THE UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Jackson College of Graduate Studies

Validation of Enzyme-linked Immunosorbent Assays for the Detection of Licit and Illicit Drugs in Human Breast Milk

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements

for the degree of

MASTERS OF SCIENCE

by

Tamiko H. Fukuda

Norman, Oklahoma

2012

Validation of Enzyme-linked Immunosorbent Assays for the Detection of Licit and Illicit Drugs in Human Breast Milk

By

Tamiko H. Fukuda

A THESIS $\label{eq:APPROVED} \mbox{APPROVED FOR THE DEPARTMENT OF FORENSIC SCIENCE}$ $\mbox{APRIL 2012}$

By

Thomas H. Jourdan, Ph.D.

Robert O.Bost, Ph.D.

David L. von Minden, Ph.D.

Acknowledgements

I would like to show my sincerest appreciation to my thesis committee for all of their support and guidance.

Thesis Committee Chair and Advisor: Dr. Thomas Jourdan

Thesis Committee Members: Dr. Robert Bost and Dr. David von Minden

I would like to thank Dr. Thomas Kupiec, CEO of Analytical Research Laboratories, Dr. Dwight Adams, Director of the UCO Forensic Science Institute, and the team at Prolacta Bioscience for making this project a possibility. I would also like to thank Ashley Estridge and the rest of the team at Neogen Corporation for all of their dedication and assistance with this project.

I would like to thank my fellow graduate student, Keisha Jones, for her friendship and helping me survive graduate school.

I would like to give special thanks to my family and to my husband, David. Without his support and encouragement, this would have never have been possible.

Table of Contents

Acknowledgements	iii
List of Tables	vii
List of Figures	ix
Abstract	1
Introduction	2
Problem Statement	2
Purpose	3
Significance of the Study	3
Seven-Drug Panel	4
Definitions	5
Literature Review	6
Benefits of Breastfeeding	6
Hazards of Maternal Drug Use	7
Breast Milk as a Matrix	8
Specific Drugs	10
Amphetamines	10
Benzodiazepines	12
Alprazolam	13
Diazepam	14
Cannabinoids	14
Cocaine	16
Nicotine	17
Opiates	19
Codeine	19
Morphine	20
Heroin	21
Hydrocodone	21
Oxycodone	23
Prevalence of Usage	24
ELISA	27
Drug screening	27

Cutoffs	28
Drug Confirmation	28
Methods	29
Materials	29
ELISA kits	31
Screening	
Method Optimization	
Sample dilutions and matrix interference	
Determination of cutoff levels	
Matrix interference with sample dilutions	35
Multi-drug calibrators	
Stability of calibrators in human milk	
Variability between single and multiple readings	35
Validation	36
Calculation of %B/B ₀	38
Preparation of negative and cutoff calibrators	38
Test procedures	41
Drift	42
Precision	42
Accuracy	43
Sample analysis	44
Data Analysis	44
Results and Discussion	44
Screening	44
Method Optimization	45
Sample dilutions and matrix interference	45
Determination of cutoff levels	46
Matrix interference with sample dilutions	47
Multi-drug calibrators	47
Stability of calibrators in human milk	48
Variability between single and multiple readings	49
Validation	50
Drift	50

Precision	51
Accuracy	52
Sample analysis	53
Conclusions	53
Future Research	53
References	55
Tables	64
Figures	93
Appendix A: NMS Labs Testing Summary Sheet for Drugs of Abuse Screen	101
Appendix B: NMS Labs Toxicology Report	112
Appendix C: ELISA Results for Multi-Drug and Single Drug Calibrator Comparison	125
Appendix D: ELISA Results for Variability Between Single and Multiple Readings	133
Appendix E: ELISA Results for Validation #1	147
Appendix F: ELISA Results for Validation #2	177
Appendix G: ELISA Results for Validation #3	212
Appendix H: ELISA Results for Sample Analysis	240

List of Tables

Table

1. Analytical Drug Standards	63
2. Pipette Information	64
3. Neogen Corporation Kits, Calibrators, and Cross-Reactivity	65
4. Standard Formulations for Linearity in Human Breast Milk	66
5. Standard Formulations for Linearity in EIA Buffer	67
6. Formulation of Multi-Drug Calibrators	68
7. Sample Preparation for the First and Second Accuracy Validations	69
8. Sample Preparation for the Third Accuracy Validation	70
9. Comparison of Sample Dilutions on Matrix Interference for Each Assay	71
10. Optimal Breast Milk Dilutions for Each Kit	73
11. Linearity of Standards for the Amphetamine Ultra Assay	74
12. Linearity of Standards for the Benzodiazepine Group Assay	75
13. Linearity of Standards for the Cocaine/BZE Assay	76
14. Linearity of Standards for the Cotinine Assay	77
15. Linearity of Standards for the Opiate Group Assay	78
16. Linearity of Standards for the Oxycodone/Oxymorphone Assay	79
17. Linearity of Standards for the THC Assay	80
18. Matrix Interference of Breast Milk Compared to EIA Buffer When Diluted	81

19. Range of %B/B ₀ Values From the Second and Third Validations	82
20. Comparison of Multi-Drug and Single Drug Calibrators	83
21. Stability of Multi-Drug Calibrators in Human Breast Milk	84
22. Single Readings of Ten Individual Wells	85
23. Multiple Readings of a Single Well	86
24. Drift Validation Data From Three Separate Validation Runs	87
25. Precision Validation Data From Three Different Validation Runs	88
26. Accuracy Validation Data for Three Separate Runs	89
27. Final Kit Calibrators, Dilutions, and Cutoff Levels	90

List of Figures

т.		
H1	OH	re

1. Standard Curves in EIA Buffer and Human Breast Milk for the Amphetamine Ultra Assay92
2. Standard Curves in EIA Buffer and Human Breast Milk for the Benzodiazepine Group Assay
93
3. Standard Curves in EIA Buffer and Human Breast Milk for the Cocaine/BZE Assay94
4. Standard Curves in EIA Buffer and Human Breast Milk for the Cotinine Assay95
5. Standard Curves in EIA Buffer and Human Breast Milk for the Opiate Group Assay96
6. Standard Curves in EIA Buffer and Human Breast Milk for the Oxycodone/Oxymorphone
Assay97
7. Standard Curves in EIA Buffer and Human Breast Milk for the THC Assay98

Abstract

Human breast milk contains essential nutrients and immunological factors that are critical for the health and development of infants. The benefits of breast-feeding have been studied extensively, and research has shown that breastfed infants have a decreased risk of infections and illnesses. There are many instances when mothers are unable to provide their own milk, which is the case with many prematurely born infants. Breast milk banks and facilities that process human milk provide an alternative solution to synthetic or animal derived infant formula, allowing babies to receive the benefits of human breast milk. There are many drugs that can pass into a woman's breast milk and cause possible harm to an infant. It is important that donor milk be screened for drugs-of-abuse in order to prevent this from occurring. The purpose of this study was to optimize and validate enzyme-linked immunosorbent assays (ELISA) for the detection of a seven-drug panel in human breast milk. The following Neogen Corporation kits were utilized: Amphetamine Ultra, Benzodiazepine Group, Cocaine/Benzoylecgonine (BZE), Cotinine, Opiate Group, Oxycodone/Oxymorphone, and THC. Sample dilutions that minimized breast milk matrix interference were determined, and cutoff levels for each assay were proposed based on the linear range of the assay. The seven-drug panel was validated through the assessment of drift, precision, and accuracy. The Cocaine/BZE and Opiate Group cutoffs were increased from 30 to 50 ng/mL after several false negative results were obtained during the accuracy portion of the validation. The ELISA assays were validated at two different sites, and the robustness of the method was demonstrated.

Introduction

Problem Statement

Human breast milk contains essential nutrients and immunological factors that are critical for the health and development of infants (Leaf & Winterson, 2009; Marchei, et al., 2011). The benefits of breastfeeding have been studied extensively, and research has shown that breastfed infants have a decreased risk of infections and illnesses (American Academy of Pediatrics, 2012; Ito & Lee, 2003; Leaf & Winterson, 2009; Marchei, et al., 2011). There are many instances when mothers are unable to provide their own milk, which is the case with many prematurely born infants (Boyd, Quigley, & Brocklehurst, 2007; Ganapathy, Hay, & Kim, 2011; Sullivan, et al., 2010). Human milk banks and facilities that produce human-milk-based nutritional products are able to provide an alternative solution to synthetic or animal derived infant formula, which allows babies to receive the benefits of human breast milk (Bertino, et al., 2009; Boyd, et al., 2007; Simmer & Hartmann, 2009; Wojcik, Rechtman, Lee, Montoya, & Medo, 2009). While it is important that all breastfeeding mothers avoid drugs and other harmful substances that could pass into their milk and affect the health of their babies, it is essential for milk banks and facilities that process human milk to ensure that they are supplying drug-free milk to hospitals (Marchei, et al., 2011). Due to the demand of human milk and milk products, milk banks and manufacturing facilities are focused on increasing processing efficiency. One of the ways that this can be achieved is by utilizing a high-throughput screening method for drugs-of-abuse that has a short turn-around time.

Enzyme-linked immunosorbent assays (ELISA) have been used extensively in forensic toxicology settings for the purposes of screening for the presence of drugs (Elian, 2003; Hand & Baldwin, 2008). Screening tests are typically less expensive and time consuming than

confirmation tests (Gaensslen, Harris, & Lee, 2008). A screening test has the ability to detect whether a particular substance may be present in a sample, or if the substance is not present (Smith, 2003). Confirmation testing can then be performed on samples that screen positive, which removes the need to perform a complete analysis on each submitted sample (Gaensslen, et al., 2008; Smith, 2003). ELISA assays are easy to use, have a short turn-around time, can be automated for high-throughput scenarios, and have the ability to detect low levels of drug (Elian, 2003; Hand & Baldwin, 2008; Smith, 2003).

Purpose

The use of ELISA assays for drug screening purposes has primarily been reserved for commonly tested body fluids, such as blood, urine, and saliva. In situations where testing is to be performed in a matrix that differs from that for which an ELISA has been validated, good science dictates that the kit be validated to demonstrate its efficacy in the new matrix (Hand & Baldwin, 2008). This is of particular importance in the case of breast milk as it contains natural emulsifying agents that possess detergent-like activity, and "may interfere with antibody-antigen reactions which take place in immunoassay screening tests" (Kerrigan & Goldberger, 2000). The purpose of this project was to optimize and validate a method for the screening of a sevendrug panel in human breast milk using ELISA assays.

Significance of the Study

The majority of human milk and human-milk-based products supplied to pre-term infants originate from human milk banks and processing facilities (Bertino, et al., 2009; Boyd, et al., 2007; Ganapathy, et al., 2011; Simmer & Hartmann, 2009; Wojcik, et al., 2009). These infants typically have weak immune systems and are at risk of developing many different kinds of diseases (Ganapathy, et al., 2011; Sullivan, et al., 2010). It is critical that these babies be

provided human milk in order to nourish their still-developing bodies and immune systems (Boyd, et al., 2007; Sullivan, et al., 2010). It is also essential that these babies not be exposed to any drugs that could cause further harm (Berlin, 2003; Lozano, et al., 2007; Marchei, et al., 2011). Screening for drugs in breast milk is an important public health issue, because providing drug-free human milk to infants has a positive effect their health both immediately and as they age. This translates to babies, children, and adults who need less heath care, and are less of an economic strain on the health care system (Ito & Lee, 2003). From a business standpoint, milk banks and processing facilities are more likely to be able to sell their products if they can demonstrate that they have a robust screening process for their donors, which includes a drugs-of-abuse screening (Polifka, 1998).

Seven-Drug Panel

The literature was reviewed to determine the dangers of exposing infants to breast milk containing drugs. Based on this research and the prevalence of use within the general population, a drug panel for the following categories of drugs was developed: amphetamines, benzodiazepines, cocaine, nicotine, opiates, including oxycodone, and cannabinoids. ELISA assays were assessed for their feasibility of use in the screening of this drug panel in breast milk. ELISA kits from Neogen Corporation (Lexington, KY) were evaluated for the development of the final seven-drug panel. The following nine kits were initially evaluated: Amphetamine Ultra, Benzodiazepine Group, Cocaine/BZE, Cotinine, Hydromorphone, Methamphetamine/MDMA, Opiate Group, Oxycodone/Oxymorphone, and THC. The Hydromorphone kit was not used for the final panel because the Opiate kit demonstrated high cross-reactivity with hydromorphone. The Methamphetamine/MDMA kit was not used for the final panel because the Amphetamine Ultra kit demonstrated high cross-reactivity with d-methamphetamine, and it was decided that

the identification of MDMA (3,4-methylenedioxy-N-methylamphetamine) in breast milk would not be pursued for this drug panel. The final seven-drug panel consisted of the following seven Neogen kits: Amphetamine Ultra, Benzodiazepine Group, Cocaine/BZE, Cotinine, Opiate Group, Oxycodone/Oxymorphone, and THC.

Definitions

Absorbance (A): A logarithmic measure of the amount of light absorbed at a particular wavelength as the light passes through a sample or substance. The absorbance of a solution is linearly related to the concentration of the absorbing species (K. Cole & Levine, 2009).

%B/B₀: The ratio of the absorbance of a particular sample well (B) to the absorbance of the negative well (B₀), expressed as a percentage. B₀ contains no analyte, so it is the concentration at which maximum absorbance can occur (Hand & Baldwin, 2008; Smith, 2003).

Calibrator: A calibrator is used to calibrate an assay, and is either prepared from reference material or purchased from a suitable vendor (American Board of Forensic Toxicology). A negative calibrator is used to determine an absorbance value that corresponds with no analyte/antibody competition. A cutoff calibrator is used to determine an absorbance value that samples will be compared to in order to make positive and negative determinations (Schwope, Milman, & Huestis, 2010).

Coefficient of variation (CV): The % CV is a ratio of a sample standard deviation to the sample mean expressed as a percentage (D'Agostino, Sullivan, & Beiser, 2006).

Cutoff level: The cutoff level establishes the concentration at which a sample is declared either positive or negative for the analyte of interest. A sample with a concentration greater than the cutoff level will be reported out as positive, while a sample with a concentration lower than the cutoff level will be declared negative (Hand & Baldwin, 2008; Smith, 2003).

Enzyme-linked immunosorbent assay (ELISA): An ELISA is a biochemical technique used to detect the presence of an antibody or antigen in a sample (Hand & Baldwin, 2008; Smith, 2003). *I-50*: The absorbance that is halfway in between the maximum and minimum absorbance. It can be thought of as the concentration directly between no competition and maximum competition of the analyte for the antibody (Schwope, et al., 2010).

Literature Review

Benefits of Breastfeeding

Human breast milk is ideally suited for the growth and development of human infants (Lawrence & Schaefer, 2007). It contains essential nutrients, immunological factors, digestive enzymes, growth factors, and enzymes, all of which are critical for an infant's health and development (Leaf & Winterson, 2009; Marchei, et al., 2011). Breastfeeding has been shown to lower the prevalence a wide variety of diseases and conditions. For infants and toddlers, the risk of developing respiratory tract infections, otitis media, gastrointestinal tract infections, necrotizing enterocolitis, and sudden infant death syndrome is drastically reduced (American Academy of Pediatrics, 2012; Ganapathy, et al., 2011; Singhal, Cole, Fretwell, & Lucas, 2004; Sullivan, et al., 2010). Long-term benefits include a decreased risk of allergic disease, diabetes, obesity, atherosclerotic cardiovascular disease, celiac disease, and inflammatory bowel disease (American Academy of Pediatrics, 2012; Friguls, et al., 2010, Ito & Lee, 2003). Babies who are breastfed have also demonstrated greater aptitude scores on developmental and intelligence tests (Ito & Lee, 2003; Lawrence & Schaefer, 2007). Both the American Academy of Pediatrics (2012) and the American Dietetic Association (2009) suggest exclusive breastfeeding for six months, and then breastfeeding with complementary foods from six to 12 months.

Hazards of Maternal Drug Use

While very few drugs are absolutely contraindicated during breastfeeding, the adverse effects of the majority of drugs and medications on infant health, both short term and long term, are not well known. "Most recommendations on the safety of medications during lactation are based on theoretical risks, case reports, or single case studies that measured breast milk or infant serum levels" (Ito & Lee, 2003). The exact prevalence of drug use by breastfeeding women is unknown, but there are several estimates in the literature. It is estimated that between 0.4 and 27% of urban American women abuse drugs while pregnant (Kerrigan & Goldberger, 2000). It can be assumed that the majority of these women would continue to abuse drugs while breastfeeding. Ito and Lee (2003) reported that during the first week after delivery, roughly 90% of women take some form of medication. Howard and Lawrence (1999) reported that in a study of 14,000 women, 79% had used at least one medication, with an average of 3.3 different drugs, during breastfeeding. In a similar study of 838 breastfeeding women, 80% were taking at least one drug, 20% were taking two or more, and 89% of the breastfed infants were younger than four months (Berlin & Briggs, 2005). There are case reports of clinically significant toxicity in infants who have been exposed to drugs through breast milk. However, the amount of data is sparse due to the fact that it is difficult to conduct research in breastfeeding women and their infants regarding clinical risk assessments of drugs (Friguls, et al., 2010).

An infant's exposure to drugs in breast milk depends on a drug's milk-to-plasma concentration ratio, maternal and mammary pharmacokinetics, the amount of milk consumed, and the infant's rate of drug clearance (Begg, 1996; Friguls, et al., 2010; Ito & Lee, 2003). The pharmacokinetic considerations of neonates and young infants are difficult to estimate due to the continuous shifting of their ability to absorb, metabolize, and eliminate substances (Atkinson,

Begg, & Darlow, 1988). Drug clearance rates in neonates and young infants are low due in large part to the immaturity of their drug elimination systems (Friguls, et al., 2010). Renal excretion of drugs is dependent on the glomerular filtration rate, tubular secretion, and protein binding (Atkinson, et al., 1988; Friguls, et al., 2010). The glomerular filtration rate for a full-term neonate is approximately 25% of adult values (Friguls, et al., 2010). This rate doubles within the first two weeks of life and adult levels are reach by three to five months of age (Atkinson, et al., 1988; Friguls, et al., 2010). Both protein binding and tubular function are decreased in neonates, with adult values being achieved within ten to twelve and seven to nine months respectively (Atkinson, et al., 1988). Both phase I and phase II drug metabolism are impaired in neonates. Cytochrome P450 isoenzymes develop at different rates in relation to one another, and between infants (Atkinson, et al., 1988; Friguls, et al., 2010). "Overlapping substrate specificities and genetic polymorphisms add complexity to drug biotransformation in infants" (Friguls, et al., 2010).

Breast Milk as a Matrix

Breast milk is an unconventional matrix for assessing both maternal and neonatal exposure to drugs (Marchei, et al., 2011). Breastfeeding women produce an average of 600 to 1000 mL of milk a day, and an infant typically consumes 150 mL/kg/day (Berlin & Briggs, 2005; Sagraves, 1997). The composition of breast milk changes not only as the infant ages, but also during the course of a feeding and throughout the day (Kerrigan & Goldberger, 2000; Leaf & Winterson, 2009; Sagraves, 1997). Analytical challenges intrinsic to the extraction of drugs from breast milk include its high protein and fat content, along with its continually changing composition (Friguls, et al., 2010; Kerrigan & Goldberger, 2000).

Drug characteristics affecting the amount of drug excreted from plasma into breast milk include protein binding, ionization, degree of lipophilicity, and molecular weight (Agatonovic-Kustrin, Ling, Tham, & Alany, 2002; Howard & Lawrence, 1999; Ito & Lee, 2003; Sagraves, 1997). Highly protein-bound drugs are less likely to leave the maternal serum and pass into the breast milk (Agatonovic-Kustrin, et al., 2002; Howard & Lawrence, 1999; Sagraves, 1997). The maternal characteristics influencing the concentration of a substance in milk depend on the dose ingested, duration of consumption, the amount of milk excreted daily, the pH of maternal plasma and milk, and the woman's individual metabolic and physiological characteristics (Agatonovic-Kustrin, et al., 2002; Howard & Lawrence, 1999; Ito & Lee, 2003; Sagraves, 1997). The pH of human breast milk is slightly more acidic (average pH of 7.1 to 7.2) than plasma (pH of 7.4), which favors the passage of alkaline drugs into milk (Agatonovic-Kustrin, et al., 2002; Howard & Lawrence, 1999; Sagraves, 1997). "Typically, a low-molecular weight, un-ionized, lipid-soluble basic compound that has low plasma protein binding can cross into human milk with relative ease" (Sagraves, 1997).

Excretion of drugs in breast milk mostly occurs by simple passive diffusion, but carrier-mediated transport and active transport take place for certain drugs (Agatonovic-Kustrin, et al., 2002; Howard & Lawrence, 1999; Ito & Lee, 2003). The ratio between the concentration of the drug in milk and that in maternal plasma is called the milk-to-plasma (M:P) concentration ratio (Begg, 1996; Friguls, et al., 2010; Sagraves, 1997). While this ratio is extremely useful in predicting how likely it is that a drug will concentrated in the breast milk, it is based on the assumption "that the milk and plasma concentrations parallel each other throughout the maternal dosing interval," which is not always true (Begg, 1996; Sagraves, 1997). In general higher M:P

ratios indicate that a greater amount of drug is transferred to the breast milk (Howard & Lawrence, 1999).

Specific Drugs

Amphetamines.

Amphetamines are among most widely abused compounds by recreational drug users in developing countries, and rates of use are reportedly increasing (Bartu, Dusci, & Ilett, 2009; Friguls, et al., 2010). "Methamphetamine is currently the most frequently encountered clandestinely produced controlled substance in the U.S.," due in large part to the ease with which it can be synthesized in makeshift laboratories (Moore, 2010). Amphetamines stimulate the central nervous system (CNS) and can produce euphoric effects. Methamphetamine possesses a long half-life, which can be ten times longer than cocaine (Moore, 2010). Amphetamine has a six to 12 hour half-life, with both hepatic and renal clearance contributing to its elimination (Friguls, et al., 2010). Amphetamines and cocaine have similar pharmacokinetic profiles. They are "highly lipid soluble and well absorbed orally, with a bioavailability of approximately 67% and a volume of distribution of 3-7 L/kg" (Moore, 2010). Amphetamines are weak bases with relatively low molecular weights, allowing them to easily diffuse "across cell membranes into tissues or biological substrates with a more acidic pH than blood, such as milk" (Friguls, et al., 2010; Steiner, Villen, Hallberg, & Rane, 1984). Amphetamine has a high milk-to-plasma ratio, ranging from 2.8:1 to 7.5:1, which indicates that is concentrated in breast milk (Friguls, et al., 2010; Steiner, et al., 1984). Methamphetamine undergoes N-demethylation to amphetamine, which is catalyzed by human hepatic cytochrome P450 isoenzyme CYP2D6 (Bartu, et al., 2009; Friguls, et al., 2010). It is primarily excreted in the urine as the parent drug, with up to 45% of a single dose being eliminated within 24 hours (Moore, 2010). Amphetamine is an active

metabolite, and accounts for approximately 4-7% of a methamphetamine dose in a 24-hour urine sample (Bartu, et al., 2009).

Bartu et al. (2009) collected urine and milk samples from two mothers who were intravenous users of methamphetamine. Urine was collected four hours after a single dose, and milk samples were collected prior to drug use and at two to six hour intervals following the dose, for a period of 24 hours. The urine samples were analyzed by gas chromatography-mass spectrometry (GC-MS), while the milk samples were analyzed using high performance liquid chromatography (HPLC). Both the urine and milk samples contained primarily methamphetamine and lower amounts of amphetamine. The average methamphetamine concentrations in the milk samples collected 24 hours post dosing were 111 µg/L and 281 µg/L. The amphetamine concentrations were 4 µg/L and 15 µg/L in the same samples. These milk samples were found to have an average half-life of ten hours for methamphetamine, and 28 hours for amphetamine. The absolute infant doses were calculated to be 17.5 µg/kg/day and 44.7 µg/kg/day. Based on this data, the authors recommended that breastfeeding be withheld for 48 hours following a single recreational dose of methamphetamine (Bartu, et al., 2009).

Steiner et al. (1984) studied the excretion of amphetamine into the milk of a breastfeeding mother with narcolepsy, who was treated daily with 20 mg of amphetamine. The concentration of amphetamine was three times higher in breast milk than in maternal plasma on the tenth day following delivery, and seven times higher on the 42nd day after delivery. This supports the theory that alkaline drugs accumulate in breast milk. Urine samples were collected from the nursing infant, and small amounts of amphetamine were detected. The infant was monitored for an additional 24 months, and no adverse effects were observed or reported (Steiner, et al., 1984). An investigation of the transfer of dexamphetamine into breast milk

during treatment for attention deficit hyperactivity disorder was conducted using a high performance liquid chromatography-ultraviolet (HPLC-UV) method. This study found that the relative infant dose was <10% of the maternal dose (Ilett, Hackett, Kristensen, & Kohan, 2007).

The following adverse effects have been reported for infants breastfed by amphetamine users: irritability, poor sleeping pattern, agitation, and crying (American Academy of Pediatrics, 2001; Friguls, et al., 2010). Ariagno, Karch, Middleberg, Stephens, & Valdes-Dapena (1995) reported the death of an infant breastfed by a methamphetamine user. The infant's blood concentration contained 39 ng/mL of methamphetamine, and the authors presented evidence that the death was attributable to cardiopulmonary failure caused by exposure to the drug in breast milk (Ariagno, et al., 1995).

Benzodiazepines.

Benzodiazepines are frequently prescribed to women during pregnancy and after childbirth, but long-term therapy should be avoided during breastfeeding (Friguls, et al., 2010; Howard & Lawrence, 1999). They are CNS depressants, and approximately 30% of benzodiazepine use is illicit (Friguls, et al., 2010; Jufer-Phipps & Levine, 2010).

Benzodiazepines are highly protein-bound, with a volume of distribution of 2 L/kg (Jufer-Phipps & Levine, 2010). Benzodiazepines can be categorized into long-acting, intermediate-acting, and short-acting compounds, depending on the length of their half-life (Friguls, et al., 2010; Howard & Lawrence, 1999; Iqbal, Sobhan, & Ryals, 2002; Jufer-Phipps & Levine, 2010). The long half-lives of some of these compounds, coupled with an infant's underdeveloped metabolic and excretory function, can lead to measurable amounts of drug in plasma and tissues, such as the brain (Friguls, et al., 2010; Howard & Lawrence, 1999; Kerrigan & Goldberger, 2000). The M:P ratios for most benzodiazepines are fairly low, with breast milk concentrations at ten to 20% of

the maternal plasma concentrations (Jufer-Phipps & Levine, 2010). "Because these drugs affect neurotransmitter function in the developing CNS, it may not be possible to predict long-term neurodevelopmental effects" (Friguls, et al., 2010).

Alprazolam.

Alprazolam is an intermediate-acting benzodiazepine that has two active metabolites, 4-hydroxyalprazolam and α-hydroxyalprazolam, which are known to cross the placenta (Friguls, et al., 2010; Iqbal, et al., 2002; Jufer-Phipps & Levine, 2010; Oo, Kuhn, Desai, Wright, & McNamara, 1995). It has a pKa of 2.4, is soluble in methanol and ethanol, insoluble in water, and has a bioavailability of approximately 90%. A single dose of alprazolam will be almost completely eliminated with 72 hours (Jufer-Phipps & Levine, 2010).

Oo et al. (1995) studied the pharmacokinetics of alprazolam and its metabolites in breast milk. Blood and breast milk samples were collected from eight subjects following single oral doses of alprazolam, for a period of 36 hours. These samples were analyzed with HPLC-UV following protein precipitation with acetonitrile and solid phase extraction (SPE). The milk and plasma concentrations paralleled one another, and the milk concentrations were found to be lower than plasma concentrations, with a M:P ratio of 0.36:1. Low concentrations of 4-hydroxyalprazolam were detected in plasma only, while α-hydroxyalprazolam was not detected in plasma or milk. The results of this study suggest that neonatal doses of alprazolam in breast milk would be low and are unlikely to result in any adverse effects in the nursing infant (Oo, et al., 1995). However, case studies have been reported where mothers discontinued their use of alprazolam during breastfeeding due to adverse effects observed in their infants. These symptoms included restlessness, irritability, and sleep disturbance. The mothers also noted

withdrawal symptoms at the discontinuation of breastfeeding (O. Anderson, 1989; Iqbal, et al., 2002).

Diazepam.

Diazepam is a long-acting benzodiazepine with a half-life of approximately 20–50 hours in full-term infants (Dusci, Good, Hall, & Ilett, 1990; Friguls, et al., 2010; Iqbal, et al., 2002). It has a pKa of 3.3, is soluble in ethanol, slightly soluble in water, and has an oral bioavailability of around 100%. It undergoes demethylation by the CYP2C19 and CYP3A4 isoenzymes, which form its primary metabolite of nordiazepam. This active metabolite can accumulate in the plasma following repeated dosing (Jufer-Phipps & Levine, 2010). Diazepam and its metabolites have been found to possess M:P ratios ranging from 0.2:1 to 2.7:1 (Friguls, et al., 2010). Due to diazepam's long half-life and slow metabolism in infants, accumulation of both diazepam and its metabolites can occur (A. P. Cole & Hailey, 1975; K. Cole & Levine, 2009; Friguls, et al., 2010).

Cole and Hailey (1975) conducted a study of nine mothers taking diazepam. Maternal milk and blood samples were collected along with neonate blood samples. Both diazepam and N-desmethyldiazepam were detected in breast milk samples and neonate blood samples. "Appreciable amounts of active substances were detected in one infant ten days after a single dose was given to the mother" during the delivery (A. P. Cole & Hailey, 1975). Several other studies have reported infant sedation and lethargy in breastfed infants whose mothers were using diazepam (Friguls, et al., 2010; Iqbal, et al., 2002).

Cannabinoids.

Marijuana is the most commonly used recreational drug of abuse around the world, and is also prescribed for health reasons (Friguls, et al., 2010; Huestis, 2010). The frequency of use among pregnant women is estimated to be between five and 34% (Astley & Little, 1989).

Infants can be exposed to marijuana from consuming the milk of mothers who use the drug and also from passive inhalation (Friguls, et al., 2010; Liston, 1998). The principal psychoactive compound in marijuana, delta-9- tetrahydrocannabinol (Δ^9 -THC or THC), is highly lipid soluble. rapidly distributed into the brain and adipose tissue, has a large volume of distribution, and binds extensively to plasma proteins (Friguls, et al., 2010; Garry, et al., 2009; Huestis, 2010; Liston, 1998). At low doses, it causes both stimulant and depressant effects, while at high doses it acts as a CNS depressant (Huestis, 2010). The elimination half-life of THC ranges from 20 to 48 hours, and traces of the drug can remain in the body for four to six weeks. It is stored in adipose tissues for long periods of time (weeks to months), and chronic users may exhibit a longer halflife of 4 days (Friguls, et al., 2010; Garry, et al., 2009). Marijuana is concentrated in breast milk and has a high M:P ratio of up to 8:1 (Friguls, et al., 2010; Garry, et al., 2009; Liston, 1998). An infant ingests approximately 0.8% of the weight-adjusted maternal intake of one joint (marijuana cigarette) during a single breast milk feeding (Friguls, et al., 2010; Garry, et al., 2009). Infants who have been exposed to marijuana through breast milk will excrete THC in their urine for two to three weeks (Garry, et al., 2009).

Animal studies have shown that newborn animals exposed to marijuana in breast milk suffered from altered brain cell metabolism due to impaired DNA and RNA synthesis of brain cells. As critical brain development occurs during an infant's first few months of life, exposure to marijuana during this time could negatively affect this process (Garry, et al., 2009; Liston, 1998). Case studies have described sedation, reduced muscular tonus, and poor sucking in infants who have been exposed to marijuana (Astley & Little, 1989; Garry, et al., 2009). Astley and Little (1989) conducted a study that examined the relationship between infant exposure to marijuana from breast milk, and motor and mental development at 12 months of age. Of the 136

infants assessed, 68 were exposed to marijuana through breastfeeding. This exposure was associated with a decrease in infant motor development. The largest decreases were seen in infants who had daily exposure to marijuana during the first month of life (Astley & Little, 1989). The analysis of marijuana is human breast milk has only been performed in one study to date. Perez-Reyes et al. (1982) used liquid chromatography-mass spectrometry (LC-MS) to study the passage of THC into breast milk and found that moderate amounts of drug were excreted in recreational users, but that chronic users accumulated a much greater proportion of drug.

Cocaine.

Cocaine is a psychotropic drug with anesthetic properties (Chasnoff, Lewis, & Squires, 1987), and its illicit use in the United States and Europe has steadily increased over the past decade (Chasnoff, et al., 1987; Huestis, 2010; Isenschmid, 2010). The bioavailability varies dramatically depending on the route of administration, with 100% bioavailability in intravenous doses and 20% bioavailability when the drug is ingested orally (Isenschmid, 2010). The half-life of cocaine is approximately one hour, and it is rapidly excreted into breast milk (Friguls, et al., 2010; Winecker, et al., 2001). It is primarily metabolized to benzoylecgonine (BZE) and ecgonine methyl ester (EME), and excretion occurs primarily by simple filtration into the urine. One to nine percent of cocaine is excreted unchanged, 26-54% is excreted as BZE, 18-41% as EME, and 2-3% as ecgonine. Approximately 64-69% of a single dose will be excreted in the urine with three days, with 86% of this amount being excreted with the first day (Isenschmid, 2010). Abuse of cocaine can lead to extremely high plasma concentrations (Dickson, et al., 1994). Although the M:P ratio has not been established in human, rats were found to have a ratio of 7.8:1 (Dickson, et al., 1994; Friguls, et al., 2010). If human M:P ratios are similarly high,

toxic concentrations could easily accumulate in infants. Dickson et al. (1994) used the Henderson-Hasselbach equation to demonstrate that the concentration of cocaine in breast milk could be twenty times that of the mother's plasma levels.

Several case studies have reported intoxication in breastfed infants exposed to cocaine. Chasnoff et al. (1987) reported the admission of a two week old breastfed infant whose mother had a history of cocaine and alcohol abuse. The mother admitted using 0.5 g of cocaine prior to breastfeeding her child five times. The infant quickly became irritable, had vomiting, diarrhea, and dilated pupils. Both the mother's milk and the infant's urine were found to contain cocaine and BZE. The milk samples were negative for both cocaine and metabolites 36 hours after the last reported cocaine use. The infant's urine sample was negative 60 hours after the last reported breastfeeding (Chasnoff, et al., 1987). Winecker et al. (2001) collected breast milk from 11 mothers who admitted cocaine use, and found that the highest cocaine concentration was 12.1 µg/mL of breast milk. The authors concluded that breastfed infants of these mothers could be exposed to significant amounts of drug (Winecker, et al., 2001).

Nicotine.

Despite the publicized risks associated with tobacco use, approximately 25-30% of women in the U.S. smoke cigarettes during pregnancy (Howard & Lawrence, 1999; Ilett, et al., 2003). Nicotine is a toxic substance, with low-level poisoning leading to dizziness, nausea, and weakness. Toxic concentrations can cause tremors, convulsions, paralysis of the respiratory muscles, and death (Howard & Lawrence, 1999). Nicotine has a half-life of approximately one hour in serum and two hours in breast milk, and is metabolized to cotinine, trans-3-hydroxy cotinine and cotinine-N-oxide (Friguls, et al., 2010; Luck & Nau, 1987). The cotinine serum concentration remains constant during a four hour period following smoking (Friguls, et al.,

2010). Nicotine has a M:P ratio of around 3:1 (Dahlstrom, Ebersjo, & Lundell, 2004; Friguls, et al., 2010; Luck & Nau, 1987). It has a pKa of 8.0, which causes it to become concentrated as it passes into breast milk (Dahlstrom, Lundell, Curvall, & Thapper, 1990; Friguls, et al., 2010). The excretion of nicotine and cotinine into breast milk is proportional to the number of cigarettes smoked (Dahlstrom, et al., 2004; Dahlstrom, et al., 1990; Friguls, et al., 2010; Luck & Nau, 1987). In a study by Dahlstrom et al. (2004), infants of mothers who used chewing tobacco while breastfeeding were exposed to higher nicotine concentrations than infants whose mothers who smoked cigarettes.

Infants raised by smokers have been found to have nicotine and cotinine in their urine, with much higher concentrations seen in breastfed infants. For this reason, it is difficult to correlate a maternal M:P ratio with the levels seen in infants unless they are completely protected from passive inhalation (Howard & Lawrence, 1999). Ilett et al. (2003) found that the absolute infant dose of nicotine and cotinine decreased by 70% when breastfeeding mothers used nicotine patches instead of smoking. Many studies have shown that smoking is associated with the production of lower volumes of milk (Howard & Lawrence, 1999). Infants of smoking mothers have shown increased rates of infantile colic and respiratory infections, with decreased respiratory rates and oxygen saturation following breastfeeding. A case of nicotine withdrawal syndrome was seen in a breastfeeding infant whose mother was a heavy tobacco smoker. High concentrations of nicotine were measured in both the infant's and mother's hair, and 128 ng/mL of cotinine was detected in samples of breast milk. The infant demonstrated "spontaneous tremors and rigidity for a month after birth, indicating that fluctuating nicotine contents in different sessions of breastfeeding generated a postnatal nicotine withdrawal syndrome" (Friguls, et al., 2010).

Opiates.

Opiates are able to prevent the transmission of painful stimuli, creating an analgesic effect. They are able to prevent the recognition of painful sensations while inhibiting the negative emotional component of pain. They may also produce euphoria. Opiates are divided into three categories based on their action mechanism: full agonist, mixed agonist-antagonist, and full antagonists. There are many side effects and risks associated with the use of opiates. Respiratory failure is the major cause of death in intoxication cases, and addiction liability can cause physical dependence. Drug tolerance is also very common, which requires an individual to take higher and higher concentrations of drug to produce the same effect (Kerrigan & Goldberger, 2010).

Codeine.

Codeine is a morphine agonist, in the sense that its analgesic properties are dependent on its biotransformation into morphine by cytochrome P450 CYP2D6 (Friguls, et al., 2010; Kerrigan & Goldberger, 2010). Approximately 10-20% of a codeine dose is excreted unchanged, while another 10% of the dose is metabolized to morphine. "Further metabolism can produce the active metabolite morphine-6-glucuronide (M6G), which is more potent than morphine itself" (Kerrigan & Goldberger, 2010). After a fatal case in which a breastfed infant was exposed to codeine through breast milk, both the U.S. Food and Drug Administration and Health Canada published warnings indicating that codeine use in breastfeeding may not be safe for infants (Friguls, et al., 2010; Madadi, et al., 2007). The mother in this case was found to be an ultrarapid metabolizer of cytochrome P450 CYP2D6, a genetic combination that occurs at a frequency of one to 29% in the general population. This caused her to quickly accumulate very high breast milk concentrations of morphine. Postmortem testing of the infant revealed a blood

concentration of 70 ng/mL of morphine. Milk samples were taken after the woman had cut her dose in half, and concentrations of 86 ng/mL were found. It is also notable that the mother was homozygous for single nucleotide polymorphisms compromising the UG 2B7*2 allele. This allele is responsible for the production of M6G, which is even more potent than morphine (Madadi, et al., 2007).

In a study of 17 mothers consuming codeine, milk codeine concentrations ranged from 33.8 to 314 ng/mL from 20 to 240 minutes after codeine consumption. The milk morphine concentrations ranged from 1.9 to 20.5 ng/mL during the same period of time. Eleven of the infants in this study demonstrated plasma codeine levels of up to 4.5 ng/mL and plasma morphine levels up to 2.2 ng/mL. The authors concluded that moderate use of codeine was probably safe (Meny, Naumburg, Alger, Brill-Miller, & Brown, 1993). In a study of breastfeeding mothers receiving morphine via patient-controlled analgesia (PCA) after cesarean delivery, the transfer of morphine and its active metabolite M6G into breast milk was evaluated. The authors concluded that neonatal exposure did not seem to be significant (Baka, Bayoumeu, Boutroy, & Marie-Claire-Laxenaire, 2002). However, another study revealed that infants breastfed by mothers using codeine could experience adverse CNS effects such as drowsiness, apnea and cyanosis (Madadi, Shirazi, Walter, & Koren, 2008).

Morphine.

Morphine is commonly prescribed to women for the management of postoperative pain following cesarean sections (Friguls, et al., 2010). In a study of five lactating women who received morphine for postoperative pain, the M:P ratio was 2.45:1, and a peak milk concentration of 500 ng/mL was observed. The authors concluded that the amount of morphine transferred to an infant was likely to be small, and was unlikely to cause any adverse effects

(Feilberg, Rosenborg, Christensen, & Mogensen, 1989). In a study of a breastfeeding mother receiving intrathecal morphine, low levels of drug were detected in serum and milk samples. The breastfed infant did not demonstrate any sleep, behavior, or developmental problems (Oberlander, et al., 2000). A study of a mother receiving low doses of morphine revealed a substantial variation in morphine milk concentrations of ten to 100 ng/mL. Her breastfed infant was found to have a serum concentration of 4 ng/mL. This value is within the analgesic range for infants, but as this value represents one sampling, the concentration could have been much higher. No adverse effects were observed in the infant (Robieux, Koren, Vandenbergh, & Schneiderman, 1990).

Heroin.

Heroin (diacetylmorphine) is a synthetic morphine derivative that is one of the most widely abused opioids (Kerrigan & Goldberger, 2000). Administration of the drug through intravenous means is the most common, followed by inhalation. It is a highly lipid-soluble compound with a short half-life of 15 to 30 minutes. Heroin is quickly hydrolyzed to 6-monoacetylmorphine (6-MAM) by the liver, brain, heart, and kidneys, and is then converted to morphine, which has a much longer half-life than heroin, at two to three hours. There are no published reports of the analysis of heroin in human breast milk. Heroin is excreted in breast milk in sufficient quantities to cause addiction in an infant, and the following adverse effects have been reported: tremors, restlessness, vomiting, and poor feeding (Friguls, et al., 2010).

Hydrocodone.

Hydrocodone is a commonly prescribed analgesic, especially in nursing mothers. While clinical data is sparse, several cases of neonatal sedation have been attributed to hydrocodone use during breastfeeding. Metabolism of hydrocodone to its more potent metabolite,

hydromorphone, occurs via the CYP2D6 enzyme. If the nursing mother is an ultrarapid metabolizer of CYP2D6, higher doses of the more potent metabolite may be passed on to the nursing infant (Sauberan, et al., 2011). The M:P ratio for hydromorphone is 2.57:1, and there is minimal protein binding and little partitioning into the milk fat (Edwards, Rudy, Wermeling, Desai, & McNamara, 2003).

In a study of two mothers who had been taking a combination of acetaminophen and hydrocodone, it was determined that the infants received 3.1% and 3.7% of the maternal weightadjusted dosage. This translated to an absolute hydrocodone dosage of 8.58 µg/kg/day and 3.07 µg/kg/day based on the different dosages ingested by the nursing mothers. Relative infant doses of less than 10% generally indicate that a medication is safe for use during breastfeeding, but breast milk levels of hydromorphone were not measured in this study (P. O. Anderson, Sauberan, Lane, & Rossi, 2007). A pharmacokinetic study was conducted on 30 nursing mothers in an inpatient setting, who were receiving hydrocodone bitartrate for postpartum pain. Their breast milk was analyzed for hydrocodone and hydromorphone through the use of isotope-dilution liquid chromatography mass spectrometry. Fully breastfed neonates received an average of 1.6% (range 0.2% - 9%) of the maternal weight-adjusted hydrocodone bitartrate dosage. When combined with hydromorphone, the total median opiate dosage from breast milk was 0.7% of a therapeutic dosage for older infants. Most mothers excreted little to no hydromorphone into breast milk. The authors concluded that standard postpartum dosages of hydrocodone appear to be acceptable for use in nursing mothers, but prolonged use of high dosages is not advisable (Sauberan, et al., 2011). In a study of eight nursing mothers receiving hydromorphone, it was determined that although the drug distributes rapidly from the plasma into breast milk, the drug

does not partition into fat. It was predicted that an infant would receive approximately 0.67% of the maternal dose (Edwards, et al., 2003).

Oxycodone.

Oxycodone is an analgesic with effects similar to morphine, but with a lower incidence of nausea and hallucinations (Pokela, Anttila, Seppala, & Olkkola, 2005). Due to concerns about neonatal CNS depression after codeine and breastfeeding, some clinicians are now prescribing oxycodone to nursing mothers in place of codeine (Lam, et al., 2012). However, the prevalence of CNS depression as a result of oxycodone and breastfeeding does not support this view. Oxycodone has rapid oral absorption and high oral bioavailability. It is a weak base with a pKa of 8.5, and the passage from blood to milk is favored. It is moderately protein bound, therefore sufficient unbound drug would be able to pass from the maternal plasma into breast milk (Seaton, Reeves, & McLean, 2007). Oxycodone is primarily metabolized by the CYP3A4 isoenzyme to non-toxic metabolites (Hendrickson & McKeown, 2012). Approximately 15% of an oxycodone dose is metabolized by CYP2D6 to oxymorphone, which is more 14 times potent than oxycodone (Hendrickson & McKeown, 2012; Lam, et al., 2012). Rapid CYP2D6 metabolizers may produce increased concentrations of the more potent oxymorphone, while poor CYP2D6 metabolizers may have problems clearing the parent drug from their system (Hendrickson & McKeown, 2012).

In a study of 50 breastfeeding mothers, oxycodone was detected in breast milk up to 24 hours after dosing, regardless of the dosage amount. The median milk-to-plasma ratio was 3.2:1. Over the following 48-hour period, a larger range of milk-to-plasma levels was observed.

Oxycodone was found in breast milk up to 72 hours after dosing, and the authors concluded that breastfed infants may receive >10% of a therapeutic infant dose (Seaton, et al., 2007). A study of

533 breastfeeding mothers and infants found that infants whose mothers used oxycodone while breastfeeding had a 20.1% rate of infant central nervous system depression (Lam, et al., 2012).

Prevalence of Usage

A global review was conducted to determine the prevalence the use of meth/amphetamine, cannabis, cocaine, and opioids between 1990 and 2008 of people aged 15 to 64 years. While there was qualitative evidence of use and dependence in a large majority of the world's population, there were not many estimates of the extent of such use. Meth/amphetamine use or dependence was found in 181 out of 229 countries/territories of the world, which equates to 99% of the world's population aged 15-64 years. Evidence of cannabis use or dependence was located in 201 countries/territories, which encompasses more than 99% of the world's population aged 15-64 years. Cocaine use or dependence was traced to 182 countries/territories representing more than 98% of the world's population aged 15-64 years. Evidence of opioid use or dependence was found in 192 countries/territories, which equates to more than 99% of the world's population aged 15-64 years (Degenhardt, et al., 2011).

Federal government guidelines by the Substance Abuse and Mental Health Services

Administration (SAMHSA) require drug testing for certain employees (Substance Abuse and

Mental Health Services Administration, 2011). These employees must be tested for five specific

categories of drugs, which is referred to as the "SAMHSA 5", and was previously called the

"NIDA-5." Because of this federal requirement, most drug testing companies offer a basic

drugs-of-abuse panel that tests for drugs in these five common categories: cannabinoids

(marijuana, hash), cocaine (cocaine, crack, benzoylecognine), amphetamines (amphetamines,

methamphetamines, speed), opiates (heroin, opium, codeine, morphine), and phencyclidine

(PCP). Many testing companies also offer an expanded panel that includes a few additional drug

classes and specific drugs in the testing process. These additional categories can be added to the "SAMHSA 5" panel, and are typically chosen from the following categories: barbiturates (phenobarbital, secobarbitol, butalbital), hydrocodone (Lortab, Vicodin), methaqualone (quaaludes), benzodiazepines (Valium, Xanax, Librium, Serax, Rohypnol), methadone, propoxyphene (Darvon compounds), ethanol (alcohol), and MDMA (Ecstasy) ("Drug testing basics," 2009). SAMHSA recently approved the addition of additional Schedule II prescription medications for inclusion in the Mandatory Guidelines for Federal Drug Testing Programs.

These Schedule II drugs include oxycodone, oxymorphone, hydrocodone, and hydromorphone (Hayes & Bannister, 2012).

Each year, Quest Diagnostics releases an annual Drug Testing Index (2012). This index examines the national trend of positivity rates, or the proportion of positive results for each drug to all such drug tests performed, among three major testing populations: federally mandated safety-sensitive workers, the general workforce, and the combined U.S. workforce. Between January and December of 2011, Quest Diagnostics performed 1.6 million drug tests for federally mandated safety-sensitive workers, and 4.8 million drug tests in the general U.S. workforce. Due to more stringent government drug testing rules, federally mandated cutoff levels for cocaine and amphetamines were lowered in October of 2010. In 2011, a 33% increase in cocaine positives (positivity rates increased from 0.24% to 0.32%) and a 26% increase in amphetamines positives (positivity rates increased from 0.35% to 0.44%) were seen in the safety-sensitive workforce, due in large part to the lower cutoff rules. In the general U.S. workforce during the same time period, cocaine positivity increased 8% (from 0.25% to 0.27%) and amphetamine positivity increased 16.7% (from 0.66% to 0.77%) from the previous year. Some of these tests employed the lower cutoffs required for federal testing, but an exact percentage could not be

determined. Overall, amphetamine positivity has increased 75% since 2007. Over 500,000 drug tests for oxycodone were administered to the general U.S. workforce in 2011, and positivity rates were 10% higher than in 2010 (1.0% to 1.1%), and up 25% since 2007. Positive drug tests for opiates in the general workforce were up 7.7% (0.39% to 0.42%) from 2010, and up 20% since 2007. Positivity for propoxyphene, which was pulled off of the market in November 2010, decreased 84.7% from 2010. Of all the drug tests that were non-negative (which includes invalid and adulterated samples), marijuana and amphetamines were seen at the highest rates, 43.3% and 18.4% respectively, followed by opiates (9.5%), benzodiazepines (7.6%), cocaine (7.5%), barbiturates (3.2%), oxycodones (2.7%), and methadone (2.3%). Propoxyphene (0.62%), PCP (0.54%), and MDMA (0.03%) positives were seen at much lower rates (Quest Diagnostics, 2012).

The U.S. Department of Health and Human Services conducts an annual survey of the civilian, non-institutionalized population of the United States who are 12 or older. This survey interviews approximately 67,500 people each year. The 2010 National Survey on Drug Use and Health (NSDUH) focused on trends between 2009 and 2010 as well as from 2002 to 2010. The NSDUH obtains information on the following nine categories of illicit drugs: marijuana, cocaine, heroin, hallucinogens, and inhalants, as well as the nonmedical use of prescription-type pain relievers, tranquilizers, stimulants, and sedatives. In 2010, an estimated 22.6 million Americans aged 12 or older were current illicit drug users, meaning that they had used an illicit drug during the month prior to the survey. This translates to approximately 8.9% of the general population. Marijuana was the most commonly used illicit drug with 17.4 million past month users, or 6.9% of the general population. It was used by 76.8% of current illicit drug users and was the only drug used by 60.1% of them. In 2010, an estimated 15.7% (4.6 million) of past year marijuana

users used the drug on 300 or more days within the past 12 months, while 39.9% (6.9 million) of current users used the drug on 20 or more days in the past month. An estimated 9 million people aged 12 or older (3.6% of the general population) were current users of illicit drugs other than marijuana. The majority of these users were nonmedical users of psychotherapeutic drugs, including 5.1 million users of pain relievers, 2.2 million users of tranquilizers, 1.1 million users of stimulants, and 374,000 users of sedatives. An estimated 1.5 million people (0.6% of the population) were current users of cocaine, 1.2 million people (0.5%) were users of hallucinogens, and 353,000 people (0.1% of the population) were users of methamphetamine. The NSDUH also includes a series of questions about the use of tobacco products. An estimated 69.6 million Americans aged 12 or older were current users of a tobacco product. This represents 27.4% of the population in that age range (Substance Abuse and Mental Health Services Administration, 2011).

ELISA

An ELISA is an immunoassay test, which uses antibody interactions to identify and measure amounts of chemical substances. This technique is capable of sensitivity greater than or equal to instrumental methods, is easy to automate, and is less subject to matrix effects than other analytical techniques. ELISA kits are generally designed for a particular sample matrix. When situations arise where testing is to be performed in a matrix that differs from that for which the kit has been validated, good science dictates that the kit be validated to demonstrate its efficacy in the new matrix (Hand & Baldwin, 2008; Smith, 2003).

Drug screening.

In forensic toxicology, ELISA tests are used to screen biological samples for the presence of drugs. To improve efficiency, pre-packaged ELISA kits are typically purchased for this

purpose. The ELISA process is based on the competition between the drug or drug metabolite in the sample with the kit supplied drug-enzyme conjugate for a limited number of antibody binding sites. Both the drug and the drug-enzyme conjugate bind to antibodies that have been embedded in the ELISA plate wells. A chemical is used to develop color in the bound labeled drug. Samples containing higher concentrations of drug will displace a larger amount of the labeled drug-enzyme conjugate than samples containing the drug at lower concentrations. The proportion of bound labeled drug is inversely proportional to the amount of unlabeled drug, which can be determined by the extent of color development, and is captured by the absorbance value (Hand & Baldwin, 2008; Smith, 2003).

Cutoffs.

The cutoff level is a specific drug concentration at which a sample is considered to be positive. A sample result is compared to the absorbance value a single-point cutoff calibrator. An absorbance value higher than the cutoff calibrator is declared negative, while a value lower than the cutoff calibrator is reported as positive. Cutoff levels are based on the ability of the specific assay, the sensitivity requirements of the market for which the assay was designed, and what type of drug levels may be seen in the general population. For most programs using immunoassays, oversight agencies mandate administrative cutoffs well above the limit of detection of the method. This helps to ensure that laboratories are achieving accurate results and reduces the risk of identifying positive results in individuals that are passively exposed to certain drugs (Hand & Baldwin, 2008; Smith, 2003).

Drug Confirmation.

ELISA is a screening technique that is used as a presumptive test. This means that it can only be used to determine if drugs of interest may be present in samples or if they are not

present. Suspect samples and samples that screen positive should be confirmed using HPLC, LC-MS, or GC-MS (Hand & Baldwin, 2008; Smith, 2003). In order to use these techniques, the drugs must be extracted from the breast milk matrix. Due to its high protein and fat content and changing composition, this can be challenging (Friguls, et al., 2010).

Methods

Materials

Human breast milk samples were provided by Prolacta Bioscience (Monrovia, CA). The milk consisted of three samples from three different donors, and another sample of pooled milk from all three donors. This milk was used for all of the optimization and validation work in this project, and was also used to prepare negative and cutoff calibrators for each of the ELISA assays.

ELISA kits were obtained from Neogen Corporation. Each kit contained the following consumables and reagents necessary to conduct the assay. A kit-specific 96-well antibody-coated Costar plate was provided for each assay. Each plate had 12 strips of eight breakaway wells coated with anti-drug antiserum, and was ready to use. These breakaway strips could be mixed with strips from other kits so that multiple assays could be analyzed on one plate. EIA buffer (phosphate buffered saline solution with bovine serum and a preservative) was provided for sample dilutions. A drug-enzyme conjugate (drug-horseradish peroxidase) was provided for each assay. Wash buffer concentrate (phosphate buffered saline solution with a surfactant) was diluted with nanopure water prior to use. This diluted wash buffer was used to wash all the unbound conjugate and samples from the plate after the conjugate incubation period. K-Blue substrate (stabilized 3, 3', 5, 5' tetramethylbenzidine plus hydrogen peroxide) was provided to develop color in the plate wells after the washing step. An acid stop solution (1 N sulfuric acid)

was provided to stop the enzyme reaction in each instance. Depending on the kit, serum, urine, and/or oral fluid calibrators were provided for each assay. A Certificate of Analysis was provided for the specific lot of calibrator in each kit. The lot # and expiration date for each kit component was recorded and is reported with the raw data (Attachment C through Attachment H).

