has a
lower wear coefficient which causes higher wear rate compared to the PDC material. Therefore, lower
contact area efficiency is expected for stud. In the new ROP model, the bit stud and PDC layer wear
quality and wear flat areas are taken into account to improve estimation for drilling ROP. In addition,
a new real-time bit wear estimation model is developed by taking the physical work that is done by the
PDC cutter, which provides more realistic values for bit wear. The cutter normal and drag forces are
calculated using the single cutter force model developed in this study for both sharp and blunt cutters.

The new single cutter force models included the effect of interfacial friction angle into account. The
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estimated forces (cutter normal and drag forces) are inserted back into the PDC wear model to achieve

the cutter work amount.

2.2 Single Cutter Rock Interaction Models

There are few studies that explain the cutter rock interaction and their basic concepts (Detournay and
Defourny, 1992; Glowka, 1987; Gerbaud et al., 2006). The interaction between cutter surface area and
the rock results in friction, which affects the normal and tangential forces on the cutter. The friction
between cutter surface area and the rock itself is influenced by rock/cutting properties, cutter surface
characteristics, cutter BR, cutter velocity, drilling mud properties, and normal force on the cutter

(Rahmani, 2013).

2.2.1 Ernst and Merchant (1941) Model

Ernst and Merchant (1941) assumed a single shear plane between an intact rock and the cut always
exists during the cutting process. They calculated the tangential and axial force on the cutter by taking
the cutter geometry and interfacial friction into account. The tangential and axial forces equations are

provided in Equations 2.15 and 2.16.

T X A X cos(P + 6)
Ft_

= e w...EQ.2.15
sina X cos(a + Y + 0) d

F, =F xtan(y +0) ........Eq.2.16

In Equation 2.15, the T is shear strength, A, is the area of the cut, and a is the shear angle which is
determined by taking the principal minimum energy into account. Ernst and Merchant assumed low
depth of cut for a cutter, and therefore the tangential force, (F.), is responsible for the entire work that
is done by the cutter. A relationship between cutter BR (8), shear angle (a), and interfacial friction

angle (yr) was achieved by taking partial derivation of Equation 2.15 with respect to the shear angle
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(). They found that Equation 2.17 governs as a constraint between cutter BR (8), shear angle (), and

interfacial friction angle ().

204+ Y +0=o.....Eq2.17

2.2.2 Merchant (1940) Model

Merchant’s model was proposed for metal cutting in 1940. The Merchant expressed the tangential and

axial cutter forces on the shear plane through Equations 2.18 and 2.19.

C+t-8 C—t+9
F, = Ay X Sg X | tan (T) + cot(T> v EQ.2.18

C+t—-p C—t+9p
Fi = Ay X Sg X (tan (T) + cot (T) - 1) w.....Eq.2.19

In this set of Equations, the F,, and F, are axial and tangential cutter forces respectively, C is machining
constant, and it is related to the rate of change in the shear strength of metal, A, is the cutting area, S¢

is the shear strength of the material being cut, and f3 is the rake angle of the cutting tool.

Merchant (1944) also developed a card model for the single cutter and explained that the cuttings are
generated due to shear forces on the shear plane (Rahmani, 2013). Merchant also improved the Ernst
and Merchant model (1941) by incorporating the internal friction angle (IFA). Equation 2.17 was
modified to Equation 2.20 to include an internal friction angle. Rahmani, in 2013, applied both
Equations 2.17 and 2.20 to lab data and found that Equation 2.17 provides a better estimation for the

shear angle.

i
2a+l]1+9=E—(p........Eq.2.20
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2.2.3 Glowka (1987) Model

In 1987, Glowka developed a single PDC cutter model for estimating the cutter force, temperature, and
wear. The single cutter data was used to measure the rock drillability and to study the theoretical
considerations, which account for the interaction between cutters on the bit face. He found that the
penetrating force on a worn PDC cutter is proportional to the cutter wear flat area at a given depth of
cut. Also, he observed that for a given depth of cut and wear flat area, a larger worn cutter requires no
greater penetrating force than a small cutter. The normal force for worn and new cutters is provided at

Equations 2.21 and 2.22.

F=A, XC, X8 .. ... . Eq221

F=C,x 8" .. ...Eq222

In these equations, F is the cutter penetrating force, A,, is cutter wear flat area, § is the cutter depth of
cut, C4, C,, nl1 and n2 are rock type constants. The cutter drag force (Fq4) is calculated by taking the

drag coefficient (ugq) into account.

Fq
Wqg = —= .. ....EQ.2.23
F
Fq=pqg XF......Eq.2.24

Glowka (1987) found that the waterjet assistance extends the bit life in hard rocks through reducing the
bit WOB, torque, and cutter forces. The model was incorporated into a PDC wear computer code to be
used for general PDC bit analysis. The results were promising in term of estimating the WOB, drilling
torque, and bit life. The Glowka (1987) model showed that the bits with a sharper profile require less
WOB than flat profiles. At the same time, the bits with sharper profiles wear faster and require greater

WOB as the drilling length increases.
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2.2.4 Detournay and Defourny (1992) Model

In 1992, Detournay and Defourny assumed plastic failure of rock at a small depth of cut (0.04 inch)
and developed a single cutter model for sedimentary rocks. They developed a sharp cutter model by
taking the Ernst and Merchant (1941) cutter geometry into account. They assumed cutter tangential
force as a function of intrinsic specific energy (¢) and the area of cut (A.). The ¢ is an empirical input
defined as the minimum required energy to drill rock. They found that the intrinsic specific energy is
equal to the unconfined compressive strength of the rock at atmospheric pressure (Rahmani, 2013).
They found also that the intrinsic specific energy is a function of bottom hole pressure, pore pressure,
rock-cutter interfacial friction angle (), and cutter BRs angle (Detournay et al., 2008). They concluded
that for a blunt cutter, the angle between the forces acting on cutter wear flat area is close to the internal
friction angle of rock due to a thin layer of cutting accumulation underneath the cutter wear flat area

(Rahmani, 2013).

For a sharp cutter, the cutter tangential and normal force can be calculated as a function of the cross-

sectional area of cut using Equations 2.25 and 2.26.

F§$ =exA.........Eq.2.25

Fi=¢xexA.......Eq.2.26

Where ¢ is intrinsic specific energy, ¢ is the ratio of the vertical to the horizontal force acting on cutting
face, and A, is the cutting area. Detournay and Defourny introduced a specific energy and drilling

strength by dividing the tangential and axial force to cutting face. The cutter forces can be back-

calculated using these two quantities once they are known from laboratory data.
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2.2.5 Hanson and Hansen (1995) Model

In 1995, Hanson and Hansen developed a numerical bit dynamics model for PDC drill bit under
conditions of a full-scale drilling simulator test. Their model includes the PDC cutter interaction with
bottom hole and side wall rock surface, induced vibration of main mechanical components of a full-
scale drilling simulator, the bit impact energy loss, and the friction between the bit gage and hole wall.
They assumed the N vertical planes emanating from the Z-axis in a spoke-like fashion. The bottom-
hole and side-wall rock surface is represented on vertical planes by the ordered set {R;,Z;,i = 1, M},
where R is the radial coordinate and M is the number of nodes representing the rock surface on the
vertical plane at that particular time step. They used 9x 10° nodes on each vertical plane to represent

the bottom hole and side wall surfaces.

Hanson and Hansen (1995) established two separate PDC cutter force models using the regression
method, which consists of a simple functional relationship between the normal and tangential force to
the PDC area of cut, RPM, wellbore pressure, PDC cutter wear flat area, and the cutter BR (Hanson
and Hansen, 1995). The first single cutter model is based on the data from the single cutter force tests.
The PDC cutter tangential and axial force was measured for different cutter BR, the area of the cut,
wellbore pressure, RPM and wear flat areas. The regression analysis was used to fit a physical
reasonable functional form on single cutter data for a number of rock types, including MS, Pierre shale,
Solenhofen limestone, Hartz greywacke, and Carthage limestone. Hanson and Hansen (1995)
developed their second single cutter force model based on full-scale bit simulator experiments in
Carthage limestone at atmospheric conditions. For a given bit design, ROP, and RPM, they calculated
the area of cut for an individual cutter. They used a priori functional form as a force cutter model and
applied the regression analysis to achieve the best fit. Both models have similar accuracy, but the second

model gives more accurate estimation in Carthage limestone.
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2.2.6 Yan (1997) Model

In 1997, Yan studied the single PDC cutter fragmentation mechanism in hard rocks. He used the Forcht
(1941) model to achieve the stresses caused by the concentrated load in a wedge (Forcht, 1941). Yan
conducted a two-dimensional analysis of stress fields based on linear elasticity theory to describe the
behavior of the rock under cutter force. The analysis showed that the entire region in a rock body can
be divided into two compressive and tensile sub-regions. His theoretical analysis and lab tests showed
that the cutting process is discontinued process that can be regarded as a repeated cycle. Yan found that
the two cracks are imposed on the rock in each cycle. The first one is a straight line which is initiated
at cutter tip and propagated into the rock. The second one is curved, which is propagated toward the
surface after the first crack has stopped propagation. The straight-line crack is initiated and propagated
due to tensile strength, while the curved one is propagated due to shear strength. Due to the crack being
caused by tension at the cutter tip, the crack direction can be determined by taking the principal stress

at the cutter tip.

The Yan force model fits the laboratory test data for SWG very well, while it does not fit as well for
TM and BSS at the high BR and SR angles. The model suggested higher values for vertical cutter forces
compared to the horizontal one (estimated cutter vertical force is greater than horizontal one). The Yan
model suggests that the horizontal and vertical forces on cutter are not changed with the change in
cutter SR. The model prediction for chip size and shape was verified against the lab data and showed

good agreement in most cases.

2.2.7 Gerbaud et al. (2006) Model

Gerbaud et al. (2006) observed that there is a built-up edge of cutting on cutter face in the lab which
controls the flow of crushed materials. They developed a new single cutter model by taking the buildup

edge of failed materials on cutting face. They concluded that due to the energy is transferred between
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cutter face and rock through a built-up edge on cutter face, the shear angle should be independent of
cutter orientation and friction. Such an assumption is not in accordance with the Smith 1998
observations in the lab for ductile rocks (shale). Smith, in 1998, observed that the thickness of ribbons
decreases for polished faced cutters compared to non-polished cutter faces (Figure 2.3). Therefore, the
polished cutter has a lower interfacial friction angle () that increases the shear angle, which
consequently reduces the size of ribbons. Gerbaud et al. (2006) included the effect of frictional forces

which are introduced by a chamfer in their single cutter model.

. « 0 A | 4
Figure.2.3. Shale ribbons for tests with water at 9000 psi CP and 0.011-inch depth of cut for polished (left) and
non-polished cutter (right)(Smith, 1998)

They considered two different mechanisms at chamfer with respect to the cutter depth of cut. If the
cutter depth of cut is greater than the chamfer, the cutting is trapped between the chamfer and rock
surface, which impose additional forces to the cutter. If the depth of cut is lower than the chamfer, the

chamfer becomes a cutting force with higher BR angle.

2.2.8 Rahmani (2013) Model

Rahmani (2013) assumed that the behavior of fine-grained rocks like shale under high CP is more like
metals. He modified the Ernst and Merchant (1941) model which was for metal cuttings including the
cutter balling and bit body effects on cutter forces under CP (Rahmani, 2013). For a sharp cutter, they

added the effect of friction force on the shear plane to the Ernst and Merchant model (1941). The friction
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angle between the cutting and intact rock at the shear plane was assumed equal to the rock internal
friction angle. Rahmani (2013) included the effect of CP on cutter tangential force by taking the shear
plane area and bottom hole pressure into account. Detournay and Defourny in 1992 assumed that the
total forces on cutter are the product of two uncoupled forces, one on cutter face and another on cutter
wear flat area. Rahmani (2013) took the same assumption and developed a model for blunt cutters.
Rahmani (2013) hypothesized that the proportion of maximum normal force to the wear flat area should
not be greater than rock confined compressive strength. In addition, the contact area friction between
wear flat and rock is equal to the rock internal friction angle due to broken rock adherence to the cutter
wear flat area. Such an assumption for the wear flat area friction coefficient is valid, based on the

Dagrain and Richard (2006) observations for carbonate rocks.

Rahmani (2013) verified his model for three different rocks including Catoosa shale, MS, and Carthage
limestone using single test data. The Rahmani single cutter model did not account for the effect of the
chamfer on cutter axial and tangential forces explicitly. Rahmani (2013) included the chamfer effect by

calculating an average BR angle from the tip of the chamfer to the rock surface.

2.2.9 Carrapatoso et al. (2015) Model

The effect of cutter chamfer geometry, cutter BR, and cutter aggressiveness on a single cutter were
studied using numerical modeling (Carrapatoso et al., 2015). They applied discrete element modeling
(DEM) and finite element modeling (FEM) to simulate the effect of cutter BR and cutter chamfer on
cutting efficiency in Carbonate Rocks. The mechanical specific energy (MSE) was used as a criteria
for measuring the cutter efficiency. As defined by Teale in 1965 (Teale, 1965), the MSE is the amount
of work that should be carried out to excavate unit volume of rock. The cutter aggressiveness was
defined as the slope of a tangential force to axial cutter force components. It was found that decreasing
the chamfer size increases the cutter aggressiveness, which correlated to a higher penetration rate.

Carrapatoso’s simulations also showed that the cutter aggressiveness is not sensitive to cutter BR. They
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found that the cutter MSE altered slightly with changing in cutter chamfer size. Therefore, the cutter
chamfer should not decrease the cutting efficiency in conducted experiments. The simulation done by
Carrapatoso et. al. did not take the effect of cutter vertical velocity on cutter performance into account.
They mentioned that the effect of cutter vertical velocity should be studied separately as it happens

experimentally.

2.2.10 Cheng et al. (2018) Model

In most of the previous single cutter models, the shape of the failure surface was assumed to be a
straight line. Therefore, all the equilibrium force equations are developed based on straight failure
surface, which imposes error to the models. In addition, the number of models that take the hydrostatic
pressure effect on cutting procedure into account, are limited. The bottom hole hydrostatic pressure
affects the cutting force and mechanical specific energy, which consequently reduces the drilling
efficiency (Cheng et al., 2018). Cheng et al. (2018) solved the cutting forces by taking the in-situ stress,
pore pressure, and hydrostatic pressure into account to develop a new single cutter model. Cheng et al.
(2018) found the shear failure surface for different depth of cuts, BR, and cohesion strengths, through
connecting the maximum shear stress points predicted by the model. They found that the failure surface
is a curved line instead of a straight line, and this was a significant part of their model. The failure

surface shape was confirmed using 3D surface topography for granite cuts.

2.3 Statistical Models

The application of statistical models such as Artificial Neural Network (ANN) in drilling ROP
simulation and optimization is well established in the literature (Arehart et al., 1989; Mohaghegh et al.,
1995; Karri, 1999; Dashevskiy et al., 1999; Fruhwirth et al., 2006; Marana et al., 2010; Ashrafi et al.,

2018).
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Bilgesu et al. (1997) applied the ANN to their drilling data to find complex patterns such as WOB,
RPM, mud flow rate, formation hardness, and the bit type. They used a simulator to generate drilling
data to eliminate errors coherent to field measurements. The validity of the trained ANN was

demonstrated with data from the existing field as well as from the drilling simulator.

Gidh et al. (2012) applied ANN for real-time drilling optimization. They benefited from the huge
drilling record database (DRB) and geographical bit data filters to find pertinent offset wells. The
database includes more than 3 million bit runs and was initiated in 1985. The DRB user interface was
used to filter the data and to identify the offset wells that had used the same bit. A rock strength software
was used to determine the formation’s rock strength and abrasiveness, and to identify the bit that
possesses the appropriate combination of durability, gauge protection, and hydraulic configuration.
Their ANN system learned how the bit drills and wears out in any similar formation. The trained ANN
then was applied to offer the best combination of WOB, RPM, and flow rate to reduce the drilling cost.

They reported three days saving in an 8 % inch hole section using their new system.

Ashrafi et al. (2018) applied a hybrid artificial neural network for ROP estimation. They used 1000
data points collected from mud logging and petrophysical logs and applied four metaheuristic
algorithms including Particle Swarm Algorithm (PSO), Genetic Algorithm (GA), biogeography-based
optimizer (BBO), and imperialist competitive algorithm (ICA) to find the ANN parameters. The WOB,
RPM, pump flow rate, pump pressure, pore pressure, gamma-ray, density log, and shear wave velocity

were selected as ANN input parameters.

Hegde and Gray (2018) estimated the ROP using four input parameters including WOB, flow-rate,
RPM, and rock strength. Ashrafi et al. (2018) developed their ANN model by taking parameters such

as pump pressure, gamma ray, pore pressure, and shear wave velocity as input.

The very first and most common mistake in applying machine learning algorithms (i.e. ANN, Random

forest) in the literature is picking up the wrong input parameters for ROP prediction. The machine
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learning (ML) algorithms can take any number of arrays of input parameters and map them to one or
more than one output no matter what those parameters are. From a drilling engineer’s point of view,
selecting drilling depth, pump pressure, flow rate, IADC code, drilling torque, plastic viscosity,
standpipe pressure, shear wave velocity, and flow-rate are not correct for ROP estimation, although
they have may an effect on ROP in some cases (Soares and Gray, 2018; Hegde and Gray, 2018;
Elkatatny et al, 2017; Amer et al, 2017; Hegde et al, 2017). The ML algorithms structure (i.e. ANN
number of layers and number of inputs) can be expanded to fit any size of data with any accuracy which

can be misleading.

Conducting sensitivity analysis is one common step to evaluate the accuracy and performance of
models (either analytical, numerical or statistical). The ML algorithms usually fail the sensitivity
analysis since they do not comply with solid mathematical equations for their simulation as analytical
models do. For instance, the ANN is composed of a 1D or 2D network which is inspired by the
biological brain. The function is defined in the nodes and the model constants are found using iterative
search algorithms. Depending on the number, type and arrangement of layers, functions that are applied
to the network, and the arrangement of layers, different types of networks with different functionalities

are obtained (i.e. ANN, RNN, and CNN).

Overfitting the ML algorithm is very common. Overfitting means that although the model error on
training data is small, the model error on newly introduced data, unseen during training, is high.
Overfitting happens either when the training set contains noisy instances, or the training instances are
not a good representative of the instances’ space. Both of these situations are common in real-life

application (Hindi and Alakhras, 2009).

During the overfitting, the ML parameters and functions are changed in a way to mimic the training
data, and therefore the model accuracy for training data would be high. This could be the potential

reason that some of the statistical ROP models in the literature reported high accuracy.
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The machine learning (ML) algorithms need a huge amount of data and strongly rely on that. A trained
network for a ROP estimation is applicable just for that field and is barely applicable for other
formations. The ML algorithms rely on data and because of that their accuracy and performance will

be affected by feeding bad data (i.e. noise in data).

The independent parameters should be selected and separated and used as input to machine learning
algorithms (i.e. ANN, random forest, etc.). This requires the user to have a deep understanding of

drilling procedure and details of the mechanism involved underneath the bit.

The ML algorithms have a huge application in other domains such as image recognition (Deep Neural
Network), Natural Language Processing (NLP), anomaly detection, autonomous driving vehicles, etc,

however, it is not suggested in drilling ROP modeling due to above-mentioned insufficiencies.

2.4 Interfacial friction angle (IFA)

The relative movement between the cutter face and cutting suggests the existence of a friction force at
the cutter face, which is known as interfacial friction. The normal element of interfacial friction on the
cutter face is upward, which reduces the effective normal force on the cutter, and consequently reduces
the cutter depth of cut. Therefore, to achieve an accurate PDC ROP estimation, it is necessary to have
an accurate estimation of interfacial friction. The effect of different factors such as cutter size, cutter
chamfer, cutter BR, cutter wear flat area, cutter face characteristics, rock properties, cutter normal force,
rock saturation, and drilling fluids on cutter forces and interfacial friction angle (s or IFA) were
investigated by several authors (Smith, 1955; Smith et al., 2002; Kuru and Wojtonowicz, 1992; Smith,

1998; Richard, 1999; Haung, 1999; Rahmani, 2013; Akbari et al. 2014).

Experiments have shown that the interfacial friction angle () is lower for polished cutters, compared
to the standard ones (Smith, 1955; Smith et al., 2002). Polishing the cutter face area reduces the surface

roughness, which consequently decreases the coefficient of friction. Smith et al. (2002) conducted a
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direct interfacial friction test and found that the interfacial friction angle for Twin Creek Siltstone was
higher compared to the Catoosa shale (Rahmani, 2013). Also, they found that the rock saturation and
drilling fluid type (oil or water) slightly affected the interfacial friction coefficient. Kuru and
Wojtonowicz (1992) investigated the effect of drilling fluidtype on the friction coefficient for Nugget
sandstone, MS, and BSS. They found that the friction coefficient is higher for Nugget sandstone and
MS in oil-based mud, while for BSS, higher friction coefficient showed up in water-based mud. Hibbs,

in 1983, found that the cutter velocity slightly affects the friction coefficient.

The single cutter tests have shown that in Anhydrite, Coal, and sandstone, the bigger the wear flat area
is, the greater the friction coefficient and lower normal stress at wear flat (Rahmani, 2013). In contrast,
the friction coefficient in carbonates remains independent of wear flat roughness due to materials
sticking to the wear flat area. This, however, causes rock grain sliding friction rather than cutter wear
flat on the rock (Dagrain and Richard, 2006). Rahmani conducted triaxial compressive strength tests
on 20 different rocks and found that the friction angle underneath the cutter is well correlated with the

internal friction angle of the rock.

Coudyzer and Richard (2005) studied the influence of BR and SR angles on both the magnitude and
orientation of the cutter cutting force. They observed that the cutter cutting force is strongly affected
by the BR angle, while the SR angle has almost no effect. They found that force inclination varies
strongly with the cutter orientation, indicating that force angle cannot be viewed as a simple interfacial
friction angle as commonly accepted in the literature. It is also well documented in the literature that
the BR drastically affects the angle between the normal to the cutter face and the force vector (y)
(Nishimatsu, 1972; Richard, 1999; Akbari et al., 2014; Rostamsowlat et al., 2018). Therefore, y is not
a measure of interfacial friction angle between the rock and cutter face, as it is often considered in the
literature, and a more complex failure mechanism must be considered (Coudyzer and Richard, 2005).
Coudyzer and Richard (2005) argued that there is a build-up edge of crushed material on the cutting

face that controls the failed materials in such a way that the angle between force and velocity is
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unaffected. They observed that v, varies rapidly with BR, while y + BR is slowly decreased versus
depth of cut (DOC). They concluded that the angle between the force vector and normal to the cutter
face (y) cannot be considered as a measurement of the interfacial friction angle between the rock and

cutter face.

Akbari et al. (2014) investigated the effect of cutter size, chamfer geometry, and BR angle on PDC
cutter friction for Carthage marble rock. They found that the interfacial friction angle decreases by
increasing the cutter BR angle, which is in accordance with previous works (Smith, 1998; Richard,
1999; Haung, 1999). They hypothesized that at low cutter BR angles, the flow of broken rock in front
of the cutter face is upward, which introduces an upward tangential frictional force to the cutter surface.
Increasing the cutter BR angle results in a backward flow of a portion of broken rock that introduces
another tangential frictional force downward on the cutter face, which consequently, reduces the
apparent friction force. They concluded that the effect of cutter size on cutter frictional response is
insignificant. Akbari et al. (2014) concluded that the chamfer size increases the normal force on the

cutter for the same depth of cut, while it does not change the cutter tangential force response.

Rostamsowlat et al. (2018) performed a comprehensive set of cutting experiments on a wide range of
rock samples (Limestone and sandstone). They found that the intrinsic energy is in good agreement
with rock UCS when the cutter is positioned at BR angle between five to twenty degrees. They observed
that the interfacial friction angle is independent of the depth of cut for a given BR angle, which was
also reported by other researchers (Richard and Dagrain, 2012; Richard, 1999). It was observed that

the decrease in interfacial friction angle versus BR, follows a universal trend and is independent of rock

type.
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2.5 Optimization works

Once the ROP is expressed through a mathematical Equation, the next step is to find the global
minimum or maximum of such equation, so-called optimization. Drilling cost optimization has always
been one of the major interests of researchers in petroleum engineering. Researchers have taken
different approaches for drilling optimization, which are provided and discussed in the following

sections.

