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PREFACE 

The design and development of any piece of equipment involves 

a large amount of investigation and experimental work. This thesis 

is a treatise on the design of a radlo-:trequency converter unit 

which is to be used for a specific purpose. The background details, 

basic theory. design problems. and results are explained. 

I wish to thank Dr. H. L. Jones for his interest and valuable 

criticism in the preparation of this thesis. I also wish to thank 

the staff of the Researeh Foundation, Electr·onies Laboratory for 

their help in the development project. The availability of the 

facilities of the Electronics Laboratory are also appreciated. 
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CHAPTFl? I 

INTRODtJCITO~ 

During recent years the Researe-h Foundatlon of Oklahoma 

A. and M. College &as undertaken to develop and produce small 

production quantities of radar beacons. These beac·ons, sometimes 

called transponders, consist essentially of a radio-frequency 

receiver attd transmitter . The beaeon is a link ·of a radar tri­

angulation system whieh utilizes the propogation time of pulsed 

radio-frequen'Cy signals to plot trajectory iltformation of airborne 

\'~hicles. Other uses of the beac·ons are to perform eonnnand :tu net ions 

within the vehicle and t-o respond with hrfonnatlon relative to 

i'ts en\flronment . The latter function is called telemetry. The 

beacons are compact, light weight, and ruggedly con·structed. 

Power c·on·sumption is kept to a minimum. 

The receiving portion of the beae,on eonsists of a mfxer­

oseillator or tmnverter unit and a fottr-stage intermediate-freqlleney 

amplifier with a diode detector. The receiver has a pulse operated 

automatic gain control circuit. The intermediate-f:tequeney amplifier 

consists of two staggered pairs of amplifiers with an overall 

bandwidth of approximately three megacye'Ies and an oYerall voltage 

gain of about 80 decibels. The signal required for a 2/1 signal/ 

noise ratio is about 35 microvolts with a detector otttput noise 

level of approximately one-tenth of a volt. 
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Like many other types of mec·hanieal or electr'ical devices 

the beacon and its eoll!J)'Onent circuitry undergo certain design 

modif1cations each tlme a new quantity is produced. These modifi­

cations are made to e·onform to requirements of the purchaser and 

also to take advantage of newly developed and improved components. 

One unit of the beacon whieh has had but little improvement is 

the radio-frequency converter. 

The converter is a unit which in general performs satisfactor­

ily but usually requires a certain amount of haphazard adjustment. 

The design of the unit is -one that d-oes not lend itself to dupli­

cation wher·e performance is e·oncerned. The tuning elements for 

the oscillator and the mixer are small parallel transtnission lines 

tuned with adjustable shorting bars. The mixer line bas a variable 

capacitor for additional tuning. The oscillator tube is a s,ubminia­

tu-re type 5703 triode and the mixer tube is a subminiature type 

5702 pentode which is triode connected. Both of these tubes have 

lead inductances which are high because of the small size of the 

leads. These lead inductances are subject t ·o S'ODle variation due 

to lead length and arrangement in wir.fng the unit. The inter­

electrode capacitances of the tubes are also subject to some 

variation which alter the performance of the cir·cttits in general. 

It is known that the mixer tube is operating very close to inter·nal 

resonance at 600 megacycles. With .slight deviations of inductance 

or capacitance the receiver sensitivity loss due to mi'stuning is 

sometimes difficult to cope with. There have been instances when 

a mixer tube has been replaced with another tube to improve conver­

sion gain when for most purposes on·e tube was as good as another. 
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F-or these and other reas,on·s it has been thought desirable to have 

a n:ew design for the c·onverter unit for some time. Tbe design 

will be destrlbed in this thesis. 

Si nee the frequency -ot operat ton of the be aeon is 600 mega­

cycles the tuning elements may be distributed transmission line 

elements or a ~ombination of distributed and lumped elements. It 

h-as been decided that any new design for the C'Onverter unit would 

be one which utilized distributed transmission line tuning elements. 

These tuning elements may have been coaxial transmission lines, 

flat plate lines or parallel lines. It was also desired to u-se 

vacuum tubes which were designed for use at this frequency and 

were adaptable to some available tuned-line configu-ration without 

the use of any eonnecting leads. Any improvement in overall sensi­

tivity for the beacon reeeiVer would be readily accepted and it 

was hoped that a two-to-one improvement eettld be obtained_. It 

was also anticipated that the selectivity ·of the converter unit 

could be improved considerably. This would help in preventing 

the transmitter output signal fr·om spilling into the receiver. 

Tr·ansmitter spill-through has been a problem in the past beeattse 

a common 50 ohm antenna system has bee11 used for transmitting and 

receiving. The beaeo11 transmitter frequency is 580 megacycles. 

Th'is is only 20 megacycles displaced fr·om the signal input fre­

quency, consequently the selectivity would need to be quite sharp. 

The g-oal for size, weight and pewer requirements were set 

at nothing larger than that of the old converter. The old unit 

measures 2 x 3 x 4 inches and weighs 3/4 lbs. It draws 23 milli­

amperes at 150 volts and 0.4 amperes at 6.3 volts. The ftequency 
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tutting range of the new 1111it was to be for an incoming signal fre.:. 

queney spread of 590 to 610 meqacyeles. In -order that the ttltit 

would meet most any enviion111ental speei.fieat ion which might be 

imposed it wast~ be designed to meet the following requirements: 

The freqUeJtCy of the local oseillat&r should not shift more than 

one megacycle in eitheT dlreetlon nor should the sensitivity of 

the whole reeelver suffer more than a two-to-one ehange due to a 

change of environme·nt of the eonverter unit when s-ubjeeted t-o the 

following conditions : The temperature of envitottment should be 

allowed to change from -55°F to +1600f. The unit should withstand 

three scans of vibration fr·om 10 to 55 cycles per see·o11d with a 

d-ottble amplitude of 0.032 inches in each of its three major planes. 

It sho1i'ld withstand three impact shucks in bnth directions of 

each of its major axes . Each impact should have 15 g aecelerat lon 

for a duration of 0.011 seeonds. No humidity, moisiure, ·or 

altitude c-om:liti-ons were imposed slnee it was expected that the 

anit would notmally be operated within a pressurized dry eontainer. 
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CHAPl'ER II 

DISCUSSION OF CIRCUIT CONSIDERATIONS 

A superheterodyne receivet' employs the technique of C'0111bining 

the incoming modulated radio-fr·equenoy signal with a locally generated 

continuous-wave signal. They are combined in some type of nonlinear 

device and consequently, a diffetenee frequency is obtained. This 

difference frequency, called the intennediate frequency, is further 

amplified in the intermediate-frequency amplifier. The local 

oscillator and the mixer are in combination referred to as the 

converter.I The converter unit may also incorporate one or mere 

stages of radio-frequency amplification and/or passive radio-!re-

quency C'ircuits . From these facts it is obvious that an oscillator, 

mixer, and possibly, an amplifier and a passive preselector will 

be employed in the design of a converter unit. These will involve 

the use -of vacuum tubes and tuned c-ireuits. The important point 

here is to find the type of each which is most adaptable· to this 

problem. 