The following analytical drug standards were obtained from Cerilliant Corporation (Round Rock, TX): d-amphetamine, oxazepam, benzoylecgonine, cotinine, hydromorphone, morphine, d- methamphetamine, oxycodone, and Δ^9 -THC-COOH. The catalog number, lot number, expiration date, and storage conditions for each standard are listed in Table 1. Each standard was prepared in methanol at a concentration of 1 mg/mL. Eppendorf brand pipettes and pipette tips were purchased for this study. The pipettes were calibrated prior to purchase. The calibration date and lot number for each pipette are listed in Table 2. Fisher Scientific brand 12 x 75 mm glass tubes were utilized for sample preparation and analysis.

A Dynex DSX Automated ELISA Four-Plate System (Chantilly, VA) was obtained from Neogen Corporation. The DSX consists of a horizontal platform, which serves as the work area and houses sample tips (four boxes of 108 tips), reagent tips (41 tips), deep well dilution plates (two plates), reagent rack (holds up to 24 reagents), and the sample rack (holds up to 99 samples). It also contains a robotic pipette arm that travels on the x, y, and z axes for optimal pipetting performance, an ambient drawer that can hold up to four ELISA plates, four wash bottles capable of storing two liters of fluid in each bottle, a plate washer, four incubators, an absorbance reader, a barcode reader for plates and samples, a tip waste container, and a liquid waste container capable of holding eight liters.

The Dynex DSX was operated using Revelation software (v. 6.15). Methods were written for each assay so that the DSX instrument made the necessary sample dilutions, pipetted all of the required samples and reagents for each assay, incubated and read each plate. The disposable sample and reagent pipette tips, conjugate vials, calibrator vials, and deep-well dilution plates were also obtained from Neogen Corporation. The instrument was installed and qualified prior to use by Dynex Technologies and Neogen Corporation.

Unless otherwise specified, all of the development and validation work was performed at Analytical Research Laboratories (Oklahoma City, OK).

ELISA kits

The literature was reviewed to determine the dangers of exposing infants to breast milk containing drugs. Based on this research and the prevalence of use within the general population, a seven-drug panel for the following categories of drugs was constructed: amphetamines, benzodiazepines, cocaine, nicotine, opiates, oxycodone, and cannabinoids. Enzyme-linked immunosorbent assays (ELISA) were used for the screening of this drug panel in breast milk due to their ease of use, quick turnaround time, and ability to detect low concentrations of drug. ELISA kits from Neogen Corporation (Lexington, KY) were utilized for the seven-drug panel. The following nine kits were initially evaluated: Amphetamine Ultra, Benzodiazepine Group, Cocaine/BZE, Cotinine, Hydromorphone, Methamphetamine/MDMA, Opiate Group, Oxycodone/Oxymorphone, and THC. The Hydromorphone kit was not used for the final panel because the Opiate kit demonstrated high cross-reactivity with hydromorphone. The Methamphetamine/MDMA kit was not used for the final panel because the Amphetamine Ultra kit demonstrated high cross-reactivity with d-methamphetamine, and it was determined that

the identification of MDMA (3,4-methylenedioxy-N-methylamphetamine) in breast milk would not be pursued for this drug panel.

The final seven-drug panel consisted of the following seven Neogen kits. The calibrator for each kit was given an arbitrary value of 100%. The response values for the additional analytes are ratios of the calibrator, and are expressed as percentages. The Amphetamine Ultra kit used d-amphetamine as the calibrator and cross-reacted with N-desmethylselegiline at 906%, d-methamphetamine at 688%, and (-)- ephedrine at 49%. The Benzodiazepine Group kit used oxazepam as the calibrator and cross-reacted with diazepam at 434%, estazolam at 365%, nordiazepam at 361%, alprazolam at 346%, tetrazepam at 264%, flurazepam at 262%, lormetazepam at 231%, prazepam at 198%, temazepam at 192%, halazepam at 173%, triazolam at 171%, 7-amino flunitrazepam at 147%, nitrazepam at 141%, N-desmethyl flunitrazepam at 119%, flunitrazepam at 110%, bromazepam at 85%, clonazepam at 79%, lorazepam at 70%, midazolam at 65%, and clobazam at 59%. The Cocaine/Benzoylecgonine kit used benzoylecgonine (BZE) as the calibrator, and cross-reacted with cocaine at 133%, cocaethylene at 124%, and m-hydroxycocaine at 96%. The Cotinine kit used cotinine (a nicotine metabolite) as the calibrator and reacted with cotinine only. The Opiate Group kit used a morphine as the calibrator and cross-reacted with 6-acetylcodeine at 195%, codeine at 190%, morphine-3glucuronide at 154%, ethylmorphine at 110%, hydrocodone at 122%, 6-acetylmorphine at 146%, heroin/diacetylmorphine at 154%, nalorphine at 76%, and hydromorphone at 66%. The Oxycodone/Oxymorphone kit used oxycodone as the calibrator and cross-reacted with oxymorphone at 88%. The THC kit used Δ^9 -THC-COOH (11-nor-9-carboxy-delta-9tetrahydrocannabinol) as the calibrator and cross-reacted with Δ^8 -THC-COOH at 88%, and Δ^9 -THC, the parent drug, at 4%. This information is summarized in Table 3.

Screening

Human breast milk samples were provided by Prolacta Bioscience (Monrovia, CA). The milk consisted of three samples from three different donors, and another sample of pooled milk from all three donors. Approximately ten milliliters of each sample was sent to NMS Labs (Willow Grove, PA) to ensure that the milk was free of drugs before it was used for project development and validation purposes.

All four samples were screened for the following categories of drugs by ELISA: amphetamines, barbiturates, benzodiazepines, cannabinoids, cocaine, methadone, opiates, phencyclidine, and propoxyphene. The samples were also screened for cotinine by liquid chromatography – tandem mass spectrometry (LC-MS/MS). The pooled sample was tested for the presence of the following categories of drugs by LC-MS/MS and gas chromatography/mass spectrometry (GC/MS): propoxyphene and metabolite, cocaine and metabolites, benzodiazepines, opiates, cannabinoids, barbiturates, phencyclidine, methadone and metabolite, and amphetamines.

Method Optimization

Sample dilutions and matrix interference.

The effect of the human breast milk matrix on the performance of each kit was examined, and the ideal sample dilutions were determined according to the amount of matrix interference and the degree of variability between samples. The smallest sample dilution that minimized these factors was used.

This work was performed by Ashley Estridge at Neogen Corporation. Five human breast milk samples were analyzed. The first four samples consisted of milk received from Prolacta Bioscience. These samples consisted of three samples from three different donors, and another

sample of pooled milk from all three donors. The fifth sample was an in-house breast milk sample of traceable provenance. These five samples were assayed with each kit, and were analyzed both undiluted and diluted. Dilutions of each blank sample were examined the following levels: 1:2, 1:5, 1:10, 1:20, and 1:50. EIA buffer was used to dilute the samples. Samples were assayed in duplicate and the assays were completed manually. Absorbance values and the percent of milk matrix interference (versus EIA buffer) for each sample were compared for each assay.

After the optimal dilutions were determined, the breast milk samples were pooled. This pool was used to make standards at various concentrations, as shown in Table 4. These samples were assayed at the specified dilutions. Standard curves were generated and compared to standard curves using standards prepared in EIA buffer, as shown in Table 5, to determine if the selected dilutions had a negative effect on the shape of the curve.

Determination of cutoff levels.

A specific cutoff level for each kit was determined based on the linear range of the standard curve. Varying concentrations of breast milk and EIA buffer were prepared by spiking the blank matrix with the specific analytical drug standard for each kit, as depicted in Table 4 and Table 5. Each concentration was analyzed in duplicate. This work was performed by Ashley Estridge at Neogen Corporation, and all of the assays were run manually.

The average absorbance reading for each concentration was used for analysis, and standard curves were generated for EIA buffer and breast milk by plotting the mean B/B_0 values against concentration on a log-logit plot. Logit values were calculated using the following formula: $\ln[(B/B_0)/(100-(B/B_0))]$. A regression line was calculated using the method of least squares, which was expressed as the coefficient of determination (r^2). The I-50, slope, and

intercept were also determined. The linear range of the curve was assessed by approximating the 70 to 30% range on each curve for the milk standards.

Matrix interference with sample dilutions.

The amount of milk matrix interference at the specified dilution for each assay was determined by comparing the absorbance readings between EIA buffer and human breast milk at the 0 ng/mL concentration, and was expressed as a percentage.

Multi-drug calibrators.

Multi-drug cutoff calibrators were compared to single drug cutoffs in order to determine if they were equivalent to one another. The multi-drug calibrators were constructed so that calibrators within a group would not cross-react with any other assays. The Group 4 and Group 6 multi-drug calibrators were compared with single drug spikes. The formulation and concentration of these standards is summarized in Table 6, and described in detail in the *Preparation of Negative and Cutoff Calibrator* section.

Stability of calibrators in human milk.

The stability of prepared human breast milk cutoff standards was examined over a period of 31 days to determine the length of time that prepared milk standards could be used. This work was performed by Ashley Estridge at Neogen Corporation, and the assays were run manually. The Group 4 and Group 5 multi-drug calibrators were examined at days zero, two, four, 25, and 31. The average absorbance value, standard deviation, and % CV were calculated for each assay.

Variability between single and multiple readings.

Samples of negative breast milk were analyzed with each assay to determine the variability between absorbance readings. Single readings of multiple wells were compared with

multiple readings of a single well. Two strips of each assay were prepared as follows. Negative calibrators were assayed in the first two wells, and cutoff calibrators were assayed in wells three and four. A sample of negative breast milk was assayed in wells five through 14. A single reading of all ten wells was taken at the completion of the run. This same plate was then read ten separate times, and the reading for the ninth well of each assay was used for analysis. The negative and cutoff calibrator readings were averaged for each reading. The following calculations were performed on the single and multiple readings for each assay: average, standard deviation, percent change between the average readings and the negative calibrator, the $\%B/B_0$ for the calibrators, the $\%B/B_0$ for the cutoff calibrator and average reading, and the percent change between the two $\%B/B_0$ values.

Validation

Three separate validations were performed. The first validation run used calibrators prepared in EIA buffer, examined nine kits (the Hydromorphone and MDMA/Methamphetamine kits were initially evaluated), and used morphine as the calibrator for the Opiate kit. The results for the Hydromorphone and Methamphetamine/MDMA kits are not reported, as these kits were not used in the finalized seven-drug panel. This validation used Group 1, Group 2, and Group 3 multi-drug calibrators. The cutoff levels utilized for each validation for each kit are outlined in Table 6. The ELISA plates were constructed in the following way for each validation test. The first well contained the negative calibrator (blank EIA buffer), the second well contained the cutoff calibrator (a multi-drug calibrator spiked into EIA buffer), the third well contained the Neogen kit supplied negative calibrator in a serum matrix, and the fourth well contained the Neogen kit supplied cutoff calibrator in a serum matrix. The Neogen calibrators were analyzed determine if the assays were performing correctly. Each assay was programmed so that the

calibrators were taken from the control rack. The negative and cutoff calibrators were analyzed one time. Any wells analyzed following these calibrators were run as samples and were taken from the sample rack. The data obtained from this run was used to further optimize the method.

The second validation run used calibrators prepared in human breast milk.

Hydromorphone was used as the calibrator for the Opiate kit used Group 4 and Group 5 multidrug calibrators. The cutoff levels for each kit are outlined in Table 6. The ELISA plates were constructed in the following manner for each validation test. The first well contained the negative calibrator (blank human breast milk), the second and third wells contained the cutoff calibrator (a multi-drug calibrator spiked human breast milk), the fourth well contained the Neogen kit supplied negative calibrator in a serum matrix, and the fifth well contained the Neogen kit supplied cutoff calibrator in a serum matrix. The Neogen calibrators were analyzed determine if the assays were performing correctly. Each assay was programmed so that the calibrators were taken from the control rack. The negative and cutoff calibrators were analyzed in duplicate, and the average value was determined. Any wells analyzed following these calibrators were run as samples and were taken from the sample rack. Both the calibrators and samples were diluted to the amount specified for each assay.

The third validation run used calibrators prepared in human breast milk, and validated the final seven-drug panel. For this validation, the negative calibrator was run in duplicate and the cutoff levels for the cocaine and opiate kits were increased, as shown in Table 6. This validation used Group 4 and Group 6 multi-drug calibrators. This validation was run at Prolacta Bioscience on a qualified Dynex DSX instrument. The first and second wells contained the negative calibrator (blank human breast milk), the third and fourth wells contained the cutoff calibrator (a multi-drug calibrator spiked into human breast milk), the fifth well contained the Neogen kit

supplied negative calibrator in a serum matrix, and the sixth well contained the Neogen kit supplied cutoff calibrator in a serum matrix. The Neogen calibrators were analyzed determine if the assays were performing correctly. Each assay was programmed so that the calibrators were taken from the control rack. The negative and cutoff calibrators were analyzed in duplicate, and the average value was determined. Any wells analyzed following these calibrators were run as samples and were taken from the sample rack. Both the calibrators and samples were diluted to the amount specified for each assay.

Calculation of $\%B/B_0$.

A 50% B/B₀ value was targeted for each assay. The %B/B₀ value was calculated by determining the ratio between the mean absorbance values of the cutoff and negative calibrators, and was expressed as a percentage. Due to the variable nature of ELISA assays, a 30 - 70% range of B/B₀ values for each assay was considered acceptable. These values allow for a good separation of absorbance values between the negative and cutoff concentrations. The %B/B₀ value was calculated for each assay in each validation to determine the normal range of values. If a %B/B₀ value was observed outside the normal range, a new calibrator was prepared.

Preparation of negative and cutoff calibrators.

Negative controls were prepared from human breast milk that was confirmed to be free of drugs. For the initial validation, 1 mL of negative breast milk was transferred into three separate control vials, one for the Group 1 negative control, one for the Group 2 negative control, and one for the Group 3 negative control. For the second validation, 1 mL of negative breast milk was transferred into two separate control vials, one for the Group 4 negative control and one for the Group 5 negative control. For the third validation, 1 mL of negative breast milk was transferred into two separate control vials, one for the Group 4 negative control and one for the Group 6

negative control. For any negative calibrators being used for sample analysis, 1 mL of the calibrator was transferred to a 12 x 75 mm glass tube. All controls and samples were vortexed prior to analysis.

Cutoff controls were prepared from human breast milk that was confirmed to be free of drugs. The milk was vortexed prior to calibrator preparation. For any cutoff calibrators being used for control purposes, 1 mL of the calibrator was transferred into a control tube. For any cutoff calibrators being used for sample analysis, 1 mL of the calibrator was transferred to a 12x75 mm glass tube. All controls and samples were vortexed prior to analysis.

Analytical drug standards for each assay were obtained from Cerilliant. Each drug standard came prepared at a concentration of 1 mg/mL in methanol. A 10 μ g/mL solution of each standard was prepared in EIA buffer using the following method. One milliliter aliquots of EIA buffer were made into a glass tube for each analyte. Using a 2-20 μ L pipette, the pipette tip was pre-rinsed twice with EIA buffer and 10 μ L was removed from the glass tube. This was repeated for each analyte. A fresh pipette tip was pre-rinsed twice with the analytical drug standard, 10 μ L of the standard was pipetted into the glass tube of EIA buffer, and the tip was rinsed twice. Any excess methanol was removed from the outside of the tip by wiping it on edge of standard stock vial. Each tube was covered and vortexed.

A 1 μ g/mL solution was prepared with the 10 μ g/mL solution using the following method. Using a 100-1000 μ L pipette, 250 μ L of human breast milk was transferred into a labeled glass tube for each analyte. Using a 20-200 μ L pipette, the tip was pre-rinsed twice with milk and 25 μ L was removed from the glass tube. This was repeated for each analyte. Using a 20-200 μ L pipette, a fresh pipette tip was pre-rinsed twice with the 10 μ g/mL solution and 25 μ L of this solution was transferred into the glass tube of milk corresponding to that analyte. This

was repeated for each analyte. The tubes containing the 1 µg/mL solution were covered and vortexed. This solution was used to prepare the multi-drug calibrators and the accuracy samples.

Preparation volumes for the solutions and cutoff calibrators were scaled up depending on the needs of the particular validation run. The process for the preparation of the Group 4 and Group 6 cutoff controls are detailed below. The concentrations for the cutoff controls from Group 4, Group 2, Group 3, and Group 5 are summarized in Table 6. The Group 4 and Group 6 cutoff calibrators were prepared using the 1 μ g/mL solution. The Group 4 cutoff calibrator contained d-amphetamine, cotinine, and oxycodone for use with the Amphetamine Ultra, Cotinine, and Oxycodone/Oxymorphone assays. To prepare the Group 1 cutoff calibrator, 1 mL of human breast milk was transferred into a glass tube. Using a 20-200 μ L pipette, the tip was pre-rinsed twice with milk and 130 μ L was removed from the glass tube. Using a 20-200 μ L pipette, a fresh pipette tip was pre-rinsed twice with the 1 μ g/mL solution for d-Amphetamine and 50 μ L of the this solution was pipetted into the glass tube of milk. This procedure was repeated for the cotinine and oxycodone solutions, with 50 μ L of cotinine and 30 μ L of oxycodone being added to the tube of human milk. The tube was covered and vortexed.

The Group 6 cutoff calibrator contained oxazepam, benzoylecgonine, hydromorphone, and Δ^9 -THC-COOH for use with the Benzodiazepine Group, Cocaine/BZE, Opiate Group, and THC assays. To prepare the Group 6 cutoff calibrator, 1 mL of human breast milk was transferred into a glass tube. Using a 20-200 μ L pipette, the tip was pre-rinsed twice with milk and 170 μ L of milk was removed from the glass tube. Using a 20-200 μ L pipette, a fresh pipette tip was pre-rinsed twice with the 1 μ g/mL solution for oxazepam and 50 μ L of the this solution was pipetted into the glass tube of milk. This procedure was repeated for the benzoylecgonine, hydromorphone, and Δ^9 -THC-COOH solutions, with 50 μ L of benzoylecgonine, 50 μ L

hydromorphone, and 20 μ L of Δ^9 -THC-COOH being added to the tube of human milk. The tube was covered and vortexed.

Test procedures.

The following test procedures were written into the pre-defined assays. A minimum volume of 50 µL for each breast milk calibrator and sample was transferred to a deep-well plate and was diluted with EIA buffer to the appropriate dilution value for each assay. Mixing in the deep well plate occurred immediately after the calibrator or sample was dispensed, and three mix cycles were performed. For the Amphetamine Ultra, Benzodiazepine Group, Oxycodone/Oxymorphone, and THC assays, 10 µL of each calibrator and sample were transferred to the appropriate microtiter wells. For the Cocaine/BZE, Cotinine, and Opiate Group assays, 20 µL of each calibrator and sample were transferred to the appropriate microtiter wells. For the Amphetamine Ultra, Benzodiazepine Group, Cotinine, Oxycodone/Oxymorphone, and THC assays, 100 µL of each assay conjugate were transferred to the appropriate microtiter wells. For the Cocaine/BZE and Opiate Group assays, 180 µL of each assay conjugate were transferred to the appropriate microtiter wells. All of the assays, with the exception of Cotinine, incubated for 45 minutes at ambient temperature. The Cotinine microtiter plates incubated for 30 minutes at room temperature. After the conjugate incubation period, the liquid was aspirated from each well and each plate was washed five times. For each wash cycle, 300 µL of wash buffer was dispensed to each well, and then was aspirated. After the final cycle, the washer performed an additional aspiration step, and the washer was cleaned with 3 mL of deionized water. Each well was then filled with 100 μL of K-Blue Substrate (150 μL for the Cotinine assay). All assays, with the exception of Cotinine, incubated for 30 minutes an ambient temperature. The Cotinine assay incubated for 15 minutes at ambient temperature. After the

substrate incubation period, $100~\mu L$ of Acid Stop ($150~\mu L$ for the Cotinine assay) was added to each well to halt the enzyme reaction. The absorbance of each plate was read at 450~nm.

Drift.

Negative and cutoff calibrators were assayed in the first and last wells of the run to ensure that the controls performed similarly at the beginning and end of the plate. Three strips of eight wells were set up for each assay. The calibrators were run in the first four wells for the first validation, in the first five wells for the second validation, and in the first six wells for the final validation. A negative calibrator was run as a sample in well 23, and a cutoff calibrator was run as a sample in well 24. Samples of blank EIA buffer were analyzed in the remaining wells.

The %B/B₀ for each calibrator set was calculated. If any of the calibrators in the first wells were run in duplicate, the average was used for analysis. While many ELISA validations set their cutoff for plate drift at 20 or 25% CV (DeSilva, et al., 2003; Findlay, et al., 2000; Kelley & DeSilva, 2007; Schwope, et al., 2010), the U.S. Food and Drug Administration (FDA) specify that precision determinations should not exceed 15% CV (U.S. Department of Health and Human Services, FDA, CDER, 2001). For this study, the 15% CV guideline for precision was also applied to the plate drift determination. The drift validation passed if there was less than 15% variation between the %B/B₀ for the first and last set of calibrators.

Precision.

Negative and cutoff controls were assayed in every other sample well to confirm the precision of the instrument and the performance of the calibrators. "The precision of an analytical method describes the closeness of individual measures of an analyte when the procedure is applied repeatedly to multiple aliquots of a single homogenous volume of biological matrix" (USDHHS, FDA, CDER, 2001). Precision was run two separate times for each

validation run, for a total of six precision assays. A larger volume of milk was prepared for both the negative and cutoff samples. Aliquots were taken from each single homogenous volume for precision analysis. Three strips of eight wells were set up for each assay. The calibrators were run in the first four wells for the first validation, in the first five wells for the second validation, and in the first six wells for the final validation. Samples of negative and cutoff calibrators were alternated in the remaining wells.

The standard deviation and % CV was calculated separately for the negative samples and the cutoff samples in each run. According the FDA, the precision determinations for each concentration level should not exceed 15% CV (USDHHS, FDA, CDER, 2001). The precision validation passed if there was less than 15% CV for the negative samples and cutoff samples in each run.

Accuracy.

The accuracy validation assessed the ability of each assay to correctly determine the true result. Analytical drug standards were spiked into breast milk at 50% below the cutoff level, at the cutoff level, and 50% above of the cutoff level. The preparation for these spikes is detailed in Table 7 and Table 8. For the first and second validation, nine replicates of each level were analyzed. For the third validations, six replicates of each level were analyzed. The absorbance value of each sample was compared to the absorbance value of the cutoff control in order to make a positive or negative determination. If the absorbance value of the sample was greater than the absorbance of the cutoff calibrator, the sample was negative. If the absorbance value of the sample was positive. The accuracy validation passed if there were no false positives for the samples at 50% below the cutoff level and no false negatives for the samples at 50% above the cutoff level.

Sample analysis.

Nineteen samples of human breast milk were screened at Prolacta Bioscience using the finalized ELISA seven-drug panel. These samples originated from nineteen different donors, and were de-identified prior to screening. The samples had screened negative for the presence of opiates/morphine, marijuana, cocaine/BZE, benzodiazepines, methamphetamine, and amphetamine by personnel at Prolacta through the use of an immunochromatographic assay.

Data Analysis

All data was analyzed using a current statistical analysis computer program (Excel for Windows, version 14.0, Redmond, WA).

Results and Discussion

Screening

Human breast milk samples were provided by Prolacta Bioscience (Monrovia, CA). The milk consisted of three samples from three different donors, and another sample of pooled milk from all three donors. All four samples were screened for the following categories of drugs by ELISA: amphetamines, barbiturates, benzodiazepines, cannabinoids, cocaine, methadone, opiates, phencyclidine, and propoxyphene. The samples were also screened for cotinine by LC-MS/MS. The screening results for all four samples were negative. The pooled sample was then confirmed to be negative for the presence of the following categories of drugs by LC-MS/MS and GC/MS: propoxyphene and metabolite, cocaine and metabolites, benzodiazepines, opiates, cannabinoids, barbiturates, phencyclidine, methadone and metabolite, and amphetamines. The methods and cutoff levels for each test are listed in Attachment A. The results are detailed in the NMS Labs issued Toxicology Report (Attachment B).

It is imperative that any breast milk that will be used for preparation of calibrators or assay validation is verified as being truly negative for the presence of drugs. If any drugs are present in the milk, and this milk is used as a negative calibrator or is fortified with analytical drug standards and used as a cutoff calibrator, the resultant values will not be a true representation of the level for a negative or cutoff. Any results obtained using these calibrators are likely to be inaccurate.

Method Optimization

Sample dilutions and matrix interference.

Absorbance values of sample dilutions versus EIA buffer were compared, and the amount of matrix interference was calculated. The undiluted milk samples showed interference in all of the assays. This was demonstrated by a reduction in the absorbance of the milk sample when compared to the absorbance of EIA buffer. The Cotinine assay showed the least amount of matrix interference at 20.3%, while the THC assay demonstrated the greatest amount of matrix interference at 73.6%. The degree of variability between samples was lowest in the Benzodiazepine Group, Cocaine/BZE, Cotinine, Opiate Group, and Oxycodone/Oxmorphone assays, greater in the Amphetamine Ultra assay, and greatest in the THC assay. Dilutions of the milk samples reduced the amount of matrix interference and lessened the degree of variability between samples while producing absorbance values that more closely approximated the values of EIA buffer. This data is summarized in Table 9. The optimal dilutions were determined by selecting the smallest dilution that minimized both the matrix effect of the milk along with the degree of variability between samples. These dilutions are depicted in Table 10. Due to a high degree of matrix interference and variability between samples, samples were diluted 1:100 in EIA buffer for the THC kit only.

After the optimal dilutions were determined, the breast milk samples were pooled. This pool was used to make standards at various concentrations, as shown in Table 11 through Table 16. After these samples were assayed at the specified dilutions, standard curves were generated and compared to standard curves using standards prepared in EIA buffer (Figure 1 through Figure 7). The selected sample dilutions did not appear to have any negative effects on the shape of the standard curves for breast milk.

Determination of cutoff levels.

The initial cutoff levels were based on the linear range along with the levels of the serum calibrators included with each kit. For the Amphetamine Ultra, Benzodiazepine Group, Cocaine/BZE, Cotinine, Opiate Group, the serum calibrators were at a concentration of 50 ng/mL. The Oxycodone/Oxymorphone calibrator was at 10 ng/mL and the THC calibrator was at 5 ng/mL.

The 70-30% B/B₀ range for each assay was approximated. The widest ranges of cutoff values were seen in the Amphetamine Ultra and Cotinine assays, while the narrowest ranges were seen in the Oxycodone/Oxymorphone, Cocaine/BZE, and THC assays. The linearity data, including the approximate linear range for each kit are listed in Table 11 through Table 16. The following cutoffs were proposed: Amphetamine Ultra – 50 ng/mL, Benzodiazepine Group – 50 ng/mL, Cocaine/BZE – 30 ng/mL, Cotinine – 50 ng/mL, Opiate Group – 30 ng/mL, Oxymorphone/Oxycodone – 30 ng/mL, and THC – 20 ng/mL. The proposed cutoff levels remained unchanged with the exception of the Cocaine/BZE and Opiate Group assays. Both assays were initially set at 30 ng/mL, but were raised to 50 ng/mL because of false negative results being obtained during the accuracy validation.

As there is very little research on the range of drug concentrations seen in human breast milk and the concentrations that could be harmful to infants, these cutoff levels may need to be scaled up or down within the linear range. As more research is done in this area on larger populations of breastfeeding women, the prevalence of concentrations can be determined. Further research is needed to ascertain drug concentrations that may cause harm to infants.

Matrix interference with sample dilutions.

The amount of milk matrix interference at the specified dilution for each assay was determined by comparing the absorbance readings between EIA buffer and human breast milk at the 0 ng/mL concentration, and was expressed as a percentage. The interference varied from a low of 1% in the Oxycodone/Oxymorphone assay, to 20% for the Opiate Group assay. Despite the 20% matrix interference, the Opiate Group assay performed well in the validations, with the exception of accuracy. This issue was resolved by increasing the cutoff level, but it is possible that the sample dilution could be increased while maintaining the lower cutoff level. The THC assay, which demonstrated 73.6% interference with undiluted breast milk, was reduced to 3% matrix interference when a 1:100 dilution was utilized. The absorbance values and percent matrix interference are listed in Table 18.

Multi-drug calibrators.

The multi-drug calibrators demonstrated similar performance to the single drug calibrators. The percent difference between the multi-drug and single drug calibrators was under 6% for the majority of the assays. There was a 10.7% difference between calibrators for the Cocaine/BZE assay, and a 14.6% difference between calibrators for the Benzodiazepine Group assay. The data suggests that less drug was spiked in the multi-drug calibrators than in the single drug calibrators, which could be attributed to human error. The %B/B₀ values of these two

assays still fall within the range of $\%B/B_0$ values observed in the second and third validations (Table 19). The data for the comparison of multi-drug and single drug calibrators is depicted in Attachment C, and is summarized in Table 20.

The use of multi-drug calibrators streamlines the amount of controls that need to be prepared and reduces the amount of reagents and consumables needed when analyzing samples. For the purposes of high-throughput sample analysis, the use of multi-drug calibrators is recommended.

Stability of calibrators in human milk.

Drugs at the cutoff concentrations were found to be stable in human milk for at least 31 days when stored at refrigerated conditions (2-8 °C). The % CV for the five time points ranged from 5% for the Benzodiazepine Group and THC assays to 15% for the Cocaine/BZE assays.

Aside from the Cotinine assay, there was not a demonstration of linear degradation for any of the assays. The data is summarized in Table 21.

For quality control purposes, the majority of human milk banks store unpasteurized human milk at -20 to -30°C for up to three months (Wojcik, et al., 2009). The Academy of Breastfeeding Medicine (2004) recommends that human milk be stored at refrigerated conditions (approximately 4°C) for no longer than five days, and at frozen conditions (approximately - 20°C) for no longer than 12 months. Milk stored for longer periods is still safe for consumption, but research has shown that lipids start to degrade, resulting in a lower quality product (The Academy of Breastfeeding Medicine, 2004). As the calibrators have demonstrated stability for 31 days, it is recommended that new calibrators be prepared every five days when stored at refrigerated conditions.

Variability between single and multiple readings.

The single reading of ten multiple wells provided more robust data than multiple readings of a single well. The absorbance readings continued to fall as each reading was made, and this is likely due to the amount of time that elapsed between each of the readings. The acid stop applied to the wells makes the wells stable to read for a certain period of time, but the stability drops off as the acid stop continues to react within the well. The data is depicted in Attachment D, and is summarized in Table 22 and 23.

For the single readings of multiple wells, the percent change between the average absorbance of the multiple readings and the negative calibrator ranged from a low of 1.2% in the Oxycodone/Oxymorphone assay and 6.5% in the Amphetamine Ultra assay to a high of 17.5% in the Cocaine/BZE assay and 30.5% in the Cotinine assay. For the multiple readings of a single well, the percent change between the average absorbance of the multiple readings and the negative calibrator ranged from a low of 0.2% in the Oxycodone/Oxymorphone assay and 2.0% in the Amphetamine Ultra assay to a high of 22.4% in the Cocaine/BZE assay and 45.4% in the Cotinine assay. The trends were identical between single and multiple readings for all assays. This shows that the variability for the Cocaine/BZE and Cotinine assays is likely to be greater than the variability seen in the other assays. This variability did not have any effect on the qualitative results obtained from the final validation. The majority of the %B/B₀ values did not fall within the range of values seen in the second and third validations. Again, these values did not have a negative effect on the ability of the assays to obtain qualitative results and may be attributed to the day-to-day variability that occurs in ELISA assays.

Validation

Drift.

The % CV was consistently lower when the calibrators were prepared in breast milk versus EIA buffer, with the exception of the Benzodiazepine Group and Opiate Group assays. When the Cocaine/BZE, Oxycodone/Oxymorphone, and Opiate Group assays were run during the second validation, the % CV for the Cocaine/BZE assay was 20.78%, the % CV for the Oxycodone/Oxymorphone assay was 17.76%, and the average %B/B₀ for the Opiate Group assay was 86.72%, which was much higher than expected. New calibrators were prepared, and these assays were repeated. The Cocaine/BZE % CV dropped to 1.15%, and the Oxycodone % CV dropped to 1.72%. The Opiate Group average %B/B₀ dropped to 72.94%, while the % CV rose from 2.04 to 10.24. During the final validation, the THC assay had a low % CV of 1.10%, but the average %B/B₀ was extremely high at 91.09%. New calibrators were prepared and analyzed with the calibrators producing the high B/B₀ values. Drift was not evaluated, but the %B/B₀ dropped to 72.55% and the original calibrator had an absorbance value of 1.055 while the new calibrator had an absorbance value of 1.069. The absorbance values for the cutoff calibrator obtained during the drift run were most likely the result of some type of error. It is important to track the typical range of $\%B/B_0$ values so that errant results can be detected.

The cutoff levels for the Cocaine/BZE and Opiate Group assays were raised from 30 ng/mL for the second validation to 50 ng/mL for the final validation. The average %B/B₀ values for the Cocaine/BZE dropped from 80.78% to 61.02% and from 86.73% and 78.01% to 57.33% for the Opiate assay.

All of the drift validations passed as there was less than 15% variation between the %B/B₀ for the beginning control set and the ending control set for each assay. The data for each

validation is depicted in Attachment E through Attachment G, and the results of each drift validation are summarized in Table 24.

Precision.

The % CV for the negative and cutoff calibrators for the first and second run of each day was similar. The second validation run demonstrated more variability in the % CV for the cutoff calibrators between the first and second run of each day. Outliers were removed from data obtained during the first two runs of the first validation and from the second run of the second validation. The values removed from the first validation were consistently in the same wells between assays. As this data was not being used to validate the final panel, the values were removed without performing statistical analyses. A Grubb's test for outliers was performed on the precision data from the second validation in order to demonstrate that the data point was indeed an outlier. The Benzodiazepine Group, Cocaine/BZE, Opiate Group, and THC assays all had outlying data within the same well position for each assay, and were all prepared as the Group 5 calibrator. The Grubbs value for each assay was calculated using the following formula: $G = (y_{max}-y_{min})/SD$. The Benzodiazepine Group assay had a Grubbs value of 3.12, the Cocaine/BZE assay had a Grubbs value of 3.44, the Opiate Group assay had a Grubbs value of 3.50, and the THC assay had a Grubbs value of 3.30. Based on the sample size of nine values, the critical Z value for an upper one-tailed test was 2.323 at a significance level of 0.01. Because the G values were all greater than the critical Z value, the maximum values in each data set were outliers. The following values were removed from each assay: 2.435 - Benzodiazepine Group, 1.453 – Cocaine/BZE, 1.787 – Opiate Group, 1.898 – THC. The resultant average, standard deviation, and % CV for each assay is reported in Table 25. The corresponding data for each validation is depicted in Attachment E through Attachment G.

All three precision validations passed because the % CV for the negative and cutoff calibrators was less than 15%. This confirms the precision of the instrument and the performance of the calibrators.

Accuracy.

When samples are prepared at the cutoff level, they may return either a positive or negative result, as the sample concentration is so close to the concentration of the cutoff calibrator. Ideally, sample prepared exactly at the cutoff should come back negative. The accuracy of each assay improved when calibrators prepared in breast milk were utilized. The only problem assays for the second validation were Cocaine/BZE and Opiate Group with false positives and Oxycodone/Oxymorphone with false negatives. The Cocaine/BZE and Opiate group assays were remedied by increasing the cutoff levels from 30 ng/mL to 50 ng/mL. Both of these assays passed at 100% in the final validation. The false negative for the Oxycodone/Oxymorphone assay was determined to be an outlier using the Grubbs test. The problem well had an absorbance value of 1.667, which was higher than the average for both the cutoff level and 50% above the cutoff level. This well had a G value of 3.34, making it an outlier for an upper one-tailed test at a significance level of 0.01. When this assay was analyzed during the final validation, it passed with 100% accuracy. Only the final accuracy validation passed, as all of the samples prepared at 50% above and 50% below the cutoff level were correctly identified. The data for each validation is depicted in Attachment E through Attachment G, and the accuracy results are summarized in Table 26.

The failing assays from the second validation were repeated after the final validation using the revised cutoff levels, and passed with 100% accuracy. The results are not reported, but this demonstrates the robustness of the method between two different sites.

Sample analysis.

All nineteen milk samples screened negative using the finalized ELISA seven-drug panel, and the data is depicted in Attachment H. This supports the negative results obtained with the immunochromatographic screen. There were no matrix issues seen with milk from a variety of different donors.

Conclusions

A seven-drug panel was successfully optimized and validated for the screening of licit and illicit drugs in human breast milk. This method is robust and was successfully validated at two different sites. The details of the final seven-drug panel are detailed in Table 27.

Future Research

It is suggested that the sensitivity and specificity of this method be explored by examining blinded samples of breast milk prepared at 50% above and below the cutoff level for each assay. By examining multiple samples instead of replicates of one sample, the diagnostic sensitivity and specificity can be determined (Schwope, et al., 2010).

A limited number of breast milk donors were examined in this study. Although there were not any issues with assay performance between these donors, additional research should be undertaken. The composition of breast milk changes over time and is likely to be different between individuals (Wojcik, et al., 2009), so further study is needed to determine if these changes affect the ability of the ELISA assays to detect drugs.

For this study, human breast milk samples were not available from women who were known users of the drugs tested in this panel. Because all individuals metabolize drugs differently, the concentrations of drugs and metabolites in breast milk may differ from person to person. Samples of milk obtained from women who have been taking drugs should be screened

by this ELISA panel to determine if there is a difference between metabolized samples and drug spiked samples.

Due to the complicated metabolism associated with the transition of drugs from plasma into breast milk, it is difficult to determine the range of drug concentrations that may be present in the general population of breastfeeding women. This is a difficult subject to study, due to the dangers and ethical dilemmas that are intrinsic in examining the relationship of drug use, breastfeeding, and the possible dangers to infants. As there is no therapeutic infant dose for many of the drugs in this panel, it is difficult to say what breast milk levels may be harmful. The cutoff levels suggested in this study may need to be scaled up or down depending on what is found in future research.

The composition of breast milk may have an effect on what concentrations are seen in samples. For example, if drugs tend to partition into milk with a higher preponderance of fat, it may be more difficult to detect the drug's presence in samples that are lower in fat content.

Additional research could be done to determine the ability of drugs to pass into samples of certain macronutrient profiles.

References

- The Academy of Breastfeeding Medicine. 2004. *Clinical protocol number #8: human milk*storage information for home use for healthy full term infants. Princeton Junction, NJ:

 The Academy of Breastfeeding Medicine.
- Agatonovic-Kustrin, S., Ling, L. H., Tham, S. Y., & Alany, R. G. (2002). Molecular descriptors that influence the amount of drugs transfer into human breast milk. *Journal of Pharmaceutical and Biomedical Analysis*, 29, 103-119.
- American Academy of Pediatrics. (2001). The transfer of drugs and other chemicals into human milk. *Pediatrics*, 108, 776-789.
- American Academy of Pediatrics. (2012). Breastfeeding and the use of human milk. *Pediatrics*, 129, e827-e841.
- American Board of Forensic Toxicology. Forensic toxicology laboratory accreditation manual.
- American Dietetic Association. (2009). Position of the American Dietetic Association: promoting and supporting breastfeeding. *Journal of the American Dietetic Association*, 109, 1926-1942.
- Anderson, O. (1989). Neonatal alprazolam withdrawal possible effects of breast feeding. *DICP*, *The Annals of Pharmacotherapy*, 23, 7-8.
- Anderson, P. O., Sauberan, J. B., Lane, J. R., & Rossi, S. S. (2007). Hydrocodone excretion into breast milk: the first two reported cases. *Breastfeeding Medicine*, 2(1), 10-14.
- Ariagno, R., Karch, S. B., Middleberg, R., Stephens, B. G., & Valdes-Dapena, M. (1995).

 Methamphetamine ingestion by a breastfeeding mother and her infant's death: People v

 Henderson. *Journal of the American Medical Association*, 274(3), 215.
- Astley, S. J., & Little, R. E. (1989). Maternal marijuana use during lactation and infant

- development at one year. Neurotoxicology and teratology, 12, 161-168.
- Atkinson, H. C., Begg, E. J., & Darlow, B. A. (1988). Drugs in human milk: clinical pharmacokinetic considerations. *Clinical Pharmacokinetics*, *14*, 217-240.
- Baka, N.-E., Bayoumeu, F., Boutroy, M.-J., & Marie-Claire-Laxenaire. (2002). Colostrum morphine concentrations during postcesarean intravenous patient-controlled analgesia. *Anesthesia & Analgesia*, 94, 184-187.
- Bartu, A., Dusci, L. J., & Ilett, K. F. (2009). Transfer of methylamphetamine and amphetamine into breast milk following recreational use of methylamphetamine. *British Journal of Clinical Pharmacology*, 67(4), 455-459.
- Begg, E. J. (1996). Determinants of drug transfer into human milk. In P. N. Bennett (Ed.), *Drugs and Human Lactation* (2nd ed., pp. 47-58). Amsterdam: Elsevier Science Publishers B.V.
- Berlin, C. M. (2003). Sensitivity of the young infant to drug exposure through human milk.

 *Advanced Drug Delivery Reviews, 55, 687-693.
- Berlin, C. M., & Briggs, G. G. (2005). Drugs and chemicals in human milk. *Seminars in Fetal & Neonatal Medicine*, 10, 149-159.
- Bertino, E., Giuliani, F., Occhi, L., Coscia, A., Tonetto, P., Marchino, F., et al. (2009). Benefits of donor human milk for preterm infants: current evidence. *Early Human Development*, 85, S9-S10.
- Boyd, C. A., Quigley, M. A., & Brocklehurst, P. (2007). Donor breast milk versus infant formula for preterm infants: systematic review and metanalysis. *Archives of Disease in Childhood. Fetal and Neonatal Edition*, 92, F169-F175.
- Chasnoff, I., Lewis, D. E., & Squires, L. (1987). Cocaine intoxication in a breast-fed infant.

- Pediatrics, 80(6), 836-838.
- Cole, A. P., & Hailey, D. M. (1975). Diazepam and active metabolite in breast milk and their transfer to the neonate. *Archives of Disease in Childhood*, *50*, 741-742.
- Cole, K., & Levine, B. (2009). Spectrophotometry. In B. Levine (Ed.), *Principles of Forensic Toxicology* (pp. 81-90). Washington: AACC Press.
- D'Agostino, R. B., Sullivan, L. M., & Beiser, A. S. (2006). *Introductory Applied Biostatistics*.

 Belmont: Thomson Brooks/Cole.
- Dahlstrom, A., Ebersjo, C., & Lundell, B. (2004). Nicotine exposure in breastfed infants. *Acta Paediatrica*, *93*, 810-816.
- Dahlstrom, A., Lundell, B., Curvall, M., & Thapper, L. (1990). Nicotine and cotinine concentrations in the nursing mother and her infant. *Acta Paediatrica Scandinavica*, 79, 142-147.
- Degenhardt, L., Bucello, C., Calabria, B., Nelson, P., Roberts, A., Hall, W., et al. (2011). What data are available on the extent of illicit drug use and dependence globally? Results of four systematic reviews. *Drug and Alcohol Dependence*, 117, 85-101.
- DeSilva, B., Smith, W., Weiner, R., Kelley, M., Smolec, J., Lee, B., et al. (2003).

 Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. *Pharmaceutical Research*, 20(11), 1885-1900
- Dickson, P. H., Lind, A., Studts, P., Nipper, H. C., Makoid, M., & Therkildsen, D. (1994). The routine analysis of breast milk for drugs of abuse in a clinical toxicology laboratory. *Journal of Forensic Sciences*, 39(1), 207-214.
- Drug testing basics. (2009). Retrieved March 2, 2012, from

- http://www.erowid.org/psychoactives/testing/testing_info1.shtml
- Dusci, L. C., Good, S. M., Hall, R. W., & Ilett, K. F. (1990). Excretion of diazepam and its metabolites in human milk during withdrawal from combination high dose diazepam and oxazepam. *Journal of Clinical Pharmacology*, 29, 123-126.
- Edwards, J. E., Rudy, A. C., Wermeling, D. P., Desai, N., & McNamara, P. J. (2003). Hydromorphone transfer into breast milk after intranasal administration. *Pharmacotherapy*, 23(2), 153-158.
- Elian, A. A. (2003). ELISA detection of clonazepam and 7-aminoclonazepam in whole blood and urine. *Forensic Science International*, *134*, 54-56.
- Feilberg, V. L., Rosenborg, D., Christensen, C. B., & Mogensen, J. V. (1989). Excretion of morphine in human breast milk. *Acta Anaesthesiologica Scandinavica*, *33*, 426-428.
- Findlay, J. W. A., Smith, W. C., Lee, J. W., Nordblom, G. D., Das, I., DeSilva, B. S., et al. (2000). Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. *Journal of Pharmaceutical and Biomedical Analysis*, 21(6), 1249–1273.
- Friguls, B., Joya, X., Garcia-Algar, O., Pallas, C. R., Vall, O., & Pichini, S. (2010). A comprehensive review of assay methods to determine drugs in breast milk and the safety of breastfeeding when taking drugs. *Analytical and Bioanalytical Chemistry*, 397, 1157-1179.
- Gaensslen, R. E., Harris, H. A., & Lee, H. (2008). *Introduction to forensics and criminalistics*.

 New York: McGraw-Hill.
- Ganapathy, V., Hay, J. W., & Kim, J. H. (2011). Costs of necrotizing enterocolitis and costeffectiveness of exclusively human milk-based products in feeding extremely premature infants. *Breastfeeding Medicine*, 6(0), 1-9.

- Garry, A., Rigourd, V., Amirouche, A., Fauroux, V., Aubry, S., & Serreau, R. (2009). Cannabis and breastfeeding. *Journal of Toxicology*, 2009, 1-5.
- Hand, C., & Baldwin, D. (2008). Immunoassays. In S. Jickells & A. Negrusz (Eds.), *Clarke's analytical forensic toxicology* (pp. 375-391). Grayslake, IL: Pharmaceutical Press.
- Hayes, E. D., & Bannister, C. J. (2012). SAMSHA recommends oral fluids and additional schedule II drugs. *ToxTalk*, *36*(1), 31-32.
- Hendrickson, R. G., & McKeown, N. J. (2012). Is maternal opioid use hazardous to breast-fed infants? *Clinical Toxicology*, *50*, 1-14.
- Howard, C. R., & Lawrence, R. A. (1999). Drugs and breastfeeding. *Clinics in Perinatology*, 26(2), 447-478.
- Huestis, M. A. (2010). Cannabis. In B. Levine (Ed.), *Principles of Forensic Toxicology* (pp. 269-304). Washington: AACC Press.
- Ilett, K. F., Hackett, L. P., Kristensen, J. H., & Kohan, R. (2007). Transfer of dexamphetamine into breast milk during treatment for attention deficit hyperactivity disorder. *British Journal of Clinical Pharmacology*, 63(3), 371-375.
- Ilett, K. F., Hale, T. W., Page-Sharp, M., Kristensen, J. H., Kohan, R., & Hackett, L. P. (2003).
 Use of nicotine patches in breast-feeding mothers: transfer of nicotine and cotinine into human milk. *Clinical Pharmacology and Therapeutics*, 74(6), 516-524.
- Iqbal, M. M., Sobhan, T., & Ryals, T. (2002). Effects of commonly used benzodiazepines on the fetus, the neonate, and the nursing infant. *Psychiatric Services*, *53*(1), 39-49.
- Isenschmid, D. S. (2010). Cocaine. In B. Levine (Ed.), *Principles of Forensic Toxicology* (pp. 245-268). Washington: AACC Press.
- Ito, S., & Lee, A. (2003). Drug excretion into breast milk overview. Advanced Drug Delivery

- Reviews, 55, 617-627.
- Jufer-Phipps, R. A., & Levine, B. (2010). Benzodiazepines. In B. Levine (Ed.), *Principles of Forensic Toxicology* (pp. 191-205). Washington: AACC Press.
- Kelley, M., & DeSilva, B. (2007). Key elements of bioanalytical method validation for macromolecules. *The AAPS Journal*, 9(2), E156–E163
- Kerrigan, S., & Goldberger, B. A. (2000). Drugs of Abuse: Body Fluids. In J. Siegel, P. J.
 Saukko & G. C. Knupfer (Eds.), *Encyclopedia of Forensic Sciences* (1st ed., Vol. 2, pp. 616-626). San Diego: Academic Press.
- Kerrigan, S., & Goldberger, B. A. (2010). Opioids. In B. Levine (Ed.), *Principles of Forensic Toxicology* (pp. 225-244). Washington: AACC Press.
- Lam, J., Kelly, L., Ciszkowski, C., Landsmeer, M. L. A., Nauta, M., Carleton, B. C., et al. (2012). Central nervous system depression of neonates breastfed by mothers receiving oxycodone for postpartum analgesia. *The Journal of Pediatrics*, 160, 33-37.
- Lawrence, R., & Schaefer, C. (2007). General commentary on drug therapy and drug risk during lactation. In C. Schaefer, P. Peters & R. Miller (Eds.), *Drugs During Pregnancy and Lactation* (pp. 609-620). Amsterdam: Academic Press.
- Leaf, A., & Winterson, R. (2009). Breast-milk banking: evidence of benefit. *Paediatrics and Child Health*, 19(9), 395-399.
- Liston, J. (1998). Breastfeeding and the use of recreational drugs alcohol, caffeine, nicotine and marijuana. *Breastfeeding Review*, 6(2), 27-30.
- Lozano, J., Garcia-Algar, O., Vall, O., de la Torre, R., Scaravelli, G., & Pichini, S. (2007).

 Biological matrices for the evaluation of in utero exposure to drugs of abuse. *Therapeutic Drug Monitoring*, 29(6), 711-734.

- Luck, W., & Nau, H. (1987). Nicotine and cotinine concentrations in the milk of smoking mothers: influence of cigarette consumption and diurnal variation. *European Journal of Pediatrics*, 146, 21-26.
- Madadi, P., Koren, G., Cairns, J., Chitayat, D., Gaedigk, A., Leeder, J. S., et al. (2007). Safety of codeine during breastfeeding. *Canadian Family Physician*, *53*, 33-35.
- Madadi, P., Shirazi, F., Walter, F. G., & Koren, G. (2008). Establishing causality of CNS depression in breastfed infants following maternal codeine use. *Paediatric Drugs*, 10(6), 399-404.
- Marchei, S., Escuder, D., Pallas, C. R., Garcia-Algar, O., Gomez, A., Friguls, B., et al. (2011).

 Simultaneous analysis of frequently used licit and illicit psychoactive drugs in breast milk by liquid chromatography tandem mass spectrometry. *Journal of Pharmaceutical and Biomedical Analysis*, 55, 309-316.
- Meny, R. G., Naumburg, E. G., Alger, L. S., Brill-Miller, J. L., & Brown, S. (1993). Codeine and the breastfed neonate. *Journal of Human Lactation*, 9(4), 237-240.
- Moore, K. A. (2010). Amphetamines/Sympathomimetic Amines. In B. Levine (Ed.), *Principles of Forensic Toxicology* (pp. 305-322). Washington: AACC Press.
- Oberlander, T. F., Robeson, P., Ward, V., Huckin, R. S., Kamani, A., Harpur, A., et al. (2000).

 Prenatal and breast milk morphine exposure following maternal intrathecal morphine treatment. *Journal of Human Lactation*, *16*(2), 137-142.
- Oo, C. Y., Kuhn, R. J., Desai, N., Wright, C. E., & McNamara, P. J. (1995). Pharmacokinetics in lactating women: prediction of alprazolam transfer into milk. *Journal of Clinical Pharmacology*, 40, 231-236.
- Perez-Reyes, M., & Wall, M. E. (1982). Presence of delta9-tetra-hydrocannabinol in human

- milk. New England Journal of Medicine, 307(13), 819-820.
- Pokela, M., Anttila, E., Seppala, T., & Olkkola, K. T. (2005). Marked variation in oxycodone pharmacokinetics in infants. *Pediatric Anesthesia*, *15*, 560-565.
- Polifka, J. E. (1998). Drug and chemical contaminants in breast milk: effects on neurodevelopment of the nursing infant. In J. W Slikker & L. W. Chang (Eds.), *Handbook of Developmental Neurotoxicology* (pp. 383-400). San Diego: Academic Press.
- Quest Diagnostics. (2012). Drug testing index. Madison, WI.
- Robieux, I., Koren, G., Vandenbergh, H., & Schneiderman, J. (1990). Morphine excretion in breast milk and resultant exposure of a nursing infant. *Clinical Toxicology*, 28(3), 365-370.
- Sagraves, R. (1997). Drugs in breast milk: a scientific explanation. *Journal of Pediatric Health Care*, 11, 230-237.
- Sauberan, J. B., Anderson, P. O., Lane, J. R., Rafie, S., Nguyen, N., Rossi, S. S., et al. (2011).

 Breast milk hydrocodone and hydromorphone levels in mothers using hydrocodone for postpartum pain. *Obstetrics & Gynecology*, 117(3), 611-617.
- Schwope, D. M., Milman, G., & Huestis, M. A. (2010). Validation of an enzyme immunoassay for detection and semiquantification of cannabinoids in oral fluid. *Clinical Chemistry*, 56(6), 1007-1014.
- Seaton, S., Reeves, M., & McLean, S. (2007). Oxycodone as a component of multimodal analgesia for lactating mothers after Caesarean section: relationships between maternal plasma, breast milk and neonatal plasma levels. *Australian and New Zealand Journal of Obstetrics and Gynecology, 47*, 181-185.

- Simmer, K., & Hartmann, B. (2009). The knowns and unknowns of human milk banking. *Early Human Development*, 85, 701-704.
- Singhal, A., Cole, T. J., Fretwell, M., & Lucas, A. (2004). Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study. *The Lancet*, *363*, 1571-1578.
- Smith, M. L. (2003). Immunoassay. In B. Levine (Ed.), *Principles of Forensic Toxicology*. Washington: AACC Press.
- Steiner, E., Villen, T., Hallberg, M., & Rane, A. (1984). Amphetamine secretion in breast milk. *European Journal of Clinical Pharmacology*, 27, 123-124.
- Substance Abuse and Mental Health Services Administration. (2011). Results from the 2010 national survey on drug use and health: summary of national findings (NSDUH Series H-41, HHS Publication No. (SMA) 11-4658). Rockville, MD: Substance Abuse and Mental Health Services Administration.
- Sullivan, S., Schanler, R. J., Kim, J. H., Patel, A. L., Trawoger, R., Kiechl-Kohlendorfer, U., et al. (2010). An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. *The Journal of Pediatrics*, 156, 562-567.
- Winecker, R. E., Goldberger, B. A., Tebbett, I. R., Behnke, M., Eyler, F. D., Karlix, J. L., et al. (2001). Detection of cocaine and its metabolites in breast milk. *Journal of Forensic Sciences*, 46(5), 1221-1223.
- Wojcik, K. Y., Rechtman, D. J., Lee, M. L., Montoya, A., & Medo, E. T. (2009). Macronutrient analysis of a nationwide sample of donor breast milk. *Journal of the American Dietetic Association*, 109, 137-140.