2.5.1 Speer (1958)

Speer (1958) developed an optimization method to reduce the drilling cost by finding the best
combination of WOB, RPM, and hydraulics. How WOB, RPM, and hydraulics affect the ROP, what
the upper limits are for these parameters, the interrelation between these three parameters in different
formations, and their combination that results in lower drilling cost, were answered by Speer. Speer
(1958) established five empirical models to show the relationship between WOB, RPM, hydraulic
horsepower, and ROP. These models combined into a chart to determine the optimum drilling
techniques from field data. He found that there is a direct relation between ROP and WOB for a rock
if sufficient bottom cleaning is maintained. The optimum WOB has an inverse relation with the
formation drillability, the optimum RPM varies inversely with WOB, and the ROP varies in direct
proportion with RPM under laboratory tests. The ROP varies inversely with RPM under field operation,
in other words, the response of ROP to increase in RPM decreases as rotary speed increases (Speer,
1958). In addition, the optimum RPM which results in the lowest cost varies inversely with the WOB.

The optimal combination of drilling scenarios could be determined using charts proposed by Speer.
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2.5.2 Graham and Muench (1959)

In 1959, Graham and Muench developed an optimization approach to find the best WOB and RPM to
reduce the total drilling cost. Their cost function included the cost of the rig for both drilling and
tripping, along with the cost of the bit. Graham and Muench (1959) assumed that the bit life for
rollercone is limited by bearing failure and the WOB is not limited by considerations such as hole
deviation and hydraulics. Higher WOB or higher RPM improved the ROP and reduced the drilling cost,
but they can decrease the bit life and increase the drilling cost by adding the bit and tripping expenses.
Therefore, they performed a mathematical analysis to find whether or not a change in WOB or RPM
would reduce the drilling costs. It was concluded that for any drilling condition, there is an optimum
combination of WOB and RPM which minimizes the total drilling cost. They found that the optimum
combination of WOB and RPM that decreases the overall drilling time can be achieved by varying a
constant RPM iteratively while calculating the cost at various depths. The optimum combination of

WOB and RPM are dependent on rig cost and bit bearing life.

2.5.3 Galle and Woods (1963)

In 1963, Galle and Woods developed a graphical method for drilling optimization. Their procedure can
be used for determining the best combination of constant WOB and RPM, the best WOB for any RPM,
and the best RPM for any WOB. An optimization approach based on the best combination of WOB and
RPM is useful when the rig flexibility permits the use of any WOB and RPM. Optimization based on
the best constant WOB for any RPM is useful when the rig limitations or vibration problems dictate the
RPM that must be used. Lastly, optimization based on the best constant RPM for any WOB is required
when the crooked-hole conditions or a limited number of drill collars dictate the maximum applicable
WOB. For each of these three optimization approaches, the limiting effect of teeth, bearings, and
drilling rate on bit life was considered separately. Galle and Woods (1963) established mathematical

relations to achieve the best WOB and RPM for the lowest drilling cost. They also developed graphs

31



and procedures to determine the best combination of constant WOB and RPM, the best constant WOB
for any RPM, and the best constant RPM for any given WOB. Using their graphs, one can calculate the
drilling cost, footages, time, and condition of teeth and bearings of the dull bit. Their graphs and charts
were applicable for rolling cutter rock bits and a wide variety of formations. The field tests

demonstrated the application of their new optimization method.

2.5.4 Reed et al. (1972)

Reed et al. (1972) used the Monte Carlo vibrational approach to obtain the optimum WOB and RPM.
In this method, a random path for a solution is initialized and the cost is calculated. In the next step, an
iterative method is introduced by selecting random numbers for every point along the path. The new
generated paths are evaluated and are kept if the cost is less than the original; however, if the cost is
higher, the point is given a new random number. This process is repeated until either number of an
iteration is achieved or a convergence criteria is satisfied. In general, it is difficult to place great
confidence in the existing drilling equations which are a base for drilling optimization. If the drilling
equations were developed based on field experience, the overwhelming variety of problems that can
occur would cause certain doubts. On the other hand, if the equations were established based on the
laboratory data, then one can question if the essential field conditions have been modeled or simulated
properly. Another inconsistency in optimization analysis comes from the parameters that are fed into
the drilling equations. Many tests conducted in the field indicate that formation variability makes it

difficult to study the effect of different parameters on drilling rate.

This inconsistency is made greater by the fact that parameters are estimated on one well, whereas
drilling is optimized on another one. Reed et al. (1972) concluded that despite above-mentioned

inadequacy and imperfections, the results of the optimization method are still valuable.
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2.5.5 Bourgoyne and Young (1974)

Bourgoyne and Young (1974) conducted a study to find the optimal drilling parameters. They
incorporated the effect of formation properties, compaction, differential pressure, bit diameter, WOB,
RPM, bit teeth wear, and bit hydraulics, and established a ROP model for roller-type rock bits. The
ROP model coefficients were obtained by conducting multiple regression analysis on detailed drilling
data. The optimization was performed on the ROP model by finding the optimum WOB, RPM, and the
bit hydraulics. Bourgoyne and Young (1974) expressed the drilling cost as a function of bit cost, hourly
rig cost, trip time, connection time, drilling time, and footage drilled. They derived optimization
equations from drilling models and used them for the optimization procedure. The risk factors such as
hole deviation problems, bit balling, mud type, percent solids, hole washout, and variable pump costs
were ignored in their study. Bourgoyne and Young (1974) optimization model in most cases has shown
a considerable reduction in drilling cost between a few percent to 30 percent. The optimized WOB and
RPM are very sensitive to the regression constants. Therefore, model coefficients should be corrected

with newly gained data from the field, to improve the optimization accuracy.

2.5.6 Maidla and Ohara (1991)

Maidla and Ohara (1991) applied dimensional analysis and developed a new ROP model by considering
the effect of rock compressive strength, formation strength, compaction, differential pressure, WOB,
RPM, tooth wear, and bit hydraulics. The major difference between their model and the Bourgoyne and
Young (1974) model was the effect of formation compressive strength. Multiple regression analysis
was used to find the coefficients for both models. Both models were checked with the data in two ways.
The ROP was calculated using the model with the coefficients found for that well and was then
compared with the actual recorded data for the same well. The data from the previous well was used to
find the model coefficients for each lithology. These coefficients were averaged considering the

distance from each well to the one to be predicted and its respective lithology thickness. Maidla and
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Ohara (1991) developed a computer program for simultaneous selection of a roller-cutter bit, bit
bearing, WOB, and drill string rotation to minimize the drilling cost. Their computer program uses the
drilling cost function to find the best WOB and RPM for a given situation. The computer program can

be modified to print out iso-cost and iso-ROP graphs for cost-effective drilling.

2.5.7 Rampersad at al. (1994)

Rampersad et.al. (1994) developed a Geological Drilling Log (GDL) for drilling optimization using the
information obtained while drilling an oil or gas well. The drilling models are used to create a GDL for
the entire drilling section. The GDL is created by inversion of drilling ROP models specific to the bits
used for drilling each interval. The method for optimization is to achieve the GDL using the data from
the field. The calculated GDL along with the ROP model are used for drilling simulation and cost
analysis. Numerous simulations are conducted to achieve the lowest drilling cost, and the optimum
drilling parameters are calculated utilizing the learning curve concept. Rampersad et.al. (1994) used a
GDL to select the bits (Tricone or Natural Diamond) and operating conditions properly for a drilling
interval. They concluded that the new drilling optimization approach can be used for any pre-planned
well or post-analysis of wells to minimize the drilling cost. In addition, the GDL approach provides

certain answers to the drilling engineers and provides guidelines and well-founded conclusions.

2.5.8 Rommetveit et al. (2004)

In 2004, Rommetveit et al. (2004) proposed Drilltronics, which was new drilling automation and
monitoring system. Drilltronics used all available surface and subsurface data for drilling simulation
and optimization. The system is composed of several elements including software modeling with
algorithms that reflect the wellbore behavior, real-time drilling data which are logged from at high
acquisition rate, real-time diagnosis of drilling problems, and a drilling simulator. The Drilltronics

modules include hole cleaning, downhole pressure, tripping, torque and drag, stick-slip prevention, bit
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load optimization, integrated drilling simulator, data quality improvement, system monitoring, and
control. The bit load optimization module’s purpose is to determine the optimum WOB and RPM on a
bit. This system modulates the WOB and RPM and observes the changes in ROP. The effect of mud
rheology and pore pressure were included by taking the pump rate and standpipe pressure into account.
Rommetveit et al. (2004) incorporated the effect of bit wear on ROP by including a bit wear function
in the bit load optimization module. It is also possible to use the module in automatic mode for real-
time simulation and optimization purposes. They increased the rate of penetration by 15% to 30% by

preventing the stick-slip by means of activating a stick-slip prevention module.

2.5.9 Dupriest and Koederitz (2005)

In 2005, Dupriest and Koederitz used the mechanical specific energy (MSE) concept for drilling
optimization. The MSE monitoring provides the ability for continuous detection of inefficiency in a
drilling system. They used the MSE surveillance to find the founder point which enables the system to
optimize the ROP. The MSE quantifies the relationship between the amount of input energy and ROP
(Dupriest and Koederitz, 2005). Teal, in 1965, found that the MSE values are numerically equal to rock
compressive strength in the lab (Teal, 1965). Therefore, the MSE concept can be used as a reference
point for drilling efficiency. The bit is efficient when the MSE values are close to the rock confined
compressive strength. Dupriest and Koederitz (2005) were able to improve the drilling efficiency
through recognizing the bit and bottom hole assembly (BHA) balling via monitoring the MSE. They
also found that recognizing the vibrational founder that reduces drilling efficiency, is far more difficult

to address since fundamental redesign in other features is required.

2.5.10 Hareland et al. (2007)

Hareland et al. (2007) applied a simulator for drilling optimization to more than 50 wells in Western

Canada. The main objective was to reduce the drilling cost and time and improve drilling efficiency.
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The simulator generates the rock strength using the drilling data which is obtained from the
optimization of nearby wells. By extending the rock strength to adjacent wells, the optimum drilling
scenarios were obtained in terms of WOB, RPM, bit types, and pull-out depths. The simulator results
matched well with the actual field ROP data, as well as with drilling time and costs. They achieved an

average of 15% to 20% reduction in drilling cost by applying the simulator results.

2.5.11 Eren and Ozbayoglu (2010)

In 2010, Eren and Ozbayoglu applied a multiple regression method for drilling optimization. They
adopted the Bourgoyne and Young (1974) ROP model and used multiple regression to obtain a set of
coefficients representing the drilling data gathered. They found that the drilling rate of penetration can
be modeled in a real-time environment as a function of independent parameters such as WOB, RPM,
mud weight, and formation details. In order to conduct real-time optimization, the real-time data was
fed to a central computer. The central computer program uses real-time data and calculates the new
ROP model constants. They determined the optimum drilling parameters by taking the new model
constants into account. The aim was to find the WOB and RPM for a drilling interval in order to reduce
the drilling cost per foot. Eren and Ozbayoglu found that the data quality is very important for real-time
drilling optimization. Another important point is the wellbore inclination consideration in the analysis.
They used the normalized WOB and obtained higher accuracy for ROP prediction, which consequently

resulted in more precise optimization designs.

2.5.12 Hamrick (2011)

In 2011, Hamrick used a mechanical specific energy (MSE) approach for drilling optimization. The
MSE is the work that is needed for destroying the unit volume of rock. Hamrick analyzed the MSE to
obtain the optimal drilling parameters including WOB and RPM. The parameters that are used for

calculating the conventional MSE are interdependent. Hamrick (2011) established a mathematical

36



relationship between parameters and rewrote the MSE equation in terms of one independent parameter
(i.e. WOB). The new MSE form, based on a single independent parameter, can be minimized
mathematically. Once the optimum WOB was obtained, the other parameters (torque and penetration
per revolution) were calculated based on the interdependent relationship. He used the first derivation
of the MSE Equation and minimized the MSE to achieve the optimum WOB. Having the optimum
WOB, the optimum torque and penetration per revolution could be determined using the developed

mathematical relationship.

2.5.13 Hankins et al. (2014)

Hankins et al. (2014) applied the Hareland and Rampersad PDC ROP model (1994) for drilling
optimization purposes. They rearranged the ROP model to calculate the rock strength from drilling
data. The calculated rock strength was used to simulate the nearby well ROP. Once simulation results
were validated, the optimum drilling parameters including WOB, RPM, hydraulics, and bit

specification were found.
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CHAPTER IlI

PDC ROP MODELING

In this chapter, the contact area equations for sharp and blunt cutters are presented. The contact
area of a cutter is used for calculating the cutter front area, which later is used for ROP estimation.
The single cutter interfacial friction angle () (IFA) model is developed by taking cutter depth of
cut, cutter velocity, and rock unconfined compressive strength into account. The single cutter force
model is developed by incorporating the cutter contact areas and the IFA model for sharp cutters.
The single cutter force model for a blunt cutter includes the effect of cutter wear flat area and
interfacial friction angle (IFA). The new PDC blunt single cutter model takes the effects of essential
parameters such as BR and SR angles, cutter size, cutter PDC layer thickness, cutter quality and
wear flat area of both the stud and PDC layer into account. A full bit IFA model is developed
similar to the single cutter IFA model however the constants are found utilizing the full bit data.
The full bit IFA model is solved in the new ROP model to incorporate the effect of IFA and improve
the accuracy of the ROP model. A new ROP model for PDC bits is introduced in which the volume
of cut per revolution is calculated for a single cutter and is extrapolated to the cutting face of the
bit, to achieve the total cutting volume that is cut from the formation. Previous PDC ROP models
suffer from shortcomings such as deficient wear function model, ignoring the effect of wear flat
areas (both stud and PDC wear flat areas), ignoring the effect of IFA, and ignoring the orientation

and geometry of the cutter.
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3.1 PDC single cutter contact area calculation

The depth that a cutter penetrates into the rock, along its normal direction is known as depth of cut
(DOC). The depth of cut is a function of cutter normal force, rock strength, and the area beneath the
cutter. For a blunt cutter, the area beneath the cutter includes the area beneath the cutter face (A, in
Figure 3.1) and wear flat area (C-E in Figure 3.2), while for a sharp cutter it is only the area beneath
the cutter face (A;, in Figure 3.1). In the following pages, the contact area equations for both sharp and
blunt cutters are presented. The cutter front area (A, ) is then calculated by taking the cutter contact area

(Acontact) @nd cutter BR angle into account.

3.1.1 PDC single cutter model contact area equation for sharp cutter

In general, it is assumed that the cutter penetrates into the rock until the normal stress beneath the cutter
face (Ay,), satisfies the rock strength. The required area beneath the cutter face (Ay) is calculated by
dividing the cutter normal force into the rock strength. The area in front of the cutter (A,) and the cutter-
rock contact area (Acontact) Can be back-calculated by taking the A}, and cutter BR angle into account.
It is worth mentioning here that the A, is known as the area of cut (A.,¢) in the literature. The Acontact:
which is known as a circle segment area in geometry, is a function of the depth of cut (DOC), and is
provided in Equation 3.1. The cutter depth of cut (in Equation 3.1) can be found by taking both A, pntact
, D¢, and cutter BR angle into account. A schematic of a sharp (unworn) single PDC cutter is provided

in Figure 3.1.
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Dc= Cutter Diameter

DOC

A contact

Figure 3.1. A schematic of a sharp PDC cutter and its associated areas

) D. _ DoOC
D [ 2 ~Cos(BR)
Acontact=(7c) x Cos™1 —D.
2
(Dc DOC )X b ,boc ( DOC )2 .
2 Cos(BR) X Cos(BR) _ \CosBRy) - EA3

The derivation or the equation of A gpntact are provided in Appendix A.

3.1.2 PDC single cutter contact area equation for blunt cutter
A schematic of a blunt cutter with bit grade equal to BG is seen in Figure 3.2 (see Appendix A section

A.1.3) (Winters et al., 1987 a).

40



Dc= Cutter Diameter

_ BG.D..Cos(BR)
=

DOC,

Figure 3.2. A schematic of a blunt cutter and the associated areas
The blunt cutter contact area (BC in Figure 3.2), is achieved by subtracting the area of BD from the
area of CD in Figure 3.2. Therefore, the contact area of a sharp cutter in Figure 3.2 (ADFG) with two
depth of cuts equal to DOC, and DOC; respectively, are calculated using Equation 3.1 and subtracted
to achieve the blunt cutter contact area. The DOC, equation is provided at the following (see Equation
A.44 in Appendix A).

BG X D, X cos(BR)

DOC, = DOC + 5

e wn..EQ.3.2

For a blunt cutter, Equation 3.1 is turned into a general form of Equation 3.3 by taking Equation 3.2

into account (see section A.1.3 and A.2.2 for details).
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2

3.2 Depth of cut calculation

Two parameters (A, and A, ) are defined as follows and are used to calculate the depth of cut. A4 is
the theoretically calculated area beneath the cutter and is calculated using Equation 3.4. A, should be
used to achieve force balance between weight on cutter (downward) and the rock reaction (upward)
force. In Equation 3.4, the WOB is in Ibf, RS is rock strength in psi, and N.. is the number of cutters.
The RS can be either unconfined compressive strength or confined compressive strength (CCS)

depending on drilling conditions.

= A, .......Eq.34

The stud material wear coefficient is lower than of the PDC layer, and because of that, it wears faster

and causes less contact area. Therefore, 100% ideal contact area between stud and rock is not expected.
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Ignoring the efficiency of stud wear flat area may cause error in ROP estimation. The weight on the
cutter is turned into the depth of cut by taking the area beneath the cutter into account. Therefore,
ignoring the stud wear flat area efficiency causes overestimating of the area beneath the cutter, which
results in underestimating the depth of cut. Underestimating the depth of cut resulted in underestimation
for ROP. The new model takes the efficiency of stud wear flat area into account to provide a realistic

estimation of ROP.

A, is the weighted area beneath the cutter and is a summation of the weighted wear flat area (A,,") and
area beneath the cutter face (Ay,). A, is calculated using Equation 3.5 and should attain a sum equal or

close to A, by adjusting the depth of cut (DOC) value. The DOC is reported as a cutter depth of cut.

A=Ay, + Ay .. .....EQ.3.5

A,," is the weighted wear flat area and is calculated using Equation 3.6. The cutter wear flat area
includes the stud and PDC wear flat areas. The stud material has lower wearing resistance compared to
the PDC layer, and because of that, it wears faster. Therefore, there is not 100% contact between the
stud wear flat area (Ayy stuq) and rock during drilling to compare to the PDC layer wear flat area
(Aw,ppc)- w1 and w, are PDC layer and stud wear flat areas efficiency. The efficiency of stud wear flat

area (w-) is determined through lab experiments.

A:N = wl'AW,PDC + (*)Z-Aw,stud e e Eq 3.6

The total wear flat area (A,,), PDC layer wear flat area (A, ppc), and the stud wear flat area (A stuq)
are calculated using Equation 3.7, 3.8, and 3.9. Note that for a sharp cutter, there is no wear flat area

and A, in Equation 3.5 and is equal to the area beneath the cutter face (A;,).
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The area of the cutter face that is in contact with the rock is the cutter contact area (Acontact) Which is

calculated using Equation 3.1 or 3.3 depending on the bit grade.

The cutter contact area (A.ontact) 1S turned into the area beneath the cutter face (Ay,) by taking the cutter

BR into account (Equation 3.10).

Ay = Acontact- SIN(BR) ........Eq.3.10

Figure 3.3, shows the different areas including stud wear flat area (A, stuq), PDC wear flat area
(Aw ppc), total wear flat area (A,,), cutter contact area (Acontact), the area in front of cutter face (A,),

and the area beneath the cutter face (Ay,).

Two parameters, DOC and BG are needed to estimate the PDC bit rate of penetration. The DOC is
increased from zero continuously, and the following sequences of calculations are performed until the
weighted area beneath the cutter (A,) in Equation 3.5 becomes close enough or equal to the
theoretically calculated area beneath the cutter («A,) in Equation 3.4. Each time the DOC in conjunction
with BG is used to calculate the cutter contact area (Acontact) IN Equation 3.1 or 3.3 (depending on
BG), it gives the area beneath the cutter face (A;) using Equation 3.10. The area beneath the cutter
face (Ay,) is used in conjunction with the weighted wear flat area (Ayy') in Equation 3.6, to calculate the
weighted area beneath the cutter (cA,) using Equation 3.5. The depth of cut is accepted once the

difference between A, and A, is achieved within a tolerance.

Once the DOC is achieved, the cutter contact area (Acontact) 1S Calculated using Equation 3.1 or 3.3.
The cutter contact area (Acontact) IS turned into the area in front of cutter face (Ay) using Equation 3.11

theoretically.

Ay = Acontact- Cos(BR) ........Eq.3.11
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Figure 3.3. Schematic of different areas associated with the cutter penetration calculation
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3.3 Interfacial friction angle (IFA) modeling

3.3.1 Single cutter IFA model

The interfacial friction coefficient can be recorded either by conducting direct shear tests (Smith, 1995;
Smith et al., 2002) or single cutter tests in the lab (Richard, 1999). The direct shear test is one of the
earliest and simple method for measuring the soil shear strength and shear strength between rock and
contact surface (Smith et al., 2002). Although, the direct test device proved to be simple and rapid test
device, it has all disadvantages of a direct shear tester apparatuses such as severe problems with
controlling stress concentration on edges of the sample and potential for sample jamming and crushing
within the carrier (Smith et al., 2002). The interfacial friction can be determined indirectly using single
cutter tests in the lab maintaining constant PDC cutter depth of cut and velocity. To measure the
interfacial friction angle (Y or IFA) for a particular rock, the cutter axial and tangential forces are
recorded while the cutter moves at a constant depth of cut and velocity on a sample of rock. The
recorded cutter forces then can be used to calculate the interfacial friction angle using the Detournay
and Defourny (1992) model. The Detournay and Defourny (1992) interfacial friction angle model is

provided in Equation 3.12.

n

Y = Tan™?! (F—) —BR .......Eq.3.12
t

Coudyzer and Richard in 2005 argued that the force angle cannot be viewed as a simple interfacial
friction angle and more complex failure mechanisms (i.e. build-up edge of crushed material in cutting
face) must be considered (Coudyzer and Richard, 2005). In this study, the single cutter data in
conjunction with the Detournay and Defourny (1992) model (Equation 3.12) are used to estimate the

IFA.

In 1987, Glowka conducted multiple single PDC cutter tests on different rock types including BSS,
SWG, and TM. The single cutters with a constant velocity equal to 2.1 inches per second with different
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diameters and wear flat areas were tested. Glowka (1987) applied a constant depth of cut and recorded
the cutter normal and tangential (drag) forces. Hellvik et al. (2012) conducted tests on the PDC cutter
with standard and variable chamfer (45 and 15-degree chamfer angle respectively) in the lab. They used
a Vertical Turret Lathe (VTL) with a rock pie including Torrey buff sandstone, red sandstone, and TX
pink granite. The VTL rotary speed was between 75 to 125 rpm, which gives a cutter velocity between
134 inches per second to 220 inches per second with an average speed equal to 177 inches per second.
They reported the cutter forces for different BR angles and DOC for both standard and alternate cutters

in TX pink granite.

The BSS and SWG (with unconfined compressive strength 7100 psi and 21500 psi respectively) from
Glowka (1984) tests and the TX pink granite (with 19400 psi unconfined compressive strength) from
Hellvik et al. (2012) were chosen to develop the single cutter IFA model. The potential parameters that
affect the IFA are DOC, cutter diameter, cutter velocity, rock strength, mud type, cutter wear, and
chamfer angle. In this study, the single cutter IFA model is developed by taking the cutter depth of cut,
cutter velocity, and rock unconfined compressive strength into account. Akbrai et al. (2014) found that
the PDC cutter diameter does not affect the frictional response considerable. The cutter velocity will
affect the rock strain rate, and consequently the rock strength. In the single cutter IFA model, the UCS
is representative of rock type and compressive strength. The single cutter IFA model has included the

effect of strain rate, by taking simultaneously both UCS and cutter velocity into account.

