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Abstract:

The main objective of this study is to investigate the quantum mechanical lifetime of a
trapped ion in a Paul trap. The motivation for this research is that there are several applications of
trapped ion devices such as mass spectrometers, atomic clocks, and quantum computers. Active
research is presently ongoing in the subject of an ion trapping by electric and magnetic fields.
There are many classical studies of the characteristics of trapped ions, however there have been
relatively few done quantum mechanically. It might be expected that purely quantum effects
could play an important role in describing the trapped ions. So, those are the main factors behind
the research on this topic.

Time-dependent perturbation theory was used in this study which is to find the quantum
mechanical lifetime of trapped ion in a Paul trap because time-dependent perturbation theory
allows describing the complex system with the help of a simple system that can be calculated
easily. It is shown that the lifetime of a trapped ion depends on its transition frequency and the
transition between two allowed quantum states of the ion. The transition frequency of an ion has
to be very close to the applied frequency of alternating current (AC). The results show that the
lifetime of a trapped ion can be adjusted as desired for experimentation.
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CHAPTER I

INTRODUCTION

1.1 Literature Review

How long a trapped ion is confined in a Paul trap is one of the important pieces of
information that trap designers need to know and Wolfgang Paul gave the first detailed
information about the Paul trap based on classical mechanics in his paper “Electromagnetic Traps
for Charged and Neutral Particles” [1]. As a consequence there have been many classical studies
in the theory of trapped ions. An important detail that has been less studied is the quantum
mechanical lifetime of the trapped ion in a Paul trap. The Paul trap allows an ion to be trapped
inside a quadrupble potential that varies with time. A detailed knowledge of this movement is
critical since the ion could escape if the frequency and amplitude of the applied voltage is not
correctly set for a given charge- mass ratio of an ion with a fixed Paul trap. The purpose of this
study is to determine quantum mechanically how stable the tr;clpped ion is in a Paul trap when the

transition frequency is very close to the applied frequency of alternating current (AC).

The research in the field of trapped ion to find the quantum mechanical lifetime of a trapped
ion is relatively recent but the previous research in quantum computers and atomic clocks has
addressed some similar ideas [2]. The ideas behind those technologies are not solely based on the

lifetime of trapped ion; there are many other factors that need to be considered in addition.



To our knowledge, the study of quantum mechanical lifetime of a trapped ion in a Paul trap has
not previously been investigated using the methodology of this study where time-dependent

perturbation theory is used.

Considerable research literatures in mass spectrometers, quantum computers and atomic
clocks are available but few of these addresses specifically the quantum mechanical lifetime of
trapped ions. Muph has been done that are associated with the quantum mechanics of laser cooled
trapped ions. Haroche, S. and Wineland, D. J. [2012], have developed methods for measuring and
manipulating individual particles in a quantum world [3]. Blatt, R., Leibfried, D., Monroe, C., and
Wineland, D. J. [2003], have studied the quantum dynamics of a trapped ion [4]. Jelezko, F.,
Ladd, T. D., Laflamme, R., Monroe, C., Nakamura, Y., and O’Brien, J. [2010], have described
the leading approaches to quantum computers [5]. HolZscheiter, M.H., [2002] described the
quantum computation in ion trap [6]. Roseband, T., Hume, D. B., Wineland, D.J., et al., [2008]
has studied about the single- ion optical clocks [7]. There are also many papers on mass
spectrometry and one of them is “An Introduction to Mass Spectrometry” by Ashcroft, A.E [8].
March, R.E. and Todd, J.F.J. [2005] presented detailed information about fnass spectrometry in

their book “Quadrupole lon Trap Mass Spectrometry” [9].

1.2 Applications

The Paul trap has been used in mass spectrometry, atomic clocks and quantum computers
therefore the study of the quantum mechanical lifetime of trapped ion in a Paul trap might help in
improving such technologies. It is not the purpose here to go into the details of those applications
but some background of those technologies is helpful in understanding the motivation for this |

study.



1.2.1  Mass Spectrometry

Mass spectrometry is a device that is used to study the physical characteristics of atoms,
molecules and compounds such és mass, structure and chemical composition of materials. These
spectrometers are used today for proteins and peptides analysis, forg:nsic analysis, drug testing
and analytical chemistry. The mass spectrometer has three main components- the ionizer, the
analyzer and the detector. The Paul trap is one of the main components of the mass spectrometers
and it is used as the mass analyzer. The configuration of a mass spectrometer is shown in Figure
1. A sample is fed into the ionizer where it breaks down the sample into ions and the ions passes
through the mass analyzer where only the right kinds of ions are trapped based on the stability
region and then finally it goes to the detector. The invention of the Paul trap revolﬁtionized the
field of atomic mass filters and the study of the quantum mechanical lifetime of a trapped ion in a

‘Paul trap might help to improve this technology [1, 2, 8, and 9].

Paultrap

Figure 1: Schematic of Mass Spectrometry
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1.2.2  Atomic Clocks

The atomic clock uses the transition frequency of an electron jumping from one quantum
state to another state as a time keeping element. The idea that hydrogen and sodium atoms could
be used in this way for time keeping was suggested by Lord Kelvin in 1879 [10]. Isidor Issac
Rabi developed the idea of molecular beam magnetic resonance in 1930 and discussed publicly
~ applying molecular beam magnetic resonance technique as a time and frequency standard in
1945. Tt is the basis of the modern cesium-atomic clocks and these clocks are the most accurate
commercially produced time and frequency standards. Atomic clocks are used as primary
standards for international time ’distribution services and play an important role in Global
Positioning System (GPS) and digital communicatioﬁ [11]:

Researcﬁ is active in building the optical and quantum clock that uses the forbidden
transitions frequency of an electron from one quantum state to another state as a time keeping
element. These clocks maintain an accuracy of one part in 10" to just one part in 10" in current
Cesium atomic clocks. If one can build this type of clock then there will be better and more
secure communication systems, more-precise GPS systems, and it might also help to understand
the fabric Qf time- space and matter. A scheme for an optical clock is shown in Figure 2. A laser
that has frequency slightly below than the allowed transition frequency is used to cool trapped
ions and ibns in the cooling transition jump to the upper state. If an ion in the cooling transition
goes to another state other than a metastable stable state, then repumping laser is used to drive the
ion back up to the upper state. A photon is emitted when an ion jumps from the upper states to
lower states. Then another probe laser (very narrow linewidth laser) is used to investigate the

forbidden transition of the metastable state which is used as a clock transition [11-13].



Upper state

e

Metastable state

«/

Laser cooling

Clock transition

e Ground state

Figure 2: Scheme of Atomic Clock [12]

1.2.3  Quantum Computers

Ignacio Cirac and Peter Zoller in 1995 first proposed the ion-trap quantum computer
where the ions served as physical qubits of the quantum computers [6, 14]. A qubit is the smallest
unit of information in quantum computers just like a bit in the classical computer. Classical
computers are based on the transistors whereas the quantum computer relies on the quantum
mechanics of qubits where the data are processed differently than classical computers. A quantum

computer with two qubits was first demonstrated by Wineland et al [3, 6].

A quantum computer is based on manipulating the states of a particle such as electron
and photon. Here the mechanics of a quantum computer that uses electrons as qubits is explained.
All electrons have magnetic fields and a property called spin. It is called spin up (1 state) if the
electron spins clockwise and it is called spin down (0 state) if the eiectron spins anticlockwise.
The spin up and spin down representation in 1 and 0 similar to classical computer as shown in

Figure 3a. Quantum computers exploit the fact of quantum mechanics that the electron spins both



directions at the same time which sounds strange but is true, that means a quantum computer can
do many computations at the same time. This quantum concept gives superior computing power

to the quantum computer [3, 6].