Tables

Table 1 Analytical Drug Standards

STANDARD	CATALOG NUMBER	LOT NUMBER	EXP. DATE	STORAGE CONDITIONS
S(+)-Amphetamine (dextro-Amphetamine)	A-008	FE042511-01	4/2016	Refrigerator
Oxazepam	O-902	FE111710-02	11/2014	Freezer
Benzoylecgonine	B-004	FE012411-02	2/2016	Freezer
(-)-Cotinine	C-016	FN051110-04	5/2015	Freezer
Hydromorphone	H-004	FE020410-01	2/2015	Freezer
Oxycodone	O-002	FE092910-02	9/2015	Refrigerator
Morphine	M-005	FE080411-01	8/2016	Freezer
(±)-Methamphetamine	M-009	FE061710-02	6/2015	Refrigerator
(-)-11-nor-9-Carboxy- Δ^9 -THC	T-019	FE042111-02	4/2016	Freezer

Table 2
Pipette Information

DESCRIPTION	VOLUME RANGE	LOT NUMBER	CALIBRATION EXP. DATE
Eppendorf® Research® Plus pipette, adjustable volume	2-20 μL	496487Z	9/27/2012
Eppendorf® Research® Plus pipette, adjustable volume	20-200 μL	284487A	9/27/2012
Eppendorf® Research® Plus pipette, adjustable volume	100-1000 μL	204781A	9/27/2012

Table 3
Neogen Corporation Kits, Calibrators, and Cross-Reactivity

KIT	CALIBRATOR	CROSS-RE	ACTS WITH
Amphetamine Ultra	d-Amphetamine	N-desmethylselegiline (906%) d-Methamphetamine (688%)	d-Amphetamine (100%) (-)- Ephedrine (49%)
Benzodiazepine Group	Oxazepam	Diazepam (434%) Estazolam (365%) Nordiazepam (361%) Alprazolam (346%) Tetrazepam (264%) Flurazepam (262%) Lormetazepam (231%) Prazepam (198%) Temazepam (192%) Halazepam (173%) Triazolam (171%)	7-amino flunitrazepam (147%) Nitrazepam (141%) N-desmethyl flunitrazepam (119%) Flunitrazepam (110%) Oxazepam (100%) Bromazepam (85%) Clonazepam (79%) Lorazepam (70%) Midazolam (65%) Clobazam (59%)
Cocaine/BZE	Benzoylecgonine (BZE)	Cocaine (133%) Cocaethylene (124%)	BZE (100%) m-hydroxycocaine (96%)
Cotinine	Cotinine	Cotinin	e (100%)
Opiate Group	Hydromorphone	Morphine (100%) 6-acetylcodeine (195%) Codeine (190%) Morphine-3-glucuronide (154%) Ethylmorphine (110%)	Hydrocodone (122%) 6-acetylmorphine (146%) Heroin/diacetylmorphine (154%) Nalorphine (76%) Hydromorphone (66%)
Oxycodone/ Oxymorphone	Oxycodone	Oxycodone (100%)	Oxymorphone (88%)
THC	Δ ⁹ -THC-COOH	Δ^9 -THC-COOH (100%)	Δ^8 -THC-COOH (88%)

Note. Only substances that cross-reacted at above 50% were reported.

Table 4
Standard Formulations for Linearity Analysis in Human Breast Milk

STOCKS	CONCENTRATION	VOLUME OF DILUTION INTO 5mL BREAST MILK
STOCK	1 mg/mL	
A	1 μg/mL	5 μL STOCK
В	1 ng/mL	5 μL Α
STANDARD CONCENTRATION (ng/mL)	RATIO	VOLUME OF DILUTION INTO 2mL BREAST MILK
0.25	B/5	400 μL B
0.5	B/2	$1000~\mu L~B$
2	A/500	$4 \mu L A$
2.5	A/400	5 μL Α
4	A/250	8 μL Α
5	A/200	10 μL A
10	A/100	20 μL Α
16	A/62.5	32 µL A
20	A/50	$40~\mu L~A$
25	A/40	50 μL A
30	A/33.33	60 μL A
40	A/25	80 μL A
50	A/200	100 μL A
100	A/100	200 μL Α
200	A/5	$400~\mu L~A$
250	A/4	500 μL A
500	A/2	$1000~\mu L~A$
1000	A	A
5000	STOCK/200	10 μL STOCK

Table 5
Standard Formulations for Linearity Analysis in EIA Buffer

STOCKS	CONCENTRATION	VOLUME OF DILUTION INTO 5mL EIA BUFFER
STOCK	1 mg/mL	
A	1 μg/mL	5 μL STOCK
В	1 ng/mL	5 μL Α
STANDARD CONCENTRATION (ng/mL)	RATIO	VOLUME OF DILUTION INTO 2mL EIA BUFFER
0.05	B/20	100 μL B
0.1	B/10	200 μL Β
0.2	B/5	$400~\mu L~B$
0.3	B/3.33	600 μL B
0.5	B/2.5	800 µL B
0.8	B/1.25	1600 μL Β
1	В	В
2	A/500	$4\mu LA$
5	A/200	10 μL A
10	A/100	20 μL A
20	A/50	40 μL A
50	A/200	100 μL A
100	A/100	200 μL Α
500	A/2	$1000~\mu L~A$
1000	A	A

Table 6
Formulation of Multi-Drug Calibrators.

	Group 1 Cutoff Calibrator	
Assay	Calibrator	Cutoff Level (ng/mL)
Amphetamine Ultra	d-Amphetamine	50 ng/mL
Cocaine/BZE	Benzoylecgonine	30 ng/mL
Hydromorphone	Hydromorphone	0.25 ng/mL
	Group 2 Cutoff Calibrator	
Assay	Calibrator	Cutoff Level (ng/mL)
Methamphetamine/MDMA	d-Methamphetamine	50 ng/mL
Oxycodone/Oxymorphone	Oxycodone	30 ng/mL
THC	Δ^9 -THC-COOH	20 ng/mL
	Group 3 Cutoff Calibrator	
Assay	Calibrator	Cutoff Level (ng/mL)
Benzodiazepine Group	Oxazepam	50 ng/mL
Cotinine	Cotinine	50 ng/mL
Opiate Group	Morphine	30 ng/mL
	Group 4 Cutoff Calibrator	
Assay	Calibrator	Cutoff Level (ng/mL)
Amphetamine Ultra	d-Amphetamine	50 ng/mL
Cotinine	Cotinine	50 ng/mL
Oxycodone/Oxymorphone	Oxycodone	30 ng/mL
	Group 5 Cutoff Calibrator	
Assay	Calibrator	Cutoff Level (ng/mL)
Benzodiazepine Group	Oxazepam	50 ng/mL
Cocaine/BZE	Benzoylecgonine	30 ng/mL
Opiate Group	Hydromorphone	30 ng/mL
THC	Δ^9 -THC-COOH	20 ng/mL
	Group 6 Cutoff Calibrator	
Assay	Calibrator	Cutoff Level (ng/mL)
Benzodiazepine Group	Oxazepam	50 ng/mL
Cocaine/BZE	Benzoylecgonine	50 ng/mL
Opiate Group	Hydromorphone	50 ng/mL
THC	Δ^9 -THC-COOH	20 ng/mL

Table 7
Sample Preparation for the First and Second Accuracy Validations

ASSAY	ANALYTE	-50% CUTOFF CONCENTRATION (ng/mL)	VOLUME OF 1 µg/mL SOLUTION INTO 1000µL EIA BUFFER
Amphetamine Ultra	d-Amphetamine	25	25μL
Benzodiazepine Group	Oxazepam	25	$25\mu L$
Cocaine/BZE	BZE	15	15μL
Cotinine	Cotinine	25	$25\mu L$
Opiate Group	Morphine	15	15μL
Oxycodone/Oxymorphone	Oxycodone	15	15μL
THC	Δ^9 -THC-COOH	10	10μL
ASSAY	ANALYTE	CUTOFF CONCENTRATION (ng/mL)	VOLUME OF 1 μg/mL SOLUTION INTO 1000μL EIA BUFFER
Amphetamine Ultra	d-Amphetamine	50	50μL
Benzodiazepine Group	Oxazepam	50	50μL
Cocaine/BZE	BZE	30	30μL
Cotinine	Cotinine	50	50μL
Opiate Group	Morphine	30	30µL
Oxycodone/Oxymorphone	Oxycodone	30	30µL
THC	Δ^9 -THC-COOH	20	$20\mu L$
ASSAY	ANALYTE	+50% CUTOFF CONCENTRATION (ng/mL)	VOLUME OF 1 μg/mL SOLUTION INTO 1000μL EIA BUFFER
Amphetamine Ultra	d-Amphetamine	75	75μL
Benzodiazepine Group	Oxazepam	75	75μL
Cocaine/BZE	BZE	45	$45\mu L$
Cotinine	Cotinine	75	75μL
Opiate Group	Morphine	45	$45\mu L$
Oxycodone/Oxymorphone	Oxycodone	45	$45\mu L$
THC	Δ^9 -THC-COOH	30	30μL

Table 8
Sample Preparation for the Third Accuracy Validation

ASSAY	ANALYTE	-50% CUTOFF CONCENTRATION (ng/mL)	VOLUME OF 1 µg/mL SOLUTION INTO 1000µL BREAST MILK
Amphetamine Ultra	d-Amphetamine	25	25μL
Benzodiazepine Group	Oxazepam	25	25μL
Cocaine/BZE	BZE	25	25μL
Cotinine	Cotinine	25	25μL
Opiate Group	Morphine	25	25μL
Oxycodone/Oxymorphone	Oxycodone	15	15µL
THC	Δ^9 -THC-COOH	10	$10\mu L$
ASSAY	ANALYTE	CUTOFF CONCENTRATION (ng/mL)	VOLUME OF 1 µg/mL SOLUTION INTO 1000µL BREAST MILK
Amphetamine Ultra	d-Amphetamine	50	50μL
Benzodiazepine Group	Oxazepam	50	50μL
Cocaine/BZE	BZE	50	50μL
Cotinine	Cotinine	50	50μL
Opiate Group	Morphine	50	50μL
Oxycodone/Oxymorphone	Oxycodone	30	30µL
THC	Δ^9 -THC-COOH	20	$20\mu L$
ASSAY	ANALYTE	+50% CUTOFF CONCENTRATION (ng/mL)	VOLUME OF 1 µg/mL SOLUTION INTO 1000µL BREAST MILK
Amphetamine Ultra	d-Amphetamine	75	75µL
Benzodiazepine Group	Oxazepam	75	75µL
Cocaine/BZE	BZE	75	75μL
Cotinine	Cotinine	75	75μL
Opiate Group	Morphine	75	75µL
Oxycodone/Oxymorphone	Oxycodone	45	45µL
THC	Δ^9 -THC-COOH	30	30µL

Table 9
Comparison of Sample Dilutions on Matrix Interference for Each Assay

1		s on Matrix Interference for Each Assay DILUTION					EIA	
		Neat	1:2	1:5	1:10	1:20	1:50	Buffer
ASSAY	SAMPLE		AV	ERAGE A	ABSORBA	NCE VAI	LUES	
	Prolacta Sample #1	1.033	1.023	1.238	1.451	1.472	1.557	
'n	Prolacta Sample #2	1.971	1.676	1.592	1.529	1.425	1.541	
Ultı	Prolacta Sample #3	0.994	1.019	2.360	1.962	1.735	1.767	
ne l	Prolacta Sample #4	0.943	1.024	1.200	1.333	1.666	1.760	
Amphetamine Ultra	In-House Sample #1	1.054	1.298	1.410	1.409	1.469	1.550	
het	Average	1.199	1.208	1.560	1.537	1.553	1.635	1.841
du	Standard Deviation	0.416	0.288	0.473	0.248	0.170	0.160	
< -	% CV	34.7%	23.9%	30.3%	16.1%	10.9%	9.8%	
	Matrix Interference	34.9%	34.4%	15.3%	16.5%	15.6%	11.2%	
	Prolacta Sample #1	0.800	0.910	1.040	1.146	1.287	1.461	
dn	Prolacta Sample #2	1.004	1.024	1.197	1.250	1.358	1.515	
Gro	Prolacta Sample #3	0.933	1.023	1.244	1.310	1.422	1.489	
ne (Prolacta Sample #4	0.915	1.023	1.159	1.257	1.427	1.522	
Benzodiazepine Group	In-House Sample #1	1.061	1.212	1.287	1.403	1.491	1.552	
diaz	Average	0.942	1.038	1.185	1.273	1.397	1.507	1.710
JZO	Standard Deviation	0.095	0.109	0.097	0.091	0.077	0.044	
Bei	% CV	10.1%	10.5%	8.2%	7.2%	5.5%	2.9%	
	Matrix Interference	44.9%	39.3%	30.7%	25.5%	18.3%	11.9%	
	Prolacta Sample #1	0.849	1.131	1.332	1.427	1.467	1.567	
	Prolacta Sample #2	0.875	1.209	1.353	1.453	1.491	1.525	
ſτ]	Prolacta Sample #3	0.810	1.026	1.111	1.446	1.448	1.548	
Cocaine/BZE	Prolacta Sample #4	0.835	1.090	1.312	1.413	1.464	1.510	
ne/	In-House Sample #1	0.910	1.215	1.434	1.430	1.486	1.562	
Cai	Average	0.856	1.134	1.308	1.434	1.471	1.542	1.632
ŭ	Standard Deviation	0.046	0.078	0.116	0.028	0.024	0.031	
	% CV	5.3%	6.8%	8.9%	2.0%	1.7%	2.0%	
	Matrix Interference	47.6%	30.5%	19.8%	12.2%	9.9%	5.5%	
	Prolacta Sample #1	1.935	2.192	2.771	2.390	2.258	2.171	
	Prolacta Sample #2	1.736	1.684	1.931	2.087	2.711	2.792	
	Prolacta Sample #3	1.973	2.207	1.760	1.843	1.919	2.089	
ne ne	Prolacta Sample #4	1.605	1.820	1.796	1.985	1.741	1.741	
Cotinine	In-House Sample #1	1.761	1.792	1.841	1.851	1.883	2.008	
Ç	Average	1.802	1.939	2.019	2.031	2.102	2.160	2.290
	Standard Deviation	0.160	0.266	0.407	0.233	0.378	0.378	
	% CV	8.9%	13.7%	20.1%	11.4%	18.0%	17.5%	
	Matrix Interference	21.3%	15.3%	11.8%	11.3%	8.2%	5.7%	

Table 9, continued

				EIA				
		Neat	1:2	1:5	1:10	1:20	1:50	Buffer
ASSAY	SAMPLE		AV	VERAGE A	ABSORBA	NCE VAI	LUES	
	Prolacta Sample #1	1.061	1.289	1.496	1.665	1.737	1.866	
	Prolacta Sample #2	1.127	1.328	1.367	1.588	1.625	1.680	
d _r	Prolacta Sample #3	1.114	1.279	1.559	1.580	1.658	1.645	
irou	Prolacta Sample #4	0.963	1.248	1.508	1.626	1.646	1.635	
Opiate Group	In-House Sample #1	0.944	1.301	1.507	1.529	1.621	1.692	
pia	Average	1.042	1.288	1.487	1.597	1.657	1.703	1.927
0	Standard Deviation	0.081	0.055	0.096	0.058	0.055	0.096	
	% CV	7.8%	4.3%	6.5%	3.7%	3.3%	5.6%	
	Matrix Interference	46.0%	33.2%	22.8%	17.1%	14.0%	11.6%	
o o	Prolacta Sample #1	1.396	1.431	1.611	1.670	1.736	1.750	
non	Prolacta Sample #2	1.555	1.482	1.650	1.646	1.642	1.702	
orpl	Prolacta Sample #3	1.435	1.509	1.615	1.608	1.716	1.748	
Oxycodone/Oxymorphone	Prolacta Sample #4	1.381	1.485	1.560	1.659	1.692	1.778	
) ×O	In-House Sample #1	1.475	1.420	1.621	1.636	1.750	1.767	
one	Average	1.448	1.466	1.611	1.641	1.707	1.749	1.900
pos	Standard Deviation	0.070	0.062	0.044	0.032	0.040	0.029	
)xy	% CV	4.8%	4.2%	2.7%	2.0%	2.4%	1.7%	
	Matrix Interference	23.8%	22.9%	15.2%	13.6%	10.2%	8.0%	
	Prolacta Sample #1	0.910	0.623	0.706	0.677	0.725	1.149	
	Prolacta Sample #2	1.244	0.820	1.133	0.897	0.691	1.391	
	Prolacta Sample #3	0.332	0.367	1.308	0.762	0.971	1.622	
7)	Prolacta Sample #4	0.304	0.519	0.420	0.628	1.664	1.647	
THC	In-House Sample #1	1.038	0.510	0.561	0.777	0.964	1.372	
	Average	0.765	0.630	0.825	0.744	1.003	1.417	2.903
	Standard Deviation	0.427	0.350	0.361	0.203	0.440	0.307	
	% CV	55.8%	55.6%	43.8%	27.3%	43.9%	21.7%	
	Matrix Interference	73.6%	78.3%	71.6%	74.4%	65.5%	51.2%	

Table 10 Optimal Breast Milk Dilutions for Each Kit

ASSAY	DILUTION
Amphetamine Ultra	1:10
Benzodiazepine Group	1:10
Cocaine/BZE	1:5
Cotinine	1:5
Opiate Group	1:5
Oxycodone/Oxymorphone	1:20
THC (Δ ⁹ -THC-COOH)	1:100

Table 11 Linearity of Standards for the Amphetamine Ultra Assay

	EIA Buffer									
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT		
0	1.744	1.752	1.748	100.00						
0.2	1.571	1.474	1.523	87.10	0.17	15.34	-0.70	1.91		
2	1.255	1.063	1.159	66.30	1.71	14.69	0.30	0.68		
5	0.979	0.869	0.924	52.86	4.89	2.12	0.70	0.11		
10	0.781	0.697	0.739	42.28	10.87	8.72	1.00	-0.31		
20	0.583	0.485	0.534	30.55	28.27	41.33	1.30	-0.82		
50	0.406	0.331	0.369	21.08	71.97	43.94	1.70	-1.32		
500	0.204	0.172	0.188	10.76	319.82	36.04	2.70	-2.12		
I-50:	6.07	ng/ml	Slope:	-1.23						
R=	0.9931		Intercept:	0.96						

		I	Tuman Brea	st Milk (1	:10 diluti	on)		
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.671	1.610	1.641	100.00				
2	1.618	1.570	1.594	97.17	1.12	43.99	0.30	3.53
20	1.317	1.272	1.295	78.91	22.39	11.94	1.30	1.32
50	1.016	1.060	1.038	63.27	63.88	27.77	1.70	0.54
100	0.817	0.794	0.806	49.10	139.93	39.93	2.00	-0.04
200	0.592	0.613	0.603	36.73	278.11	39.05	2.30	-0.54
500	0.421	0.393	0.407	24.81	596.87	19.37	2.70	-1.11
5000	0.177	0.144	0.161	9.78	2686.95	46.26	3.70	-2.22
I-50:	133.29	ng/ml	Slope:	-1.70				
R=	0.9860		Intercept:	3.62				
		Approx	imate 70-30 ^c	% B/B ₀ R	ange : 40-3	350 ng/mL		

Table 12
Linearity of Standards for the Benzodiazepine Group Assay

			EI	A Buffer				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.763	1.657	1.710	100.00				
0.2	1.409	1.349	1.379	80.64	0.18	8.66	-0.70	1.43
1	1.325	1.072	1.199	70.09	0.62	37.77	0.00	0.85
2	0.901	0.875	0.888	51.93	3.24	61.84	0.30	0.08
5	0.751	0.721	0.736	43.04	6.93	38.59	0.70	-0.28
20	0.512	0.621	0.567	33.13	17.03	14.86	1.30	-0.70
100	0.326	0.279	0.303	17.69	100.83	0.83	2.00	-1.54
500	0.187	0.140	0.164	9.56	456.85	8.63	2.70	-2.25
I-50:	3.82	ng/ml	Slope:	-1.08				
R=	0.9932		Intercept:	0.63				

			Milk (1	l:10 diluti	ion)					
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT		
0	1.513	1.518	1.516	100.00						
2	1.334	1.314	1.324	87.36	1.11	44.40	0.30	1.93		
10	1.053	1.003	1.028	67.83	10.90	9.03	1.00	0.75		
20	0.992	0.824	0.908	59.91	21.13	5.66	1.30	0.40		
50	0.551	0.644	0.598	39.43	104.49	108.98	1.70	-0.43		
200	0.488	0.446	0.467	30.81	216.68	8.34	2.30	-0.81		
1000	0.242	0.252	0.247	16.30	1063.36	6.34	3.00	-1.64		
5000	0.139	0.159	0.149	9.83	3242.19	35.16	3.70	-2.22		
I-50:	45.76	ng/ml	Slope:	-1.20						
R=	0.9879		Intercept:	1.99						
	Approximate 70-30% B/B ₀ Range: 10-200 ng/mL									

Table 13
Linearity of Standards for the Cocaine/BZE Assay

			EL	A Buffer				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.795	1.792	1.794	100.00				
0.1	1.764	1.761	1.763	98.27	0.10	0.75	-1.00	4.04
0.5	1.645	1.626	1.636	91.19	0.49	1.54	-0.30	2.34
1	1.474	1.411	1.443	80.43	1.17	17.34	0.00	1.41
2	1.394	1.254	1.324	73.82	1.67	16.41	0.30	1.04
5	0.823	0.767	0.795	44.33	5.49	9.80	0.70	-0.23
10	0.650	0.529	0.590	32.87	8.67	13.28	1.00	-0.71
20	0.282	0.272	0.277	15.44	21.91	9.57	1.30	-1.70
I-50:	4.43	ng/ml	Slope:	-2.45				
R=	0.9976		Intercept:	1.58				

			Milk (1:5 dilutio	on)			
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.631	1.611	1.621	100.00				
0.5	1.506	1.608	1.557	96.05	0.75	49.79	-0.30	3.19
2.5	1.425	1.495	1.460	90.07	2.39	4.20	0.40	2.20
5	1.411	1.412	1.412	87.08	3.40	32.03	0.70	1.91
10	1.243	1.145	1.194	73.66	9.58	4.25	1.00	1.03
25	0.989	0.996	0.993	61.23	18.77	24.92	1.40	0.46
50	0.876	0.767	0.822	50.68	31.14	37.72	1.70	0.03
100	0.260	0.255	0.258	15.89	229.02	129.02	2.00	-1.67
I-50:	32.15	ng/ml	Slope:	-1.95				
R=	0.9689		Intercept:	2.95				
		Approx	imate 70-30%	6 B/B ₀ Ra	nge: 14-7:	5 ng/mL		

Table 14
Linearity of Standards for the Cotinine Assay

	EIA Buffer										
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT			
0	2.107	2.006	2.057	100.00							
0.05	1.962	1.880	1.921	93.41	0.01	70.11	-1.30	2.65			
0.1	1.923	1.766	1.845	89.69	0.06	41.78	-1.00	2.16			
0.5	1.666	1.475	1.571	76.37	0.92	83.67	-0.30	1.17			
1	1.404	1.309	1.357	65.96	3.82	281.52	0.00	0.66			
5	1.158	1.052	1.105	53.73	15.88	217.59	0.70	0.15			
100	1.023	0.997	1.010	49.11	26.59	73.41	2.00	-0.04			
1000	0.434	0.428	0.431	20.96	971.28	2.87	3.00	-1.33			
I-50:	24.08	ng/ml	Slope:	-0.83							
R=	0.9584		Intercept:	1.14							

			Milk (1:5 dilutio	on)				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT	
0	1.824	1.875	1.850	100.00					
0.25	1.742	1.761	1.752	94.70	0.14	42.99	-0.60	2.88	
0.5	1.681	1.730	1.706	92.21	0.36	27.56	-0.30	2.47	
2.5	1.517	1.503	1.510	81.64	3.33	33.38	0.40	1.49	
5	1.410	1.423	1.417	76.59	6.69	33.79	0.70	1.19	
25	1.034	1.067	1.051	56.80	52.81	111.22	1.40	0.27	
500	0.580	0.575	0.578	31.22	587.95	17.59	2.70	-0.79	
5000	0.350	0.343	0.347	18.73	2731.71	45.37	3.70	-1.47	
I-50:	98.19	ng/ml	Slope:	-1.02					
R=	R = 0.9904 Intercept: 2.02								
		Approxi	mate 70-30%	B/B ₀ Rai	nge: 10-50	0 ng/mL			

Table 15
Linearity of Standards for the Opiate Group Assay

			EI	A Buffer				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	2.348	2.441	2.395	100.00				
0.1	2.219	2.040	2.130	88.93	0.18	83.22	-1.00	2.08
0.5	2.108	1.899	2.004	83.67	0.41	17.88	-0.30	1.63
1	1.909	1.785	1.847	77.14	0.87	13.11	0.00	1.22
2	1.923	1.748	1.836	76.65	0.91	54.40	0.30	1.19
10	1.189	0.998	1.094	45.67	10.50	5.04	1.00	-0.17
20	0.910	0.766	0.838	35.00	23.35	16.75	1.30	-0.62
50	0.620	0.473	0.547	22.82	68.38	36.76	1.70	-1.22
I-50:	7.69	ng/ml	Slope:	-1.28				
R=	0.9805		Intercept:	1.14				

			Milk (1:5 dilutio	on)				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT	
0	1.964	1.857	1.911	100.00					
0.5	1.824	1.825	1.825	95.50	0.64	27.07	-0.30	3.05	
2.5	1.709	1.671	1.690	88.46	2.70	8.03	0.40	2.04	
5	1.667	1.589	1.628	85.21	4.05	18.99	0.70	1.75	
10	1.572	1.501	1.537	80.42	6.55	34.47	1.00	1.41	
50	0.936	0.882	0.909	47.58	56.04	12.09	1.70	-0.10	
100	0.705	0.628	0.667	34.89	118.56	18.56	2.00	-0.62	
250	0.452	0.452	0.452	23.66	258.15	3.26	2.40	-1.17	
I-50:	48.83	ng/ml	Slope:	-1.62					
R=	R = 0.9944 Intercept: 2.74								
		Approxi	mate 70-30%	B/B ₀ Rai	nge: 25-175	5 ng/mL			

Table 16
Linearity of Standards for the Oxycodone/Oxymorphone Assay

			EI	A Buffer				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.685	1.586	1.636	100.00				
0.2	1.657	1.478	1.568	95.84	0.13	34.48	-0.70	3.14
0.5	1.340	1.270	1.305	79.79	0.50	0.96	-0.30	1.37
0.8	1.001	1.004	1.003	61.30	0.99	23.20	-0.10	0.46
1	0.959	0.824	0.892	54.51	1.22	21.61	0.00	0.18
2	0.483	0.413	0.448	27.39	2.90	45.25	0.30	-0.97
5	0.237	0.190	0.214	13.05	5.82	16.32	0.70	-1.90
10	0.198	0.207	0.203	12.38	6.09	39.12	1.00	-1.96
I-50:	1.39	ng/ml	Slope:	-3.06				
R=	0.9706		Intercept:	0.44				

			Milk (1	l:20 diluti	on)				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT	
0	1.619	1.619	1.619	100.00					
4	1.376	1.376	1.376	84.99	3.46	13.61	0.60	1.73	
10	1.167	1.167	1.167	72.08	7.37	26.26	1.00	0.95	
16	0.823	0.823	0.823	50.83	17.84	11.47	1.20	0.03	
20	0.703	0.706	0.705	43.51	23.69	18.46	1.30	-0.26	
40	0.347	0.347	0.347	21.43	64.53	61.32	1.60	-1.30	
100	0.224	0.224	0.224	13.84	107.62	7.62	2.00	-1.83	
200	0.180	0.180	0.180	11.12	136.95	31.53	2.30	-2.08	
I-50:	18.42	ng/ml	Slope:	-2.39					
R=	R = 0.9764 Intercept: 3.02								
		Approx	imate 70-30%	$\sqrt{6}$ B/B ₀ Ra	nge: 10-40	ng/mL			

Table 17
Linearity of Standards for the THC Assay

	v		EI	A Buffer				
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.842	1.852	1.847	100.00				
0.05	1.637	1.708	1.673	90.55	0.04	22.04	-1.30	2.26
0.1	1.489	1.425	1.457	78.88	0.10	3.29	-1.00	1.32
0.2	1.205	1.072	1.139	61.64	0.25	23.58	-0.70	0.47
0.3	1.077	0.995	1.036	56.09	0.31	4.46	-0.52	0.24
0.5	0.775	0.806	0.791	42.80	0.54	8.98	-0.30	-0.29
1	0.544	0.533	0.539	29.16	1.01	1.12	0.00	-0.89
5	0.167	0.169	0.168	9.10	4.37	12.70	0.70	-2.30
I-50:	0.40	ng/ml	Slope:	-2.23				
R=	0.9952		Intercept:	-0.88				

			Milk (1	:100 dilut	tion)			
STD (ng/mL)	A 1	A 2	A Avg.	%B/B ₀	Backfit	%Error	logCONC	LOGIT
0	1.801	1.795	1.798	100.00				
5	1.682	1.593	1.638	91.07	3.14	37.11	0.70	2.32
10	1.326	1.367	1.347	74.89	10.76	7.57	1.00	1.09
20	1.003	0.933	0.968	53.84	27.51	37.53	1.30	0.15
30	0.819	0.824	0.822	45.69	38.13	27.10	1.48	-0.17
50	0.770	0.801	0.786	43.69	41.35	17.30	1.70	-0.25
100	0.343	0.312	0.328	18.21	144.03	44.03	2.00	-1.50
500	0.178	0.120	0.149	8.29	354.98	29.00	2.70	-2.40
I-50:	32.08	ng/ml	Slope:	-2.30				
R=	.9770		Intercept:	3.47				
		Approx	imate 70-30%	6 B/B ₀ Ra	nge: 13-75	ng/mL		

Table 18
Matrix Interference of Breast Milk Compared to EIA Buffer When Diluted

ASSAY/ CALIBRATOR	Dilution	EIA A (0 ng/mL)	Milk A (0 ng/mL)	Matrix Interference
Amphetamine Ultra (d-Amphetamine)	1:10	1.748	1.641	6%
Benzodiazepine Group (Oxazepam)	1:10	1.710	1.516	11%
Cocaine/BZE (Benzoylecgonine)	1:5	1.794	1.621	10%
Cotinine (Cotinine)	1:5	2.057	1.850	10%
Opiate Group (Hydromorphone)	1:5	2.395	1.911	20%
Oxycodone/ Oxymorphone (Oxycodone)	1:20	1.636	1.619	1%
THC (Δ ⁹ -THC-COOH)	1:100	1.847	1.798	3%

Table 19
Range of %B/B₀ Values From the Second and Third Validations

ASSAY	Drift #2	Precision #2-1	Precision #2-2	Accuracy #2	AVG	% CV	MIN	MAX
Amphetamine Ultra	74.17	76.82	74.98	72.67	74.66	1.73	72.67	76.82
Benzodiazepine Group	45.18	46.04	48.41	43.91	45.89	1.90	43.91	48.41
Cocaine/BZE	80.12	82.26	85.43	85.54	83.34	2.63	80.12	85.54
Cotinine	58.10	78.57	82.90	66.78	71.59	11.28	58.10	82.90
Opiate Group	87.98	78.25	75.48	82.43	81.03	5.44	75.48	87.98
Oxycodone/ Oxymorphone	72.05	63.44	60.28	59.66	63.86	5.71	59.66	72.05
THC	76.27	80.73	74.10	68.50	74.90	5.08	68.50	80.73
			$%B/B_0$					
ASSAY	Drift #3	Precision #3-1	Precision #3-2	Accuracy #3	AVG	% CV	MIN	MAX
Amphetamine Ultra	71.48	74.85	73.34	68.84	72.13	2.59	68.84	74.85
Benzodiazepine Group	63.62	44.49	49.09	51.69	52.22	8.16	44.49	63.62
Cocaine/BZE	44.55	41.84	34.53	39.26	40.05	4.26	34.53	44.55
Cotinine	54.82	54.21	53.85	54.28	54.29	0.40	53.85	54.82
Opiate Group	62.39	60.19	56.12	56.50	58.80	3.02	56.12	62.39
Oxycodone/ Oxymorphone	59.38	58.98	59.57	64.62	60.64	2.67	58.98	64.62
THC	72.55	71.40	75.75	75.20	73.72	2.08	71.40	75.75

Note: The $\%B/B_0$ for the drift run from validation #3 was 91.09%. The drift passed, but the $\%B/B_0$ was noted to be unusually high. When the THC calibrators were analyzed again, the $\%B/B_0$ was 72.55%. As this falls within the normal range for the calibrators used for this validation, this value has been reported in this table for comparison purposes.

Table 20 Comparison of Multi-Drug and Single Drug Calibrators

ASSAY	Negative A	Multi- Drug Avg. A	Single Drug Avg. A	% Difference	%B/B ₀ for Multi- Drug Calibrator	%B/B ₀ for Single Drug Calibrator
Amphetamine Ultra	2.431	1.937	1.981	2.3%	80%	81%
Benzodiazepine Group	1.948	1.102	0.941	14.6%	57%	48%
Cocaine/BZE	1.969	1.261	1.126	10.7%	64%	57%
Cotinine	2.774	1.888	1.792	5.1%	68%	65%
Opiate Group	1.813	1.253	1.201	4.2%	69%	66%
Oxycodone/ Oxymorphone	2.516	1.778	1.875	5.5%	71%	75%
THC	2.129	1.731	1.785	3.1%	81%	84%

Table 21
Stability of Multi-Drug Calibrators in Human Breast Milk

		Group	4 Cuto	ff Standaı	rd					
				$\%$ B/B $_0$ OF	CUTOFF	7				
ASSAY	Day 0	Day 2	Day 4	Day 25	Day 31	AVG.	STD. DEV.	% CV		
Amphetamine Ultra	65	81	63	70	67	69.1	7.2	10%		
Cotinine	70	57	58	53	50	57.4	7.7	13%		
Oxycodone/ Oxymorphone	56	74	67	64	73	66.6	7.2	11%		
		Group	5 Cuto	ff Standaı	rd					
	%B/B ₀ OF CUTOFF									
				$70 \mathbf{D}/\mathbf{D}_0 \mathbf{O}$	CUION	•				
ASSAY	Day 0	Day 2	Day 4	Day 25	Day 31	AVG.	STD. DEV.	% CV		
ASSAY Benzodiazepine Group	Day 0 48	Day 2 43		-				% CV 5%		
Benzodiazepine	·	•	Day 4	Day 25	Day 31	AVG.	DEV.			
Benzodiazepine Group	48	43	Day 4 49	Day 25 47	Day 31 45	AVG. 46.4	DEV. 2.1	5%		

Table 22
Single Readings of Ten Individual Wells

Single Readings	s of Len Ind	iviauai wei	<i>ts</i>	ASSAY			
	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
	1.617	1.751	1.508	2.288	1.692	2.493	1.498
	1.679	1.708	1.492	2.182	1.633	2.444	1.578
	1.614	1.769	1.648	2.187	1.644	2.479	1.595
	1.723	1.844	1.501	2.278	1.754	2.456	1.690
\mathbf{A}	1.702	1.904	1.524	2.249	1.734	2.510	1.660
Values	1.640	1.850	1.726	2.196	1.605	2.411	1.519
	1.596	1.809	1.707	2.226	1.600	2.456	1.513
	1.608	1.749	1.672	2.191	1.527	2.457	1.547
	1.547	1.767	1.643	2.214	1.416	2.461	1.540
	1.681	1.794	1.730	2.207	1.394	2.453	1.653
AVG.	1.641	1.795	1.615	2.222	1.600	2.462	1.579
STD. DEV.	0.055	0.058	0.098	0.038	0.122	0.027	0.068
NEG A Avg.	1.748	1.981	1.898	2.900	1.808	2.492	1.801
C/O A Avg.	1.277	0.767	1.071	1.547	1.195	1.399	1.093
% Change Between AVG. and NEG A	6.5%	10.4%	17.5%	30.5%	13.0%	1.2%	14.0%
%B/B ₀ STD (CO/NEG)	73.1%	38.7%	56.4%	53.3%	66.1%	56.1%	60.7%
%B/B ₀ (CO/AVG.)	77.8%	42.7%	66.3%	69.6%	74.7%	56.8%	69.2%
$%B/B_0$ DIFF.	6.5%	10.4%	17.5%	30.5%	13.0%	1.2%	14.0%

Table 23
Multiple Readings of a Single Well

Multiple Readin	igs of a sin	gie Weii		ASSAY			
	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
	1.577	1.767	1.401	1.823	1.711	2.346	1.513
	1.568	1.755	1.390	1.805	1.702	2.330	1.503
	1.559	1.756	1.383	1.795	1.696	2.313	1.494
	1.552	1.743	1.373	1.778	1.687	2.292	1.485
\mathbf{A}	1.543	1.727	1.365	1.766	1.680	2.285	1.476
Values	1.535	1.719	1.357	1.754	1.671	2.276	1.464
	1.526	1.705	1.347	1.737	1.664	2.254	1.455
	1.517	1.696	1.338	1.724	1.655	2.244	1.445
	1.510	1.756	1.690	1.714	1.650	2.229	1.436
	1.489	1.663	1.309	1.702	1.643	2.199	1.411
AVG.	1.538	1.729	1.395	1.760	1.676	2.277	1.468
STD. DEV.	0.028	0.033	0.107	0.041	0.023	0.046	0.032
NEG A Avg.	1.569	1.790	1.707	2.560	1.743	2.280	1.591
C/O A Avg.	1.144	0.682	0.960	1.171	1.158	1.250	0.975
% Change Between AVG. and NEG A	2.0%	3.6%	22.4%	45.4%	4.0%	0.2%	8.4%
%B/B ₀ STD (CO/NEG)	72.9%	38.1%	56.2%	45.7%	66.4%	54.8%	61.3%
%B/B ₀ (CO/AVG.)	74.4%	39.4%	68.8%	66.5%	69.1%	54.9%	66.4%
%B/B ₀ DIFF.	2.0%	3.6%	22.4%	45.4%	4.0%	0.2%	8.4%

Table 24
Drift Validation Data From Three Separate Validation Runs

]	First we]	Last we	lls			1
ASSAY	RUN	NEG A	C/O A	%B/B ₀	NEG A	C/O A	%B/B ₀	AVG. %B/B ₀	STD. DEV.	% CV
	1	1.590	1.081	67.99	1.616	1.121	69.37	68.68	0.98	1.42
Amphetamine Ultra	2	1.181	0.876	74.17	1.416	1.064	75.14	74.66	0.68	0.92
	3	1.420	1.015	71.48	1.421	1.046	73.61	72.54	1.51	2.08
	1	2.368	1.092	46.11	2.515	1.263	50.22	48.17	2.90	6.02
Benzodiazepine Group	2	1.618	0.731	45.18	1.848	0.867	46.92	46.05	1.23	2.67
_	3	1.813	1.154	63.62	1.924	1.048	54.47	59.05	6.47	10.96
	1	1.684	1.147	68.11	1.705	1.269	74.43	71.27	4.47	6.27
Cocaine/BZE	2	1.454	1.165	80.12	1.449	1.180	81.44	80.78	0.93	1.15
	3	1.714	1.004	58.55	1.775	1.127	63.49	61.02	3.50	5.73
	1	2.441	1.284	52.60	2.385	1.355	56.81	54.71	2.98	5.44
Cotinine	2	2.976	1.729	58.10	2.961	1.801	60.82	59.46	1.93	3.24
	3	3.274	1.795	54.82	3.115	1.898	60.93	57.87	4.32	7.47
	1	1.780	1.060	59.55	1.604	0.983	61.28	60.42	1.23	2.03
Onieta Graun	2a	1.423	1.252	87.98	1.378	1.178	85.49	86.73	1.77	2.04
Opiate Group	2b	1.581	1.144	72.36	1.407	1.177	83.65	78.01	7.99	10.24
	3	1.467	0.915	62.39	1.609	0.841	52.27	57.33	7.16	12.49
	1	2.499	0.801	32.05	2.344	0.892	38.05	35.05	4.24	12.11
Oxycodone/ Oxymorphone	2	2.487	1.792	72.05	2.392	1.766	73.83	72.94	1.25	1.72
, 1	3	2.083	1.237	59.38	2.059	1.258	61.10	60.24	1.22	2.02
	1	2.036	1.160	56.97	1.974	1.305	66.11	61.54	6.46	10.50
THC	2	1.749	1.334	76.27	1.169	0.998	85.37	80.82	6.43	7.96
	3	1.481	1.349	91.09	1.415	1.269	89.68	90.38	0.99	1.10

Table 25
Precision Validation Data From Three Different Validation Runs

ASSAY	RUN	AVG.	STD.	% CV	AVG.	STD.	% CV
ASSAI	KUN	NEG A	DEV.	/0 C V	C/O A	DEV.	/0 C V
	1-1	1.649	0.07	4.02	1.159	0.05	4.26
	1-2	1.320	0.05	3.69	1.019	0.05	4.53
A	2-1	1.432	0.07	5.00	1.095	0.07	6.16
Amphetamine Ultra	2-2	1.287	0.07	5.39	0.963	0.07	7.33
	3-1	1.379	0.03	2.29	1.046	0.04	4.02
	3-2	1.491	0.06	3.71	1.113	0.04	3.21
	1-1	2.431	0.06	2.46	1.187	0.06	5.24
	1-2	2.377	0.04	1.59	1.155	0.08	7.01
Panzadiazanina Graun	2-1	2.009	0.08	4.20	0.868	0.08	8.94
Benzodiazepine Group	2-2	2.120	0.11	5.02	0.822	0.04	4.72
	3-1	1.730	0.02	1.32	0.801	0.04	5.55
	3-2	1.774	0.05	2.74	0.816	0.03	3.92
	1-1	1.603	0.07	4.58	1.240	0.08	6.86
	1-2	1.619	0.15	8.98	1.219	0.14	11.44
Cocaine/BZE	2-1	1.283	0.11	8.79	1.074	0.09	8.70
Cocalile/BZE	2-2	1.316	0.14	10.92	1.130	0.13	11.56
	3-1	1.273	0.05	3.80	0.514	0.03	5.42
	3-2	1.242	0.07	5.78	0.486	0.03	5.91
	1-1	2.325	0.12	5.30	1.282	0.05	3.98
	1-2	2.138	0.13	6.29	1.294	0.07	5.51
Catinina	2-1	3.009	0.07	2.44	2.382	0.03	1.25
Cotinine	2-2	3.012	0.05	1.61	2.404	0.10	4.34
	3-1	3.189	0.09	2.79	1.795	0.06	3.19
	3-2	3.323	0.13	3.82	1.855	0.10	5.13
	1-1	1.859	0.09	4.86	1.154	0.08	7.30
	1-2	1.829	0.12	6.30	1.201	0.07	5.43
Oniata Graun	2-1	1.545	0.06	4.10	1.445	0.08	5.48
Opiate Group	2-2	1.223	0.05	4.21	1.107	0.11	9.53
	3-1	1.452	0.08	5.25	0.864	0.05	5.34
	3-2	1.559	0.11	6.87	0.876	0.07	7.70
	1-1	2.484	0.06	2.48	0.787	0.03	4.32
	1-2	2.399	0.06	2.39	0.772	0.04	4.70
Oxycodone/	2-1	2.360	0.10	4.14	2.179	0.14	6.38
Oxymorphone	2-2	1.436	0.08	5.59	1.223	0.10	8.28
_	3-1	2.012	0.07	3.47	1.296	0.03	2.31
	3-2	2.116	0.02	1.16	1.348	0.03	2.33
	1-1	2.032	0.06	2.75	1.284	0.07	5.67
	1-2	2.049	0.07	3.22	1.294	0.05	4.02
THE	2-1	1.718	0.08	4.79	1.663	0.10	5.86
THC	2-2	1.411	0.08	6.02	1.336	0.11	8.15
	3-1	1.458	0.07	4.98	1.131	0.03	2.74
	3-2	1.575	0.09	5.50	1.232	0.05	4.17

Note: Runs are categorized by validation number, then run number.

Table 26
Accuracy Validation Data for Three Separate Validation Runs

			_	A	verage A		Correct Results (%)		
ASSAY	RUN	NEG A	C/O A	-50% C/O	C/O	+50% C/O	-50% C/O	C/O	50% C/O
	1	1.466	0.901	1.142	0.987	0.916	100	67	33
Amphetamine Ultra	2	1.760	1.279	1.426	1.176	1.005	100	22	100
	3	1.641	1.154	1.259	1.035	0.888	100	0	100
	1	2.303	1.075	0.753	0.828	0.721	0	0	100
Benzodiazepine Group	2	1.963	0.862	1.036	0.835	0.688	100	22	100
•	3	2.033	1.097	1.281	0.991	0.930	100	17	100
	1	1.429	0.956	1.072	0.956	0.739	89	44	100
Cocaine/BZE	2	1.949	1.099	1.302	0.895	0.494	78	11	100
	3	1.316	0.498	0.807	0.500	0.327	100	33	100
	1	2.363	1.324	1.900	1.850	1.892	0	0	0
Cotinine	2	3.164	2.113	2.335	2.016	1.843	100	11	100
	3	3.258	1.753	1.918	1.581	1.473	100	0	100
	1	2.039	1.045	1.675	1.641	1.593	0	0	0
Opiate Group	2	1.389	1.145	1.169	0.929	0.780	56	0	100
	3	1.586	0.888	1.002	0.857	0.721	100	50	100
	1	2.622	0.964	1.487	1.185	0.897	100	100	89
Oxycodone/ Oxymorphone	2	2.330	1.390	1.828	1.377	1.047	100	44	89
	3	2.007	1.231	1.657	1.280	0.948	100	100	100
	1	1.742	1.036	0.802	0.978	0.884	0	11	100
THC	2	1.930	1.322	1.561	1.305	1.246	100	22	100
	3	1.375	1.061	1.229	1.054	0.933	100	50	100

Table 27
Final Kit Calibrators, Dilutions, and Cutoff Levels

KIT	CALIBRATOR	DILUTION	CUTOFF LEVEL
Amphetamine Ultra	d-Amphetamine	1:10	50 ng/mL
Benzodiazepine Group	Oxazepam	1:10	50 ng/mL
Cocaine/BZE	Benzoylecgonine (BZE)	1:5	50 ng/mL
Cotinine	Cotinine	1:5	50 ng/mL
Opiate Group	Hydromorphone	1:5	50 ng/mL
Oxycodone/ Oxymorphone	Oxycodone	1:20	30 ng/mL
THC	Δ^9 -THC-COOH	1:100	20 ng/mL

Figures

Figure 1 Standard Curves in EIA Buffer and Human Breast Milk for the Amphetamine Ultra Assay

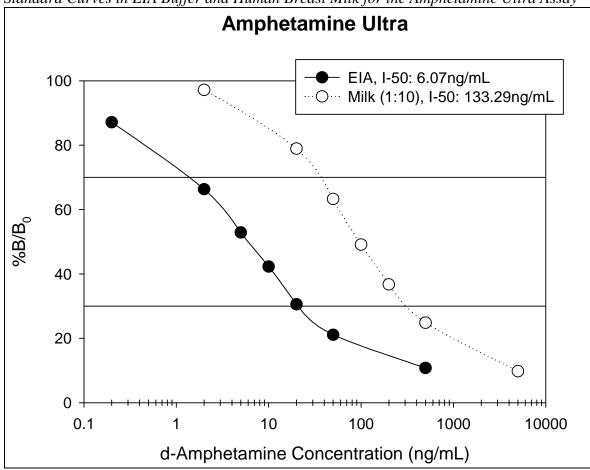


Figure 2 Standard Curves in EIA Buffer and Human Breast Milk for the Benzodiazepine Group Assay

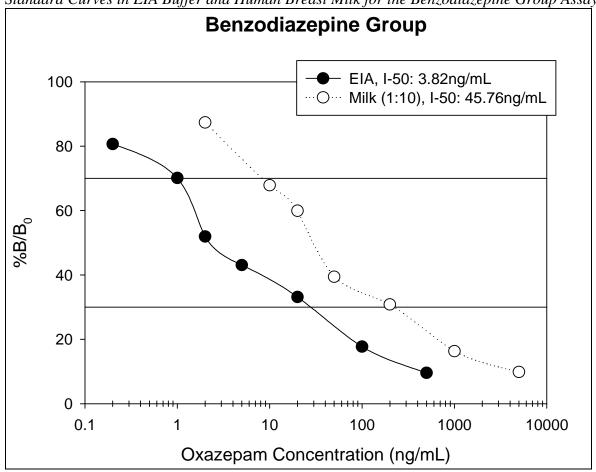


Figure 3
Standard Curves in EIA Buffer and Human Breast Milk for the Cocaine/BZE Assay

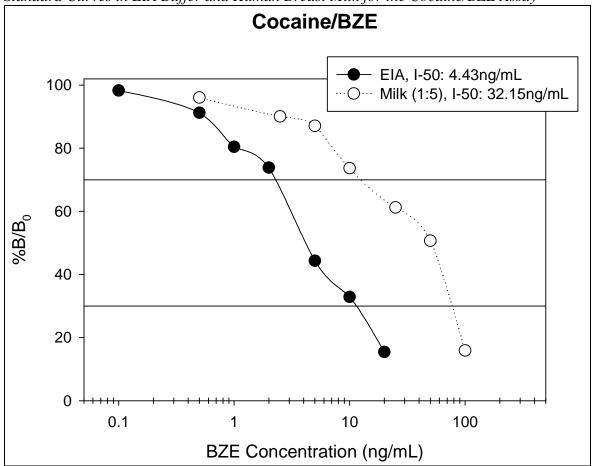


Figure 4
Standard Curves in EIA Buffer and Human Breast Milk for the Cotinine Assay

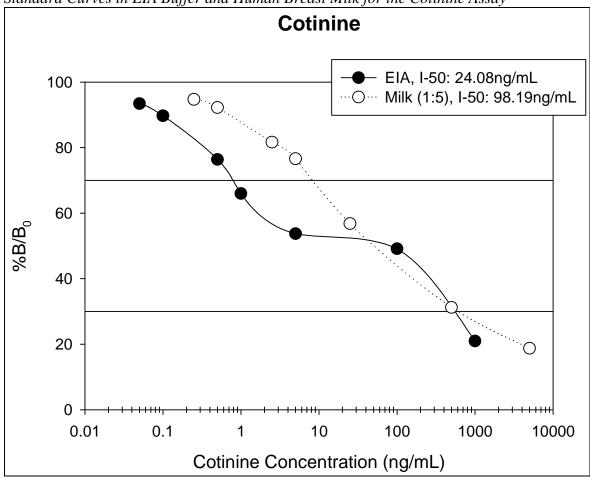


Figure 5
Standard Curves in EIA Buffer and Human Breast Milk for the Opiate Group Assay

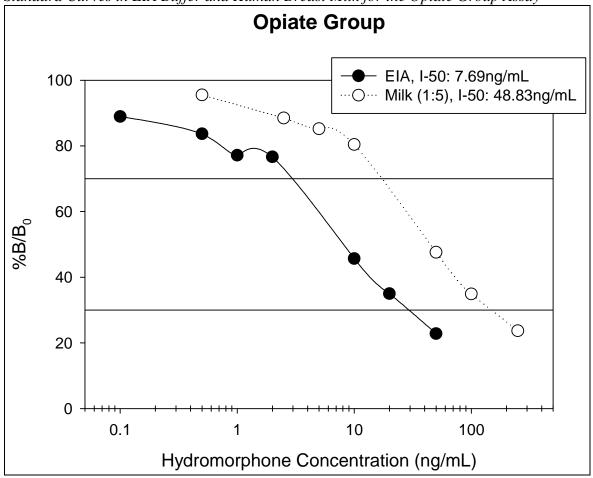
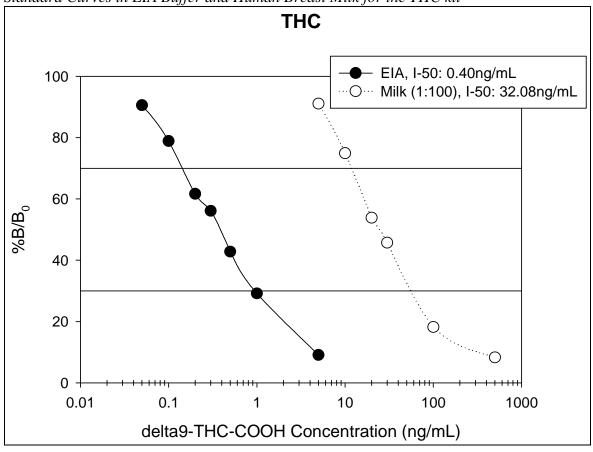



Figure 6
Standard Curves in EIA Buffer and Human Breast Milk for the Oxycodone/Oxymorphone Assay

Figure 7
Standard Curves in EIA Buffer and Human Breast Milk for the THC kit

Appendix A

NMS Labs Testing Summary Sheet for Drugs of Abuse Screen

Test Summary Sheet for:

Drugs of Abuse Screen (9 Panel), Fluid

Effective Date*: 1/6/2012

The following test codes are contained in this document:

1.	1864FL	Drugs of Abuse Screen (9 Panel), Fluid
2.	5684FL	Amphetamines Confirmation, Fluid
3.	5651FL	Barbiturates Confirmation, Fluid
4.	5641FL	Benzodiazepines Confirmation, Fluid
5.	5646FL	Cannabinoids Confirmation, Fluid
6.	5637FL	Cocaine and Metabolites Confirmation, Fluid
7.	5682FL	Methadone and Metabolite Confirmation, Fluid
8.	5645FL	Opiates - Free (Unconjugated) Confirmation, Fluid
9.	5657FL	Phencyclidine Confirmation, Fluid
10.	5633FL	Propoxyphene and Metabolite Confirmation, Fluid

The CPT Codes provided in this document are based on AMA guidlines and are for informational purposes only. NMS Labs does not assume responsibility for billing errors due to reliance on the CPT Codes listed in this document.

^{*}The information contained in this document represents database configurations, as they will appear on the effective date listed above.

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

1. 1864FL Drugs of Abuse Screen (9 Panel), Fluid

Scope of Analysis: Amphetamines [ELISA], Barbiturates [ELISA], Benzodiazepines [ELISA], Cannabinoids [ELISA], Cocaine /

Metabolites [ELISA], Methadone [ELISA], Opiates [ELISA], Phencyclidine [ELISA], Propoxyphene [ELISA]

Method(s): Enzyme-Linked Immunosorbent Assay (ELISA)

Purpose: Drug of Abuse Monitoring; Forensic Analysis; Screening for a Class of Drugs and Quantitation of Positive

Findings

Category: Hypnotic, Sedative, Stimulant, Anorexogenic, Anxiolytic, Sedative, Analgesic, Narcotic

Analgesic, Hallucinogen

Specimen Requirements: 7 mL Fluid

Minimum Volume: 3.2 mL Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required

Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined

Frozen (-20 °C): Undetermined

Method: Enzyme-Linked Immunosorbent Assay (ELISA)

Set-Up Days / TAT: Monday-Saturday 2nd Shift 1 day (after set-up)

CPT Code: 80101x9

Compound Name / Alias	Units	RL		
Opiates	ng/mL	20		
Cocaine / Metabolites	ng/mL	20		
Benzodiazepines	ng/mL	100		
Cannabinoids	ng/mL	10		
Amphetamines	ng/mL	20		
Barbiturates	mcg/mL	0.04		
Methadone	ng/mL	25		
Phencyclidine Angel Dust; PCP; Sherm	ng/mL	10		
Propoxyphene	ng/mL	50		

[Amphetamines-reflex] 5684FL

Amphetamines Confirmation, Fluid

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

Associated Confirmation Tests

5651FL Barbiturates Confirmation, Fluid [Barbiturates] [Benzodiazepines] 5641FL Benzodiazepines Confirmation, Fluid [Cannabinoids] 5646FL Cannabinoids Confirmation, Fluid [Cocaine / Metabolites] 5637FL Cocaine and Metabolites Confirmation, Fluid [Methadone] 5682FL Methadone and Metabolite Confirmation, Fluid Opiates - Free (Unconjugated) Confirmation, Fluid [Opiates-reflex] 5645FL Phencyclidine Confirmation, Fluid [Phencyclidine] 5657FL Propoxyphene and Metabolite Confirmation, Fluid [Propoxyphene] 5633FL

2. 5684FL Amphetamines Confirmation, Fluid

Scope of Analysis: Amphetamine [LC-MS/MS], Ephedrine [LC-MS/MS], MDA [LC-MS/MS], MDEA [LC-MS/MS], MDMA [LC-M

MS/MS], Methamphetamine [LC-MS/MS], Methylephedrine [LC-MS/MS], Norpseudoephedrine [LC-MS/MS], Phendimetrazine [LC-MS/MS], Phendimetrazine [LC-MS/MS], Phendimetrazine [LC-MS/MS], Phendimetrazine [LC-MS/MS], Phendimetrazine [LC-MS/MS], Pseudoephedrine [LC-MS/MS], Selegiline [LC-MS/MS]

Method(s): High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

Purpose: Confirmation of Positive Screen

Category: Antihistamine, Decongestant, Stimulant, Stimulant, Anorexogenic, Appetite Suppressant, Bronchodilator,

Stimulant, Decongestant, Stimulant

Specimen Requirements: 1 mL Fluid

Minimum Volume: 0.4 mL Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required

Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: High Performance Liquid Chromatography/Tandem Mass Spectrometry

(LC-MS/MS)

Set-Up Days / TAT: Monday-Friday 2nd Shift 3 days (after set-up)

CPT Code: 82145

Compound Name / Alias	Units	RL	
Ephedrine	ng/mL	5.0	
Methylephedrine	ng/mL	5.0	
Pseudoephedrine	ng/mL	5.0	
Phenylpropanolamine Norephedrine; PPA	ng/mL	5.0	
Norpseudoephedrine Cathine Reference Comment	ng/mL	5.0	
Norpseudoephedrine is a metabolite of Pseudoe	phedrine.		
Amphetamine	ng/mL	5.0	
Phentermine Adipex-P®; Ionamin®; Pro-Fast®	ng/mL	10	

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

		islabs.com	
Compound Name / Alias	Units	RL	
Methamphetamine	ng/mL	5.0	
Reference Comment This test reports Methamphetamine as the total of undifferentiated d and I enantiomers. The ratio of these enantiomers is important in determining whether the source of Methamphetamine is from over the medications, prescribed medication or controlled substances. Call lab for further information on d to I enantiomed ratio determination.	ether counter		
MDA Adam; Methylenedioxyamphetamine	ng/mL	5.0	
MDMA Ecstasy; Methylenedioxymethamphetamine	ng/mL	5.0	
MDEA Eve; Methylenedioxyethylamphetamine	ng/mL	10	
Selegiline Eldepryl®	ng/mL	5.0	
Phendimetrazine Bontril®; Prelu-2®	ng/mL	10	
Phenmetrazine	ng/mL	5.0	

3. 5651FL **Barbiturates Confirmation, Fluid**

Preludin®

Amobarbital [GC/MS], Butabarbital [GC/MS], Butalbital [GC/MS], Pentobarbital [GC/MS], Phenobarbital Scope of Analysis:

[GC/MS], Secobarbital [GC/MS]

Method(s): Gas Chromatography/Mass Spectrometry (GC/MS)

Confirmation of Positive Screen Purpose:

Category: Hypnotic, Sedative, Anticonvulsant, Sedative

Specimen Requirements: 2 mL Fluid Minimum Volume:

Special Handling:

NMS Labs has no experimental or literature-based data regarding the choice of specific specimen Specimen Container:

collection containers for this test.