The general shape of a single cutter IFA model is provided in Equations 3.13 through 3.20. The IFA
model shape was selected considering the single cutter IFA behavior versus cutter depth of cut. It is
observed that the IFA values begin with high values and it exponentially decreases versus depth of cut
(phase I). After a threshold depth of cut, the IFA descending trend shifts from exponential to a smooth

declining one (phase I1). The selected IFA model can simulate both phases successfully.
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Note that for soft rocks (i.e. BSS) the IFA model should be able to generate only a declining trend
versus depth of cut (phase I1). This is because of shearing mechanism comparing to the chipping one
underneath the cutter. Depend on the rock UCS and cutter velocity, the IFA model can show phase Il
behavior for all depth of cuts as it is seen in the rocks like BSS. The normalized values are used in the
model to avoid conflict of dimension between parameters. Based on the experimental data (Hellvik et
al., 2012) the summation of IFA and BR is almost constant. Therefore, in the IFA model, the IFA value

is summed up with the BR and both show up at the left side of Equation 3.13.

The a, b, and ¢ are written with a similar shape as Equation 3.13. The reason for selecting a similar
structure is that increasing the normalized cutter velocity and UCS should affect the IFA model
behavior into some limits. In other words, increasing the cutter velocity or UCS, the Equation 3.17,
3.18, and 3.20 approach to a limit and because of that, the whole IFA model will be limited to

boundaries that are determined using data.

In Equation 3.13, the Yingie cutter IS Single cutter interfacial friction angle, the &, is the normalized

depth of cut (taking the cutter diameter into account, i.e. 0.5 inch), and a, b, and d are a function of

normalized cutter velocity and normalized unconfined compressive strength.

b
quingle cutter +BR=a+ <m> [ Eq 3.13
oy = 5 Eq.3.14
n=— DC........ g.o.
Ve
Vo= EQ.315
UCsS, = ves Eq.3.16
n_SOOO........ q. .
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Wi

=W +—.....Eq.3.17
a 0 Vnwz 3
b= + > Eq.3.18
Wy nW6 ; .. BQL0.

c=wg....Eq.3.19

Wio

d=wo+—o o
Yo T UCS, Y + wy,

...Eq.3.20

The a, b, ¢, and d are used to fit the single cutter IFA model (Equation 3.13) with the Glowka (1987)
and Hellvik et al. (2012) data points for BSS, SWG and TX pink granite. The differential evolution
algorithm (DEA) is applied to the set of data (Glowka 1984; Hellvik et al. 2012) to search the space of

solutions and to find the best a, b, ¢, and d with their associated constants.

3.3.2 Full bit IFA model

A separate IFA model for full bit application is suggested to consider the effect of IFA on ROP
performance. The full bit IFA model is similar to the single cutter IFA model (Equation 3.13 through
3.20) but has different constants. The reason for developing a separate full hole IFA model besides the
single cutter IFA model is that the equivalent cutter concept introduced by Hareland and Rampersad
(1994) is an approximation for simplification in the full hole model. The depth of cut of an individual
cutter on bit face is a function of cutter distance from the bit center and the number of cutters. In essence,
the number and arrangement of the cutter on the bit face affects the forces and DOCs of each individual
cutter (see Appendix E). The cutter normal force is calculated by dividing the WOB to the number of
cutters and is used for calculating the equivalent DOC and the final ROP. Therefore, calculating the
IFA for the equivalent cutter on a bit face using the average WOC introduces potential errors to IFA
estimations, and consequently, to the ROP estimations. The full bit IFA model set of equations are as

follows.
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Urunpit + BR=a+ (m) v ...EQ.3.21
6, = 0 Eq.3.22
n =g q.3.
Ve
Vy =55 BQ.3.23
UCS, = ues Eq.3.24
n—5000........ q. .
1
= +———.....Eq.3.25
a=Wo V"2 + wy 9
5
b= ——.....Eq.3.26
W4+VnW6+w7 q

c=wg....Eq.3.27

d = wyg

+— 10 Eq3.28
UCS, "1t +wy,

3.4 Single cutter force model
3.4.1 Single cutter force model for sharp cutter

The sharp cutter normal and drag forces are calculated by multiplying the cutter projected contact area
(Equation 3.1) on the X and Y axis with rock unconfined compressive strength (see Equation 3.29 and

3.30). Note that the cutter projected area is calculated by taking both the cutter BR and IFA into account.

D. DOC

D)2 2 ~ Cos(BR) D. DOC DOC DOC \?
fo= [ (22) x cosmt [ ZCBRI)_(De__DOC Ly, DOC__ Dac
n (2) s D, 2~ Cos(BR) ¢ Cos(BR) _ \Cos(BR)

2
X Sin(BR + Wsingle cutter) X UCS .. ... Eq.3.29
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— x —_—
D 2 Cos(BR) Cos(BR) \Cos(BR)
2
X Cos(BR + Wsingle cutter) X UCS ........Eq. 3.30

3.4.2 Single cutter force model for blunt cutter

The blunt cutter normal and drag forces are calculated using the following equations 3.31 and 3.32. The
projection of cutter contact area on X and Y axis (for normal and drag forces respectively) are calculated
by taking the cutter BR and IFA angles into account. The cutter wear flat area is multiplied with the
UCS to achieve the additional normal force needed for cutter penetration (see Equation 3.31). The blunt
cutter drag force model is provided in Equation 3.32. The additional normal force needed for the blunt
cutter is calculated and multiplied with the rock internal friction coefficient to achieve the horizontal
component. The cutter drag force is calculated by taking the additional horizontal force component into

account (see Equation 3.32).
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X Cos(BR + Ysingle cutter) X UCS + 1 X Ay, X UCS ........Eq.3.32

In the previous set of equations, p is rock internal friction coefficient and A,, is cutter wear flat area.
Because of CP during the drilling, UCS in Equation 3.29 through 3.32 becomes CCS which is rock

confined compressive strength.

3.5 New full bit PDC ROP model

The radius at which the bit areas are equal inside and outside the radius is called effective radius (R.).
The amount of rock volume that is cut by the bit inside and outside the effective radius is equal
(Hareland and Rampersad, 1994). The equivalent bit radius concept is used in the new model to
estimate the PDC bit ROP. Average BR and SR values are calculated from all the bit face cutters and

assigned to a cutter traveling at the equivalent radius.

In the new ROP model, the volume of rock that is cut by the cutter at an effective radius is calculated

theoretically. This volume is a direct function of the area in front of the cutter, which itself is a function
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of the depth of cut. The area in front of the cutter (A,) is multiplied by the effective radius and RPM to
attain an estimation of cutting volume per minute. Two important assumptions when developing the
ROP model include: The area in front of the cutter is constant for each rotation, and the geometric
center of the cutter front area is fixed and rotates at a radius equal to the effective radius. The calculated
cutting volume per minute is divided by the face area of the bit to achieve the ROP. The new model
ROP is provided in Equation 3.33 and 3.34. In Equation 3.33, Cg is the number of blade normalized
correlation coefficient, NOC is the number of cutters at bit face, RPM is the revolutions per minute,
the R, is equivalent radius in inches, A, is the projected contact area in front of the cutter in a square

inch, Dy, is the bit diameter in inches and the ROP is in feet per hour.

5XRPM X1t X Re X Ay

70’

ROP = Cg X NOC X e w...EQ.3.33

The cutter front area is a projection of cutter contact area (Equation 3.3) by taking the cutter BR, SR,

IFA, and BG into accounts and is provided in Equation 3.34.
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3.6 New PDC bit wear model

Bit wear is one of the most important factors in ROP modeling. Bit wear gradually increases during
drilling from zero BG (new bit) to 8 BG (completely worn out) based on the International Association
of Drilling Contractor (IADC) system (Winters et al., 1987 a) and influences on the drilling
performance. Therefore, having a well-developed bit wear estimation function is necessary for ROP

modeling.

In general, the PDC cutter wear is divided into two categories. The abrasive wear, which is associated
with the development of uniform wear flat and is a function of normal force on the cutter, cutter

temperature, cutter velocity, formation properties (e.g. abrasiveness and lubricity) and cutter quality.
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The second wear category is due to dynamic forces applied to the cutter. Chipped, broken and lost
cutter typifies the wear caused by dynamic forces (Sinor and Warren, 1989). In this study, only abrasive

wear is taken into account for developing a novel PDC bit wear model.

Cutter normal and drag forces influence the cutter during the cutting process and cause cutter abrasive
wear. During the cutting process, the rock breaks and moves ahead and beneath the cutter face. The
relational movement of cutting beneath the cutter face results in frictional force at cutter face, which is
known as interfacial friction. The interfacial friction has a great influence on the cutter normal (F,,) and
drag (Fq) force. Ignoring the interfacial friction phenomena results in under and overestimations for
cutter normal and drag forces respectively. The physical work that is done by a single cutter is
calculated by taking into account both cutter normal and drag forces. The amount of work that the cutter
drag force does is proposed in Equation 3.33.

w.
—L =0.083 x Fg X RPM X 21R, ... ....Eq. 3.33
min

The amount of work that is done by normal force at cutter is calculated in Equation 3.34.

W,  F, X ROP
min 60

woun..Eq.3.34

The summation of these two works gives the total work that is done by cutter (Equation 3.35). In

Equation 3.33 and 3.34, the F,, and Fy is cutter normal and drag forces (Ibg), RPM is revolution per
minutes, R, is effective radius (inch), ROP is in % and the W;, W, and Wy are works in ft.1bs. The

cutter normal and drag forces for sharp and blunt cutters (Equation 3.29 through 3.32) are developed

using the single cutter data in chapter 4.

WT = W1 + WZ TR ..Eq. 3.35
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The wear constant («) is the amount of work in ft. Ib that should be done to wear off the unit volume
of the cutter in cubic inches. The total work done by the cutter is turned into the worn volume Vo, in
cubic inch, by taking the cutter wearing constant. The cutter is composed of PDC and stud material
with different wear constants. Therefore, the total work should be turned into the cutter worn volume
(Vworn) by taking an average of the PDC layer and stud wear constants (appc and ag,q) into account.
It is assumed that the PDC layer and stud volumes that are exposed to formation are proportional to

their wear flat areas (thickness of the worn layer is very small at each revolution).

Figure 3.4 shows a schematic of a blunt cutter and its associated areas. The total area beneath the cutter
(Ay) is composed of cutter wear flat area (A,,) and the area beneath the cutter face (A;,). In Figure 3.4,

the A,, is cutter total wear flat area which is composed of PDC wear flat area (A, ppc), and stud wear

flat area (A sTup)-

Dc= Cutter Diameter

PDC layer Thickness

Aw

....pormation

X A, contact

Aw,PDC o
Aw"

Figure 3.4. A schematic of a blunt PDC cutter and its associated areas
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In Figure 3.5, a 3D representation of Figure 3.4 is provided. For a blunt cutter, the wear flat area can
be assumed as a product of intersection between a tilted plane and a cylinder (A,,). In Figure 3.5, the 6
and BR are complementary angles, the a is the depth of wear, and the intersection between the plane

and cylinder is representative for the wear flat area (A,,)

Figure 3.5 A 3D schematic of a PDC cutter and wear flat area from another perspective
The projection of cutter wear flat area (A”,) is a sector of a circle on the X-Y plane. The A", can be
found by taking the integral of an equation of a circle within the boundaries. The wear flat area detailed
equations for both PDC (A, ppc) and stud (Ay, stuq) are provided in Appendix B. The total cutter wear
flat area (A,,) and PDC wear flat area (A,y ppc) are calculated using Equation 3.7 and 3.8. The cutter
stud wear flat area can be calculated by subtracting total wear flat area from PDC wear flat area in

Equation 3.9.
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In Equation 3.36, an average of the cutter wear coefficient is calculated by taking the volume fraction
and wear coefficients of PDC and stud layer into account. In Equation 3.37, the cutter total work is
divided into the average wear coefficient to achieve the cutter worn volume. Note that at the beginning

of drilling, there is no wear flat area and the total work is turned into the cutter worn volume by taking

only the PDC layer wear coefficient (appc) into account.

Aw,ppC Aw,sTUD
Agyve = << ‘ZW ) X Oppc + ( WAW ) X Ogtud | - Eq 3.36

W
L . ...Eq.337

Vworn =
ave

The cutter total worn volume (cubic inch) geometrically is calculated using Equation 3.37. The cutter
worn volume in Equation 3.38, gives the cutter worn volume (cubic inch) by taking the cutter diameter
(inch) and BR for a given bit grade. The cutter BG is back-calculated by replacing the cutter worn

volume from Equation 3.37 into Equation 3.38.

Voo = 1 () s (29 j WEEEEH

G jw%) o Eq.338

2

In the above set of equations, the DOC is the depth of cut (inch), BG is bit grade, D, is cutter diameter
(inch), Ay is the area in front of cutter (square inch), Dy, is bit diameter (square inch), and Vi, IS
worn volume in cubic inch. Figure 3.6 shows the schematic of the total worn-out section Vigtal worn Of

a PDC cutter.
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Figure 3.6. Schematic of a worn-out section of a PDC cutter

3.7 Metaheuristic Algorithms and Differential Evolution Algorithm (DEA)

Metaheuristic Algorithms (MAs) are procedures developed to find a sufficiently good solution to an
optimization problem. The MAs create a set of feasible sample solutions for a problem and then try to
increase the candidate’s fitness iteratively. It is noticeable that using these methods to solve problems
does not guarantee finding a global optimum answer. According to the search strategies classification,
metaheuristics can be classified into local and global searches. The local search algorithms, such as
hill-climbing, try to improve the fitness of an answer on a simple local domain and do not guarantee

finding a global optimum answer.

The global search algorithms such as Ant Colony Optimization (ACO), Differential Evolutionary
Algorithms (DEA) and Particles Swarm Optimization (PSO) were designed to achieve the global
optimum answer. In another classification, the MAs can be divided into single-solution versus
population-based searches. The single-solution algorithms, such as Simulated Annealing (SA), iterated
local search, variable neighborhood search, and guided local search are used to improve the fitness of

an individual in the population of candidates.
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However, the population-based algorithms such as evolutionary computation, Genetic Algorithm (GA),
and Particle Swarm Optimization (PSO) benefit from the population information to guide the algorithm
toward the optimum solution (Bianchi et al., 2009 and Blum and Roli, 2003). In some applications, an
algorithm (MAs) is combined with another one (so called-hybridization) to improve the searchability.

The classification of MAs is shown in Figure 3.7.
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Figure 3.7. Different MAs classification (Dreo and Candan, 2017)
Storn and Price developed the Differential Evolution Algorithm (DE) in 1997 (Storn and Price, 1997).
The DE algorithm is an iterative method that is used for optimization. The DE algorithm initiates by
generating random candidates by taking the problem’s assumptions, constraints, and limitations into
account. In Figure 3.8, the candidates begin from random initial points and iteratively are guided toward
the global optimum according to the DE algorithm formula. The algorithm flowchart is provided in

Figure 3.9.

DE algorithm begins with a population of random candidate solutions and improves the fitness of
population using its simple mathematical equation iteratively. As seen in Figure 3.9, the DE algorithm
chooses a target vector (X;) randomly, which is selected to be manipulated by the algorithm. The DE
algorithm benefits from two weighting and crossover factors. The weighting factor, which is shown by
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F, regulates the amplification of differential variation among candidates (Atashnezhad et al., 2017).

The crossover factor determines the amount of recombination between two individual candidates.
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Figure 3.8 A contour of a 3D problem with PSO particles (Ephramac, 2017)
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The algorithm selects two more vectors randomly (X, X3) and calculates the difference (X5 — X,). The
weighting factor is multiplied to the difference (X3 —X;) to achieve weighted difference vector
F X (X3 —X,). The F value is primary within the range of 0.5 to 2 (Atashnezhad et al., 2017). A
random vector (X,), is chosen and added to the weighted difference vector to achieve the noisy random
vector. In the end, a crossover is applied to the noisy random vector and target vector to achieve the
trial vector. The fitness of the trial vector is compared to the target vector (X;) and is replaced if it has
higher fitness. This process can be repeated until a predetermined criterion, such as the number of

iterations or fitness, is achieved.

In this study, the differential evolution algorithm (DEA) is applied to find the constants of single cutter

and full bit interfacial friction models (Appendix F).
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Figure 3.9. The differential algorithm flowchart



CHAPTER IV

RESULTS

This chapter shows the fitting results, verifications and application of the developed models
including the single cutter model, the single cutter IFA model, full bit IFA model, and the newly
developed full bit ROP model. The verification of the developed models is discussed utilizing sets
of data for single cutter and full bit laboratory experiments. The sets of single cutter data are
extracted from Glowka (1987) and Hellvik et al. (2012) single cutter experiments. The single cutter
tests were conducted on cutters with different diameters, velocities and rock lithologies. The single
cutter IFA model was fit on the single cutter data utilizing differential evolution algorithm (DEA)
and the results was provided. A computer program was written in Python which solves the full bit
IFA and the full bit ROP models simultaneously. The DEA used the computer program to develope
the full bit IFA model using a set of full bit experiments data from Sandia National Lab (SNL)
conducted in 2015, assuming zero CP and perfect drill bit hydraulic cleaning. Solving the
developed full bit IFA model along with the PDC ROP model resulted in a very good estimation

for ROP.
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4.1 IFA model fitting results

The single cutter IFA model was developed using the Glowka (1987) and Hellvik et al. (2012) single
cutter tests. The cutter details including BR angle, chamfer angle, diameter size, and cutter velocity are
provided in table 4.1. The Detournay and Defourny (1992) model (DD model) (Equation 3.13) was

applied to find the cutter IFA for each case in table 4.1 (see appendix G).

Table 4.1. Cutters details used for developing single cutter IFA model

: Sharp or Cutter ) Chamfer
Refrence Cutter Rock UCS (psi) i Dc (inch) BR
blunt velocity angle
Glowka (1987) 1 Berea sandstone 7100 Sharp 21 0.5 20 0
Glowka (1987) K Berea sandstone 7100 Sharp 2.1 0.75 20 0
Glowka (1987) 1 Sierra white granite 21500 Sharp 2.1 0.5 20 0
Glowka (1987) D Sierra white granite 21500 Blunt 2.1 0.5 20 0
Hellvik et al. (2012) nan TX pink granite 19400 Sharp 177 0.5 5 45
Hellvik et al. (2012) nan TX pink granite 19400 Sharp 177 0.5 10 45
Hellvik et al. (2012) nan TX pink granite 19400 Sharp 177 0.5 15 45
Hellvik et al. {2012) nan TX pink granite 19400 Sharp 177 0.5 20 45
Hellvik et al. {2012) nan TX pink granite 19400 Sharp 177 0.5 25 45
Hellvik et al. {2012) nan TX pink granite 19400 Sharp 177 0.5 30 45
Hellvik et al. {2012) nan TX pink granite 19400 Sharp 177 0.5 5 15
Hellvik et al. {2012) nan TX pink granite 19400 Sharp 177 0.5 10 15
Hellvik et al. {2012) nan TX pink granite 19400 Sharp 177 0.5 15 15
Hellvik et al. (2012) nan TX pink granite 13400 Sharp 177 0.5 20 15
Hellvik et al. (2012) nan TX pink granite 13400 Sharp 177 0.5 25 15
Hellvik et al. (2012) nan TX pink granite 19400 Sharp 177 0.5 30 15

The calculated IFA from the DD model hereafter is considered as IFA data. The single cutter IFA model
(Equation 3.13 through 3.20) coefficients were found utilizing the differential evolution algorithm
(DEA) and the sharp single cutter data (see table 4.1). The single cutter IFA model was used for the
cutter normal and drag forces calculations, and to estimate the cutter interfacial friction angle (for data
sets in table 4.1). An objective function was written in Python (see Appendix F) to perform the
calculation for all cases in table 4.1 and to return the absolute difference between model and data points.
The DEA algorithm was applied to the objective function to find the IFA model constants and reduce

the absolute difference between data and model.

The single cutter IFA model and the coefficients are seen in Equation 4.1 through 4.4.
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Figures 4.1 through 4.8 compare the estimated IFA from the model (Equation 4.1 through 4.4) with the

experimental data from all sharp cutter cases in table 4.1.

Figure 4.1 shows a comparison between the model-estimated IFA and the experimental data (achieved

using DD model) for the cutter J in BSS (Glowka,1987).
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Figure 4.1. A comparison between model-estimated IFA and experimental data for cutter J in BSS

Figure 4.2 shows a comparison between the model-estimated IFA and the experimental data for the

cutter K in BSS (Glowka,1987).
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Figure 4.2. A comparison between model-estimated IFA and the experimental data for cutter K in BSS

Figure 4.3 shows a comparison between the model-estimated IFA and the experimental data for cutter

Jin SWG (Glowka,1987).
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Figure 4.3. A comparison between model-estimated IFA and the experimental data for cutter J in SWG

Figures 4.4 and 4.5 show a comparison between the model-estimated IFA and the experimental data in

TX pink granite with BR angles varying between 5° to 30° and chamfer angle 45° and 15° respectively.
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Figure 4.4. A comparison between model-estimated IFA and the experimental data for cutters (variable BR,
chamfer =45), data from Hellvik et al. (2012)
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Figure 4.5. A comparison between model-estimated IFA and the experimental data for cutters (variable BR,
chamfer =15), data from Hellvik et al. (2012)

Figures 4.6 and 4.7 show the sensitivity analysis of the IFA model for different unconfined compressive

strengths and cutter velocities respectively for a specific drilling condition.
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Figure 4.6. A sensitivity analysis on the IFA model for different rock UCSs at constant cutter velocity = 2.1
in/sec
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4.2 PDC single cutter force model verification

Glowka, in 1987, conducted single cutter experiments and monitored the cutter axial and tangential
forces. In this study, different cutters with different BG were dragged on SWG and BSS rock slabs at
a constant depth of cut and velocity (2.1 inches/sec). For each cutter, the normal and drag forces were
recorded. The results of single PDC cutter tests in SWG and BSS from Glowka (1987) were used for

model fitting results.

Hellvik et al. (2012) conducted a series of tests on the chamfered cutters with a variety of BR angles
ranging between 5° to 30°. A set of single cutter data from Hellvik et al. (2012) with a 15° chamfer
angle were used for cutter normal and drag force estimation. The cutter depth of cut was used as an
input variable and normal and drag forces were calculated based on the rock UCS. The cutter contact

area for a sharp cutter at a constant depth of cut was calculated using Equation 3.1

For each test, the underneath and front area of the cutter were calculated based on the contact area and
BR angle. The normal and drag forces were calculated by multiplying the underneath and front areas
of the cutter by the rock UCS. The results would be the estimated normal and drag forces of the cutter

without including the effect of interfacial friction.

In addition, the IFA model was applied to incorporate the effect of IFA in cutter forces estimation. The
IFA model generates an estimation for interfacial friction angle by taking the cutter depth of cut, cutter
velocity, and unconfined compressive strength into account (see Equation 4.1 through 4.4). The cutter
contact area was turned into the cutter beneath and front areas by taking the summation of BR and IFA
into account. Similarly, the normal and drag forces of a cutter were calculated by multiplying the cutter

beneath and front areas with the rock UCS (Equations 3.29 and 3.30).
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In the following pages, the DOC versus cutter normal and drag forces (Fn and Fd respectively) plots
are presented before and after applying the single cutter IFA model. Note that, the IFA from data

represent those values that were calculated using the DD model for all the cases in table 4.1.

