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Featured Application: The developed photoacoustic nondestructive detection system is a novel
approach for precise identification of embedded structural damage in composite laminates.

Abstract: This paper presents a photoacoustic non-destructive evaluation (pNDE) system with
an ultrahigh resolution for the detection of multi-scale damage in carbon fiber-reinforced plastic
(CFRP) composites. The pNDE system consists of three main components: a picosecond pulsed
laser-based ultrasonic actuator, an ultrasound receiver, and a data acquisition/computing subsystem.
During the operation, high-frequency ultrasound is generated by pulsed laser and recorded by an
ultrasound receiver. By implementing a two-dimensional back projection algorithm, pNDE images
can be reconstructed from the recorded ultrasound signals to represent the embedded damage.
Both potential macroscopic and microscopic damages, such as surface notches and delamination in
CFRP, can be identified by examining the reconstructed pNDE images. Three ultrasonic presentation
modes including A-scan, B-scan, and C-scan are employed to analyze the recorded signals for the
representation of the detected micro-scale damage in two-dimensional and three-dimensional images
with a high spatial resolution of up to 60 µm. Macro-scale delamination and transverse ply cracks are
clearly visualized, identifying the edges of the damaged area. The results of the study demonstrate
that the developed pNDE system provides a non-destructive and robust approach for multi-scale
damage detection in composite materials.

Keywords: composites; multi-scale; embedded damage; non-destructive testing; photoacoustic;
ultrasonic representation

1. Introduction

High-performance carbon fiber-reinforced plastic (CFRP) composite materials are well known
for their high strength to weight ratio, being light in weight, and resistance to corrosion [1,2].
However, aging-related damage and low-velocity impact damage in composites, such as fatigue cracks
and delamination, can significantly reduce their structural integrity and durability. In addition,
manufacturing imperfections can result in embedded defects, including voids, cracks, and
inclusions [3,4]. Since the size, location, and properties of embedded defects in composites are
generally unknown and difficult to detect, there is an urgent need to develop new non-destructive
evaluation (NDE) and structural health monitoring (SHM) technologies to help assess the quality of
composite products and to help provide accurate inspections throughout a composite’s service life.
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Early detection of embedded and barely visible damage in composites is imperative for long-term
operation, risk management, and prognostics of complex composite structures.

Recent advance of NDE technologies has led to efficient damage detection in composites.
Currently well-accepted NDE technologies include acoustic emission, infrared thermography, and
ultrasonic testing. Acoustic emission identifies damage initiation and tracks damage growth by
continuously analyzing elastic waves generated via energy release from localized sources within the
tested structures [5]. This method can be potentially used for in situ damage characterization, since the
failure events are detected as they occur. Infrared thermography has been used to detect subsurface
cracking and embedded delamination in composites [6,7]. The obtained thermal patterns induced,
either by directly heating the sample or applying a mechanical oscillatory load, have been analyzed to
study embedded damage in composites. However, it is difficult to measure through-thickness locations
of the damage using infrared thermography. Ultrasonic techniques are some of the most popular
NDE methods for damage detection in composite structures and have been extensively reported in
the literature [8–10]. For example, Kessler et al. used Lamb wave methods to detect delamination,
transverse ply cracks and through-holes in quasi-isotropic graphite/epoxy composites [11]. Chang et al.
developed a tomographic damage imaging approach by combining inverse acoustic wave propagation
by combining the k-space method with the adjoint method [12]. Although NDE technologies have
been used for a broad range of engineering applications, most of the NDE equipment cannot detect
micro-scale damage initiation in composites in depth. High-frequency ultrasound can detect micro-scale
damage. However, the detectable depth is limited.