From pTevious experience it has been fairly well established 

that the tuning elements for this converter will need to be of the 

transmission line type of circuit with little if any added lumped 

reaetanees. It is known that sections of transmis'sion lines which 

Iterman, F. E., Radio Engineers Handbook, McGraw-Hill 1953, 
Page 567. 
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are multiples of a quarter wavelength at some frequency may be 

made to aet like resonant or antiresortant circuits at that frequency, 

if the sections are terminated with a short or open circuit. A 

desired reactanee ean also be obtained by adjusting the length of 

a short-cireuited or open- circuited section of transmission line. 

There are various eonfigurations of transmission Hn·es which could 

be used for radio-frequency tuned circuits . Among these are coaxial 

lines, parallel lines, and flat plate lines. The coaxial line 

seems to carry more advantages for usage here than either of the 

other two. Pr-lmarily it has had ultra- high- frequency vacuum tubes 

designed for its use . These tubes are the familiar disc seal 

"1ighth-ouse" coplanar triodes, rocket tubes, and the newer pencil 

tri-odes . There are few tubes which are adapted to the flat plate 

or the parallel lines at these frequencies except by makeshift 

methods . 2 The coaxial line eireuits have another advantage in that 

they provide their own shielding. This is useful for reducing 

radiation from the local oscillator , and r edtieing reception of 

extraneous signals in the radio-frequency amplifier circuits. 

The chief disadvantage of using c-oaxial circuits is that their 

construction is more complicated than any of the others mentioned. 

As far as vacuum tubes are eoncerried the types merrtioned above 

are required for coaxial-line circuits . Miniature and subminiatul'e 

tubes have been ruled out because of their construction . This 

leaves us with the disc seal tubes and coaxial elements. The 

pencil triode has been chosen for its small size and reasonable 

price . 

6 
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Other circuit elements are the bypass capacitors and bias 

resistors . The resistors aTe composition resistors of the common 

variety. All bypass eapaeitors are constructed within the unit 

wherever possible . Capacitors made of flat plates separated by 

a dielectric are generally better than eormnercial units with wire 

leads when used at these frequencies . Dielectric material used 

will be tetrafluorethylene, known as teflon. This material is 

an excellent dielectric for use at ultra-high frequencies. 

The bas i-c circuit for the converter unit is the oscillator 

for generating the local signal and some type of mixer for frequency 

conve·rs ion. The converter described here will consist of three 

coaxial line circuits and a crystal mixer . The oseillator and a 

radio-frequency amplifier will be of the folded- back commort-,g·rid 

or grid-separation type of coaxial circuit using pencil triodes. 

The crystal type mixer will be used because of its low noise 

eharaeteristies. 3 A passive coaxial pi"eseleetor will be used 

between the antenna and the radio- frequency amplifier. The purpose 

of the preseleetor is to improve the selectivity of the converter 

and to help facilitate the use of a eonmon antenna for the beacon. 

As previously stated , the transmitter spill-through has been a 

problem. The selectivity of the preselector w·ill help rejeet the 

powerful signal of the transmitter by presenting a high impedance 

to the transmitter frequency . This high impedance may al so be 

utilized to more effectively direct the transmitter power to the 

antenna when a eonmon antenna system is used . The amplifier is 

7 
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u'sed to overcome c:onversion loss in the erystal and signal loss 

in the preselettor and to improve art the overall receiver sensi­

tivity as much as possible. 

lt is n1>t the purpose of this thesis project to develop any 

radlttally new clrc::1:Hts hut to adapt already existing design informa­

tion to this particular converter unit, It is kn:own that etilcfont 

"Oscillators and ainplifiers of the eoaxial variety are in e~istenee 

-and have been used in radar and other ultra-high-frequency circuits 

quite extensively. This thesis purports to Shllw how these circuits 

can be made to perform together as a -unit to ae(;t)mplish what has 

been set forth. No detailed theory of operation will be given but 

a genera I explanation of e i reu it 'Operat i'On wil 1 he made . 

8 



CHAPTER III 

CIRCUIT 11IEORY AND DESIGN 

The three major units of the converter are the oscillator, 

the amplifier, and the preselector. The fonrth unit, the crystal 

mount, is attached to the amplifier unit. It was kD'OWD from the 

beginning that all of the units would eventually be attached to­

gether as one -complete converter. This involves coupling energy 

from one tuned cavity into another as well as ~ther intricate 

mechanical problems which are sometimes difficult to s~lve. During 

the first stages of design the oscillator, amplifier, and preselect,or 

were treated as lndiYidual units. The oscillator, for ex911P1e, 

was the first unit designed and was ·given full attention until 

its status was advaneed enough for the amplifier to be designed. 

After the amplifier was completed and was performing satisfactorily 

its output connector was replaced with the crystal mixer. The 

local-oscillator signal was coupled into the amplifier by means 

ot coaxial cable, and the three were made to function as a converter. 

Finally a preselector was built, checked out as an individual unit, 

and placed in the input circuit with coaxial cable. Its usefulness 

was verified, however, it did not contribute much to overall per­

formance except that of selectivity. 

As previously mentioned the oscillator and amplifier use the 

grid-separation type of circuit. This circuit is demanded because 
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of the configuration of the pencil triode tubes and the mechanical 

methods of attaching the coaxial lines to the tubes. In grid-

LOCAL 
OSC/LLA ro.e 

RAO!O­
FRB;>U~CV 
,qMPt.1 Fl E-R. 

INTt=RM!=OIAT€- ,',ei=Q(/ENCY ourPUT 

Figure 1. Block diagram. 

separation cireuits the input voltage is applied between cathode 

and grid and the output is coupled fr·om the grid-plate resonator 

rather than from the plate-cathode resonator as in the usual 

cirouit.4 Figure 2 shows schematically the voltages and currents 

INPVT (a) _ Ol/TPVT INPVT (h) 

Figure 2. Grid separation circuit. 

in the grid- separation or grid-return circuit. When the signal 

10 

OUT PVT 

levels are l'ow there is generally enough bias to prevent grid current 

4Reintjes, J. F. and G. T. Coate. Principles of_Radar . 
McG·raw Hill 1952, Page 716. 



flow and Figure 2a applies. The input signal voltage is ek oT 

-ee. The grid-plate voltage, eh - e'c is the otttput voltage. The 

plate current and the eath-ode current are equal. This eurrent 

is the negative of the e-urrent supplied to the cathode from the 

signal source or the current supplied by the plate to the load. 

In ease there is grid eutrent in the C'ireuit, the plate current 

does not equal the eathode current and Figure 2b is used. If 

the tube has a large amplifie'ation factor the electric field 

between grid and plate do not influence the electrons betwe-en 

grid and cathode. The grid and cathode aet largely as a diode 

with the cathode current1 ik being determined by the signal Yoltage, 

ek. Most <Jf the electrons reaching the grid pass on t-o the plate. 

The electrons ate accelerated to the plate by the direct -voltage 

between grid and plate. They are decelerated by the alternating 

component of voltage on the plate, thus the direct current energy 

of the power supply is tonverted into alterD'ating current energy 

to be stored in the grid-plate resonator. The :res·onators in this 

instance are tttned sections of e-oaxial transmission line. 