For two bits it can be 00 or 01, 10 or 11 but for two qubits, it is the superposition of all
four possible classical states which are |00 >, |01 >, |10 >, |11 >, and the picture is shown in
Figure 3b and 3¢ respectively. It is possible to have 2" states for n qubits so a computer with only
300 qubits could hold 2** classical values simultaneously which are more than the numbers of
atoms in the universe. Considerable progress has been made in this field and if one can build the
quantum computer then it will change society enormously as the classical computers did in the .

last century [3, 5, and 6].

Spin down Spin up
fal
00=0
01=1
Classical computer: twobits 10=2
1i=3

{b}

Quantum computer: Two qubits J00 £ |02 +]10+ |11

te}

Figure 3: Data Storage in Classical and Quantum Computers
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1.3 Discussion of Research Procedure

The procedure to find the lifetime of trapped ion quantum mechanically in a Paul trap started
with the multipole expansion of the electrostatic potential, then the results from the multipole
expansion is used to find the potential in the Paul trap. The ion in the Paul trap undergoes
harmonic oscillation similar to the simple harmonic oscillator with the difference being that the
potential is time-dependent. Since, it is very hard to find the exact solution of Schrédinger
equation for such a potential, time-dependent perturbation theory is used to find the approximate
solution based upon the solution that is already known from the unperturbed theory. Using this

method, the lifetime of trapped ion is found in the present study.

The perturbation is due to the changing electric field produced by applying radio frequency
(rf) voltage is assumed small so that time-dependent perturbation theory can be applied. For
simplicity the transition of a trapped ion was assumed to occur between two states only. The
driving frequency has to be close to the transition frequency of the trapped ion for this study.
These are the limitations that were considered when the Schrodinger equation was solved in order

to investigate the lifetime of a trapped ion in a Paul trap.

Perturbation theory is a methodical technique to acquire approximate solutions to the
perturbed system, by a process of successive approximations based on the known exact solutions
to the unperturbed system. The results of the first order perturbation theory are the most important
equation in the quantum dynamics; the first-order correction to the energy is the expectation value
of the perturbation in the unperturbed state (Ex = (¥2|H'|¥2)) where the Hamiltonian is the sum
of the unperturbed quantity (H®) and the perturbed quantity (H'), i.e. (H = H® + H'). Here, “the
expectation value is the average of repeated measurements on an ensemble of identically prepared
systems, not the average of repeated measurements on one and the same system” (Griffiths, 2005,

p- 15). The notation in this study is same as in Griffith’s quantum mechanics book [15].



CHAPTER II

REVIEW OF PAUL TRAP

2.1 Historical Background

The idea of an ion trap was developed accidently from the research on electrical
discharges and Iﬁass filters. K. H. Kingdon’é research on the electrical discharge between a very
thin filament cathode and a cylindrical anode led to the development of the earliest trap called the
Kingdon trap. The Kingdon trap has been uséd in some precision spectrometry but due to its
iimited storage time, it was very hard to investigate the characteristics of a trapped ion. Another
common ion trap is the Penning trap named afterward F. M. Penning whose work in 1936 studied
the electrical discharge between coaxial cylinders in the presence of an axial magnetic field. The
significant result of Penning’s work was that the electron path between the two electrodes could
be very long due to the tendency of magnetic field to force the electrons in circular orbits around
the axis. The complete development of the Penning trap did not happened until the development
of the Paul trap. The breakthrough of ion traps happened after Wolfgang Paul developed the Paul
trap in 1959 when he was investigating the non-magnetic linear mass filter for atomic ions. The
development of the Paul trap revolutionized mass spectrometry. Since, then many kinds of ion

trap have been developed [16].

The Paul trap is one of the widely used ion traps to investigate the characteristics of

trapped ions for different purposes that led to many new discoveries in the microscopic world.



For his work, Wolfgang Paul won the Nobel Prize in physics in 1989 along with Hans Dehmelt

who developed the Penning trap [2, 16].

2.2 Classical Paul trap

A Paul trap is a device that is used for trapping charged particles and ions in a quadrupole
potential and therefore it is known as quadrupole ion storage trap (QUISTOR). It uses static direct
current (DC) and radio frequency oscillating alternating current (AC) to trap an ion. It creates the
saddle-shaped electric field and isolates the trapped ion from interacting with outside
environment. The motion of a trapped ion is described by the Mathieu equations and Paul solved
the Mathieu equations for stability and instability regions of trapped ions within the framework of
classical physics .The motion of a trapped ion is stable in stable region and one can manipulate
the parameters in the stable region to find the critical range for applied voltage (V) and radio
frequency () for different charge- mass ratio (Q/m) and radius (r) of a Paul trap. Here the
2QV

e 2
condition is 0 <
mr22

< 0.908 in the classical Paul trap without any DC [1, 2, 6, 8, and 9].

Consider a positive ion is trapped in a free space inside a region surrounded by a four

conducting cylindrical rods as shown in Figure 4.

Figure 4: Linear Paul Trap
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The configuration cross section of the linear Paul trap is shown in Figure 5 where a positive ion is
trapped. The positive ion feéls the repulsive fo.rce from the positively charged conducting rods
and the attractive force from the negatively charged conducting rods as a result the ions motion
looks like approaching and departing from a center similar to the simple harmonic oscillator.
Therefore, the ion gets trapped forever at least in principle by applying the right voltage and

frequency for same charge-mass ratio and fixed radius of the Paul trap [6, 17].

-Figure 5: Cross Section of Linear Paul Trap [17]

The detailed information about the trapping conditions of a Paul trap is given in the
“Electromagnetic Traps for Charged and Neutral Particles” by Wolfgang Paul [1]. The potential
inside the region of a Paul trap as shown in the Figure 4 and derived in Appendix B is given by

the Equation (B.7) which is shown below

3V, cos(2t) (x% — y?)
r2

(R t) =
where V(= applied voltage,

10



{1 = radio frequency of applied alternating current (AC),
r = distance of the conductors from the center of the trap,
x = the point in space how far away from the center in x-axis,

y = the point in space how far away from the center in y-axis.

The configuration of the oscillating potential inside the Paul trap is shown below in Figure 6.

B Dl D i e el i e

L

it L L e e T i e

Figure 6: Oscillating Potential in a Paul Trap
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2.3 Quantum Paul trap

Particles at the atomic level do not follow the classical physics so the trapped particles in
a Paul trap needs to be treated quantum mechanically. Cook, Shankland and Wells [1985] were
the first to inyestigate the Paul trap within the framework of quantum mechanics. They showed
that the stable motion of a charge particle in a Paul trap as described classically is identical in the
quantum- mechanical formulation [18]. The following chapters focus on quantum motion of

trapped ion in a Paul trap.
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CHAPTER III

QUANTUM MECHANICS IN A PAUL TRAP

The potential of a linear Paul trap in this study is given by Equation (B.7) which is

3V, cos(e)(x?-y?)

r2

cp(ﬁ, t) = and the schematic of oscillating potential is shown in Figure 6. The

time dependent potential energy, V(r, t) of the trapped particle in a Paul trap is,

3qVp cos(2t)(x2—y?)

r2

V(R t) = 3.1

where, q is the charge of a trapped jon.