Real-time NDE has been under investigation as a method to monitor the integrity of materials
and structures over the past two decades. Progress has been made in developing and improving
real-time NDE, which allows early detection of material defects, providing timely warning to those
at stake [13–17]. Real-time NDE technologies utilizing advanced sensors (i.e., piezoelectric ceramic
sensors [18,19], impedance-based sensors [20,21], piezoresistive sensors [22,23], and fiber Brag grating
sensors [24,25]) have been referred to as structural health monitoring (SMH) and prognostics. In order
to detect structural defects under regular load conditions, innovative signal processing and pattern
recognition algorithms have been developed [26–28]. While progress has been made in the development
of SHM and prognostics, this technology has not been implemented in industries that require large-scale
applications, especially in the aerospace industry, due to limitations pertaining to the sensors, the
power supplies, and real-time data processing.

Laser-induced ultrasound has been recognized as a promising technical solution for NDE and
SHM of CFRP composites. Current laser-induced ultrasonic NDE systems use Q-switched lasers
with nanosecond pulses and pulse energy levels of several millijoules (mJ), generating ultrasonic
signal frequencies ranging from tenths of kilohertz (kHz) up to tens of megahertz (MHz) [29,30].
Both through-transmission and pulse-echo ultrasonic spectroscopy methods are able to detect CFRP
composites up to several centimeters [31–33]. Although remote ultrasonic energy generation and
data collection are the ideal approaches, complex and relatively expensive instruments are required
for ultrasonic interferometric detection [34,35]. To the best of the authors’ knowledge, currently,
sophisticated laser-based ultrasound imaging systems for remote evaluation of CFRP composites are
expensive and technologically immature.

In this paper, we developed a picosecond pulsed laser-induced photoacoustic non-destructive
evaluation (pNDE) system for the detection of multi-scale damage in CFRP composites using a
picosecond pulsed laser and high-frequency ultrasound transducer. At the micro scale, the damage
precursors of surface notches and matrix cracks were successfully detected and represented in 3D
images. The size and position of the micro-scale defects in composites were evaluated with a high
spatial resolution of 60 µm. Scanning electron microscopy (SEM) images were obtained to validate all
micro-scale surface notches on composites. At the macro scale, both delamination and transverse ply
cracks were successfully detected and represented using the developed pNDE system. The size of
delamination at different depths and the locations of transverse ply cracks were accurately measured.
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2. Materials and Methods

2.1. Materials and Experimental Procedure

CFRP composite samples were fabricated using commercial prepreg carbon fiber fabrics (#2511
semi-toughened epoxy resin-coated T700G-12K-31E carbon fiber fabrics) manufactured by Toray
Industries, Inc. Each prepreg lamina had a standard resin content of 35.3 wt.% and fiber areal weight of
150.6 g/m2. Four plies of composite lamina were stacked in a [+45◦/−45◦]s sequence and manufactured
using a hot press, following the vendor’s curing instructions. The scanned composite thickness
is approximately 0.8 mm based on the measurement of a caliper. To generate micro-scale damage
precursors in composites, shallow X-shaped notches were cut on the composite sample’s surface using
a sharp razor blade. The dimensions of the notches were measured using SEM images. Macro-scale
damage in composites was generated under the velocity impact load using an in-house developed
drop-weight impactor. The impact energy absorbed by the composite sample was 4 J. Both embedded
delamination and transverse ply cracks were generated in the composite sample due to the applied
impact load.

Throughout the pNDE damage detection process, the scanned composite target was secured
on a scanning platform (LMS203 Fast XY Scanning stage, Thorlabs, Newton, NJ, USA), which has
a maximum linear translation speed of 100 mm/s and a peak acceleration of 10 m/s2 in both lateral
directions. In addition, a step length of 0.01 mm was used during the pNDE detection. The position of
the scanning stage is synchronized with the laser source excitation sequence.