A se~tion of lossless transmission line which is tenninated 

with a short eirc~it appears as a reaetance when viewed f-rom tbe 

open end. This reaetanee is inductive, capacitive, infinite, or 

zero depending on the length of the line. The talue of the reae-

tan~e is represented by 

X = jZo taa:_.2 '111 
9A 

where Z0 fs the characteristic impedance of the transmission line, 

}; is the length and A i s the wavelength within the diele-ettic f.or 

the frequency concerned. 
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As illustrated in Figure 3, the input reaetance is indu-etive 

for any section of short-circuited transmission line which is less 

than a quarter wavelength long. From this fact it can be seen 

0 

Figure 3. Input reaetance vs. wavelength 
for short-circuited transmission line . 

that any capacitive reactanee may be tuned to resonante by parallel-

ing it with a short-circuited transmission line ot equal induetive 

reactance. This is an example of the tuned circuits which are 

used in the cavities ot the grid-separation circuits of this 

converter. As an example, the grid-plate capacity of the 5675 

oscillator tube is 1.3 mieromierofarads. This represents 194 

12 

ohms of capacitive reaetanee at 630 megacycles. A matching inductive 

reactance using a 70 ohm shorted line will require a line length 

of 9.4 centimeters. Actually it is generally found that other 

factors edter into the calculations and the final length of line 

is obtained by experiment. 

The characteristic impedanee, Z0 of a transmission line is 

given by 

Z0 = 138 fog (b/a) 

where band a are the outside and inside radii respectively. 



The maximum Q for a coaxial resonator occuts when the characteristic 

impedance ts 75 ohms. It will not be reduced more than 15 pet'cent 

for impedances of 42 or 121 ohms. The unloaded Q is given by the 

expression below where (b) and (a) are measured in centimeters. 

Q = 0.694 \/fiej;. (b) lc,g (b/a) 
I+ b/a 

In designing the coaxial cavities for the oscillator and ampli­

fier the size of the brass tubing 11sed for the grid cylinder is 

determined by the diameter of the grid disc on the pencil triode . 

The innerm1>st rod-. ·called the plate line, and the outermost cathode 

cylinder are chosen in the design to satisfy design requirements. 

The plate line was made with a 0. 250 inch outside diameter. This 

is the same diameter as the anode connector of the pencil triode. 

The small size of the plate line helps reduce weight and also aids 

13 

in accomplishing dielectric tuning whieh will be explained later. 

The grid-plate line eharaeteristie i'mpedanee with a 0.875 inch 

grid sleeve and a 0. 250 inch plate line is 70 ·ohms. This gives 

maximum cavity Q which is desirable in the continuous-wave local 

oseillator for better freqtteney stability. The outer sleeve diameter 

was chosen as 1. 250 inches because this is about as small as could 

be used witho,it appi'oaehlng the diameter of the grid sle-eve. This 

gives a characteristic impedance for the grid ... eathode cavity of 

18 ohms. It was felt that since the grid-cathode conductance in 

grid separat it>n circuits is high, the low line impedance wotdd not 

greatly affect the circuit operation. 

Power can be coupled from a eoaxial cavity by either of two 

methods. One is the loop method whereby a loop ~f wire is introduced 

near the shorted end of the grid-plate cavity. This places the 



--

lo~p where the radio-frequency eurrent in the eaTity is highest 

and it is oriented so that it will couple energy from the magnetic 

field. This plaees it in a plane perpendicular to the eircumfer-

ential flux lines. In some cases it may be rotated to vary the 

coupling. The other method is called eapacitanee probe coupling. 

This uses a small disc- which is entered into the grid-plate cavity 

at a point of maxflJlfm electric field intensity. In the quarter 

wavelength cavity the point of maximum intensity is near the tuoe 

anode. The probe should be adjustable radially to adj'1st its 

eapaeity with respect to the plate lhe and eonsequently its coupl­

ing ·e:ftleierrcy. Power eoupling from the local oscillator of the 

converter is not a problem of obtaining efficiency but more a 

matter of d.oing it in the most convenient manner. Tli-e power output 

required is trivial. It was decided that in thi-s des l<Jn loops 

would be used since they are easier to build. 

Local Os.eillator 

Since the local oscillator was designed prior to any of the 

other units its treatment will be taken Up first even though the 

amplifier is a little more basic. The general layout configuration 

for oscillato1s is the so called ~end-to-end~ oscillator shown 

in Figure 4. Tlie resonant cavities are actually sho:rt-eire\tited 

Fc-e,O~CK J.OOP 

Figure 4. , ~nd-t,e-End~· Qseillator. 

(b) 



seeti,ons of eoaxial transmission line which are appl'oximately one 

quarter of a wavelength long. They are shunted on their open ends 

by the tu~ eapaeities. ~hematipally they may be represented 

by Figure 4b. As illustrated, this eireuit has the grid-tathode 

cavity on 11ne side al'td the gr·id-plate c'tlvity on the other. Both 

cavities are adjustable with movable metal plungers . The only 

means ~:t c·oupling energy between the two res,onator cavities is 

through the electron beam and by electromagnetie coupling through 

the grid.5 In the amplifier the electromagnetic coupling is desired 

to be a minimum to avoid rege·nerath>n but ior the oscillator, feed-

back must be added in order to sustain oseillation. Variotts forms 

of loops, capacity probes and eombinations of both are used for 

feedback as htdieated in Fi!Jttre 4. - The feedback energy must satisfy 

certain phase and amplitude requireme-nts to sustain oseillatl~n. 

The ~folded-baek-i ascillat·or is e·leetri~ally similar to the 

"end-to-endtt oscillator. It is derived from the ~end-to-end" 

oseillator by foldhg the grid-c:athode eavity over the grid-plate 

cavity. This ts illustrated in Figttre 5. A s~itable feedback 

atrangement is shown with the threaded feedback screw. Tbfs is 

a capacity 0011.pling probe which couples energy from the grid-plate 

eavity into the grid•cathode cavity. When the tutting plttngers 

15 

are adjusted tor maximum e:tfieieney with proper feedback adjustment, 

it will generally be found that the {)'rid-plate cavity is e1eetric.a1ly 

longer. The advantages of the iolded-baek design are in its small 

physical length and ease .of tuning. The small size is the reason 

' Sdu~ewitsch., A. M. and J . R. Whinery. "Microwave Osoillat,ors 
·using Disc-Seal Tubes . " Prneee!LJ.n.srs of IRg, Vo1 . 35,. No. 5, May, 1947. 



for using this design on this project. 