The right applied radio frequency voltage in a Paul trap produces harmonic potential with its
minima located in center and the motion of a trapped ion undergoes harmonic oscillation,
therefore in this study the motion of an ion is treated like a quantum harmonic oscillator. Since,
the potential energy as shown in Equation (3.1) is time dependent so it is hard to get the exact
solution for the Schrodinger time dependent eqﬁation. However, this system can be treated with
time-dependent perturbation theory by assuming that the time dependent part of the Hamiltonian
is small compared to the time independent part, so using perturbation theory; the solution for the
Schradinger equation for the potential energy as shown in Equation (3.1) can be found with the
aid of the known solution of quantum harmonic oscillator. The solution of the quantum harmonic

oscillator is already known and can be found in any quantum mechanics book.

13



3.1 -« Stationary States and Energy of the Quantum Harmonic Oscillator
The solution for a wave equation of Schrédinger equation for the quantum harmonic

oscillator can be found in any quantum mechanics book. The normalized stationary states ¥, ,

W, with energy Ep, , Ep, for the one-dimensional harmonic oscillator are [Griffiths, 2005, p.

54, 56]
z _52
P 1 —X
Yo = ¥, () = () Toram Hma (§x)e (3.2-9)
Enng = (mq +2) hao. (3.2-b)
X —£2
mMwgy \4 1 5x
Yy =¥, (x) = ( ,rho) \/Tm—b—rZﬁHmb(gx)e 2, (3.2¢c).
1
Emy = (mp +3) ooy, (3.2-d)

For the two-dimensional harmonic oscillator, the normalized stationary states ¥, ., ¥, n,and

energy Em n_, Emyn,1s represented as ¥, = ¥, ., = ¥, (x)¥, (¥). So the states are given by

1

= 2 {2
_ (mw 1 _(§x+_z)
Vnana = (%)’ T maGHn, (§)e 2720, (3.3-2)

Emgng = (Mg + ng + Dhay (3.3-b)

me % 1 5%_‘_5;,)

— 0 —(2X 2
Py, = ( h ) mHmb(gx)Hnb(Ey)e 227, (3.3-¢)
Emyn, = My + 1y + Dhog, (3.3-d)

where

Hp, (&) and Hy,, (fy) are the Hermite polynomials,

o= M0t (5) = [y,

and
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h = Planck constant (1.05457 x 107" ' s),
wp= angular frequency,
m = mass of particle,

and my,n, =0,1,2,3, ...
The first five Hermite polynomials are:

Ho($) =1,

Hy () = 24,

Hy () = 48" -2,

H; () = 88" —12¢,

H, (&) = 168" — 488° + 12,

Hs(§) = 328° — 160&* + 120¢.

3.2 Two Level System
Focusing on transitions between the two states ¥, and ¥}, ; any state of the system at time
t, ¥(t) can be expressed in the absence of any perturbation as the linear combination of the two

states which is given below [Griffiths, 2005, p.341],
—iEgt —iEpt
Y(t) =C,¥,e n +C¥e 1 . (3.4)
Normalization of ¥(t) requires {C,|* + |Cp|% = 1,
where
|C,|%= probability that a particle is in the state ¥, ,

|C,|2= probability that a particle is in the state ¥}, .

15



Now, for a time dependent perturbed system, the wave function ¥ (t) still can be expressed as a
linear combination of the states which looks exactly like Equation (3.4) but the only difference is
that C,(t) and Cp (t) are now functions of time. Now the wave function ¥ (t) can be expressed

as;

—iEqt —LEpt

W) = Cu(OW,e n +Cp(O)Pe T . (3.5)

33 Time-Dependent Perturbation Theory

Assuming that the particle started out in the state, ¥, {C,(0) = 1, C;(0) = 0} and that is
the state when there is no perturbation. The particle can be found some later time t, in the
state ¥, {C,(t) = 0, C,(t) = 13}, after the perturbation. That means the system undergoes a
transition from state ¥, to state ¥}, . Assuming the perturbation is small, Equation (3.6) can be
solved by a process of successive approximation. The zeroth order approximation does not
contain any factor of the perturbed Hamiltonian whereas the first order and second order
approximation contains one factor and two factors of perturbed Hamiltonian respectively

[Griffiths, 2005, p. 345, 345]. The first order approximation can be calculated as

Cit)=1, and

CR(®) = =L [ Hy (1) ot (.6)

where o = 22 and Hp = (W [H'|¥,)]].

The quantum mechanics of a trapped particle in a Paul trap is investigated one-dimensionally and

two-dimensionally in Chapters 4 and 5 respectively.
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CHAPTER IV

ONE-DIMENSIONAL PAUL TRAP

4.1 One-Dimensional Potential Energy
For the simplicity of mathematics and to envision the output, this chapter is limited to
one-dimension to investigate the lifetime of trapped particle in a Paul trap. The schematic of one

dimension Paul trap is shown below in Figure 7.

Figure 7: One-Dimensional Paul Trap
The potential energy, V(r) of a particle with charge (q) at a distance x from the origin as shown in

above Figure 7 can be found by the following equation,

V() = qe, 4.1

where @ is the electric potential.
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The electric potential produced (@) by the point charge (Q) at a distance from the charge is given

Q . . . X 1 (-
by = prg Then substituting ¢ in Equation (4.1), it becomes V(1) = g [MEO (a—fx) +
4“:180 (f:Q;)] and simplifying, one gets Equation (4.2),
1 1
V) = | ]
dmega |1 42 1 -2
a a
X X
~14=4+14+=
vy = | Ta)
4rega 1%
52
a
X
290 | &
V@) = L—"—ﬁ]' (4.2)
a

2 .
Forx<<aor -Z—z << | in the Equation (4.2), the potential energy can be calculated by the

Equation (4.3),

V(r) ~ 229 (4.3)

4meqa?’

But Q = Q, cos(2t) in Paul trap, therefore the Equation (4.3) becomes

2qQq cos(2t)x

4rega?

V(rt) = (4.4)

The motion in a Paul trap is harmonic, therefore the potential energy in the Paul trap could be
described by the time-dependent harmonic oscillator which is shown in Equation (4.5),

—Zl-k cos(!)t) x* forx>0

V(r,t) = (4.5)

_%k cos(0t) x* forx < 0 '

The potential given by the Equation (4.5) is shown in Figure 8,

18



x>0

X<0

Figure 8: Harmonic potential

The electric potential in two-dimensional Paul trap is given by the Equation (B.6), therefore
omitting the y part gives the one-dimension electric potential and the potential energy of an ion in
a Paul trap is given by,

3qQocos(0t){x?)

V(R 1) = 2 (46)

The potential energy given by the Equations (4.4), (4.5), and (4.6) are all true but the potential

energy given by the Equation (4.6) is more convincing than other two. Therefore the potential

described by the Equation (4.6) is used for further study. Adding and subtracting % kx? in

) ) = 1 1 3qQo cos(2t)(x?) ) e
Equation (4.6), it becomes AV (R, t) = kx? — > kx? + ———0—4-1;;}—3—— and simplifying it,
one gets;

V(R t) = kx?® + [—1- kx?{cos(Qt) — 1}]. (4.7)
2 2
where k = —2%_
2MERT3
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But the constant k in harmonic oscillator in terms of angular frequency is, k = mw§ and equaling

3qQy
2mEgmrs

6qV
Wy = /"n‘{r—g (4.8)

the constant k one gets, angular frequency wg = . The angular frequency in terms of

applied voltage (V) is,

Substitute the Equation (4.7) in time-dependent Schrodinger equation HY = ih%ii , where

W2 92 . . . n? 92
H = ————+V(r,t). Then the time-dependent Schrédinger equation becomes [— et

2m 9x? 2m dx?
%kx2 + %kxz{cos(ﬂt) - 1}] Y= ih%% and here the Hamiltonian (H) is divided into
unperturbed (H’) and perturbed (H') system which is shown in Equation (4.9),