2.2. Theory of pNDE Method

In this paper, the pNDE mechanism is based on the photoacoustic effect. Acoustic and ultrasonic
waves are generated following the local temporal thermal elastic deformation and pressure caused
by the optical absorption of pulsed laser in materials. The relationship between the generated
photoacoustic pressure p(r, t) (at location r and time t) and the deposited pulsed laser heat H(r, t) is
described using the following equation [36]:
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where vs is the compressional wave speed in CFRP composites, β is the thermal coefficient of volume,
and Cp represents the specific heat capacity at constant pressure. We designated the position of the
transducer as the origin of the coordinate system for convenience. The acoustic pressure p (r, t) at
transducer position r and time t is, therefore, expressed as:
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Since optical absorption is proportional to acoustic signal strength in photoacoustic imaging,
the absorption difference between an undamaged solid material and a damaged area with material
vacancy provides the imaging contrast. In a photoacoustic microscopy image, the optical absorption at
each illuminated point can be derived from the time of flight of the acoustic wave detected at each
ultrasound transducer location. Therefore, the micro-structure within the composite can be mapped
with photoacoustic microscopy in 3D to reveal any underlying defects.

2.3. pNDE Imaging System

The developed pNDE system consisted of three major components: (i) a picosecond pulsed laser
for the generation of ultrasound signals in composite samples, (ii) a PZT ultrasonic receiver and
signal amplifiers, and (iii) a data acquisition, processing, and imaging subsystem. A picosecond laser
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(COMPILER 532/266, Passat, Ltd., Vaughan, ON, Canada) was used to provide ultrafast laser pulses
with a pulse duration of less than 7 ps. The laser pulse repetition rate (PRR) was adjusted between 1
and 400 Hz. The generated photoacoustic signals were captured by two PZT ultrasound transducers
in the experiments. In the multi-scale damage detection test, a transducer (V2062, Olympus NDT,
Waltham, MA, USA) with a center frequency of 125 MHz and a bandwidth greater than 87% −6 dB
was used for high spatial resolution. In the macro-scale damage detection test, a transducer (U8517149,
Olympus NDT) with a center frequency of 20 MHz and a bandwidth greater than 50% −6 dB was used.
A low-noise preamplifier (ZFL-1000LN+, Mini-Circuits, Brooklyn, NY, USA) with a bandwidth of
0.1–1000 MHz at −3 dB and a typical gain of 20 dB was used to prepare weak electrical signals from
the transducer and deliver the noise-tolerant output signals to the second-stage amplifier (ZFL-500+,
Mini-Circuits) with a bandwidth of 0.05–500 MHz at −3 dB, and a gain of 25 dB to further improve the
signal-to-noise ratio (SNR). Finally, the pre-processed ultrasonic signals were recorded by the data
acquisition card (NI PCI-5153EX, National Instruments, Austin, TX, USA). The schematic diagram of
the developed pNDE system is shown in Figure 1a. In addition, Figure 1b illustrates the developed
pNDE hardware system.
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Figure 1. Developed photoacoustic non-destructive evaluation (pNDE) system. (a) A schematic of
the pNDE system, showing the following key components: UT, ultrasonic transducer; SS, scanning
stage; OL, objective lens; AMP, amplifiers; DAQ, data acquisition card; Laser, green laser (532 nm).
(b) Experimental setup of the pNDE system, the transducer and the 3D-printed water container are
further magnified to demonstrate the sample set up. (c) A schematic of A-scan, B-scan, and C-scan for
ultrasonic signal presentation.

For micro-scale damage detection, the CFRP composite samples were horizontally placed on the
bottom glass window of the 3D-printed water container (Figure 1b). The ultrasound transducers were
submerged in the water to keep good coupling of the ultrasound propagation between the sample and
the transducer. The PPR of the laser was set at 30 Hz so that an adequate signal-to-noise ratio was
obtained. A sampling rate of 500 MHz was used to record the ultrasonic signals during data collection
at each scanning location. One set of pNDE damage detection data included 500 × 500 positions
with a step length of 10 µm per step and detected micro-scale damage in an area of 5 mm × 5 mm.
All the ultrasonic data was collected when the scanning stage (LMS203 Fast XY Scanning stage,
Thorlabs) traveled in the X-Y plane and was controlled using an in-house LABVIEW software. Back
projection-based photoacoustic reconstruction was performed in MATLAB [37–40]. It is noted that