Transport Temperature: Refrigerated Not Required Light Protection:

Rejection Criteria:

Stability: Room Temperature: Undetermined

> Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: Gas Chromatography/Mass Spectrometry (GC/MS)

Set-Up Days / TAT: Tuesday Thursday 2nd Shift 3 days (after set-up)

CPT Code: 82205

Compound Name / Alias Units RL mcg/mL 0.2 Butabarbital **Butisol Sodium**

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

Compound Name / Alias	Units	RL	
Butalbital	mcg/mL	0.2	
Amobarbital	mcg/mL	0.2	
Pentobarbital	mcg/mL	0.2	
Secobarbital Seconal®	mcg/mL	0.2	
Phenobarbital Luminal® Reference Comment No reference data available.	mcg/mL	0.2	

4. 5641FL Benzodiazepines Confirmation, Fluid

Scope of Analysis: 7-Amino Clonazepam [LC-MS/MS], Alpha-Hydroxyalprazolam [LC-MS/MS], Alprazolam [LC-MS/MS],

Chlordiazepoxide [LC-MS/MS], Clobazam [LC-MS/MS], Clonazepam [LC-MS/MS], Desalkylflurazepam [LC-MS/MS], Diazepam [LC-MS/MS], Estazolam [LC-MS/MS], Flurazepam [LC-MS/MS], Hydroxyethylflurazepam [LC-MS/MS], Hydroxytriazolam [LC-MS/MS], Lorazepam [LC-MS/MS],

Midazolam [LC-MS/MS], Nordiazepam [LC-MS/MS], Oxazepam [LC-MS/MS], Temazepam [LC-MS/MS],

Triazolam [LC-MS/MS]

Method(s): High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

Purpose: Confirmation of Positive Screen

Category: Hypnotic, Sedative, Anxiolytic, Tranquilizer, Anxiolytic, Sedative, Anticonvulsant

Specimen Requirements: 1 mL Fluid
Minimum Volume: 0.4 mL

Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: High Performance Liquid Chromatography/Tandem Mass Spectrometry

(LC-MS/MS)

Set-Up Days / TAT: Monday-Friday 3 days (after set-up)

CPT Code: 80154

Compound Name / Alias	Units	RL	
Diazepam Valium®	ng/mL	20	
Nordiazepam	ng/mL	20	
Oxazepam Serax®	ng/mL	20	
Temazepam Normison®; Restoril®	ng/mL	20	

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

0	11131803.00111	
Units	RL	
ng/mL	20	
ng/mL	20	
ng/mL	5.0	
ng/mL	2.0	
ng/mL	5.0	
ng/mL	2.0	
ng/mL	5.0	
ng/mL	5.0	
ng/mL	5.0	
ng/mL	2.0	
ng/mL	5.0	
	ng/mL	ng/mL 20 ng/mL 5.0 ng/mL 2.0

No reference data available.

5. 5646FL Cannabinoids Confirmation, Fluid

11-Hydroxy Delta-9 THC [GC-GC-GC/MS], Delta-9 Carboxy THC [GC-GC-GC/MS], Delta-9 THC [GC-GC-GC-GC/MS] Scope of Analysis:

GC/MS]

Multi-dimensional Gas Chromatography/Mass Spectrometry (GC-GC-GC/MS) Method(s):

Purpose: Confirmation of Positive Screen

Category: Hallucinogen Specimen Requirements: 2 mL Fluid

Minimum Volume: 0.7 mL Special Handling: None

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required

Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: Multi-dimensional Gas Chromatography/Mass Spectrometry (GC-GC-

GC/MS)

Set-Up Days / TAT: Monday-Friday 2nd Shift 4 days (after set-up)

CPT Code: 82542

Compound Name / Alias	Units	RL		
Delta-9 THC Active Ingredient of Marijuana	ng/mL	1.0		
Delta-9 Carboxy THC Inactive Metabolite	ng/mL	5.0		
11-Hydroxy Delta-9 THC Active Metabolite Reference Comment	ng/mL	5.0		

No reference data available.

Cocaine and Metabolites Confirmation, Fluid 6. 5637FL

Benzoylecgonine [GC/MS], Cocaethylene [GC/MS], Cocaine [GC/MS] Scope of Analysis:

Method(s): Gas Chromatography/Mass Spectrometry (GC/MS)

Purpose: Confirmation of Positive Screen

Category: Stimulant

Specimen Requirements: 2 mL Fluid

Minimum Volume: Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required

Rejection Criteria: None

Room Temperature: Undetermined Stability:

Refrigerated: Undetermined

Frozen (-20 °C): Undetermined

Method: Gas Chromatography/Mass Spectrometry (GC/MS)

Set-Up Days / TAT: Monday-Friday 2nd Shift 3 days (after set-up)

CDT Codo:

Compound Name / Alias	Units	RL	
Cocaine	ng/mL	20	
Cocaethylene Cocaine/Ethanol By-Product	ng/mL	20	
Benzoylecgonine Cocaine Degradation Product Reference Comment No reference data available.	ng/mL	50	

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

7. 5682FL Methadone and Metabolite Confirmation, Fluid

Scope of Analysis: EDDP [GC/MS], Methadone [GC/MS]

Method(s): Gas Chromatography/Mass Spectrometry (GC/MS)

Purpose: Confirmation of Positive Screen

Category: Narcotic Analgesic

Specimen Requirements: 2 mL Fluid

Minimum Volume: 0.7 mL

Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: Gas Chromatography/Mass Spectrometry (GC/MS)

Set-Up Days / TAT: Tuesday Thursday 2nd Shift 3 days (after set-up)

CPT Code: 83840

Compound Name / Alias	Units	RL	
Methadone Dolophine®	ng/mL	50	
EDDP Methadone Metabolite	ng/mL	50	

Reference Comment No reference data available.

8. 5645FL Opiates - Free (Unconjugated) Confirmation, Fluid

Scope of Analysis: 6-Monoacetylmorphine - Free [GC/MS], Codeine - Free [GC/MS], Dihydrocodeine / Hydrocodol - Free

[GC/MS], Hydrocodone - Free [GC/MS], Hydromorphone - Free [GC/MS], Morphine - Free [GC/MS],

Oxycodone - Free [GC/MS], Oxymorphone - Free [GC/MS]
Gas Chromatography/Mass Spectrometry (GC/MS)

Method(s): Gas Chromatography/Mass Spectron

Purpose: Confirmation of Positive Screen

Category: Narcotic Analgesic

Specimen Requirements: 3 mL Fluid
Minimum Volume: 1.2 mL
Special Handling: N/A
Specimen Container: N/A
Transport Temperature: N/A

Light Protection: Not Required

Rejection Criteria: N/A

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: Gas Chromatography/Mass Spectrometry (GC/MS)

Set-Up Days / TAT: Monday-Friday 2nd Shift 4 days (after set-up)

CPT Code: 83925

Compound Name / Alias	Units	RL	
Dihydrocodeine / Hydrocodol - Free	ng/mL	10	

v.10

NMS Labs

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

Compound Name / Alias	Units	RL	
Codeine - Free	ng/mL	10	
Morphine - Free	ng/mL	10	
Hydrocodone - Free Dicodid®	ng/mL	10	
6-Monoacetylmorphine - Free 6-MAM; Heroin Metabolite	ng/mL	10	
Hydromorphone - Free Dilaudid®; Hydrocodone Metabolite	ng/mL	10	
Oxycodone - Free OxyContin®; Roxicodone®	ng/mL	10	
Oxymorphone - Free Numorphan®; Opana®; Oxycodone Metabolite	ng/mL	10	
Reference Comment No reference data available.			

9. 5657FL Phencyclidine Confirmation, Fluid

Scope of Analysis: Phencyclidine [GC/MS]

Method(s): Gas Chromatography/Mass Spectrometry (GC/MS)

Purpose: Confirmation of Positive Screen

Category: Hallucinogen
Specimen Requirements: 3 mL Fluid
Minimum Volume: 1.2 mL
Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated
Light Protection: Not Required
Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined Frozen (-20 °C): Undetermined

Method: Gas Chromatography/Mass Spectrometry (GC/MS)

Set-Up Days / TAT: Monday Thursday 4 days (after set-up)

CPT Code: 83992

 Compound Name / Alias
 Units
 RL

 Phencyclidine
 ng/mL
 5.0

Angel Dust; PCP; Sherm
Reference Comment
No reference data available.

3701 Welsh Road, Willow Grove, PA 19090 800-522-6671 nms@nmslabs.com

10. 5633FL Propoxyphene and Metabolite Confirmation, Fluid

Scope of Analysis: Norpropoxyphene [GC/MS], Propoxyphene [GC/MS]

Method(s): Gas Chromatography/Mass Spectrometry (GC/MS)

Purpose: Confirmation of Positive Screen

Category: Analgesic

Specimen Requirements: 2 mL Fluid

Minimum Volume: 0.7 mL Special Handling: None

Specimen Container: NMS Labs has no experimental or literature-based data regarding the choice of specific specimen

collection containers for this test.

Transport Temperature: Refrigerated

Light Protection: Not Required

Rejection Criteria: None

Stability: Room Temperature: Undetermined

Refrigerated: Undetermined

Frozen (-20 °C): Undetermined

Method: Gas Chromatography/Mass Spectrometry (GC/MS)

Set-Up Days / TAT: Monday Wednesday 2nd Shift 3 days (after set-up)

CPT Code: 82542

Compound Name / Alias	Units	RL	
Propoxyphene Darvon®	mcg/mL	0.1	
Norpropoxyphene	mcg/mL	0.1	

Propoxyphene Metabolite
Reference Comment

No reference data available.

Appendix B

NMS Labs Toxicology Report

CONFIDENTIAL

3701 Welsh Road, PO Box 433A, Willow Grove, PA 19090-0437 Phone: (215) 657-4900 Fax: (215) 657-2972 e-mail: nms@nmslabs.com

Robert A. Middleberg, PhD, DABFT, DABCC-TC, Laboratory Director

Toxicology Report

Report Issued 01/18/2012 11:01

To: 60972

Analytical Research Laboratories Attn: Phil Kemp, Ph.D. 840 Research Pkwy - Ste 546 Oklahoma City, OK 73104 Patient Name Patient ID 165510-01 165510-01

Chain Age

12010161 Not Given

Gender Workorder Not Given

Page 1 of 2

Positive Findings:

None Detected

See Detailed Findings section for additional information

Testing Requested:

Analysis Code

Description

1864FL 3150FL Drugs of Abuse Screen (9 Panel), Fluid

Nicotine and Metabolite, Fluid

Specimens Received:

 ID
 Tube/Container
 Volume/ Mass
 Collection Date/Time
 Matrix Source Information
 Miscellaneous Information

 001
 Silver Glass Container
 10 mL
 Not Given
 Fluid

All sample volumes/weights are approximations.

Specimens received on 01/11/2012.

 Workorder
 12010161

 Chain
 12010161

 Patient ID
 165510-01

Page 2 of 2

Detailed Findings:

Examination of the specimen(s) submitted did not reveal any positive findings of toxicological significance by procedures outlined in the accompanying Analysis Summary.

Chain of custody documentation has been maintained for the analyses performed by NMS Labs.

Unless alternate arrangements are made by you, the remainder of the submitted specimens will be discarded six (6) weeks from the date of this report; and generated data will be discarded five (5) years from the date the analyses were performed.

Workorder 12010161 was electronically signed on 01/18/2012 10:06 by:

Lee M. Blum, Ph.D., DABFT Forensic Toxicologist

Analysis Summary and Reporting Limits:

Acode 1864FL - Drugs of Abuse Screen (9 Panel), Fluid

-Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) for:

Compound	Rpt. Limit	Compound	<u>Rpt. Limit</u>
Amphetamines	20 ng/mL	Methadone	25 ng/mL
Barbiturates	0.040 mcg/mL	Opiates	20 ng/mL
Benzodiazepines	100 ng/mL	Phencyclidine	10 ng/mL
Cannabinoids	10 ng/mL	Propoxyphene	50 ng/mL
Cocaine / Metabolites	20 ng/mL		

Acode 3150FL - Nicotine and Metabolite, Fluid

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for.

Compound	Rpt, Limit	Compound	Rpt. Limit
Cotinine	5.0 ng/mL	Nicotine	2.5 ng/mL

CONFIDENTIAL

3701 Welsh Road, PO Box 433A, Willow Grove, PA 19090-0437
Phone: (215) 657-4900 Fax: (215) 657-2972
e-mail: nms@nmslabs.com
Robert A. Middleberg, PhD, DABFT, DABCC-TC, Laboratory Director

Toxicology Report

Report Issued 01/18/2012 18:01

To: 60972

Analytical Research Laboratories Attn: Phil Kemp, Ph.D. 840 Research Pkwy - Ste 546 Oklahoma City, OK 73104 Patient Name 165510-02
Patient ID 165510-02
Chain 12010164
Age Not Given
Gender Not Given
Workorder 12010164

Page 1 of 2

Positive Findings:

None Detected

See Detailed Findings section for additional information

Testing Requested:

Analysis Code	Description	
1864FL	Drugs of Abuse Screen (9 Panel), Fluid	
3150FL	Nicotine and Metabolite, Fluid	

Specimens Received:

ID	Tube/Container	Volume/ Mass	Collection Date/Time	Matrix Source	Miscellaneous Information
001	Silver Glass Container	10 mL	Not Given	Fluid	

All sample volumes/weights are approximations.

Specimens received on 01/11/2012.

 Workorder
 12010164

 Chain
 12010164

 Patient ID
 165510-02

Page 2 of 2

Detailed Findings:

Examination of the specimen(s) submitted did not reveal any positive findings of toxicological significance by procedures outlined in the accompanying Analysis Summary.

Chain of custody documentation has been maintained for the analyses performed by NMS Labs.

Unless alternate arrangements are made by you, the remainder of the submitted specimens will be discarded six (6) weeks from the date of this report; and generated data will be discarded five (5) years from the date the analyses were performed.

Workorder 12010164 was electronically signed on 01/18/2012 17:52 by:

Daniel S. Isenschmid, Ph.D., D-ABFT

Forensic Toxicologist

Analysis Summary and Reporting Limits:

Acode 1864FL - Drugs of Abuse Screen (9 Panel), Fluid

-Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) for:

Compound	<u>Rpt. Limit</u>	Compound	<u>Rpt. Limit</u>
Amphetamines	20 ng/mL	Methadone	25 ng/mL
Barbiturates	0.040 mcg/mL	Opiates	20 ng/mL
Benzodiazepines	100 ng/mL	Phencyclidine	10 ng/mL
Cannabinoids	10 ng/mL	Propoxyphene	50 ng/mL
Cocaine / Metabolites	20 ng/mL		

Acode 3150FL - Nicotine and Metabolite, Fluid

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for.

Compound	Rpt. Limit	Compound	Rpt. Limit
Cotinine	5.0 ng/mL	Nicotine	2.5 ng/mL

CONFIDENTIAL

3701 Welsh Road, PO Box 433A, Willow Grove, PA 19090-0437
Phone: (215) 657-4900 Fax: (215) 657-2972
e-mail: nms@nmslabs.com
Robert A. Middleberg, PhD, DABFT, DABCC-TC, Laboratory Director

Toxicology Report

Report Issued 01/18/2012 18:01

To: 60972

Analytical Research Laboratories Attn: Phil Kemp, Ph.D. 840 Research Pkwy - Ste 546 Oklahoma City, OK 73104 Patient Name 165510-03
Patient ID 165510-03
Chain 12010167
Age Not Given
Gender Not Given

75070762

Workorder
Page 1 of 2

Positive Findings:

ſ*****	
	None Detected

See Detailed Findings section for additional information

Testing Requested:

Analysis Code	Description	
1864FL	Drugs of Abuse Screen (9 Рапеl), Fluid	
3150FL	Nicotine and Metabolite, Fluid	

Specimens Received:

ID	Tube/Container	Volume/ Mass	Collection Date/Time	Matrix Source	Miscellaneous Information	
001	Silver Glass Container	10 mL	Not Given	Fluid		

All sample volumes/weights are approximations.

Specimens received on 01/11/2012.

Workorder 12010167 Chain 12010167 Patient ID 165510-03

Page 2 of 2

Detailed Findings:

Examination of the specimen(s) submitted did not reveal any positive findings of toxicological significance by procedures outlined in the accompanying Analysis Summary.

Chain of custody documentation has been maintained for the analyses performed by NMS Labs.

Unless alternate arrangements are made by you, the remainder of the submitted specimens will be discarded six (6) weeks from the date of this report; and generated data will be discarded five (5) years from the date the analyses were performed.

Workorder 12010167 was electronically signed on 01/18/2012 17:52 by:

Daniel S. Isenschmid, Ph.D., D-ABFT

Forensic Toxicologist

Analysis Summary and Reporting Limits:

Acode 1864FL - Drugs of Abuse Screen (9 Panel), Fluid

-Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) for:

Compound	Rpt. Limit	Compound	<u>Rpt. Limit</u>
Amphetamines	20 ng/mL	Methadone	25 ng/mL
Barbiturates	0.040 mcg/mL	Opiates	20 ng/mL
Benzodiazepines	100 ng/mL	Phencyclidine	10 ng/mL
Cannabinoids	10 ng/mL	Propoxyphene	50 ng/mL
Cocaine / Metabolites	20 ng/mL		

Acode 3150FL - Nicotine and Metabolite, Fluid

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for.

 Compound
 Rpt. Limit
 Compound
 Rpt. Limit

 Cotinine
 5.0 ng/mL
 Nicotine
 2.5 ng/mL

CONFIDENTIAL

3701 Welsh Road, PO Box 433A, Willow Grove, PA 19090-0437
Phone: (215) 557-4900 Fax: (215) 657-2972
e-mail: nms@nmslabs.com
Robert A. Middleberg, PhD, DABFT, DABCC-TC, Laboratory Director

Toxicology Report

Report Issued 01/18/2012 18:01

To: 60972

Analytical Research Laboratories Attn: Phil Kemp, Ph.D. 840 Research Pkwy - Ste 546 Oklahoma City, OK 73104 Patient Name 165510-04
Patient ID 165510-04
Chain 12010169
Age Not Given
Gender Not Given
Workorder 12010169

Page 1 of 2

Positive Findings:

I	
	None Detected
ł	
- 1	

See Detailed Findings section for additional information

Testing Requested:

Analysis Code	Description	
1864FL	Drugs of Abuse Screen (9 Panel), Fluid	
3150FL	Nicotine and Metabolite, Fluid	

Specimens Received:

ID	Tube/Container	Volume/ Mass	Collection Date/Time	Matrix Source	Miscellaneous Information
001	Silver Glass Container	10 mL	Not Given	Fluid	

All sample volumes/weights are approximations.

Specimens received on 01/11/2012.

 Workorder
 12010169

 Chain
 12010169

 Patient ID
 165510-04

Page 2 of 2

Detailed Findings:

Examination of the specimen(s) submitted did not reveal any positive findings of toxicological significance by procedures outlined in the accompanying Analysis Summary.

Chain of custody documentation has been maintained for the analyses performed by NMS Labs.

Unless alternate arrangements are made by you, the remainder of the submitted specimens will be discarded six (6) weeks from the date of this report; and generated data will be discarded five (5) years from the date the analyses were performed.

Workorder 12010169 was electronically signed on 01/18/2012 17:52 by:

Daniel S. Isenschmid, Ph.D., D-ABFT

Forensic Toxicologist

Analysis Summary and Reporting Limits:

Acode 1864FL - Drugs of Abuse Screen (9 Panel), Fluid

-Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) for:

Compound	<u>Rpt. Limi</u> t	<u>Compound</u>	Rpt. Limit
Amphetamines	20 ng/mL	Methadone	25 ng/mL
Barbiturates	0.040 nrcg/nrL	Opiates	20 ng/mL
Benzodiazepines	100 ng/mL	Phencyclidine	10 ng/mL
Cannabinoids	10 ng/mL	Propoxyphene	50 ng/mL
Cocaine / Metabolites	20 ng/mL		

Acode 3150FL - Nicotine and Metabolite, Fluid

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for.

Compound	Rpt, Limit	Compound	Rpt. Limit
Cotinine	5.0 ng/mL	Nicotine	2.5 ng/mL

CONFIDENTIAL

3701 Welsh Road, PO Box 433A, Willow Grove, PA 19090-0437
Phone: (215) 657-4900 Fax: (215) 657-2972
e-mail: nms@nmslabs.com
Robert A. Middleberg, PhD. DABFT, DABCC-TC, Laboratory Director

Supplemental Report

Report Issued 01/25/2012 14:00 **Last Report Issued** 01/18/2012 18:01

To: 60972

Analytical Research Laboratories Attn: Phil Kemp, Ph.D. 840 Research Pkwy - Ste 546 Oklahoma City, OK 73104 Patient Name 165510-04
Patient ID 165510-04
Chain 12010169
Age Not Given
Gender Not Given
Workorder 12010169

Page 1 of 4

Positive Findings:

None Detected

See Detailed Findings section for additional information

Testing Requested:

Analysis CodeDescription1864FLDrugs of Abuse Screen (9 Panel), Fluid3150FLNicotine and Metabolite, Fluid

Tests Not Performed:

Part or all of the requested testing was unable to be performed. Refer to the Analysis Summary and Reporting Limits section for details.

Specimens Received:

ID	Tube/Container	Volume/ Mass	Collection Date/Time	Matrix Source	Miscellaneous Information	
001	Silver Glass Container	10 mL	Not Given	Fluid		-

All sample volumes/weights are approximations.

Specimens received on 01/11/2012.

 Workorder
 12010169

 Chain
 12010169

 Patient ID
 165510-04

Page 2 of 4

Detailed Findings:

Examination of the specimen(s) submitted did not reveal any positive findings of toxicological significance by procedures outlined in the accompanying Analysis Summary.

Chain of custody documentation has been maintained for the analyses performed by NMS Labs.

Unless alternate arrangements are made by you, the remainder of the submitted specimens will be discarded six (6) weeks from the date of this report; and generated data will be discarded five (5) years from the date the analyses were performed.

Workorder 12010169 was electronically signed on 01/25/2012 13:42 by:

Daniel S. Isenschmid, Ph.D., D-ABFT

Forensic Toxicologist

Analysis Summary and Reporting Limits:

Acode 1864FL - Drugs of Abuse Screen (9 Panel), Fluid

-Analysis by Enzyme-Linked Immunosorbent Assay (ELISA) for:

Compound	Rpt. Limit	Compound	Rpt. Limit
Amphetamines	20 ng/mL	Methadone	25 ng/mL
Barbiturates	0.040 mcg/mL	Opiates	20 ng/mL
Benzodiazepines	100 ng/mL	Phencyclidine	10 ng/mL
Cannabinoids	10 ng/mL	Propoxyphene	50 ng/mL
Cocaine / Metabolites	20 ng/mL		

Acode 3150FL - Nicotine and Metabolite, Fluid

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for:

Compound	Rpt. Limit	Compound	Rpt. Limit
Cotinine	5.0 ng/mL	Nicotine	2.5 ng/mL

Acode 5633FL - Propoxyphene and Metabolite Confirmation, Fluid

-Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) for:

Compound	Rpt. Limit	Compound	Rpt. Limit
Norpropoxyphene	0.10 mcg/mL	Propoxyphene	0.10 mcg/mL

Acode 5637FL - Cocaine and Metabolites Confirmation, Fluid

-Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) for:

Compound	Rpt. Limit	Compound	Rpt. Limit
Benzoylecgonine	50 ng/mL	Cocaine	20 ng/mL
Cocaethylene	20 ng/mL		

Acode 5641FL - Benzodiazepines Confirmation, Fluid

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for:

Workorder 12010169 **Chain** 12010169

12010169 165510-04

Page 3 of 4

Patient ID

Analysis Summary and Reporting Limits:

Compound	Rpt. Limit	Compound	Rpt. Limit
7-Amino Clonazepam	5.0 ng/mL	Flurazepam	2.0 ng/mL
Alpha-Hydroxyalprazolam	5.0 ng/mL	Hydroxyethylflurazepam	5.0 ng/mL
Alprazolam	5.0 ng/mL	Hydroxytriazolam	5.0 ng/mL
Chlordiazepoxide	20 ng/mL	Lorazepam	5.0 ng/mL
Clobazam	20 ng/mL	Midazolam	5.0 ng/mL
Clonazepam	2.0 ng/mL	Nordiazepam	20 ng/mL
Desalkylflurazepam	5.0 ng/mL	Oxazepam	20 ng/mL
Diazepam	20 ng/mL	Temazepam	20 ng/mL
Estazolam	5.0 ng/mL	Triazolam	2.0 ng/mL

Acode 5645FL - Opiates - Free (Unconjugated) Confirmation, Fluid

-Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) for:

Compound	Rpt. Limit	Compound	Rpt. Limit
6-Monoacetylmorphine - Free	10 ng/mL	Hydromorphone - Free	10 ng/mL
Codeine - Free	10 ng/mL	Morphine - Free	10 ng/mL
Dihydrocodeine / Hydrocodol - Free	10 ng/mL	Oxycodone - Free	10 ng/mL
Hydrocodone - Free	10 ng/mL	Oxymorphone - Free	10 ng/mL

Acode 5646FL - Cannabinoids Confirmation, Fluid

-Analysis by Multi-dimensional Gas Chromatography/Mass Spectrometry (GC-GC-GC/MS) for:

 Compound
 Rpt. Limit
 Compound
 Rpt. Limit

 11-Hydroxy Delta-9 THC
 N/A
 Delta-9 THC
 N/A

Delta-9 Carboxy THC N/A

Testing Not Performed: Test was canceled due to [Sample Matrix Problem].

Acode 5651FL - Barbiturates Confirmation, Fluid

-Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) for:

Compound	Rpt. Limit	Compound	Rpt. Limit
Amobarbital	0.20 mcg/mL	Pentobarbital	0.20 mcg/mL
Butabarbital	0.20 mcg/mL	Phenobarbital	0.20 mcg/mL
Butalbital	0.20 mca/mL	Secobarbital	0.20 mcg/mL

Acode 5657FL - Phencyclidine Confirmation, Fluid

-Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) for:

<u>Compound</u> <u>Rpt. Limit</u> <u>Compound</u> <u>Rpt. Limit</u>

Phencyclidine 5.0 ng/mL

Acode 5682FL - Methadone and Metabolite Confirmation, Fluid

-Analysis by Gas Chromatography/Mass Spectrometry (GC/MS) for:

 Compound
 Rpt. Limit
 Compound
 Rpt. Limit

 EDDP
 50 ng/mL
 Methadone
 50 ng/mL

Acode 5684FL - Amphetamines Confirmation, Fluid

 Workorder
 12010169

 Chain
 12010169

 Patient ID
 165510-04

Page 4 of 4

Analysis Summary and Reporting Limits:

-Analysis by High Performance Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) for.

Compound	Rpt. Limit	Compound	Rpt. Limit
Amphetamine	5.0 ng/mL	Norpseudoephedrine	5.0 ng/mL
Ephedrine	5.0 ng/mL	Phendimetrazine	10 ng/mL
MDA	5.0 ng/mL	Phenmetrazine	5.0 ng/mL
MDEA	10 ng/mL	Phentermine	10 ng/mL
MDMA	5.0 ng/mL	Phenylpropanolamine	5.0 ng/mL
Methamphetamine	5.0 ng/mL	Pseudoephedrine	5.0 ng/mL
Methylephedrine	5.0 ng/mL	Selegiline	5.0 ng/mL

Appendix C

ELISA Results for Multi-Drug and Single Drug Calibrator Comparison

Kit, Plate, and Reagent Lot Data

Date: 04/05/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0047B	BGF-0061B	BZF-0078B	CTI-0034	MOF-0056B	OXF-0037B	TCF-0055B
Kit Exp. Date	1/30/2013	1/23/2013	2/22/2013	7/10/2012	2/22/2013	1/16/2013	2/9/2013
Plate #	120119	120119	120116FAM	1102211	120213F	111103F	120208
Plate Exp. Date	1/19/2014	1/19/2014	1/16/2014	2/21/2013	2/13/2014	11/3/2013	2/8/2014
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	026	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	036	050	055	034	044	028	044
CONJ Exp.	1/30/2013	1/23/2013	2/22/2013	-	2/22/2013	1/16/2013	2/9/2013

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 04/05/2012 Negative and Cutoff Calibrators were prepared 04/05/2012

TEST NO. TEST NAME PLATE : : AMPHETAMINE ULTRA : OpiACCURACY abcotCALCOMP 120405 : 4/5/2012 : 4:41:02 PM : admin W/L MODE : SINGLE DATE TEST FILTER REF. FILTER : 450 nm TIME OPERATOR : AMPHETAMINE ULTRA,
: OxyACCURACY abcotCALCOMP 120405,
: Acid Stop,
: AMPHETAMINE ULTRA CONJUGATE,
: EIA Buffer,
: K-Blue,
: AMPHETAMINE ULTRA CUTOFF,
: AMPHETAMINE ULTRA NEGATIVE,
: GROUP 1 CUTOFF,
: GROUP 1 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 2.430>1.936 NC>CO = CO = 1.937 = CO = 1.937 + equation - equation Sample ID Location Data Mean S.D. C.V. Result [Amphetamine C/O] 1.981 1.981 NEG Data Mean S.D. C.V. Result Sample ID Location NC1 A5 B5 2.563 2.299 2.431 0.187 7.674% NC1 Page 1 of 21

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C5 D5	1.915 1.959	1.937	0.031	1.595%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E5	2.350	2.350	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F5	1,680	1.680	****	****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE: OD

Page 2 of 21

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	****	*****	****	2.563	*****	*****	*****	*****	*****	*****	*****
3	*****	*****	*****	*****	2.299	••••	*****	*****	*****	*****	****	*****
С	*****	*****	*****	*****	1.915	*****	*****	*****	*****	*****	*****	*****
D	••••	*****	••••	*****	1.959	*****	*****	*****	*****	*****	*****	*****
Е	*****	*****	*****	*****	2.350	*****	*****	*****	*****	****	*****	*****
F	*****	*****	*****	*****	1.680	••••	*****	*****	*****	****	*****	*****
G	*****	*****	*****	*****	1.981	*****	*****	*****	*****	*****	*****	*****
н	*****	*****	*****	*****	*****	*****	*****	*****	*****	****	*****	*****

***** Indicates an unread well or value out of range

TEST NO. TEST NAME	: : BENZODIAZEP	INE GROUP		
PLATE	: OpiACCURACY	abcotCALCOMP 120405		
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *	DATE TIME OPERATOR	: 4/5/2012 : 4:41:02 PM : admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	: BENZODIAZEPINE GF : OxyACCURACY abcott : Acid Stop, : BENZODIAZEPINE GF : EIA Buffer,	CALCOMP 120405, ,		

: K-Blue,
: BENZODIAZEPINE GROUP CUTOFF,
: BENZODIAZEPINE GROUP NEGATIVE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

Calculation mode

1.947>1.101 NC>CO

= CO = 1.102 = CO = 1.102 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Benzodiazepine C/O]	G6	0.941	0.941	*****	****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A6	1.888	1.947	0.084	4.338%	NC1	
	B6	2.007					

Page 4 of 21

Page 3 of 21

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C6 D6	1.033 1.171	1.102	0.098	8.858%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E6	1.566	1.566	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F6	0.595	0.595	****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 5 of 21

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	*****	*****	1.888	*****	****	****	****	*****	*****
В	*****	*****	*****	*****	*****	2.007	*****	*****	****	****	*****	*****
С	****	*****	*****	*****	*****	1.033	*****	*****	*****	*****	*****	*****
D	****	*****	*****	*****	*****	1.171	*****	*****	*****	*****	*****	*****
Е	*****	*****	*****	*****	*****	1.566	*****	*****	****	*****	*****	*****
F	****	*****	****	****	*****	0.595	*****	*****	*****	*****	*****	*****
G	****	*****	****	****	****	0.941	****	*****	*****	*****	*****	*****
н	****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 6 of 21

TEST NO. TEST NAME PLATE	: COCAINE-B		LCOMP 12040	5		
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm	!	DATE TIME OPERATOR		4/5/2012 4:41:02 PM admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	COCAINE-BZE, OxyACCURACY at Acid Stop, COCAINE/BZE CO EIA Buffer, K-Blue, COCAINE/BZE CU COCAINE/BZE CU COCAINE/BZE VI GROUP 2 CUTOFI GROUP 2 NEGATI Distilled Water, Neogen Wash Buff	NJUGATE,, TOFF,, GATIVE,, F,, VE,,	P 120405, ,			
OVER limit Calculation mode	: 3.500 : Endpoint					
		THRESH	OLD RESU	ILTS		
Q.C. equations						
NC>CO				1.968>1.261		
+ equation	= CO = 1.261					
- equation	= CO = 1.261					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Cocaine C/O]	G7	1.126	1.126	••••	*****	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A7 B7	1.997 1.941	1.969	0.040	2.040%	NC1

Page 7 of 21

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C7 D7	1.315 1.207	1.261	0.077	6.107%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E7	1.403	1.403	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F7	0.713	0.713	*****	****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

**** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 8 of 21

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	*****	*****	*****	1.997	••••	*****	••••	*****	*****
В	*****	*****	*****	*****	****	*****	1.941	*****	*****	*****	*****	*****
С	*****	****	*****	*****	*****	*****	1.315	*****	*****	*****	*****	*****
D	*****	*****	*****	*****	*****	*****	1.207	*****	****	*****	*****	*****
Е	*****	*****	*****	*****	*****	*****	1.403	*****	****	*****	*****	*****
F	*****	*****	*****	*****	*****	*****	0.713	*****	*****	*****	*****	*****
G	*****	*****	*****	*****	****	*****	1.126	*****	*****	*****	*****	*****
н	*****	****	*****	*****	*****	*****	*****	*****	*****	*****	••••	*****

: SINGLE DATE : 4/5/2012 : 4:41:02 PM : admin W/L MODE TEST FILTER REF. FILTER OPERATOR Kit Lot Data Plate Lot Data Reagent Lot Data : OPIATE GROUP, , : OxyACCURACY abcotCALCOMP 120405, , : Acid Stop, , : EIA Buffer, , : EIA Buffer,
: K-Blue,
: OPIATE GROUP CONJUGATE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: OPIATE GROUP CUTOFF,
: OPIATE GROUP NEGATIVE,
: DIStilled Water,
: Neogen Wash Buffer, OVFR limit : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.812>1.253 NC>CO = CO = 1.253 = CO = 1.253 - equation Result Location Data Mean S.D. C.V. Sample ID [Opiate C/O] G8 1.201 1.201 POS Sample ID Location Data Mean S.D. C.V. 1.812 0.078 4.326% NC1 NC1 A8 B8 1.868 1.757

Page 10 of 21

Page 9 of 21

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C8 D8	1.315 1.191	1.253	0.087	6.976%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E8	1.959	1.959	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F8	1.052	1.052	****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
	*****	*****	*****	*****	*****	*****	*****	1.868	*****	*****	*****	****
3	*****	*****	*****	*****	*****	*****	*****	1.757	*****	*****	*****	****
:	****	****	*****	****	****	*****	*****	1.315	*****	*****	*****	****
,	****	****	*****	*****	*****	*****	*****	1.191	*****	*****	*****	*****
:	*****	*****	*****	*****	*****	*****	*****	1.959	*****	*****	*****	****
=	*****	*****	*****	*****	****	*****	****	1.052	*****	*****	*****	*****
,	****	*****	*****	*****	****	*****	*****	1.201	*****	*****	*****	****
١	*****	*****	*****	*****	*****	*****	*****	****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 11 of 21

Page 12 of 21

TEST NO.	:						
TEST NAME PLATE	: THC : OpiACCUR/	ACY abcotCA	LCOMP 12040	5			
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR		: 4/5/2012 : 4:41:02 PM : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: THC, , OxyACCURACY at Acid Stop, , EllA Buffer, , K-Blue, , THC CONJUGATE GROUP 2 CUTOFF , THC CUTOFF , THC NEGATIVE, , Distilled Water , Neogen Wash Buff	VE, ,	P 120405, ,				
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	ILTS			
Q.C. equations							
NC>CO				2.129>1.730)		
+ equation	= CO = 1.730						
- equation	= CO = 1.730						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[THC C/O]	G9	1.785	1.785	****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A9 B9	2.370 1.888	2.129	0.340	15.990%	NC1	

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C9 D9	1.781 1.680	1.730	0.072	4.135%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E9	2.404	2.404	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F9	1.367	1.367	****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

DATA MATRIX/TABLE : OD

Page 14 of 21

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	*****	*****	*****	*****	*****	*****	*****	*****	2.370	*****	*****	*****
В	*****	*****	*****	*****	****	*****	*****	*****	1.888	*****	*****	*****
С	*****	*****	*****	*****	*****	*****	*****	*****	1.781	*****	*****	*****
0	*****	*****	*****	*****	*****	*****	*****	*****	1.680	*****	*****	*****
Е	*****	*****	*****	*****	*****	••••	*****	*****	2.404	*****	*****	*****
F	*****	*****	*****	*****	*****	••••	*****	*****	1.367	*****	*****	*****
G	*****	*****	*****	*****	*****	*****	*****	*****	1.785	*****	*****	*****
н	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

		REVELA	TION DSX	6.15		
TEST NO. TEST NAME PLATE	: : OXYCODOI : OXYCALCO		PHONE			
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 4/5/2012 : 4:01:03 PM : admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	: OXYCODONE-OX: OxyCALCOMP120 : Acid Stop, . : EllA Buffer, . :K-Blue, . OXYCODONE/OX: GROUP 1 CUTOFI: OXYCODONE/OX: OXYCODONE/OX: OXYCODONE/OX: Distilled Water , Neogen Wash Buff	YMORPHONE F, , VE, , YMORPHONE YMORPHONE	E CONJUGATE			
OVER limit Calculation mode	: 3.500 : Endpoint					
		THRESH	OLD RESU	LTS		
Q.C. equations						
NC>CO				2.515>1.777	,	
+ equation	= CO = 1.778					
- equation	= 1.778 = CO = 1.778					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Oxycodone C/O]	G1	1.875	1.875	****	****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1 B1	2.514 2.518	2.516	0.003	0.108%	NC1

Page 15 of 21

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C1 D1	1.910 1.645	1.778	0.188	10.551%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E1	2.572	2.572	****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F1	1.277	1.277	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 17 of 21

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.514	*****	*****	*****	*****	*****	*****	****	*****	*****	*****	*****
В	2.518	*****	*****	*****	*****	*****	*****	*****	*****	*****	••••	*****
С	1.910	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.645	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
Е	2.572	*****	*****	****	*****	****	*****	*****	*****	*****	*****	*****
F	1.277	*****	*****	*****	*****	*****	*****	****	*****	*****	****	*****
G	1.875	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
н	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 18 of 21

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE

: COTININE : CotCALCOMP 120405

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm : *

DATE TIME OPERATOR

: 4/5/2012 : 3:31:35 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE,
: COICALCOMP 120405,
: Acid Stop,
: COTININE CONJUGATE,
: EIA Buffer,
: K-Blue,
: COTININE CUTOFF,
: COTININE NEGATIVE,
: GROUP 1 NEGATIVE,
: GROUP 1 NEGATIVE,
: Distilled Water,

: Distilled Water, , : Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.773>1.887

+ equation

= CO = 1.887 = CO = 1.887

- equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Cotinine C/O]	G1	1.792	1.792	*****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	2.868	2.774	0.134	4.827%	NC1	

Page 19 of 21

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C1 D1	1.904 1.871	1.887	0.023	1.244%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E1	2.534	2.534	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F1	1.507	1.507	*****	****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 20 of 21

	1	2	3	4	5	6	7	8	9	10	11	12
A	2.868	*****	*****	****	*****	*****	*****	*****	*****	*****	*****	
В	2.679	****	*****	*****		*****	*****	*****	*****	••••	****	*****
С	1.904	*****	*****	*****	*****	*****	*****	*****	****	*****	*****	****
D	1.871	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
Ε	2.534	*****	*****	*****	*****	*****	*****	*****	****	****	*****	*****
F	1.507	*****	*****	*****	*****	*****	*****	*****	****	****	****	*****
G	1.792	****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
4	*****	*****	*****	*****		*****	*****	****	****	*****	****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 21 of 21

Appendix D

ELISA Results for Variability Between Single and Multiple Readings

Kit, Plate, and Reagent Lot Data

Date: 03/23/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0047B	BGF-0061B	BZF-0078B	CTI-0034	MOF-0055B*	OXF-0037B	TCF-0055B
Kit Exp. Date	1/30/2013	1/23/2013	2/22/2013	7/10/2012	2/22/2013	1/16/2013	2/9/2013
Plate #	120119	120119	120116FAM	1102211	120213F	111103F	120208
Plate Exp. Date	1/19/2014	1/19/2014	1/16/2014	2/21/2013	2/13/2014	11/3/2013	2/8/2014
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	026	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	036	050	055	034	044	028	044
CONJ Exp.	1/30/2013	1/23/2013	2/22/2013	-	2/22/2013	1/16/2013	2/9/2013

^{*}This kit lot number was found to be defective. No results could be obtained.

 $Acid\ Stop,\ EIA\ Buffer,\ K-Blue,\ Distilled\ Water,\ and\ Neogen\ Wash\ Buffer\ were\ prepared\ on\ 03/23/2012$

Negative and Cutoff Calibrators were prepared 03/23/2012

Kit, Plate, and Reagent Lot Data

Date: 04/06/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0047B	BGF-0061B	BZF-0078B	CTI-0034	MOF-0056B	OXF-0037B	TCF-0055B
Kit Exp. Date	1/30/2013	1/23/2013	2/22/2013	7/10/2012	2/22/2013	1/16/2013	2/9/2013
Plate #	120119	120119	120116FAM	1102211	120213F	111103F	120208
Plate Exp. Date	1/19/2014	1/19/2014	1/16/2014	2/21/2013	2/13/2014	11/3/2013	2/8/2014
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	026	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	036	050	055	034	044	028	044
CONJ Exp.	1/30/2013	1/23/2013	2/22/2013	-	2/22/2013	1/16/2013	2/9/2013

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 04/06/2012 Negative and Cutoff Calibrators were prepared 04/06/2012

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE

: AMPHETAMINE ULTRA 10 : StandardDeviationPlate1

SINGLE

DATE TIME OPERATOR

: 3/23/2012 : 12:03:45 PM

W/L MODE TEST FILTER REF. FILTER

Kit Lot Data Plate Lot Data Reagent Lot Data

: * OPERATOR

: AMPHETAMINE ULTRA 10,
: AmpoxybenzCocOpiTHC, 120323,
: Acid Stop,
: AMPHETAMINE ULTRA CONJUGATE,
: BENZODIAZEPINE GROUP CONJUGATE,
: COCAINE/BZE CONJUGATE,
: ELR Buffer,
: K-Blue,
: OPIATE GROUP CONJUGATE,
: OXYCODONE/OXYMORPHONE CONJUGATE,
: GROUP 1 CUTOFF,
: GROUP 1 CUTOFF,
: GROUP 1 HEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit

: 3.500

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.747>1.277

+ equation - equation

= CO = 1.277 = CO = 1.277

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
Blank Milk]	E1	1.617	1.641	0.055	3.323%	NEG
,	F1	1.679				
	G1	1.614				
	H1	1.723				
	A2	1.702				
	B2	1.640				
		F	age 1 of 46			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	1.756 1.739	1.748	0.012	0.689%	NC1	

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.258 1.296	1.277	0.027	2.143%	CO1	

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 2 of 46

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.756	1.702	*****	*****	*****	*****	*****	••••	*****	*****	*****	*****
В	1.739	1.640	*****	••••	••••		••••		*****	*****	••••	*****
С	1.258	1.596	****	*****	••••	••••	*****	*****	*****	*****	••••	****
D	1.296	1.608	*****	••••	••••	••••	*****	*****	*****	*****	••••	*****
E	1.617	1.547	*****	*****	*****	••••	*****	*****	*****	*****	*****	*****
F	1.679	1.681	*****	*****		••••	*****	*****	*****		*****	*****
G	1.614		*****	*****		••••	*****				*****	*****
н	1.723	*****	••••	*****	*****	••••	*****	*****	••••	*****	*****	*****

***** Indicates an unread well or value out of range

TEST NO. TEST NAME PLATE

OXYCODONE-OXYMORPHONE 10

W/L MODE TEST FILTER REF. FILTER

Kit Lot Data Plate Lot Data Reagent Lot Data

: SINGLE : 450 nm

DATE TIME OPERATOR

: OXYCODONE-OXYMORPHONE 10, . : AmpOxyBenzCocOpTHC, 120323, : Acid Stop, . : ElA Buffer, . : K-Blue, . OXYCODONE/OXYMORPHONE CONJUGATE, . : GROUP 1 CUTOFF, . : GROUP 1 NEGATIVE, . : Distilled Water, . : Neogen Wash Buffer, .

: 3.500 : Endpoint

OVER limit Calculation mode

THRESHOLD RESULTS

Q.C. equations

NC>CO

3/23/2012 : 12:03:45 PM : admin

= CO = 1.399 = CO = 1.399 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank Milk]	E3	2.493	2.471	0.038	1.527%	NEG
	F3	2,444				
	G3	2.479				
	H3	2.546				
	A4	2.510				
	B4	2.411				
	C4	2.456				
	D4	2.457				
	E4	2.461				
	F4	2.453				

Page 4 of 46

Page 3 of 46

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A3 B3	2.522 2.462	2.492	0.042	1.678%	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C3 D3	1.484 1.314	1.399	0.120	8.569%	CO1

- [...] Indicates manual entry if Sample ID is bracketed

 ***** Indicates an unread well or value out of range

 0 Indicates an equivocal response

 1 Indicates an unread well or value out of range

 # Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	2.522	2.510	*****	*****	••••	••••	*****	*****	••••	*****
В	••••	*****	2.462	2.411	*****	••••	••••	••••		••••	*****	••••
С	••••	••••	1.484	2.456	*****	••••	••••	••••	••••	••••	••••	••••
D	*****	*****	1.314	2.457	*****	*****	*****		*****	*****	*****	••••
Е	*****	*****	2.493	2.461	*****	*****	*****		*****	*****	*****	*****
F	*****	*****	2.444	2.453	*****	*****	*****	*****	*****	*****	*****	****
G	*****		2.479	*****	*****		*****	••••	*****	*****		••••
н	*****	*****	2.546	*****	*****	*****	*****		*****	*****	*****	••••

Page 5 of 46

TEST NO. TEST NAME PLATE

: BENZODIAZEPINE GROUP 10 : StandardDeviationPlate1

: SINGLE W/L MODE TEST FILTER REF. FILTER : 450 nm

DATE TIME OPERATOR : 3/23/2012 : 12:03:45 PM

Kit Lot Data Plate Lot Data Reagent Lot Data BENZODIAZEPINE GROUP 10, , AmpOxyBenzCocOpiTHC, 120323, Acid Stop, , BENZODIAZEPINE GROUP CONJUGATE, ,

: BENZODIAZEPINE GRO : EIA Buffer, , : K-Blue, , : GROUP 2 CUTOFF, , : GROUP 2 NEGATIVE, , : Distilled Water, , : Neogen Wash Buffer, ,

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

1.981>0.766

Q.C. equations

NC>CO

- equation

+ equation

= CO = 0.767 = CO = 0.767

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Blank Milk]	E5	1.751	1.794	0.058	3.258%	NEG	
	F5	1.708					
	G5	1.769					
	H5	1.844					
	A6	1.904					
	B6	1.850					
	C6	1.809					
	D6	1.749					
	E6	1.767					
	F6	1.794					

Page 6 of 46

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5 B5	1.987 1.976	1.981	0.008	0.410%	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C5	0.774	0.767	0.010	1.279%	CO1

- [...] Indicates manual entry if Sample ID is bracketed

 ***** Indicates an unread well or value out of range

 0 Indicates an equivocal response

 1 Indicates an unread well or value out of range

 # Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	*****	1.987	1.904	*****	*****	****	*****	*****	*****
В	*****	*****	*****	*****	1.976	1.850	*****	*****	*****	*****	*****	*****
С	*****	*****	*****	*****	0.774	1.809	*****	*****	****	*****	*****	*****
D	*****	*****	*****	*****	0.760	1.749	*****	*****	*****	*****	*****	*****
Е	*****	*****	*****	*****	1.751	1.767	*****	*****	*****	•••••	*****	*****
·F	*****	*****	*****	*****	1.708	1.794	*****	*****	*****	*****	••••	*****
G	*****	*****	*****	*****	1.769	*****	*****	*****	*****	••••	*****	*****
н	••••	*****	*****	*****	1.844	••••	*****	*****	*****	*****	*****	*****

Page 7 of 46

TEST NO. TEST NAME PLATE : COCAINE-BZE 10

W/L MODE TEST FILTER REF. FILTER : SINGLE

: 450 nm

DATE TIME OPERATOR

: 3/23/2012 : 12:03:45 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COCAINE-BZE 10, ,
: AmpOxyBenzCocOpiTHC, 120323,
: Acid Stop, ,
: COCAINE/BZE CONJUGATE, ,
:EIA Buffer, ,
: K-Blue, ,
: GROUP 2 CUTOFF, ,
: GROUP 2 NEGATIVE, ,
: Distilled Water, ,
: Neogen Wash Buffer, ,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.898>1.070

- equation

= CO = 1.071 = CO = 1.071

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Blank Milk]	E7	1.508	1.615	0.098	6.088%	NEG	
	F7	1.492					
	G7	1.648					
	H7	1.501					
	A8	1.524					
	B8	1.726					
	C8	1.707					
	D8	1.672					
	E8	1.643					
	F8	1.730					

Page 8 of 46

i iait ib. olaridardot	VIGUOTII IGIC I		WHITEDEL			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A7 B7	1.927 1.869	1.898	0.041	2.168%	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C7 D7	1.107 1.035	1.071	0.051	4.794%	CO1

- [...] Indicates manual entry if Sample ID is bracketed

 ***** Indicates an unread well or value out of range

 0 Indicates an equivocal response

 1 Indicates an unread well or value out of range

 # Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****		*****	*****	*****	*****	1.927	1.524	*****	*****	*****	*****
В	*****	*****	••••	*****	*****	*****	1.869	1.726	****	*****	*****	*****
С	••••	*****	••••	••••	*****	*****	1.107	1.707	*****	••••	*****	*****
D			••••	*****	••••	****	1.035	1.672	*****	*****	*****	*****
Е	*****		*****	*****	*****	*****	1.508	1.643	*****	*****	*****	*****
F	*****	*****		*****	*****	*****	1.492	1.730	*****	*****	••••	
G	*****	*****		*****	*****	*****	1.648		*****	*****	••••	*****
н	*****	*****	*****	*****	*****	*****	1.501		*****	*****	*****	*****

Page 9 of 46

Plate ID: StandardDe	eviationPlate1	THC		
TEST NO. TEST NAME PLATE	: : THC 10 : StandardDeviationF	Plate1		
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm	DATE TIME OPERATOR	: 3/23/2012 : 12:03:45 PM : admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	: THC 10, AmpOxyBenzCocOpiTHC, Acid Stop EIA Buffer , K-Blue, THC CONJUGATE, GROUP 2 CUTOFF, GROUP 2 NEGATIVE, Distilled Water, Neogen Wash Buffer , ,	120323,		
OVER limit Calculation mode	: 3.500 : Endpoint			

Q.C. equations

1.800>1.093 NC>CO

= CO = 1.093 = CO = 1.093 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank Milk]	E11	1.498	1.579	0.068	4.308%	NEG
,	F11	1.578				
	G11	1.595				
	H11	1.690				
	A12	1.660				
	B12	1.519				
	C12	1.513				
	D12	1.547				
	E12	1.540				
	F12	1.653				

Page 10 of 46

Plate ID: StandardDe	viationPlate1		THC			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A11 B11	1.854 1.747	1.801	0.076	4.204%	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C11 D11	1.138 1.048	1.093	0.064	5.860%	CO1

- [...] Indicates manual entry if Sample ID is bracketed

 ***** Indicates an unread well or value out of range

 0 Indicates an equivocal response

 * Indicates an unread well or value out of range

 # Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****		••••	••••	*****	*****	••••	*****	*****	*****	1.854	1.660
В	*****	*****	••••	*****	*****	*****		••••	••••	••••	1.747	1.519
С	*****		*****	*****	*****	*****		*****			1.138	1.513
D	*****		*****	*****	*****	*****	*****	••••	••••	*****	1.048	1.547
Е	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	1.498	1.540
F	*****			*****	*****	*****	*****	*****	*****	*****	1.578	1.653
G	*****	*****	*****	*****	****	****	*****	*****	*****	*****	1.595	*****
н	*****	*****		*****	*****	*****	*****	*****	*****	*****	1.690	*****

Page 11 of 46

REVELATION DSX 6.15

: 3/23/2012

TEST NO. TEST NAME PLATE : COTININE 10 : StandardDeviationPlate2

W/L MODE TEST FILTER REF. FILTER : SINGLE DATE

TIME OPERATOR : 11:06:53 AM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE 10,
: Cot, 120323,
: Acid Stop,
: COTININE CONJUGATE,
: EIA Buffer,
: K-Blue,
: GROUP 1 CUTOFF,
: GROUP 1 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO 2.900>1.547

= CO = 1.547 = CO = 1.547 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Blank Milk]	E1	2.288	2.222	0.038	1.713%	NEG	
	F1	2.182					
	G1	2.187					
	H1	2.278					
	A2	2.249					
	B2	2.196					
	C2	2.226					
	D2	2.191					
	E2	2.214					
	F2	2.207					