H=H+H'(t). (4.9)

o _ B 1, 5 I E
where HY = ___+§kx and H'(t) = [Ekx {cos(nt) — 1}]

2m 9x*
Now, substitute Equation (3.5) and Equation (4.9) in the time-dependent Schrédinger equation
and solve for the first-order cofrection of C,(t) and Cp,(t) in Equation (3.5) assuming the particle
starts out in the lower state ( C,(0) = 1, C;,(0) = 0). Then the first order approximation can be
calculated by the Equation (3.6), which is shown below and the detailed work is given in

[Griffths, 2005, p. 344].
Ca(t) =1,
t

i L
GO =-+ f H (¢ it g,
0

where

Hyo = (Pp|H'(D|¥,), and
H'(t) = E kx*{cos(0t) — 1}].
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4.2 Expectation Value of Perturbed system
Here, the expectation value of the perturbed system in the unperturbed state can be

calculated as Hy, = (¥, |H'(t)|¥,) and substituting H'(t) one gets,

HYy = <1Pb|%kxz{cos(!2t) ~13

‘Pa> and simplifying it gives;

1
—kx?
Zx

Hy, = [<'Pb ’Pa> {cos(2t) — 1}]
Hpo = [Vpe{cos(Q2t) — 13], (4.10)

where V,, = <‘Pa

%kx2 |1Pb> is the expectation value of the potential energy of a trapped ion

(harmonic oscillator approximation).

4.3 Expectation Value of Potential Energy
The expectation value of potential energy of the trapped ion in one-dimensional Paul trap

when a particle makes the transition from state ¥, to state ¥}, is

1 2
Vap = 5 k(Wal 2%y,

where (¥, |x2|¥,) = [ W,x? ¥, dx is the expectation value of x°.

The operator ‘x”’ can be expressed in terms of the raising and lowering operators as x =

h
2mwg

(a_ay) + (@ )?]. Here a, ¥ = Vn + 1¥,q, a ¥ =Vn¥,_q,a,a ¥ =n¥,anda_a, ¥ =

h

Zmuwy

(a, + a_), and the square of the operator x (x”) becomes x? =

[(a+)2 + (aza ) +

(n+1)¥, . The detailed information about the operators is given in the [Griffiths, 2005, p. 48].

Then, eValuating the expectation value of x* as follows,

(V219 = 5o [ f Va{(@2)? + (ara) + (a_ay) + (@)} ¥y
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(Palx?|¥p) =

h ’
e [{( mlz) + 3my + 2) 5ma,mb+2 + (2my + 1)5ma,mb
+ ( fmﬁ - mb> Sma,mb—Z}]-

In order to make a transition from state ¥, to ¥, , m;, > m, and with that condition, the first two

terms vanishes from the above equation. So, the above equation becomes (¥, [x2|¥),) =

h o . . .
T K fmlz, — mb> 6ma,mb—2] and substituting this value in V}, one

h . .
gets Vyp = %mw% P [( /mlz, - mb> 8ma,mb—2]' Therefor the expectation value of potential

energy of trapped ion is,

Vap = 5 hog [( mg — mb) 5ma,mb—2]- (4.11)

4.4 Perturbation Theory

Now, the first order approximation of perturbed system can be calculated by the Equation
(3.6) which is CL(t) = 1,and C}(t) = —%fot HJ (t") et d¢’ assuming the ion starts out in the
lower state ( C,(0) = 1, €, (0) = 0). Substituting the value of perturbation, one gets C2(t) =

- % fot[Vba{cos(!Zt’) —1}] ei@ot’ d¢" and taking out the factor Vy, and writing cosine in terms of

; it ~int'
exponential functions using Euler’s formula, it becomes CZ(t) = — % Voa [ Ot {E—izf———— -
L s ] i i(wo+Mt’ 4 ,i(wg—Dt' L
1}e‘w0t dt’. Expanding e'?ot one gets C1(t) = —%Vba fot {e ° ;e ° — gl@ot } dt’
and simplifying, it becomes;
) i ei(a)0+.(2)t -1 ei(wo—.(l)t -1 eiwot -1
Cp(t) = —==V, - +— —2— ,
10 2h ba{ i(wy + 02) i(wg— 1) i(wgy)
1 _ _ Vba [ei(w0+n)t_1 el@o—0t_4 _ eiwot_l]
Co (t) 2h (wo+0) (wo—12) (wo) I (4.12)
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4.5 Transition Probability
The probability of a transition is greater when the driving frequency (2, is close to the
natural frequency wg, (wq = 2) that gives [wy + 2] > |wy| > |0y — £/, then the second term

in Equation (4.12) dominates, so the above Equation (4.12) can be written as,

e i((l.)o'—.(l)t_l]

Vba
ity = -2 T

Zh (4.13)

fo—12
Now taking out the factor el( E )t from the Equation (4.13), one gets

oxct) [<~><——~>

Vpa i
Ch(e) = —22e (%5 s

t
h } and multiplying and dividing by the complex

number (i) in the numerator and denominator it becomes

Vpa _i(22D) [2 I o

Ci(t) = . Here the exponential terms in the bracket

T 2h(we-1) 2i

. . . 1 - iVba i(mo_ﬂ)t . wWo—A - P
can be written in terms of sine as Cp (t) = — o [2 sin ( . ) 1:] and simplifying
o

it more one finds,
: o=V, [2 sin(20=2):
CL(E) = — Yo (i(*57)e [—-—( =) } (4.14)

2h (wo—12)

The probability of finding the particle in the state ¥}, at time t, that started out in the state ¥ is

5 v ]2 4 Sinz(wo—n)
Pp(t) = | ct (t)] = (2';1“)2 (wo—ﬂz)z and it can be written in terms of delta functions as
Vbal?
Pasp(8) = | Co(O)|* = Ttz {2mt S (wo — M)}, (4.15)

. -0
M =2nté(wy, — N2).

where limg_,,, o0y
0
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4.5.1 Transition Rate
The transition rate (R,_, (t)) of the particle from state ¥, to state ¥}, is given by

dPgp(8) [

m” Griffiths, 2005, p- 353]. Thereforé the transition rate is R,_,, (t) =

Raop ) =

dPa—»b(t) —_ Wbal2
dt (2h)2

{2n6(wy — £2)} and writing the transition rate in terms of energy states one gets,
0 g gy g

2
Ry, (t) = '—2’2’;—)' (2n8(E, — E, — h)}. (4.16)

There is an infinite number of final state instead of one final state, so the Equation (4.16) can be

written as,

Raon(©) = 225 {2mp, (5}, @17)

where

2wy’

IVbal2 = |Vab|2 = 16 (m}% _mb)dma,mb—z

and py(E) is the density of the final state.