4.2.1 Sharp cutter force model verification

Figures 4.8 to 4.16 show the estimated normal and drag forces versus the depth of cut for each cutter
before and after applying the single cutter IFA model. The sets of tests from Glowka (1987) and Hellvik
et al. (2012) were used to find the single cutter IFA model constants. Note that the cutters with 45°

chamfer set data from Hellvik et al. (2012) were used.
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Figure 4.8. Normal and drag forces vs. DOC for sharp cutter J in BSS before and after applying the IFA model
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Figure 4.10. Normal and drag forces vs. DOC for sharp cutter J in SWG before and after applying the IFA model
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Figure 4.11. Normal and drag forces vs. DOC for sharp cutter with BR=5° in TX Granite (Hellvik et al., 2012)
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Figure 4.12. Normal and drag forces vs. DOC for sharp cutter with BR=10° in TX Granite (Hellvik et al., 2012)
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Figure 4.14. Normal and drag forces vs. DOC for sharp cutter with BR=20° in TX Granite (Hellvik et al., 2012)
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Figure 4.15. Normal and drag forces vs. DOC for sharp cutter with BR=25° in TX Granite (Hellvik et al., 2012)
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Figure 4.16. Normal and drag forces vs. DOC for sharp cutter with BR=30° in TX Granite (Hellvik et al., 2012)

As shown in Figure 4.8 to 4.16, the model underestimates and overestimates the cutter normal force
and drag force respectively before applying the single cutter IFA model. The model provides an
acceptable estimation for cutter forces after applying the single cutter IFA model. Theoretically, the

cutter penetrates into the rock until the normal force over the area beneath the cutter becomes equal to
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rock strength. For a fixed DOC, the ratio of the cutter front area to the underneath area with 20° BR is

1
tan(20)

2.74 (

), however, this is true before the cutter begins cutting the rock. The interaction between

the cutter face and rock results in interfacial friction. The direction of interfacial friction is upward and
parallel to the cutter face. The interfacial friction can be translated to horizontal and vertical components
as shown in Figure 4.17. The horizontal component of interfacial friction is in the same direction with
theoretically calculated cutter drag force and therefore, it offsets a fraction of theoretically calculated
cutter drag force. The normal component of interfacial friction is in the opposite direction of
theoretically calculated cutter normal force and will be added to the cutter normal force (see Figure
4.17). Theoretically, it is expected that the BR angle governs the ratio of the cutter drag force to normal
forces, while in practice, the § + BR appears as a governing angle. The s is called interfacial friction
angle (IFA) and is calculated using the DD model. In Figure 4.17, the F,, and Fg4 are cutter normal and

drag forces during the cutting process.

Interfacial friction horizontal element

Fn

Interfacial friction normal element

Figure 4.17. Schematic of cutter normal and drag forces and interfacial friction effect
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4.2.2 Blunt cutter force model verification

Cutter D from Glowka (1987) single cutter tests (see table 4.1) was included in set of data as a
representative for the blunt cutter for fitting the single cutter IFA model. The cutter D with a total wear
flat area of 0.02 square inch and 20° BR angle was dragged on the SWG slab at a constant velocity of
2.1 inches per second. For a blunt cutter, the wear flat area affects the cutter forces beside the interfacial
friction. In this case, the cutter forces are calculated before and after applying the IFA model as shown
in Figure 4.18. The cutter wear flat area is multiplied with the rock UCS to calculate the additional
normal penetration force needed for cutter D to achieve the DOC (Equation 3.31 and 3.32). The
additional normal force is added to the calculated normal force (after applying single cutter IFA model)

to incorporate the effect of the wear flat area.

Also, the additional normal force (wear flat area times UCS) is multiplied with the rock internal friction

angle to achieve the frictional force (due to rock internal friction) at the wear flat area.

The friction coefficient at cutter wear flat— rock contact area is assumed equal to rock internal friction
angle. This is due to adhesion of a thin layer of broken rock cuttings into the cutter wear flat area which
was observed for carbonate rock by Dagrain and Richard in 2006 (Dagrain and Richard, 2006) and
therefore, the interfacial friction is only function of rock and not wear flat area surface finish (Rahmani,

2013).

Detournay and Defourny in 1992 plotted the E-S diagram for BSS for Glowka single cutter tests. The
plots give a straight line for BSS with slop equal to the friction coefficient at rock-wear flat contact
area, which it is equal to 0.82 for BSS. They mentioned that this value (0.82) is close to rock internal
friction coefficient and it is unusually high compared to reported values of the contact friction

coefficient between tungsten carbide and sandstone.

Similar approach was used to calculate the SWG internal friction angle which is used in Equation 3.31

and 3.32 to calculate the cutter normal and drag forces. In Figure 4.18, the E-S diagram for cutter D
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data from Glowka (1987) tests is shown. The slope of friction line is Figure 4.18 is close to 0.6 (0.5947)
and it is used as SWG internal friction angle in single cutter model for blunt cutters (Equation 3.31 and

3.32) to calculate the cutter normal and drag forces.
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Figure 4.18. E-S diagram for blunt cutter D in SWG and friction line
The resultant frictional force at the cutter wear flat area is in the opposite direction of cutter movement
and therefore is added to the cutter estimated drag force from the previous step (after applying the IFA

model). The final estimation for cutter normal and drag forces are seen at the bottom of Figure 4.19.
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Figure 4.19. Comparison between model and data cutter normal and drag force for blunt cutter D in SWG
before and after applying the IFA model and u

4.3 New full bit ROP model fitting results

The full bit test data in SWG from Sandia National Lab was used for developing full bit IFA model
(Raymond et al., 2015). Two Ulterra bit designs were tested, one with four and one with five blades
with 3.75-inch diameter which had been used for testing at the Sandia National Laboratories (SNL)
Hard Rock Drilling Facility (HRDF). Both PDC bits have twelve cutters at bit face and the equivalent
cutters have an average of 20° BR and a 0.5-inch diameter. Figure 4.20 and 4.21, show the face view

of the four and five-bladed PDC bits respectively.
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Figure 4.21. Face view photograph of five-bladed PDC bit

The bit details including the number of cutters, cutters diameter, equivalent cutter BR angle, and rock

types are shown in table 4.2 (see appendix G).
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Table 4.2. Bits details used for developing full bit IFA model

Mumber of | Number of o Equivalent
Size (inch) RPM Rock type

blades cutters cutter BR
Bit#1 4 12 3.75 20 100 SWG
Bit#1 4 12 3.75 20 150 SWiG
Bit#1l 4 12 3.75 20 200 SWG
Bit#1 4 12 3.75 20 100 BSS
Bit#1 4 12 3.75 20 150 BSS
Bit#1 4 12 3.75 20 200 BSS
Bit#2 ] 12 3.75 20 100 SWiG
Bit#2 5 12 3.75 20 150 SWiG
Bit#2 ] 12 3.75 20 200 SWG
Bit#2 ] 12 3.75 20 100 BSS
Bit#2 5 12 3.75 20 150 B5S
Bit#2 ] 12 3.75 20 200 BSS

The differential evolution algorithm (DEA) was used to solve the full bit IFA model (Equation 3.21
through 3.28) and ROP models simultaneously. The goal is to find the constants of the full bit IFA

model that will improve the model ROP estimation for all tests in table 4.2.

The following steps are taken to solve the ROP model (Equation 3.33) and the full bit IFA model

(Equation 3.21 through 3.28) simultaneously.

The DEA generates a predetermined number of full bit IFA model constants (step 1 in Figure 4.22) in
preset ranges which will be used to estimate the ROP for all cases in table 4.2 by the computer program

(see Figure 4.22).

The computer program chose a full bit IFA model in step 1 and utilized the full bit data (data points) to
calculate the fitness through step 2 and 3. In step 3, the computer program changed 1, ranging
between 0 to 70 (BR complementary angle) in 0.1 step intervals, and each time it calculated the absolute
different between {1; and s, (see Figure 4.22, step 3). The y; values were used to adjust the cutter
front area (A,), which is plugged into Equation 3.33 to calculate the ROP. The ROP value was divided
by the RPM to obtain DOC, and the DOC was used along with the UCS and cutter velocity to calculate

a new IFA (Ur,) using a full bit IFA model selected in step 2.
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The s, in step 3, is the full bit IFA model output which was selected in step 2. The {; that resulted in
minimum absolute difference between {s; and s, was selected as the best y value and was saved in the
table in step 4 for each data point. The computer program used the next data point in step 2 and repeated
the procedure in step 3 and 4 to find the best y value. The best y values were used to adjust the cutter
front area and to calculate the PDC bit ROP. The summation of absolute difference between data and
model ROP was calculated and reported as the full bit IFA model fitness. The procedure was written
in Python and provided in Appendix F. The computer program took the same approach toward all full
bit IFA models (step 1) and calculated a fitness value. The DEA used the full bit IFA model fitness and
generated a new set of full bit IFA models which were later used for ROP calculation. Note that a
condition should be applied to the program to make sure descending IFA values versus WOB are
achieved. This is because the IFA decreases with an increase in cutter DOC as seen in the single cutter

experiments.

The procedure was repeated until the algorithm received a maximum number of iterations, in this case

300. The full bit IFA model is provided in Equations 4.5 through 4.11.

b

Yranpic + BR=a+ [

— (57 3 96.44 ) .
T ' (Vm)0753 + 2.22) " q. 4.
0.48
b= (1'886 + m) v w..EQ.4.10
d ( 1.07 ) .

B (UCSn)to + 3/ q. 4.
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STEP#1

Full bit IFA model constants
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sum of abs[ROP-ROP_data) is IFA 1 fitness

Figure 4.22. Developing full bit IFA model procedure

The blade coefficients of 0.9 and 1.07 were used to incorporate the blade effect in the ROP model for
four and five bladed bits respectively. Figure 4.23 through 4.25 compares the ROP model estimation

with reported ROP for four-bladed bits at different RPMs.
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Figure 4.23. Comparison between the model and data ROP for four-bladed PDC bit at RPM=100 in SWG
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Figure 4.24. Comparison between the model and data ROP for four-bladed PDC bit at RPM=150 in SWG
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Model and Data comparison for RPM=200
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Figure 4.25. Comparison between the model and data ROP for four-bladed PDC bit at RPM=200 in SWG

The comparison between the data and model are shown in Figure 4.26. In Figure 4.26, the red and black
lines are representative for 10% up and down margin for a perfect match of the ROP values. It is

observed that all model predictions are in the + 10% margin of data points.

4 Bladed SWG
60
y =0.9188x + 3.2423
50 R2=10.9478

Model ROP (ft/hr)
w B
o o

N
o

10 —Up 10%
—— Down 10%
0
0 10 20 30 40 50 60

Data ROP (ft/hr)
Figure 4.26. Comparison between the data and model for four bladed-bit in SWG
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In Figure 4.27, three lines are fit on the model predictions (100 RPM, 150 RPM, and 200 RPM) for a
four bladed bit in SWG and plotted along with the data points. It is observed that the lines intersect at
a point (shown with yellow arrow) around 2420 Ibf and two phases are recognized which are
representative for the inefficient and efficient drilling process. Detournay et al. (2008) characterized
the phase | by increasing the contact of wear flat area as the depth of cut slowly increases with the
WOB (Spencer et al., 2017). The phase Il begins once a threshold depth of cut has been achieved such
that the rock cannot support the additional normal stress on cutter wear flat area. Therefore, applying
additional normal stress results in driving the cutter further into the rock, which finally causes the bit
to increase as if perfectly sharp (Spencer et al., 2017). The effective drilling occurs in phase Il, and thus

represents the target operating region.
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Figure 4.27. The cutting point and two cutting phases for a four-bladed bit in SWG
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Figure 4.28 through 4.30 compare the ROP model estimation with reported ROP for a five-bladed bit

at different RPMs in SWG.
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Figure 4.28. Comparison between the model and data ROP for five-bladed PDC bit at RPM=100 in SWG
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Figure 4.29. Comparison between the model and data ROP for five-bladed PDC bit at RPM=150 in SWG
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Model and Data comparison for RPM=200
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Figure 4.30. Comparison between the model and data ROP for five-bladed PDC bit at RPM=200 in SWG

Similar to four bladed bits in SWG, it is observed that most model predictions are in the + 10%

margin of data points (see Figure 4.31).
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Figure 4.31. Comparison between the data and model for five bladed-bit in SWG
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In Figure 4.32, three lines are fit on the model predictions (100 RPM, 150 RPM, and 200 RPM) for

five bladed bit in SWG and plotted along with the data points.
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Figure 4.32. The cutting point and two cutting phases for a five-bladed bit in SWG

Figure 4.33 through 4.35 compare the ROP model estimation with reported ROP for a four-bladed bit

at different RPMs in BSS.
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Figure 4.33. Comparison between the model and data ROP for four-bladed PDC bit at RPM=100 in BSS
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Model and Data comparison for RPM=150
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Figure 4.34. Comparison between the model and data ROP for four-bladed PDC bit at RPM=150 in BSS
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Figure 4.35. Comparison between the model and data ROP for four-bladed PDC bit at RPM=200 in BSS

The model predictions are in the + 10% margin of data points as is shown in the Figure 4.36.
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4 Bladed BSS
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Figure 4.36. Comparison between the data and model for four bladed-bit in BSS

In Figure 4.37, three lines are fit with the model predictions (100 RPM, 150 RPM, and 200 RPM) for

the four bladed bits in BSS and plotted along with the data points.
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Figure 4.37. The cutting point and phase 11 for a four-bladed bit in BSS
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Figure 4.38 through 4.40 compares the ROP model estimation with reported ROP for a five-bladed bit

at different RPMs in BSS. The model provides a good estimation for data points (all estimations are in

+ 10% margin) as is shown in the Figure 4.41.
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Figure 4.38. Comparison between the model and data ROP for five-bladed PDC bit at RPM=100 in BSS
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Figure 4.39. Comparison between the model and data ROP for five-bladed PDC bit at RPM=150 in BSS
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Model and Data comparison for RPM=200
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Figure 4.40. Comparison between the model and data ROP for five-bladed PDC bit at RPM=200 in BSS
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Figure 4.41. Comparison between the data and model ROP values for five bladed-bit in BSS

In Figure 4.42, three lines are fit on the model predictions (100 RPM, 150 RPM, and 200 RPM) for a
five bladed bit in BSS and plotted along with the data points. As is expected for soft rocks, there is no

phase | and a linear relation between WOB and ROP exists.
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Figure 4.42. The cutting point and phase 11 for five-bladed bit in BSS

4.4 Sensitivity analysis of the newly developed PDC ROP model

A sensitivity analysis was performed on the newly developed PDC ROP model to investigate the effect
of operational parameters (WOB and RPM) and bit design parameters. The analyzed parameters
included WOB, RPM, bit diameter, and rock strength. The base cases for the aforementioned

parameters were selected to run the analysis as shown in table 4.3.

Table 4.3. The base case numerical values used for full bit PDC ROP model sensitivity analysis

Parameters base case numerical values
WOB (Ibf) 8000
EPM 100
UCS (psi) 20000
Bit diameter (inch) 8.5
Number of cutters 30
ROP (ft'hr) 28.02
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The drilling rate of penetration functionality also was plotted and displayed Figures 4.43 through 4.46.
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Figure 4.43. The drilling rate of penetration response to increase in WOB

The analysis of sensitivity of the rate of penetration on WOB shows that the drilling rate of penetration
increases with an increase in WOB. The two drilling phases which are representative for inefficient and
efficient drilling are detectable. The model was developed based on 100% efficient bottom hole
cleaning and does not include the effect of hydraulics, yet. Therefore, the ROP model does not show

decline in ROP curve once the flounder point is achieved.

The graph below (Figure 4.44) shows that the drilling rate of penetration increases versus RPM,
however, the ROP-RPM trend is different for low and high RPM values. At lower RPM, the amount of
the rock that is cut from the formation increases linearly with RPM which results in a linear trend for
ROP versus RPM. At higher RPM values, the interfacial friction affects the cutter forces, which
consequently reduces the bit equivalent DOC and ROP. The RPM nonlinearity can be due either to the

interfacial friction angle or the change in rock strength (strain rate effect) as it was observed by Sano
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et al. in 1981. In this study, it was assumed that the cutter velocity influenced the cutter interfacial

friction angle, and therefore the cutter velocity was included in the IFA model.
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Figure 4.44. The drilling rate of penetration response to increase in RPM

Figure 4.45 shows the sensitivity analysis of bit diameter on PDC rate of penetration. Increase in bit
diameter results in decrease in drilling rate of penetration as shown in the following graph. As the bit
diameter increases at constant WOB, the larger volume is needed to be drilled by the bit per unit time,

which consequently reduces the drilling rate.
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Figure 4.45. The drilling rate of penetration response to increase in bit diameter

Figure 4.46 shows the effect of rock compressive strength on PDC rate of penetration. As it is expected,
the drilling rate of penetration decreases versus rock compressive strength. At constant WOB, the
harder the rock (higher UCS values) is, the lower cutter DOC and ROP would be. In this case, it is
observed that for UCS higher than 30,000 psi, zero drilling rate of penetration is achieved. For UCS
values higher than 30,000 psi, the average stress on each PDC cutter (30 in this case) is so small that it
results in small DOC values. The small DOC values result in higher interfacial friction angle (close to

cutter complementary angle, i.e. 70°). The higher the IFA values are, the lower the adjusted cutter front

area would be.

98



Normalized ROP

O P DN W b 01 O N © ©

0 5000 10000 15000 20000 25000 30000 35000
UCS (psi)

Figure 4.46. The drilling rate of penetration response to increase in UCS

The normalized sensitivity analysis of all above parameters are provided in the Figure 4.47.
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Figure 4.47. The PDC ROP model sensitivity analysis

4.5 PDC ROP model verification

At the following the PDC ROP model is verified for a bit with bigger diameter (8.5 inch) at several

CCS, three RPM, and two equivalent BR angles. Warren and Armagost in 1988, evaluated the
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performance of the 8.5-inch PDC bit in Carthage lime stone. The Winters et al. (1987 b) measured the

rock compressive strength under different CP (see Figure 4.48).

The developed ROP Model in this study is applied along with the full bit IFA model for ROP estimation
and the results are provided in the Figure 4.49 through 4.54. The Carthage limestone CCS was
calculated taking the data from Winters et al. (1987 b) test data and CP into account. The CCS was used

in the both ROP model and full bit IFA model models.
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Figure 4.48. variation of Carthage lime CCS versus CP
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Figure 4.49. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi,
CP=1400 psi, CCS=14654 psi, NOC=49, NOB=7, Dc=0.5 “, BR=20, ROP-constant=0.55

a0
=== Maodel

@ Data
m.

8 B
.

ROP (ft/hr)
&
e

=1
\‘l

20 - -

10 g

0 2000 4000 6000 8000 10000
WOB (Ibf)

Figure 4.50. comparison between the model ROP and data for 8.5” PDC bit, RPM=170, UCS=10900 psi,
CP=920 psi, CCS=103147 psi, NOC=49, NOB=7, Dc=0.5 “, BR=20, ROP-constant=0.55
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Figure 4.51. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi,
CP=807 psi, CCS=12778 psi, NOC=49, NOB=7, Dc=0.5 “, BR=20, ROP-constant=0.55
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Figure 4.52. comparison between the model ROP and data for 8.5 PDC bit, RPM=120, UCS=10900 psi,
CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7, Dc=0.5 “, BR=13, ROP-constant=0.55
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Figure 4.53. comparison between the model ROP and data for 8.5” PDC bit, RPM=175, UCS=10900 psi,
CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7, Dc=0.5 “, BR=13, ROP-constant=0.55
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Figure 4.54. comparison between the model ROP and data for 8.5” PDC bit, RPM=120, UCS=10900 psi,
CP=1200 psi, CCS=14037 psi, NOC=49, NOB=7, Dc=0.5 “, BR=13, ROP-constant=0.55
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As it is seen in Figure 4.49 through 4.54 the model provides a good estimation for PDC ROP at

different RPM, CCS, and BR values in Carthage limestone.
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CHAPTER V

CONCLUSIONS AND FUTURE RECOMENDATION

CONCLUSIONS

The conclusions of this thesis are provided as follows.

The flow of cut moving ahead and beneath the cutter results in a frictional force at the
cutter face, known as interfacial friction. The interfacial friction plays an important role in
the interaction between cutter and rock. Interfacial friction affects both cutters drag and
normal forces considerably. The interfacial friction shows up as an angle known as the
interfacial friction angle (IFA), and is calculated using the DD model (Equation 3.12) for
a sharp cutters. In this study, a single cutter IFA model was developed for sharp cutters
using the data from literature. The single cutter IFA model takes the cutter velocity, cutter
depth of cut, and velocity into account. The cutter IFA model is used cooperatively with
the single cutter force models to estimate the cutter drag and normal force, which has
potential application for simulating cutter wear (real-time bit wear model).

The single cutter tests show that the cutter chamfer does not have a great effect on the IFA.
A single cutter analytical force model was developed for sharp and blunt cutters that
generate promising estimation for cutter normal and drag forces in BSS, SWG, and TX

pink granite lithologies.
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The single cutter model was scaled up and used for developing a full PDC bit ROP model.
A full bit IFA model was developed and used to adjust the effect of friction on cutter depth
of cut and to improve the PDC ROP model estimations. The new PDC ROP model is solved
with the full bit IFA model, and therefore, it has included the effect of interfacial friction
force. In the new full bit ROP model, the effect of the number of blades is shown in a
constant, Cg , which was found equal to 0.9 and 1.07 respectively for the four and five
bladed bits.

The developed full bit model along with developed full bit IFA model were verified for
new bits at three RPM, two equivalent BR angles, and four CPs with 100% perfect bit
cleaning.

The effect of RPM on the ROP model was incorporated in the new full bit model.
Increasing RPM will increase the volume of cut per unit time and consequently result in
higher ROP values. However, the higher RPM will result in higher cutter velocities, which
increases the cutter IFA, and decreases the cutter depth of cut and ROP.

The new model can be used for detecting phase Il in drilling, which is representative for
efficient drilling. In this case, the ROP model should be solved at two different RPMs to
achieve the intersect WOB. The WOBs less than intersection WOB happen in phase | while
the WOBS over intersection point are in phase I1.

The differential evolution algorithm (DEA) was applied to develop two IFA models for
single cutter and full bit. The DEA was written in Python notebook and provided in
Appendix F. The python is an open-source, integrated high level, general-purpose

programing language.
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FUTURE RECOMMENDATIONS

In the new PDC ROP model the effect of cutter arrangement, interaction, and exposure
were ignored. These factors can be integrated into future models to improve ROP
simulation accuracy.

The efficiency of PDC and stud wear flat areas is not equal, due to having different material
and quality. An attempt should be made to consider the effect of wear flat area efficacy on
cutter depth of cut, and consequently the ROP.

The CP is an important parameter which affects the cutter forces tremendously during
drilling. The effect of CP on single cutter forces should be studied for different rock
hardness and lithologies which later can be used for improving single cutter and full bit
IFA models.

An attempt should be made to find a relationship between the single cutter and full bit IFA
models. The potential implication of a single cutter IFA model placed directly into the ROP
model can be studied. It is suggested to modify the equivalent cutter definition based on
Appendix E and use it for estimating the accurate equivalent normal force and depth of cut.
The effect of drilling fluid, cutter surface finish, chamfer angle, and cutter balling should
be studied for single and full bit IFA models. It is expected that mentioned parameters
affect the IFA model, which is a key element for estimating the ROP accurately.

The blade effect was incorporated into ROP by multiplying constant Cg into the model. An
attempt should be made to investigate the effect of the number of blades on PDC bit
performance.

The model should be verified for bits with different diameters.

The IFA model was developed based on DOC, UCS, and cutter velocity. It is noteworthy

to mention that in the IFA model, the UCS was replaced with CCS because of the having
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CP. However, the potential of including the CP effect into the IFA model as a separate
parameter should be investigated in the future works. It is expected that the frictional
behavior of soft rock under CP be different than those rocks with higher UCS. In other
words, two rocks with same CCS and different UCS (under two different CP) can behave
differently just because of their lithologies. Having separate UCS and CP in the IFA model

will give model more room for simulating more sophisticated behaviors.
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APPENDIX A

Cutter contact area calculation

A.1 Approach 1

A schematic of a cutter face (sharp) is seen in Figure A.1. In Figure A.1, the r is cutter radius
(half of the cutter diameter-D.), 6 is half of triangle vertex angle (is seen in green), Z is the
height of the triangle, L is the projection of cutter depth of cut (DOC) on cutter face, X is the
base of triangle, and the Z’ is the projection of Z by taking the cutter BR angle into account.

BR| 7
./ DOC

Figure A.1. The schematic of a sharp cutter front face (left) and side view (right)

The area of a circle sector and the triangle in Figure A.1 are calculated using Equations A.1
and A.2.

20

Agector = %T[I'Z v EQ AL

Atriangle = 7 PP Eq A.2
The depth when the cutter penetrates half the cutter diameter of the cutter is the threshold depth

of cut (DOC 1).The threshold depth of cut is defined in the Equation A.3 and is seen in Figure
A2
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DOCy = 7CCos(BR) on.EQ.A.3
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Figure A.2. The schematic of the depth of cut and threshold depth of cut

The triangle in Figure A.1 is seen in Figure A.3. Using Pythagorean Theorem (see Figure A.3):
2

X
r? =72 e ....Eq.A.4

26

X
Figure A.3. A schematic of a triangle

A.1.1 Cutter Contact area calculation for sharp cutter
A.1.1.1 Calculations for Z when the DOC < DOCy

The Z in Figure A.1 is equal to the difference between the cutter radius (r) and L (see Equation
Ab5).