PLA,t:­

GR/D 

CATh'OOe-

Figure 5. ~olded-Baek,v,. oscillator . 
. ..L 

To analyze the electrical performance o:t the oscillator refer 

· to Figure 6.6 Lp and LK represent the induetanees of the grid­

plate and grid-cathode coaxial cavities repseet iv'ely. Cgp, Cgk B1id 

Cpk represent interelectro.de· and stray o-apaclt ies. Cpk is augmented 

by the feedbaek tapacity screw as shown in Figure 5. The leedbaelc 

voltage to sttstair.t -oscillation is applied to the ~athode by the 

tapa-¢ity voltage divider as indicated in Figure 6b. ~ is the 

resultant eapatity ~btained when the grid-cathode eavity, with 

Cgk has a resonant treqnency lower than f.0 , the frequency of 

oscillation. This makes the cathode cavity appear eapaeitive at t 0 • 

_) (a.) (b) 

Figure 6. Radib-frequeney equivalent cirettit ot oscillator. 

6Reintjes, ey:- F. and G. T. Coate. ~rinciples ot Radar, 
McGraw-Hill 1952, Page 721. 

L.p 
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The grid-plate eavity resonates with Cgp at a freque,ncy highe-r than 

t making it an ind•ctive reactanee. This inductive reaetanee. 
0 

Lp will resonate with the series combination of Cpk and Cg at the 

oscillator frequeney, f 0 . 

17 

A eross-seetlon view of the osdllator, amplifier and preseleetor 

is shown in Fi~ure 7. These ~avities do not use adjustable tuning 

plungers but use other tuning methods t~ be described later. It 

may be noted that the everall length of the outer cavities is fottr 

inches . This length was determined when the oscillator was designed 

and the other units were fort ed to eomply in length. The f'ottt-

inch length was established by the length 1>f the grid-plate cavity 

of the oscillator and the additional length required to accomodate 

the peneil triooe. The gird-plate cavity was made 3. 4 inches long 

whieh is correot to produce a loeal-oscillator fre<t"eney of 630 

megacytles . This freq~eney is 30 megacycles abave the signal fre­

quency or 600 megacycles and consequently gives a differelttJe fre­

queney of 30 -megaeyeles which is the frequency passed by the inter­

mediate-frequency amplifier. 

The grid-plate cavity is electrically lengthened .ind its 

resonant :frequency lowered by a teflon dise ·near the tttbe end. 

This disc is u·sed pr·imarily to sttpport the plate line within the 

grid cylinder. Its thi~kness may be varied as a means of sett Ing 

the mean frequency of the oscillator. The frequenGy is also lowered 

by a traveliug dielectrlG tutting plunger within the grid-plate 

eavity. This pl\lnger alm'Ost fills the area between the plate line 

and gTid cylinder and is one inch long. tt has a total travel of 

one ineh and is posittoned with an adjustable nylon serew as indicated 



in Figure 7. The tuning piunger is made of polystyrene base plastic 

called ~lypenco Q 200.5" and manufactttred by The Polymer Corpora­

tion of Pennsylvania . The dielectric constant of this material 

is about 2.5 at 600 megacycles and its volume resisthity is greater 

than 1015 ohms per cubic centimeter. It is stable over a wide 

temperature range. The characteristic impedance ot· the line is 

reduced over the length of the plunger and the resultant input 

reactanee of the cavity can be made to vary with plunger position. 

It lowers the frequency as it is moved near the end of the line. 

The total range of the oscillator frequency is 622 to 638 mega­

cycles with this tuning plunger. The dielectric plunger is a smooth 

operating, noiseless method of frequency control. The original 

plungers used in the design were fflade of a tough nylon material 

called ~olypenco FM 10001.~ It performed quite satisfactorily 
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at room temperature but has a high loss factor at higher temperatures. 

As can be seen from Fi-gures 7 and 8, the plate line does not 

attach directly tb the end plate of the cavity but is insulated 

and carried through the end plate to the power supply. The plate 

line is bypassed for radio-frequency curl'ent by the bui1t-in disc 

capacitor, Cl07. This capacitor consists of two brass discs insttlated 

from the end plate with 0.020 inch thick teflon sheet. It has 

a calculated capacity of 40 micromierofarads and a reactance of 

7 ohms at 630 megacycles . 

The grid-cathode eayity of the oseillator requires an electrical 

length greater than its actual 99air" dimensions in order to oscillate·. 
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Figure 7. Cross section of components of converter. 
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This is accomplished by the insertion of a 1.63 inch long teflon 

cylhtder between the grid and cathode cyclinders. The location 

of the teflon cylinder is shown in Figure 7. The length of the 

cylinder was established empitieal ly for proper feedback phase 

for oscillation. The reasons for this adjustment have been explained 

previously. 

Although grid bias might be more desirable in a class C 

oscillator the grid cylinder may not conveniently be insulated from 

ground in this unit . The oscillator uses cathode bias as seen in 

Figure 8. The cathode of the tube is connected to a eapaeitor 

disc by means of beryllium copper e-ontactlng fingers. This disc 

is part of a bypass capacitor, C 105, similar to that in the plate 

circuit. It bas a capacity of 30 mieromierofarads and a reactanee 

of 9 ohms at 630 megacycles. The cathode bias resistor, R 102, 

is connected between a terminal on the disc and ground. The value 

of the resistance is 2200 ohms. This value is higher than would 

normally be used in the circuit but it reduces the strength of 

oscillations and reduees the power requirements from the power 

supply. With this resistanee the oscillator was found to quench 

if the bypass capacity was greater than 50 micromicrofarads. 

Quenching is a periodic interrupt ion of the oseillat ion due to a 

buildup of bias across the bias resistor and capacitor. Reduction 

of the bias time-constant is necessary for reduction of the tendency 

for quenching. 

Feedback for the oscillator is the same as described previously 

for the ~folded-back" oseillator. A 5/16 brass screw probe is 

adjusted for the optimam feedback capacity, C 106, between the 
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cathode and plate lines. Adjustrnertt of the feedback probe has 

a direct effect upon the frequency of oscillation since the feed­

back oapaeity is one of the frequency determining elements. The 

fixed eonstants of the oscillator have been selected to allow the 

optimum feedback adjustment to occur when the fre(lll'eney is centered 

approximately at 630 megacycles. The frequency may be adjusted 

slightly with the feedback probe without eneumbering the perform­

ance of the ostillator . 

The type 5675 pencil triode is mounted within the cavity by 

insertion of the anode terminal into the plate line gripping fingers 

and allowing the grid disc to snap into a circular groove near the 

end of the grid cylinder. The grid cylinder is slotted into fingers 

near the end to expand over the grid disc. The cathode plug is 

a separate assembly which eontains the cathode connecting fingers, 

bias resistor, and bypass capacitor. It is installed over the 

cathode of the tube and within the outer cylinder of the oscillator. 

The structural design has been made t ·o relieve mechanical strain 

on the tube as much as possible. 

Power is coupled out of the oscillator by means of a very 

small loop located one- half inch from the shorted end of the grid­

plate cavity. The power supplied by the local oscillator is very 

small, being only about 0 .5 milliwatt . 

Radio-Frequency Amplifier 

Many of the details that were menti~ned abottt the design of 

the local oscillator also apply to the radio-frequeney amplifier. 

As shown in Figure 7, the amplifier was made to be consistent with 

the oscillator in that the resonator elements, dielectric tuning 
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plunger, the built-in bypass capaeito:ts, and the cathode plug 

assembly are similar to those of the oscillator. The amplifier 

lacks the feedback probe which is rieoessary in the oscillator. 