# states

. . d
Assuming non degenerate states, the density of final state can be found as p = prepmamel E% and

the energy of the quantum harmonic oscillator in n" state is E,, = hw, (n + %) Then, taking the

derivative of energy with respect to n, one gets dE = hwydn and reordering it becomes,

dn 1
E T har (4.18)
Now substituting the corresponding values of V}, and ps(E) in Equation (4.17), one gets
2 2
R, _p() = [h 1060 {(mg - mb)‘sma,mb—Z}fﬁ {2n i;}] and simplifying it one finds,
W '
Rasp(8) = [Zo2 {(m3 = 1)y mp—2) | (4.19)
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4.6 Lifetime

Now, the lifetime (T,_,) of the trapped ion in state ¥, before it makes transition to the

state ¥}, is Ty = and it can be written in terms of allowed transition and

Ra—»b(t)
transition frequency as follows,

Tyop = 22 : (4.20)

Co{(mi-mp)omqm, -2}

From the above Equation it can be seen that the lifetime depends upon the transition frequency
and the allowed state. The lifetime of a particle decreases as a particle makes a transition to
higher allowed states. So, the longest lifetime of a trapped particle is in the ground state before

the particle makes a transition from the ground state to state 2.
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CHAPTER V

TWO-DIMENSIONAL PAUL TRAP

5.1 Two-Dimensional Potential Energy
A more realistic model for the Paul trap is two dimensional and the two -dimensional

3V, cos(t)(x?—
-rZ

= 2
potential in a Paul trap is given by the Equation (B.7) which is go(R, t) = Y ). The

3qVq cos(2t)(x2—y?)
r2

potential energy of a trapped ion in a Paul trap is V(ﬁ, t) = where q is the
charge of a trapped ion and the potential energy in terms of constant k is V(ﬁ, t) = %k(x2 -

y2) cos(2t) where k = 24 But the constant k in harmonic oscillator is k = ma? and equaling
. T

6V,
mr2

the constant k one gets, angular frequency w, = . Since this study tried to get the

approximate solutions of the quantum motion of a trapped ion based on harmonic oscillator so

adding and subtracting two-dimensional harmonic potential energy %kx2 and %ky2 in the
potential energy of trapped ion one gets V(ﬁ, t) = %kx2 — —:;:kxz + %ky2 - %ky2 +
ék(x2 — y2) cos(2t) and simplifying it one finds,

V(R t) = kx? + - ky? + S kx*{cos(t) — 1} — S key*{cos(02t) + 1}. (5.1)

2
The time-dependent Schrédinger equation is HY = ih %—i’, where H = — ——— — 2moy? + V (t).

Here, Hamiltonian is divided into unperturbed and perturbed system as H = H® + H'(¢) and

26



Substituting the Equation (5.1) in time-dependent equation and comparing the Hamiltonian with

perturbed and unperturbed system one gets unperturbed system is H® = — oz T3 kex? —

2 32 ’
%:—yz + %kyz, and perturbed system is H'(t) = %kxz{cos(.(lt) —1}— % ky?{cos(0t) + 1}.

Now, substitute Equation (3.5) and Equation (5.1) in the time-dependent Schrédinger equation
and solve for the first-order correction of C,(t) and C,(t) in Equation (3.5) assurﬁing the particle
starts out in the lower state ( C,(0) = 1, C,(0) = 0). Then the first order approximation can be
calculated by the Equation (3.6), which is shown below and the detailed work is given in
[Griffths, 2005, p. 344].

ci®) =1,

o
L , 1]
GO = f H) (") ei@ot’ dt,
0

Where Hy,, = (Wp|H' (0)|¥,).

5.2 Expectation Value of Perturbed system
The expectation value of the perturbed system in the unperturbed state is Hy, =

(W, |H'(t)|¥,) and substituting the perturbed system and one finds

Hy, = <'Pb|§kx2{cos(.(2t) -1} —%kyz{cos(ﬂt) + 1}

'{’a>. Now dividing the perturbed system -

into x and y orientation then it becomes H, = {¥ 2 kx?{cos(Qt) — 1}|¥,) —
ba b|,

<le | %kyz{cos (Qt) + 1}

‘Pa> and simplifying it one gets,
Hpq = [V(x)pafcos(2t) — 1} = V(¥)palcos(2t) + 1}], (52)

where

Vap () = (FalV ()| 9)) = ~e(Walx2[%)),
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Var ) = (FalV ()W) = 2 k(¥aly?[¥).

Here the state ¥, and ¥}, is represented by the stationary states of the quantum harmonic
oscillator and is given by the Equations (3.3-a) and (3.3-c) which are ¥, =¥, , =

qua(x)q/na (Y) a'nd llUb = llumbnb = lIU‘n’lb (x)llUnb (y)'

5.3 Expectation Value of Potential Energy
The expectation value of the potential energy of the trapped ion in a two-dimensional
Paul trap as a particle makes transition from ¥, to ¥, is studied into two parts: potential energy

in the x direction and potential energy in the y direction.

5.3.1 Potential Energy in x Direction
The expectation value of potential energy in the x direction is Vg, (x) = %k(lPa |x2|Wy)

and the operator ‘x’ can be expressed in terms of the raising and lowering operators as x =

h
2mawg

(a_ay) + (a_)?].Here a, ¥ = Vn+ 1%, a_¥ =Vn¥,_j,a,a_ ¥ =n¥,anda_a,¥ =

h
2Mmwg

(a, + a_), and the square of the operator x (x’) becomes x? = [(a)? + (ayal) +
p .

(n+1)¥, . The detailed information about the operators is given in the [Griffiths, 2005, p. 48].

h
2mawg

Now replacing x with operator one gets V,;, (x) = %mw% [, [(a})? + (aya) +

(a_ay) + (a_)?|¥,dx dy and simplifying the potential one finds,

h
Va0 = =22 [ (#n, ON@)? + (@) + (a-a)

+ (@)W, 0] | (#, 00, 0y
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Now evaluating the potential one gets Vg, (x) = Il—(;ﬁ {{( /mlz) + 3my + 2> Omgmp+2 T
@my, + 1) m, + ( fml% — mb) ‘Sma,mb—Z} 5na,nb]- In order to make a transition from state

Y. to¥,, my > m, andn, = n,, with that condition, the first two terms vanishes from the

above Equation and it becomes,

Vab (x) = E‘Z‘)Q [{( ml% - mb) 5ma,mb—2} 6‘na,nb]- (5‘3)

5.3.2 Potential Energy in y Direction

The expectation value of potential energy in the y direction is

Vi (V) = (V)W) = %k(ll’al y?%|¥,) and the operator y’ can be expressed in terms of

.. . h
the raising and lowering operators as y = {me (ay + a_), and the square of the operator y
0

0)is y* =

2m

hwo [(a;)? + (aya.) + (a_ay) + (a_)?]. Here a, ¥ =vVn + 1¥,,,4,

a ¥ =Vn¥,_,,a,a_ ¥ =n¥, and a_a, ¥ = (n+1)¥, . The detailed information about

the operators is given in the [Griffiths, 2005, p. 48]. Now replacing y with operator one gets

h

Zmﬁ)o

Var () = %mwg ff ¥ [ta+)2 + (ara) + (a_ay) + (a_)?]¥ydx dy and

hwg

simplifying it becomes Vg, (y) = - [f{ll’na(y) [(ay)? + (agal) + (a_ay) +
(a-)?1%,, ) dy} [ {Wma () ¥, (x) dx}]. Then evaluating it one gets V() =

E% [{(,/ng +3n, + 2) Spomyrz + 21y + D8nn, + (w/ng - n,,) 5na,nb_2} Sma,mb]-

In order to make a transition from state ¥, to ¥, , np, > n, and m, = my, with that condition,

the first two terms vanishes from the above equation and it becomes,

Vab ()’) = h_(i)ﬂ [{( nlz; - le) 5na,nb—2} ama,mb]- (5-4)
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54 Perturbation Theory

The first order approximation of perturbed system can be calculated by the Equation

(3.6), which is C2(£) = 1 and C}(¢) = —% fot H!, () e'ot’ dt'. Now substituting the
perturbed system one gets CA(t) = — © [/ [Vpq(x){cos(2t) — 1} = Vpa (y){cos(26) +
1}] ei@ot’ d¢t’ and simplifying it one finds C2(t) = ~ ;ll [fot Ve () {cos(2t) —

1} eiwot’ dt’] - [~%{f0t Vyu () {cos(2t) + 1} ei@ot’ dt’}]. Let

B =~ [ Vha()lcos(@t) — 1je'@st’ dr'] and @ = —= [V, (y){cos(at’) +

1}ei‘*’°t’ dt’] then the above equation becomes

CL(t) =p— . (5.5)
; (we+Dt' | i(wg—t .
Here, 8 = ——% b (%) fot {e ’ ere ° — e“"ot’} dt' and expanding the exponential one
i el(wo+Mt_q ell@wo—Dt_4 elwot _q . L _
gets B = —ﬁVab (x [ ot + o) A e ] Simplifying one finds =
 Vap(®) ellwo+Mt_q  Silwo—Dt_q _ elwot_q o _ i ¢ (it 4 p—iat!
h [ @at) oD 7N -Similarly ® = —=Vp, (¥) fo —

oiWo+)t! 4 pilwo—2)t!