Z=r—L ......Eq.A.5

Replacing the r and L will give Equation A.6.

D. DOC

=" .
2 Cos(BR)

....EqQ.A.6

A.1.1.2 Calculations for X when the DOC < DOCry

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 is achieved.
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XZ

=r2—-7%......Eq.A.7
I a

Rearranging Equation A.7, the Equation A.8 is achieved.

X=2{r2—72......Eq.A.8

Replacing r with half of the cutter diameter, and Z from Equation A.6 into Equation A.8 the X is
calculated using Equation A.9.

D2 D DOC
X = J—C—(—C——)2 e EQLAL9

4 2 Cos(BR)

A.1.1.3 Calculations for 6 when the DOC < DOCt

The 6 is calculated using Equations A.10 (see Figure A.1).

X
Tan(6) = % .. Eq.A. 10

Rearranging Equation A.10 will result in Equation A.11.
=T -1( X ) Eq.A. 11
= n el RN . A
a\2z d

Replacing the X and Z into the Equation A.11, the 0 is calculated for the DOC<DOCt

D_cz_(&_ DOC )2
4 2 Cos(BR)

— -1
0 = Tan D, DOC ... EQ.A.15
\ 2~ Cos(BR) /
A.1.1.4 Calculations cutter contact area when DOC < DOCry
The cutter contact area is calculated using Equation A.16.
Acontact = Asector — ATriangle e EQLAL16

The cutter sector area and triangle area were calculated in Equation A.1 and A.2. The triangle
area (Equation A.2) is turned into Equation A.17 by replacing the Z and X (see Equations A.6 and
A9).
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(&_&> 2 D_cz_(&_ﬂ)z
2  Cos(BR) /® 4 2 Cos(BR)

Atriangle = 5 o EQ.A. 17

\

The cutter contact area is calculated using Equation A.18.

(o -y

- 2
Tan D, __DOC nD.
2 Cos(BR)

Acontact = 720

D. DoC D> D, DOC

I/(T ~ Cos(BR) ) X ZJT ~ (F ~ CosBR)” \I

I [........
k | )

A.1.1.5 Calculations cutter contact area when DOC = DOCry

When the DOC = DOCr, the cutter penetrated by half and, therefore the cutter contact area would
be half of total cutter face area and it is seen in Equation A.19.

D 2
C
Acontact = T[E ses san e EqA 19

A.1.1.6 Calculations for Z when the DOC > DOCy

A schematic of a cutter when the DOC is greater than the threshold DOC is seen in Figure A.4.
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Figure A.4. A schematic of a cutter face area when the cutter depth of cut is greater than the threshold
depth of cut

When the DOC is greater than the threshold depth of cut, the Z is calculated using Equation A.20.
Z=-r+L......EqQ.A.20
Replacing the r and L will give Equation A.21.
D, DOC

2 T Cos(BR)
A.1.1.7 Calculations for X when the DOC > DOCy

Z=— ....EqQ.A.21

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 was achieved
(see Equation A.7). Rearranging Equation A.7, the Equation A.8 is achieved (see Equation A.8).
Replacing the r with half of the cutter diameter, and Z from Equation A.21 into Equation A.8 the
X is calculated in Equation A.22.

X=2 D.” D"+ boc ,, Eq.A.22
= 2 ( > Cos(BR)) we .. EQ.A.

A.1.1.8 Calculations for 6 when the DOC > DOCy

The 0 is calculated using Equations A.10 (see Figure A.1). Rearranging Equation A.10 will result
in Equation A.11 (see Equation A.11). Replacing the X (Equation A.22), and Z (Equation A.21)
into the Equation A.11, the 0 is calculated in Equation A.23.
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D’ _ (@ i— )2
4 2 Cos(BR)
— -1
0 = Tan _&4_ DOC ..Eq.A.23
\ 2 " Cos(BR) /
A.1.1.9 Calculations cutter contact area when DOC > DOCrt
The cutter contact area is calculated using Equation A.24.
Acontact = Asector T ATriangle e EQLA 24

The cutter sector area is calculated in the Equation A.25.

20
Asector = T2 —%nr e EQ.A. 25

The triangle area is calculated in Equation A.26. The Equation A.2 is turned into Equation A.26
by replacing the Z and X (see Equations A.21 and A.22).

D., DocC D.? DOC
/<‘7+COS(BR))X ZJ +(2 Cos(BR)”

| |
Atriangle = L 2 )l

The cutter contact area is calculated using Equation A.27.
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D.\2 D.\2
Acontact = “(7) - 360 “(7)

A.1.2 Cutter worn area calculation for a blunt cutter
A.1.2.1 Calculations for Z when the BG < 4

A schematic of a cutter face (blunt) is seen in Figure A.5. In Figure A.5, the r is cutter radius (half
of the cutter diameter-D..), 6 is half of triangle vertex angle (is seen in green), Z is the height of the
triangle, the h,,is the cutter wear length, the h,,’ is the projection of h,, on the vertical axis, the X
is the base of the triangle, and the Z’ is the projection of Z by taking the cutter BR angle into
account.

BR

Figure A.5. A schematic of a blunt cutter front face view (left) and side view (right)
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The area of a circle sector and the triangle in Figure A.5 are calculated using Equations A.1 and
A2

The Z in Figure A.5 is equal to the difference between cutter radius (r), and length of wear (see
Equation A.28).

Z=r—hy ......Eq.A.28

The h,, is equal to bit grade times cutter diameter divided by 8. Replacing the h,, in Equation A.28
will results in Equation A.29.

e EQLA.29

Replacing the r with half of the cutter diameter will result in Equation A.30.

Z_DC BG.D. Ea. A 30
= g - EGA

A.1.2.2 Calculations for X when the BG < 4

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 is achieved.
Rearranging Equation A.7, the Equation A.8 is achieved. Replacing the r with half of the cutter
diameter, and Z from Equation A.30 into Equation A.8 the X is calculated using Equation A.31.

DCZ D, (BGéDC)

X=2 | —(=->8 /2 EqA31
5~ Cos(BR) 4

A.1.2.3 Calculations for 8 when the BG < 4

The 0 is calculated using Equations A.10 (see Figure A.1). Rearranging Equation A.10 will result
in Equation A.11. Replacing the Z and X from Equation A.30 and A.31 into the Equation A.11,
the 0 is calculated for BG < 4.

D D, (BGéDC) 2
0 = Tan?! K2 (7 ] W)

5. oD . Eq.A.32

—_-C —_—-C
2 8 /

A.1.2.4 Calculations cutter worn area when BG < 4

The cutter worn area is calculated by subtracting the circle sector area from triangle as seen in
Figure A.5. The cutter sector area and triangle area were calculated in Equation A.1 and A.2. The
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triangle area (Equation A.2) is turned into Equation A.33 by replacing the Z and X (see Equations

A.30 and A.31).
(B0
2
|/ -2 ). 2\/DT G- cOs(BR))2 \|

Atriangle = . Eq A.33

The Equation A.32 is replaced into Equation A.1, and using Equation A.33 and A.16, the cutter
worn area is achieved (see Equation A.34).

[ - (%52
-1 4 2 8 D2
\ c

Aworn = 720

A.1.2.5 Calculations cutter worn area when BG = 4

When the BG = 4, the cutter is half worn therefore the cutter worn area would be half of total
cutter face area and it is seen in Equation A.35.

2
C

Aworn = HE e EQ.A.35

A.1.2.6 Calculations for Z when the BG > 4

A schematic of a cutter when the BG is greater than 4 is seen in Figure A.6.
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Figure A.6. A schematic of a cutter face area when the BG > 4

When the BG > 4, the Z is calculated using Equation A.36.
Z=-r+hy......Eq.A. 36
Replacing h,, in Equation, A.36 will give Equation A.37.

BG.D.
Z=-r+

. Eq.A.37

Replacing the r with half of the cutter diameter will result in Equation A.38.

D. BG.D,
Z=-——"+
2 8

wo..Eq.A.38

A.1.2.7 Calculations for X when the BG > 4

Using Pythagorean Theorem (see Equation A.4 and Figure A.2), the Equation A.7 is achieved.
Rearranging Equation A.7, the Equation A.8 is achieved. Replacing the r with half of the cutter
diameter, and Z from Equation A.38 into Equation A.8 the X is calculated using Equation A.39.

D D. BG.D.\?
X = J—C—(—7‘:+ s C) o EQ.A.39

A.1.1.8 Calculations for 8 when the BG > 4

The 0 is calculated using Equations A.10 (see Figure A.1). Rearranging Equation A.10 will result
in Equation A.11 (see Equation A.11). Replacing the X (Equation A.39), and Z (Equation A.38)
into the Equation A.11, the 0 is calculated in Equation A.40.
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A.1.2.9 Calculations for cutter worn area when BG > 4
The cutter worn area is calculated using Equation A.41.
Acontact = ASector + ATriangle R Eq- A.41

The cutter sector area is calculated in the Equation A.25. The triangle area is calculated in Equation
A.26. The Equation A.2 is turned into Equation A.42 by replacing the Z and X (see Equations A.38
and A.39).

(5P (-0 (=252 )

Ariangle = | > |.......Eq.A. 42

The Equation A.40 is replaced into Equation A.1, and using Equation A.42 and A.25, the cutter
worn area is achieved (see Equation A.43).

Avorn = | (%) %)
worn = | T\ 360 ™2

A.1.3 Cutter contact area calculation

A sharp cutter contact area is calculated using Equations A.27. Figure A.7 shows a schematic of a
blunt cutter. A blunt cutter contact area (BC) is calculated by subtracting the contact area of a sharp
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cutter (BD) with a depth of cut equal to DOC, from the cutter worn area (CD) of a blunt cutter with
a depth of cut equal to DOC and reported BG (see Figure A.7). The DOC, equation is provided in
Equation A.44.

BG X D. X cos(BR)
DOC, = DOC + 3 .. EQLA 44

Therefore, to calculate the contact area of a blunt cutter (BC) with a depth of cut equal to DOC,
and wear equal to BG the following steps should be taken.

1) The contact area of a sharp cutter with a depth of cut equal to DOC, (BD) is calculated
using Equation A.18 or A.27 (check the condition, whether the DOC is less or greater than
threshold DOC).

2) The worn area of a blunt cutter (CD) with reported BG is calculated using Equation A. 34
or A.43 (check the condition, whether the BG is less or greater than 4).

3) The area from step 1 is subtracted from the area in step 2 to achieve the blunt cutter contact
area (BC).

Dc= Cutter Diameter

DOCQ BGD, | .. .~ BG.D.

8.Cos(BR) 8

D
Figure A.7. A schematic of a blunt cutter

A.2 Approach # 2

The circle segment area is calculated as a function of cutter depth of cut and cutter BG. In the
following the circle segment area calculations are provided. Circle segment calculations reference:
http://mathworld.wolfram.com/CircularSegment.html
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Figure A.8. A schematic of the circle segment area (ABCA)

The cutter radius is provided in the Equation A.45.
r=L+7Z......Eq.A. 45
The circle arc is achieved using Equation A.46.
s =r(20)........Eq.A. 46
Base on trigonometry, the Equations A.47 and A.48 are achieved.

Z =r.cos(0)........Eq.A. 47
7 = %.X. cot(8) ........Eq.A. 48

Taking the triangle in Figure A.8 into account, the Equation A.49 is achieved.

1
Z=-+/4r2—-X2......Eq.A.49

2

Moreover, the length of the chord (see the triangle AOC in Figure A.8) can be written in the form
of Equations A.50 to A. 53.

X = 2r.sin(0) ........Eq.A.50

X = 2Z.tan(®) ........Eq.A.51

X =2r2—72......Eq.A.52
X=2,/L2r-L)......Eq.A.53

From elementary trigonometry, the angle 6 obeys the following relationships provided in
Equations A.54 to A.57.
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S
20 =-......EqQ.A.54

v/

20 = 2cos‘1(;) v .. EQ.A.55
20 = 2t -1(X) Eq.A.56
= an ) e A

27 d
X
20 = ZSin_l(z) . EQ.A.57

The area of the segment (ABCA) is then simply given by the area of the circular sector (the entire
wedge -ABCOA) minus the area of the bottom triangular portion (ACOA).

Asegment = Agector — Atriangle o EQ.A.58
Replacing in the sector and triangle areas into the Equation A.58 will result in Equation A.59.
1
Asegment = ErZ(ZG — sin20) ........Eq.A.59
Note that the angle 6 is in radian and should be turned into a degree. Expanding the Equation A.59,

and replacing 26 from Equation A.46 into the first section and replacing the second part will result
in Equation A.60.

1
Asegment = E(rs —XZ)........Eq.A. 60

Replacing s, Z, and X from Equations A.46, A.49, A.53, and A.55 into Equation A.60 will result
in Equation A.61.

Z
Asegment =r2cos™?! (;) —Zyr2 =72 ......Eq.A.61
Replace Z from Equation A.45 into Equation A.61 will result in Equation A.62.

) —(r—L)y2rL—12......Eq.A.62

Replace the circle radius with cutter diameter will results in Equation A.63 (Note that the segment
area is equal to cutter contact area).

r—L
— 2 ne—1
Asegment = r=cos ( T

D
A (oY oot 271 (De D, ,
contact = ("] - 0s D —\7 - L). |2 > L—(L)?......Eq.A.63

=<
2

A.2.1 Cutter Contact area calculation for a sharp cutter
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For a sharp cutter, the L (see Figure A.8) in Equation A.63 is equal to L1 (see Figure A.9). The
L1 is calculated in Equation A.64.

DOC

l=——"— . ....Eq.A 64
Cos(BR) q

Replacing L1 (see Equation A.64) into L (see Equation A.63) will result in Equation A.65. The
Equation A.65 is used to calculate the cutter contact area for a sharp cutter when the DOC,D,
and BR are known.

) D. __DoC
D _.[ 2 ~Cos(BR)
ACOntact:(7c) x Cos™! — .
2
(Dc DOC )x o, boc ( DOC )2 e
2 Cos(BR) ¢* Cos(BR) \Cos(BR)) ™ ~&™

Dc= Cutter Diameter

/

Figure A.9. A schematic of a sharp cutter

A.2.2 Cutter Contact area calculation for a blunt cutter
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For a blunt cutter, similar to section A.3, (see Figure A.7), a blunt cutter contact area (BC) is
calculated by subtracting the contact area of a sharp cutter (BD) with a depth of cut equal to DOC,
from the cutter worn area (CD) of a blunt cutter with reported BG (see Figure A.7). The DOC,
equation is provided in Equation A.44.

5 D, ( DOC,
D _,[ 2~ \Cos(BR)
Acontact = (7C) .Cos™* D—c
2

(B (22 (2 (oo - (oo
oo ()

s}

(B 52). 52 - (2 |-

Replacing the DOC, using Equation A.44 in Equation A.66 will result in Equation A.67.

Acontact
BG x D. x cos(BR)
D, <DOC+ 3 >
2 Cos(BR)
— DC : C -1
= (7) . Los &
2
D¢
2

Cos(BR) Cos(BR) Cos(BR)

i <<DOC N BG X D, g cos(BR))> , (Dc) | <(DOC n BG x D, g cos(BR))) i ((DOC + BG x D, g cos(BR))

...Eq.A.67
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APPENDIX B

Wear Flat Area Calculations

B.1 Approach 1

In Figure B.1, a plane and a cylinder are shown. The plane intersected with the bottom side of
the cylinder on the X-Y-Z coordinate. In Figure B.1, the A,, is the cutter wear flat area and the
A,," is the projection of cutter wear flat area on the X-Y plane. Note that the Y and Y” are laid
on each other and X’-Y’-Z’ can rotate around its fixed Y’ axis.

Y'

Figure B.1. A 3D schematic of a cylinder and a plane intersection and details areas
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In the following equations, the L is the height of cutter (cylinder), the r is cutter radius, “a” is the
depth of worn, and the 0 is the rotation degree between the two X’-Y’-Z’ and X-Y-Z coordinates.
The plane is in the X’-Y’-Z’ coordinate and its equation is provided at the Equation B.1.

Z'=a......Eq.B. 1

The X’-Y’-Z’ coordinate rotates 6 degree counter-clockwise to match with the X-Y-Z coordinate.
The new equation of the plane in the new coordinate is calculated at the following.

_Cg;lee (S::)r;% )i %) = [c;(se —SZine‘ o EQ.B.2
0 1 Sin@  CosB
Thus
X =X".Cosb +Z'.Sinb ........Eq.B.3
Z = —-X".Sin6 + Z'.CosH ... .....Eq.B. 4

Multiplying Equation B.3 & B.4 by Sin (0) and Cos (0) respectively
X.Sin® = X'.Cos6.SinB + Z'.Sin6? ... .....Eq.B.5
Z.Cos® = —X'.SinB.CosO + Z'.CosB? ........Eq.B.6
Adding up Equation B.5 and B.6
Z' =X.SinB + Z.CosH ... .....Eq.B.7

Plugging the Equation B.1 into the Equation B.7, the plane equation in X-Y-Z coordinate would
be:

a=X.SinB + Z.CosH ........Eq.B.8

The cylinder is perpendicular to the plane X-Y-Z. The image of intersection between the plane and
cylinder in the X-Y-Z coordinate is provided at Figure B.2. In Figure B.2, the AE is representative
of the bottom intersection between the plane and the X-Y, and the BD is the projection of the plane
intersected with the top of the cylinder on X-Y.
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Sin(#)

Figure B.2. The intersection between the plane and the top and bottom of a cylinder on the X-Y coordinate
(top side view)

The two vertical lines show the intersection between the bottom and the top of the cylinder on the
X-Y plane. The intersection points are calculated using the following equations. The bottom and
top intersection are calculated using Equation B.8 when the Z=0 and L respectively.

a
tZ=0thenX = ——........Eq.B.9
a N2 = Sine 4
t7 = Lthenx = 2—LCosO Eq.B.10
a = en = Sll’le q .

The conditions are:

a— L.CosO < a <
Sin0 Sin0

De......Eq.B.11

In the above equations, the Dc is cylinder diameter (cutter). The area of the intersection
(representation of cutter wear flat area) between the plane and cylinder in the X-Y-Z coordinate
can be calculated by taking integral between the boundaries (Equation B.9 and B.10) and circle
equation in the X-Y plane (Equation B.12). The circle equation is provided in the following.

X—-r)?+Y2=r?......Eq.B.12

To find the ABDEA surface area in Figure B.2 (which is representative of projected wear flat area),
the Equation B.13 is used which is representative of the DE curve derived from Equation B.12.
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Y=v-X?+2rX......Eq.B.13

The Wear flat area is calculated using Equation B.14. The area between Equation B.13 and the X-
axis is calculated by taking the integral of Equation B.13 with specified boundaries (see Equation
B.11) and then it is doubled and is divided by the Cos (8) to come up with the wear flat area (A,).
The 6 is both the cutter BR complementary angle and the rotation angle between two X-Y-Z and
X’-Y’-Z’ coordinates (see Figure B.1).

a

A, = CO:(G) Sine /—XZ + 2rX dx ........Eq.B. 14

Sin®

Solving integral:

fJ—x2 +2rX dx ........Eq.B.15

Rewrite Equation B.15.
2rX —X? = —(X?2 - 2rX+r?)+r?......Eq.B. 16

Rewrite Equation B.16 to Equation B.17 (similar to Pythagorean theorem).

=r’ - (X-r)?......Eq.B.17
Change the parameter X to 6.

X—r=r.Sinf........Eq.B.18
Take derivation from both sides of Equation B.18.

dX =r.Cos(0).d6 ........Eq.B.19

Rearrange Equation B.18 and rewrite it in Equation B.20.

r
SinB = — ....Eq.B.20

Plugging the Equation B.17, B.18 and B.19 into Equation B.15 will result in Equation B.21.

= f\/rz —r2.Sin?0.r.Cos0 db ........Eq.B.21

Rewrite Equation B.21 into Equation B.22
= frZ.Cosze do .......Eq.B.22

Rewrite the Cos in Equation B.22 using trigonometry rules.
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1+ Cos26
= IFZ'T de ..Eq.B.23
Solve the integral in Equation B.23.
_ 7 (o 4 Sin20 Eq.B.24
—2( > ) <. .....Eq. B.
Open the Equation B.24 using trigonometry rules.
I.2
=5 (6 + Sin®.Cosh) ... .....Eq.B. 25

Replace the 6 in Equation B.25 using Equation B.18 and the Pythagorean theorem.

_r? Si X +X—r 2rX — X2 Ea.B.26
—2(1n ( . ) — - ) .. ..... Eq. B.

Introduce the integral boundaries into the Equation B.27.

a
r? X—r. (X—r)V2rx — X2 Sin@
_ -1
_7<Sln ( . )+ 7 > 14— L. Cosf = - Eq.B.27
Sin@

Replacing the boundaries and assuming the lower bound is zero and doubling the surface area and
returning the surface area to the original one (by multiplying with ﬁ) then:

/ _a _a N _ 3 2
(2 (slne) " (5o r)\/ 2r(5ing) ~ (S
r r2
5 a— L. Cose) .
r [l

— L.CosB — L.Cosb a — L.Cos0,, \
C—e )JZ( sne )~ T Sme )

)
i )))

X w.....EQq.B.28
Cos6 q

The r is equal to half of the cutter diameter then,
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/ Dc\? a Dc \/ a .\,
no= | | @) [ @27, Gimg ~ 2\ <Sme> (5i0)
\ 2 2 )
(E)Z a—L.CosB) _Dc
N2 [ gt Sin@ 2
> Sin™( be )
2
@ L:Cosé Dc) \/ —L.CosBy _ a—L Cosh, \
+ Sin@ Sin® Sin® |
(7) /
X —— .......Eq.B.29
Cos6 d

(BG.DC.Cos(BR)) Ce B 30
= w......EQ.B.

8

Replacing the 6 with (90-BR) and depth of wear (a) using Equation B.30 will result in Equation
3L
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<(

BG.D.. Cos(BR)
8

Sin(90 — BR)

s

—
—

Sin(90 — BR)

<(BG. Dc.gos(BR))

BG.D,. Cos(BR) BG.D,. Cos(BR)\\ >
A Y G e AU G
Rk ( 2 ) Sin(90 — BR) Sin(90 — BR)

()

+

(%)

—L.Cos(90 — BR)

N—

Sin~1(

<(BG. D.. gos(BR))

Sin(90 — BR)

_De
2

(38}

\

(BG. D..Cos(BR)
8

(%)

)

) —L.Cos(90—BR) .
¢ Sin(90 — BR) -2

z(%)(

Sin(90 — BR) Sin(90 — BR)

(BG. D.. gos(BR)> — L.Cos(90 — BR)) . <(BG. D.. gos(BR)) — L.Cos(90 — BR)

>2

2
X Cos(90—BR)

Conditions are:

a—L.cos©

If the

sin

....Eq.B.31

()

a
The integral upper boundary is —— < Dc

Integral lower boundary is

Sin6

a—L.CosO
Sin0@

= 0 then the cutter wear flat area is calculated using Equation B.32.
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Sin(90 —BR) | 2

(%)

/N
|5
N—
N
—

=| —=— Sin

(BG. D.. gos(BR)) DCH
I
|

)

(BG. D.. gos(BR)) (BG. D.. gos(BR)> 2

—

(BG. D.. gos(BR))

Sin(90 —BR) % 2 (%)

Sin(90 —BR) | | Sin(90 — BR)

()

2

X— .. .. .EqB.32
Cos(90 — BR) q-B.3

Conditions are:

a
The i 1 is —<D
e integral upper boundary is Sino < Dc

The integral lower boundary is 0

If the length of the cylinder (L) assume equal to PDC thickness length then the PDC wear flat
area is calculated by replacing the PDC thickness (tppc) with L in the Equation B.31 and it is
seen in the Equation B.33.
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Aw,PDC

/ / (BG D.. COS(BR) _E\ Bj De. COS(BR))_% 2(%) (B(‘T. D. gOS(BR)> i BG D.. COS(BR) Z\I
(%)2 Sm(90 BR) 2 | in(90 — BR) Sin(90 — BR) Sm(90 —BR)
| l
) | |

&) ' =)

—
—

Sin@ -2

/ <(w) — tppc- Cos(90 — BR)) Dc

)

%)

¢ Sin(90 — BR) 2 2 Sin(90 — BR) Sin(90 — BR)

(%‘)S(BR)) — tppc. Cos(90 — BR) ~ E) , (E) <(w> — tppc. Cos(90 — BR)) ~ ((%OS(RR)) — tppc- Cos(90 — BR)>2\i
p
|

(%) |

2

__f . . EqB.33
X Cos(90 —BR) q

The wear flat area beneath the cutter stud is calculated by subtracting the total wear flat area
(Equation B.32) from PDC wear flat area (Equation B.33).