The oath-ode bias resistor sets the plate current at 5 milliamperes 

with +150 V'Olt plate supply. 

The anode eonneetor of the plate line has a 0.560 diameter 

by 0. 200 thick brass ring attached . This ring bas a cup-shaped 

teflon bushing about it to maintain eoncentrieity for the grid­

plate cavity. The purpose of the brass ring is to add a lumped 

amount of capacity across the grid-plate cavity and thereby redttte 

its resonant frequency to a mean value of 600 megacycles. Without 

this added capacity the frequency of the grid-plate resonator would 

have been 625 megacycles. With the mean frequency of 600 megaeyeles 

the dielectric tuning plunger allows a tuning spread of 592 to 

608 megacycles which is about right to track the oseillat·or !-or 

a ~O megacycle difference frequency. 

A 0.88 inch long teflon sleeve is located between the grid 

cylinder and the outer cylinder to lower the resonant freqtteney 

of the grid-cathode cavity to near 600 megacycles. The grld-eatbode 

tuning is very broad because of the lbw input impedance of the 

amplifier. 

Because the input impedance is in the order of only a few 

hundred ohms the problem of matching the input to a 50 ohm souree 

is 111\teh simplified. The signal input is connected to the grid 

cylinder about one-third the distance from the shorted end to the 

grid. This is a compromise location with the preseleetor as ex­

plained later. This location gives an input standing wave ratio 
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of about 2.3/1 at 600 megacycles. The loeal-osci llat-or output s ignal 

is also connected to the grid cylinder one-half beh from the shorted 

end of the cavity. The lo~al-oseillator signal is injected irtto 

the crystal mixer after being passed through the- amplifier. 

The output coupling circuit of the radfo-freqUeney amplifier 

is a 0. 5 by 0.2 inch eoupling l~op located 0.75 inch from the 

short-circuited end of the cavity. The loop passes through the 

grid-cathode eavity ittto the crystal mount. The loop eouples the 

600 megacycle signal energy and energy from the local oscillator 

into the crystal mifer where they are converted into a 30 megacycle 

intermediate--frequ-en-ey signal. The loop provides just enough loading 

to give the ~avity a loaded Q of 100 and a bandwidth of 6 megacycles. 

It is difficult and impractical to obtain some of the necessary 

information for making aeeu~ate calculations for such things as 

gain, bandwidth. and input impedance for an amplifier of this type. 

To be strictly accurate the ealeu1ations wottld contain fi~ures 

for transit time loadi111J and an accurate plate load resistance 

figure. A straight forward ealeulation ft:,r stage gain and grid­

cathode input impedande is given below. 

The Q of the amplifier grid-plate cavity as found from ba!fd-

width meas~rements is 

Q =.-L = 600 = 100 
~f 6 

The resonant impedance is considered the plate load fur the 

tube and is7 
z = 4Zo Q = 4(70)(100) = 8 900 ohms 

s TT rrr ' 

7Te~man, ·F. E., tl!Jiesonant Lines in Radio Circuits, ft" Electrical 
EngineerinJI, Vol. 53, No. 7, July 1934~ 



where the characteristic impedance 9 Z0 is considered to be 70 

-ohms even though it may be modified by the dielectric tuning 

plunger. 

The gain of the tube from input to output is given by8 

Gain=(µ+ l)_ ~s = (48 + 1) (8,900) = 19.7 
'RP+ Zs (13,300 + 8, 900) 

where RP an~ are the plate resistance and amplification factor 

of the 5876 pencil triode operating with 150 volts dire-ct plate 

voltage and 5 milliamperes plate current . The plate current is 

kept low to reduce power r equirements for the amplifier. 

The input resistance is given by 

Rin = Rp +Zs= 13,300 + 8 9 900 = 453 ohms 
.,).J + l 48 + 1 

The stage voltage gain is the tube gain multiplied by the 

step- d·own ratio of the plate cavity and the step-up ratio of the 

input cavity. 

Stage Gain = G ~ Rfn = 22.8 .JOO ~ = 10.9 
Z8 Z0 8,900 50 

where Zx is the fmpedanee of the crystal and Z0 is the eharae ... 

teristie impedance ot the inpttt . All c·ouplfng ci:r~uits are assumed 

to be perfect impedance mate-hes. In a practieal ease gain of this 

magn'itude cannot be realized . 

· Crystal .Mixer 

Crystal r ectifiers ar e superior to t r -fode vae'tinm tubes as 

frequency converters because of the relatively small amount of noise 

generated. This is especially true at frequencies above 500 mega-

cycles . Crystals have less conversion loss at higher frequ-enei~s 
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8Jones, M. C. , wGrounded Grid Radio Frequem,y Voltage Amplifiers, tc: 

Proceedings of IRE, Vol. 32, No. 7, July 1944, Page 423. 
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than diodes because the transit time effeets are- negligible. 

A crystal rectifier consists of a erystal of silie·on, -germanium, 

or other semiconducting material and a tungsten probe that touches 

the surface of the erystal. The whole assembly is mounted in a 

small cylhtdrieal eontaine,r called the c?ystal cartridge. Tile 

jttnetion or the probe and crystal show a n-onlinear resistante to 

the flow of current. In faet the rati() 11t forward to back resistanee 

causes the crystal to rectify alternating current. F,or small 

voltages the forward resistance ,of the crystal diode d~ereases 
• 

with inereasing voltage b'!lt levels off to a constant value as the 

voltage· becomes larger. This constant resistance is the ~spreading 

resistance" Rs , which is the ,r esistance tt> cutient entering the 

silicon from the tungsten. It is in series with the nonlinear 

junction res istanee rbv which is shunted by the jttttet fon capacity, 

C. This capacity is in the 'Order of one mieromierofarad and acts 

as a radio-frequency shunt. At high freqttenc-ies it will carry 
~ I 

reactive current around the nonlinear resfs'tance -?'f,,and-"teduce its 

.Rs 

I C 

(Q) (b) 

Figure ?,. Equivalent circuit and diode characteristic of a 
typical crystal . 

ree.t'ification efficiency. The capacity is reduced by reducing 

the size of the jttnetion but this increases the danger o.t crystal 

bttrrrout. TJre type of crystal used in the eonverter is- the IN21B. 



It was chosen because it is a eDD'lmonly used type, making it easier 

to obtain replaeements. Its shltnt capacity is 'tJnly O. '3 mieromicro-­

larads. 

The aetion of the erystal is tD eombine the radio-freqttency 

signal and the local-·oseillator sign-al to give a sum and d1fference 

frequency. This is a characteristic of 'inixing aetion in any nott­

linear circuit . In most superheterodyne cottl'erters the diffeTence 

frequency is used and for this e&nverter the difterence frequen,ey 

is 30 megacycles. The input impedance to the radio-ftequettey signals 

is approximately 300 ohms and the outpttt impedance is approximately 

400 ohms. The conversion loss, noise temperature, and impedances 
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are all atfeeted by the local- oscillator p-owe-r injected into the 

crystal. With very little local-oscillator power injection the 

conversion loss is high. At high values of' local-oscillator pt>wer 

injection it is again high because of the inctease in back resistance. 