1} glwot’ gt/ ] and expanding the exponential one gets ® = —% wO) [ Ot{ >

el(wo+Mt_q ellwo—Dt_q

ei“)ot’} dt’. Then simplifying one finds @ = — zihvab o) [

i(wo+02) i(we—102)
eiwot»{] L 1% b(ZV) ei(m0+.(2)t_1 ei(wo—.())t__l eiwot_l
- and writing in order one gets ® = — -2 .
i(w) & get 2h | (@ot®) (@o—1) (@o)
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5.5 Transition Probability
The probability of a transition is greater when the driving frequency (2, is close to the

natural frequency wy, (wy = ), that gives [wg + 2| > |wg| > |wy — 2], and then the second

ei(wo—n)t—l . . 1
term o dominates so the Equation (5.5) becomes Cj, (t) = —
0 .

Vap(x) [eX@oDE—q
2h (wo—12)

ei(wo—n)t_l ‘ ¢
— ONne¢ geis
(wo—12) &

i(wo—2t_
Vap ) [e 0 1] and taking out the factor
2h (wo—102)

ellwo—Mt_4 w22

Ca(t) = % [{——@0—:0—)——} {—Vap () + Vap (y)}]. Again taking out the factor ei< z )t one finds

1 Wg— e (woz ﬂ)t_e_ (moz—ﬂ>t
CE() = =€ l( 2 )t o {—V (x) + Vo, ()} and simplifying it one gets

e

. Now writing the

Cb ® = Zh(a) Q)

{ Vab(x) + Vab()’)}g ( ) ;fnl( - )}

wo—42

P Va0 +

LN
2h(wo—02)

exponential in terms of the sine functions one gets Cj (t) =

Vo (N} {2 sin (w"_g) t}] and reordering it one finds,

(we—12)

choy = £ ) [{—Vabcx)+vab(y>}{2—““—(5—f}]. 69

The probability of finding the particle in the state ¥}, at time t that started out in the state ¥, is

© = | Cho [ = Wart Va2 [4sin?(2E
Pasp () =16 (2h)? (@o—0)?

) ] and the probability in terms of the delta

function is,

Vll V(l
Py () = WO (o450, — 0} 5.7)

where

(1)0—.(2

4 sin? :
limn_;wo —TCU_O(‘—!ZZ)T) = 2T[t6((1)0 - .Q)
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5.5.1 Transition Rate

The transition rate (R, _,, (t)) of the particle from state ¥, to state ¥}, is given by

dPgp (t)

R, p(t) = o Griffiths, 2005, p. 353] and the transition rate of the trapped ion

IVab () —Vap I
(2h)?

ISR p(t) = {218(wy — £2)}. Writing the transition rate in terms of energy

states one gets,

Va —Va ) 2
Ry.,(t) =1L b<"(>2h)2b(y W ons(E, — E, — A}, (5.8)

Instead of one final state, there is infinite number of final states so the Equation (5.8) becomes

HV ap ()=VapOII*
Reop (t) = et o5 (1)), (5.9)
where
hZ 2
| Vap (x) = Vap (y)]lz = f;o [(m% - mb)Sma,mb—25na,nb + (nlzy - nb)(sna.nb—z(sma,mb],

Py (E) = -ﬁi—o is the density of the final states.

Here, the transition of an ion happens either when my, > m, andn, = ny or n, > n,
and m, = my,. That means the transition of a particle cannot happen in both direction, it can

happen in only one direction either in x direction or in y direction.

5.6 Lifetime

Therefore, the lifetime (7,_,},) of the trapped ion in state ¥, before it makes transition to

state ¥, is T4p = and the lifetime in terms of allowed states and transition frequency is,

Ra—)b(t)

32

2
TWo [(mb _mb)ama,mb -2 6Tla,nb +(n127 _nb)5na,nb -2 5ma,mb]

Tasp =~

(5.10)
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Therefore, from the above equation, it is shown that the lifetime depends upon the transition
frequency and the allowed state. The lifetime of a particle decreases as the particle makes
transition to the higher states. So the longest lifetime of a trapped particle is in ground state before

it makes transition from ground state to the state 2.
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CHAPTER VI

RESULTS

The significant results that were found from this study are given by the Equations (4.8), (4.20),

and (5.10).The transition frequency that corresponds with the charge-mass ratio of a trapped ion,

3qQo

P — and the transition
0

radius of the Paul trap and charge of the conductor is wg =

frequency that corresponds with the charge-mass ratio of a trapped ion, radius of the Paul trap and

applied voltage is wg = /?ZLO . The lifetime of a trapped ion in state ¥, before it makes

transition to state ¥ in one-dimensional and two-dimensional Paul trap are T, = -

32 and T . 32
p =
o[ (mE-mp ) S my -2} ’ S0 o] (1) B my -2 Ongmy (01O 2O m

] respectively.

The lifetime‘ of a trapped ion in state ¥, in two-dimensional would be the same as the lifetime of
a trapped ion in one-dimensional when n,= n; or m,= m, and here just to verify it, hydrogen ion
has been used. For a hydrogen iqn, the mass (m) is 1.673 X 10" kilograms (Kg) and the charge
(q)is 1.61 X 10™ coulomb (C). Let’s say the radius (r) of a Paul trap is 1.0 centimeters (cm) and
the applied voltage (Vo) is 3.0 kilovolts (KV).

Note: this study has been limited to applied frequencies (£2) that are very close to the

transition frequency (wg) I.e. wqy = 2.
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6.1 Transition Frequency

The transition frequency for a hydrogen ion in a Paul trap is

6qV,
mr?

Wy =

6x1.61%x10719%x3.0x 103
1.673 x 10727 x (1.0 x 10-2)2

wWqg =
or we = 1.316 X 10° Rad/s or =2 = 20.945 x 10°Hz.

6.2 Lifetime in a One-Dimensional Paul Trap
The lifetime for trapped hydrogen jon in a one-dimensional Paul trap when the ion makes

transition from ground state to 2 is,

32

T =
0-2 Tw )
0{(mb—mb) 5ma,mb—2}

32
T2 = 1316 x 108 X (4 — 2)

or Tg,, = 3.870 x 107 8s.

The lifetime for trapped hydrogen ion in a one-dimensional Paul trap when the ion makes
transition from state 2 to 4 is,

32
T2t T 01316 X 108 x (16 — 4)

Or Ty_y4 = 0.645 x 10_85.

The lifetime for trapped hydrogen ion in a one-dimensional Paul trap when the ion makes
transition from state 4 to 6 is,

32
T426 = 11X 1.316 x 10° x (36 — 6)

or T4 = 0.258 x 107 8s.
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6.3 Lifetime in a Two-Dimensional Paul Trap

The lifetime for a trapped hydrogen ion in a two-dimensional Paul trap when the ion
makes transition from ground state to 2 is, when n, = ny and m, = 0 and my, = 2 or when
m, = myandn, = 0andn, = 2.