Page 12 of 46

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1 B1	2.888 2.912	2.900	0.017	0.589%	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C1 D1	1.568 1.526	1.547	0.029	1.898%	CO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.888	2.249	••••	*****	••••	*****	*****	*****	*****	*****	*****	*****
В	2.912	2.196	••••	••••		••••	*****		••••	••••	*****	*****
С	1.568	2.226	••••	*****	*****	••••	••••	••••	*****	••••		
D	1.526	2.191	*****	*****	*****	••••	*****		*****	*****	*****	
Е	2.288	2.214	••••	*****	*****	••••	*****	••••	*****	*****		
F	2.182	2.207	••••	*****	*****	*****	*****		*****	*****	*****	*****
G	2.187	*****	*****	*****	*****	*****		*****	*****	*****	*****	*****
н	2.278	*****	*****	*****	*****	*****	*****	••••	*****	*****	*****	*****

Page 13 of 46

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE

: OPIATE GROUP 10 : OPI10 CALCOMPAmpOxyBenzCocOpiTHC 120406

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR

: 4/6/2012 : 5:05:54 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: OPIATE GROUP 10, ,
: OPI10 CALCOMPAmpOxyBenzCocOpiTHC 120406, ,
: Acid Stop, ,
: AMPHETAMINE ULTRA CONJUGATE, ,
:BENZODIAZEPINE GROUP CONJUGATE, ,
:COCAINE/BEZ CONJUGATE, ,
:EIA Buffer, ,

: K-Blue, , : OPIATE GROUP CONJUGATE, ,

: OPIAIE GROUP CONJUGATE, .
:OXYCODONE/OXYMORPHONE CONJUGATE, .
:THC CONJUGATE, .
:GROUP 2 CUTOFF, .
:GROUP 2 NEGATIVE, .
:Distilled Water, .
:Neogen Wash Buffer, ,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.807>1.195

= CO = 1.195 = CO = 1.195 + equation - equation

S.D. C.V. Result 1.692 1.633 1.644 1.754 1.734 1.600 0.122 7.650% [NEG] E1 F1 G1 H1 A2 B2

Page 14 of 46

D2	1.527
E2	1.416
F2	1 394

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1 B1	1.924 1.691	1.808	0.164	9.098%	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C1 D1	1.229 1.161	1.195	0.048	4.029%	CO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.924	1.734	••••	*****	*****	••••	••••	••••	*****	*****	*****	*****
В	1.691	1.605	••••	••••	*****		••••		••••	*****	*****	*****
С	1.229	1.600	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.161	1.527	••••	*****	*****	••••	*****	••••	*****	*****	••••	*****
Ε	1.692	1.416	*****	*****	*****	••••	••••	*****	*****	*****	*****	*****
F	1.633	1.394	••••	*****	*****	*****			*****	*****	*****	*****
G	1.644	*****	••••	*****	*****	*****	*****	••••	*****	*****	*****	*****
н	1.754	*****	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 15 of 46

Page 16 of 46

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

. : Read Plate : Amp1

: SINGLE

W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/23/2012

: Read Plate, , : Test_15, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.618	1.577	2.370	2.346	1.845	1.767	1.778	1.401	0.105	0.093	1.687	1.513
В	1.606	1.521	2.323	2.260	1.838	1.711	1.725	1.594	0.097	0.085	1.593	1.385
С	1.156	1.477	1.365	2.286	0.708	1.683	1.019	1.577	0.093	0.084	1.045	1.384
D	1.194	1.481	1.203	2.281	0.696	1.621	0.949	1.538	0.089	0.088	0.961	1.414
Ε	1.465	1.422	2.340	2.303	1.622	1.627	1.394	1.511	0.091	0.084	1.368	1.404
F	1.554	1.546	2.285	2.302	1.577	1.662	1.372	1.599	0.091	0.085	1.444	1.511
G	1.443	0.038	2.302	0.044	1.626	0.043	1.515	0.042	0.087	0.044	1.459	0.041
н	1.573	0.045	2.338	0.041	1.698	0.043	1.377	0.042	0.091	0.048	1.543	0.042

***** Indicates an unread well or value out of range

Page 17 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

. : Read Plate : Amp2

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 3/23/2012 : 12:31:13 PM

: Read Plate, , : Test_16, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	ь	/	8	9	10	- 11	12
Α	1.607	1.568	2.345	2.330	1.831	1.755	1.766	1.390	0.105	0.093	1.678	1.503
В	1.593	1.512	2.301	2.243	1.827	1.701	1.714	1.584	0.097	0.085	1.584	1.377
С	1.148	1.472	1.357	2.284	0.704	1.674	1.014	1.569	0.093	0.084	1.039	1.376
D	1.188	1.475	1.196	2.268	0.692	1.614	0.944	1.528	0.089	0.088	0.956	1.405
Ε	1.457	1.415	2.318	2.285	1.611	1.615	1.385	1.502	0.091	0.084	1.360	1.396
F	1.546	1.537	2.258	2.280	1.564	1.650	1.364	1.586	0.091	0.085	1.436	1.500
G	1.435	0.037	2.276	0.044	1.616	0.043	1.503	0.042	0.088	0.044	1.451	0.041
н	1.564	0.045	2.313	0.041	1.684	0.043	1.368	0.042	0.091	0.048	1.534	0.042

***** Indicates an unread well or value out of range

Page 18 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE : Read Plate : Amp3

W/L MODE SINGLE

TEST FILTER REF. FILTER

Kit Lot Data Plate Lot Data : Read Plate, , : Test_17, ,

OVER limit Calculation mode : 3.500

DATA MATRIX/TABLE : OD

DATE

TIME OPERATOR

: 3/23/2012

12:32:42 PM admin

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.599	1.559	2.333	2.313	1.820	1.745	1.756	1.383	0.105	0.093	1.667	1.494
В	1.585	1.505	2.287	2.230	1.816	1.693	1.705	1.576	0.097	0.085	1.574	1.367
С	1.142	1.463	1.349	2.269	0.700	1.666	1.009	1.561	0.094	0.085	1.033	1.367
D	1.182	1.467	1.190	2.255	0.688	1.605	0.939	1.520	0.089	0.088	0.950	1.396
Ε	1.450	1.406	2.309	2.270	1.602	1.607	1.378	1.494	0.091	0.084	1.353	1.386
F	1.538	1.528	2.248	2.269	1.554	1.642	1.356	1.578	0.091	0.085	1.429	1.492
G	1.427	0.037	2.266	0.044	1.605	0.044	1.495	0.043	0.088	0.044	1.442	0.041
н	1.556	0.045	2.297	0.041	1.674	0.043	1.360	0.042	0.091	0.048	1.526	0.042

***** Indicates an unread well or value out of range

Page 19 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Amp4

W/L MODE : SINGLE DATE TEST FILTER REF. FILTER OPERATOR

Kit Lot Data Plate Lot Data : Read Plate, , : Test_18, ,

OVER limit : 3.500

DATA MATRIX/TABLE : OD

: 3/23/2012

: 12:34:13 PM

1	2	3	4	5	6	7	8	9	10	11	12
1.592	1.552	2.320	2.292	1.808	1.733	1.743	1.373	0.105	0.093	1.656	1.485
1.577	1.498	2.274	2.212	1.804	1.681	1.694	1.565	0.097	0.085	1.564	1.360
1.136	1.456	1.342	2.247	0.695	1.655	1.003	1.551	0.094	0.085	1.028	1.359
1.175	1.459	1.183	2.242	0.684	1.596	0.933	1.511	0.089	0.088	0.945	1.387
1.444	1.400	2.301	2.256	1.593	1.597	1.369	1.484	0.091	0.084	1.344	1.377
1.532	1.523	2.232	2.255	1.545	1.630	1.347	1.567	0.091	0.084	1.420	1.482
1.422	0.037	2.250	0.044	1.593	0.044	1.484	0.043	0.087	0.044	1.434	0.041
1.550	0.045	2.275	0.041	1.662	0.044	1.351	0.042	0.091	0.049	1.517	0.042
	1.577 1.136 1.175 1.444 1.532 1.422	1.592 1.552 1.577 1.498 1.136 1.456 1.175 1.459 1.444 1.400 1.532 1.523 1.422 0.037	1.592 1.552 2.320 1.577 1.498 2.274 1.136 1.456 1.342 1.175 1.459 1.183 1.444 1.400 2.301 1.532 1.523 2.232 1.422 0.037 2.250	1.592 1.552 2.320 2.292 1.577 1.498 2.274 2.212 1.136 1.456 1.342 2.247 1.175 1.459 1.183 2.242 1.444 1.400 2.301 2.256 1.532 1.523 2.232 2.255 1.422 0.037 2.250 0.044	1.592 1.552 2.320 2.292 1.808 1.577 1.498 2.274 2.212 1.804 1.136 1.456 1.342 2.247 0.695 1.175 1.459 1.183 2.242 0.684 1.444 1.400 2.301 2.256 1.593 1.532 1.523 2.232 2.255 1.545 1.422 0.037 2.250 0.044 1.593	1.592 1.552 2.320 2.292 1.808 1.733 1.577 1.498 2.274 2.212 1.804 1.681 1.136 1.456 1.342 2.247 0.695 1.655 1.175 1.459 1.183 2.242 0.684 1.596 1.444 1.400 2.301 2.256 1.593 1.597 1.532 1.523 2.232 2.255 1.545 1.630 1.422 0.037 2.250 0.044 1.593 0.044	1.592 1.552 2.320 2.292 1.808 1.733 1.743 1.577 1.498 2.274 2.212 1.804 1.681 1.694 1.136 1.456 1.342 2.247 0.695 1.655 1.003 1.175 1.459 1.183 2.242 0.684 1.596 0.933 1.444 1.400 2.301 2.256 1.593 1.597 1.369 1.532 1.523 2.232 2.255 1.545 1.630 1.347 1.422 0.037 2.250 0.044 1.593 0.044 1.484	1.592 1.552 2.320 2.292 1.808 1.733 1.743 1.373 1.577 1.498 2.274 2.212 1.804 1.681 1.694 1.565 1.136 1.456 1.342 2.247 0.695 1.655 1.003 1.551 1.175 1.459 1.183 2.242 0.684 1.596 0.933 1.511 1.444 1.400 2.301 2.256 1.593 1.597 1.369 1.484 1.532 1.523 2.232 2.255 1.545 1.630 1.347 1.567 1.422 0.037 2.250 0.044 1.593 0.044 1.484 0.043	1.592 1.552 2.320 2.292 1.808 1.733 1.743 1.373 0.105 1.577 1.498 2.274 2.212 1.804 1.681 1.694 1.565 0.097 1.136 1.456 1.342 2.247 0.695 1.655 1.003 1.551 0.094 1.175 1.459 1.183 2.242 0.684 1.596 0.933 1.511 0.089 1.444 1.400 2.301 2.256 1.593 1.597 1.369 1.484 0.091 1.532 1.523 2.232 2.255 1.545 1.630 1.347 1.567 0.091 1.422 0.037 2.250 0.044 1.593 0.044 1.484 0.043 0.087	1.592 1.552 2.320 2.292 1.808 1.733 1.743 1.373 0.105 0.093 1.577 1.498 2.274 2.212 1.804 1.681 1.694 1.565 0.097 0.085 1.136 1.456 1.342 2.247 0.695 1.655 1.003 1.551 0.094 0.085 1.175 1.459 1.183 2.242 0.684 1.596 0.933 1.511 0.089 0.088 1.444 1.400 2.301 2.256 1.593 1.597 1.369 1.484 0.091 0.084 1.532 1.523 2.232 2.255 1.545 1.630 1.347 1.567 0.091 0.084 1.422 0.037 2.250 0.044 1.593 0.044 1.484 0.043 0.087 0.044	1.592 1.552 2.320 2.292 1.808 1.733 1.743 1.373 0.105 0.093 1.656 1.577 1.498 2.274 2.212 1.804 1.681 1.694 1.565 0.097 0.085 1.564 1.136 1.456 1.342 2.247 0.695 1.655 1.003 1.551 0.094 0.085 1.028 1.175 1.459 1.183 2.242 0.684 1.596 0.933 1.511 0.089 0.088 0.945 1.444 1.400 2.301 2.256 1.593 1.597 1.369 1.484 0.091 0.084 1.342 1.532 1.523 2.232 2.255 1.545 1.630 1.347 1.567 0.091 0.084 1.420 1.422 0.037 2.250 0.044 1.593 0.044 1.484 0.043 0.087 0.044 1.434

***** Indicates an unread well or value out of range

Page 20 of 46

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

: Endpoint

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Amp5

W/L MODE SINGLE

: Read Plate, , : Test_19, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500

DATA MATRIX/TABLE: OD

DATE TIME OPERATOR

: 3/23/2012

: 3/23/2012

: 12:35:50 PM : admin

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.584	1.543	2.308	2.285	1.798	1.727	1.734	1.365	0.106	0.093	1.644	1.476
В	1.568	1.489	2.265	2.201	1.796	1.674	1.685	1.556	0.097	0.085	1.553	1.350
С	1.129	1.449	1.335	2.231	0.691	1.648	0.997	1.543	0.094	0.085	1.021	1.350
D	1.169	1.452	1.176	2.227	0.679	1.588	0.927	1.502	0.089	0.088	0.938	1.378
Е	1.436	1.392	2.286	2.244	1.584	1.588	1.361	1.476	0.091	0.084	1.334	1.368
F	1.523	1.515	2.215	2.239	1.534	1.624	1.340	1.558	0.091	0.084	1.411	1.473
G	1.414	0.036	2.235	0.044	1.584	0.044	1.476	0.043	0.087	0.044	1.424	0.041
н	1.540	0.045	2.258	0.040	1.651	0.044	1.342	0.042	0.090	0.049	1.507	0.042

***** Indicates an unread well or value out of range

Page 21 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Amp6

W/L MODE TEST FILTER REF. FILTER SINGLE DATE : 3/23/2012 TIME OPERATOR : 12:37:27 PM : admin

: Read Plate, , : Test_20, , Kit Lot Data Plate Lot Data : 3.500 : Endpoint **OVER** limit

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.573	1.535	2.292	2.276	1.787	1.719	1.725	1.357	0.106	0.093	1.632	1.464
В	1.560	1.483	2.256	2.191	1.786	1.664	1.676	1.548	0.097	0.085	1.542	1.340
С	1.122	1.442	1.327	2.221	0.686	1.638	0.991	1.534	0.094	0.085	1.014	1.341
D	1.162	1.444	1.168	2.210	0.674	1.578	0.921	1.493	0.089	0.088	0.933	1.369
Ε	1.427	1.384	2.272	2.224	1.573	1.580	1.353	1.469	0.091	0.084	1.325	1.360
F	1.515	1.505	2.210	2.237	1.525	1.614	1.332	1.550	0.091	0.084	1.401	1.462
G	1.405	0.036	2.227	0.044	1.574	0.044	1.467	0.043	0.087	0.044	1.414	0.041
н	1.530	0.045	2.253	0.040	1.643	0.044	1.334	0.042	0.091	0.049	1.495	0.042

***** Indicates an unread well or value out of range

Page 22 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE : Read Plate : Amp7

W/L MODE SINGLE

DATE TEST FILTER REF. FILTER 12:39:09 PM OPERATOR Kit Lot Data

: Read Plate, , : Test_21, , Plate Lot Data OVER limit : 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.562	1.526	2.285	2.254	1.776	1.705	1.712	1.347	0.106	0.093	1.622	1.455
В	1.548	1.474	2.241	2.168	1.773	1.652	1.666	1.538	0.097	0.085	1.532	1.332
С	1.115	1.432	1.319	2.202	0.681	1.628	0.984	1.525	0.094	0.085	1.008	1.333
D	1.154	1.435	1.161	2.196	0.669	1.568	0.915	1.484	0.089	0.088	0.926	1.360
Е	1.418	1.375	2.265	2.214	1.563	1.567	1.344	1.458	0.091	0.084	1.316	1.351
F	1.504	1.497	2.188	2.215	1.513	1.602	1.322	1.539	0.091	0.084	1.391	1.453
G	1.396	0.036	2.210	0.044	1.562	0.044	1.457	0.043	0.087	0.044	1.405	0.041
н	1.521	0.046	2.225	0.040	1.629	0.044	1.324	0.042	0.090	0.049	1.486	0.042

***** Indicates an unread well or value out of range

Page 23 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Amp8

W/L MODE TEST FILTER REF. FILTER : SINGLE DATE : 450 nm OPERATOR

Kit Lot Data Plate Lot Data : Read Plate, , : Test_22, , OVER limit : 3.500

DATA MATRIX/TABLE : OD

: 3/23/2012

: 12:40:43 PM

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.555	1.517	2.276	2.244	1.766	1.696	1.702	1.338	0.106	0.093	1.610	1.445
В	1.540	1.465	2.238	2.158	1.763	1.646	1.656	1.530	0.097	0.085	1.521	1.323
С	1.108	1.426	1.312	2.197	0.677	1.622	0.978	1.515	0.094	0.085	1.001	1.324
D	1.148	1.427	1.154	2.182	0.665	1.559	0.909	1.475	0.089	0.088	0.920	1.352
Ε	1.411	1.367	2.253	2.198	1.554	1.559	1.336	1.450	0.091	0.084	1.309	1.343
F	1.496	1.488	2.180	2.205	1.504	1.594	1.314	1.531	0.091	0.084	1.383	1.443
G	1.389	0.036	2.198	0.044	1.553	0.044	1.447	0.043	0.087	0.044	1.394	0.041
н	1.513	0.045	2.216	0.039	1.620	0.044	1.315	0.043	0.090	0.049	1.475	0.042

***** Indicates an unread well or value out of range

Page 24 of 46

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: : Read Plate : Amp9

W/L MODE TEST FILTER REF. FILTER

SINGLE DATE TIME OPERATOR : 3/23/2012 : 12:42:12 PM

: Read Plate, , : Test_23, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

1.544	1.510 1.457	2.253	2.229	1.756	1.687	1.690	1.331	0.106	0.093	1.597	1.436
1.530	1.457	2 213						0.100	0.033	1.597	1.430
		2.213	2.147	1.755	1.635	1.646	1.521	0.097	0.085	1.511	1.315
1.101	1.417	1.303	2.177	0.672	1.610	0.972	1.508	0.094	0.085	0.995	1.317
1.141	1.420	1.146	2.171	0.661	1.551	0.904	1.468	0.089	0.088	0.915	1.343
1.403	1.360	2.232	2.185	1.544	1.551	1.328	1.442	0.091	0.084	1.299	1.334
1.488	1.480	2.160	2.192	1.496	1.585	1.306	1.521	0.091	0.084	1.373	1.434
1.380	0.036	2.176	0.044	1.542	0.044	1.438	0.043	0.087	0.044	1.385	0.041
1.504	0.046	2.187	0.038	1.610	0.044	1.307	0.043	0.090	0.049	1.466	0.042
1	.141 .403 .488 .380	.141 1.420 .403 1.360 .488 1.480 .380 0.036	.141 1.420 1.146 .403 1.360 2.232 .488 1.480 2.160 .380 0.036 2.176	.141 1.420 1.146 2.171 .403 1.360 2.232 2.185 .488 1.480 2.160 2.192 .380 0.036 2.176 0.044	.141 1.420 1.146 2.171 0.661 403 1.360 2.232 2.185 1.544 488 1.480 2.160 2.192 1.496 .380 0.036 2.176 0.044 1.542	.141 1.420 1.146 2.171 0.661 1.551 403 1.360 2.232 2.185 1.544 1.551 488 1.480 2.160 2.192 1.496 1.585 .380 0.036 2.176 0.044 1.542 0.044	.141 1.420 1.146 2.171 0.661 1.551 0.904 403 1.360 2.232 2.185 1.544 1.551 1.328 488 1.480 2.160 2.192 1.496 1.585 1.306 380 0.036 2.176 0.044 1.542 0.044 1.438	.141 1.420 1.146 2.171 0.661 1.551 0.904 1.468 .403 1.360 2.232 2.185 1.544 1.551 1.328 1.442 .488 1.480 2.160 2.192 1.496 1.585 1.306 1.521 .380 0.036 2.176 0.044 1.542 0.044 1.438 0.043	.141 1.420 1.146 2.171 0.661 1.551 0.904 1.468 0.089 .403 1.360 2.232 2.185 1.544 1.551 1.328 1.442 0.091 .488 1.480 2.160 2.192 1.496 1.585 1.306 1.521 0.091 .380 0.036 2.176 0.044 1.542 0.044 1.438 0.043 0.087		

***** Indicates an unread well or value out of range

Page 25 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

FAX

TEST NO. TEST NAME PLATE

. : Read Plate : Amp10

W/L MODE SINGLE DATE : 3/23/2012 TIME OPERATOR : 12:46:29 PM : admin

: Read Plate, , : Test_24, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.522	1.489	2.231	2.199	1.729	1.663	1.667	1.309	0.105	0.093	1.571	1.411
В	1.509	1.438	2.196	2.123	1.729	1.611	1.622	1.497	0.097	0.085	1.486	1.291
С	1.083	1.398	1.284	2.149	0.660	1.588	0.956	1.483	0.094	0.084	0.978	1.294
D	1.123	1.400	1.128	2.134	0.648	1.527	0.888	1.445	0.089	0.088	0.899	1.321
E	1.382	1.341	2.214	2.152	1.520	1.526	1.306	1.420	0.091	0.083	1.277	1.312
F	1.467	1.460	2.130	2.163	1.472	1.561	1.285	1.499	0.091	0.084	1.352	1.410
G	1.360	0.036	2.156	0.044	1.518	0.044	1.415	0.043	0.087	0.044	1.363	0.041
н	1.484	0.046	2.161	0.037	1.584	0.044	1.285	0.043	0.090	0.049	1.440	0.043

***** Indicates an unread well or value out of range

Page 26 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Cot1

W/L MODE TEST FILTER : SINGLE 450 nm REF. FILTER

TIME OPERATOR

DATE

3/23/2012

: 12:12:11 PM : admin

Kit Lot Data Plate Lot Data : Read Plate, , : Test_5, , OVER limit : 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.602	1.823	*****	*****		••••	*****	*****	*****	*****	*****	*****
В	2.640	1.786	••••		••••	••••	*****	*****	••••		*****	*****
С	1.229	1.820	*****		••••	*****	*****	*****	*****	*****	*****	••••
D	1.198	1.765	*****		*****	*****	*****	*****	*****	*****	*****	
Ε	1.874	1.803	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
F	1.769	1.784	*****	••••	*****	*****	*****	••••	*****	*****	*****	
G	1.772	0.040	••••	*****	*****	*****	*****	••••	*****	*****	*****	••••
н	1.832	0.046	••••	*****	*****	*****	*****	*****	*****	*****	*****	

***** Indicates an unread well or value out of range

Page 27 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone

FAX

TEST NO. TEST NAME PLATE

: Read Plate : Cot2

W/L MODE : SINGLE

Kit Lot Data Plate Lot Data : Read Plate, , : Test_6, ,

OVER limit : 3.500

DATA MATRIX/TABLE : OD

DATE

TIME OPERATOR

: 3/23/2012

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.573	1.805	••••	*****	*****	*****	*****		*****	*****	••••	*****
В	2.623	1.775	••••	*****	*****	*****			*****	*****	*****	*****
С	1.219	1.804	*****	*****	*****	*****	*****		*****	*****	*****	*****
D	1.189	1.757	*****	*****				••••	*****	*****	••••	*****
Ε	1.858	1.790	****	*****	*****	*****	*****	*****	*****	*****	*****	*****
F	1.760	1.772	*****	*****	*****		*****	*****	*****	*****	••••	*****
G	1.762	0.041	*****	*****		*****	••••	*****	••••		••••	
н	1.822	0.046	*****	••••	••••	••••	••••	••••	••••		*****	••••

***** Indicates an unread well or value out of range

Page 28 of 46

: 3/23/2012

: 3/23/2012

12:19:06 PM admin

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE : Read Plate : Cot3

W/L MODE SINGLE

DATE TIME OPERATOR TEST FILTER REF. FILTER : 12:15:24 PM : admin : 450 nm

: Read Plate, , : Test_7, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	ь	/	8	9	10	11	12
Α	2.567	1.795	*****	*****	*****	*****		*****	*****	*****	*****	*****
В	2.635	1.766	••••	*****	*****				*****	*****	*****	*****
С	1.210	1.792	*****	*****	*****	*****	*****	••••	*****	*****	*****	*****
D	1.181	1.742	••••		*****		*****		*****	*****		*****
Ε	1.850	1.782	*****	*****	*****	••••	*****	*****	*****	*****	••••	*****
F	1.754	1.765	*****	*****	*****	••••	*****	•••••	•••••			*****
G	1.752	0.040	*****	*****	••••	*****	*****	••••	••••		••••	••••
н	1.813	0.046	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 29 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

TEST NO. TEST NAME PLATE

: Read Plate : Cot4

W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : SINGLE : 3/23/2012 : 12:17:04 PM

: Read Plate, , : Test_8, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.539	1.778	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****
В	2.593	1.751	••••	*****	*****		*****		*****	*****		*****
С	1.201	1.777	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.171	1.730	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****
Ε	1.836	1.765	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
F	1.739	1.751	*****	*****	*****	••••	*****	*****	*****		*****	****
G	1.740	0.040	*****	*****	*****	••••	••••	*****	••••	••••	••••	••••
н	1.799	0.046	*****	*****	*****	*****	*****	*****	*****	*****	*****	

***** Indicates an unread well or value out of range

Page 30 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE : Read Plate : Cot5

W/L MODE SINGLE DATE TEST FILTER REF. FILTER TIME OPERATOR

Kit Lot Data Plate Lot Data : Read Plate, , : Test_9, , **OVER** limit : 3.500

DATA MATRIX/TABLE : OD

1	2	3	4	5	6	7	8	9	10	11	12
2.548	1.766	••••	*****	*****	*****	*****		*****	••••	*****	*****
2.604	1.740	*****	*****	*****	*****	*****	••••	*****	*****	*****	*****
1.190	1.765	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
1.161	1.715	••••	*****	*****	*****	*****	••••	*****	*****	*****	*****
1.822	1.753	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****
1.728	1.740	*****	*****	*****	*****	*****	••••	*****	•••••	*****	*****
1.729	0.041	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
1.787	0.046	*****	*****	*****	*****	*****	••••	*****	*****	••••	*****
	2.548 2.604 1.190 1.161 1.822 1.728	2.548 1.766 2.604 1.740 1.190 1.765 1.161 1.715 1.822 1.753 1.728 1.740 1.729 0.041	2.548 1.766	2.548 1.766 2.604 1.740 1.190 1.765 1.61 1.715 1.822 1.753 1.728 1.740 1.729 0.041	2.548 1.766 2.604 1.740 1.190 1.765 1.161 1.715 1.822 1.753 1.728 1.740 1.729 0.041	2.548 1.766 2.604 1.740 1.190 1.765 1.61 1.715 1.822 1.753 1.728 1.740 1.729 0.041	2.548 1.766 2.604 1.740 1.190 1.765 1.61 1.715 1.822 1.753 1.728 1.740 1.729 0.041	2.548 1.766 2.604 1.740 1.190 1.765 1.161 1.715 1.822 1.753 1.728 1.740 1.729 0.041	2.548 1.766	2.548 1.766	2.548 1.766

***** Indicates an unread well or value out of range

Page 31 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Cot6 : SINGLE

W/L MODE TEST FILTER REF. FILTER DATE : 450 nm : 12:20:42 PM OPERATOR

Kit Lot Data Plate Lot Data : Read Plate, , : Test_10, , OVER limit : 3.500 Calculation mode : Endpoint

DATA MATRIX/TABLE : OD

: 3/23/2012

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.527	1.754	*****	••••	••••	••••	*****	*****	••••		*****	*****
В	2.586	1.728	*****	••••	••••	*****	*****	*****	••••	••••	••••	••••
С	1.181	1.753	*****	••••	*****	*****	*****	*****			*****	*****
D	1.152	1.706	*****	*****	*****	*****	*****	*****	*****	••••	*****	••••
Е	1.814	1.746	*****		••••	*****	••••	*****		••••	*****	*****
F	1.719	1.731	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
G	1.719	0.040	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
н	1.776	0.046	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 32 of 46

Name Address

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144

TEST NO. TEST NAME PLATE

W/L MODE TEST FILTER REF. FILTER

Kit Lot Data Plate Lot Data OVER limit Calculation mode

: Read Plate, , : Test_11, ,

: Read Plate : Cot7

: SINGLE

: 3.500 : Endpoint

DATA MATRIX/TABLE : OD

DATE TIME OPERATOR

. 3/23/2012

: 12:22:56 PM : admin

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.503	1.737	••••	****	*****	*****	*****	*****	*****	*****		*****
В	2.572	1.712	*****	*****	*****	*****	*****	*****	*****	*****		*****
С	1.169	1.736	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.139	1.687	••••	••••	•••••	••••	*****	••••	*****	*****	*****	*****
Ε	1.794	1.725	••••	*****	••••	••••	*****	••••	*****	*****	••••	*****
F	1.702	1.713	*****	*****	*****	••••	*****	••••	*****	•••••	••••	*****
G	1.701	0.040	*****	*****	*****	•••••	*****	*****	*****	*****	••••	*****
н	1.759	0.046	*****	•••••	*****	••••	*****	••••	*****	*****		*****

***** Indicates an unread well or value out of range

Page 33 of 46

REVELATION DSX 6.15

Name Address

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144

TEST NO. TEST NAME PLATE

W/L MODE TEST FILTER REF. FILTER

: : Read Plate : Cot8 : SINGLE

: 450 nm

DATE TIME OPERATOR

. 3/23/2012 : 12:24:27 PM

Kit Lot Data Plate Lot Data OVER limit Calculation mode

: Read Plate, , : Test_12, , : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.489	1.724	*****	*****	*****	••••	*****	•••••	*****	*****		*****
В	2.548	1.702	*****	*****	*****	••••	*****	*****	*****	*****		*****
С	1.160	1.727	*****	*****	*****	*****	*****	*****	*****	*****		*****
D	1.131	1.680	*****	*****	*****		*****	••••	*****	*****		*****
Ε	1.784	1.717	*****	*****	*****	••••	*****	••••	*****	*****	*****	*****
F	1.692	1.702	*****	*****	*****	••••		••••	*****	*****	••••	*****
G	1.688	0.040	••••	*****	*****	••••	*****	••••	••••	*****	*****	*****
н	1.744	0.046	••••	*****	*****	••••	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 34 of 46

REVELATION DSX 6.15

Name Address

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Cot9

W/L MODE TEST FILTER REF. FILTER

: SINGLE

DATE TIME OPERATOR : 3/23/2012

: 12:26:08 PM : admin

Kit Lot Data Plate Lot Data : Read Plate, , : Test_13, , OVER limit Calculation mode : 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.495	1.714	••••	*****	*****	*****	*****	••••	*****	*****		*****
В	2.548	1.690	••••	*****	*****	••••	*****	••••	*****	••••	••••	••••
С	1.150	1.715	••••	*****	*****	*****	*****	••••	*****	*****	••••	****
D	1.123	1.667	*****	*****	*****	••••	*****	••••	*****	•••••		*****
Ε	1.774	1.707	****	*****	*****		*****	*****	*****	*****		*****
F	1.685	1.694	*****	*****	*****	••••	*****	*****	*****	*****		••••
G	1.679	0.041	*****	*****	*****	••••	*****	*****	*****	••••	*****	*****
н	1.735	0.046	*****	*****	*****		*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 35 of 46

REVELATION DSX 6.15

Name Address

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Cot10

W/L MODE TEST FILTER REF. FILTER

: SINGLE

DATE TIME OPERATOR : 3/23/2012 : 12:27:40 PM : admin

Kit Lot Data Plate Lot Data

: Read Plate, , : Test_14, ,

OVER limit

: 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.472	1.702	*****	*****	*****	*****		*****		*****	••••	••••
В	2.527	1.679	••••	*****	*****	*****					••••	••••
С	1.142	1.703	*****	*****	*****	*****	*****	••••	*****	*****	••••	*****
D	1.114	1.658	••••	*****	*****	•••••		••••	*****	*****	••••	*****
Ε	1.764	1.696	****	*****	*****	*****	*****	*****	*****	*****	*****	*****
F	1.672	1.683	••••	*****	*****	*****	*****		*****	*****	*****	*****
G	1.667	0.041	••••	*****	*****	••••	*****	*****	*****	*****	*****	*****
н	1.722	0.046	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 36 of 46

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Opi 1

: SINGLE : 450 nm W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 4/6/2012 : 5:12:44 PM : admin

Kit Lot Data Plate Lot Data : Read Plate, , : Opi 1, , OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	/	8	9	10	11	12
Α	1.898	1.711	*****	*****	*****		*****	*****	*****	*****		*****
В	1.660	1.587	••••	*****	*****	••••	*****	*****	*****		*****	*****
С	1.213	1.563	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.146	1.505	*****	*****	*****	••••	*****	*****	*****	*****	*****	*****
Е	1.671	1.399	*****	*****	*****	••••	*****	*****	*****		*****	*****
F	1.616	1.379	*****	*****	••••	••••	*****	*****	*****	*****	*****	••••
G	1.625	0.036	*****	*****	••••	••••	*****	*****	*****	*****	*****	*****
Н	1.736	0.036	*****	*****		*****	*****	*****	*****	*****	*****	••••

***** Indicates an unread well or value out of range

Page 37 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

FAX

TEST NO. TEST NAME PLATE

: Read Plate : Opi 2

DATE TIME OPERATOR W/L MODE SINGLE : 4/6/2012 : 5:14:30 PM : admin

: Read Plate, , : Opi 2, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	0	,	٥	9	10	- 11	12
Α	1.886	1.702	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
В	1.652	1.581	****	••••	*****	*****	*****	*****	*****	••••	*****	*****
С	1.209	1.557	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.142	1.499	*****	*****	••••	••••	*****	*****	*****	*****	*****	*****
Ε	1.663	1.393	*****	••••	••••	*****	*****	*****	*****		*****	*****
F	1.608	1.373	*****	••••		••••		••••	••••		*****	••••
G	1.618	0.036	*****	••••	••••	••••	••••	*****	••••		*****	••••
н	1.726	0.037	*****	*****	*****	*****	*****	*****	*****	*****	*****	

***** Indicates an unread well or value out of range

Page 38 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Opi 3

W/L MODE : SINGLE DATE : 4/6/2012 TIME OPERATOR : 5:16:14 PM : admin

Kit Lot Data Plate Lot Data : Read Plate, , : Opi 3, , **OVER** limit : 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.885	1.696	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
В	1.647	1.572	••••	*****	*****	*****	*****	••••	*****	*****	••••	*****
С	1.204	1.551	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.137	1.492	*****	*****	*****	*****	*****		*****	*****	*****	*****
Е	1.659	1.388	*****	*****	*****	*****	*****	••••	*****	*****	*****	*****
F	1.603	1.368	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
G	1.614	0.036	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
н	1.722	0.037	*****	*****			*****	••••	*****		••••	*****

***** Indicates an unread well or value out of range

Page 39 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Opi 4 W/L MODE : SINGLE

DATE : 4/6/2012 : 5:17:56 PM TEST FILTER REF. FILTER OPERATOR

Kit Lot Data Plate Lot Data : Read Plate, , : Opi 4, , OVER limit : 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.873	1.687	••••	*****	*****	••••	••••		*****	*****	*****	*****
В	1.639	1.565	••••	*****	••••	••••	••••	••••	••••	••••	••••	••••
С	1.199	1.544	*****	*****	••••	••••	*****	••••	*****	*****	••••	*****
D	1.132	1.486	*****	*****	*****		*****	••••	*****	*****	*****	*****
Ε	1.652	1.381	*****	*****	*****		*****	••••	*****	*****	*****	*****
F	1.597	1.361	*****	*****	*****		*****	*****	*****	*****		*****
G	1.608	0.036	*****	*****	*****	••••		*****	*****	*****	••••	*****
н	1.714	0.036	*****	*****			*****	*****	*****	*****	••••	

***** Indicates an unread well or value out of range

Page 40 of 46

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: Read Plate : Opi 5

W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR SINGLE 4/6/2012 : 5:19:36 PM

Kit Lot Data Plate Lot Data : Read Plate, , : Opi 5, , OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.864	1.680	*****	*****	*****	*****	*****	••••	*****			*****
В	1.632	1.559	*****	*****	*****		*****	••••	*****			*****
С	1.194	1.537	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.128	1.482	*****		••••	••••	*****	••••	*****	*****	*****	*****
Ε	1.645	1.376	*****	*****	••••	••••	*****	*****	*****	*****	*****	*****
F	1.591	1.356	*****	••••		••••	*****	*****	*****	••••	*****	*****
G	1.600	0.036	*****	••••	••••	****	*****	*****	*****	*****	*****	*****
н	1.706	0.036	*****	*****	*****	*****	*****	*****	*****	*****	••••	*****

***** Indicates an unread well or value out of range

Page 41 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE

: : Read Plate : Opi 6

W/L MODE TEST FILTER REF. FILTER : 4/6/2012 : SINGLE DATE TIME OPERATOR : 5:21:29 PM

: Read Plate, , : Opi 6, , Kit Lot Data Plate Lot Data OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.856	1.671	*****	••••	*****	•••••	••••	*****		*****	*****	••••
В	1.624	1.552	*****	••••	••••	*****		••••		*****	*****	••••
С	1.189	1.531	*****	••••	*****	*****		*****	••••	*****	*****	••••
D	1.122	1.473	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
Ε	1.638	1.369	*****	••••	*****	*****	*****	*****	*****		*****	*****
F	1.583	1.349	*****	•••••	••••	*****	*****	*****	*****	*****	••••	*****
G	1.592	0.036	*****		*****	••••	*****	*****	*****	*****		*****
н	1.698	0.036	*****	*****	••••	••••	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 42 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

Phone FAX

TEST NO. TEST NAME PLATE : Read Plate : Opi 7

W/L MODE : SINGLE

DATE : 4/6/2012 TIME OPERATOR 5:23:29 PM admin

Kit Lot Data Plate Lot Data : Read Plate, , : Opi 7, , **OVER** limit : 3.500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.841	1.664	••••	*****	*****	*****	*****	*****	*****	*****	*****	••••
В	1.615	1.544	••••	*****	*****	*****	*****	••••	*****	*****	*****	*****
С	1.182	1.523	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.115	1.465	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
Е	1.626	1.360	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
F	1.572	1.341	*****	*****		*****	*****		*****	*****	*****	*****
G	1.581	0.036	*****	*****	*****	••••	*****	*****	*****		••••	*****
н	1.682	0.037	*****	*****			*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 43 of 46

REVELATION DSX 6.15

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144 Name Address

FAX

TEST NO. TEST NAME PLATE

: Read Plate : Opi 8

: SINGLE

W/L MODE TEST FILTER REF. FILTER

DATE TIME OPERATOR

: 4/6/2012 : 5:25:10 PM : admin

Kit Lot Data Plate Lot Data : Read Plate, , : Opi 8, ,

OVER limit

: 3,500

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.836	1.655	*****	*****	*****	*****	*****	*****	*****	*****		*****
В	1.609	1.536	*****	*****	*****	*****	*****	••••	*****	*****	••••	*****
С	1.178	1.516	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.111	1.459	*****	*****	*****		*****	*****	*****	*****	*****	*****
Ε	1.622	1.355	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
F	1.568	1.334	*****	*****		••••	*****	••••	*****	*****		*****
G	1.576	0.036	••••	••••	••••	••••	*****	*****	*****	*****	*****	*****
н	1.680	0.036	*****	*****	*****	••••	*****	••••	*****	*****		*****

***** Indicates an unread well or value out of range

Page 44 of 46

Name Address

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144

TEST NO. TEST NAME PLATE

: Read Plate : Opi 9 : SINGLE

: 450 nm

DATE TIME OPERATOR : 4/6/2012 : 5:26:42 PM : admin

W/L MODE TEST FILTER REF. FILTER Kit Lot Data Plate Lot Data

: Read Plate, , : Opi 9, ,

OVER limit Calculation mode

: 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.831	1.650	••••	*****	*****	••••				*****	*****	*****
В	1.602	1.530	••••	••••	*****	••••	*****	*****	*****	*****	*****	*****
С	1.173	1.510	••••	••••	*****	*****	*****	*****	*****	*****	*****	*****
D	1.107	1.454	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****
Е	1.619	1.351	*****	*****	*****	*****	*****	*****	*****	*****	*****	
F	1.566	1.331	*****	••••	*****	*****	*****	*****	*****	*****	*****	*****
G	1.573	0.036	••••	*****	*****	*****	*****	*****	*****	*****	*****	*****
н	1.681	0.037	*****	*****	*****	•••••	*****	*****	*****	*****	*****	*****
"	1.001	0.001					L		L			L

***** Indicates an unread well or value out of range

Page 45 of 46

REVELATION DSX 6.15

Name Address

: Analytical Research Laboratories : 840 Research Parkway Suite 546 : Oklahoma City, OK 73104 : (405)271-1144

TEST NO. TEST NAME PLATE

: : Read Plate : Opi 10

: SINGLE : 450 nm : *

DATE TIME OPERATOR

: 4/6/2012 : 5:28:16 PM : admin

W/L MODE TEST FILTER REF. FILTER Kit Lot Data Plate Lot Data

: Read Plate, , : Opi 10, ,

OVER limit Calculation mode : 3.500 : Endpoint

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.820	1.643	••••	•••••	*****		••••	*****	*****	*****	*****	*****
В	1.596	1.523	*****	••••	*****	*****	••••	••••	*****	*****	*****	*****
С	1.168	1.504	*****	••••	*****	••••	••••	*****	*****	*****	*****	*****
D	1.102	1.446	••••	••••	*****	*****	••••	*****	*****	••••	•••••	*****
Ε	1.613	1.345	*****	*****	*****	*****		*****	*****	••••	*****	****
F	1.559	1.324	*****	*****	*****	*****	••••	*****	*****	••••	••••	*****
G	1.563	0.036	*****	*****	*****	*****	*****	*****	*****	••••	••••	****
н	1.665	0.037	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 46 of 46

Appendix E

ELISA Results for Validation #1

Kit, Plate, and Reagent Lot Data

Date: 02/08/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0046	BGF-0060	BZF-0073	CTI-0031	MOF-0055	OXF-0036	TCF-0054
Kit Exp. Date	1/8/2013	12/28/2012	11/9/2012	4/23/2012	1/5/2014	1/16/2013	12/26/2012
Plate #	111214	111205	111121F	1102211	120105F	110506F	111221
Plate Exp. Date	12/14/2013	12/5/2013	11/21/2013	2/21/2013	1/5/2014	5/6/2013	12/21/2013
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	24	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	035	049	053	032	043	028	043
CONJ Exp.	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 02/08/2012 Negative and Cutoff Calibrators were prepared 02/08/2012

 $\ \, \textbf{Kit, Plate, and Reagent Lot Data} \\$

Date: 02/09/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0046	BGF-0060	BZF-0073	CTI-0031	MOF-0055	OXF-0036	TCF-0054
Kit Exp. Date	1/8/2013	12/28/2012	11/9/2012	4/23/2012	1/5/2014	1/16/2013	12/26/2012
Plate #	111214	111205	111121F	1102211	120105F	110506F	111221
Plate Exp. Date	12/14/2013	12/5/2013	11/21/2013	2/21/2013	1/5/2014	5/6/2013	12/21/2013
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	24	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	035	049	053	032	043	028	043
CONJ Exp.	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 02/09/2012 Negative and Cutoff Calibrators were prepared 02/09/2012

TEST NO. TEST NAME PLATE : AMPHETAMINE ULTRA : Test_2

W/L MODE TEST FILTER REF. FILTER : 2/8/2012 : 12:56:04 PM : admin : SINGLE DATE TIME OPERATOR

Kit Lot Data Plate Lot Data Reagent Lot Data

OVER limit Calculation mode

Q.C. equations

NC>CO 1.589>1.080

= CO = 1.081 = CO = 1.081 - equation

Page 1 of 112

THRESHOLD RESULTS

	1	2	3	4	5	6	7	8	9	10	11	12
А	NC1	NEG	NEG									
в	CO1	NEG	NEG									
С	NNC1	NEG	NEG									
D	NCO1	NEG	NEG									
Е	NEG	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[1]	E1	1.704	1.704	*****	*****	NEG
[2]	F1	1.576	1.576	*****	*****	NEG
[3]	G1	1.701	1.701	*****	*****	NEG
[4]	H1	1.730	1.730	••••	*****	NEG
[5]	A2	1.638	1.638	*****	*****	NEG
[6]	B2	1.598	1.598	*****	*****	NEG
[7]	C2	1.736	1.736	*****	*****	NEG
[8]	D2	1.709	1.709	*****	*****	NEG
[9]	E2	1.612	1.612	••••	*****	NEG
[10]	F2	1.741	1.741	*****	*****	NEG
[11]	G2	1.630	1.630	*****	*****	NEG
[12]	H2	1.801	1.801	*****	*****	NEG
[13]	A3	1.704	1.704	•••••	*****	NEG
[14]	B3	1.758	1.758	*****	*****	NEG
[15]	C3	1.681	1.681	*****	*****	NEG
[16]	D3	1.649	1.649	*****	*****	NEG
[17]	E3	1.644	1.644	*****	*****	NEG
[18]	F3	1.701	1.701	*****	*****	NEG
[Group 1 Negative]	G3	1.616	1.616	*****	*****	NEG
[Group 1 Cutoff]	Н3	1.121	1.121	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

							_
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	1.590	1.590	*****	*****	NC1	
		n.	2 .6442				

10 11 12

***** ***** •••••

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.081	1.081	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.819	1.819	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	1.075	1.075	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

1.730 1.801 1.121 ***** Indicates an unread well or value out of range

1.590 1.638 1.704

1.576 1.741 1,701

В 1.081 1.598

С 1.819

D 1.075 1.709 1.649

Е 1.704

G 1.701 1.630 1.616

1.758

1.644 1.612

1.736 1.681

DATA MATRIX/TABLE : OD

Page 3 of 112

Page 4 of 112

TEST NO. TEST NAME PLATE : COCAINE-BZE : Test_2 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 2/8/2012 : 12:56:04 PM : admin Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.684>1.146 = CO = 1.147 = CO = 1.147 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
В				CO1	NEG	NEG						
С				NNC1	NEG	NEG						
ь				NCO1	NEG	NEG						
E				NEG	NEG	NEG						
F				NEG	NEG	NEG						
G				NEG	NEG	NEG						
н				NEG	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[1]	E4	1.547	1.547	*****	*****	NEG
[2]	F4	1.547	1.547	*****	*****	NEG
[3]	G4	1.573	1.573	*****	*****	NEG
[4]	H4	1.516	1.516	*****	*****	NEG
[5]	A5	1.590	1.590	*****	*****	NEG
[6]	B5	1.557	1.557	*****	*****	NEG
[7]	C5	1.553	1.553	*****	*****	NEG
[8]	D5	1.519	1.519	*****	*****	NEG
[9]	E5	1.581	1.581	*****	*****	NEG
[10]	F5	1.516	1.516	*****	*****	NEG
[11]	G5	1.486	1.486	*****	*****	NEG
[12]	H5	1.483	1.483	*****	*****	NEG
[13]	A6	1.651	1.651	*****	*****	NEG
[14]	B6	1.721	1.721	*****	*****	NEG
[15]	C6	1.726	1.726	*****	*****	NEG
[16]	D6	1.719	1.719	*****	*****	NEG
[17]	E6	1.684	1.684	*****	*****	NEG
[18]	F6	1.672	1.672	*****	*****	NEG
[Group 1 Negative]	G6	1.705	1.705	*****	*****	NEG
[Group 1 Cutoff]	H6	1.269	1.269	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	1.684	1.684 age 6 of 112	*****	•••••	NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
001	B4	1.147	1.147	*****	*****	CO1

Page 5 of 112

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	D4	0.406	0.406	*****	*****	NCO1	

Mean

0.848

S.D.

C.V.

Result

NNC1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

Data

0.848

Location

C4

Sample ID

NNC1

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	1.684	1.590	1.651	••••	••••		*****	*****	*****
в	••••		*****	1.147	1.557	1.721	••••			••••	••••	
С	••••	••••		0.848	1.553	1.726	••••	••••	••••	••••	••••	••••
D	*****			0.406	1.519	1.719	••••			••••		••••
Е	••••			1.547	1.581	1.684	••••	••••	••••	*****	*****	••••
F	*****	*****		1.547	1.516	1.672	*****		•••••	*****	••••	••••
G	*****	*****	*****	1.573	1.486	1.705	••••			*****	••••	••••
н	*****	*****	*****	1.516	1.483	1.269	*****	*****	*****	*****	*****	****

DATA MATRIX/TABLE : OD

Page 7 of 112

Page 8 of 112

TEST NO. TEST NAME PLATE : BENZODIAZEPINE GROUP : DriftBenzOpi2812

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * : 2/8/2012 : 1:25:20 PM : admin DATE TIME OPERATOR

Kit Lot Data Plate Lot Data Reagent Lot Data

: BENZODIAZEPINE GROUP, BGF-0060/111205, 12-28-12/12-5-13
: DriftBenzOpi2812, .
: Acid Stop, 120208,
: BENZODIAZEPINE GROUP CONJUGATE, 049, 12-28-12
: EIA Buffer, 120208,
: K-Blue, 120208,
: OPIATE GROUP CONJUGATE, 043, 1-10-13
: BENZODIAZEPINE GROUP CUTOFF, 110811-WB, 12-28-12
: BENZODIAZEPINE GROUP NEGATIVE, 110811-WB, 12-28-12
: GROUP 3 CUTOFF, 120208,
: GROUP 3 NEGATIVE, 120208,
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

2.368>1.092 NC>CO

+ equation - equation

Page 9 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	NNC1	NEG	NEG									
D	NCO1	NEG	NEG									
Е	NEG	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[1]	E1	2.410	2.410	*****	*****	NEG
[2]	F1	2.402	2.402	*****	*****	NEG
[3]	G1	2.448	2.448	*****	•••••	NEG
[4]	H1	2.589	2.589	*****	*****	NEG
[5]	A2	2.362	2.362	*****	*****	NEG
[6]	B2	2.386	2.386	*****	*****	NEG
[7]	C2	2.403	2.403	*****	*****	NEG
[8]	D2	2.400	2.400	*****	*****	NEG
[9]	E2	2.463	2.463	*****	*****	NEG
[10]	F2	2.451	2.451	*****	*****	NEG
[11]	G2	2.407	2.407	*****	*****	NEG
[12]	H2	2.572	2.572	*****	*****	NEG
[13]	A3	2.460	2.460	*****	*****	NEG
[14]	B3	2.491	2.491	*****	*****	NEG
[15]	C3	2.400	2.400	*****	*****	NEG
[16]	D3	2.463	2.463	*****	*****	NEG
[17]	E3	2.435	2.435	*****	*****	NEG
[18]	F3	2.371	2.371	*****	*****	NEG
[Group 3 Negative]	G3	2.515	2.515	*****	*****	NEG
[Group 3 Cutoff]	Н3	1.263	1.263	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	2.368	2.368	*****	*****	NC1	
		Pa	ige 10 of 112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.092	1.092	•••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.681	1.681	••••	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.647	0.647	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	2.368	2.362	2.460	*****	••••	*****	••••	••••	*****	••••	••••	****
В	1.092	2.386	2.491	*****	••••	*****			*****	••••	*****	****
0	1.681	2.403	2.400	*****	••••	*****	••••				••••	••••
)	0.647	2.400	2.463	••••	••••	*****			*****	••••	*****	****
Ε	2.410	2.463	2.435	*****	••••				*****	••••	••••	••••
F	2.402	2.451	2.371	*****	*****	*****		*****	*****	••••	*****	••••
3	2.448	2.407	2.515	*****	••••	*****	••••		*****	••••		
4	2.589	2.572	1.263	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 11 of 112

Page 12 of 112

TEST NO. TEST NAME PLATE : OPIATE GROUP : DriftBenzOpi2812 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 2/8/2012 : 1:25:20 PM : admin OPERATOR

OPIATE GROUP, MOF-0055/120105F, 1-10-13/1-5-14

DriftBenzOpi2812, ,
Acid Stop, 120208,
EIA Buffer, 120208,
K-Blue, 120208,
OPIATE GROUP CONJIGATE, 043, 1-10-13

GROUP 3 CUTOFF, 120208,
GROUP 3 NEGATIVE, 120208,
OPIATE GROUP CUTOFF, 110715-WB, 1-10-13

OPIATE GROUP NEGATIVE, 110715-WB, 1-10-13

Distilled Water, 120208,
Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.779>1.059 = CO = 1.060 = CO = 1.060 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
1				NC1	NEG	NEG						
в				CO1	NEG	NEG						
С				NNC1	NEG	NEG						
D				NCO1	NEG	NEG						
E				NEG	NEG	NEG						
F				NEG	NEG	NEG						
G				NEG	NEG	NEG						
н				NEG	NEG	POS						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[1]	E4	1.765	1.765	*****	*****	NEG
[2]	F4	1,771	1.771	*****	*****	NEG
[3]	G4	1.748	1.748	*****	*****	NEG
[4]	H4	1.848	1.848	*****	*****	NEG
[5]	A5	1.765	1.765	*****	••••	NEG
[6] [7]	B5	1.739	1.739	*****	•••••	NEG
[7]	C5	1.714	1.714	*****	*****	NEG
[8]	D5	1.693	1.693	*****	*****	NEG
[9]	E5	1.733	1.733	*****	*****	NEG
[10]	F5	1.698	1.698	*****	*****	NEG
[11]	G5	1.707	1.707	*****	*****	NEG
[12]	H5	1.804	1.804	*****	*****	NEG
[13]	A6	1.718	1.718	*****	*****	NEG
[14]	B6	1.710	1.710	*****	*****	NEG
[15]	C6	1.664	1.664	*****	•••••	NEG
[16]	D6	1.594	1.594	*****	•••••	NEG
[17]	E6	1.587	1.587	*****	*****	NEG
[18]	F6	1.612	1.612	*****	*****	NEG
[Group 3 Negative]	G6	1.604	1.604	*****	*****	NEG
[Group 3 Cutoff]	H6	0.983	0.983	*****	*****	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	1.780 F	1.780 Page 14 of 112	****	****	NC1

Page 13 of 112

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	В4	1.060	1.060	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	1.813	1.813	****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	0.978	0.978	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
A	*****	••••	••••	1.780	1.765	1.718	••••	••••	*****	*****	*****	*****
В	*****	••••	*****	1.060	1.739	1.710	••••	*****	*****	*****	*****	*****
С	*****	*****	*****	1.813	1.714	1.664	*****	*****	*****	*****	*****	••••
D	*****	*****	*****	0.978	1.693	1.594	••••	••••	••••	*****	*****	*****
Е	*****	••••	*****	1.765	1.733	1.587	*****	*****	*****	*****	*****	*****
F	*****	*****	*****	1.771	1.698	1.612	••••	••••	••••	••••	*****	••••
G	*****	*****	*****	1.748	1.707	1.604	••••	••••	*****	*****	*****	*****
н	*****	*****	*****	1.848	1.804	0.983	*****		*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 15 of 112

Page 16 of 112

TEST NO. TEST NAME PLATE

: COTININE : DriftCot2812

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 2/8/2012 : 12:03:44 PM

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE, CTI-0031/1102211, 4-23-12/2-21-13 : DriffCot2812, ...
Acid Stop, 120208, ...
COTININE CONJUGATE, 032, ...
EIA Buffer, 120208, ...
COTININE CUTOFF, 024, ...
COTININE REGATIVE, 024, ...
GROUP 3 NEGATIVE, 120208, ...
GROUP 3 NEGATIVE, 120208, ...
Distilled Water, 120208, ...
Neogen Wash Buffer, 120208, ...