Ay stud = Aw — Awppc - ----Eq.B.34
B.2 Approach 2

The total wear flat area projection on the X-Y-Z plane is a segment of a circle. The circle segment
area was calculated in Equation A.63. The Equation A.63 can be applied to calculate the segment
area of a circle in Figure B.2. Once the circle segment was calculated, it can be projected by taking
the cutter (0) into account to achieve the cutter wear flat area.
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APPENDIX C

Cutter Worn Volume Calculations

The goal of this section is to find the volume of the worn-out section of a cutter. The worn-out
section for a cutter is seen (assigned number 1) in Figure C.1.

A
o
1
I
1
1
|

Figure C.1. A 3D schematic of a blunt cutter (assigned number 2) and thé worn section (assigned
number 1)
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L
Figure C.2. A side view schematic of a cutter

Figure C.2 shows a cylinder (cutter) laid down on Z-axis. The face of the cylinder is on the X -Y
and is shown in Figure C.3. The Y-axis is perpendicular to X and Z plane and it comes out of X-Z
origin (point O). In Figure C.2, the line that connects point 1 to point 2 is a 2D representation of a
plane in the X’-Z’ coordinate. In Figure C.2, the L is the length of the cylinder. The L’ is the length
of the line between O and point 2. The goal is to calculate the volume of a worn wedge (assigned 1
in Figure C.1) that is seen as a 2D triangle between point O and points 1 and 2 in Figure C.2. The
circle segment area can be calculated using Equation C.1 (see appendix A.2).

D
A _ (DY et [ 2% (P D, ,
segment = |5 ) - 0s D 7~ X). |2. > X—-(X)?.......Eq.C.1

Yc
2
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Figure C.3. Cutter front face on X-Y coordinate (front side view)

The area of the circle segment in Figure C.3 is a function of X (see Equation C.1). The variable X
in the circle can be written as a function of Z (see Equation C.7). The cutter worn volume can be
found by taking an integral of circle segment area (Equation C.1) and between Z=0 and Z=b (point
1 and 2 in Figure C.2). For the above integral, the lower boundary is calculated by X=0 in-plane
Equation (Equation C.2). The Equation C.2 is achieved by replacing 6 with the 90-BR in Equation
B.8 (see appendix B).

a = X.Sin(90 — BR) + Z.Cos(90 — BR) ... .....Eq.C.2

The L’ is calculated using Equation C.3 (see Figure C.2).

a
V=— " . .. .EqC3
Cos(90 — BR) q

In the Equation C.3, the a is the depth of worn and it is calculated in Equation C.4.

BG. D,
=( . ).Cos(BR)........Eq.C.4

Replacing a from Equation C.4 into Equation C.3 will result in Equation C.5.
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(BGéDC) .Cos(BR) (BGéDC) .Cos(BR) BG.D,
! = _ = Cot(BR).(—) wewn..EQ.C.5
Cos(90 — BR) Sin(BR) 8
The X in Equation C.1 is provided in the following.
X=f(z)......Eq.C.6

Replacing a line equation into Equation C.6 will results in Equation C.7.
X=A.Z+B......Eq.C.7

To achieve the coefficients of the line in Equation C.7, two points are needed.

C.1 Cutter worn volume calculation (including PDC and STUD)
In this case, the point 2 intersection is less than cylinder length and then
Condition: L' < L

Intersection points (point 1 and 2 in Figure C.2) are:

X Z
intersection pointsy [ BG.D¢ 0
( pointl = ) 8
i = BG.D
point2 0 LU= Cot(BR).( - °)

The A and B are found by taking the above intersection points and Equation C.7 into account (see
Equations C.8 and C.9).

A = —-Tan(BR) ........Eq.C.8

BG.D,
B=< 3 )........Eq.C.9

Equation C.7 is turned into Equation C.10 using Equation C.8 and C.9.

BG.D,
X = —Tan(BR).Z +( - ) e EQ.C.10
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Replacing X from Equation C.10 into Equation C.1 will result in Equation C.11.

Asegment

D, (_ BG.D,

D2 /2 ( Tan(BR).z+( - )>
= (7) .arccos | b,

2

|
J
— <% — (—Tan(BR).Z

+ (BGéDCD. J 2. (%) . <—Tan(BR). Z+ (BGéD°)> - (—Tan(BR).Z + (BGéD°)>2 oo EQ.C11

The cutter worn volume then is calculates by taking an integral from Equation C.11 between
boundaries. The integral boundaries are seen in Equation C.12.

Cot(BR). BGE;DC
f A(Z)dZ. ... .....Eq.C.12
0

The above integral is simplified by separating and defining new variables at the following. The
parameters A, D, C and X are defined in Equation C.13.

BG. D,

A= (&),D= —Tan(BR), C =(

2 ).X=Z........Eq.C.13

Replace the A, D, C, and X into the Equation C.13 will result in Equation C.14.

A— (DX + C)
I=fA2 arceos | ————— dX

- f(A — (DX + 0)).{/2A(DX + C) — (DX + C)2dX ........Eq.C. 14

The above integral is composed of two separate integrals and it is shown in Equation C.15.

I=1, =1, ......Eq.C.15
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Integral I, is seen Equation C.16.

5 A—(DX+0C)
I, = | A®arccos S — dX........Eq.C. 16

The base integral for Equation C.16 is Equation C.17. Therefore, the Equation C.17 is solved at
the following.

[= farccos(e)de........Eq.C.17

Assume u as follow
u = arccos(0) ........Eq.C.18

Take derivation from u in Equation C.18 will results in Equation C.19.

du = \/1_?7662 .....Eq.C.19
Change the parameters
dv=d0 - v=286......Eq.C. 20
Note that: [ udv = uv — [ vdu
Rewrite the integral
[ = 0.arccos(0) +f 6.4 v ... Eq.C.21
i

Change the parameters (introduce t) and take derivation
t=1-0%dt=-20d0........Eq.C.22

Replace t into Equation C.22

1 (dt
= 0.arccos(0) — Efﬁ ....Eq.C.23
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Rewrite the Equation C.23

1 -1
= 0.arccos(0) — Ef tz2dt......Eq.C.24
Solve and rewrite Equation C.24

1
1 t2
= 0.arccos(0) — =.—........Eq.C. 25
2’1
2
Replace t with 8 in Equation C.25 (see Equation C.22).
[ =0.arccos(0) —y1—06%........Eq.C. 26

Therefore, the integral (see Equation C.17) solution would be

farccos(e)dG = 0.arccos(0) —/1—062.......Eq.C.27
Replace the parameters into integral C.17

A—C DX
I, = fAZarccos( x

——dX......Eq.C.28
Taking the A out of integral

I, = A? f arccos(A —%)dX... .....Eq.C.29
A A

In Equation C.29, the X coefficient (%) in arccos comes out of integral and will be multiplied with
A? as it is shown in the Equation C.30.

The solution of integral 1, is provided at the following

1 —A3 <A — (DX+0)
1

A— (DX + C) L A-DX+0)
=7 n ).arccos (T) - —(———

A )

wun..Eq.C.30
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The second part of the integral I (Equation C.14) is seen in the Equation C.31. The following steps
should be taken to solve Equation C.31.

I, = f(A — (DX + €)).4/2A(DX + C) — (DX + C)2dX........Eq.C. 31

Change the parameter as it is provided in the Equation C.32
y=DX+C.......Eq.C.32
Take derivation from Equation C.32
dy = DdX........Eq.C.33

Replace the Equations C.32 and C.33 into Equation C.34

1
I, = 5f(A—y).w/ZAy—yzdy... ....Eq.C.34

Rewrite the Equation C.34

1
I, = Bf(A —y).+/A%2 — (y — A)?dy ........Eq.C.35
Change the parameters using Equation C.36 (similar to Pythagorean theorem).
y—A=A.Sin(0) ........Eq.C.36
Take derivation from Equation C.36

dy = A.Cos(0) ........Eq.C. 37

Replace the Equation C.36 and C.37 into Equation C.35

1
I, = Bf A.Sin(0)./A2 — A2.Sin()?.A.Cos(0)d® ........Eq.C.38

Taking the constant out of integral
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A3
I, = Ff Sin(@).Cos?(0)do ........Eq.C.39

Change the parameters and define u as following
u = Cos(0)........Eq.C.40
Take integral from Equation C.40
du = —Sin(6).d0 ........Eq.C.41

Replace the Equation C.40 and C.41 into Equation C.39

A3
_ _Fjuzdu v Eq.C.42

Solve the Integral in Equation C.42 and replace the u

A® u® A% Cos®(8)
D'3 D 3

wn..Eq.C.43

Rewrite and replace the 0 (see Equation C.36) as it is provided at the following

A3 : A y—A
=—ﬁ(,/1—5m2(e))3_5(/1—( )% Eq.C. 44

Replace the y (see Equation C.32) and rewrite the Equation C.44

3

Lo A3 L DX+C—A Ea.C.45
2= ~3p ( X )2) | ........Eq.C.

The integral I answer is provided in Equation C.46.
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= 2
: D A A A )

3
+A3 L DX+c-A, b a6
5 (5D | o EaC

Replacing A, D, C, and X (from Equation C.13) into Equation C.46 will result in Equation C.47.
Note the boundaries should replace the Z to achieve the final answer (note boundaries in Equation
C.47).

A3 <A _ DX+ C)) . <A — (DX + C)) ) \/1 _ A= OX+0)

V. = Cutter Volume

0 [[ @~ 5o )
— .arccos
—Tan(BR) (%) (%)

2

(3)- (- (529

(%)
() < jl_(—mnmmu(%m)—<%>)2)>

—3Tan(BR) (%)

1-—

|
i
|
\

3
l [Cot(BR)- (BGE;DC> o EQ.C.47

| 0

)

Replace the boundaries into Equation C.47 will result in Equation C.48.
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V. = Cutter Volume

_ (%)3 |[/ (%) - (— Tan(BR). Cot(BR). (25%2¢) + (BGéDC)>\|

(%) - (— Tan(BR). Cot(BR). (

BG.D,

8

(
- Tan(BR)| \ (% ) ).arccosk

[
/(%) _ (- Tan(BR) . Cot(BR). (BG{;DC) + (BGéDCD

@
3 )( [ G20 59- ) |

The cutter volume Equation is provided in the Equation C.49.
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V. = Cutter Volume

[0 ()5
lTan(BR)l (%)
5)- (52

3

- 1=

S

(2
3
D.\? BG.D, Do\ 2 ]
&) |, (EG)-E) b0, 49
3Tan(BR) (&) | oo EQ.C.
: |
C.2 PDC worn volume calculation
In this case, the point 2 intersection is greater than cylinder length and then
Condition: L' > L
Writing the X as a function of Z.
X =f(z).......Eq.C.50
Replacing line Equation into Equation C.50.
X=A"7Z+B'......Eq.C.51
Intersection points are:
X Z
intersection points BG.D. 0
pointl 8 .. Eq.C.52
point2 a — L.cos(90 — BR)
sin(90 — BR)
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Replacing the a from Equation C.4 into Equation C.52.

point1 l /BG.D l.......Eq.C.53
point2 k ( g C) .Cos(BR) — L.cos(90 — BR) L)

sin(90 — BR)

X Z
BG.D,
(intersection points> 3 0

The slope of the line in Equation C.51 is achieved by taking the intersection points (see Equation
C.53) into account.

__ point2(X) — point1(X)

~ point2(Z) — point1(Z)

!

...Eq.C.54

The Y-intercept of Equation C.51 is provided in Equation C.55.
B’ = point1(X) ........Eq.C.55

Replacing point 1 and point 2 values into Equation C.54 and C.55 will result in Equation C.56 and
C.57.

BG.D
( 5 C).Cos(BR) — L.cos(90 — BR) _ BG.D,
sin(90 — BR) 8
A= - v EQ.C.56
BG.D,
"= 3 oo w..Eq.C.57

Therefore, the Equation C.51 can be written in the following Equation.

BG.D
( - C).Cos(BR)-—L-COS(90--BR) BG.D,

sin(90 — BR) 8
BG. D,
X = .z+( )mm“chss

| L 8
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Replacing X (Equation C.51) into Equation C.1, results in Equation C.59.

D I 1
D\ TC — (A'Z+B")
Asegment = - ) -arccos T Db,
2
DC ' DC 7 14 !
- (7 —(A .Z+B’)). 2. (7> .(A'Z+B")— (A".Z+B')? ......Eq.C.59

Renaming variables and replacing into Equation C.59 using Equation C.60, would result in
Equation C.61.

D
A= (7°),D =A,C=B,X=7Z......Eq.C.60
A—(DX+C
= jAZ arccos (¥> dX
A
+ f(A — (DX + C)).4/2A(DX + C) — (DX + C)2dX ... .....Eq.C.61

Solving the above integral results in Equation C.62.

I_—A3 A—(DX+0) A— (DX + C) . A—(DX+0)\°
(A0 (A X10) _ [, (20X )

3

A3 DX + C — A\?
1—(—) )| ....Eq.C.62

3D A

Replacing variables, A, D, C, and X (check out Equation C.60) into Equation C.62 results in
Equation C.63.

Replacing the integral boundaries into the Equation C.63 will result in Equation C.64. The
Equation C.64 can be used to find the volume of PDC by replacing the L with the PDC thickness.
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V. = Cutter Volume

(%) .Cos(BR) — L. cos(90 — BR) BG.D,
sin(90 — BR) -

-

|
\

T

<(BGéDC) .Cos(BR) — L.cos(90 — BR)) BG. DC\ \‘
78

sin(90 — BR)

<Dc>—l('/ )
\ /

D 3
_ _(TC) X arccos

. ®

sin(90 — BR) 8

<(BGéDC) .Cos(BR) — L.cos(90 — BR)) _ BG.D,
%)- : (55
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sin(90 — BR) 8 oD 5
: 12+ ) -(3)

)

((@) .Cos(BR) — L.cos(90 — BR)> BG. Dc\‘ 2

(
\

) [L e EQ.C.63

0

(%)
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(@) .Cos(BR) — L.cos(90 — BR) BG.D,
sin(90 — BR) -

-

|
\

P

BG. D
Sin(90 — BR) 8 | BG.D
-Ye
. Lt ( 8 )

<Dc>—l('/<(
il /

X arccos

V. = Cutter Volume =

sin(90 — BR) 8

<(BGéDC) .Cos(BR) — L.cos(90 — BR)) _ BG.D,
%) : 55
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<(¥) - Cos(BR) — L.cos(90 — BR)) BG.D.

sin(90 — BR)

L

|
\

1-¢(

(%)
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APPENDIX D

Cutter Wear Flat Area Length and Width

The goal of this section is to find the wear flat area length (L) and width (W).

D.1 Wear Flat Area Width Calculations

Assume Figure D.1. shows a schematic of a PDC cutter in X-Y coordinate and point C is the center
of the circle. The circle equation in the Cartesian coordination is expressed as Equation D.1

o

Figure D.1. A schematic of a cutter in X-Y coordinate
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X2 + (Y - (%))2 = (%)2 i Eq.D1

In Figure D.1, the BG (bit grade) is representative of cutter worn length section on the cutter face,
the AB is the cutter wear flat area width (W). The cutter wear flat area width (AB) is calculated as
follows.

Rearrange Y in the Equation D.1.

Rewrite the Equation D.2.
D,
X?2=-Y2+2x(Y) (7) wen.Eq.D.3

Replace Y using Equation D.4 into Equation D.3.

_(BGXDC
N 8

X% =— (BG ; Dc)z +2x ((BG ; DC)) <(%)) e Eq.D.5

Therefore, X is calculated using Equation D.6. The Equation D.6 gives the X coordinate of points
A and B with negative and positive signs respectively.

X=+ |- (BG : Dc)z +2x ((BG : DC)) <(%)) e EQ.D.6

The wear flat area width then is calculated using Equation D.7.

w=2x || - (BG ; DC)Z +2x ((BG ; DC)) <(%)) e Eq.D.7

The Equation D.7 was applied to a cutter with the 0.52-inch diameter and the results are shown in
Figure D.2.

) weuEq.D.4
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Wear Flat Area Width vs BG

0.6
y =-0.0001x%+0.0028%%- 0.0272x*+0.1331x% - 0.366x>+0.6012x + 2E-05

RE=1
05 o

0.4
03

0.2

wWear Flat Area Width (inch)

01

BG

Figure D.2. Wear Flat Area width versus bit grade for a cutter with a 0.52-inch diameter

D.2 Wear Flat Area Length Calculations

In Figure D.3, a cutter wear flat area is shown from the bottom side perspective. The cutter wear
flat area length is seen with a red arrow in Figure D.3.

Figure D.3. A schematic of a cutter wear flat area and its length (red arrow)

In a 3D perspective, Figure D.4 shows the wear flat area (4,,), the L (BC) is wear flat area length,
a is cutter BR complementary angle, and the OB is the length of wear on cutter face. The BG is
turned into OB length using Equation D.8.
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BG X D,
OB = (—) wewn..Eq.D.8
8
The OB is turned into the L (BC) by taking the cutter complementary angle (a), using Equation

D.9.

Y

Figure D.4. A 3D schematic of a cutter wear flat area

The cutter wear flat area length is calculated using Equations D.8 and D.9.

_ 0B
~ cos(a)

....Eq.D.9

In case that the cutter wear flat area is known, the Equation A.63 can be used to back-calculate the
BC (cutter wear flat area length). In this case, the cutter wear flat area first should be turned into
the A,," by taking the o into account. The A,,"” then is used in conjunction with the Equation A.63
to back-calculated the OB length. The OB length is turned into the BC by taking the a into account

(see Equation D.9).
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APPENDIX E

The PDC cutters are assumed to penetrate with the same rate as the bit into the formation. The
rate of penetration is used to show that the cutters depth of cut is function of the number of
cutters and arrangement on the bit face. Assume a theoretical flat face PDC bit in Figure E.1,
with 2 cutters and 4 cutters mounted to a maximum radius R1 and R2 respectively. In Figure
E.1, R,c and R, are the distance between the bit axis and cutter centers mounted at R1 and
R2 respectively.

Figure E.1. A theoretical flat face bit with 2 and 4 cutters mounted at R, ¢ and R, respectively
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The rate of penetration (ROP) for all of these cutters arrangement at radius equal to R1 and R2 are
equal and it is proposed in Equation E.1.

_ 5XRPM x (NOC X Ay X 27 X Re)

ROP
1t X (R2)

....Eq.E. 1.

In Equation E.1, the R is bit radius, R, is equivalent radius, Ay is equivalent cutter front area, RPM is
revolution per minute, and NOC a is the number of cutters.

The two cutters close to the bit center axis are drilled the cylindrical core (labeled A) as it is depicted
in Figure E.2. The rest of cutters (four cutters) drill the hollow cylindrical shape core (labeled B)
numbers 2 in Figure E.2.

Figure E.2. A theoretical flat face bit with 2 and 4 cutters mounted at R1 and R2

The cutters drill cylindrical shapes (A is a solid cylinder and B is a hollow cylinder in Figure E.2)
simultaneously and therefore the rate of penetration for cutters mounted at the radius R, is the same
as R,¢. Assuming the volume of A=B, Equation E.2 can be derived.

5 X RPM X (NOCg; X Ayy X 21t X Ry¢) 5 X RPM X (NOCg; X Ay, X 21 X Ryc)
X R? B X (RZ —R?)

..Eq.E.2.

In Equation E.2, NOCg, and NOCg, are number of cutters at the radius equal to R, and R, respectively.
The R;¢ and R,¢ equations are provided at the following.

R,
Ric =~ -...EQ.E.3,
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Ry —Ry
2

R2C=R1+< ).....Eq.E.4.

For cutters mounted at radius J the R is defined as
R; —Rj_;

Simplifying Equation E.2

(NOCgrq X Ayq X Ryc) _ (NOCgz X Ayz X Ryc)
R (R —RD)

..Eq.E.6.

Replacing Equations E.3 and E.4 in Equation E.7

<NOCR1 X Ay X (%)) (NocRZ X Ay, X <R1 N (Rz = R1)>>

= ....Eq.E.7.
R (R3 —RY)

Rearranging Equation E.7

NOCg, X (Rl + (RZ > Rl)) x R?

R
NOCg; X (=) x (R — RY)

Avi _
Ay,

.....Eq.E.8.

Using the same assumption and expanding to more than two radiuses (R;,R,, ... R;), the Equation E.8
is turned into Equation E.9.

Rj ~Rj-1 2
A NOCg xRy + (T) x R?
- ....Eq.E.8.
Ay; Ry 2 _R2
j NOCgy % (3+) % (Rf — R?_;)

The area in front of cutters at the radius equal to R1 is related to the other cutters through Equation
E.9.
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/ NOCgy x (1) x (R? — RZ_,) \

AVj=| | x Ay; .....Eq.E.O.

Rj — Rj_
\NOCR]- X <Rj_1 + (]T]» x R? /

The area beneath all cutters can be calculated using Equation E.10.

WOB

NOCRy X Ap1 + NOCr; X Ay + -+ + NOCgj X Apj = -

..Eq.E. 10.
When the depth of cut is known, the area in front of the cutter can be achieved using Equation E.11.

A
tan(BR) = A—B . .EQ.E.11.
F

Following set of equations can be driven to achieve the area in front of cutter at radius R1 (Equation
E.18). The Equation E.10 and Equation E.11 result in Equation E12.

WOB
NOCR1 X AVl + NOCRZ X AV2 + -+ NOCR] X AVj = WHH(BR) T Eq E.12.
Simplifying Equation E.12 into Equation E.13.
NOCgrq X A +zn NOCg; X Ay = WOB Eq.E.13
R1 Vi j=2 Rj Vj — CCS X tan(BR) IR o 1 vE .

Rearranging Equation E.13 into Equation E.14.

/ / NOCg; X x (R —R%,) \ \ WOB

NOCgr1 X Ayq + ijz NOCR] R] R]_l X Ayq | = m .....Eq.E. 14.
\NOCR] R 1+( 5 ) XRZ{/ /
The NOCg; is goes away with NOCg; at denominator results in Equation E.15.
,//NOC x (R} — \ \
NOCgy X Ay; + Z e ( ki) v = ..Eq.E.15.

]2\\ <R] (B )> RZ/ / CCSXtan(BR)
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Rearranging Equation E.15 to Equation E.16.

&) x (R2 —RZ,)
n ( 2 j j—1 _ WOB
NOCg; X Ay; + (NOCgy X AVl)Z‘_ R-R ~| |~ s x e ....Eq.E. 16.
s+ (AR ) xs
Rearranging Equation E.16 to Equation E.17.
n ( L) x (R? - \\\ WOB
NOCry X Ay X | 1+ Z /I /I G5 X an(BR) ™ ..Eq.E.17.

b))

Rearranging Equation E.17 to Equation E.18.

( WOB )
CCS x tan(BR)

NOCR1><(1+Z.“_2 ( By x re-r2,) \ \
~{e]

o )

Ay X=

The cutter depth of cut relates to cutter beneath and front area. The cutter front area is related to other
cutters number and arrangement (see Equation E.18).