32

T[(‘)O[(mlza - mb)ama:mb—z(gnar"b + (nlz) - nb)ana’nb_zamwmb]

Tagsp =

32
T2 = 1,316 x 108 x (4 — 2)

or Tgy = 3.870 x 107 5s.

The lifetime for a trapped hydrogen ion in a two-dimensional Paul trap when the ion makes
transition from state 2 to 4 is, when n, = ny and m,; = 2 and my, = 4, or when m, = my, and
n, = 2andny, = 4.

32
T2-4 = 751,316 x 108 x (16 — 4)

Or Ty 4 = 0.645 x 10~85.

The lifetime for a trapped hydrogen ion in a two-dimensional Paul trap when the ion makes
transition from state 4 to 6 is, when n, = n, and m, = 4 and my, = 6, or when m, = my, and
n, =4andn, = 6.

32
T426 = 77X 1.316 x 108 x (36 — 6)

or T4 = 0.258 x 107 8s.
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The graph of Figure 9 shows how the lifetime (7(_,,) of a trapped hydrogen ion in ground state
changes with applied voltage, radius and mass as it make a transition to energy state 2. The top
graph in Figure 9 shows that the lifetime decreases exponentially as the applied voltage increased
from 0 to 500 volts then after the lifetime is almost same as voltage is increased. So the lifetime
-8 !‘ﬂ
0" <

of a trapped hydrogen ion (% =1.04x%x1 ) in a Paul trap that has a radius of 1.0 cm can be

adjusted with applied voltage as desired for experimentation. The middle graph in Figure 9 shows
that the lifetime increases linearly as the radius of a Paul trap increased but typically radius of a

Paul trap is fixed. The value of radius can be choose from the middle graph in Figure 9 to design
a Paul trap to get a desired lifetime of a trapped hydrogen ion (%n =1.04%x 1078 '%g) for 3.0 kV
applied voltage. The bottom graph in Figure 9 shows that the lifetime increases faster as the

atomic mass unit (amu) of a trapped ion increases from 0 to 50 then after the lifetime increases

linearly. Here, the radius of a Paul trap is 1.0 cm, applied voltage is 3.0 kV and mass-charge ratio

is (% =1.04x 1078 x amuk—cg).

x 10°° lifetime of a trapped ion vs applied wiltage
1 T T T T
0.5 ’\\ _
0 — 1 i t t :
0 500 1000 1500 2000 2500 3000
applied wiltage(v)
x 107 lifetime of a trapped ion vs radius of a Paul trap
2 T T T T
/tb\ T
g -
B e
= 0 e 1 1 1 1 ]
0 0.005 0.01 0.015 0.02 0.025 0.03
radius(m)
x 10° lifetime of a trapped ion vs mass of trapped ion
1 T T T T
os- e
. T
PN
O - 1 L L L
(VI 50 100 150 200 250
mass(amu)

Figure 9: Plot of a Lifetime with Voltage, Radius and Mass.
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The graph below shows how the resonance frequency needs to be adjusted when one changes
applied voltage, radius of a Paul trap and mass of trapped ion. The top graph in Figure 10 shows
. that the resonance frequency increases faster as the applied voltage increased from 0 to 500 volts

then after the resonance frequency increases linearly. So the resonance frequency of a trapped
hydrogen ion (% =1.04x 1078 l%‘q) in a Paul trap that has a radius of 1.0 cm can kbe adjusted
with applied voltage as desired for experimentation. The middle graph in Figure 10 shows that the
resonance frequency decreases exponentially as the radiﬁs of a Paul trap increased from 1 to 7

mm but typically radius of a Paul trap is fixed. The value of radius can be choose from the middle

graph in Figure 10 to design a Paul trap to get a desired resonance frequency of a trapped
hydrogen ion (%1 =1.04x1078 l‘cﬂ) for 3.0 kV applied voltage. The bottom graph in Figure 10

shows that the resonance frequency decreases exponentially as the atomic mass unit (amu) of a
trapped ion increases from 0 to 50 after then the resonance frequency is almost same for increased

mass (amu). Here, the radius of a Paul trap is 1.0 cm, applied voltage is 3.0 kV and mass-charge

ratio is (% =1.04x1078 x amuic‘z).
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Figure 10: Plot of Resonance Frequency with Applied Voltage, Radius and Mass.
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CHAPTER VII

CONCLUSIONS

Time- dependent perturbation theory has been used in study this research and this study
is based on the approximation of quantum harmonic oscillator of a particle. The energies are
quantized in quantum harmonic oscillator and the particle spends most of time at the bottom of
the potential well (ground state) if there were no perturbation at all. The particle jumps to higher
states as a particle absorbs the energy, so a trapped ion makes a transition to higher states as it
gains the energy from the applied radio frequency voltage. The transition of a particle is greater
when the applied frequencies are close to the transition frequency so this study is restricted the

driving frequencies (£2) close to transition frequency (wg) 1.e. (wWg = 02).

Therefore, using time-dependent perturbation theory, the results from this study shows
that transition frequencies ( wq) of an ion can be controlled with the amplitude of applied voltage
(Vo), radius of a Paul trap (r) and charge-mass ratio (q/m). How the applied frequencies changes
with those parameters is shown in Figure 10. The lifetime (7,_p) of an ion depends upon the
transition frequencies ( wq) and also some specific allowed states (ng, n, , mymy) i.e. when fhe
difference in energy state is by two. A trapped ion in a linear Paul trap makes transition either in
the x-direction or in the y-direction but not on both directions. The lifetime in a two-dimensional
Paul trap would be the same in state ¥, as in state ¥, in one-dimensional Paul trap when

n, = n, or m, = My and it is shown in the previous chapter for hydrogen ion.
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When an ion absorbs the energy, it makes a transition to higher energy states and
eventually it gets lost from the trap. But not only that happens, it can also radiate the energy
when an ion jumps from higher states fo lower states which make possible trapping an ion for a
longer period of time. This study shows that the Paul trap can be designed to get higher or lower
lifetime of a trapped ion with the parameters that are given by the Equation (4.8) and the graph is
shown in the Figures 9 and 10. If one wants to get the higher lifetime then the transition
frequency should be small which one gets by decreasing the amplitude of applied radio frequency
voltage and increasing the radius of the Paul trap for a specific ion. Similarly, if one wants to get
the lower lifetime then the transition frequency should be large which one gets by increasing the
amplitude of applied radio frequency voltage and decreasing the radius of the Paul trap fora

particular ion.

Paul traps are used in many scientific researches so knowing the quantum mechanical
lifetime of trapped particle in a Paul trap certainly aids in understanding the physics of trapped
ions in the Paul trap. This paper gives an initial result; additional research needs to done to fully

understand the quantum motion of particles in a Paul trap.
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APPENDIX A

MULTIPOLE EXPANSION OF THE ELECTROSTATIC POTENTIAL

The electric potential ¢, at the observation point P, due to the collection of number of

point charges Qi, Qa, Qs, Q4, Qs,... and Q,, that are enclosed in volume V, is given by

(p(R) Zl 14n£0|R—r K (A.1)

where
£o= permittivity of the free space,
= position vector of the charges Q;,
R= position vector of observation point [19, 20].
The schematic figure of the multipole expansion of the potential due to point charges is shown

below in Figure 11.