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.440>1.283

= CO = 1.284 = CO = 1.284 + equation - equation

Page 17 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	NNC1	NEG	NEG									
D	NCO1	NEG	NEG				7					
Ε	NEG	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[1]	E1	2.193	2.193	*****	*****	NEG
[2]	F1	2.237	2.237	*****	*****	NEG
[3]	G1	2.282	2.282	*****	*****	NEG
[4]	H1	2.408	2.408	*****	*****	NEG
[5]	A2	2.497	2.497	*****	*****	NEG
[6]	B2	2.320	2.320	*****	*****	NEG
[7]	C2	2.315	2.315	*****	*****	NEG
[8]	D2	2.290	2.290	*****	*****	NEG
[9]	E2	2.315	2.315	*****	*****	NEG
[10]	F2	2.354	2.354	*****	*****	NEG
[11]	G2	2.407	2.407	*****	••••	NEG
[12]	H2	2.485	2.485	*****	•••••	NEG
[13]	A3	2.525	2.525	*****	*****	NEG
[14]	B3	2.270	2.270	*****	*****	NEG
[15]	C3	2.259	2.259	*****	*****	NEG
[16]	D3	2.282	2.282	*****	*****	NEG
[17]	E3	2.295	2.295	*****	*****	NEG
[18]	F3	2.337	2.337	*****	*****	NEG
[Group 3 Negative]	G3	2.382	2.382	*****	*****	NEG
[Group 3 Cutoff]	Н3	1.355	1.355	*****	•••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	2.441	2.441	*****	*****	NC1	
		Pa	ge 18 of 112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.284	1.284	•••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	0.522	0.522	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.244	0.244	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.441	2.497	2.525	*****	*****	••••	••••	*****	*****	*****		
В	1.284	2.320	2.270	*****	*****	*****	*****	*****	*****	*****	*****	*****
С	0.522	2.315	2.259	*****	*****	••••		*****	•••••	*****	•••••	*****
D	0.244	2.290	2.282	*****	*****		*****	*****	••••		••••	
E	2.193	2.315	2.295	••••	*****				••••		••••	
F	2.237	2.354	2.337	*****	*****	*****		*****	••••	*****	*****	••••
G	2.282	2.407	2.382	••••	*****	••••		••••		*****	••••	
н	2.408	2.485	1.355	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 19 of 112

Page 20 of 112

NC1

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : DriftMAmpOxyTHC2812 : SINGLE : 450 nm W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 2/8/2012 : 1:11:02 PM : admin : OYCODONE-OXYMORPHONE, OXF-0036/110506F, 1-16-13/5-6-13
: DriftMAmpOxyTHC2812, .
Acid Stop, 120208, .
ELA Buffer, 120208, .
C-Blue, 120208, .
OXYCODONE/OXYMORPHONE CONJUGATE, 028, 1-16-13
: GROUP 2 CUTOFF, 120208, .
OXYCODONE/OXYMORPHONE CUTOFF, 120117-WB, 1-16-13
: OXYCODONE/OXYMORPHONE CUTOFF, 120117-WB, 1-16-13
: Distilled Water, 120208, .
Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.498>0.800 = CO = 0.801 = CO = 0.801 + equation - equation

Page 21 of 112

1	2	3 4	5	6	7	8	9	10	11	12
A .		NC1	NEG	NEG						
3		CO1	NEG	NEG						
		NNC1	NEG	NEG	-					
D		NCO1	NEG	NEG						
E	_	NEG	NEG	NEG						\top
F		NEG	NEG	NEG						_
G		NEG	NEG	NEG						_
н		NEG	NEG	NEG					_	
mple ID		Location		Data	Mean		S.D.		C.V.	Result
l		E4	2	503	2.503		*****		*****	NEG
		F4		496	2.496		****		****	NEG
		G4		455	2.455		*****		*****	NEG
		H4	2.	542	2.542		*****		••••	NEG
		A5		388	2.388		*****		*****	NEG
			2	338			*****		*****	NEG
		B5			2.338					
		C5	2.	334	2.334		*****		••••	NEG
			2.				*****			NEG NEG
		C5 D5	2. 2. 2.	334 326 342	2.334 2.326 2.342				••••	NEG
0]		C5 D5 E5 F5	2. 2. 2.	334 326 342 335	2.334 2.326 2.342 2.335					NEG NEG NEG
j		C5 D5 E5 F5 G5	2. 2. 2. 2. 2.	334 326 342 335 314	2.334 2.326 2.342 2.335 2.314				·····	NEG NEG NEG
i		C5 D5 E5 F5	2. 2. 2. 2. 2.	334 326 342 335	2.334 2.326 2.342 2.335					NEG NEG NEG
]]		C5 D5 E5 F5 G5	2. 2. 2. 2. 2. 2.	334 326 342 335 314	2.334 2.326 2.342 2.335 2.314				·····	NEG NEG NEG
<u> </u> 		C5 D5 E5 F5 G5 H5	2. 2. 2. 2. 2. 2.	334 326 342 335 314 339	2.334 2.326 2.342 2.335 2.314 2.339				••••	NEG NEG NEG NEG NEG
		C5 D5 E5 F5 G5 H5	2. 2. 2. 2. 2. 2. 2.	334 326 342 335 314 339 354	2.334 2.326 2.342 2.335 2.314 2.339 2.354					NEG NEG NEG NEG NEG NEG NEG
		C5 D5 E5 F5 G5 H5	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	334 326 342 335 314 339 354 391	2.334 2.326 2.342 2.335 2.314 2.339 2.354 2.391					NEG NEG NEG NEG NEG NEG
]]]]]		C5 D5 E5 F5 G5 H5 A6 B6 C6	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	334 326 342 335 314 339 354 391 308	2.334 2.326 2.342 2.335 2.314 2.339 2.354 2.391 2.308					NEG NEG NEG NEG NEG NEG NEG
1 1 1 1 1		C5 D5 E5 F5 G5 H5 A6 B6 C6 D6	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	334 326 342 335 314 339 354 391 308 330	2.334 2.326 2.342 2.335 2.314 2.339 2.354 2.391 2.308 2.330					NEG NEG NEG NEG NEG NEG NEG NEG NEG
0] 1] 2] 3] 4] 5] 5] 7] 8] 7 roup 2 Negativ	ve]	C5 D5 E5 F5 G5 H5 A6 B6 C6 D6	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	334 326 342 335 314 339 354 391 308 330 340	2.334 2.326 2.342 2.335 2.314 2.339 2.354 2.391 2.308 2.330 2.340					NEG NEG NEG NEG NEG NEG NEG NEG NEG

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4	0.801	0.801	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	2.438	2.438	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	1.203	1.203	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE: OD

	1	2	3	4	5	6	7	8	9	10	11	12
А	••••	••••		2.499	2.388	2.354	••••	*****	*****	••••	*****	*****
в	*****	••••		0.801	2.338	2.391	••••	*****	••••	*****		
С	••••	*****	*****	2.438	2.334	2.308	••••		••••	••••	••••	
D	••••	*****		1.203	2.326	2.330	••••	*****	*****	••••	••••	*****
Е	••••	*****		2.503	2.342	2.340	*****	*****	*****	•••••		
F	••••	*****	*****	2.496	2.335	2.327	*****	*****	*****	*****		••••
G	••••	*****	••••	2.455	2.314	2.344	*****	••••				*****
нΪ	*****	*****	*****	2.542	2.339	0.892	*****	*****	*****	*****	*****	*****

2.499 2.499 Page 22 of 112

Sample ID

***** Indicates an unread well or value out of range

Page 23 of 112

Page 24 of 112

TEST NO. TEST NAME PLATE : THC : DriftMAmpOxyTHC2812 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 2/8/2012 : 1:11:02 PM : admin : THC, TCF-0054/111221, 12-26-12/12-21-13
: DriffMAmpOxyTHC2612,
: Acid Stop, 120208,
: LB Buffer, 120208,
: K-Blue, 120208,
: THC CONJUGATE, 043, 12-26-12
: GROUP 2 CUTOFF, 120208,
: GROUP 2 NEGATIVE, 120208,
: THC CUTOFF, 110826-WB, 12-26-12
: THC NEGATIVE, 110826-WB, 12-26-12
: THC NEGATIVE, 110826-WB, 12-26-12
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.035>1.159 = CO = 1.160 = CO = 1.160 - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A [NC1	NEG	NEG			
в							CO1	NEG	NEG			
٦ =							NNC1	NEG	NEG			
• [NCO1	NEG	NEG			
E							NEG	NEG	NEG			
F							NEG	NEG	NEG			
3							NEG	NEG	NEG			
4							NEG	NEG	NEG			

[9] [10] [11]	E8 F8 G8	1.926 1.985 2.034	1.926 1.985 2.034			NEG NEG NEG
[12] [13] [14]	H8 A9 B9	2.036 2.092 2.093	2.036 2.092 2.093	*****		NEG NEG NEG
[15] [16]	C9 D9	2.069 2.035	2.069 2.035		*****	NEG NEG
[17] [18] [Group 2 Negative] [Group 2 Cutoff]	E9 F9 G9 H9	2.023 2.015 1.974 1.305	2.023 2.015 1.974 1.305	••••		NEG NEG NEG
Sample ID NC1	Location A7	Data 2.036 a	Mean age 26 01112	S.D.	C.V.	Result NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	В7	1.160	1.160	••••	••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C7	1.911	1.911	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D7	0.819	0.819	****	****	NCO1

Page 25 of 112

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

_	1	2	3	4	5	6	7	8	9	10	11	12
	••••	*****	*****	*****	*****	••••	2.036	2.102	2.092	*****	*****	
3	*****	*****	****	*****	*****	*****	1.160	2.012	2.093	****	*****	*****
:	*****		*****	*****	*****		1.911	1.971	2.069	*****		
1	****	*****	*****	*****	*****	*****	0.819	1.939	2.035	*****	*****	****
:	••••	*****	*****	*****	*****	*****	1.932	1.926	2.023	*****		••••
:	••••	*****	*****	*****	*****		1.951	1.985	2.015	••••	••••	*****
;	••••		*****	*****	*****	*****	1.951	2.034	1.974	*****	*****	*****
ı	*****	*****	*****	*****	*****	*****	2.045	2.036	1.305	*****	*****	*****

Dynex Technologies

Page 27 of 112

Page 28 of 112

TEST NO. TEST NAME PLATE

: AMPHETAMINE ULTRA : Precision1AmpCocHydro2812

W/L MODE TEST FILTER REF. FILTER

: SINGLE

DATE

TIME OPERATOR

: 2/8/2012 : 4:21:15 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA, AUF-0046/111214, 1-8-13/12-14-13
: Precision1AmpCochydro2812,
: Acid Stop, 120208,
: AMPHETAMINE ULTRA CONJUGATE, 035, 1-8-13
: COCAINE/BZE CONJUGATE, 053, 11-9-12
: HYDROMORPHONE CONJUGATE, 011, 8-21-12
: HYDROMORPHONE CONJUGATE, 011, 8-21-12
: HYDROMORPHONE CONJUGATE, 111212-WB, 1-8-13
: AMPHETAMINE ULTRA CUTOFF, 111212-WB, 1-8-13
: GROUP 1 CUTOFF, 120208,
: GROUP 1 NEGATIVE, 120208,
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

1.742>1.155

Q.C. equations

NC>CO

- equation

Page 29 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	POS									
С	NNC1	NEG	NEG									
D	NCO1	NEG	POS									
Ε	NEG	NEG	NEG									
F	POS	NEG	POS									
G	NEG	NEG	NEG									
н	NEG	POS	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 Neg #1]	E1	1.742	1.742	*****	*****	NEG
[Group 1 CO #1]	F1	1.153	1.153	*****	*****	POS
[Group 1 Neg #2]	G1	1.686	1.686	*****	*****	NEG
[Group 1 CO #2]	H1	1.242	1.242	*****	*****	NEG
[Group 1 Neg #3]	A2	1.694	1.694	*****	*****	NEG
[Group 1 CO #3]	B2	1.198	1.198	*****	*****	NEG
[Group 1 Neg #4]	C2	1.601	1.601	*****	*****	NEG
[Group 1 CO #4]	D2	1.177	1.177	*****	*****	NEG
[Group 1 Neg #5]	E2	1.636	1.636	*****	*****	NEG
[Group 1 CO #5]	F2	1.177	1.177	*****	*****	NEG
[Group 1 Neg #6]	G2	1.654	1.654	*****	*****	NEG
[Group 1 CO #6]	H2	1.154	1.154	*****	*****	POS
[Group 1 Neg #7]	A3	1.678	1.678	*****	*****	NEG
[Group 1 CO #7]	B3	1.107	1.107	*****	*****	POS
[Group 1 Neg #8]	C3	1.589	1.589	*****	*****	NEG
[Group 1 CO #8]	D3	1.063	1.063	*****	*****	POS
[Group 1 Neg #9]	E3	1.570	1.570	*****	*****	NEG
[Group 1 CO #9]	F3	1.121	1.121	*****	*****	POS
[Group 1 Neg #10]	G3	1.549	1.549	*****	*****	NEG
[Group 1 CO #10]	Н3	1.203	1.203	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	1.743	1.743	*****	*****	NC1	
		Pa	ge 30 of 112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.156	1.156	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.727	1.727	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	1.107	1.107	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.743	1.694	1.678	*****	••••	*****	••••	,	*****			*****
В	1.156	1.198	1.107	*****	••••		••••	*****	*****	••••	*****	*****
С	1.727	1.601	1.589	*****	••••		••••	*****				••••
D	1.107	1.177	1.063	*****	*****	*****	••••		*****	••••		••••
Ε	1.742	1.636	1.570	*****			••••		*****		••••	••••
F	1.153	1.177	1.121	*****	*****		••••	*****	*****			
G	1.686	1.654	1.549	*****	*****	*****	••••	*****	*****		••••	****
н	1.242	1.154	1.203	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 31 of 112

Page 32 of 112

TEST NO. TEST NAME PLATE : COCAINE-BZE : Precision1AmpCocHydro2812 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/8/2012 : 4:21:15 PM : admin : COCAINE-BZE, BZF-0073/111121F, 11-9-12/11-21-13
: Precision I AmpCocHydro2812,
: Acid Stop, 120208,
: COCAINE/BZE CONJUGATE, 053, 11-9-12
: K-Blue, 120208,
: COCAINE/BZE NEGATIVE, 111110-WB, 11-9-12
: GROUP 1 CUTOFF, 120208,
: GROUP 1 NEGATIVE, 120208,
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.567>1.171 NC>CO + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
в				CO1	NEG	POS						
c				NNC1	NEG	NEG						
D				NCO1	NEG	POS						
E				NEG	NEG	NEG						
F				NEG	NEG	POS						
G				NEG	NEG	NEG						
н				NEG	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 Neg #1]	E4	1.618	1.618	*****	****	NEG
[Group 1 CO #1]	F4	1.301	1.301	*****	*****	NEG
[Group 1 Neg #2]	G4	1.657	1.657	*****	••••	NEG
[Group 1 CO #2]	H4	1.302	1.302	*****	*****	NEG
[Group 1 Neg #3]	A5	1.647	1.647	••••	•••••	NEG
[Group 1 CO #3]	B5	1.239	1.239	*****	*****	NEG
[Group 1 Neg #4]	C5	1.674	1.674	*****	*****	NEG
[Group 1 CO #4]	D5	1.308	1.308	*****	*****	NEG
[Group 1 Neg #5]	E5	1.679	1.679	*****	*****	NEG
[Group 1 CO #5]	F5	1.348	1.348	*****	*****	NEG
[Group 1 Neg #6]	G5	1.696	1.696	*****	*****	NEG
[Group 1 CO #6]	H5	1.320	1.320	*****	*****	NEG
[Group 1 Neg #7]	A6	1.550	1.550	*****	*****	NEG
[Group 1 CO #7]	B6	1.094	1.094	*****	*****	POS
[Group 1 Neg #8]	C6	1.492	1.492	*****	*****	NEG
[Group 1 CO #8]	D6	1.139	1.139	••••	*****	POS
[Group 1 Neg #9]	E6	1.509	1.509	••••	*****	NEG
[Group 1 CO #9]	F6	1.165	1.165	*****	*****	POS
[Group 1 Neg #10]	G6	1.538	1.538	*****	*****	NEG
[Group 1 CO #10]	H6	1.249	1.249	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	Δ4	1 568	1 568	*****	*****	NC1

1.568 1.568 Page 34 of 112

Page 33 of 112

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	В4	1.171	1.171	•••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	0.877	0.877	••••	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	0.475	0.475	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

	1	2	3	4	5	6	7	8	9	10	11	12
A	••••	••••	*****	1.568	1.647	1.550	••••	*****	••••	*****	••••	****
в	••••	*****	*****	1.171	1.239	1.094	*****	*****	*****	*****	*****	****
٥	••••		*****	0.877	1.674	1.492	*****	*****	*****	*****	*****	••••
ь	••••		*****	0.475	1.308	1.139	*****	*****	*****	*****	*****	
E	*****		*****	1.618	1.679	1.509	*****	*****	*****	*****	*****	
F	••••		••••	1.301	1.348	1.165	*****	*****	*****	*****	*****	
3	*****		•••••	1.657	1.696	1.538	••••	••••	•••••	*****	*****	****
4	*****	*****	*****	1.302	1,320	1.249	*****	*****	*****	*****	*****	****

DATA MATRIX/TABLE : OD

Page 35 of 112

Page 36 of 112

TEST NO. TEST NAME PLATE : BENZODIAZEPINE GROUP : PrecisionBenzOpi2812

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/8/2012 : 4:50:32 PM

Kit Lot Data Plate Lot Data Reagent Lot Data

: BENZODIAZEPINE GROUP, BGF-0060/111205, 12-28-12/12-5-13
: Precision1BenzOpi2812,
: Acid Stop, 120208,
: BENZODIAZEPINE GROUP CONJUGATE, 049, 12-28-12
: K-Blue, 120208,
: OPIATE GROUP CONJUGATE, 043, 1-10-13
: BENZODIAZEPINE GROUP CUTOFF, 110811-WB, 12-28-12
: BENZODIAZEPINE GROUP NEGATIVE, 110811-WB, 12-28-12
: GROUP 3 CUTOFF, 120208,
: GROUP 3 NEGATIVE, 120208,
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208,

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations NC>CO

2.499>1.219

+ equation - equation

Page 37 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	POS	POS									
С	NNC1	NEG	NEG									
D	NCO1	POS	POS									
Ε	NEG	NEG	NEG									
F	NEG	POS	POS									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 3 Neg #1]	E1	2.469	2.469	*****	*****	NEG
[Group 3 CO #1]	F1	2.044	2.044	*****	*****	NEG
[Group 3 Neg #2]	G1	2.509	2.509	*****	*****	NEG
[Group 3 CO #2]	H1	2.572	2.572	••••	*****	NEG
[Group 3 Neg #3]	A2	2.458	2.458	*****	*****	NEG
[Group 3 CO #3]	B2	1.179	1.179	*****	*****	POS
[Group 3 Neg #4]	C2	2.383	2.383	*****	*****	NEG
[Group 3 CO #4]	D2	1.156	1.156	*****	*****	POS
[Group 3 Neg #5]	E2	2.373	2.373	*****	*****	NEG
[Group 3 CO #5]	F2	1.201	1.201	*****	*****	POS
[Group 3 Neg #6]	G2	2.458	2.458	*****	*****	NEG
[Group 3 CO #6]	H2	1.264	1.264	••••	*****	NEG
[Group 3 Neg #7]	A3	2.401	2.401	*****	*****	NEG
[Group 3 CO #7]	B3	1.150	1.150	*****	*****	POS
[Group 3 Neg #8]	C3	2.398	2.398	*****	*****	NEG
[Group 3 CO #8]	D3	1.062	1.062	*****	*****	POS
[Group 3 Neg #9]	E3	2.320	2.320	*****	*****	NEG
[Group 3 CO #9]	F3	1.185	1.185	*****	*****	POS
[Group 3 Neg #10]	G3	2.446	2.446	*****	*****	NEG
[Group 3 CO #10]	нз	1.263	1.263	*****	*****	NEG
Sample ID	Location	Data	Moon	e D	CV	Popult

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	2.499	2.499	*****	*****	NC1	
		D.	20 - (112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.219	1.219	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.689	1.689	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.655	0.655	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
٩	2.499	2.458	2.401	••••					••••		••••	****
3	1.219	1.179	1.150	*****		••••	••••	*****	*****	*****	*****	****
;	1.689	2.383	2.398	*****	••••	*****	*****	*****	*****		*****	*****
)	0.655	1.156	1.062	••••	*****	*****	*****	*****	*****	*****	*****	****
•	2.469	2.373	2.320	*****	*****			••••	••••	*****	*****	*****
F	2.044	1.201	1.185	*****	*****	*****	*****	*****	*****	*****	*****	••••
6	2.509	2.458	2.446	••••	*****	*****	••••	*****	••••	*****	*****	••••
1	2.572	1.264	1.263	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 39 of 112

Page 40 of 112

TEST NO. TEST NAME PLATE : OPIATE GROUP : PrecisionBenzOpi2812 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/8/2012 : 4:50:32 PM : admin : OPIATE GROUP, MOF-0055/120105F, 1-10-13/1-5-14
: Precision1BenzOpi2812.,
Acid Stop, 120208,
: OPIATE GROUP CONJUGATE, 043, 1-10-13
: GROUP 3 CUTOFF, 120208,
: OPIATE GROUP CUTOFF, 120208,
: OPIATE GROUP CUTOFF, 110715-WB, 1-10-13
: OPIATE GROUP NEGATIVE, 110715-WB, 1-10-13
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.863>1.230 NC>CO - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
в				CO1	POS	POS						
c				NNC1	NEG	NEG						
ь				NCO1	POS	POS						
E				NEG	NEG	NEG						
F				NEG	POS	POS						
G				NEG	NEG	NEG						
н				NEG	POS	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 3 Neg #1]	E4	1.893	1.893	*****	*****	NEG
[Group 3 CO #1]	F4	1.810	1.810	*****	*****	NEG
[Group 3 Neg #2]	G4	1.887	1.887	*****	••••	NEG
[Group 3 CO #2]	H4	1.847	1.847	*****	*****	NEG
[Group 3 Neg #3]	A5	2.002	2.002	*****	*****	NEG
[Group 3 CO #3]	B5	1.083	1.083	*****	*****	POS
[Group 3 Neg #4]	C5	1.682	1.682	*****	*****	NEG
[Group 3 CO #4]	D5	1.029	1.029	*****	*****	POS
[Group 3 Neg #5]	E5	1.880	1.880	*****	•••••	NEG
[Group 3 CO #5]	F5	1.072	1.072	*****	*****	POS
[Group 3 Neg #6]	G5	1.915	1.915	*****	*****	NEG
[Group 3 CO #6]	H5	1.216	1.216	*****	*****	POS
[Group 3 Neg #7]	A6	1.894	1.894	*****	*****	NEG
[Group 3 CO #7]	B6	1.209	1.209	*****	•••••	POS
[Group 3 Neg #8]	C6	1.804	1.804	*****	*****	NEG
[Group 3 CO #8]	D6	1.086	1.086	*****	*****	POS
[Group 3 Neg #9]	E6	1.724	1.724	*****	*****	NEG
[Group 3 CO #9]	F6	1.214	1.214	*****	•••••	POS
[Group 3 Neg #10]	G6	1.901	1.901	*****	••••	NEG
[Group 3 CO #10]	H6	1.245	1.245	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	1.863 Pa	1.863 ige 42 of 112	*****	*****	NC1

Page 41 of 112

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4	1.231	1.231	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	1.736	1.736	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	1.125	1.125	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	••••	*****	1.863	2.002	1.894	*****	*****	*****	*****	*****	****
В	••••		*****	1.231	1.083	1.209	•••••		••••	••••		••••
С	*****		*****	1.736	1.682	1.804	*****		*****			****
D	*****			1.125	1.029	1.086	*****	*****	*****	*****	*****	****
Ε	*****		*****	1.893	1.880	1.724	*****	*****	••••	*****	*****	****
F	*****	*****	*****	1.810	1.072	1.214	*****	*****	*****	*****	*****	*****
G	••••	••••	*****	1.887	1.915	1.901	*****	••••	••••	*****	*****	*****
н	*****	*****	*****	1.847	1.216	1.245	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 43 of 112

Page 44 of 112

TEST NO. TEST NAME PLATE

: COTININE : Precision1Cot2812

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm : *

DATE TIME OPERATOR

: 2/8/2012 : 3:29:57 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE, CTI-0031/1102211, 4-23-12/2-21-13
: Precision1Cot2812, .
: Acid Stop, 120208, .
: COTININE CONJUGATE, 032, .
: K-Blue, 120208, .
: COTININE CUTOFF, 024, .
: COTININE NEGATIVE, 024, .
: GROUP 3 CUTOFF, 120208, .
: GROUP 3 NEGATIVE, 120208, .
: Ibitilled Water, 120208, .
: Neogen Wash Buffer, 120208, .

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.492>1.310

= CO = 1.311 = CO = 1.311 + equation

Page 45 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	POS	POS									
С	NNC1	NEG	NEG									
D	NCO1	POS	POS									
Ε	NEG	NEG	NEG									
F	NEG	POS	POS									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 3 Neg #1]	E1	2.105	2.105	*****	*****	NEG
[Group 3 CO #1]	F1	2.065	2.065	*****	••••	NEG
[Group 3 Neg #2]	G1	2.295	2.295	*****	••••	NEG
[Group 3 CO #2]	H1	2.447	2.447	*****	•••••	NEG
[Group 3 Neg #3]	A2	2.515	2.515	*****	*****	NEG
[Group 3 CO #3]	B2	1.297	1.297	*****	*****	POS
[Group 3 Neg #4]	C2	2.309	2.309	*****	*****	NEG
[Group 3 CO #4]	D2	1.261	1.261	*****	*****	POS
[Group 3 Neg #5]	E2	2.250	2.250	*****	*****	NEG
[Group 3 CO #5]	F2	1.206	1.206	*****	*****	POS
[Group 3 Neg #6]	G2	2.253	2.253	*****	*****	NEG
[Group 3 CO #6]	H2	1.350	1.350	•••••	•••••	NEG
[Group 3 Neg #7]	A3	2.478	2.478	*****	*****	NEG
[Group 3 CO #7]	B3	1.289	1.289	*****	*****	POS
[Group 3 Neg #8]	C3	2.312	2.312	*****	*****	NEG
[Group 3 CO #8]	D3	1.252	1.252	*****	*****	POS
[Group 3 Neg #9]	E3	2.268	2.268	*****	•••••	NEG
[Group 3 CO #9]	F3	1.224	1.224	*****	••••	POS
[Group 3 Neg #10]	G3	2.297	2.297	*****	••••	NEG
[Group 3 CO #10]	Н3	1.350	1.350	*****	••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.492	2.492	*****	••••	NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.311	1.311	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	0.541	0.541	****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.251	0.251	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.492	2.515	2.478	*****	••••	••••		*****	*****			*****
В	1.311	1.297	1.289	*****	••••	••••	••••	*****	*****	*****	••••	*****
С	0.541	2.309	2.312	*****	*****			*****	••••	*****		*****
D	0.251	1.261	1.252	*****	*****	*****		*****	••••	*****		*****
E	2.105	2.250	2.268	••••	*****	••••	*****	*****	••••	••••		••••
F	2.065	1.206	1.224	*****	*****	*****	*****	*****	*****	*****	*****	*****
G	2.295	2.253	2.297	••••	*****	*****	*****	*****	••••	*****	*****	••••
н	2.447	1.350	1.350	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 47 of 112

Page 48 of 112

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : PrecisionMAmpOxyTHC2812 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/8/2012 : 4:37:22 PM : admin : OXYCODONE-OXYMORPHONE, OXF-0036/110506F, 1-16-13/5-6-13
: Precision1MAmpOxyTHC2812, ,
Acid Stop, 120208,
: OXYCODONE/OXYMORPHONE CONJUGATE, 028, 1-16-13
: GROUP 2 UTOFF, 120208,
: OXYCODONE/OXYMORPHONE CUTOFF, 120117-WB, 1-16-13
: OXYCODONE/OXYMORPHONE CUTOFF, 120117-WB, 1-16-13
: OXYCODONE/OXYMORPHONE NEGATIVE, 120117-WB, 1-16-13
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.529>0.812 = CO = 0.813 = CO = 0.813 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
в				CO1	POS	NEG						
c				NNC1	NEG	NEG						
ÞΪ				NCO1	POS	POS						
E				NEG	NEG	NEG						
F				NEG	POS	NEG						
3				NEG	NEG	NEG						
н				POS	POS	POS						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 Neg #1]	E4	2.358	2.358	*****	*****	NEG
[Group 2 CO #1]	F4	2.384	2.384	*****	*****	NEG
[Group 2 Neg #2]	G4	2.436	2.436	*****	*****	NEG
[Group 2 CO #2]	H4	0.778	0.778	*****	*****	POS
[Group 2 Neg #3]	A5	2.523	2.523	*****	*****	NEG
[Group 2 CO #3]	B5	0.767	0.767	*****	*****	POS
[Group 2 Neg #4]	C5	2.413	2.413	*****	*****	NEG
[Group 2 CO #4]	D5	0.740	0.740	*****	*****	POS
[Group 2 Neg #5]	E5	2.539	2.539	*****	•••••	NEG
[Group 2 CO #5]	F5	0.797	0.797	*****	*****	POS
[Group 2 Neg #6]	G5	2.489	2.489	*****	*****	NEG
[Group 2 CO #6]	H5	0.769	0.769	*****	*****	POS
[Group 2 Neg #7]	A6	2.563	2.563	*****	*****	NEG
[Group 2 CO #7]	B6	0.855	0.855	*****	*****	NEG
[Group 2 Neg #8]	C6	2.468	2.468	*****	*****	NEG
[Group 2 CO #8]	D6	0.752	0.752	*****	*****	POS
[Group 2 Neg #9]	E6	2.479	2.479	*****	*****	NEG
[Group 2 CO #9]	F6	0.814	0.814	*****	*****	NEG
[Group 2 Neg #10]	G6	2.523	2.523	*****	*****	NEG
[Group 2 CO #10]	H6	0.784	0.784		••••	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

NC1 2.529 2.529 Page 50 of 112 NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4	0.813	0.813	••••	•••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	2.401	2.401	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	1.164	1.164	*****	*****	NCO1

Page 49 of 112

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

	1	2	3	4	5	6	7	8	9	10	11	12
А	*****	••••	*****	2.529	2.523	2.563	••••	*****	••••	••••	••••	*****
В	*****		*****	0.813	0.767	0.855	••••	*****	••••		••••	****
С	*****		*****	2.401	2.413	2.468		*****	*****		*****	*****
D	••••		*****	1.164	0.740	0.752	••••	*****	*****	*****	*****	*****
E	••••			2.358	2.539	2.479		*****	••••		*****	*****
F	••••	*****		2.384	0.797	0.814	*****	*****	*****	*****	*****	*****
G	••••			2.436	2.489	2.523	*****	••••	*****		*****	*****
н	*****	*****	*****	0.778	0.769	0.784	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

DATA MATRIX/TABLE : OD

Page 51 of 112

Page 52 of 112

TEST NO. TEST NAME PLATE : THC : PrecisionMAmpOxyTHC2812 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/8/2012 : 4:37:22 PM : admin : THC, TCF-0054/111221, 12-26-12/12-21-13
: Precision1MAmpOxyTHC2812,
: Acid Stop, 120208,
: THC CONJUGATE, 043, 12-26-12
: GROUP 2 CUTOFF, 120208,
: THC CUTOFF, 110826-WB, 12-26-12
: THC CUTOFF, 110826-WB, 12-26-12
: THC NEGATIVE, 110826-WB, 12-26-12
: Distilled Water, 120208,
: Neogen Wash Buffer, 120208, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.089>1.232 - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A							NC1	NEG	NEG			
в							CO1	NEG	NEG			
c							NNC1	NEG	NEG			
ь							NCO1	NEG	NEG			
E							NEG	NEG	NEG			
F							NEG	POS	NEG			
G							NEG	NEG	NEG			
н							NEG	NEG	NEG			

NC1	A7	2.090	Page 54 of 112	*****	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
(0100p 2 00 #10j		1,403	1.465			neo .
[Group 2 CO #10]	H9	1.463	1.463	*****	*****	NEG
Group 2 Neg #10]	G9	1.982	1.982	*****	*****	NEG
[Group 2 Neg #9] [Group 2 CO #9]	F9	1.249	1.249	****	*****	NEG
[Group 2 Neg #9]	E9	1.993	1,993	*****	*****	NEG
[Group 2 CO #8]	D9	1.262	1.262	*****	*****	NEG
[Group 2 Neg #8]	C9	2.023	2.023	*****	*****	NEG
[Group 2 CO #7]	B9	1.296	1.296	*****	*****	NEG
[Group 2 Neg #7]	A9	2.005	2.005	*****	*****	NEG
[Group 2 CO #6]	H8	1.291	1.291	*****	*****	NEG
[Group 2 Neg #6]	G8	2.031	2.031	*****	*****	NEG
[Group 2 CO #5]	F8	1.207	1.207			POS
[Group 2 Neg #5]	E8	2.026	2.026	*****	*****	NEG
[Group 2 CO #4]	D8	1.257	1.257	••••	*****	NEG
[Group 2 Neg #4]	C8	2.018	2.018	*****	*****	NEG
[Group 2 CO #3]	B8	1.245	1.245	****	*****	NEG
[Group 2 Neg #3]	A8	2.175	2.175	*****	*****	NEG
[Group 2 CO #2]	H7	1.337	1.337	*****	*****	NEG
[Group 2 Neg #2]	G7	1.985	1.985	*****	*****	NEG
[Group 2 CO #1]	F7	1.958	1.958	*****	*****	NEG
[Group 2 Neg #1]	E7	2.024	2.024	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	В7	1.232	1.232	*****	••••	CO1
Sample ID	Location	Data	Mean	\$.D.	C.V.	Result
NNC1	C7	1.973	1.973	••••	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D7	0.840	0.840	*****	****	NCO1

Page 53 of 112

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
١,	*****	*****	*****	*****	*****	*****	2.090	2.175	2.005	*****	*****	
3	****	*****	****	*****	*****	*****	1.232	1.245	1.296	••••		
:	*****	*****	*****	••••		*****	1.973	2.018	2.023	*****		
,	*****	*****	*****	*****	*****	*****	0.840	1.257	1.262	*****	*****	*****
:	••••	*****	*****				2.024	2.026	1.993	••••	*****	••••
:	••••	••••	*****	*****	*****	*****	1.958	1.207	1.249	****	*****	****
:	*****	*****	*****	*****	*****	••••	1.985	2.031	1.982	••••		*****
	*****	*****	*****	*****	*****	*****	1.337	1.291	1.463	••••	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 55 of 112

Page 56 of 112

TEST NO. TEST NAME PLATE

: : AMPHETAMINE ULTRA : Precision2AmpCocHydro2912 : SINGLE DATE

W/L MODE TEST FILTER REF. FILTER

: 2/9/2012 : 11:36:25 AM : admin TIME OPERATOR

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA, AUF-0046/111214, 1-8-13/12-14-13
: Precision/2AmpCocHydro2912, .
: Acid Stop, 120209,
: AMPHETAMINE ULTRA CONJUGATE, 035, 1-8-13
: COCAINE/BZE CONJUGATE, 053, 11-8-12
: HYDROMORPHONE CONJUGATE, 011, 8-21-12
: HYDROMORPHONE CONJUGATE, 011, 8-21-12
: K-Blue, 120209,
: AMPHETAMINE ULTRA CUTOFF, 111212-WB, 1-8-13
:GROUP 1 CUTOFF, 120209,
: GROUP 1 NEGATIVE, 120209,
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.286>1.012

= CO = 1.013 = CO = 1.013 + equation - equation

Page 57 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	NNC1	NEG	NEG									
D	NCO1	NEG	POS									
Ε	NEG	NEG	NEG									
F	POS	NEG	POS									
G	NEG	NEG	NEG									
н	NEG	NEG	POS									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 Neg #1]	E1	1.255	1.255	*****	*****	NEG
[Group 1 CO #1]	F1	0.983	0.983	*****	••••	POS
[Group 1 Neg #2]	G1	1.378	1.378	*****	*****	NEG
[Group 1 CO #2]	H1	1.047	1.047	*****	*****	NEG
[Group 1 Neg #3]	A2	1.342	1.342	*****	*****	NEG
[Group 1 CO #3]	B2	1.055	1.055	*****	*****	NEG
[Group 1 Neg #4]	C2	1.375	1.375	*****	*****	NEG
[Group 1 CO #4]	D2	1.092	1.092	*****	*****	NEG
[Group 1 Neg #5]	E2	1.341	1.341	*****	*****	NEG
Group 1 CO #5]	F2	1.026	1.026	*****	*****	NEG
[Group 1 Neg #6]	G2	1.395	1.395	*****	*****	NEG
[Group 1 CO #6]	H2	1.067	1.067	*****	*****	NEG
[Group 1 Neg #7]	A3	1.313	1.313	*****	*****	NEG
[Group 1 CO #7]	B3	1.034	1.034	*****	*****	NEG
[Group 1 Neg #8]	C3	1.273	1.273	*****	*****	NEG
[Group 1 CO #8]	D3	0.969	0.969	*****	*****	POS
Group 1 Neg #9]	E3	1.275	1.275	*****	*****	NEG
[Group 1 CO #9]	F3	0.943	0.943	*****	*****	POS
[Group 1 Neg #10]	G3	1.287	1.287	*****	*****	NEG
[Group 1 CO #10]	H3	0.978	0.978	*****	*****	POS
Daniel ID						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.286	1.286	*****	*****	NC1
		Pa	ge 58 of 112			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.013	1.013	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.363	1.363	****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.906	0.906	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.286	1.342	1.313	*****	*****	*****	*****	*****	*****	*****	*****	••••
В	1.013	1.055	1.034	••••	*****	*****	••••	*****	••••	*****	*****	••••
С	1.363	1.375	1.273	••••	*****	*****		••••		••••	••••	••••
D	0.906	1.092	0.969	••••	*****	••••	••••	*****	••••		••••	••••
E	1.255	1.341	1.275	••••	*****	••••		••••		••••	••••	••••
F	0.983	1.026	0.943	••••	*****	*****	••••	••••	••••	*****	*****	*****
G	1.378	1.395	1.287	*****	*****	*****	••••	*****		*****	*****	••••
н	1.047	1.067	0.978	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 59 of 112

Page 60 of 112

TEST NO. TEST NAME PLATE : COCAINE-BZE : Precision2AmpCocHydro2912 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/9/2012 : 11:36:25 AM : admin COCAINE-BZE, BZF-0073/11121F, 11-9-12/11-21-13
: Precision2AmpCocHydro2912,
: Acid Stop, 120209,
: COCAINE/BZE CONJUGATE, 053, 11-9-12
: K-Blue, 120209,
: COCAINE/BZE CUTOFF, 111110-WB, 11-9-12
: COCAINE/BZE NEGATIVE, 111110-WB, 11-9-12
: GROUP 1 CUTOFF, 120209,
: GROUP 1 NEGATIVE, 120209,
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.756>1.335 - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
в				CO1	POS	POS						
c				NNC1	NEG	NEG						
ь				NCO1	POS	POS						
E				NEG	POS	NEG						
F				NEG	POS	POS						
3				NEG	NEG	NEG						
нΓ				NEG	POS	POS						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Group 1 Neg #1]	E4	1.764	1.764	*****	*****	NEG	
[Group 1 CO #1]	F4	1.356	1.356	*****	*****	NEG	
[Group 1 Neg #2]	G4	1.804	1.804	*****	*****	NEG	
[Group 1 CO #2]	H4	1.387	1.387	*****	*****	NEG	
[Group 1 Neg #3]	A5	1.552	1.552	••••	*****	NEG	
[Group 1 CO #3]	B5	1.143	1.143	*****	*****	POS	
[Group 1 Neg #4]	C5	1.515	1.515	*****	*****	NEG	
[Group 1 CO #4]	D5	0.920	0.920	*****	*****	POS	
[Group 1 Neg #5]	E5	1.312	1.312	*****	*****	POS	
[Group 1 CO #5]	F5	1.105	1.105	*****	*****	POS	
[Group 1 Neg #6]	G5	1.480	1.480	*****	*****	NEG	
[Group 1 CO #6]	H5	1.108	1.108	*****	*****	POS	
[Group 1 Neg #7]	A6	1.630	1.630	*****	*****	NEG	
[Group 1 CO #7]	B6	1.223	1.223	*****	*****	POS	
[Group 1 Neg #8]	C6	1.643	1.643	*****	*****	NEG	
[Group 1 CO #8]	D6	1.236	1.236	*****	•••••	POS	
[Group 1 Neg #9]	E6	1.648	1.648	*****	*****	NEG	
[Group 1 CO #9]	F6	1.299	1.299	*****	*****	POS	
Group 1 Neg #10]	G6	1.702	1.702	****	*****	NEG	
[Group 1 CO #10]	H6	1.301	1.301	*****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	_
				*****	*****		_
NC1	A4	1.756	1.756	*****		NC1	

1.756 1.756 Page 62 of 112

Page 61 of 112

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4	1.336	1.336	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	0.935	0.935	*****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	0.505	0.505	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

	1	2	3	4	5	6	7	8	9	10	11	12
A	*****	••••	••••	1.756	1.552	1.630	••••	*****	••••	••••	*****	****
В	*****	*****	*****	1.336	1.143	1.223	*****	*****	*****		••••	••••
С	••••	••••	*****	0.935	1.515	1.643	••••	*****	*****		*****	
5	••••	••••	*****	0.505	0.920	1.236	•••••		*****	•••••	••••	
E	*****	*****		1.764	1.312	1.648	*****	*****	*****		*****	
F	••••	•••••	*****	1.356	1.105	1.299	*****		*****		*****	
3	*****	••••	*****	1.804	1.480	1.702	*****		*****	••••	••••	
н	*****	*****	*****	1.387	1,108	1,301	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

DATA MATRIX/TABLE: OD

Page 63 of 112

Page 64 of 112

TEST NO. TEST NAME PLATE : BENZODIAZEPINE GROUP : Precision2BenzOpi2912

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 2/9/2012 : 12:07:46 PM

Kit Lot Data Plate Lot Data Reagent Lot Data

: BENZODIAZEPINE GROUP, BGF-0060/111205, 12-28-12/12-5-13
: Precision2BenzOpi2912,
: Acid Stop, 120209,
: BENZODIAZEPINE GROUP CONJUGATE, 049, 12-28-12
: K-Blue, 120209,
: OPIATE GROUP CONJUGATE, 043, 1-10-13
: BENZODIAZEPINE GROUP CUTOFF, 110811-WB, 12-28-12
: BENZODIAZEPINE GROUP PREGATIVE, 110811-WB, 12-28-12
: GROUP 3 CUTOFF, 120209,
: GROUP 3 NEGATIVE, 120209,
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209,

OVER limit : 3.500 : Endpoint Calculation mode

THRESHOLD RESULTS

Q.C. equations

NC>CO 2.368>1.132

= CO = 1.133 = CO = 1.133 + equation - equation

Page 65 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	POS									
С	NNC1	NEG	NEG									
D	NCO1	POS	POS									
Ε	NEG	NEG	NEG									
F	NEG	NEG	POS									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 3 Neg #1]	E1	2.399	2.399	*****	*****	NEG
[Group 3 CO #1]	F1	2.438	2.438	*****	*****	NEG
[Group 3 Neg #2]	G1	2.391	2.391	*****	*****	NEG
[Group 3 CO #2]	H1	2.451	2.451	*****	*****	NEG
[Group 3 Neg #3]	A2	2.391	2.391	*****	*****	NEG
[Group 3 CO #3]	B2	1.177	1.177	*****	*****	NEG
[Group 3 Neg #4]	C2	2.367	2.367	*****	*****	NEG
[Group 3 CO #4]	D2	1.117	1.117	*****	*****	POS
[Group 3 Neg #5]	E2	2.398	2.398	*****	*****	NEG
[Group 3 CO #5]	F2	1.214	1.214	*****	*****	NEG
[Group 3 Neg #6]	G2	2.438	2.438	*****	*****	NEG
[Group 3 CO #6]	H2	1.322	1.322	*****	*****	NEG
[Group 3 Neg #7]	A3	2.340	2.340	*****	*****	NEG
[Group 3 CO #7]	B3	1.104	1.104	*****	*****	POS
[Group 3 Neg #8]	C3	2.291	2.291	*****	*****	NEG
[Group 3 CO #8]	D3	1.031	1.031	*****	*****	POS
[Group 3 Neg #9]	E3	2.370	2.370	*****	*****	NEG
[Group 3 CO #9]	F3	1.130	1.130	*****	*****	POS
[Group 3 Neg #10]	G3	2.396	2.396	*****	*****	NEG
[Group 3 CO #10]	Н3	1.164	1.164	*****	••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.369	2.369	*****	*****	NC1
		Pa	ge 66 of 112			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.133	1.133	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.606	1.606	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.647	0.647	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	2.369	2.391	2.340	*****	*****	•••••	•••••	*****	*****	*****	*****	*****
В	1.133	1.177	1.104	*****	*****	••••	*****	*****	*****	*****	••••	*****
0	1.606	2.367	2.291	••••	*****	*****	*****	*****	*****	*****	••••	
0	0.647	1.117	1.031	*****	*****	*****		*****	*****	*****	*****	****
Ε	2.399	2.398	2.370	••••	••••	••••		*****	*****	*****	*****	
F	2.438	1.214	1.130	••••	••••	*****	*****	*****	*****		*****	••••
3	2.391	2.438	2.396	••••	*****	*****				*****	*****	****
4	2.451	1.322	1.164	*****	*****	*****	*****	••••	*****	*****	*****	****

***** Indicates an unread well or value out of range

DATA MATRIX/TABLE : OD

Page 67 of 112

Page 68 of 112

TEST NO. TEST NAME PLATE : OPIATE GROUP : Precision2BenzOpi2912 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 2/9/2012 : 12:07:46 PM : OPIATE GROUP, MOF-0055/120105F, 1-10-13/1-15-14
: Precision/2Benz/Opi2912,
: Acid Stop, 120209,
: OPIATE GROUP CONJUGATE, 043, 1-10-13
: GROUP 3 CUTOFF, 120209,
: OPIATE GROUP CONJUGATE, 1043, 1-10-13
: OPIATE GROUP SCATIVE, 110715-WB, 1-10-13
: OPIATE GROUP NEGATIVE, 110715-WB, 1-10-13
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.886>1.211 = CO = 1.211 = CO = 1.211 + equation - equation

Page 69 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
в				CO1	POS	NEG						
c				NNC1	NEG	NEG						
ь				NCO1	POS	NEG						
E				NEG	NEG	NEG						
F				NEG	POS	NEG						
G				NEG	NEG	NEG						
н				NEG	POS	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 3 Neg #1]	E4	1.924	1.924	*****	*****	NEG
[Group 3 CO #1]	F4	1.818	1.818	*****	*****	NEG
[Group 3 Neg #2]	G4	1.898	1.898	*****	••••	NEG
[Group 3 CO #2]	H4	1.937	1.937	*****	*****	NEG
[Group 3 Neg #3]	A5	1.883	1.883	*****	*****	NEG
[Group 3 CO #3]	B5	1.094	1.094	*****	*****	POS
[Group 3 Neg #4]	C5	1.646	1.646	*****	*****	NEG
[Group 3 CO #4]	D5	1.146	1.146	*****	*****	POS
[Group 3 Neg #5]	E5	1.586	1.586	*****	*****	NEG
Group 3 CO #5]	F5	1.130	1.130	*****	*****	POS
[Group 3 Neg #6]	G5	1.867	1.867	*****	*****	NEG
[Group 3 CO #6]	H5	1.198	1.198	*****	*****	POS
[Group 3 Neg #7]	A6	1.920	1.920	*****	*****	NEG
[Group 3 CO #7]	B6	1.243	1.243	*****	*****	NEG
[Group 3 Neg #8]	C6	1.888	1.888	*****	*****	NEG
[Group 3 CO #8]	D6	1.235	1.235	••••	*****	NEG
[Group 3 Neg #9]	E6	1.865	1.865	*****	*****	NEG
[Group 3 CO #9]	F6	1.262	1.262	*****	*****	NEG
[Group 3 Neg #10]	G6	1.753	1.753	*****	*****	NEG
[Group 3 CO #10]	H6	1.289	1.289	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Location	Data	Mean	S.D.	C.V.	Result
A4	1.887	1.887	*****	*****	NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4	1.211	1.211	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C4	1.982	1.982	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D4	1.166	1.166	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA	MATRIX/TABLE		OΠ
DATA	MAIRIA/IABLE	٠	Oυ

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	1.887	1.883	1.920	*****	*****	*****	••••	••••	
В	••••		*****	1.211	1.094	1.243		••••				
С	••••			1.982	1.646	1.888	••••		••••	••••	••••	
D	*****	*****	*****	1.166	1.146	1.235	*****	*****	*****		••••	
Е	*****	*****	*****	1.924	1.586	1.865	*****	*****	*****	*****	••••	*****
F	••••		*****	1.818	1.130	1.262	••••		*****	*****		
G	*****	*****	*****	1.898	1.867	1.753	*****	*****	*****	*****	••••	*****
н	*****	*****	*****	1.937	1.198	1.289	*****	*****	*****	*****	*****	*****

Dynex Technologies

Page 71 of 112

Page 72 of 112

TEST NO. TEST NAME PLATE

: COTININE : Precision2Cot2912

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 2/9/2012 : 10:45:08 AM : admin

2.238>1.259

Kit Lot Data Plate Lot Data Reagent Lot Data

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

= CO = 1.260 = CO = 1.260

+ equation

Page 73 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	POS	NEG									
С	NNC1	NEG	NEG									
D	NCO1	POS	NEG									
Ε	NEG	NEG	NEG									
F	NEG	POS	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 3 Neg #1]	E1	1.904	1.904	••••	*****	NEG
[Group 3 CO #1]	F1	1.981	1.981	*****	•••••	NEG
[Group 3 Neg #2]	G1	2.031	2.031	*****	*****	NEG
[Group 3 CO #2]	H1	2.197	2.197	•••••	*****	NEG
[Group 3 Neg #3]	A2	2.246	2.246	*****	*****	NEG
[Group 3 CO #3]	B2	1.248	1.248	*****	*****	POS
[Group 3 Neg #4]	C2	2.059	2.059	*****	*****	NEG
[Group 3 CO #4]	D2	1.216	1.216	••••	*****	POS
[Group 3 Neg #5]	E2	1.985	1.985	*****	*****	NEG
[Group 3 CO #5]	F2	1.181	1.181	*****	*****	POS
[Group 3 Neg #6]	G2	2.052	2.052	*****	*****	NEG
[Group 3 CO #6]	H2	1.312	1.312	*****	*****	NEG
[Group 3 Neg #7]	A3	2.258	2.258	*****	*****	NEG
[Group 3 CO #7]	B3	1.377	1.377	*****	*****	NEG
[Group 3 Neg #8]	C3	2.219	2.219	*****	*****	NEG
[Group 3 CO #8]	D3	1.332	1.332	*****	*****	NEG
[Group 3 Neg #9]	E3	2.214	2.214	*****	*****	NEG
[Group 3 CO #9]	F3	1.341	1.341	*****	*****	NEG
[Group 3 Neg #10]	G3	2.309	2.309	*****	*****	NEG
[Group 3 CO #10]	нз	1.382	1.382	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.238	2.238	*****	*****	NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	2.238	2.238	****	*****	NC1	
		Pa	ge 74 of 112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.260	1.260	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	0.565	0.565	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.269	0.269	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	2.238	2.246	2.258	*****	*****	••••	*****	*****	*****	*****	••••	****
3	1.260	1.248	1.377	*****	*****	••••			••••		••••	****
0	0.565	2.059	2.219	*****		••••		*****	••••		••••	****
0	0.269	1.216	1.332	*****	*****	••••		••••		*****	••••	****
Ε	1.904	1.985	2.214	*****				••••	••••		••••	
F	1.981	1.181	1.341	*****	*****			*****	*****	*****	*****	****
3	2.031	2.052	2.309	*****	*****	*****	*****	*****	*****	*****		****
4	2.197	1.312	1.382	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 75 of 112

Page 76 of 112

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : Precision2MAmpOxyTHC2912 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 2/9/2012 : 11:52:34 AM : OXYCODONE-OXYMORPHONE, OXF-0036/110506F, 1-16-13/5-6-13
: Precision/2MAmpOxyTHC2912,
: Acid Stop, 120209,
: K-Blue, 120209,
: K-Blue, 120209,
: CXYCODONEIOXYMORPHONE CONJUGATE, 028, 1-16-13
: GROUP 2 CUTOFF, 120209,
: OXYCODONEIOXYMORPHONE CUTOFF, 120117-WB, 1-16-13
: OXYCODONEIOXYMORPHONE CUTOFF, 120117-WB, 1-16-13
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.414>0.765 = CO = 0.766 = CO = 0.766 + equation - equation

Page 77 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α				NC1	NEG	NEG						
В				CO1	NEG	NEG						
С				NNC1	NEG	NEG						
ь				NCO1	NEG	POS						
E				NEG	NEG	NEG						
F				NEG	NEG	NEG					_	
G				NEG	NEG	NEG						
н				POS	POS	POS						1
ample			Lo	ocation		Data	Mean		S.D.		C.V.	Result
Group	2 Neg		Lo	E4	2.	278	2.278	1	****		*****	NEG
roup		#1]	Lo		2.			!				
Group Group Group	2 Neg 2 CO	#1] #2]	Lo	E4 F4	2. 2. 2.	278 322	2.278	 	*****			NEG NEG
Froup Froup Froup Froup	2 Neg 2 CO 2 Neg 2 CO 2 Neg	#1] #2] #2] #3]	Lo	E4 F4 G4 H4	2. 2. 2. 0.	278 322 370 757	2.278 2.322 2.370 0.757					NEG NEG NEG POS
Froup Froup Froup Froup Froup	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3]	Le	E4 F4 G4 H4 A5 B5	2. 2. 2. 0.	278 322 370 757 434 781	2.278 2.322 2.370 0.757 2.434 0.781					NEG NEG POS NEG NEG
Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg	#1] #2] #2] #3] #3] #4]	Lo	E4 F4 G4 H4	2. 2. 2. 0. 2. 0.	278 322 370 757	2.278 2.322 2.370 0.757					NEG NEG NEG POS
Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3] #3] #4]	Lo	E4 F4 G4 H4 A5 B5 C5 D5	2. 2. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815					NEG NEG POS NEG NEG NEG NEG
Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3] #3] #4] #4] #5]	Le	E4 F4 G4 H4 A5 B5 C5 D5	2. 2. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815					NEG NEG POS NEG NEG NEG NEG
Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3] #3] #4] #4] #5]	Le	E4 F4 G4 H4 A5 B5 C5 D5	2. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490 769	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769					NEG NEG POS NEG NEG NEG NEG NEG
Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3] #3] #4] #4] #5] #5]	Lo	E4 F4 G4 H4 A5 B5 C5 D5	2. 2. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815					NEG NEG POS NEG NEG NEG NEG
Group Group Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3] #3] #4] #4] #5] #6]	Lo	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5	2. 2. 2. 0. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490 769 429	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769 2.429					NEG NEG POS NEG NEG NEG NEG NEG
Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #2] #3] #4] #4] #5] #6] #6] #7]	Lo	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5	2. 2. 2. 0. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490 769 429 727	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769 2.429 0.727					NEG NEG POS NEG NEG NEG NEG NEG NEG NEG NEG NEG
Group Group Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO	#1] #2] #3] #3] #4] #5] #6] #6] #7]	Lo	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5	2. 2. 2. 0. 2. 0. 2. 0. 2. 0.	278 3322 370 757 434 781 389 815 490 769 429 727	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769 2.429 0.727					NEG NEG POS NEG NEG NEG NEG NEG NEG NEG NEG NEG
Group Group Group Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO 2 Neg 2 CO	#1] #2] #3] #3] #4] #4] #5] #6] #7] #7] #8]	Lo	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5 A6 B6	2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0.	278 3322 370 757 434 4781 389 815 490 769 429 727	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769 2.429 0.727 2.446 0.769					NEG NEG POS NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
Group Group Group Group Group Group Group Group Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 CO 2 Neg 2 CO 2 CO 2 Neg 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO	#1] #2] #3] #3] #4] #4] #5] #6] #7] #7] #8]	Lo	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5 A6 B6 C6	2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490 769 429 7727 446 769 3345	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769 2.429 0.727 2.446 0.769 2.345					NEG NEG POS NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
Group Group Group Group Group Group Group Group Group Group Group Group Group Group Group	2 Neg 2 CO 2 Neg 2 CO	#1] #2] #3] #3] #4] #5] #5] #6] #7] #8] #8]	Le	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G6 H5 A6 B6 C6 D6	2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490 769 429 727 446 769 345 741	2.278 2.322 2.370 0.757 2.434 0.781 2.389 0.815 2.490 0.769 2.429 0.727 2.446 0.769 2.345 0.741					NEG NEG POS NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG
Broup Broup	2 Neg 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO	#1] #2] #3] #3] #4] #5] #6] #6] #7] #8] #9]	Lo	E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5 A6 B6 C6 D6	2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0.	278 322 370 757 434 781 389 815 490 769 429 727 446 769 345 741	2.278 2.322 2.370 0.757 2.434 0.781 2.3815 2.490 0.769 2.429 0.727 2.446 0.769 2.345 0.741					NEG NEG NEG POS NEG NEG NEG NEG NEG NEG NEG NEG NEG NEG

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4	0.766	0.766	•••••	••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
INC1	C4	2.363	2.363	*****	****	NNC1
Sample ID	Location	Data	Mean	\$.D.	C.V.	Result
NCO1	D4	1.031	1.031	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
A	••••	*****	*****	2.414	2.434	2.446	*****	*****	*****	*****	*****	••••
в	••••	••••	*****	0.766	0.781	0.769	*****	*****	*****			****
٥	••••	••••	••••	2.363	2.389	2.345	••••		••••			****
ь	••••	*****	*****	1.031	0.815	0.741	*****	*****	*****	*****		****
E	••••	*****	*****	2.278	2.490	2.428	*****	*****	*****	*****	*****	****
F	••••	*****	*****	2.322	0.769	0.850	*****	*****	*****	*****	*****	
3	••••	••••	*****	2.370	2.429	2.371	*****	*****	*****	*****	*****	****
4	*****	*****	*****	0.757	0.727	0.748	*****	*****	*****	*****	*****	****

Sample ID NC1

Page 79 of 112

Page 80 of 112

TEST NO. TEST NAME PLATE : THC : Precision2MAmpOxyTHC2912 DATE TIME OPERATOR W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * : 2/9/2012 : 11:52:34 AM : admin : THC, TCF-0054/111221, 12-26-12/12-21-13
: PrecisionZMAmpOxyTHC2912,
: Acid Stop, 120209,
: HBL, 120209,
: THC CONJUGATE, 043, 12-26-12
: GROUP 2 CUTOFF, 120209,
: THC CUTOFF, 110826-WB, 12-26-12
: THC NEGATIVE, 110826-WB, 12-26-12
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data : 3.500 : Endpoint OVER limit Calculation mode THRESHOLD RESULTS Q.C. equations 2.097>1.266 NC>CO + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A						-	NC1	NEG	NEG			
В							CO1	POS	NEG			
С							NNC1	NEG	NEG			
ь							NCO1	POS	NEG			
E							NEG	NEG	NEG			
F							NEG	NEG	NEG			
G							NEG	NEG	NEG			
н							POS	NEG	NEG			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 Neg #1]	E7	2.005	2.005	*****	*****	NEG
[Group 2 CO #1]	F7	2.001	2.001	*****	*****	NEG
[Group 2 Neg #2]	G7	2.021	2.021	*****	*****	NEG
[Group 2 CO #2]	H7	1.220	1.220	•••••	*****	POS
[Group 2 Neg #3]	A8	2.166	2.166	*****	****	NEG
[Group 2 CO #3]	B8	1.235	1.235	*****	*****	POS
[Group 2 Neg #4]	C8	1.963	1.963	*****	*****	NEG
[Group 2 CO #4]	D8	1.257	1.257	*****	*****	POS
[Group 2 Neg #5]	E8	1.958	1.958	••••	*****	NEG
[Group 2 CO #5]	F8	1.280	1.280	*****	*****	NEG
[Group 2 Neg #6]	G8	2.067	2.067	*****	*****	NEG
[Group 2 CO #6]	H8	1.326	1.326	*****	*****	NEG
[Group 2 Neg #7]	A9	2.129	2.129	••••	*****	NEG
[Group 2 CO #7]	B9	1.390	1.390	*****	*****	NEG
[Group 2 Neg #8]	C9	2.076	2.076	*****	*****	NEG
[Group 2 CO #8]	D9	1.312	1.312	*****	*****	NEG
[Group 2 Neg #9]	E9	2.042	2.042	*****	*****	NEG
[Group 2 CO #9]	F9	1.337	1.337	*****	*****	NEG
[Group 2 Neg #10]	G9	2.009	2.009	*****	*****	NEG
[Group 2 CO #10]	H9	1.319	1.319	****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A7	2.098	Page 82 of 112	*****	*****	NC1

THE ID. I TOUSOIL	Panpony III IOLUIZ					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	В7	1.267	1.267	••••	••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C7	1.999	1.999	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D7	0.828	0.828	*****	*****	NCO1

Page 81 of 112

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
. [*****	*****		*****	*****	*****	2.098	2.166	2.129	*****	*****	••••
1	****	*****	*****	*****	*****	*****	1.267	1.235	1.390	*****	*****	
:	*****					*****	1.999	1.963	2.076	*****	*****	
١	*****	••••	*****	••••	*****	*****	0.828	1.257	1.312	*****	••••	
1	*****	••••	••••	••••	*****	*****	2.005	1.958	2.042		••••	
:	••••	••••	••••		*****	*****	2.001	1.280	1.337	••••	••••	
1	*****	•••••		*****	*****	*****	2.021	2.067	2.009	*****	••••	
ı	*****	*****	*****	*****	*****	*****	1.220	1.326	1.319	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 83 of 112

Page 84 of 112

TEST NO. TEST NAME PLATE

: AMPHETAMINE ULTRA ACCURACY : AccuracyAmpCocHydro2912

W/L MODE TEST FILTER REF. FILTER

: 2/9/2012 : 3:59:28 PM : admin

: SINGLE : 450 nm

DATE TIME OPERATOR

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA ACCURACY, AUF-0046/111214, 1-8-13/12-14-13
: AccuracyAmpCocHydro2912, .
: Acid Stop, 120209, .
: AMHETAMINE ULTRA CONJUGATE, 035, 1-8-13
: COCAINE/BZE CONJUGATE, 053, 11-9-12
: EIA Buffer, 120209, .
: HYDROMORPHONE CONJUGATE, 011, 8-21-12
: K-Blue, 120209, .
: AMPHETAMINE ULTRA CUTOFF, 111212-WB, 1-8-13
: GROUP 1 CUTOFF, 120209, .
: GROUP 1 NEGATIVE, 120209, .
: Distilled Water, 120209, .
: Neogen Wash Buffer, 120209, .