The best operating range for conversion loss and rtoise figure for 

a typical crystal ls where the rectified -eurrent is between 0.3 

and 2 milliamperes. The operating impedances do itot change apprec­

iably with :oscillator injection unless the frequency is very high . 

The crystal cartridge, X!Ol , is oontained in a crystal mount 

whi-eh is inserted into the side of the radlo-trequeney amplifier. 

The crystal mount is a small cylinder whieh is lined with tefltm 

insµlat ion to insulate the crystal eartridge from ground. The tip 

of the erystal is inserted in a small receptacle which in turn· is 

connected to the output coupling loop of the ampiifier. The top 

connector of the cartridge is gripped by a set of contacting fingers 

which is electrically connected t 'O a small coaxial eable leading 



to the intermediate-freqttettey amplifier. The ,crystal has a ea)). 

which screws on, to retain the erystal and add a small amo'1rtt ot 

filter capacity for radio frequen-ey • . As prevlous ly stated the 

loeal-ost:illator signal is injected int1> the input circuit ,of the 

raditt-frequency a,nplifier aBd is coupled out of the amplifier to 

28 

the crystal mixer along with the signal frequeney. The intermediate­

f'requeney signal which is cabled to the intermediate-freqtteney 

amplifier is transformer coupled to the first stage ·of the amplifier. 

The grounded end of the transformer winding may' be opened and used 

to measure crystal current. The current for the orystal mixer of 

the eonverter unit is approximately one milliampere. Praetieally 

all of this current is a result of l<ttal-oseillat.or injection. 

Preselect or 

The preselector of the converter is essentially a res~nant 

circuit consisting of a section of sh<>Tt-eireuited coaxial tratts­

miss ion line tuned with a -variable eapacitor. A eross-seetiort 

view t>f the preseleet1>r is shown in Fi~re 7. The variable eapaeitot, 

CIOl, is made of a cup .. shaped plate attached to the 1Senter eo1td'1ctor 

·of the transmission line and a cylindrical projection on t he end 

plate of the preselecto,t . This eapacitor is adjusted by moving 

the cente? conductor back and forth by means ot its threaded end. 

Tiie short-circuited se~tion of transmission line is less than a 

quarter-wavelength long and acts as an inductive reactance as 

discussed previo11sly. This reactance is t~ned to resonance with 

the capacitive ieaetanee of the capacitor at the ineoming signal 

frequ·enty ·of 600 megacycles. The eff'eet of adjtrsting the ~enter 

conductor is twofold in that the line length and the eapae-ity 



change simultaneously. 

The pteselector uses 0.875 tubing and 0. 250 ineh rod for its 

two conductors . The 70 ohm characteristic impedance is consistent 

with the design of the other units and is a high Q circuit. The 

high l~aded Q of the preselector makes it useful for several reasons. 

It greatly attenuates image frequencies thereby offering a high 

degree of image rejection . It will attenuate other signals ~utside 

the passband . Transmitter spill--through and reeeive-r blocking is 

greatly reduced . Some attenuation at the desired frequency will 

be introduced since it is a passive element. This is one of its 

disadvantages but measurements and calculations show the attenuation 

not to be serious . 

The 3 decibel bandwidth of tbe preseleetor is the fteqUeney 

difference (.6.f) where the voltage is 3 decibels d~wn (half power) 

from its resonant value. These measurements are made with a constant 

input voltage and constant input and output impedances . The band­

width can be expressed as .6f = f/Q, where f is the eenter frequency. 

It is mote practical when making measurements to find the valtte of 

Qin terms off and .,,Af. The bandwidth should be more than the 3 ·~· 
megacycle bandwidth required by the overall receiver. 

Energy is coupled into and out of the preselector by means of 

two magnetic coupling loops of 0.075 square inches cross sectional 

area. These loops are located 0. 75 in~hes from the short-circuited 

end of the cavity. This distance is a compromise with the radio­

freqUency amplifier . The loops in the preselector should have been 

nearer the end where the current is maximum and the input tap for 

the radio~frequency amplifier should have been nearer the grid of 
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the pencil triode. Since it was desired to keep the coupling loops 

directly opposite the input to the amplifier the intermediate l'OCa-

tion was chosen. The loops are of equal area and are spaced 

150° apart about the periphery of the preselector. When the pre-

selector is tuned to resonance the impedance seen at its input 

should be very near· the same as that seen into the amplifier to 

which the preselector is eoupled . 9 

The formula for the unloaded Q of the coaxial resortator has 

been given earlier in this chapter as 

Q = 0.694 ff (b) log (b/a) 
o I+ b/a 

For the signal frequency of 600 megacycles this gives an unloaded 

Q o:f 2100 with no assumed losses in the dielectric or in the plates 

of the tuning capacitor . The Q for a loaded matched quarter-wave-

length preseleetoY may be expressed as 

/fl Zo r2 R~ 
Qr.. = 8- A'l.)-1 02 f= eos2 9 

r = radius of loops from center 
of coaxial cavity. 

0.008 meters 

50 ohms 
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Rg= generator and load impedance. 

A = area of coupling loops. 

~ 0 = permeability for air. 

e= angular location of loop from 
short-circuited end . 

0.075 sq. in; .483 x 10- 4 sq.met. 

1.257 x 10-6 by. per meter 

13.1°; cos e = o. 912 

The loaded Q as calculated from this fornmla is 70 which gives a 3 

decibel bandwidth of 8.6 megacycles. 

9Radlo Research Laboratory Staff. Verv High Frequency Teeh,nigues. 
Vol. II, McGraw-Bill 1947, Pages 773, 774. 



The pass-~band insert ion loss due to dissipation is given bylO 

D = 20 log Qo . = O. 28 decibels 
Qo - Qr. 

In other words, under ideal conditions the preselector passes 

about 97 percent of its input voltage to the radio-frequency 

amplifier. 

The magnetic coupling loops are located 150 degrees apart in-

stead of directly opposite each other as a matter of c·onvenienee 

in physical layout . The signal input connector could be made to 

oecupt less space with the 150 degree angle. There is perhaps 

some direct coupling between the two loops as well as some coupling 

from the electric field in the cavity . 

Converter Unit Development 

The description of the various component parts of the converter 

has been presented essentially as it applies to the final model. 

As previously stated the components were first designed on an 

individual basis and later combined into a unit called the converter. 

As is characteristic of many projects of this type there is always 

a certain amount of laboratory investigation earried on in search 

'Of what appears to be the best solution to the problem. A brief 

resume of the difficulties and prooedures of development will be 

given here but no attempt will be made to go into great detail. 