P {Observation point)

Figure 11: Potential due to the point charges
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Let 6;, be the angle between the observation point P, and the point charges Q;, then by

the law of cosines, one gets

|R—7;| = (R? + 12 — 2Rr;cos )%, (A2)
where cos 0; = %.

Now, assuming that observation point P, is close to the origin and the point charges Q;, are far

from the origin so that R << r; or ;Rf & 1 for all i. The reciprocal of Equation (A.2) is L

[R—7|

1

. . . . 1
king out the factors rj in th = =
(T 2R cos 0D12 and taking ou i e denominator gives

[R—7]

1

rl-{1+(r5l_)z—2(r5i) cos ei}

17z - then simplifying gives the following Equation (A.3)

1
1 1 R\* R 2
—— = 1+(—) —2(—)c050i ,
|R—-7;| ™ Ty T
1 _1 ~1/2
T T 1+ 8)712 (A3)

where § = (—1-2-)2 -2 (ﬁ) cos ;.

Ti Ti

The power series for |X| < 1 is given by the following Equation (A.4) [19, 20],

~1)x2 — —Nx3
(142" =1+ nx+22 ZID" +2 1>?f‘n 2)x

(A4)

Here, substitute & for x in above Equation (A.4), then the Equation (A.4) becomes

(-1/2)(=3/2)8*  (=1/2)(-3/2)(-5/2)8°

(1+8) V2 =1+ (-1/2)6+

_ 1 3 5
(1+8 V2 =1-28+-8" -8+ (A.5)

Now, substitute for § in above Equation (A.5), one gets
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oo 138 -2 (Do () -2(Fen]
3

S o Zose -

3 4
Then, drop the higher terms such as (ri) and (rﬁ) in above Equation one gets
i i

(14687 ~ [1+( )cose +1 (i)2{3c0520i——1}+..] (A.6)

Substitute the Equation (A.6), in the Equation (A.3) one finds

12 i i

1 ' 1 1 1
= =—1+87?=|-+—Rcos0; + -—5R*{3cos* §; — 1}+..
= r T 2r3

——a

L z[l+’”’ {3(R )% — R2r§}+..]. (A7)

[R-ri| — |ni

Again, substitute the Equation (A.7) in the Equation (A.1), the electric potential due to point
charges can be calculated by the following Equation (A.8) and the detailed information of

multipole expansion is given in the [ Wangsness,1986] [19, 201,

o(F) = [ s &g L l1sR +~—Z {3(§.ﬁ)2_32r§}+...] (A.8)

4118 41r£0

where
Ql
Monopole (pm(ﬁ) = ey Zn
. 1_2’ _ n Qz
Dipole (pd( )— 411'8()Zl 1 3

Quadrupole (pq(ﬁ) = 4— 1 Py {S(R )% — RZT?}.
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APPENDIX B

POTENTIAL IN A PAUL TRAP

The electrical potential close to the origin produced by multiple point charges that are far

from the origin can be calculated by the Equation (A.8) which is shown in appendix A,

o(R) = o St P 4 e S g BT+ o S (3R ~ RorE) o

47‘[80
The electrical potential close to the center in the linear Paul trap as shown in Figure 12 can be

approximately calculated by the Equation (B.1),

81r£

o(R) = [m e . pra Q‘{S(R )2 — Rzr,?}] (B.1)

—Q

—Q2

Figure 12: Side view of Linear Paul Trap
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The charges Qy, Q,, Q; and Qy are at a distance 11, I7, 13 and 14 respectively from the origin. The
position vector of charges Q1, Q,, Qs, Q4 and observation field point P, are 'y, T, T3, T4, and I_f‘
respectively. Let, the magnitude of charges |Q1],|Q21, @3/, Q4] on the Paul trap equal to @ and
the radius rj, 1y, 13, Iy, are equal to r. here the positive (+) and negative (-) sign means that charges
are connected to the positive and negative side of alternating current (AC) that oscillates‘ with

radio frequency. Then, the position vectors of charges and observation field point are 7y = —rX,

Ty = —T9,73 = 1%, T4 = ryand R = x% + y¥ + 22 respectively. Then, the dot products of the

— —- — —
vectors are; R.77 = —rx, R.T;, = -1y, RT3 =1x ,R. 7, = ryand |1{|* = |15|* = |r5|* =
[ral?> =12
The Monopole term

The electric monopole potential of the Paul trap from the Equation (B.1) is,

(Pm(l_i) =2 ‘il-zl g_ll

41ty

Q1

Now expand it, (pm(l_?)) = {Ql ¢ p
4

___+__2+%+
2 r3

—+ - } and substituting the corresponding
1

41eg

values of charges (Q;) and the distances (1), one gets

o(R) = 0. B.2)

Here, the monopole term of the Paul trap is zero.

The Dipole term

The electric dipole potential of the Paul trap from the Equation (B.1) is,




Now expand one gets, (pd(l—f) =t {r (R 1) + (R _)) +3 e (R _)) + (R 4)}

4meg

and substituting the corresponding values of charges (Qj), the distances (r;) and the dot

products R.T,. One gets (pd(R) = [ {(— rx) ~ (=ry) + (rx) — (ry)}] and

4nteg

simplifying it gives,

‘Pd( )=

ameg [ 3 (=rx+ry+rx— ry)]

@a(R) =0. (B.3)
Here, the dipole term of the Paul trap is also zero.

The Quadrupole term

The electric quadrupole potential of the Paul trap from the Equation (B.1) is,

¢,(R) = P )N 105‘ [3(R.7))% — R*r2}.

Now expand one gets, @ q(ﬁ) =

p— r—i1{3(R.r1)2 — R?r3} + ;52—{3(R.r2 2 R*r3}+
g—g (3(R.73)? — R*r3} + g—g (3(R7T9)?% - Rzri}] and substituting the corresponding

values of charges (Q)), the distances (r;) and the dot products R.T,. One gets ¢q(ﬁ) =

1

81t£0

[+ 2 {3(-0)? - R2r?} — £(3(—1y)? — R¥r%} + £ {3(rx)? — R%r%} —

;Qg {3(ry)? - Rzrz}] and simplifying it gives

¢q(R) = 1 [2 (3r%x% — R?r%? — 3r%y* + R?*r? + 3r?x? — R%r? — 3r?%y?
q 8mey Lr® : ‘

+ RZTZ)],

48



1
8mey

®q (ﬁ) = [}% (612x? — 6r2y2)],

- 1
§0q(R) = E[}%&,z(xz - }’2)];

(B = 3e(x*-¥?)
0q(R) = =+ (B.4)
Here, the quadrupole term of the Paul trap is not zero.

Now substituting the values of Equations (B.2, B.3 and B.4) in Equation (B.1) gives

o(R) = g, (R) = 24==x) (B.5)

4megr?

Therefore, the electric potential of the Paul trap is the quadrupole potential which is given by
Equation (B.5). The Paul trap uses radio frequency alternating current (AC), so the charge on Q
changes with AC that is oscillating with frequency {2. Then Q turns out to be Q@ = @, cos({2t) and
the potential in the linear Paul trap as shown in Figure 12 becomes,

3Q, cos(2t)(x2—y?)
4mET3

o(R ) = : (B.6)
where Qo = charge of the conductors,

) = radio frequency of AC,

r = distance of the conductor from the center or radius of the Paul trap,

£o= permittivity of the free space,

x = the point in space how far away from the center in x-axis,

y = the point in space how far away from the center in y-axis.

The potential in Paul trap (Equation B.6) in terms of applied voltage (Vo) is

3V, cos(Rt)(x2-y?)

r2

o(R,t) = , (B.7)

3Q

4megr

where, Vy =
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