OVER limit Calculation mode

: 3.500

: Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.465>0.900

+ equation - equation = CO = 0.901 = CO = 0.901

Page 85 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG	NEG								
В	CO1	NEG	NEG	NEG								
С	NNC1	NEG	NEG	NEG								
D	NCO1	NEG	NEG	NEG								
Ε	NEG	NEG	NEG	NEG								
F	NEG	NEG	NEG	NEG								
G	NEG	NEG	NEG	NEG								
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Amphetamine -50%]	E1	1.014	1.142	0.134	11.758%	NEG
	F1	0.990				
	G1	1.025				
	H1	1.071				
	A2	1.166				
	B2	1.153				
	C2	1.163				
	D2	1.355				
	E2	1.340				
[Amphetamine CO]	F2	1.081	0.987	0.157	15.916%	NEG
	G2	1.039				
	H2	1.351				
	A3	0.938				
	B3	0.957				
	C3	0.894				
	D3	0.847				
	E3	0.930				
	F3	0.849				
[Amphetamine +50%]	G3	0.915	0.916	0.073	7.922%	NEG
	H3	1.069				
	A4	0.971				
	B4	0.823				
	C4	0.939				
	D4	0.902				
	E4	0.901				
	F4	0.871				
	G4	0.851				
		Pa	ge 86 of 112			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.466	1.466	****	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	0.901	0.901	••••	••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.353	1.353	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.902	0.902	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

_	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.466	1.166	0.938	0.971	*****	*****		*****		*****	*****	*****
В	0.901	1.153	0.957	0.823	*****	*****		••••	••••	*****	*****	*****
С	1.353	1.163	0.894	0.939	*****	*****		••••	••••			****
D	0.902	1.355	0.847	0.902	*****	••••			*****	*****	*****	*****
Ε	1.014	1.340	0.930	0.901	*****				*****	*****	*****	*****
F	0.990	1.081	0.849	0.871	*****	*****	*****	*****	*****	*****	*****	*****
G	1.025	1.039	0.915	0.851	*****	*****	*****	••••	*****	*****	*****	*****
н	1.071	1.351	1.069	*****	*****	*****	*****	••••	*****	*****	••••	*****

***** Indicates an unread well or value out of range

Page 87 of 112

Page 88 of 112

TEST NO. TEST NAME PLATE

: COCAINE-BZE ACCURACY : AccuracyAmpCocHydro2912

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 2/9/2012 : 3:59:28 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: Admin

: COCAINE-BZE ACCURACY, BZF-0073/111121F, 11-9-12/11-21-13
: AccuracyAmpCocHydro2912, .
Acid Stop, 120209,
: COCAINE/BZE CONJUGATE, 053, 11-9-12
: EIA Buffer, 120209,
: K-Blue, 120209,
: COCAINE/BZE DEGATIVE, 111110-WB, 11-9-12
: COCAINE/BZE NEGATIVE, 111110-WB, 11-9-12
: GROUP 1 CUTOFF, 120209,
: GROUP 1 REGATIVE, 120209,
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.428>0.956

= CO = 0.956 = CO = 0.956 + equation - equation

Page 89 of 112

[Cocaine -50%]	E5 F5		170 084	1.07	2	0.088	8.251%	NEG	
Sample ID	Location	Data		Mean		S.D.	C.V.	Result	
"		NEG	POS	POS					
н		NEG	POS	POS					
G		NEG	POS	POS	POS				
F		NEG	POS	POS	POS				
E		NEG	NEG	POS	POS				
D		NCO1	NEG	POS	POS				
		NNC1	NEG	POS	POS				
С									

NEG POS POS

CO1 NEG POS POS

NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Cocaine -50%]	E5	1.170	1.072	0.088	8.251%	NEG
	F5	1.084				
	G5	0.919				
	H5	1.155				
	A6	0.970				
	B6	1.033				
	C6	1.039				
	D6	1.152				
	E6	1.130				
[Cocaine CO]	F6	1.055	0.956	0.070	7.352%	POS
	G6	1.005				
	H6	1.048				
	A7	0.990				
	B7	0.913				
	C7	0.919				
	D7	0.920				
	E7	0.886				
	F7	0.864				
[Cocaine +50%]	G7	0.763	0.739	0.032	4.274%	POS
	H7	0.704				
	A8	0.790				
	B8	0.749				
	C8	0.758				
	D8	0.686				
	E8	0.747				
	F8	0.729				
	G8	0.726				
		Pa	ge 90 of 112			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5	1.429	1.429	••••	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B5	0.956	0.956	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C5	0.815	0.815	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D5	0.402	0.402	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 91 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
4	*****	*****	*****	*****	1.429	0.970	0.990	0.790	*****	*****	*****	****
3	*****	*****	•••••	*****	0.956	1.033	0.913	0.749	*****	*****	*****	****
۱,	*****	*****		*****	0.815	1.039	0.919	0.758	*****	*****		*****
0	••••	••••		*****	0.402	1.152	0.920	0.686	*****			*****
:	••••	••••	••••	*****	1.170	1.130	0.886	0.747	*****	*****	••••	****
F	••••	••••		*****	1.084	1.055	0.864	0.729	*****	*****		****
3	••••	••••	••••		0.919	1.005	0.763	0.726	••••	••••		****
4	••••	*****	••••	*****	1.155	1.048	0.704	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 92 of 112

TEST NO. TEST NAME PLATE

: BENZODIAZEPINE GROUP ACCURACY : AccuracyBenzOpi2912

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/9/2012 : 4:40:51 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: BENZODIAZEPINE GROUP ACCURACY, BGF-0060/111205, 12-28-12/12-5-13
: Accuracy8enz0pi2912,
: Acid Stop, 120209,
: BENZODIAZEPINE GROUP CONJUGATE, 049, 12-28-12
: EIA Buffer, 120209,
: K-Blue, 120209,
: CPIATE GROUP CONJUGATE, 043, 1-10-13
: BENZODIAZEPINE GROUP CUTOFF, 110811-WB, 12-28-12
: BENZODIAZEPINE GROUP NEGATIVE, 110811-WB, 12-28-12
: GROUP 3 CUTOFF, 120209,
: GROUP 3 NEGATIVE, 120209,
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.302>1.075

+ equation - equation

Page 93 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	POS	POS	POS								
В	CO1	POS	POS	POS								
С	NNC1	POS	POS	POS								
D	NCO1	POS	POS	POS								
Е	POS	POS	POS	POS								
F	POS	POS	POS	POS								
G	POS	POS	POS	POS								
н	POS	POS	POS									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Benzodiaz -50%]	E1	0.736	0.753	0.040	5.319%	POS	_
	F1	0.731					
	G1	0.746					
	H1	0.807					
	A2	0.730					
	B2	0.729					
	C2	0.697					
	D2	0.791					
	E2	0.811					
[Benzodiaz CO]	F2	0.837	0.828	0.067	8.057%	POS	
	G2	0.849					
	H2	0.967					
	A3	0.727					
	B3	0.800					
	C3	0.809					
	D3	0.797					
	E3	0.791					
	F3	0.873					
Benzodiaz +50%]	G3	0.796	0.721	0.034	4.788%	POS	Ī
	H3	0.710					
	A4	0.685					
	B4	0.726					
	C4	0.694					
	D4	0.689					
	E4	0.713					
	F4	0.746					
	G4	0.727					
		Pa	ge 94 of 112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.303	2.303	••••	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.075	1.075	*****	••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	1.486	1.486	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.575	0.575	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	2.303	0.730	0.727	0.685	••••		*****	*****	••••	••••	*****	
В	1.075	0.729	0.800	0.726	••••	•••••	*****	*****	••••	••••	*****	••••
С	1.486	0.697	0.809	0.694	••••	*****	*****	*****	••••	••••	*****	
D	0.575	0.791	0.797	0.689	*****	*****	*****	*****	*****		*****	••••
E	0.736	0.811	0.791	0.713	••••	*****		*****	*****		*****	••••
F	0.731	0.837	0.873	0.746	••••	*****		*****	*****	••••	*****	••••
3	0.746	0.849	0.796	0.727	••••	•••••		*****	••••	••••	••••	
4	0.807	0.967	0.710	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 95 of 112

Page 96 of 112

TEST NO. TEST NAME PLATE

: COTININE ACCURACY : AccuracyCot2912

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm : *

DATE TIME OPERATOR : 2/9/2012 : 3:11:20 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE ACCURACY, CTI-0031/1102211, 4-23-12/2-21-13
: AccuracyCot2912,
: Acid Stop, 120209,
: COTININE CONJUGATE, 032,
: EIA Buffer, 120209,
: COTININE CUTOFF, 024,
: COTININE REGATIVE, 024,
: GROUP 3 CUTOFF, 120209,
: GROUP 3 NEGATIVE, 120209,
: Distilled Water, 120209,
: Neogen Wash Buffer, 120209,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.362>1.323

- equation

Page 97 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG	NEG								
В	CO1	NEG	NEG	NEG								
С	NNC1	NEG	NEG	NEG			-					
D	NCO1	NEG	NEG	NEG								
Е	NEG	NEG	NEG	NEG								
F	NEG	NEG	NEG	NEG								
G	NEG	NEG	NEG	NEG								
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Cotinine -50%]	E1	1.973	1.900	0.119	6.260%	NEG
	F1	1.980				
	G1	1.983				
	H1	2.073				
	A2	1.969				
	B2	1.758				
	C2	1.810				
	D2	1.794				
	E2	1.757				
[Cotinine CO]	F2	1.775	1.850	0.084	4.540%	NEG
	G2	1.837				
	H2	1.917				
	A3	2.034				
	B3	1.875				
	C3	1.834				
	D3	1.816				
	E3	1.797				
	F3	1.763				
[Cotinine +50%]	G3	1.801	1.892	0.079	4.163%	NEG
	H3	1.919				
	A4	2.057				
	B4	1.920				
	C4	1.927				
	D4	1.879				
	E4	1.853				
	F4	1.796				
	G4	1.876				
		Pa	ge 98 of 112			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.363	2.363	••••	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1	1.324	1.324	••••	****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C1	0.523	0.523	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D1	0.228	0.228	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 99 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.363	1.969	2.034	2.057	*****	*****	*****	••••	*****	*****	*****	****
В	1.324	1.758	1.875	1.920	*****	*****	••••	••••	*****	*****	*****	****
С	0.523	1.810	1.834	1.927	*****	*****	*****	••••	*****		*****	****
D	0.228	1.794	1.816	1.879	*****	*****	*****	••••	*****	*****		
E	1.973	1.757	1.797	1.853	*****	*****	*****	••••	*****	*****	*****	*****
F	1.980	1.775	1.763	1.796	*****	*****	*****	*****	*****	*****	*****	****
G	1.983	1.837	1.801	1.876	*****	*****	*****	••••	*****	*****	*****	****
н	2.073	1.917	1.919	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 100 of 112

TEST NO. TEST NAME PLATE : OPIATE GROUP ACCURACY : AccuracyBenzOpi2912 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/9/2012 : 4:40:51 PM : admin : OPIATE GROUP ACCURACY, MOF-0055/120105F, 1-10-13/1-5-14
: AccuracyBenzOpi2912, ,
: Acid Stop, 120209,
:ElA Buffer, 120209,
:I-Bube, 120209,
:OPIATE GROUP CONJUGATE, 043, 1-10-13
:GROUP 3 CUTOFF, 120209,
:GROUP 3 HEGATIVE, 120209,
:OPIATE GROUP CUTOFF, 110715-WB, 1-10-13
:OPIATE GROUP NEGATIVE, 110715-WB, 1-10-13
:Distilled Water, 120209,
: Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.039>1.044 = CO = 1.045 = CO = 1.045 + equation - equation

Page 101 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
A					NC1	NEG	NEG	NEG				
в					CO1	NEG	NEG	NEG				
С					NNC1	NEG	NEG	NEG				
D					NCO1	NEG	NEG	NEG				
E					NEG	NEG	NEG	NEG				
F					NEG	NEG	NEG	NEG				
G					NEG	NEG	NEG	NEG				
н					NEG	NEG	NEG					

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Opiate -50%]	E5	1.684	1.675	0.072	4.285%	NEG
	F5	1.648				
	G5	1.719				
	H5	1.731				
	A6	1.769				
	B6	1.595				
	C6	1.737				
	D6	1.552				
	E6	1.643				
[Opiate CO]	F6	1.686	1.641	0.105	6.369%	NEG
	G6	1.705				
	H6	1.770				
	A7	1.676				
	B7	1.678				
	C7	1.561				
	D7	1.481				
	E7	1.489				
	F7	1.725				
[Opiate +50%]	G7	1.707	1.593	0.099	6.192%	NEG
	H7	1.639				
	A8	1.547				
	B8	1.693				
	C8	1.640				
	D8	1.445				
	E8	1.647				
	F8	1.440				
	G8	1.575				
		Pa	ge 102 of 112			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5	2.039	2.039	••••	••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B5	1.045	1.045	*****	••••	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C5	1.915	1.915	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D5	1.040	1.040	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA	MATRIX/TAB	LE:	OD
------	------------	-----	----

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	••••	••••	2.039	1.769	1.676	1.547	*****	*****	*****	****
В	••••	*****	*****	••••	1.045	1.595	1.678	1.693	*****	••••	*****	
С	*****		••••	••••	1.915	1.737	1.561	1.640	*****	*****	*****	
D	••••	••••	*****	••••	1.040	1.552	1.481	1.445	*****	*****	*****	••••
Е	*****	••••	••••		1.684	1.643	1.489	1.647	*****	*****	*****	****
F	*****	••••	*****		1.648	1.686	1.725	1.440	*****	*****	*****	••••
G	*****	*****	*****	*****	1.719	1.705	1.707	1.575	*****	•••••	*****	
н	*****	*****	*****	*****	1.731	1.770	1.639	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 103 of 112

Page 104 of 112

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE ACCURACY : AccuracyMAmpOxyTHC2912 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 2/9/2012 : 4:13:44 PM : admin : OXYCODONE-OXYMORPHONE ACCURACY, OXF-0036/110506F, 1-16-13/5-6-13
: AccuracyMampOxyTHC2912, ; Acid Stop, 120209, ; ElA Buffer, 120209, ; Bla Buffer, 120209, ; CAYCODONE/OXYMORPHONE CONJUGATE, 028, 1-16-13 ; GROUP 2 CUTOFF, 120209, ; GROUP 2 NEGATIVE, 120209, ; OXYCODONE/OXYMORPHONE CUTOFF, 120117-WB, 1-16-13 ; OXYCODONE/OXYMORPHONE CUTOFF, 120117-WB, 1-16-13 ; Distilled Water, 120209, ; Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 2.622>0.963 NC>CO = CO = 0.964 = CO = 0.964 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A					NC1	NEG	NEG	POS				
в					CO1	NEG	NEG	POS				
c					NNC1	NEG	NEG	POS				
D					NCO1	NEG	NEG	POS				
E					NEG	NEG	NEG	POS				
F					NEG	NEG	NEG	POS				
G					NEG	NEG	POS	POS				
н					NEG	NEG	POS					

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Oxycodone -50%]	E5	1.574	1.488	0.079	5.318%	NEG	
,	F5	1.430					
	G5	1.504					
	H5	1.523					
	A6	1.564					
	B6	1.524					
	C6	1.486					
	D6	1.313					
	E6	1.469					
[Oxycodone CO]	F6	1.290	1.185	0.067	5.684%	NEG	
	G6	1.123					
	H6	1.250					
	A7	1.241					
	B7	1.191					
	C7	1.194					
	D7	1.120					
	E7	1.169					
	F7	1.088					
[Oxycodone +50%]	G7	0.928	0.897	0.057	6.389%	POS	
	H7	0.887					
	A8	0.894					
	B8	0.851					
	C8	0.840					
	D8	0.882					
	E8	0.904					
	F8	0.855					
	G8	1.030					
		Pag	ge 106 of 112				

Page 105 of 112

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5	2.622	2.622	••••	••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B5	0.964	0.964	*****	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C5	2.533	2.533	••••	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D5	1.263	1.263	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA	MATRIX/TABLE	:	OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	*****	2.622	1.564	1.241	0.894	*****	*****	*****	*****
в	*****		••••	*****	0.964	1.524	1.191	0.851	*****	*****	*****	*****
С	*****		••••	*****	2.533	1.486	1.194	0.840	*****	*****	*****	*****
D	*****		••••	*****	1.263	1.313	1.120	0.882	*****	*****	*****	*****
Е	*****		••••	*****	1.574	1.469	1.169	0.904	*****	*****	*****	*****
F	*****	*****	••••	••••	1.430	1.290	1.088	0.855	*****	••••	*****	****
G	*****	*****	••••	*****	1.504	1.123	0.928	1.030	*****	*****	*****	*****
н	*****	*****	*****	*****	1.523	1.250	0.887	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 107 of 112

Page 108 of 112

TEST NO. TEST NAME PLATE : THC ACCURACY : AccuracyMAmpOxyTHC2912 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 2/9/2012 : 4:13:44 PM : admin : THC ACCURACY, TCF-0054/111221, 12-26-12/12-21-13
: AccuracyMAmpOxyTHC2912,
: Acid Stop, 120209,
:Ela Buffer, 120209,
:K-Blue, 120209,
:THC CONJUGATE, 043, 12-26-12
:GROUP 2 CUTOFF, 120209,
:GROUP 2 NEGATIVE, 120209,
:THC CUTOFF, 110826-WB, 12-26-12
:THC NEGATIVE, 110826-WB, 12-26-12
:THC NEGATIVE, 110826-WB, 12-26-12
:Distilled Water, 120209,
:Neogen Wash Buffer, 120209, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.742>1.035 NC>CO = CO = 1.036 = CO = 1.036 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A									NC1	POS	POS	POS
в									CO1	POS	POS	POS
c									NNC1	POS	POS	POS
0									NCO1	POS	POS	POS
E									POS	POS	POS	POS
F									POS	POS	POS	POS
3									POS	POS	POS	POS
н									POS	POS	POS	

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[THC -50%]	E9	0.792	0.802	0.073	9.087%	POS	
	F9	0.719					
	G9	0.760					
	H9	0.797					
	A10	0.929					
	B10	0.844					
	C10	0.840					
	D10	0.690					
	E10	0.844					
[THC CO]	F10	1.067	0.978	0.075	7.713%	POS	
	G10	1.007					
	H10	1.034					
	A11	1.010					
	B11	0.999					
	C11	0.968					
	D11	0.970					
	E11	0.946					
	F11	0.802					
[THC +50%]	G11	1.028	0.884	0.130	14.720%	POS	
	H11	0.714					
	A12	1.007					
	B12	0.923					
	C12	0.917					
	D12	0.808					
	E12	0.927					
	F12	0.656					
	G12	0.977 Page	110 of 112				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A9	1.742	1.742	*****	••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	В9	1.036	1.036	••••	*****	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	C9	1.635	1.635	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	D9	0.688	0.688	*****	*****	NCO1

Page 109 of 112

[...] Indicates manual entry if Sample ID is bracketed

**** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 111 of 112

	1	2	3	4	5	6	7	8	9	10	11	12
1	*****					*****	*****	*****	1.742	0.929	1.010	1.007
3	*****	••••	*****	*****	••••	*****		*****	1.036	0.844	0.999	0.923
;	*****	*****	*****			*****		*****	1.635	0.840	0.968	0.917
,	*****		*****		••••	*****	*****	*****	0.688	0.690	0.970	0.808
:	••••		*****		••••		••••	*****	0.792	0.844	0.946	0.927
:	••••	*****	*****		••••		••••	*****	0.719	1.067	0.802	0.656
;	****	*****	*****	*****		*****		*****	0.760	1.007	1.028	0.977
,			*****			*****	*****	*****	0.797	1.034	0.714	

***** Indicates an unread well or value out of range

Dynex Technologies

Page 112 of 112

Appendix F

ELISA Results for Validation #2

Kit, Plate, and Reagent Lot Data

Date: 03/06/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0046	BGF-0060	BZF-0073	CTI-0031	MOF-0055	OXF-0036	TCF-0054
Kit Exp. Date	1/8/2013	12/28/2012	11/9/2012	4/23/2012	1/5/2014	1/16/2013	12/26/2012
Plate #	111214	111205	111121F	1102211	120105F	110506F	111221
Plate Exp. Date	12/14/2013	12/5/2013	11/21/2013	2/21/2013	1/5/2014	5/6/2013	12/21/2013
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	24	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	035	049	053	032	043	028	043
CONJ Exp.	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 03/06/2012 Negative and Cutoff Calibrators were prepared 03/06/2012

 $\ \, \textbf{Kit, Plate, and Reagent Lot Data} \\$

Date: 03/07/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0046	BGF-0060	BZF-0073	CTI-0031	MOF-0055	OXF-0036	TCF-0054
Kit Exp. Date	1/8/2013	12/28/2012	11/9/2012	4/23/2012	1/5/2014	1/16/2013	12/26/2012
Plate #	111214	111205	111121F	1102211	120105F	110506F	111221
Plate Exp. Date	12/14/2013	12/5/2013	11/21/2013	2/21/2013	1/5/2014	5/6/2013	12/21/2013
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	24	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	035	049	053	032	043	028	043
CONJ Exp.	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 03/07/2012 Negative and Cutoff Calibrators were prepared 03/07/2012

Kit, Plate, and Reagent Lot Data

Date: 03/08/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0046	BGF-0060	BZF-0073	CTI-0031	MOF-0055	OXF-0036	TCF-0054
Kit Exp. Date	1/8/2013	12/28/2012	11/9/2012	4/23/2012	1/5/2014	1/16/2013	12/26/2012
Plate #	111214	111205	111121F	1102211	120105F	110506F	111221
Plate Exp. Date	12/14/2013	12/5/2013	11/21/2013	2/21/2013	1/5/2014	5/6/2013	12/21/2013
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	24	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	035	049	053	032	043	028	043
CONJ Exp.	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012

 $Acid\ Stop,\ EIA\ Buffer,\ K-Blue,\ Distilled\ Water,\ and\ Neogen\ Wash\ Buffer\ were\ prepared\ on\ 03/08/2012$ Negative and Cutoff Calibrators were prepared 03/08/2012

TEST NO. TEST NAME PLATE

: : AMPHETAMINE ULTRA : Drift AmpOxy120306

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/6/2012 : 5:53:08 PM

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA, , : Drift AmpOxy120306, , : Acid Stop, , : AMPHETAMINE ULTRA CONJUGATE, , : EIA Buffer, ,

: EIA Buffer,
:K-Blue,
: OXYCODONE/OXYMORPHONE CONJUGATE,
: OXYCODONE/OXYMORPHONE CONJUGATE,
: AMPHETAMINE ULTRA CUTOFF,
: GAMPHETAMINE ULTRA NEGATIVE,
: GROUP 1 CUTOFF,
: GROUP 1 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

+ equation

1.180>0.875

- equation

= CO = 0.875 = CO = 0.875

Page 1 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	NEG	NEG									
D	NNC1	NEG	NEG									
Ε	NCO1	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Blank 1]	F1	1.365	1.365	*****	*****	NEG	
Blank 2]	G1	1.348	1.348	*****	*****	NEG	
[Blank 3]	H1	1.400	1.400	*****	*****	NEG	
[Blank 4]	A2	1.844	1.844	*****	*****	NEG	
[Blank 5]	B2	1,711	1.711	*****	*****	NEG	
[Blank 6]	C2	1.596	1.596	*****	••••	NEG	
[Blank 7]	D2	1,449	1.449	*****	*****	NEG	
[Blank 8]	E2	1.374	1.374	*****	*****	NEG	
[Blank 9]	F2	1.206	1.206	*****	*****	NEG	
[Blank 10]	G2	1.449	1.449	*****	*****	NEG	
(Blank 11)	H2	1.492	1.492	*****	*****	NEG	
[Blank 12]	A3	1.245	1.245	*****	*****	NEG	
[Blank 13]	B3	1.812	1.812	*****	*****	NEG	
(Blank 14)	C3	1.628	1.628	*****	*****	NEG	
[Blank 15]	D3	1.045	1.045	*****	*****	NEG	
[Blank 16]	E3	1.757	1.757	*****	*****	NEG	
[Blank 17]	F3	1.699	1.699	*****	*****	NEG	
Group 1 NEG]	G3	1.416	1.416	*****	*****	NEG	
[Group 1 CO]	H3	1.064	1.064	*****	*****	NEG	

Mean	
1.181	
Page 2 of 128	

S.D.

C.V.

NC1

Data

1.181

Location

A1

Sample ID

NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	0.881 0.870	0.875	0.008	0.906%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.352	1.352	••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	1.089	1.089	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.181	1.844	1.245	••••	*****	*****	*****	*****	*****	••••	*****	*****
В	0.881	1.711	1.812	••••	*****	*****		*****	*****		*****	*****
С	0.870	1.596	1.628	••••		*****		*****	•••••	••••	*****	••••
D	1.352	1.449	1.045	*****	*****	*****	*****	*****	••••	*****	*****	*****
Е	1.089	1.374	1.757	••••	••••	*****			••••		••••	*****
F	1.365	1.206	1.699	*****	*****	••••	••••	••••	••••	*****	••••	*****
G	1.348	1.449	1.416	••••	*****	••••	••••	*****			*****	*****
н	1.400	1.492	1.064	*****	*****	*****	*****	*****	*****	*****	*****	

***** Indicates an unread well or value out of range

Page 3 of 128

Page 4 of 128

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : Drift AmpOxy120306 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 3/6/2012 : 5:53:08 PM : admin OPERATOR

OXYCODONE-OXYMORPHONE,
Drift AmpOxy120306,
Acid Stop.
EliA Buffer,
K-Blue,
OXYCODONE/OXYMORPHONE CONJUGATE,
GROUP 1 CUTOFF,
GROUP 1 NEGATIVE,
OXYCODONE/OXYMORPHONE CUTOFF,
OXYCODONE/OXYMORPHONE CUTOFF,
OXYCODONE/OXYMORPHONE NEGATIVE,
DISTILIED Wash
Wash Buffer,
Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 2.296>1.277 = CO = 1.278 = CO = 1.278 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	NEG						
в				CO1	NEG	NEG						
c				CO1	NEG	NEG						
ь				NNC1	NEG	NEG						
E				NCO1	NEG	NEG						
F				NEG	NEG	NEG						
G				NEG	NEG	NEG						
нГ				NEG	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F4	2.139	2.139	*****	*****	NEG
[Blank 2]	G4	2.389	2.389	*****	*****	NEG
[Blank 3]	H4	2.405	2.405	*****	*****	NEG
[Blank 4]	A5	2.340	2.340	*****	*****	NEG
[Blank 5]	B5	2.183	2.183	*****	•••••	NEG
[Blank 6]	C5	2.279	2.279	*****	••••	NEG
[Blank 7]	D5	2.117	2.117	*****	*****	NEG
[Blank 8]	E5	2.110	2.110	*****	*****	NEG
[Blank 9]	F5	2.190	2.190	*****	*****	NEG
[Blank 10]	G5	2.098	2.098	*****	*****	NEG
[Blank 11]	H5	2.352	2.352	*****	*****	NEG
[Blank 12]	A6	2.421	2.421	*****	*****	NEG
[Blank 13]	B6	2.331	2.331	••••	•••••	NEG
[Blank 14]	C6	2.200	2.200	*****	*****	NEG
[Blank 15]	D6	2.269	2.269	*****	*****	NEG
[Blank 16]	E6	2.215	2.215	*****	*****	NEG
[Blank 17]	F6	2.269	2.269	*****	*****	NEG
[Group 1 NEG]	G6	1.982	1.982	*****	*****	NEG
[Group 1 CO]	H6	1.419	1.419	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	2.297	2.297	*****	*****	NC1

Page 6 of 128

10 11 12

***** ***** *****

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.415 1.140	1.278	0.194	15.203%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	2.253	2.253	*****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E4	0.883	0.883	*****	*****	NCO1

Page 5 of 128

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

Е			*****	0.883	2.110	2.215					***
F		*****	*****	2.139	2.190	2.269	*****	*****	*****	*****	
G	•••••	••••	*****	2.389	2.098	1.982	*****	*****	*****	*****	•••
н	••••	••••	*****	2.405	2.352	1.419	*****	*****	*****	*****	***
			-	,							_

2.297 2.340 2.421

1.140 2.279 2.200

2.253 2.117 2.269

1,415

В

С

D

2.183 2.331

***** Indicates an unread well or value out of range

Dynex Technologies

DATA MATRIX/TABLE: OD

Page 7 of 128

Page 8 of 128

TEST NO. TEST NAME PLATE

: BENZODIAZEPINE GROUP : Drift BenzCocOpiTHC120306

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

OPERATOR

: 3/6/2012 : 5:45:34 PM

Kit Lot Data Plate Lot Data Reagent Lot Data

BENZODIAZEPINE GROUP,
Drift BenzCocOpiTHC120306,
Acid Stop,
BENZODIAZEPINE GROUP CONJUGATE,
COCAINE/BZE CONJUGATE,
EIA Buffer,
K-Blue,
OPIATE GROUP CONJUGATE,
THC CONJUGATE,
BENZODIAZEPINE GROUP CUTOFF,
BENZODIAZEPINE GROUP CUTOFF,
GROUP Z CUTOFF,
GROUP Z BEGATIVE,
Distilled Water,
Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.618>0.731

= CO = 0.731 = CO = 0.731 + equation - equation

Page 9 of 128

		_					_					40
	_ 1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	NEG	NEG									
D	NNC1	NEG	NEG									
Е	NCO1	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
Blank 1]	F1	1.943	1.943	*****	*****	NEG
Blank 2]	G1	1.890	1.890	*****	••••	NEG
Blank 3]	H1	1.901	1.901	*****	*****	NEG
Blank 4]	A2	2.002	2.002	*****	*****	NEG
Blank 5]	B2	2.145	2.145	*****	*****	NEG
Blank 6]	C2	2.067	2.067	*****	*****	NEG
Blank 7]	D2	1.910	1.910	*****	*****	NEG
Blank 8]	E2	1.931	1.931	*****	•••••	NEG
Blank 9]	F2	1.897	1.897	*****	*****	NEG
Blank 10]	G2	2.249	2.249	*****	*****	NEG
Blank 11]	H2	2.057	2.057	*****	*****	NEG
Blank 12]	A3	1.910	1.910	*****	*****	NEG
Blank 13]	B3	1.875	1.875	*****	*****	NEG
Blank 14]	C3	1.758	1.758	*****	*****	NEG
Blank 15]	D3	1.815	1.815	*****	*****	NEG
Blank 16]	E3	2.171	2.171	*****	*****	NEG
Blank 17]	F3	2.134	2.134	*****	*****	NEG
Group 2 NEG]	G3	1.848	1.848	*****	*****	NEG
Group 2 CO]	НЗ	0.867	0.867	••••	•••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1		-010		*****	*****	NC1

Page 10 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	0.608 0.854	0.731	0.174	23.834%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.313	1.313	*****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.388	0.388	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.618	2.002	1.910	••••	*****		*****	*****	*****	*****	•••••	••••
В	0.608	2.145	1.875	*****	*****	••••		*****	••••		••••	
С	0.854	2.067	1.758	*****	*****	•••••		*****	••••	*****	••••	
0	1.313	1.910	1.815	••••	*****	*****	••••	*****	*****	*****	*****	****
Ε	0.388	1.931	2.171	••••	*****	*****	••••	*****	••••	*****	••••	
F	1.943	1.897	2.134	••••	••••	*****	*****	*****	*****		*****	••••
3	1.890	2.249	1.848	••••	••••	••••	••••	*****	••••	*****	*****	••••
4	1.901	2.057	0.867	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 11 of 128

Page 12 of 128

TEST NO. TEST NAME PLATE : COCAINE-BZE : Drift BenzCocOpiTHC120306 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/6/2012 : 5:45:34 PM : admin : COCAINE-BZE,
: Drift BenzCocOpiTHC120306,
: Acid Stop,
: COCAINE/BZE CONJUGATE,
: EIA Buffer,
: K-Blue,
: COCAINE/BZE CUTOFF,
: COCAINE/BZE NEGATIVE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.107>1.029 = CO = 1.030 = CO = 1.030 + equation - equation

1	2	3	4	5	6	7	8	9	10	11	12
A			NC1	NEG	NEG						
в			CO1	POS	POS						
			CO1	POS	POS						
			NNC1	POS	POS						
E .			NCO1	POS	POS						
F			NEG	POS	POS						
3			NEG	POS	POS						
4			NEG	POS	POS						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F4	1.356	1.356	*****	*****	NEG
[Blank 2]	G4	1.336	1.336	*****	*****	NEG
[Blank 3]	H4	1.399	1.399	*****	*****	NEG
[Blank 4]	A5	1.078	1.078	*****	*****	NEG
[Blank 5]	B5	1.029	1.029	*****	*****	POS
[Blank 6]	C5	0.953	0.953	*****	*****	POS
[Blank 7]	D5	0.932	0.932	*****	*****	POS
[Blank 8]	E5	0.942	0.942	••••	•••••	POS
[Blank 9]	F5	0.970	0.970	*****	*****	POS
[Blank 10]	G5	0.925	0.925	*****	••••	POS
[Blank 11]	H5	0.907	0.907	*****	*****	POS
[Blank 12]	A6	1.191	1.191	*****	*****	NEG
[Blank 13]	B6	1.000	1.000	*****	*****	POS
[Blank 14]	C6	0.905	0.905	*****	••••	POS
[Blank 15]	D6	0.982	0.982	*****	••••	POS
[Blank 16]	E6	0.919	0.919	••••	•••••	POS
[Blank 17]	F6	0.947	0.947	*****	*****	POS
[Group 2 NEG]	G6	0.841	0.841	*****	*****	POS
[Group 2 CO]	Н6	0.582	0.582	*****	*****	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	1.107	1.107	*****	*****	NC1

Page	14 of 128	

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.021 1.039	1.030	0.012	1.209%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	0.691	0.691	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E4	0.328	0.328	*****	*****	NCO1

Page 13 of 128

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	1.107	1.078	1.191	••••	••••	••••	••••	*****	*****
В	*****	*****		1.021	1.029	1.000	*****	••••	••••	••••	*****	*****
С	*****	••••	••••	1.039	0.953	0.905	*****	••••	*****	*****	*****	*****
D	*****	*****	••••	0.691	0.932	0.982	*****	••••		*****	*****	*****
Ε	*****	*****	*****	0.328	0.942	0.919	*****	••••	••••	*****	*****	*****
F	*****	*****	••••	1.356	0.970	0.947	*****				*****	*****
G	*****	••••	••••	1.336	0.925	0.841	••••	••••	••••	*****	*****	*****
н	*****	*****	*****	1.399	0.907	0.582	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

DATA MATRIX/TABLE : OD

Page 15 of 128

Page 16 of 128

TEST NO. TEST NAME PLATE : OPIATE GROUP : Drift BenzCocOpiTHC120306 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/6/2012 : 5:45:34 PM : admin OFIATE GROUP,
Drift BenzCocOpiTHC120306,
Add Stop,
EIA Buffer,
K-Blue,
OPIATE GROUP CONJUGATE,
GROUP 2 CUTOFF,
GROUP 2 NEGATIVE,
OPIATE GROUP CUTOFF,
OPIATE GROUP CUTOFF,
OPIATE GROUP STOPP
DISTRIBUTED
DISTRIBU Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.422>1.251 NC>CO + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
1							NC1	NEG	NEG			
в							CO1	NEG	NEG			
:							CO1	NEG	NEG			
,							NNC1	NEG	NEG			
•							NCO1	NEG	NEG			
• [NEG	NEG	NEG			
3							NEG	NEG	NEG			
4							NEG	NEG	POS			

Sample ID	Location	Data	Mean	\$.D.	C.V.	Result
[Blank 1]	F7	1.675	1.675	*****	*****	NEG
[Blank 2]	G7	1.661	1.661	*****	*****	NEG
[Blank 3]	H7	1.624	1.624	*****	*****	NEG
[Blank 4]	A8	1.641	1.641	*****	*****	NEG
[Blank 5]	B8	1.467	1.467	*****	*****	NEG
[Blank 6]	C8	1.693	1.693	*****	*****	NEG
[Blank 7]	D8	1.687	1.687	*****	*****	NEG
[Blank 8]	E8	1.691	1.691	*****	*****	NEG
[Blank 9]	F8	1.542	1.542	*****	*****	NEG
[Blank 10]	G8	1.550	1.550	*****	*****	NEG
[Blank 11]	H8	1.553	1.553	*****	*****	NEG
[Blank 12]	A9	1.619	1.619	*****	*****	NEG
[Blank 13]	B9	1.602	1.602	*****	*****	NEG
[Blank 14]	C9	1.433	1.433	•••••	*****	NEG
[Blank 15]	D9	1.691	1.691	*****	*****	NEG
[Blank 16]	E9	1.546	1.546	*****	*****	NEG
[Blank 17]	F9	1.674	1.674	*****	*****	NEG
[Group 2 NEG]	G9	1.378	1.378	*****	*****	NEG
[Group 2 CO]	Н9	1.178	1.178	*****	*****	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
				*****	*****	
NC1	A7	1.423	1.423			NC1

Page 18 of 128

TIELD ID. DIIIL DOILLO	000p111012000		AL GROOM			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B7 C7	1.281 1.222	1.252	0.042	3.340%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D7	1.799	1.799	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E7	0.940	0.940	*****	*****	NCO1

Page 17 of 128

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA	MATR	RIX/TA	BLE	:	OD
------	------	--------	-----	---	----

-	D. DIIIL C	DELIZOUG	pillioiz	.0000		OF	AIE GNO					
	1	2	3	4	5	6	7	8	9	10	11	12
.[*****	*****	*****	*****	*****		1.423	1.641	1.619	*****	*****	*****
ŀ	••••	*****	*****	*****	*****		1.281	1.467	1.602	*****	*****	*****
1	••••	*****	*****	*****	*****	*****	1.222	1.693	1.433	*****	*****	****
١	••••	••••	••••	*****	*****	*****	1.799	1.687	1.691	*****	*****	*****
ı	••••	••••	*****	*****	*****		0.940	1.691	1.546	*****	*****	*****
1	••••		••••	••••	••••	••••	1.675	1.542	1.674	*****	*****	*****
ı	••••		*****	*****	*****	*****	1.661	1.550	1.378	*****	*****	*****
ıÌ	*****	*****	*****	*****	*****	*****	1.624	1.553	1.178	*****	*****	

***** Indicates an unread well or value out of range

Page 19 of 128

Page 20 of 128

Mate ID: Drift BenzCocupi i PIC 120300 TEST NO. TEST NAME PLATE : : THC : Drift BenzCocOpiTHC120306 DATE TIME OPERATOR W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : 3/6/2012 : 5:45:34 PM : admin : THC, .
: Drift BenzCocOpiTHC120306, ,
: Acid Stop, .
: ElA Buffer, .
:K-Blue, .
: THC CONJUGATE, .
:GROUP 2 CUTOFF, .
:GROUP 2 NEGATIVE, .
:THC CUTOFF, .
:THC NEGATIVE, .
:Distilled Water, . Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.749>1.333 - equation Page 21 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
1										NC1	NEG	NEG
3										CO1	NEG	POS
: [CO1	POS	POS
1										NNC1	POS	POS
:										NCO1	POS	POS
:										POS	POS	POS
3										NEG	POS	POS
4										NEG	NEG	POS

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F10	1.181	1.181	*****	*****	POS
[Blank 2]	G10	1.671	1.671	****	*****	NEG
[Blank 3]	H10	1.760	1.760	*****	*****	NEG
[Blank 4]	A11	1.468	1.468	*****	*****	NEG
[Blank 5]	B11	1.410	1.410	*****	*****	NEG
[Blank 6]	C11	0.955	0.955	*****	*****	POS
[Blank 7]	D11	1.297	1.297	*****	*****	POS
[Blank 8]	E11	1.318	1.318	*****	*****	POS
[Blank 9]	F11	1.274	1.274	*****	*****	POS
[Blank 10]	G11	1.220	1.220	*****	*****	POS
[Blank 11]	H11	1.409	1.409	*****	*****	NEG
[Blank 12]	A12	1.359	1.359	*****	*****	NEG
[Blank 13]	B12	1.323	1.323	*****	*****	POS
[Blank 14]	C12	1.285	1.285	*****	*****	POS
[Blank 15]	D12	1.234	1.234	*****	*****	POS
[Blank 16]	E12	1.251	1.251	*****	*****	POS
[Blank 17]	F12	1.232	1.232	*****	*****	POS
[Group 2 NEG]	G12	1.169	1.169	*****	*****	POS
[Group 2 CO]	H12	0.998	0.998	••••	••••	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A10	1.749	1.749	••••	*****	NC1
		Pa	ge 22 of 128			

Plate ID: Drift BenzCo	ocOpiTHC120306		THC			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B10 C10	1.286 1.382	1.334	0.068	5.071%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D10	1.720	1.720	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E10	0.671	0.671	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA	MATRIX/TABLE	:	OD

	1	2	3	4	5	6	7	8	9	10	11	12
١,	*****	*****	*****	*****		*****	*****	*****	*****	1.749	1.468	1.359
в	*****	*****	*****	*****		*****	••••	*****	*****	1.286	1.410	1.323
0	*****	*****		*****	••••	*****		*****	*****	1.382	0.955	1.285
5	*****	••••	*****	*****	••••	*****	*****	*****	*****	1.720	1.297	1.234
=	*****	••••	••••	*****		••••	••••	*****		0.671	1.318	1.251
F	*****	••••	*****	*****	*****	*****	*****	*****	*****	1.181	1.274	1.232
3	*****	•••••	*****	*****	••••		••••		*****	1.671	1.220	1.169
4	*****	*****	****	*****	*****	*****	*****	*****	*****	1.760	1.409	0.998

***** Indicates an unread well or value out of range

Dynex Technologies

Page 23 of 128

Page 24 of 128

TEST NO. TEST NAME PLATE

: COTININE : Drift Cot120306

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/6/2012 : 4:48:44 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE,
: Drift Cot120306,
: Acid Stop.,
: COTININE CONJUGATE,
: EIA Buffer,
: K-Blue,
: COTININE CUTOFF,
: COTININE NEGATIVE,
: GROUP 1 CUTOFF,
: GROUP 1 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.975>1.729

+ equation - equation

Page 25 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	NEG	NEG									
)	NNC1	NEG	NEG									
=	NCO1	NEG	NEG									
F	NEG	NEG	NEG									
3	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F1	2.836	2.836	*****	*****	NEG
[Blank 2]	G1	2.889	2.889	*****	*****	NEG
[Blank 3]	H1	2.919	2.919	*****	*****	NEG
[Blank 4]	A2	2.958	2.958	*****	*****	NEG
[Blank 5]	B2	2.961	2.961	*****	*****	NEG
[Blank 6]	C2	2.997	2.997	*****	*****	NEG
[Blank 7]	D2	3.012	3.012	*****	*****	NEG
[Blank 8]	E2	2.922	2.922	*****	*****	NEG
[Blank 9]	F2	2.920	2.920	*****	*****	NEG
[Blank 10]	G2	3.010	3.010	*****	*****	NEG
[Blank 11]	H2	3.072	3.072	*****	*****	NEG
Blank 12]	A3	3.012	3.012	*****	*****	NEG
[Blank 13]	B3	2.990	2.990	*****	*****	NEG
[Blank 14]	C3	2.998	2.998	*****	*****	NEG
[Blank 15]	D3	2.965	2.965	*****	*****	NEG
[Blank 16]	E3	2.950	2.950	*****	*****	NEG
[Blank 17]	F3	2.969	2.969	*****	*****	NEG
[Group 1 NEG]	G3	2.961	2.961	*****	*****	NEG
[Group 1 CO]	Н3	1.801	1.801	••••	•••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

2.976	•
Page 26 of 128	

NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.777 1.681	1.729	0.068	3.954%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	2.175	2.175	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	1.163	1.163	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.976	2.958	3.012	••••	*****	*****	*****	*****	*****	*****	*****	••••
В	1.777	2.961	2.990	*****	*****	*****	••••	••••	••••		••••	••••
С	1.681	2.997	2.998	••••	*****		••••	••••	*****		*****	••••
D	2.175	3.012	2.965	*****	*****	*****	*****	••••	*****	*****	*****	••••
E	1.163	2.922	2.950	*****	*****	*****	*****	••••	••••	••••		••••
F	2.836	2.920	2.969	*****	*****	*****	*****	*****	*****	*****	*****	••••
G	2.889	3.010	2.961	*****	*****	*****	*****	••••	••••	••••	*****	••••
н	2.919	3.072	1.801	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 27 of 128

Page 28 of 128

TEST NO. TEST NAME PLATE

: COCAINE-BZE : Drift2 CocOpi120308

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/8/2012 : 12:34:36 PM

Kit Lot Data Plate Lot Data Reagent Lot Data

COCAINE-BZE,
Drift2 Oxy120308,
Acid Stop,
COCAINE/BZE CONJUGATE,
EIA Buffer,
K-Blue,
OPIATE GROUP CONJUGATE,
COCAINE/BZE CUTOFF,
COCAINE/BZE NEGATIVE,
GROUP 2 CUTOFF,
GROUP 2 NEGATIVE,
Distilled Water,
Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

1.453>1.164

Q.C. equations

NC>CO + equation

- equation

= CO = 1.164 = CO = 1.164

Page 29 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	NEG	NEG									
D	NNC1	NEG	NEG									
Ε	NCO1	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F1	1.565	1.565	*****	*****	NEG
[Blank 2]	G1	1.615	1.615	*****	*****	NEG
[Blank 3]	H1	1.578	1.578	*****	*****	NEG
[Blank 4]	A2	1.674	1.674	*****	*****	NEG
[Blank 5]	B2	1.637	1.637	*****	*****	NEG
[Blank 6]	C2	1.668	1.668	*****	*****	NEG
[Blank 7]	D2	1.723	1.723	*****	*****	NEG
[Blank 8]	E2	1.650	1.650	*****	•••••	NEG
[Blank 9]	F2	1.711	1.711	*****	*****	NEG
[Blank 10]	G2	1.672	1.672	*****	*****	NEG
[Blank 11]	H2	1.589	1.589	*****	*****	NEG
Blank 12]	A3	1.721	1.721	*****	*****	NEG
[Blank 13]	В3	1.688	1.688	*****	*****	NEG
[Blank 14]	C3	1.721	1.721	*****	*****	NEG
[Blank 15]	D3	1.700	1.700	*****	*****	NEG
Blank 16j	E3	1.602	1.602	*****	*****	NEG
[Blank 17]	F3	1.634	1.634	*****	*****	NEG
[Group II NEG]	G3	1.449	1.449	*****	*****	NEG
[Group II CO]	Н3	1.180	1.180	••••	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.454	1.454	*****	*****	NC1

Page	30	of	128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.174 1.155	1.164	0.013	1.127%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	0.851	0.851	*****	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.463	0.463	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.454	1.674	1.721	*****	*****	*****	*****	••••	*****	*****	*****	••••
3	1.174	1.637	1.688	*****	*****	*****	••••	••••	••••	••••	••••	****
;	1.155	1.668	1.721	••••	••••	••••	••••	••••	••••	••••	*****	****
)	0.851	1.723	1.700	*****	*****	*****	••••	•••••	•••••	••••	••••	
	0.463	1.650	1.602	••••	••••	*****	••••	••••	*****	••••	*****	
F	1.565	1.711	1.634	••••	••••	*****	••••	••••	*****	••••	*****	
3	1.615	1.672	1.449	••••	*****	*****	*****	••••	*****	••••	••••	
4	1.578	1.589	1.180	*****	*****	*****	*****	*****	••••	*****	*****	****

***** Indicates an unread well or value out of range

Page 31 of 128

Page 32 of 128

TEST NO. TEST NAME PLATE : OPIATE GROUP : Drift2 CocOpi120308 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 3/8/2012 : 12:34:36 PM : admin OPIATE GROUP, .
Drift2 Oxy120308, .
Acid Stop., .
EIA Buffer, .
K-Blue, .
OPIATE GROUP CONJUGATE, .
GROUP 2 CUTOFF, .
GROUP 2 NEGATIVE, .
OPIATE GROUP CUTOFF, .
OPIATE GROUP CUTOFF, .
OPIATE GROUP NEGATIVE, .
Distilled Water, .
Neogen Wash Buffer, . Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.580>1.143 = CO = 1.143 = CO = 1.143 + equation - equation

1	2	3	4	5	6	7	8	9	10	11	12
4			NC1	NEG	NEG						
3			CO1	NEG	NEG						
			CO1	NEG	NEG						
			NNC1	NEG	NEG						
•			NCO1	NEG	NEG						
-			NEG	NEG	NEG						
3			NEG	NEG	NEG						
4			NEG	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F4	1.698	1.698	****	*****	NEG
[Blank 2]	G4	1.733	1.733	*****	*****	NEG
[Blank 3]	H4	1.817	1.817	*****	*****	NEG
[Blank 4]	A5	1.783	1.783	*****	*****	NEG
[Blank 5]	B5	1.657	1.657	*****	*****	NEG
[Blank 6]	C5	1.694	1.694	*****	*****	NEG
[Blank 7]	D5	1.696	1.696	*****	•••••	NEG
[Blank 8]	E5	1.669	1.669	••••	*****	NEG
[Blank 9]	F5	1.744	1.744	*****	•••••	NEG
[Blank 10]	G5	1.762	1.762	*****	*****	NEG
[Blank 11]	H5	1.815	1.815	*****	*****	NEG
[Blank 12]	A6	1.620	1.620	*****	*****	NEG
[Blank 13]	B6	1.613	1.613	••••	*****	NEG
[Blank 14]	C6	1.390	1.390	*****	•••••	NEG
[Blank 15]	D6	1.469	1.469	*****	*****	NEG
[Blank 16]	E6	1.610	1.610	*****	*****	NEG
[Blank 17]	F6	1.599	1.599	*****	*****	NEG
[Group II NEG]	G6	1.407	1.407	*****	*****	NEG
[Group II CO]	H6	1.177	1.177	****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	4 504	1 691	*****	*****	NC1

F	Page	34	of	128

10

12

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.173 1.114	1.143	0.042	3.640%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	1.752	1.752	••••		NNC1
Sample ID	Location	Data	Mean	\$.D.	C.V.	Result
NCO1	E4	0.859	0.859	*****	****	NCO1

Page 33 of 128

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

В	*****	*****	*****	1.173	1.657	1.613	••••				••••	••••
С	*****	*****		1.114	1.694	1.390	*****			••••	••••	*****
D	*****	*****		1.752	1.696	1.469	*****	*****	*****	*****	*****	••••
Ε	*****	*****	*****	0.859	1.669	1.610	*****	*****	*****	*****	*****	••••
F	*****	*****		1.698	1.744	1.599	*****					*****
G	*****	••••	••••	1.733	1.762	1.407	••••	*****	•	****	*****	••••
н	*****	*****	*****	1.817	1.815	1.177	••••	*****	*****	*****	*****	*****

5

A ----- 1.581 1.783 1.620 ---- --- ----1.173 1.657 1.613 **** **** **** **** ****

***** Indicates an unread well or value out of range

Dynex Technologies

DATA MATRIX/TABLE : OD

Page 35 of 128

Page 36 of 128

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : Drift2 Oxy120308

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR

: 3/8/2012 : 12:21:53 PM

2.487>1.791

: OXYCODONE-OXYMORPHONE, , : Drift2 CocOpi120308, , : Acid Stop, , : EIA Buffer, ,

Kit Lot Data Plate Lot Data Reagent Lot Data

: EIA Buffer,

K-Blue,

OXYCODONE/OXYMORPHONE CONJUGATE,

GROUP 1 CUTOFF,

GROUP 1 NEGATIVE,

OXYCODONE/OXYMORPHONE CUTOFF,

OXYCODONE/OXYMORPHONE NEGATIVE,

Distilled Water,

Neogen Wash Buffer,

OVER limit : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

= CO = 1.792 = CO = 1.792 + equation

Page 37 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	NEG	NEG									
D	NNC1	NEG	NEG									
Ε	NCO1	NEG	NEG									
F	NEG	NEG	NEG									
G	NEG	NEG	NEG									
н	NEG	NEG	POS									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	F1	2.491	2.491	*****	*****	NEG
[Blank 2]	G1	2.554	2.554	*****	*****	NEG
[Blank 3]	H1	2.590	2.590	*****	*****	NEG
[Blank 4]	A2	2.551	2.551	*****	*****	NEG
[Blank 5]	B2	2.467	2.467	*****	*****	NEG
[Blank 6]	C2	2.495	2.495	*****	*****	NEG
[Blank 7]	D2	2.499	2.499	*****	*****	NEG
[Blank 8]	E2	2.647	2.647	*****	*****	NEG
[Blank 9]	F2	2.514	2.514	*****	*****	NEG
[Blank 10]	G2	2.560	2.560	*****	*****	NEG
[Blank 11]	H2	2.634	2.634	*****	*****	NEG
[Blank 12]	A3	2.563	2.563	*****	*****	NEG
[Blank 13]	В3	2.475	2.475	*****	*****	NEG
[Blank 14]	C3	2.572	2.572	*****	*****	NEG
Blank 15)	D3	2.577	2.577	*****	*****	NEG
[Blank 16]	E3	2.485	2.485	*****	*****	NEG
[Blank 17]	F3	2.605	2.605	*****	*****	NEG
[Group NEG]	G3	2.392	2.392	*****	*****	NEG
[Group I CO]	Н3	1.766	1.766	*****	*****	POS
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.487	2.487	*****	*****	NC1

Page 38 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.825 1.758	1.792	0.048	2.661%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	2.518	2.518	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	1.418	1.418	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	-7	8	9	10	11	12
Α	2.487	2.551	2.563	*****	••••	*****	*****	*****	*****	••••	••••	*****
В	1.825	2.467	2.475	*****	••••	*****	••••	*****	••••		••••	••••
С	1.758	2.495	2.572	•••••		••••	••••	••••	*****	••••	••••	••••
D	2.518	2.499	2.577	*****	••••	*****	••••	*****	•••••		••••	••••
Ε	1.418	2.647	2.485	*****		*****		••••	*****	••••	••••	*****
F	2.491	2.514	2.605	*****	*****	*****	••••	*****	*****	••••	••••	••••
G	2.554	2.560	2.392	*****	*****	*****	*****	*****	*****		••••	*****
н	2.590	2.634	1.766	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 39 of 128

Page 40 of 128

TEST NO. TEST NAME PLATE

: : AMPHETAMINE ULTRA : Precision1 AmpOxy 120307

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR : 3/7/2012 : 2:32:12 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA, , : Precision1 AmpOxy 120307, , : Acid Stop, , : AMPHETAMINE ULTRA CONJUGATE, , : EIA Buffer, ,

EIA Buffer, .
K-Blue, .
OXYCODONE/OXYMORPHONE CONJUGATE, .
OXYCODONE/OXYMORPHONE CONJUGATE, .
AMPHETAMINE ULTRA CUTOFF, .
AMPHETAMINE ULTRA NEGATIVE, .
GROUP 1 CUTOFF, .
GROUP 1 NEGATIVE, .
Distilled Water, .
Neogen Wash Buffer, .