The oscillator was the first unit which was designed and the 
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one which required the ·most time in development . The first difficulty 

was in obtaining proper feedback for oscillat i·on. The grid-cathode 

lORadio Research Laboratory Staff. Very High Fregy.ency Teehnigues. 
Vol. II, McGraw-Hill 1947 0 Page 745. 
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e-avity was too short. Various styles ot slotted grid cylinders 

were bttilt with various degrees of success in obtalning feedback 

for oscillation. The slotted grid cylinders allowed energy from 

the grid-plate cavity to radiate into the grid-cathode cavity to 

sustain oscillation . This scheme was abandoned in favor of a solid 

sleeve and dielectric lengthening of the grid-cathode cavity. The 

feedback probe was used in all cases as a means of adjustable 

feedback. The traveling dielectric plu-nger was the orHy method 

considered for frequency control. Metal eontaetlng plungers were 

complications in the design and there was a tendency to avoid oom ... 

ponents with moving contacts . The first dieleetrie plungers used 

were made of Scotehcast , a plastic material manufactured by Minnesota 

Mining and Manufacturing Company. It has a dielectric constant 

of three at 600 megacycles which gave a frequency tuning range of 

20 megacycles, but its mechanical properties were not suitable 

for high temperatures . It was replaced with Polypeneo FM 10001 

nylon which bas electrical properties similar to that of Seotcheast. 

It appeared to be an answer to the dielectric plunger problem. 

The amplifier presented no great problems . Its geometrical 

features ate very much like those -of the oscillator . It was 

necessary to find a means of lowering its center frequency of ampli­

fi.eation from 625 megacycles to 600 megacycles without making the 

unit longer physically. This was done by adding a lumped capacity 

consisting of a thick brass dise about the plate-line anode eonnectol'. 

The dielectric plunger is t'he same as that ttsed by the oscillator 

and gives the ampli{ier a frequency spread sufficient to track the 

oscillator . 



The pteseleetor is very simple in its design . Th:e primary 

pr-oblem was to obtain an adjustment for the capacity which would not 

be critical with motlon of the adjusting screw. This was done by 

shaping the plates so that the capacity change is more linear than 

it would have been with parallel-plane plates . At first appearance 

the preseleetot was a unit which would function without any diffi­

culties . 
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The individual units were assembled into a "breadboard" e<mverter 

and their performance was cheeked in eonjuneti<m with an intermediate­

frequency ampl ifier. A makeshift cr ystal holder was inserted at 

the output loop -of the radio-freqUency amplifier . The input circuit 

of the intermediate~-frequency amplifier had to be modified to match 

the low output impedance of the crystal. The intermediate·frequeney 

amplifier formerly had a high impedance input. The first measurements 

of overall receiver sensitivity showed a requirement of 12 microv·olts 

for a detect ed pulse signal which was twice the voltage level of the 

noise voltage.. This is mote briefly :refer red to as 12 micr01'olts 

for 2/1 signal / noi se ratio. This measttr ement was nrade with an 

intermediate-frequent:y bandwidth of 2.5 -megacyeles. 

No extensive tests and measurements were made -on the "bre·adbt>atd" 

unit operating as a converter. It was :t'elt that a converter built 

as a single unit would have problems of its own and any time spent 

in working out design problems wou ld more advantag~ously be spent 

on the combination-model converter . The tQbreadboard"' model had 

served its purpose in that it showed that a converter ttnit ~f this 

type was feasible . 



The first tombhtatlon-model used units very similar to the 

•bi'eadboard~ model extept they wete arran(Jed in a e1uster as shown 

in Figttre 10. The coupling trom one unit to arrother is indlcated 

in Figure 7. A few minor modH'ieations -of the eompottents was 

netessary for the converter to function properly. The oscillator 

output eoupling loop was redueed in size to redYace the amount -of 

local-oscUlat-or signal injected int,o the crystal. The oscillator 

and amplifier frequency tunirig ran:ge had t(> be altered slightly. 
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Tlmy were differe~t because of differences in the bypass capacities 

at the short-eirt.ttited ends of the cavities. The general performante 

of the converter was reasonably g-ood. The 2/1 signal/noise sensiti­

vity ranged between IO and 20 mi'erovolts ov·er the trequeuey band 

of 590 to 610 megacycles. 

Two additional models were built which were very similar to 

the first combination-model. The major difference was that they 

wet'e cadmium plated. This is the finish whieh .is given to ali 

brass parts in the laboratot'y. The two units wer~ kept -<Jn an equal 

status at all times to see if their perfoi'nranite was ide-nt ical. 

They were eonsidered as final models and were used in obtalnittg 

all perfotmance data. The sensitivity figure and the performane.~ 

in general was much like the previous model. 

It was with these models that it was found the nylon plttngel's 

were ttnsatis!aet.ory. This trouble appeared during heat runs to 

cheek the frequency dr.ftt <>f the -ose'illator. The losses in the nyl'on 

began to increase innnediately upon increasing the temperatttte and 

in some cases the o'Seillat·or practitally eeased to function. The 

nylon was replac·ed with Po1ypenco Q200. 5 whieh is the best known 
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Figure 10. Two views of converter unit. 



dielectric mate-rial to use !-or this p\irp,ose. Its dielect ric e ttnstant 

is about 2.5 at 600 megacycles and its loss :taetor appears unaffected 

by temperature. The frequency spread 'Of the oscillator was reduced 

to 16 megacycles with the new plunger material. 

After the tuning plunger material problem was c·orteeted the 

temperature runs on the oscillator were continued. It was f'ound 

that at temperatures between 75°F and 225°F the units did but little 

:trequ:ency changing. They always had a drift range of less than 

one megacycle on various sets of data . When the ambfont teinpecrature 

was reduced below 15°F it was found that there were large freqtteney 

changes. One unit showed more pron·ouneed changes than the other. 

It was observed that the break in the frequency s,hin curve was 

at roorn temperature and thfs fact was used in locating the trouble. 

It was found that the teflon spacer ring which supports the plate 
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line within the grid cylinder was C<mtraeting at reduced temperature·s. 

This eontraetion allowed the plate line to mwe in any direction 

in which residual radial f~rees existed. The capacity between the 

anode oi the tttbe and the feedback probe has a pronounced atfeet 

on oscillat .or frequetrcy as well as on feedback. Any 'Change in this 

capacity due to movement of the tube and plate line will cause 

frequeney drift . The teflon material has, a eoeffieient of expansion 

of 10 x 10-5 in. . /in./°C. Since the teflon ring was fltted at room 

temperatttre the plate line and gr-id cylinder maintained eoneentrHHty 

at higher temperatures and cottseqttently the frequency was more 

stable. To eorrect the t r otible, the teflon r1ngs were made with 

a taper on the diameter. The r ings wer e h1serted in th·e grid cylinder 

with the small end fir st. When the large end is in the cylinder 



the rlng is under pre'Ssure. The frequent:y dr-ift with the new spacer 

ring fell within specification limits of plus or minus one megacycle 

over a temperature range ot -65°F t·o 225'7. This is a wider range 
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of temperatures than the specif'ieations require. A typi~al frequenty-

temper·atui'e curve is shDWD in Figure 11. Curves ftf this type usually 

do nt>t repeat themselves preeisely because of meehani'eal hysteresis, 

stability of meas-u-ring equipment, and stabili~at ion tlme allowed 

for each reading. 
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Another problem whleh was etttountered and which appeared to 