¢ Note that the above equations was developed using the following assumptions. There is not
interaction between cutters at different radiuses.
e There is zero exposure between cutters at the same radius.
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APPENDIX F
The codes are provided at

https://github.com/Atashnezhad/OOP/blob/master/curvefit-gh-allcases-dea-oop.ipynb.

docker pull atashnezhad/developeifa:latest

In [1]: |import math
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import concurrent.futures

In [2]: | from platform import python_version
print(python_version())

3.7.1

In [2]:|class cutter:

def _ init (self, BR, Vc, UCS, Dc, Aw, cutter DOC_data_list, cutter IFA data_list, cutter Fn_data, cutter Fd data):
self.BR = BR # cutter back rake angle
self.Vc = Vc # cutter velocity
self.DOC_data = cutter DOC_data_list # List of cutter depth of cut (data)
self.IFA data = cutter IFA data list # List of cutter IFA values (data)
self .WN = Vc / 2.1 # normalized cutter velocity
self.UCS = UCS # rock unconfined compressive strength
self.UCSN = UCS / 5008 # normalized rock unconfined compressive strength
self.Dc = Dc # cutter diameter
self.Rc = Dc/2 # cutter radius
self.Aw = Aw # wearflat area sq-inch
self.Fn_data = cutter Fn_data # cutter normal force. for blunt cutter case.
self.Fd_data = cutter_ Fd_data # cutter drag force. for blunt cutter case.

def Model IFA(self, DOC,w):
""" A model for IFA calculation. it takes DOC,
normalized cutter velocity, normalized rock
Ucs and cutter back rake and returns the IFA.""'
DOCh = DOC / self.Dc # normalize DOC
C1 = w[e] + (w[1])/((self.VN)**w[2] + w[3])
€2 = w[4] + (w[5]1)/((self.VvN)**w[6]+ w[7])
C_P = w[8]
C3 = w[9] + w[1e]/((self.uCSN**w[11])+w[12])
return (C1+C2/((DOCn**C_P)+C3))-self.BR

def Find_L(self):
""'A function that search for L on cutter face.
Applicable to blunt cutter.'’’
diff = 1@
L=@
while diff > @.@0el:
L += 0.88601
A_segment_esti = ((self.Rc)**2*math.acos((self.Rc-L)/self.Rc)\
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L=¢8
while diff > @.eee1:
L += 9.06001
A_segment_esti = ((self.Rc)**2*math.acos((self.Rc-L)/self.Rc)\
-(self.Rc-L)*((self.Dc*L-(L)**2)**8.5))
diff = abs(self.Aw on_cutter face-A_segment_esti)
return L

def Calculate_fitness(self, w):
if self.Aw == o:

self.IFA_using_Model = [self.Model IFA(DOC,w) for DOC in self.DOC_data]
self.ABS_Error = sum([abs((i-j)/i) for i,j in zip(self.IFA_data,self.IFA_using_Model)])/len(self.DOC_data)

else:

self.Fn_Fd_list = [i / j for i, j in zip(self.Fn_data, self.Fd_data)] # cutter normol to drag force ratio

self.IFA_list_DD_Model = [((math.atan(Fn_Fd)*18@8)/math.pi-self.BR) for Fn_Fd in self.Fn_Fd_list] # calculated IFA Li
st

self.IFA_list_with_Model = [self.Model IFA(DOC,w) for DOC in self.DOC_data]

self.Aw_on_cutter_face = self.Aw*math.cos(math.radians((9@-self.BR)))

self.L_list = [(DOC/math.cos(math.radians(self.BR))) for DOC in self.DOC_data] # DOC projected Length on cutter face

self.L_worn = self.Find_L() # single value

self.Total L = [(self.L_worn + L) for L in self.L list] # tetal L, summation

self.A_total_segment = [((self.Rc)**2*math.acos((self.Rc-L)/self.Rc)-(self.Rc-L)*((self.Dc*L-(L)**2)**a.5)) for L in
self.Total_L]

self.A_real contact_list = [(a-self.Aw _on_cutter_face) for a in self.A total_segment]

self.A_F_list_without_IFA = [(A_contact*math.cos(math.radians(self.BR))) for A_contact in self.A real_contact_list]

self.F_d_without_IFA = [A_F * self.ucs for A_F in self.A F_list_without_IFA]

self.A_F_list_with_IFA = [(A_contact*math.cos(math.radians(IFA+self.BR))) for IFA, A_contact in zip(self.IFA list_wi
th_Model, self.A real contact_list)]

self.F_d with_IFA = [A_F * self.UCS for A_F in self.A_F_list with_IFA]

self.A_B_list_without_IFA = [(A_contact*math.sin(math.radians(self.BR))) for A_contact in self.A real_contact_list]

self.F_n_without_IFA = [A_B * self.ucs for A_B in self.A B_list_without_IFA]

self.a_B_list_with_IFA = [(A_contact*math.sin(math.radians(IFA+self.BR))) for IFA, A_contact in zip(self.IFA list_wi
th_Model, self.A real contact_list)]

self.F_n_with_IFA = [A_B * self.UCS for A_B in self.A B_list with_IFA]

miu = 8.6 # internal friction coefficient for SWG
self.F_n_with_IFA miu = [Fn + self.Aw*self.ucS for Fn in self.F_n_with IFA]
self.F_d with_IFA_miu = [Fd+(self.Aw*self.UCS*miu) for Fd in self.F_d_with_IFA]

self.ABS_Error_Fn = sum([abs((i-j)/j) for i,j in zip(self.F_n_with_IFA_miu, self.Fn_data)])/len(self.DOC_data)
self.ABS_Error_Fd = sum([abs((i-j)/j) for i,j in zip(self.F_d_with_IFA_miu, self.Fd_data)])/len(self.DOC_data)
self.ABS_Error = self.ABS_Error_Fn + self.ABS_Error Fd

return (self.ABS_Error)

Data for Case1: UCS = 3000 psi, Vc = 2.1 in/sec, BR = 20, Dc = 0.5"

casel_DOC_data - [6.681,0.885,0.01,0.815,0.62,0.925,8.083,0.835,0.04,0.045,8.85,08.055%
,9.06,0.0865,0.07,0.075,0.08,0.085,0.09,0.095,0.1,0.105,0.11,0.115,0.12]
casel_IFA_data = [10,10,18,10,16,10,10,10,16,10,18,10,18,\
1e,1e,1e,10,10,10,10,10,10,16,108,18]
casel_Fn_data = @
casel_Fd_data = 8

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data list, cutter IFA data_List, cutter Fn_data, cutier Fd data)’
casel = cutter(28, 2.1, 2@e8, 0.5, @, casel DOC_data, casel IFA_data, casel_Fn_data, casel Fd_data)
#print( 'Casel details’,.casel._ dict )

Data for Case2: UCS = 7100 psi, Vc = 2.1 in/sec, BR = 20, Dc = 0.5"

case?_DOC_data = [©.001,8.8085,0.01,0.815,8.62,8.825,0.03,0.835,8.04,0.845,0.05,8.855\
,8.06,0.865,0.07,0.075,0.83,0.685,0.09,0.095,8.1,0.165,08.11,0.115,8.12]
case2 TFA_data - [2e,2e,28,28,28,28,28,28,28,20,20,28,20,28,\
20,20,20,20,20, 20,20,20,20,20,20]
case?_Fn_data = @
case?_Fd_data = @

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data list, cutter IFA data_Llist, cutter Fn_data, cutter Fd_data)’
case? = cutter(28, 2.1, 7188, 8.5, @, case2 DOC_data, case2 IFA data, case2 Fn_data, case2 Fd data)
#print( "Case2 details’,case2.  dict )

Data for Case3: UCS = 21500 psi, Ve = 2.1 in/sec, BR = 20, Dc = 0.5"

case3_DOC_data = [©.001,6.805,0.81,0.615,0.82,8.025,8.03,0.835,0.04,0.045,0.85,8.855\

,0.86,08.865,0.07,0.075,0.98,0.085,0.09,0.005,8.1,0.105,0.11,0.115,08.12]

[62.49,44.78,38.80,35.67,33.61,32.99,30.90,29.93,29.12,28.42,27.80,\
27.26,26.77,26.33,25.93,25.57,25.23,24.91,24.62,24.34,24.09,23.85,\

23.62,23.40,23.20]

cased_IFA data =
case3_Fn_data = @
case3_Fd_data = 8
#'(BR, Vc, UCS, Dc, Aw, cutter DOC data list, cutter IFA data list, cutter Fn data, cutter Fd data)’

caseld = cutter(28, 2.1, 21508, 8.5, O, case3_DOC_data, case3_IFA data, case3_Fn_data, casel Fd data)
#print( 'Case3 details’,.case3._ dict_ )
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In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

In [12]:

Data for Case4: UCS = 19400 psi, Vc =177 in/sec, BR =5, Dc = 0.5"

cased_DOC_data - [9.001,0.005,0.01,0.015,0.02,0.025,0.03,0.035,0.84,0.045,0.05,0.055\
,0.86,8.865,0.07,0.875,0.08,0.085,8.89,0.905,8.1,0.185,8.11,0.115,8.12]
case4_IFA_data = [187.23,89.83,83.24,79.61,77.13,75.26,73.76,72.52,71.47,78.55,\
69.73,69.01,68.35,67.75,67.20,66.69,66.22,65.78,65.37,\
64.98,64.61,64.27,63.94,63.63,63.33]
case4 Fn_data = @
case4_Fd_data = @

#'(BR, Vc, UCs, Dc, Aw, cutter DOC data List, cutter IFA data list, cutter Fn data, cutter Fd data)’
case4 = cutter(2e, 177, 1948@, 8.5, @, case4 DOC_data, case4 IFA_data, cased4_Fn_data, cased_Fd_data)
#print( 'Cased4 details’,cased._ dict )

Data for Case5: UCS = 19400 psi, Ve =177 in/sec, ER =10, Dc = 0.5"

case5_DOC_data = [0.001,0.005,0.61,0.015,0.02,8.025,08.63,0.035,0.04,0.845,0.85,08.055\
,0.06,0.065,0.07,0.075,0.08,0.085,0.09,0.895,0.1,0.1085,0.11,0.115,0.12]
case5_TFA_data = [91.54,79.45,74.75,72.13,76.33,68.96,67.86,66.95,\
66.16,65.48,64.88,64.34,63.84,63.48,62.98,62.608, \
62.25,61.92,61.61,61.31,61.04,60.78,60.53,60.29,60.07]
case5_Fn_data = @
case5_Fd_data = @

#'(BR, Vc, UCS, Dc, Aw, cutter DOC datq List, cutter IFA data list, cutter Fn data, cutter Fd data)’
case5 = cutter(le, 177, 19488, B.5, @, case5 DOC_data, case5 IFA data, caseS5 Fn_data, case5_Fd data)
#print( 'Cases details’,case5._ dict )

Data for Case6: UCS = 19400 psi, Ve =177 in/sec, BR = 15, Dc = 0.5"

case6_DOC_data = [8.8@1,0.885,8.91,0.015,0.82,8.825,8.03,8.835,0.04,8.945,08.085,8.055\
,0.06,0.065,0.07,0.0675,08.08,0.085,0.09,0.895,0.1,08.105,8.11,0.115,98.12]
case6_IFA_data = [91.14,77.21,71.89,68.95,66.94,65.42,64.20,63.19,\
62.33,61.58,60.91,60.32,59.78,59.20,58.84,58.42,\
58.83,57.67,57.33,57.81,56.71,56.43,56.16,55.90,55.66]
case6_Fn_data = @
case6_Fd_data = @

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data List, cutter IFA data_list, cutter_Fn_data, cutter Fd data)’
case6 = cutter(l5, 177, 19488, 0.5, @, case6_DOC_data, case6_IFA_data, case6 Fn_data, case6_Fd_data)
#print( 'Case6 details’,case6._ dict )

Data for Case7: UCS = 19400 psi, Vc = 177 in/sec, BR = 20, Dc = 0.5"

case7_DOC_data = [P.601,8.805,8.81,0.015,0.82,8.0825,8.03,0.835,8.04,8.845,0.085,8.055%
,8.06,0.065,0.07,0.075,0.08,0.085,0.09,0.095,0.1,0.185,0.11,0.115,2.12]
case7_IFA_data = [82.65,70.59,65.96,63.39,61.63,66.29,59.22,58.34,\
57.58,56.92,56.33,55.81,55.34,54.90,54.51,54.14,\
53.80,53.48,53.18,52.9@,52.63,52.38,52.14,51.92,51.78]
case7_Fn_data = @
case7_Fd_data = @

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data List, cutter IFA data list, cutter Fn data, cutter Fd data)’
case7 = cutter(28, 177, 19480, 8.5, @, case? DOC_data, case7_IFA data, case7 Fn_data, case7_Fd_data)
#print( ‘Case7 details’, case?.__dict__)

Data for Case8: UCS = 19400 psi, Vc = 177 in/sec, BR = 25, Dc = 0.5"

case8_DOC_data = [9.001,8.805,0.81,0.015,0.82,8.0825,8.03,0.835,08.04,8.845,0.085,8.0855\
,8.06,0.065,0.07,0.075,0.08,0.085,0.09,9.095,0.1,0.165,0.11,0.115,0.12]
case8 IFA_data = [99.48,77.14,69.14,64.85,61.97,59.82,58.12,56.72,\
55.54,54,51,53.61,52.81,52.09,51.44,508.84,508.29,\
49.78,49.30,48.86,48.44,48.85,47.68,47.33,47.00,46.69]
cased Fn_data = @
case®_Fd_data = @

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data List, cutter IFA data list, cutter_Fn data, cutter Fd data)’
case® = cutter(25, 177, 19488, 8.5, @, case8 DOC_data, case8 IFA data, case8 Fn_data, case8 Fd_data)
#print( ‘Case8 details’, case8._ dict__)

Data for Case9: UCS = 19400 psi, V¢ = 177 in/sec, BR = 30, D¢ = 0.5"

case® DOC_data - [@.881,0.865,8.81,08.015,8.02,0.025,0.03,0.835,8.04,8.045,8.85,0.055),
,8.06,0.065,0.07,0.075,0.08,0.085,0.09,0.095,0.1,0.185,0.11,0.115,0.12]
case® IFA_data - [76.83,62.32,56.95,54.03,52.84,58.56,49.37,48.30,\
47.56,46.84,46.20,45.63,45.12,44.65,44.22,43.83,\
43.46,43.12,42.80,42.50,42.22,41.95,41.70,41.46,41.23]
case9_Fn_data = @
case® Fd_data = 8

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data List, cutter IFA data list, cutter Fn data, cutter Fd data)’

case? = cutter(3e, 177, 19480, 8.5, @, case9 DOC_data, case9_IFA data, case9 Fn_data, case9_Fd_data)
#print( 'Case9 details’,case9._ dict__)
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Data for Case10: UCS = 21500 psi, Vc = 2.1 in/sec, BR = 20, Dc = 0.75", Aw = 0.02 sqg-inch

In [12]: | casel@ DOC_data = [©.823,0.823,0.823,0.823,0.824,0.024,8.824,0.824,0.839,0.084,\

©6.84,0.04,0.041,0.041,0.041,08.042,0.042,0.042,0.042,08.042,\

8.842,0.042,0.879,0.879,6.879,0.879,0.08]

casel® _IFA_data = 8

case1@_Fn_data = [545,568,509,59@,61@,617,648,619,657,689,69%,756,669,5676,608, \
770,770,739,763,741,774,760,855,865,926,918,875]

case1@ Fd_data - [36@,387,392,396,481,412,418,416,461,475,476,517, 466,473,481, \
511,548,518,526,504,522,519,6084,694,722,758,710]

#'(BR, Vc, UCS, Dc, Aw, cutter DOC data_List, cutter IFA data list, cutter Fn_data, cutter Fd data)’
casel® - cutter(20, 2.1, 215@@, @.75, 0.02, casele_DOC_data, casel® IFA data, casele_Fn_data, casele_Fd_data)
#print( 'Casel® details’,caseld.__dict__)

In [14]: class Full_bit:

def _ init_ (self, ROP_constant, Data_WOB, Data_ROP, Db, RPM, UCS, NOC, BR, Dc):
self.ROPcons = ROP_constant
self.Data_WOB = Data_WOB
self.Data_ROP = Data_ROP
self.Db = Db
self.RPM = RPM
self.Ucs = ucs
self.NOC = NOC
self.BR = BR
self.Dc = Dc

self.Ac = math.pi*self.Dc**2 / 4 # cutter face area sq-inch

self.Re = self.Db/(2*(2**8.5)) # calculate the equivalent radius

self.Mumber_of DataPoints = len(self.Data WOB)

self.WOC = [self.Data_WOB[i]/self.NOC for i in range(@,self.Number_of_DataPoints)] # calculate the weight on cutter

self.A bit = (math.pi*(self.Db**2))/4 # bit area

self.AB = [WOC/self.UCS for WOC in self.WOC ] # calculate the cutter beanth area

self.AB = [(self.Ac*math.sin(self.BR)) if x > (self.Ac*math.sin(self.BR)) else x for x in self.AB] # filter those values
that are greater than availabe cutter beanth area

self.UCSN = self.ucs/5eee@ # calculate the normalized UCS

self.V_Cutter_Equivalent = 2*math.pi*self.Re*self.RPM/6@ # calculate equivalent velocity

self.VN = self.V_Cutter_Equivalent/2.1 # normalize the equivalent velocity

def A Front(self, AB, IFA):
""'A function that takes the cutter beneath area,
back rake and IFA and returns the cutter front area.’"’
return AB/math.tan(math.radians({self.BR+IFA))

def ROP_model(self, AF):
""'A ROP model (function). A function that takes number of cutters (NOC),
bit equivalent radius (Re), cutter front area (AF), cutter back rake (BR),
interfacial friction angle (IFA)., revolutions per minute (RPM)., and bit area (A_bit).""’
return ((2*self.NOC*math.pi*self.Re*AF*self.RPM)/(self.A_bit))*s

de

o5

Model IFA(self, DOC, w):

#A model for IFA calculation. it tokes DOC,
#normalized cutter velocity, normalized rock
#UCS and cutter back rake and returns the IFA.

DOCn = DOC / self.Dc # mormalize DOC

C1 = w[e] + (w[1])/((self.vN)**w[2] + w[3])
C2 = w[4] + (w[5])/((self.vN)**w[6]+ w[7])
C P = w[8]

C3 = w[9]+w[1@]/((self.UCSN**w[11])+u[12])

return (C1+C2/((DOCn**C_P)+C3))-self.BR

def Find_IFA(self, AB, maxvalue, w):
#A function that finds the best IFA value that satisfy
#both the ROP DOC and developed Model-TFA
diffl = 10oeoeeeoeeeeeee # initite it with a big volue
Number_of_random_attempts = 18@ee
IFA_search = @

while diffl » @.08@01 and IFA_search < maxvalue:
IFA_search = IFA_search + 8.1
AF = self.A Front(AB,IFA search) #calculate the cutter front area
ROP = self.ROP_model(AF) # calculate the ROP
DOC = ROP/(self.RPM*S) # calculate the depth of cut
IFA = self.Model IFA(DOC, w)
diff2 = abs(IFA search - IFA)
if diff2 < diffi:
diffl = diffz
self.Best IFA = IFA search

return self.Best_IFA, diffl
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def Calculate ROP{self, AB, maxvalus, w):
""" A function that takes the cutter beneath
area and returns the ROP estimated'"'
IFA, diff = self.Find_IFA(AB, maxvalue, w)
AF = self.A Front(AB,IFA)
Estimated ROP = self.ROPcons * self.ROP_model(AF)
return Estimated_ROP, IFA, diff

def Calculate_fitness(self, w):

#ROP calculation
self.ROP_Model_esti_list = []
self.IFAlist = []
self.difflist = []
self.maxvalue = 90 - self.BR

for i in range(®,self.Number_of_DataPoints):
self.ROP_Model esti, IFA, diff = self.Calculate ROP(self.AB[i], self.maxvalue, w)
self.ROP_Model esti list.append(self.ROP_Model esti)
self.difflist.append(diff)
self.maxvalue = IFA # make sure descending trend for IFA vs DOC
self.IFAlist.append(IFA)

self.error_ROP_list = [abs((ROP_Model - Data_ROP)/Data_ROP) for ROP_Mcdel, Data_ROP in zip(self.ROP_Model esti list,sel
f.Data_ROP)]

self.error_ROP = sum(self.error_ROP_list)/len(self.Data_WOB)

return self.error_ROP

Data for case1_FullBit = error function_SWG_4B_100

In [15]: Data_WOB = [23@8,2428,2660,29180,3188,3410,3660,3940,4178] # insert the WOB data into the list
Data ROP = [9.9,11,14.7,18.1,22.6,27.2,31.1,36.5,39.4] # insert the ROP data into the List

#'(ROP_constant, Data_WOB, Data ROP, Db, RPM, UCS, NOC, BR, Dc)'

casel_FullBit = Full_bit(®.9, Data WOB, Data_ROP, 3.75, 188, 2158@, 12, 2@, @.5)
#casel FullBit.Calculate fitness(w)

Data for case2_FullBit = error function_SWG_4B_150

In [16]: | Data_WOB - [2150,2300,2560,2810,3060,3290,3540,3820,4070] # insert the WOB data into the List
Data_ROP = [10.2,11.9,15.1,19.6,25.6,31.4,37.7,44.3,50.8] # insert the ROP data into the Llist

#'(ROP_constant, Data WOB, Data_ROP, Db, RPM, UCS, NOC, BR, Dc)'

case2_FullBit = Full_bit(®.9, Data_WOB, Data_ROP, 3.75, 158, 2158@, 12, 2@, @.5)
#case? FullBit.Calculate fitness(w)

Data for case3_FullBit = error function_SWG_4B_200

In [17]: | Data_WOB - [2280,2380,2579,2810,3070,3310,3540,3820,4080] # insert the WOB data into the List
Data_ROP = [11.4,12.5,14.9,18.2,22.9,27.7,34.8,43,50] # insert the ROP data into the list

#'(ROP_constant, Data_WOB, Data_ROP, Db, RPM, UCS, NOC, BR, Dc)'

case3_FullBit = Full_bit(®.9, Data_WOB, Data_ROP, 3.75, 280, 2158@, 12, 2@, @.5)
#case3 FullBit.Calculate fitness(w)

Data for case4_FullBit = error function_BSS_4B_100

In [18]: | Data_wWOB = [9@8,1180,1230,1368,1510,16508,1730,1788] # insert the WOB data into the Llist
Data_ROP = [24.8,48.9,53.4,54,62,70.8,81.3,84.1] # insert the ROP data into the List

#'(ROP_constant, Data_WOB, Data_ROP, Db, RPM, UCS, NOC, BR, Dc)’

cased_FullBit = Full_bit(@.0, Data_WOB, Data_ROP, 3.75, 18@, 71e@, 12, 20, 8.5)
#cased FullBit.Calculate fitness(w)

Data for case5_FullBit = error function_BSS_4B_150

In [19]: | Data_WOB - [970,109@,1118@,13080,1520,1720,1770,1960] # insert the WOB data into the List
Data_ROP = [40.8,61.9,64.5,71.7,91.5,102.9,106.9,127.7] # insert the ROP data into the List

#'(ROP_constant, Data WOB, Data_ROP, Db, RPM, UCS, NOC, BR, Dc)'

case5_FullBit = Full_bit(®.9, Data_WOB, Data_ROP, 3.75, 158, 71@8, 12, 28, 8.5)
#case5 FullBit.Calculate fitness(w)
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Data for case6_FullBit = error function_BSS_4B_200

In [28]: Data_WOB = [858,960,1158,1210,1276,1348,1570,1880] # insert the WOB data into the Llist
Data_ROP = [38.5,59.5,84.8,87.8,96.5,96.6,128.9,136] # insert the ROP data into the List

#'(ROP_constant, Data WOB, Data ROP, Db, RPM, UCS, NOC, BR, Dc)'
case6_FullBit - Full_bit(®.2, Data_WOB, Data_ROP, 3.75, 209, 71e@, 12, 2@, @.5)
#caseb_FullBit.Calculate_fitness(w)