Appl. Sci. 2020, 10, 2106 5 of 12

both the pulsed laser beam and ultrasound transducer were kept stationary, while the composite
sample was shifted on a 2D translation stage at an average translation speed of 0.05 mm/s. The
position-synchronized output of the translator triggered the pulsed laser and turned the laser on and
off during the scanning. Similar experimental procedures were adopted for the pNDE detection of
macro-scale impact-induced damage in composites. The PRR of the laser was set at 30 Hz, a sampling
rate of 500 MHz was used to record the ultrasonic signals, and the translation speed of the stage was
0.05 mm/s. Laser-induced ultrasonic signals were generated and then recorded using an ultrasonic
probe. The pNDE damage detection area was 15 mm × 15 mm, and the recorded data included 500 ×
500 positions with a step length of 30 µm per step.

Accurate 3D imaging of the measured microstructures and potential damage in composites is
critical in order to demonstrate the developed system for NDE applications. In our study, all the
collected pNDE data was studied in the ultrasonic A-scan, B-scan, and C-scan presentation modes. A
schematic of the three ultrasonic presentation modes is shown in Figure 1c. Each presentation mode
provided a different way to evaluate the inspected region. A-scan displayed the ultrasonic signal
energy as a function of time in the ultrasonic propagation direction. B-scan provided the display
of ultrasonic signal energy regarding the linear position of the transducer, resulting in the plot to
show the transverse cross-section of the detected composite plate. C-scan allowed a plan-type view
of the location and size of damage in the detected sample. The combination of the three ultrasonic
presentation modes allowed a comprehensive demonstration of the detected multi-scale damage in the
composite structures.

3. Multi-Scale Damage Detection Results Using pNDE

3.1. Typical A-Scan and Correction for Micro-Scale Damage Detection

A typical photoacoustic A-scan signal obtained during experiment is shown in Figure 2a. The
beginning and the end of the ‘A’ lines were cut such that images only show the reconstruction of the
CFRP. For acoustic attenuation compensation in the scanned material, a time gain correction (TGC)
function was applied to all recorded photoacoustic signals as shown in Figure 2b. The ultrasound
attenuation compensation was derived the exponential law [41]:

ATGC(zk) = A0(zk) exp(2α(zk − z0)) (3)

where the first corrected sample along the z-direction was denoted as z0, corresponding to the frame of
the CFRP board reconstruction. The last corrected sample was denoted as zk, corresponding to the last
frame of the CFRP board reconstruction. The acoustic attenuation coefficient α was measured to be
5.64 cm-1 for all A-scans [41].
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3.2. Ultrasonic C-Scan for Micro-Scale Damage Detection

Figure 3 shows pNDE C-scan images in the X-Y plane parallel to the top surface of the composite
sample at various depths. As illustrated in Figure 3a, the pNDE C-scan image clearly represented the
X-shaped notches on the tested CFRP sample. The width of the X-shape notch shown on the C-scan
matched well with that measured in the SEM image, indicating the maximum width of the notch
was approximately 270 µm, as shown in Figure 3b. In addition, the tow orientation and the woven
structures of the carbon fiber fabrics were visible in the reconstructed images. The photoacoustic signal
profile across two grid lines on the surface of the material was extracted along the solid blue line shown
in Figure 3a. Based on the extracted grid line profiles, the lateral resolution of the system is estimated
to be approximately 60 µm, corresponding to the smaller full width at half maximum (FWHM) of the
line spread function in Figure 3c.
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Figure 4a–e shows the typical pNDE C-scans in the horizontal cross-sections (X-Y plane) that
were parallel to the top surface of the composite structure at different depths. The C-scan presentation
provided the top view of the locations and sizes of the defects featured in the tested CFRP composites.
In the C-scan images of Figure 4a,b, the X-shape notch was clearly visible. Only partial micro-scale
matrix cracks can be visualized in Figure 4a,b because of the scanning plane (X-Y plane) is not strictly
parallelized to the surface of the composite plate. In Figure 4e, the dense and highly distributed
micro-scale matrix cracks, which lead to potential delamination, were detected. Due to the distribution
of microscale matrix cracks throughout the entire layer in the composites, the ultrasonic signals
were dispersed. Therefore, carbon fiber fabric yarns were not observed in this layer. In Figure 4f,
the photoacoustic maximum-amplitude image projected from the top view of the CFRP composite
indicated the complex microstructure inside the sample. Both the surface notches and embedded
matrix cracks were shown in this image. The 3D image of the detected composite structure with
micro-scale notch damage is shown in Figure 4g.
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3.3. Ultrasonic B-Scan for Micro-Scale Damage Detection