be serious was one of bandwidth. Sinte the 3 de~ibel bandwidth 

.of· the intermed iate- fteqttency amplifier is three megaeyttles, the 
I 

eonverter banQwidth would need to be more than three rnegacy~les 

to gUarantee an overall bandwidth of near th-ree megacycles. It 

was felt in the earlier stages of development that the preselector 

and amplifier ban1width would be suf'f'ieiently wide to rtnt affect 

the overall -re~eiver bandwidth. It was later fottrid that both the 

pteseleetor aiid amplifier had bat1dwidths of less than three me-gatycles 

and the ,overall reeeiver had a bandwidth nf one ntegaeyole when the 

pi'eselector and amplifier were SJ1UJhronously tttned. The ban<;lwidtb 

was widened 'by making the area of the -Coupling loops in the preseleetor 



and amplif'ier 33 percent l arger . Their origlnal widths we-re o.38 

in~hes and they were ehanged t-o o. 50 inches. The fornmla tor Q 
I 

on page 30 shows that the bandwidth whi:ch is ~ f/Q,. fs pr·opol'tional 

to the -squ-are of the area of the eoupling loops. The 3 decibel 

bandwidth ot all units is shown with the passband curves of Figure 

12. The selet tivity of the converter suffered eonsiderably by 

lowering its Q. The overall reeelver sensitivity remained about 

the same being abottt 15 mitro·volts for 2/1 signal/noise rat lo. 

Test ggulpment and P~rformance Data 

The test set-up generally used for most work is shOWII in block 

diagram fnrm in Figttte 14. The radio-frequency Signal Generator 

is a Measurements Corporation Model 84 or a l'Iewlett Packard Mooe! 

612A. The Sweeping Os-cillator is a Kay Eleetrlc Model II. The 

Synehros·cope is a Dumont 256D and the Ostdlloseope is a Ottnwnt 241. 

Other min:0r pi'eces of eq'llipment stteh as meters are not mentioned. 

An All Ameriean Vibration Testing Machine is available for vibration 

testing. It can produce vibration freqtteneies over a range of 10 

to 60 cycles per see:ond with double amplitudes from O to 0. 25 inches. 

It will p't-oduce a -maximum acceleration of 1000 divided by the weight 

of the obje-ct being tested. The- shoek testing ma,ehine- is a 60 

p:ound pendulum whieh is allowed to swing and strike a large concrete 

slab. It is equipped with bumpers which give it 15 g aeeeleration 

for a dtt~ation ~f 0.011 se~onds. The temperature chamber is capable 

of pl'oduelng an ambient temperature range between -65oP' attd 250°F. 

Most of the performance data has been mentioned previously 

but it will be sttmmarized here . The flgures given below are typf:eal 
, 

and may be applied to either ot' both of the eachnium plated models. 
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The intemediate,..:t-requeney an'lplif'ier used in making some of the 

measul'ements ts one similar to the one with which the converter 

will be used . It has a 3 decibel bandwidth of three megacycles 

centered at 30 megacycles, and a gain of approximately 80 decibels. 

The eonverter and the intennediate-frequeney anrplifier have 

a 2/1 signal/noise sensitivity of 15 mi:erovolts with an output 

noise level of O. 05 volts :f'r·om the video detector. Ftl'ty mierovolts 

will produce a 0 . 5 volt video output pulse from the video detector 

of the intetmediate ~frequency amplifier. The c-0nverter has an 

image rejection voltage ratio of 158/1 or 44 decibels. The tutdnU 

range is 592 to 608 megacycles. The pass~band information is 

shown in Figure 12. It ean be seen that the bandwidth ,of eath unit 

gets progressively smaller from the pteselector to the intermediate-

:treqUeney amplifier. Aetual measurements on the preseleetor indicate 

a ban<twldth of 8 .35megaeyeles and an insertion loss of 0.9'2 decibels. 

The ealettlated bandwidth is 8.6 megacycles whereas the calculated 

insertion loss is 0 . 28 decibels. The bandwidth of the atnplitiet 

is 6. 2 megacycles and the overall battdwidth of the converter ls 

4.6 megacycles . 

Meehani'e-al testing of the converter has shown tto detectable 

faults in the perfbrmance. The unit was mounted up-on the All Amerlean 

Vibration Testing Machine and was operafing with an intermediate­

frequeney amplifier during vlbrat ion. The ~l)nverter was subjected 

to three~ three-minute scans of vibration between 10 and 60 t ·ycles 

per see·.on'd in each 'Of its three major planes. After an initial 

repair of a loose preselector tuning adjustment the .ttnit performed 

satis:faetorily under vibr ation conditions. The converter was also 



subJeeted to three impact shoeks in both di:teetions of' its three 

major axes. The impact shocks were of' 15 g acceleration and had 

a duration of 0.011 seconds. The Unit was non-operating dttrln;g­

the shock test but performante data before and after the test in­

dicated no change in perforrnanee. 

42 



43 

Figure 15. Photograph of converter. 



CHAPTER IV 

St!MMARY AND CONCLUSIONS 

The design and development of this converter has prodtteed 

a unit whieh is in many ways superior to its predeeesS'1>r. It is 

felt that the general performance, reliability, and ease of repro-

duetion of the new unit is better than the old eonverter. Below 

is tabulated several effllparat ive figures for the two units which 

show desirable and undesirable features of eath. 

Old Unit 

Outline dimensions - inches 2 x 3 x 4 

Weight - pounds 0.75 

Plate current at 150 volts - milliamps. 23 

Filament current at 6. 3 volts - milliamps. 400 

Sensitivity for 2/1 signal/rioise - microvolts 35 

Image rejection ratlo 3/1 

Maximum frequeney--temperatttre dr ift - me. 1.5 

Frequency tuning range - me. 580-620 

New Unit 

2 X 2 3/4 X 
4 3/4 

1.5 

13 

270 

15 

158/1 

1 

592-608 

All the above figures, with the except ion of the weight, fav-or 

the new eonvei:'ter. The cost of production may be somewhat greater 

for the new converter but it i's felt that this will be offset by 

its reliability. 

If the eonverter units continue to perform satisfactorily with 
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prodttetion qtt«1n-tities:,, thelt 1t'se will ,~nbabl;t bt) toirtfntted throtafk 

anr :futttte ~aton *-t'ders. T, date the tfhrtrettet ts btnng des i(Jrri;d 

Hit• ti. 11ew de1telopme'~tal '.lttldel beacoit ffft the tl. s. Air Yt:rt,e:. 4 

SlllaU prodttetttut quantity t,l eltrht 'iifnitg is sts• b&iltg tndlt f&i- a 

:bfnl~Jt tt'der whieh m\'ifinally used thee ·•ld te'ttret'·tet~ 

Any htttte developnient ·'tW bipi"trrements bit thtt ttJwetter sh'(ftdd 

tettd toward a Teduttit!in bi wettht attd iliqJtmreliiettt ltt stvnal s~nsh .. 

tbity~ It is feasible t,o --tedttte the eight by ltsbtf tn-as-s tllbing­

wfth a smaller wall tbiokn:ess ·'O't by ust:nr a llfhterwei{tkt·metat 

than ·ln>ass. 
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