DEA

In [21]: def de(fobj, bounds, mut-0.8, crossp=0.7, popsize=100, its=18)
dimensions = len(bounds)
pop = np.random.rand(popsize, dimensions)
min_b, max_b = np.asarray(bounds).T
diff = np.fabs(min_b - max_b)
pop_denorm = min_b + pop * diff
fitness = np.asarray([fobj(ind) fer ind in pop_denorm])
best_idx = np.argmin(fitness)
best = pop_denorm[best_idx]
for i in range(its):
for j in range(popsize):
idxs = [idx for idx in range(popsize) if idx != j]
a, b, ¢ = pop[np.random.choice(idxs, 3, replace = False)]
mutant = np.clip(a + mut * (b - c), 8, 1)
cross_points = np.random.rand(dimensions) < crossp
if not np.any(cross_points):
cross_points[np.random.randint(8, dimensions)] = True
trial = np.where(cross_points, mutant, pop[j])
trial_denorm = min_b + trial * diff
f = fobj(trial_denorm)
if f < fitness[j]:
fitness[j] = f
pop[j] = trial
if f < fitness[best_idx]:
best_idx = j
best = trial_denorm
print("Iteration number= %s" % (1))
print("Best Fitness= ¥s" % (fitness[best_idx]))
#print("Best values= %s” ¥ (best))
yield best, fitness[best_idx]

In [22]: | #Define objective function-min sg
def ERROR(w):

W = w.tolist()

ERROR_valuel =\

casel FullBit.Calculate fitness
case2_FullBit.Calculate fitness
case3_FullBit.Calculate fitness
cased FullBit.Calculate fitness
case5_FullBit.Calculate fitness
case6_FullBit.Calculate fitness
ERROR_value2 =\
casel.Calculate_fitness{w
case2.Calculate fitness{w
case3.Calculate_fitness{w
cased4.Calculate_fitness{w
case5.Calculate fitness{w
caseb.Calculate_fitness(w
case7.Calculate_fitness{w)+\
case8.Calculate fitness{w)+\
case9.Calculate_fitness{w)+\
casel®.Calculate_fitness(w)

WY+
w)+\
W)
WY+
w)+\
W)

+\
+\
+\
+\
+\
+\

2

ERROR_value = (ERROR_valuel/3 + ERROR_value2/8)/2

return (ERROR_value)

In [23]: | start_time = time.time()
#Apply the DE algorithm to the function + boundries and number of iterations
result - list(de(ERROR, [(@, 188),(-158, 8),(1, 2.5),(8, 3),\
(0, 20),(8, ©),(1, 2.5),(e, 100),\
(8, 2.5),\
(e, 28),(-18e, 1e8),(8, 2.5),(e, 1e8)], mut=6.8, crossp=B.7, popsize=15, its=18))
df = pd.DataFrame(result)
print("--- ¥s seconds ---" % (time.time() - start_time))

Iteration number= 8
Best Fitness= ©8.3436644439721298
Iteration number= 1
Best Fitness= ©.28028188833802526
Iteration number= 2
Best Fitness= ©.2862818008802526
Iteration number= 3
Best Fitness= ©.2802813008802526
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In [24]: | print(df.tail(1))

e 1
9 [77.21284117723584, -122.51631280414702, 1.362... ©.273926

In [25]: | dF['wi'], df['w2'],df['w3'], df['wa’'], df['w5'],\
df['w6'], df['w7'],df['ws'], df[‘'wa'], df['w1e’],\
df['wil'], df['wl2'], df['wi3’']= zip(*df[e])

cols = [@]
df.drop(df.columns[cols],axis=1,inplace=True)
df.columns.values[@] = "Fitness”

best_coff = list(zip(df.iloc[len(df)-1,1:]))
print(best_coff)

[(77.31284117723584, ), (-122.51631289414792,), (1.362324557@255147,), (1.7254435461048101,), (2€.8,), (8.8,), (1.8,), (108.8,),
(9.8548028238842506,), (5.9639378864442225,), (71.68450515568035,), (1.8684216643878899,), (44.022880732416805,)]

In [26]: data_ncol=len(df.columns)
#PLlot fitness versus iteration
fig = plt.figure(figsize=(21,24))
for i in range(1,(data_ncol+1)):
if i<data_ncol:
plt.subplot(5, 3, i)
plt.plot(df[ w{}'.format(i}], bo’, markersize=4)
plt.xlabel( Iteration’)
plt.ylabel( 'w{}".format(i))
plt.grid(True)
else:
plt.subpleot(5, 3, data_ncol)
plt.plot(df["Fitness'], 'red’, markersize-4)
plt.xlabel({ ' Iteration’)
plt.ylabel('Fitness")
plt.grid(True)

plt.show()
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APPENDIX G

The full bit data and single cutter data used in this study are provided at the following
tables.
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Table G.1 Four-Blade bit results in SWG at 100 rpm (Raymond et al., 2015)

Diata Penetration ROP Depth of | Weight Torque Rotary | Torsional
Pt. Interval Cut on Bit Speed Power
# [in] [fthr] | [in‘rev] [1bf] [ft=1b] [rpm] [hp]

1 7.0-7.8 0.9 020 2300 166 102. 3.0
2 81-01 11.0 022 2420 176 101. 41
3 10.2-114 147 029 2660 197 102. 46
4 12.2-13.7 18.1 036 2010 217 101. 48
5 145-164 226 045 3180 241 101. 54
] 17.2-194 272 054 3410 264 102. 5.8
7 190-225 311 061 3660 285 102. 6.2
3 23.7-267 36.5 072 3940 313 101. 6.7
g 28.0-313 394 077 4170 342 103. 74
Table G.2 Four-Blade bit results in SWG at 150 rpm (Raymond et al., 2015)

Data Penetration ROP Depthof | Weight Torque Rotary | Torsional
Pt. Interval Cut on Bit Speed Power
# [in] [fvhr] | [in/rev] [1of] [fix1b] [rpm] [hp]

1 68-75 10.2 013 2150 146 152 53
2 7.7-85 11.2 016 2300 158 151 5.6
3 §0-00 15.1 .020 2560 176 151 6.1
4 103-11.6 19.6 026 2810 108 151 6.8
3 123-140 25.6 034 3060 223 151. 7.5
] 14.6-16.7 314 041 3200 245 152. 8.1
7 17.1-196 37.7 050 3540 267 152 88
8 21.0-240 43 058 3820 200 152 05
o 25.6-200 508 067 4070 312 152. 10.1

Table G.3 Four-Blade bit results in SWG at 200 rpm (Raymond et al., 2015)

Diata Penetration ROP | Depthof | Weighton | Torque Fotary | Torsional
Pt Interval Cut Bt Speed Power
# [in] [fthr] | [inrev] [1bf] [ft<Ib] [rpm] [hp]
1 71-76 11.4 011 2280 139 202. 6.8
2 80-86 12.5 012 2380 146 202 7.1
3 02-99 14.9 015 2570 158 202. 7.5
4 104-113 18.2 018 2810 174 202. 8.1
5 12.1-133 229 023 3070 192 201. 88
6 144-158 277 028 3310 209 202. 05
7 16.8 - 18.5 3438 .035 3540 228 201. 10.2
8 216-238 43.0 043 3820 250 201. 11.0
9 26.0-285 50.0 .050 4080 271 199, 11.7
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Table G.4 Five-Blade bit results in SWG at 100 rpm (Raymond et al., 2015)

Data Penetration ROP | Depthof | Weighton [ Torque Rotary | Torsional
Pt. Interval Cut Bit Speed Power
# [in] [fthr] | [infrev] [1bf] [ft<Ib] [rpm] [hp]
1 71-78 10.5 .020 2250 177 106. 43
2 80-88 12.3 023 2300 192 107. 4.6
3 01-102 15.0 030 2620 205 106. 4.0
4 105-11.8 19.5 037 2860 220 106. 5.2
5 12.7-144 250 040 3100 248 107. 3.8
6 150-17.6 30.8 058 3310 270 107. 6.3
7 17.7-201 359 067 3560 207 107. 6.8
8 214-241 40.4 075 3850 317 108. 7.3
a 252-282 44.6 083 4100 337 108. 1.7

Table G.5 Five-Blade bit results in SWG at 150 rpm (Raymond et al., 2015)

Data Penetration ROP | Depthof | Weighton [ Torque Rotary | Torsional
Pt. Interval Cut Bit Speed Power
# [in] [fthr] | [infrev] [1bf] [ft<Ib] [rpm] [hp]
1 72-7.7 11.5 015 2150 140 150. 3.1
2 80-87 13.4 .018 2320 151 150. 54
3 04-103 16.2 022 2550 161 150. 3.7
4 106 -11.7 216 020 2790 183 150. 8.3
5 12.5-13.9 284 .038 3020 204 151. 6.9
i 147-164 343 046 3260 226 151. 7.6
7 18.0-20.1 41.1 054 3500 248 152, 83
8 216-241 48.0 064 3790 276 152. 2.0
9 26.6-204 345 071 4000 206 153. 0.7

Table G.6 Five-Blade bit results in SWG at 200 rpm (Raymond et al., 2015)

Data Penetration FEOP | Depthof | Weight on | Torque Rotary | Torsional
Pt. Interval Cut Bit Speed Power
i [in] [ftvhr] | [inrev] [1bf] [fix1b] [rpm] [hp]
1 6.8-706 11.3 012 2080 119 196. 5.9
2 80-88 114 012 2260 219 196. 6.2
3 92-102 14.6 015 2510 137 196. 6.4
4 10.7-119 184 019 2760 149 195, 6.9
5 123-139 247 025 3020 170 194, 7.7
6 144-16.5 32.0 033 3230 100 195, 84
7 17.6-203 414 043 3470 214 195 93
8 214-247 49.6 051 3720 236 195, 10.2
9 258-297 58.8 061 3960 262 193, 11.0
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Table G.7 Four-Blade bit results in BSS at 100 rpm (Raymond et al., 2015)

Data Penetration EOP Depth of | Weight Torgque Rotary | Torsional
Pt Interval Cut on Bit Speed Power
[in] [fhr] | [infev] | [ibf] | [Axb] | [rpm] | [hp]
1 5.5-83 24.8 031 000 68 97. 1.9
2 01-130 48.9 100 1180 104 97. 2.6
3 130-189 534 110 1230 1035 97. 2.6
4 154-183 54.0 111 1360 118 97. 29
3 19.0-21.7 62.0 127 1510 129 08. 3.1
] 203-241 70.8 146 1650 143 08. 33
7 22.8-255 81.3 168 1730 156 98. 3.5
3 27.0-29.7 84.1 174 1780 156 98. 3.5

Table G.8 Four-Blade bit results in BSS at 150 rpm (Raymond et al., 2015)

Data Penetration ROP Depth of | Weight Torque Fotary | Torsional
Pt. Interval Cut on Bit Speed Power
[in] [fthr] | [inrev] | [ibf] | [fodb] | [rpm] | [hp]

1 7.2-90 40.8 036 970 75 146. 3.2
2 08-108 61.0 083 1020 88 146. 3.6
3 10.3-123 64.5 D87 1110 21 146. 37
1 13.6-16.0 717 0o9 1300 105 146. 4.0
5 158-19.2 91.5 123 1520 124 148. 4.6
6 16.8-204 1029 141 1720 141 149. 5.0
7 202-240 106.9 146 1770 148 149. 5.2
8 21.1-245 127.7 173 1960 162 149. 3.7

Table G.9 Four-Blade bit results in BSS at 200 rpm (Raymond et al., 2015)

Data Penetration ROP Depth of | Weight Torque Rotary | Torsional
Pt Interval Cut on Bit Speed Power
[in] [fhr] | [iwrev] | [ibf] | [fxtb] | [rpm] | [hp]
1 6.5-7.2 30.5 031 830 37 195. 38
2 7.8-97 395 el 060 77 195. 4.3
3 8.9-10.9 84.8 D87 1150 93 196. 5.2
4 10.2-125 878 090 1210 103 197. 5.6
3 124-147 96.5 097 1270 113 198. 5.7
] 13.1-17.0 96.6 098 1340 123 198. 6.1
7 16.6-19.8 120.9 124 1570 133 198. 6.7
8 194-214 136.0 138 1800 161 199, 7.5
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Table G.10 Five-Blade bit results in BSS at 100 rpm (Raymond et al., 2015)

Data Penetration ROP Depth of | Weight Torque Rotary | Torsional
Pt. Interval Cut on Bit Speed Power

# [in] [fthr] | [m'rev] [1bf] [fi=Ib] [rpm] [hp]

1 7.5-10.0 533 104 1110 101 102, 2.8

2 10.2-143 65.1 127 1310 118 102, 3.1

3 15.1-203 825 161 1530 138 103, 3.5

4 26.8-257 06.2 180 1770 160 103. 3.0

3 31.0-31.6 110.1 217 2070 187 103. 4.4

Table G.11 Five-Blade bit results in BSS at 150 rpm (Raymond et al., 2015)

———— e e e e

Penetration

Data ROP Depth of | Weight Torque Rotary | Torsional
Pt. Interval Cut on Bit Speed Power
# [in] [fthr] | [mirev] [1bf] [fxIb] [rpm] [p]
1 73-087 63.7 083 1010 85 152, 3.9
2 83-113 65.5 085 1020 87 152 4.0
3 11.0-126 80.0 105 1200 oo 152, 43
4 11.7-134 853 112 1220 101 152 43
3 13.1-163 050 126 1360 110 153, 4.6
] 13.6-187 101.6 133 1380 113 153. 4.6
7 17.0-20.0 103.5 135 1410 115 153, 4.7
8 193-225 1044 138 1470 121 153. 4.9
o 202-228 117.9 155 1550 125 154, 5.0
10 232-278 1181 155 1570 128 154, 5.0

Table G.12 Five-Blade bit results in BSS at 200 rpm (Raymond et al., 2015)

Data Penetration ROP Depth of | Weight Torque Rotary | Torsional
Pt Interval Cut on Bit Speed Power
# [in] [fthr] | [in'rev] [1b£] [f<lb] [rpm] [ip]

1 0.8-7.3 337 034 030 79 196. 4.6
2 77-04 70.4 071 940 86 197. 4.0
3 104-133 88.6 090 1080 o4 198, 5.2
4 139-181 1247 127 1420 124 198 6.3
5 10.8-223 148.1 151 1500 144 198. 7.0
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Table G.13 Description of cutters used in the laboratory tests (Glowka, 1987)

CUTTER ﬁw W L COMPACT WEARFLAT
9 DIAMETER TYPE *
[(in™} [in} {in} {in}
A 0.016 0.220 0,090 .50 F
B 0.017 0.240 0.070 0,50 F
c 0,017 0,340 0,050 .50 F
b 0.020 0.320 0.100 0.73 L
E 0.022 0.220 0.140 0.50 F,L
F 0.030-0,040 0.300-0,320  0.140-0.180 .50 HM,L
G 0,032 0,360 0,130 0.75 L
H¥# 0,029 0. 340 0.120 0.75 L
I 0. 040 0,320 0.180 0.50 M
J 0,000 0,000 0.000 0.50 3
K 0. 000 0,00 0.00 0.75 5

* F = field-worn; L = laboratery-worn; M = machine ground; 5 = sharp.
#% Cutter H used in waterjet-assisted cuts.
All cutters had a backrake angle of 207,

Table G.14 Dry, non-interacting cut test data for BSS (Glowka, 1987)

CUTTER A, w L & F Fg F/A, Fy /F
(in?) (in) (in) (in) (1b) (1b) (psi)
J 0.000 0.000 0.000 0.023 13.3 19.4 aee 1.46
J 0.000 0.000 0.000 0.020 16.9 21.7 --- 1.28
J 0.000 0.000 0.000 0.022 17.3 21.0 —-- 1.21
J 0.000 0.000 0.000 0.019 18.6 21.6 ‘- 1.27
J 0.000 0.000 0.000 0.042 60.1 66.0 .- 1.10
J 0.000 0.000 0.000 0.041 62.8 75.6 .-- 1.20
J 0.000 0.000 0.000 0.041 58.1 71.7 ‘- 1.23
J 0.000 0.000 0.000 0.041 57.9 67.5 - 1.17
g 0.000 0.000 0.000 0.080 117.0 143.0 --- 1.22
J 0.000 0.000 0.000 0.082 116.0 139.0 --- 1.20
J 0.000 0.000 0.000 0.078 128.0 156.0 .- 1.20
k| 0.000 0.000 0.000 0.060 94,5 110.0 .ee 1.16
J 0.000 0.000 0.000 0.062 91.3 106.0 .- 1.16
K 0.000 0.000 0.000 0.021 18.0 24,3 --- 1.35
K 0.000 0.000 0.000 0.023 17.0 26.1 --- 1.54
K 0.000 0.000 0.000 0.023 16.7 19.2 nn- 1.15
K 0.000 0.000 0.000 0.020 16.9 23.5 --- 1.39
K 0.000 0.000 0.000 0.022 19.6 23.1 --- 1.18
K 0.000 0.000 0.000 0.023 17.7 23.7 .- 1.34
K 0.000 0.000 0.000 0.021 19.8 24.0 .- 1.21
K 0.000 0.000 0.000 0.061 55.5 72.5 .- 1.31
K 0.000 0.000 0.000 0.042 51.8 70.5 vee 1.36
K 0.000 0.000 0.000 0.042 53.5 69.0 R 1.29
K 0.000 0.000 0.000 0.042 48.2 64.5 - 1.34
K 0.000 0.000 0.000 0.041 53.5 68.0 .- 1.27
K 0.000 0.000 0.000 0.041 49.2 68.3 .- 1.39
K 0.000 0.000 0.000 0.041 52.1 68,2 --- 1.31
K 0.000 0.000 0.000 0.080 109.0 147.0 --- 1.35
K 0.000 0.000 0.000 0.080 102.0 142.0 —e- 1.39
K 0.000 0.000 0.000 0.080 109.0 143.0 --- 1.31
K 0.000 0.000 0.000 0.080 97.5 138.0 . 1.42
K 0.000 0.000 0.000 0.080 103.0 141.0 .- 1.37
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Table G.15 Dry, non-interacting cut test data for SWG (Glowka, 1987)

CUTTER A, w L & F Fy F/A,  Fy /F
(in?) (in) {in) {in) (1b) (1b) {psi)
0.000 0.000 0.000 0.017 31.7 26.3 ——- 0.83
0,000 0.000 0.000 0.015 25.3 16.8 —-- 0.66
0. 000 0.000 0.000 0.016 30.4 17.0 --- 0.56
0.000 0.000 0.000 0.018 29,2 18.8 --- 0.64
0. 000 0. 000 0. 000 0.013 23.9 16.9 - 0.71
0.000 0.000 0.000 0.020 38.0 28,9 —- 0.76
0.000 0,000 0,000 0.039 131.0 118.0 —-- 0.90
0.000 0.000 0.000 0.039 136.0 120.0 — 0.88
0.000 0.000 0.000 0.039 137.0 121.0 - 0.88
0.000 0.000 0.000 0.037 136.0 118.0 .- 0.87
0.000 0.000 0.000 0.061 229.0 217.0 —ue 0.95
0.000 0.000 0.000 0.062 256.0 227.0 - 0.89
0.020 0.320 0.100 0.023 545.0 360.0 27250, 0.66
0,020 0.320 0.100 0.023 568.0 387.0 28400, 0.68
0.020 0.320 0.100 0.023 599.0 392.0 29950, 0,65
0.020 0.320 0.100 0.023 590.0 396.0 29500, 0,67
0.020 0,320 0.100 0.024 610.0 401.0 30500, 0.66
0.020 0.320 0.100 0.024 617.0 412.0 30850. 0.87
0.020 0.320 0,100 0.024 640.0 418.0 32000, 0.63
0.020 0.320 0,100 0,024 619.0 416.0 30950, 0,67
0.020 0.320 0.100 0.039 657.0 461.0 37850. 0.70
0.020 0.320 0.100 0.04&0 689.0 475.0 34450, 0.69
0.020 0.320 0. 100 0,041 669.0 466 .0 33450, 0.70
0.020 0.320 0.100 0.041 676.0 473.0 33800, 0,70
0,020 0.320 0,100 0,041 698 .0 4B1.0 34900, 0,69
0.020 0.320 0.100 0.040 699 _0 576.0 34050, 0,68
0.020 0,320 0,100 0,040 756.0 517.0 37800, 0.68
0,020 0.320 0.100 0,042 770.0 511.0 38500, 0,66
0.020 0.320 0.100 0.042 770.0 540.0 38500, 0.70
0.020 0.320 0.100 0,042 739.0 518.0 36950. 0.70
0.020 0.320 0.100 0,042 763.0 526.0 38150, 0.69
0,020 0,320 0.100 0.042 741.0 504.0 37050, 0,68
Q0,020 0.320 0.100 0,042 774.0 522.0 38700, 0.a67
0.020 0,320 0.100 0,042 760.0 519.0 38000, 0.68
0.020 0,320 0.100 0.079 855.0 B94.0 42750, 0,81
0,020 0.320 0.100 0,080 875.0 710.0 43750, 0.81
0.020 0.320 0.100 0.079 B65.0 694.0 43250, 0.80
0,020 0,320 0.100 0.079 926.0 722.0 6300, 0.78
0.020 0.320 0.100 0.079 918.0 750.0  45900. 0.82
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Table G.16 Averaged forces with varying BR, chamfer angles and depth of cut (standard
chamfer geometry and alternative chamfer geometry, chamfer angle forty five and fifteen
degree respectively), (Hellvik et al., 2012)

STANDARD CHAMFER GEOMETRY RESULTS
MEAN FORCE, X-direction {tangential) MEAN FORCE, Y-direction {radial) MEAN FORCE, Z-direction (WOB)
Std DOC, mm DOC, mm DOC, mm
Rake o3 1 2 3 0.3 1 2 3 03 1 2 3
3 -02 0.2 0.7 -1.0 0.1 0.1 06 oA 05 06 18 24
10 -01 0.4 0.7 0.1 0.z 1B 0.4 oa 1.5
15 -02 0.4 -0.8 -12 0.0 0.z 1B 0.8 0.3 oa 18 25
20 -0.1 0.4 -0.8 -1.4 0.1 0.z 06 oa 04 oa 20 26
23 -01 0.4 -1.0 -1.7 0. 0.z 06 1.1 0.3 11 23 a5
an . 02 404 10 -5 0.0 bz 06 1D o4 10 22 28
RMS FORCE, X-direction RMS FORCE, Y-direction RM5 FORCE, Z-direction
Std DiOvC, i DOC, mm DOC, mm
Rake 03 1 F E] [ 1 2 2 03 1 2 2
3 0.2 03 oa 1.2 0.1 0.z o7 1.1 0.8 e 2.2 2B
10 0.2 05 oa 0.1 0.3 06 05 12 20
15 0.2 05 1.0 14 0.1 0.3 0& 10 05 11 20 an
20 0.2 05 1.1 1.6 0.1 0.3 or 1.0 05 12 24 an
23 0.2 05 12 1.4 0.0 0.3 08 1.3 i 14 28 42
30 0.2 0.5 1.2 0.1 0.3 .8 12 0.5 1.3 2.7 36
ALTERNATIVE CHAMFER GEOMETRY RESULTS
MEAN FORCE, X-direction MEAN FORCE, Y-direction MEAN FORCE, Z-direction
Alt DiOC, mim DOC, mm DOC, mm
Rake o3 1 2 3 03 1 2 3 03 1 2 3
3 0.1 0.2 -0.5 07 0.1 0.2 05 0.8 0.3 06 13 1.7
10 0.1 0.3 -0.8 -0.8 0.0 0.2 05 0.5 0.3 o7 14 15
15 -01 0.2 -0.8 07 0.0 0.1 04 04 0.2 04 12 13
20 -01 0.2 -0.8 -0e 0.0 0.1 0.3 0.5 0.2 05 1.1 14
23 0.1 0.3 0.7 -12 0.0 0.1 0.3 0.8 0.3 o7 12 20
a0 . 01 403 . 47 08 0.0 . b1 04 06 03  o0F |, 12 | 14
RMS FORCE, X-direction RMS FORCE, Y-direction RMS FORCE, Z-direction
Alt DOC, mim DOC, mm DO, mm
Bake 03 1 2 2 03 1 2 2 03 1 2 K
3 o 0.3 0.8 04 0.1 0.2 05 o7 0.4 o0& 1.6 20
10 0.2 0.3 07 1.0 0.1 0.2 06 o7 0.4 o0& 1.7 18
15 o 02 07 04 ] 0.1 05 0.5 0.3 06 1.5 1.7
20 o 0.3 0.8 1.2 ] 0.1 04 0.8 0.3 06 14 18
23 0.2 04 0a 1.6 ] 0.2 04 o8 04 oa 1.6 26
kL] 0.2 0.3 0.8 1.1 0 0.2 04 07 0.4 0.8 1.5 18
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