A typical B-scan image in the vertical cross-section (Y-Z plane, perpendicular to the top surface)
of the tested composite structure is shown in Figure 5. Each B-scan image was generated by analyzing
the ultrasonic A-scan data in the same cross-section in the vertical cross-section. Since high accuracy
A-scan steps were enabled by a LABVIEW programmed stepper motor, the pulsed laser was precisely
triggered on the predefined detection position, and accurate B-scan images were created to represent
the cross-section conditions in composites. Figure 5a,b shows the typical B-scan images from two x
positions in the Y-Z plane. The surface notches were observed from multiple B-scan images. One
or two notches were visualized in the selected B-scan images. The B-scan images matched with the
C-scan results, indicating accurate pNDE detection of micro-scale damage in the composite sample
with notches on the surface.
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composite plate, at positions: x = 1.6 and 4.1 mm, respectively (from left to right). (c) C-scan image
showing the position of B-scan images in the X-Y plane.
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3.4. Macro-Scale Damage Detection in Composites

Low-velocity impact load can cause severe structural damage, such as delamination and transverse
ply crack, in composite laminates. Demonstration of the reliable detection of macro-scale damage in
composites using the developed pNDE method is critical for the engineering application. As shown
in Figure 6, the macro-scale delamination and transverse ply cracks were successfully detected and
represented using C-scan images at 5 different depths in the range 0–1.6 mm. The edge of transverse
ply cracks was clearly drawn using the dashed line. In addition, the area of delamination at different
depths was also highlighted in each subfigure. In Figure 6a–e, the size of the delamination area
gradually reduced, indicating that the size of delamination was relatively large near the composite
surface. This observation was reasonable since the excitation energy was reduced as it penetrated
deep into composites, resulting in reduced delamination area as the depth increased. The detected
macro-scale delamination and transverse ply cracks matched with the optical image of the damaged
composite sample shown in Figure 6f. A typical photoacoustic signal received by the 20 MHz center
frequency transducer is shown in Figure 6g. The corresponding single-sided photoacoustic signal
frequency amplitude spectrum is also shown in Figure 6h. Due to the increased scan steps, the spatial
resolution of macro-scale pNDE scanning was lower than that of the micro-scale pNDE detection. This
is reasonable, since the extremely high spatial resolution was not necessary to identify macro-scale
damage in composites. In addition, the optimization of pNDE parameters for macro-scale damage
detection was able to significantly increase the scanning speed by choosing the relatively large scanning
step length during the detection. Therefore, it is critical to adjust the pNDE parameters following the
potential damage size and required spatial resolution, allowing the developed system to be suitable for
both micro- and macro-scale damage detection in composites.
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Figure 6. A pulsed laser-induced pNDE system to detect macro-scale delamination and transverse ply
cracks in composites. (a–e) The 2D C-scan images showing the size of delamination and transverse ply
cracking. (f) Optical images using the detected impact damage of composites. (g) A plot of the raw
photoacoustic signal. (h) Single-sided photoacoustic signal frequency amplitude spectrum plot.
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4. Discussion

Detection sensitivity is a major parameter in pNDE. Our theoretical model and calculations
showed that the pulse width of the excitation laser beam was a crucial factor for the effective generation
of photoacoustic waves. Mathematical analysis revealed that the resultant photoacoustic pressure
was proportional to the time derivative of the excitation pulse [42,43]. Compared to the typical
laser-induced ultrasound system (nanoseconds pump laser) [44,45], the implementation of the 7
picosecond pulsed laser can produce an increase in photoacoustic signal conversion efficiency, which
will lead to improved detection sensitivity. Further, a higher frequency photoacoustic signal will lead
to better depth resolution when paired with a high-frequency ultrasound transducer.

The lateral resolution of pNDE was estimated by the diffraction-limited spot size of the optical
focus [42]. For a wavelength of 532 nm and a numerical aperture (NA) of 0.10, the lateral resolution of
the pNDE micro-scale scan was theoretically determined to be 2.71 µm. This resolution was sufficient
to resolve individual carbon fibers (diameter: 7–10 µm) inside the CFRP composite in a non-invasive
manner (Figure 3a). The axial resolution in the depth direction was jointly determined by the laser
pulse width and detection bandwidth of the ultrasonic transducer. In the macro-scale damage detection
experiment, a 20 MHz ultrasonic transducer was used, which resulted in an axial imaging resolution
of approximately 0.30 mm in the depth direction. In future studies, lateral resolution of the pNDE scan
can be further improved by (i) increasing the NA of the objective lens, and (ii) using a shorter excitation
source wavelength with the maximum imaging depth scaled accordingly. If a higher frequency
transducer is employed, submicrometer spatial resolution can be achievable. This analysis indicates a
new approach for microstructural determination inside CFRP composites with photoacoustic imaging
for future research.

The current pNDE detection speed was limited by the single ultrasonic probe for signal collection
during the scanning. However, implementing a pair of galvanometer mirrors with optical scanning
can dramatically improve the imaging speed (up to 30 kHz, the limitation of a galvanometer) and
should be much faster than any mechanical scanning imaging system. Further increase in laser PRR
has been limited mostly by the time required to store raw data and the ultrasound propagation time
inside the CFRP composites. Additionally, the system can be further optimized for real-time imaging
in field applications by increasing the laser PRR of the developed pNDE system, and the goal is to
reach the multi-kHz laser PRR range.

Conventional ultrasound methods and thermography are only capable of providing a contour of
the damaged area rather than the detailed layer-by-layer distribution information demonstrated in the
resulted images of the pDNE test [46]. Although current ultrasound-based non-destructive evaluation
technologies can detect barely visible and embedded geometries, they do not have the adequate lateral
resolution to identify micro-scale damage initiation in composites, especially for complex layered
materials like CFRP composites. Our proposed technology has the advantage of being able to focus
the excitation source to achieve a much higher lateral resolution than the ultrasound-based imaging
system. Thus, the pNDE scanning method described in this paper shows great potential compared to
current methods for the characterization of impact damage at multiple length scales via in situ imaging
within the upper part of an in-depth damage distribution. With future hardware modifications, pNDE
scans can theoretically be completed within minutes.

5. Conclusions

In this paper, we developed a pNDE system for the detection of multi-scale damage with extremely
high resolution in CFRP composites. Micro-scale damage precursors in composite laminate samples
were identified and represented using 2D and 3D images with a high spatial resolution of 60 µm.
SEM images taken from the same location were used to validate the length and width of the detected
notches on the composite surface. By adjusting the pNDE scanning parameters, the macro-scale impact
damage, including delamination and transverse ply cracks, was quickly detected and represented
using the ultrasonic C-scan mode. Experimental results and high-resolution 3D images generated
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by the described technology can be further used in complex mechanical models for prediction of the
deep-layer damage propagation of composites and to evaluate the remaining useful life of composites
subjected to impact and fatigue loads. Therefore, the developed pNDE system shows great potential
for damage detection and quality assessment in a broad range of engineering applications, including
aerospace, automobile, and civil industries.
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