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

1.483>1.139

Q.C. equations

- equation

NC>CO

= CO = 1.140 = CO = 1.140

Page 41 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	POS	POS									
D	NNC1	NEG	NEG									
E	NCO1	POS	POS									
F	NEG	NEG	NEG									
G	POS	POS	POS									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Group 1 NEG 1]	F1	1.509	1.509	*****	*****	NEG	
Group 1 CO 1]	G1	1.099	1.099	*****	*****	POS	
Group 1 NEG 21	H1	1.509	1.509	*****	*****	NEG	
Group 1 CO 2]	A2	1.154	1.154	*****	*****	NEG	
[Group 1 NEG 3]	B2	1.465	1.465	*****	*****	NEG	
Group 1 CO 3]	C2	1.016	1.016	*****	*****	POS	
Group 1 NEG 4]	D2	1.357	1.357	*****	*****	NEG	
Group 1 CO 4]	E2	1.056	1.056	*****	*****	POS	
Group 1 NEG 5]	F2	1.343	1.343	*****	*****	NEG	
Group 1 CO 5]	G2	1.046	1.046	*****	*****	POS	
Group 1 NEG 6]	H2	1.490	1.490	*****	*****	NEG	
Group 1 CO 6]	A3	1.229	1.229	*****	*****	NEG	
Group 1 NEG 7]	B3	1.450	1.450	••••	*****	NEG	
Group 1 CO 7]	C3	1.131	1.131	*****	*****	POS	
Group 1 NEG 8]	D3	1.347	1.347	*****	*****	NEG	
Group 1 CO 8]	E3	1.089	1.089	*****	*****	POS	
Group 1 NEG 9]	F3	1.359	1.359	*****	*****	NEG	
Group 1 CO 9]	G3	1.036	1.036	*****	*****	POS	
Group 1 NEG 10]	Н3	1.491	1.491	*****	*****	NEG	
							_
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	1.484	1.484	*****	*****	NC1	

Page 42 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.233 1.047	1.140	0.132	11.543%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.529	1.529	****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F1	1 034	1.034	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.484	1.154	1.229	*****	*****	••••		••••				
В	1.233	1.465	1.450	*****	*****	••••		*****	*****	••••	*****	****
С	1.047	1.016	1.131	*****	*****	••••		*****	*****		*****	••••
D	1.529	1.357	1.347	*****	*****	••••		*****	*****		••••	*****
Е	1.034	1.056	1.089	*****	*****	••••	*****	*****	*****	*****	*****	****
F	1.509	1.343	1.359	*****	*****	*****	*****	*****	*****	*****	*****	*****
G	1.099	1.046	1.036	*****	*****		*****	*****	••••	*****	*****	*****
н	1.509	1.490	1.491	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 43 of 128

Page 44 of 128

12

***** *****

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : Precision1 AmpOxy 120307 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 3/7/2012 : 2:32:12 PM : admin Kit Lot Data Plate Lot Data Reagent Lot Data : OXYCODONE-OXYMORPHONE, , : OXYCODONE-OXYMORPHONE,
Precision 1 AmpOxy 120307,
Acid Stop,
EliA Buffer,
: K-Blue,
: OXYCODONE/OXYMORPHONE CONJUGATE,
: GROUP 1 CUTOFF,
: GROUP 1 NEGATIVE,
: OXYCODONE/OXYMORPHONE CUTOFF,
: OXYCODONE/OXYMORPHONE NEGATIVE,
: DIstilled Water,
: Neogen Wash Buffer, OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.254>1.430 = CO = 1.430 = CO = 1.430 + equation - equation

1	2	3	4	5	6	7	8	9	10	11	12
A			NC1	POS	POS						
В			CO1	NEG	NEG						
С			CO1	NEG	POS						
ь			NNC1	NEG	NEG						
E		\Box	NCO1	NEG	POS						
F			NEG	NEG	NEG						
g 📉			NEG	NEG	NEG						
н			NEG	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 NEG 1]	F4	2.342	2.342	*****	*****	NEG
[Group 1 CO 1]	G4	1.524	1.524	*****	*****	NEG
[Group 1 NEG 2]	H4	2.458	2.458	*****	*****	NEG
[Group 1 CO 2]	A5	1.330	1.330	*****	*****	POS
[Group 1 NEG 3]	B5	2.241	2.241	*****	*****	NEG
[Group 1 CO 3]	C5	1.431	1.431	*****	*****	NEG
[Group 1 NEG 4]	D5	2.460	2.460	*****	*****	NEG
[Group 1 CO 4]	E5	1.507	1.507	*****	*****	NEG
[Group 1 NEG 5]	F5	2.307	2.307	*****	*****	NEG
[Group 1 CO 5]	G5	1.533	1.533	*****	*****	NEG
[Group 1 NEG 6]	H5	2.512	2.512	*****	*****	NEG
[Group 1 CO 6]	A6	1.332	1.332	*****	*****	POS
[Group 1 NEG 7]	B6	2.272	2.272	••••	*****	NEG
[Group 1 CO 7]	C6	1.388	1.388	*****	*****	POS
[Group 1 NEG 8]	D6	2.294	2.294	*****	*****	NEG
[Group 1 CO 8]	E6	1.389	1.389	*****	*****	POS
[Group 1 NEG 9]	F6	2.275	2.275	*****	*****	NEG
[Group 1 CO 9]	G6	1.488	1.488	*****	*****	NEG
[Group 1 NEG 10]	H6	2.442	2.442	****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	2 254	2 254	*****	*****	NC1

Page 46 of 128

8 9 10 11

....

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.465 1.395	1.430	0.049	3.418%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	2.487	2.487	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E4	1.167	1.167	*****	*****	NCO1

Page 45 of 128

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

_											1
F ·	****	*****	*****	2.342	2.307	2.275	••••	*****	••••	••••	•••
G ·	****	••••	*****	1.524	1.533	1.488	*****	*****	*****	*****	***
н .	****	*****	*****	2.458	2.512	2.442	*****	*****	*****	••••	***

1.332

1.465 2.241 2.272

1.395 1.431 1.388

2.487 2.460 2.294

2 3 4 5 6

В С

D

Dynex Technologies

DATA MATRIX/TABLE : OD

Page 47 of 128

Page 48 of 128

TEST NO. TEST NAME PLATE

: BENZODIAZEPINE GROUP : Precision1 BenzCocOpiTHC 120307

W/L MODE TEST FILTER REF. FILTER

: SINGLE

DATE TIME OPERATOR : 3/7/2012 : 2:24:51 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

BENZODIAZEPINE GROUP,
Precision1 BenzCocOpiTHC 120307,
Adid Stop.
BENZODIAZEPINE GROUP CONJUGATE,
COCAINE/BZE CONJUGATE,
EIA Buffer,
K-Blue,
THC CONJUGATE,
BENZODIAZEPINE GROUP CUTOFF,
BENZODIAZEPINE GROUP CUTOFF,
GROUP 2 CUTOFF,
GROUP 2 REGATIVE,
Distilled Water,
Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

2.056>0.946

Q.C. equations

NC>CO

- equation

= CO = 0.947 = CO = 0.947

Page 49 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
				*		•			9	10		12
Α	NC1	POS	POS									
В	CO1	NEG	NEG									
С	CO1	NEG	POS									
D	NNC1	NEG	NEG									
E	NCO1	POS	POS									
F	NEG	NEG	NEG									
G	POS	POS	POS									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Group 2 NEG 1]	F1	1.935	1.935	*****	*****	NEG	
[Group 2 CO 1]	G1	0.878	0.878	*****	*****	POS	
[Group 2 NEG 2]	H1	1.995	1.995	*****	*****	NEG	
[Group 2 CO 2]	A2	0.902	0.902	*****	*****	POS	
[Group 2 NEG 3]	B2	2.074	2.074	*****	*****	NEG	
[Group 2 CO 3]	C2	0.971	0.971	*****	••••	NEG	
[Group 2 NEG 4]	D2	2.012	2.012	*****	*****	NEG	
[Group 2 CO 4]	E2	0.816	0.816	*****	*****	POS	
[Group 2 NEG 5]	F2	2.054	2.054	*****	*****	NEG	_
[Group 2 CO 5]	G2	0.886	0.886	*****	*****	POS	
[Group 2 NEG 6]	H2	2.125	2.125	*****	*****	NEG	
[Group 2 CO 6]	A3	0.838	0.838	*****	*****	POS	
[Group 2 NEG 7]	В3	2.058	2.058	*****	*****	NEG	
[Group 2 CO 7]	C3	0.914	0.914	*****	*****	POS	
[Group 2 NEG 8]	D3	1.821	1.821	*****	*****	NEG	
[Group 2 CO 8]	E3	0.698	0.698	*****	*****	POS	
[Group 2 NEG 9]	F3	1.988	1.988	*****	*****	NEG	
[Group 2 CO 9]	G3	0.905	0.905	*****	*****	POS	
[Group 2 NEG 10]	Н3	2.031	2.031	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	2.057	2.057	*****	*****	NC1	

Page 50 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	0.903 0.991	0.947	0.062	6.554%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.705	1.705	*****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.644	0.644	****	****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.057	0.902	0.838	*****	****		*****	*****	••••	*****	*****	••••
В	0.903	2.074	2.058	*****	*****	*****	*****	*****	*****	*****	*****	••••
С	0.991	0.971	0.914	*****	*****	••••	••••	*****	*****	*****	••••	••••
D	1.705	2.012	1.821	••••	*****		••••	••••				••••
Ε	0.644	0.816	0.698	••••	*****	*****	••••	••••			••••	••••
F	1.935	2.054	1.988	*****	*****	*****	*****	*****	*****	••••	*****	••••
G	0.878	0.886	0.905	••••	••••	*****	••••	••••	••••	••••	••••	••••
н	1.995	2.125	2.031	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 51 of 128

Page 52 of 128

TEST NO. TEST NAME PLATE : COCAINE-BZE : Precision1 BenzCocOpiTHC 120307 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/7/2012 : 2:24:51 PM : COCAINE-BZE,
: Precision1 BenzCocOpiTHC 120307,
: Acid Stop,
: COCAINE/BZE CONJUGATE,
: EIA Buffer,
: K-Blue,
: COCAINE/BZE CUTOFF,
: COCAINE/BZE NEGATIVE,
: GROUP 2 NEGATIVE,
: GROUP 2 DEGATIVE,
: Distilled Water, Kit Lot Data Plate Lot Data Reagent Lot Data : Distilled Water, , : Neogen Wash Buffer, , OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.370>1.126 = CO = 1.127 = CO = 1.127 + equation - equation

1	2	3	4	5	6	7	8	9	10	11	12
A			NC1	NEG	POS						
В			CO1	NEG	NEG						
С			CO1	POS	POS						
D			NNC1	NEG	NEG						
E			NCO1	NEG	POS						
F			NEG	NEG	NEG						
G			POS	POS	POS						
н			NEG	POS	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 NEG 1]	F4	1.310	1.310	*****	*****	NEG
[Group 2 CO 1]	G4	1.087	1.087	****	****	POS
[Group 2 NEG 2]	H4	1.198	1.198	****	****	NEG
[Group 2 CO 2]	A5	1.182	1.182	*****	*****	NEG
[Group 2 NEG 3]	B5	1.421	1.421	*****	*****	NEG
[Group 2 CO 3]	C5	1.117	1.117	*****	*****	POS
[Group 2 NEG 4]	D5	1.360	1.360	*****	*****	NEG
[Group 2 CO 4]	E5	1.215	1.215	*****	*****	NEG
[Group 2 NEG 5]	F5	1.366	1.366	*****	*****	NEG
[Group 2 CO 5]	G5	1.050	1.050	*****	*****	POS
[Group 2 NEG 6]	H5	1.093	1.093	*****	*****	POS
[Group 2 CO 6]	A6	1.043	1.043	*****	*****	POS
[Group 2 NEG 7]	B6	1.419	1.419	••••	*****	NEG
[Group 2 CO 7]	C6	1.046	1.046	*****	*****	POS
[Group 2 NEG 8]	D6	1.248	1.248	*****	*****	NEG
[Group 2 CO 8]	E6	1.027	1.027	*****	*****	POS
[Group 2 NEG 9]	F6	1.272	1.272	*****	*****	NEG
[Group 2 CO 9]	G6	0.896	0.896	*****	*****	POS
[Group 2 NEG 10]	H6	1.146	1.146	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result

Page 54 of 128

1.370

8 9 10 11 12

***** *****

1.370

1.370 1.182 1.043

1.198 | 1.093 | 1.146

1.094 1.421 1.419

1.160 1.117 1.046

0.860 1.360 1.248

0.448 1.215 1.027

1.310 1.366 1.272

1.087 1.050 0.896

NC1

В

С

D

Е

G

Н

2 3 4 5

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.094 1.160	1.127	0.047	4.133%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	0.860	0.860	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E4	0.448	0.448	****	*****	NCO1

Page 53 of 128

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

***** Indicates an unread well or value out of range

DATA MATRIX/TABLE: OD

Page 55 of 128

Page 56 of 128

TEST NO. TEST NAME PLATE : : OPIATE GROUP : Precision1 BenzCocOpiTHC 120307 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 3/7/2012 : 2:24:51 PM : admin : OPIATE GROUP,
: Precision1 BenzCocOpiTHC 120307,
: Acid Stop,
: EllA Buffer,
: K-Biue,
: OPIATE GROUP CONJUGATE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: OPIATE GROUP CUTOFF,
: OPIATE GROUP PEGATIVE,
: DESIDE ON STATE
: DISIBLE ON STATE
: Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.448>1.132 = CO = 1.133 = CO = 1.133 - equation

	1	2	3	4	5	6	7	8	9	10	11	12
Γ							NC1	NEG	NEG			
· [CO1	NEG	NEG			
: [CO1	NEG	NEG			
-							NNC1	NEG	NEG			
□							NCO1	NEG	NEG			
F							NEG	NEG	NEG			
3							NEG	NEG	NEG			
4 F							NEG	NEG	NEG			

Location	Data	Mean	S.D.	C.V.	Result
F7	1.554	1.554	*****	*****	NEG
G7	1.213	1.213	*****	*****	NEG
H7	1.647	1.647	*****	*****	NEG
A8	1.295	1.295	*****	*****	NEG
B8	1.542	1.542	*****	*****	NEG
C8	1.162	1.162	*****	*****	NEG
D8	1.495	1.495	*****	*****	NEG
E8	1.160	1.160	*****	*****	NEG
F8	1.486	1.486	*****	*****	NEG
G8	1.179	1.179	*****		NEG
H8	1.573	1.573			NEG
A9	1.253	1.253	*****	*****	NEG
B9	1.452	1.452	••••	*****	NEG
C9	1.253	1.253	*****	*****	NEG
D9	1.505	1.505	*****	*****	NEG
E9	1.202	1.202	••••	*****	NEG
F9	1.558	1.558	*****	*****	NEG
G9	1.287	1.287		*****	NEG
H9	1.637	1.637	*****	*****	NEG
Location	Data	Mean	S.D.	C.V.	Result
A7	1.448	1.448	*****	*****	NC1
	F7 G7 H7 A8 B8 C8 D8 E8 F8 G8 H8 A9 B9 C9 D9 E9 F9 G9 H9	F7 1.554 G7 1.213 H7 1.847 A8 1.295 B8 1.542 C8 1.162 D8 1.495 E8 1.160 F8 1.486 G8 1.179 H8 1.573 A9 1.253 B9 1.452 C9 1.253 D9 1.505 E9 1.202 F9 1.558 G9 1.287 H9 1.637	F7 1.554 1.554 G7 1.213 1.213 H7 1.647 1.647 A8 1.295 1.295 B8 1.542 1.542 C8 1.162 1.162 D8 1.495 1.495 E8 1.160 1.160 F8 1.486 1.486 G8 1.179 1.179 H8 1.573 1.573 A9 1.253 1.253 B9 1.452 1.452 C9 1.253 1.253 D9 1.505 1.505 E9 1.202 1.202 F9 1.558 1.558 G9 1.287 1.287 H9 1.637 Location Data Mean	F7 1.554 1.554	F7 1.554 1.554

Page 58 of 128

Page 57 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B7 C7	1.176 1.090	1.133	0.060	5.329%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D7	1.672	1.672	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E7	0.938	0.938	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
A	••••		••••	••••	*****		1.448	1.295	1.253	••••	••••	••••
3	••••		*****	*****	*****	*****	1.176	1.542	1.452	*****	*****	
١:	••••		*****		*****	*****	1.090	1.162	1.253	*****	*****	••••
0	••••	*****	••••	••••	*****	*****	1.672	1.495	1.505	••••	••••	••••
=	*****		••••	••••	*****	*****	0.938	1.160	1.202	*****	*****	
F	*****	*****	*****	*****	*****	*****	1.554	1.486	1.558	*****	*****	••••
3	*****		••••		*****	*****	1.213	1.179	1.287	••••	*****	••••
4	*****	*****	*****	*****	*****	*****	1.647	1,573	1.637	*****	*****	****

***** Indicates an unread well or value out of range

Page 59 of 128

Page 60 of 128

Plate ID: Precision | Benz Coc Opi I PC 12030/ TEST NO. TEST NAME PLATE : THC : Precision1 BenzCocOpiTHC 120307 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/7/2012 : 2:24:51 PM : admin : SINGLE : THC, .
: Precision1 BenzCocOpiTHC 120307, .
: Acid Stop, .
: EIA Buffer, .
:K-Blue, .
: THC CONJUGATE, .
: GROUP 2 CUTOFF, .
: GROUP 2 NEGATIVE, .
: THC CUTOFF, .
: THC NEGATIVE, .
: Distilled Water, .
: Neogen Wash Buffer, . Kit Lot Data Plate Lot Data Reagent Lot Data : 3.500 : Endpoint **OVER limit** THRESHOLD RESULTS Q.C. equations NC>CO 1.624>1.311 + equation

	1	2	3	4	5	6	7	8	9	10	11	12
A										NC1	NEG	NEG
в										CO1	NEG	NEG
٥										CO1	NEG	NEG
0										NNC1	NEG	NEG
E										NCO1	NEG	NEG
F										NEG	NEG	NEG
3										POS	NEG	NEG
4							-			NEG	NEG	NEG

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 NEG 1]	F10	1.574	1.574	*****	*****	NEG
[Group 2 CO 1]	G10	1.284	1.284	*****	*****	POS
[Group 2 NEG 2]	H10	1.789	1,789	*****	*****	NEG
[Group 2 CO 2]	A11	1.516	1.516	*****	*****	NEG
[Group 2 NEG 3]	B11	1.636	1.636	*****	*****	NEG
[Group 2 CO 3]	C11	1.385	1.385	*****	*****	NEG
[Group 2 NEG 4]	D11	1.689	1.689	*****	*****	NEG
[Group 2 CO 4]	E11	1.406	1.406	••••	*****	NEG
[Group 2 NEG 5]	F11	1.665	1.665	*****	*****	NEG
[Group 2 CO 5]	G11	1.434	1.434	*****	*****	NEG
[Group 2 NEG 6]	H11	1.694	1.694	•••••	*****	NEG
[Group 2 CO 6]	A12	1.488	1.488	••••	*****	NEG
[Group 2 NEG 7]	B12	1.776	1.776	*****	*****	NEG
[Group 2 CO 7]	C12	1.520	1.520	*****	*****	NEG
[Group 2 NEG 8]	D12	1.764	1.764	*****	*****	NEG
[Group 2 CO 8]	E12	1.330	1.330	*****	*****	NEG
[Group 2 NEG 9]	F12	1.735	1.735	*****	*****	NEG
[Group 2 CO 9]	G12	1.340	1.340	*****	*****	NEG
[Group 2 NEG 10]	H12	1.854	1.854	*****	••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	440	1.024	1.604	*****	••••	NC4

Location	Data	Mean	S.D.	C.V.	Result
A10	1.624	1.624	*****	*****	NC1

Plate ID: Precision1 E	BenzCocOpiTHC 12030	7	THC			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B10 C10	1.315 1.307	1.311	0.006	0.421%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D10	1.673	1.673	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E10	0.679	0.679	*****	*****	NCO1

Page 61 of 128

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
-	*****	*****	••••	*****	*****	*****	••••	*****	*****	1.624	1.516	1.48
1	*****	*****	*****	••••	*****	*****	•••••	*****	*****	1.315	1.636	1.77
	*****	••••			••••	*****	••••	*****		1.307	1.385	1.52
1	*****	*****	*****	*****	*****	*****	*****	*****	*****	1.673	1.689	1.76
l	*****	*****	*****	*****	*****	*****	•••••	*****	*****	0.679	1.406	1.33
ı	••••		*****	*****	*****	••••	•••••	*****	*****	1.574	1.665	1.73
ı	••••	••••	*****	••••	••••	••••	••••	*****	••••	1.284	1.434	1.34
Ì	****	*****	*****	*****	*****	*****	*****	*****	*****	1.789	1.694	1.85

***** Indicates an unread well or value out of range

Dynex Technologies

Page 64 of 128

Page 63 of 128

TEST NO. TEST NAME PLATE

: COTININE : Precision1 Cot 120307

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/7/2012 : 1:27:50 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE,
: Precision1 Cot 120307,
: Acid Stop,
: COTININE CONJUGATE,
: EIA Buffer,
: K-Blue,
: COTININE CUTOFF,
: COTININE NEGATIVE,
: GROUP 1 NEGATIVE,
: GROUP 1 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

3.065>2.409

= CO = 2.409 = CO = 2.409 + equation - equation

Page 65 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	POS	POS									
В	CO1	NEG	NEG									
С	CO1	POS	POS									
D	NNC1	NEG	NEG				-					
Ε	NCO1	POS	POS									
F	NEG	NEG	NEG									
G	POS	POS	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 NEG 1]	F1	3.035	3.035	*****	*****	NEG
[Group 1 CO 1]	G1	2.408	2.408	*****	*****	POS
[Group 1 NEG 2]	H1	2.975	2.975	*****	*****	NEG
[Group 1 CO 2]	A2	2.406	2.406	*****	*****	POS
[Group 1 NEG 3]	B2	2.921	2.921	*****	*****	NEG
[Group 1 CO 3]	C2	2.353	2.353	*****	*****	POS
[Group 1 NEG 4]	D2	2.941	2.941	*****	*****	NEG
[Group 1 CO 4]	E2	2.369	2.369	*****	*****	POS
[Group 1 NEG 5]	F2	2.923	2.923	*****	*****	NEG
[Group 1 CO 5]	G2	2.359	2.359	*****	*****	POS
[Group 1 NEG 6]	H2	2.984	2.984	*****	*****	NEG
[Group 1 CO 6]	A3	2.397	2.397	*****	*****	POS
[Group 1 NEG 7]	B3	3.095	3.095	*****	*****	NEG
[Group 1 CO 7]	C3	2.349	2.349	*****	*****	POS
[Group 1 NEG 8]	D3	3.028	3.028	*****	*****	NEG
[Group 1 CO 8]	E3	2.365	2.365	*****	*****	POS
[Group 1 NEG 9]	F3	3.050	3.050	*****	*****	NEG
[Group 1 CO 9]	G3	2.434	2.434	*****	••••	NEG
[Group 1 NEG 10]	Н3	3.139	3.139	*****	••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	3.066	3.066	*****	*****	NC1

Page 66 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	2.435 2.383	2.409	0.037	1.524%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	2.842	2.842	••••		NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F1	1 949	1 949	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page	67	of	128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	3.066	2.406	2.397	*****	*****		*****	*****	*****	*****	*****	••••
В	2.435	2.921	3.095	*****	*****	*****	*****	*****	••••	*****	••••	••••
С	2.383	2.353	2.349		*****	*****		••••	••••	*****	*****	••••
D	2.842	2.941	3.028	••••	*****	*****		*****	••••	*****	*****	••••
E	1.949	2.369	2.365	*****	*****	*****	*****	*****	••••	*****	*****	••••
F	3.035	2.923	3.050	••••		*****		••••	••••		••••	••••
G	2.408	2.359	2.434	••••	*****	*****		*****	•••••		*****	••••
н	2.975	2.984	3.139	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 68 of 128

TEST NO. TEST NAME PLATE

: AMPHETAMINE ULTRA : Precision2 AmpOxy 120307

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/7/2012 : 7:24:09 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA, .
: Precision2 AmpOxy 120307, .
: Acid Stop. .
: AMPHETAMINE ULTRA CONJUGATE, .
: EIA Buffer, .
: K-Blue, .
: OXYCODONE/OXYMORPHONE CONJUGATE, .
: AMPHETAMINE ULTRA CUTOFF .
: AMPHETAMINE ULTRA NEGATIVE ,
: GROUP 1 CUTOFF .
: GROUP 1 NEGATIVE .
: Distilled Water ,
: Neogen Wash Buffer ,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.405>1.053

= CO = 1.053 = CO = 1.053 + equation

Page 69 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	POS	POS									
В	CO1	NEG	NEG									
С	CO1	POS	NEG									
D	NNC1	NEG	NEG									
Ε	NCO1	POS	POS									
F	NEG	NEG	NEG									
G	POS	POS	POS									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 NEG 1]	F1	1.352	1.352	*****	*****	NEG
[Group 1 CO 1]	G1	0.961	0.961	*****	•••••	POS
[Group 1 NEG 2]	H1	1.385	1.385	*****	*****	NEG
[Group 1 CO 2]	A2	1.032	1.032	*****	*****	POS
[Group 1 NEG 3]	B2	1.350	1.350	*****	*****	NEG
[Group 1 CO 3]	C2	0.877	0.877	*****	*****	POS
[Group 1 NEG 4]	D2	1.300	1.300	*****	*****	NEG
[Group 1 CO 4]	E2	0.954	0.954	*****	*****	POS
[Group 1 NEG 5]	F2	1.255	1.255	*****	*****	NEG
[Group 1 CO 5]	G2	0.871	0.871	*****	*****	POS
[Group 1 NEG 6]	H2	1.158	1.158	*****	*****	NEG
[Group 1 CO 6]	A3	0.987	0.987	*****	*****	POS
[Group 1 NEG 7]	B3	1.260	1.260	*****	*****	NEG
[Group 1 CO 7]	C3	1.097	1.097	*****	*****	NEG
[Group 1 NEG 8]	D3	1.263	1.263	*****	*****	NEG
[Group 1 CO 8]	E3	0.949	0.949	••••	*****	POS
[Group 1 NEG 9]	F3	1.218	1.218	*****	*****	NEG
[Group 1 CO 9]	G3	0.941	0.941	*****	*****	POS
[Group 1 NEG 10]	H3	1.328	1.328	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.405	1.405	*****	*****	NC1

Page 70 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.079 1.028	1.053	0.036	3.451%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.327	1.327	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.859	0.859	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.405	1.032	0.987	*****	*****	*****	*****	*****	*****	*****	*****	****
В	1.079	1.350	1.260	*****	*****	*****		*****	••••	*****	*****	••••
С	1.028	0.877	1.097	*****	*****	*****			••••		*****	••••
D	1.327	1.300	1.263	*****	*****	*****	*****	*****	••••	*****	*****	••••
E	0.859	0.954	0.949	••••				••••	••••	*****	*****	
F	1.352	1.255	1.218	*****	*****	*****	*****	*****	*****	*****	••••	****
G	0.961	0.871	0.941	*****	*****	*****	*****		*****	*****	*****	****
н	1.385	1.158	1.328	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 71 of 128

Page 72 of 128

TEST NO. TEST NAME PLATE : OXYCODONE-OXYMORPHONE : Precision2 AmpOxy 120307 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 3/7/2012 : 7:24:09 PM Kit Lot Data Plate Lot Data Reagent Lot Data : OXYCODONE-OXYMORPHONE, , : OXYCODONE/OXYMORPHONE, ;
:Pracision2 Amptoxy 120307, ;
:Acid Stop, ;
:K-Blue, ;
:K-Blue, ;
:COXYCODONE/OXYMORPHONE CONJUGATE, ;
:GROUP 1 CUTOFF, ;
:GROUP 1 NEGATIVE, ;
:OXYCODONE/OXYMORPHONE CUTOFF, ;
:OXYCODONE/OXYMORPHONE CUTOFF, ;
:OXYCODONE/OXYMORPHONE NEGATIVE, ;
:DIVIBILIENT : Distilled Water, , : Neogen Wash Buffer, , OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.076>1.251 = CO = 1.251 = CO = 1.251 + equation - equation

1	2	3	. 4	5	6	7	8	9	10	11	12
A			NC1	POS	POS						
в			CO1	NEG	NEG						
С			CO1	POS	POS						
D			NNC1	NEG	NEG						
E			NCO1	POS	POS						
F			NEG	NEG	NEG						
G			NEG	NEG	NEG						
н			NEG	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
Group 1 NEG 1]	F4	2.167	2.167	*****	*****	NEG
Group 1 CO 1]	G4	1.320	1.320	*****	*****	NEG
Group 1 NEG 2]	H4	2.311	2.311	*****	••••	NEG
Group 1 CO 2]	A5	1.125	1.125	*****	*****	POS
Group 1 NEG 3]	B5	2.047	2.047	*****	*****	NEG
Group 1 CO 3]	C5	1.197	1.197	*****	*****	POS
Group 1 NEG 4]	D5	2.013	2.013	*****	*****	NEG
Group 1 CO 4]	E5	1.202	1.202	*****	•••••	POS
Group 1 NEG 5]	F5	2.121	2.121	*****	*****	NEG
Group 1 CO 5]	G5	1.422	1.422	*****	*****	NEG
Group 1 NEG 6]	H5	2.384	2.384	*****	*****	NEG
Group 1 CO 6]	A6	1.205	1.205	*****	*****	POS
Group 1 NEG 7]	B6	2.060	2.060	*****	*****	NEG
Group 1 CO 7]	C6	1.081	1.081	*****	*****	POS
Group 1 NEG 8]	D6	2.096	2.096	*****	*****	NEG
Group 1 CO 8]	E6	1.199	1.199	••••	*****	POS
Group 1 NEG 9]	F6	2.201	2.201	*****	*****	NEG
Group 1 CO 9]	G6	1.260	1.260	*****	*****	NEG
Group 1 NEG 10]	H6	2.390	2.390	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	2.076	2.076	*****	*****	NC1

2.076 2.076 Page 74 of 128

> 8 9 10 11 12

> > *****

2.076 1.125 1.205 *****

2.148 2.013 2.096

2.311 2.384 2.390

1.306 2.047 2.060

1.197 1.197 1.081

0.898 1.202 1.199

2.167 2.121 2.201

1.320 1.422 1.260

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.306 1.197	1.251	0.078	6.206%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	2.148	2.148	*****	*****	NNC1

S.D.

C.V.

Result

NCO1

Page 73 of 128

Indicates manual entry if Sample ID is	

Location

E4

Sample ID

NCO1

Indicates an unread well or value out of range 0 Indicates an equivocal response * Indicates an unread well or value out of range # Indicates combined data

0.898

Data

0.898

Dynex Technologies

2 3 4 5

В

С

D

Е

G

Н

DATA MATRIX/TABLE: OD

Page 75 of 128

Page 76 of 128

***** Indicates an unread well or value out of range

TEST NO. TEST NAME PLATE

: BENZODIAZEPINE GROUP : Precision2 BenzCocOpiTHC 120307

W/L MODE TEST FILTER REF. FILTER

: 450 nm

DATE TIME OPERATOR

: 3/7/2012 : 7:17:03 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

BENZODIAZEPINE GROUP,
Precision Benz Cocopith C 120307,
Adid Stop.
BENZODIAZEPINE GROUP CONJUGATE,
COCAINE/BZE CONJUGATE,
EIA Buffer,
IK-Blue,
OPIATE GROUP CONJUGATE,
THC CONJUGATE,
BENZODIAZEPINE GROUP CUTOFF,
BENZODIAZEPINE GROUP CUTOFF,
GROUP 2 CUTOFF,
GROUP 2 KEGATIVE,
Distilled Water,
Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.111>1.022

+ equation - equation

Page 77 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	POS	NEG									
В	CO1	NEG	NEG									
С	CO1	POS	POS									
D	NNC1	NEG	NEG									
Ε	NCO1	POS	POS									
F	NEG	NEG	NEG									
G	POS	POS	POS									
н	NEG	NEG	NEG									

[Group 2 NEG 1] [Group 2 CO 1] [Group 2 NEG 2] [Group 2 NEG 3] [Group 2 NEG 3] [Group 2 CO 3]	F1 G1 H1 A2 B2 C2 D2	2.156 0.838 2.250 0.785 1.949 0.801	2.156 0.838 2.250 0.785			NEG POS NEG POS
[Group 2 NEG 2] [Group 2 CO 2] [Group 2 NEG 3]	H1 A2 B2 C2	2.250 0.785 1.949	2.250 0.785	*****	••••	NEG
[Group 2 CO 2] [Group 2 NEG 3]	A2 B2 C2	0.785 1.949	0.785	****		
[Group 2 NEG 3]	B2 C2	1.949			*****	POS
	C2		1.949	****		
Group 2 CO 31		0.901			*****	NEG
	D2	0.001	0.801	*****	*****	POS
[Group 2 NEG 4]		2.061	2.061	*****	*****	NEG
[Group 2 CO 4]	E2	0.756	0.756	*****	*****	POS
[Group 2 NEG 5]	F2	2.165	2.165	*****	*****	NEG
[Group 2 CO 5]	G2	0.823	0.823	*****	*****	POS
[Group 2 NEG 6]	H2	2.226	2.226	*****	*****	NEG
[Group 2 CO 6]	A3	2.435	2.435	*****	*****	NEG
[Group 2 NEG 7]	B3	2.011	2.011	*****	*****	NEG
[Group 2 CO 7]	C3	0.870	0.870	*****	*****	POS
[Group 2 NEG 8]	D3	2.036	2.036	*****	*****	NEG
[Group 2 CO 8]	E3	0.859	0.859	*****	*****	POS
[Group 2 NEG 9]	F3	2.091	2.091	*****	*****	NEG
[Group 2 CO 9]	G3	0.843	0.843	*****	*****	POS
[Group 2 NEG 10]	Н3	2.254	2.254	••••	•••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.112	2.112	*****	*****	NC1

Page 78 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	0.977 1.068	1.023	0.064	6.299%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.820	1.820	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.656	0.656	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2.112	0.785	2.435	*****	*****	••••	•••••	••••	*****		••••	
В	0.977	1.949	2.011	*****	••••	••••	*****	*****	*****	*****	*****	*****
С	1.068	0.801	0.870	*****	*****	••••		*****	••••		••••	
D	1.820	2.061	2.036		••••	••••	••••	*****	••••	*****	*****	*****
E	0.656	0.756	0.859	••••	••••		••••	*****	•••••		••••	
F	2.156	2.165	2.091	*****	*****	••••	*****	*****	*****	*****	••••	****
3	0.838	0.823	0.843	*****	*****			*****	*****	*****	••••	
н	2.250	2.226	2.254	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

DATA MATRIX/TABLE : OD

Page 79 of 128

Page 80 of 128

TEST NO. TEST NAME PLATE : COCAINE-BZE : Precision2 BenzCocOpiTHC 120307 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/7/2012 : 7:17:03 PM : admin : COCAINE-BZE,
: Precision2 BenzCocOpiTHC 120307,
: Acid Stop,
: COCAINE/BZE CONJUGATE,
: EIA Buffer,
: K-Blue,
: COCAINE/BZE CUTOFF,
: COCAINE/BZE NEGATIVE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.380>1.178 = CO = 1.179 = CO = 1.179 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A [NC1	NEG	NEG						
в				CO1	NEG	NEG	7					
: [CO1	NEG	NEG						
				NNC1	NEG	NEG						
E				NCO1	NEG	POS						
F				NEG	POS	NEG						
3				POS	POS	POS						
4				POS	NEG	NEG						

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 NEG 1]	F4	1.336	1.336	•••••	*****	NEG
[Group 2 CO 1]	G4	0.893	0.893	*****	*****	POS
[Group 2 NEG 2]	H4	1.075	1.075	*****	*****	POS
[Group 2 CO 2]	A5	1.207	1.207	*****	*****	NEG
[Group 2 NEG 3]	B5	1.459	1.459	*****	*****	NEG
[Group 2 CO 3]	C5	1.234	1.234	*****	*****	NEG
[Group 2 NEG 4]	D5	1.483	1.483	*****	*****	NEG
[Group 2 CO 4]	E5	1.234	1.234	*****	*****	NEG
[Group 2 NEG 5]	F5	1.148	1.148	*****	*****	POS
[Group 2 CO 5]	G5	0.988	0.988	*****	*****	POS
[Group 2 NEG 6]	H5	1.188	1.188	*****	*****	NEG
[Group 2 CO 6]	A6	1.453	1.453	*****	*****	NEG
[Group 2 NEG 7]	B6	1.437	1.437	*****	*****	NEG
[Group 2 CO 7]	C6	1.233	1.233	*****	•••••	NEG
[Group 2 NEG 8]	D6	1.436	1.436	*****	••••	NEG
[Group 2 CO 8]	E6	1.174	1.174	*****	•••••	POS
[Group 2 NEG 9]	F6	1.352	1.352	*****	*****	NEG
[Group 2 CO 9]	G6	1.075	1.075	*****	*****	POS
[Group 2 NEG 10]	H6	1.250	1.250	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A4	1.380	1.380	*****	*****	NC1

Page 82 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B4 C4	1.178 1.180	1.179	0.001	0.096%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D4	0.853	0.853	*****	*****	NNC1

Page 81 of 128

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

0.445

NCO1

0.445

E4

NCO1

	1	2	3	4	5	6	7	8	9	10	11	12
A	••••	*****		1.380	1.207	1.453	*****	*****	*****	*****	*****	****
в	••••		*****	1.178	1.459	1.437	••••			*****	*****	••••
С	••••		••••	1.180	1.234	1.233	••••	••••	••••	*****	••••	••••
D	•••••	*****	*****	0.853	1.483	1.436	*****			*****	*****	••••
E	••••		••••	0.445	1.234	1.174	••••			••••	••••	••••
F	*****	*****		1.336	1.148	1.352	*****	*****	••••		••••	****
3	*****	*****	*****	0.893	0.988	1.075	*****	*****	*****	*****	*****	****
н	*****	*****	*****	1.075	1.188	1.250	*****	*****	*****	*****	*****	****

DATA MATRIX/TABLE : OD

Page 83 of 128

Page 84 of 128

TEST NO. TEST NAME PLATE : : OPIATE GROUP : Precision2 BenzCocOpiTHC 120307 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 3/7/2012 : 7:17:03 PM : admin : OPIATE GROUP, :
Precision2 BenzCocOpiTHC 120307, :
Acid Stop, :
EIA Buffer, :
K-Blue, :
OPIATE GROUP CONJUGATE, :
GROUP 2 CUTOFF, :
GROUP 2 NEGATIVE, :
OPIATE GROUP CUTOFF, :
OPIATE GROUP NEGATIVE, :
Distilled Water, ;
Neogen Wash Buffer, ; Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.565>1.182 = CO = 1.182 = CO = 1.182 - equation

	1	2	3	4	5	6	7	8	9	10	11	12
1							NC1	NEG	NEG			
3							CO1	NEG	NEG			
c							CO1	POS	POS			
ь							NNC1	NEG	NEG			
E							NCO1	NEG	POS			
F							NEG	NEG	NEG			
G							POS	POS	POS			
н							NEG	NEG	NEG			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 NEG 1]	F7	1.459	1.459	*****	*****	NEG
[Group 2 CO 1]	G7	1.153	1.153	*****	*****	POS
[Group 2 NEG 2]	H7	1.557	1.557	*****	*****	NEG
[Group 2 CO 2]	A8	1.211	1.211	*****	*****	NEG
[Group 2 NEG 3]	B8	1.476	1.476	*****	*****	NEG
[Group 2 CO 3]	C8	1.151	1.151	*****	*****	POS
[Group 2 NEG 4]	D8	1.453	1.453	*****	*****	NEG
[Group 2 CO 4]	E8	1.206	1.206	*****	*****	NEG
[Group 2 NEG 5]	F8	1.500	1.500	*****	*****	NEG
[Group 2 CO 5]	G8	1.169	1.169	*****	*****	POS
[Group 2 NEG 6]	H8	1.556	1.556	*****	*****	NEG
[Group 2 CO 6]	A9	1.787	1.787	*****	*****	NEG
[Group 2 NEG 7]	B9	1.365	1.365	*****	*****	NEG
[Group 2 CO 7]	C9	0.921	0.921	*****	*****	POS
[Group 2 NEG 8]	D9	1.366	1.366	*****	*****	NEG
[Group 2 CO 8]	E9	1.009	1.009	*****	*****	POS
[Group 2 NEG 9]	F9	1.379	1.379	*****	*****	NEG
[Group 2 CO 9]	G9	1.035	1.035	*****	*****	POS
[Group 2 NEG 10]	Н9	1.343	1.343	*****	••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A7	1.566	1.566	*****	*****	NC1

Page 86 of 128 Page 85 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B7 C7	1.203 1.161	1.182	0.029	2.483%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D7	1.557	1.557	••••		NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E7	0.896	0.896	*****	*****	NCO1

- [...] Indicates manual entry if Sample ID is bracketed

 ***** Indicates an unread well or value out of range

 0 Indicates an equivocal response

 1 Indicates an unread well or value out of range

 # Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
	••••	*****	*****	*****	*****	••••	1.566	1.211	1.787	*****	••••	****
1	••••	*****	*****	*****	*****	*****	1.203	1.476	1.365	*****	*****	****
Ì	••••	*****			*****		1.161	1.151	0.921	*****	*****	
Ì	*****	*****	*****	*****	*****	*****	1.557	1.453	1.366	*****	*****	****
Ì	••••	*****		*****		*****	0.896	1.206	1.009	*****	*****	****
Ì	••••	*****	*****	*****	*****	*****	1.459	1.500	1.379	*****	*****	••••
Ì	••••	*****	*****	*****	*****	*****	1.153	1.169	1.035	*****	*****	****
Ì	•••••	*****	*****	*****	*****	*****	1.557	1,556	1.343	*****	*****	****

***** Indicates an unread well or value out of range

Page 87 of 128

Page 88 of 128

TEST NO. TEST NAME PLATE : : THC : Precision2 BenzCocOpiTHC 120307 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/7/2012 : 7:17:03 PM : admin : SINGLE : THC,
: Precision2 BenzCocOpiTHC 120307,
: Acid Stop,
: EIA Buffer,
: K-Blue,
: THC CONJUGATE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: THC CUTOFF,
: THC CUTOFF,
: THC CUTOFF,
: Distilled Water,
: Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data : 3.500 : Endpoint **OVER** limit THRESHOLD RESULTS Q.C. equations NC>CO 1.713>1.269 + equation Page 89 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
										NC1	NEG	NEG
										CO1	NEG	NEG
Ī										CO1	NEG	NEG
1										NNC1	NEG	NEG
1										NCO1	NEG	NEG
: [NEG	NEG	NEG
;										POS	POS	NEG
ıľ						- 7				NEG	NEG	NEG

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 2 NEG 1]	F10	1.557	1.557	*****	*****	NEG
[Group 2 CO 1]	G10	1.195	1.195	*****	*****	POS
[Group 2 NEG 2]	H10	1.586	1.586	*****	*****	NEG
[Group 2 CO 2]	A11	1.480	1.480	*****	*****	NEG
[Group 2 NEG 3]	B11	1.769	1.769	••••	*****	NEG
[Group 2 CO 3]	C11	1.383	1.383	*****	••••	NEG
[Group 2 NEG 4]	D11	1.587	1.587	*****	*****	NEG
[Group 2 CO 4]	E11	1.274	1.274	*****	*****	NEG
[Group 2 NEG 5]	F11	1.570	1.570	*****	*****	NEG
[Group 2 CO 5]	G11	1.214	1.214	*****	*****	POS
[Group 2 NEG 6]	H11	1.664	1.664	*****	*****	NEG
[Group 2 CO 6]	A12	1.898	1.898	*****	*****	NEG
[Group 2 NEG 7]	B12	1.861	1.861	*****	*****	NEG
[Group 2 CO 7]	C12	1.426	1.426	*****	*****	NEG
[Group 2 NEG 8]	D12	1.678	1.678	*****	*****	NEG
[Group 2 CO 8]	E12	1.436	1.436	*****	*****	NEG
[Group 2 NEG 9]	F12	1.639	1.639	*****	*****	NEG
[Group 2 CO 9]	G12	1.279	1.279	*****	*****	NEG
[Group 2 NEG 10]	H12	1.715	1.715	*****	*****	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A10	1.714	1.714	*****	*****	NC1

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A10	1.714	1.714	*****	*****	NC1
		Pa	ge 90 of 128			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B10 C10	1.248 1.292	1.270	0.031	2.446%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D10	1.618	1.618	*****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E10	0.568	0.568	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA	MATRIX	TABLE	:	OD

	1	2	3	4	5	6	7	8	9	10	11	12
	••••	*****	*****	*****	*****	••••	*****	*****	*****	1.714	1.480	1.898
	*****		*****	*****	*****		*****	*****	*****	1.248	1.769	1.86
;	*****	*****	*****	*****	*****	*****	*****	*****	*****	1.292	1.383	1.426
0	••••			*****		*****	*****	*****	*****	1.618	1.587	1.678
	••••		*****	*****	*****			••••	*****	0.568	1.274	1.436
:	*****	*****	*****	*****	*****	****	*****	*****	*****	1.557	1.570	1.63
6	••••			••••	*****	••••	*****	*****		1.195	1.214	1.279
1	*****	*****	*****	*****	*****	*****	*****	*****	*****	1.586	1.664	1.71

***** Indicates an unread well or value out of range

Dynex Technologies

Page 92 of 128

Page 91 of 128

TEST NO. TEST NAME PLATE

: COTININE : Precision2 Cot 120307

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/7/2012 : 6:19:51 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE, : Precision2 Cot 120307, : Acid Stop, : COTININE CONJUGATE, : EIA Buffer, : K-Blue, : COTININE CUTOFF, : COTININE NEGATIVE, : GROUP 1 CUTOFF, : Distilled Water, : Neogen Wash Buffer, :

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

2.892>2.397

+ equation - equation

Page 93 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG									
В	CO1	NEG	NEG									
С	CO1	POS	NEG									
D	NNC1	NEG	NEG									
Ε	NCO1	POS	NEG									
F	NEG	NEG	NEG									
G	NEG	POS	NEG									
н	NEG	NEG	NEG									

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Group 1 NEG 1]	F1	2.945	2.945	*****	*****	NEG
[Group 1 CO 1]	G1	2.406	2.406	*****	*****	NEG
[Group 1 NEG 2]	H1	2.992	2.992	*****	*****	NEG
[Group 1 CO 2]	A2	2.435	2.435	*****	*****	NEG
[Group 1 NEG 3]	B2	2.959	2.959	*****	*****	NEG
[Group 1 CO 3]	C2	2.288	2.288	*****	*****	POS
[Group 1 NEG 4]	D2	2.968	2.968	*****	*****	NEG
[Group 1 CO 4]	E2	2.293	2.293	*****	*****	POS
[Group 1 NEG 5]	F2	3.001	3.001	*****	*****	NEG
[Group 1 CO 5]	G2	2.287	2.287	*****	*****	POS
[Group 1 NEG 6]	H2	3.026	3.026	*****	*****	NEG
[Group 1 CO 6]	A3	2.604	2.604	*****	*****	NEG
[Group 1 NEG 7]	B3	3.051	3.051	*****	*****	NEG
[Group 1 CO 7]	C3	2.481	2.481	*****	*****	NEG
[Group 1 NEG 8]	D3	3.093	3.093	*****	*****	NEG
[Group 1 CO 8]	E3	2.413	2.413	*****	•••••	NEG
[Group 1 NEG 9]	F3	3.015	3.015	*****	*****	NEG
[Group 1 CO 9]	G3	2.433	2.433	*****	*****	NEG
[Group 1 NEG 10]	H3	3.068	3.068	*****	••••	NEG
	-				_	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	2.892	2.892	*****	*****	NC1

Page 94 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	2.444 2.351	2.398	0.066	2.759%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	2.670	2.670	*****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	1.848	1.848	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Ą	2.892	2.435	2.604	••••	*****	*****	••••	••••		••••	••••	••••
В	2.444	2.959	3.051	••••	••••	*****	••••	••••	••••	••••	*****	
0	2.351	2.288	2.481	••••	*****	*****	••••		*****	••••	••••	****
0	2.670	2.968	3.093	*****	*****	*****	*****	*****	*****	*****	••••	****
E	1.848	2.293	2.413	*****	*****	*****	••••		*****		*****	****
F	2.945	3.001	3.015	••••		*****	••••	*****	*****	*****	*****	****
3	2.406	2.287	2.433	*****	*****	*****	*****	*****		*****	*****	
4	2.992	3.026	3.068	*****	*****	*****	••••	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 95 of 128

Page 96 of 128

TEST NO. TEST NAME PLATE

: AMPHETAMINE ULTRA ACCURACY : Accuracy AmpOxy120308

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR : 3/8/2012 : 3:33:08 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA ACCURACY, : Accuracy AmpOxy120308, ; Acid Stop, . Acid Stop, . AmPHETAMINE ULTRA CONJUGATE, : EIA Buffer, : K-Blue, : OXYCODONE/OXYMORPHONE CONJUGATE, ; AMPHETAMINE ULTRA CUTOFF, . AMPHETAMINE ULTRA NEGATIVE, : GROUP 1 CUTOFF, . GROUP 1 CUTOFF, . I GROUP 1 NEGATIVE, : Distilled Water, . Neogen Wash Buffer, .

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.760>1.279

- equation

Page 97 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	POS	POS								
В	CO1	NEG	POS	POS								
С	CO1	NEG	POS	POS								
D	NNC1	NEG	POS	POS	-							
E	NCO1	NEG	POS	POS			,					
F	NEG	NEG	POS	POS								
G	NEG	POS	POS	POS								
Н	NEG	POS	POS	POS								

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Amphetamine -50%]	F1	1.358	1.426	0.097	6.809%	NEG
	G1	1.371				
	H1	1.385				
	A2	1.611				
	B2	1.536				
	C2	1.346				
	D2	1.487				
	E2	1.408				
	F2	1.331				
[Amphetamine CO]	G2	1.125	1.176	0.098	8.335%	POS
	H2	1.344				
	A3	1.308				
	B3	1.192				
	C3	1.102				
	D3	1.217				
	E3	1.049				
	F3	1.118				
	G3	1.133				
[Amphetamine +50%]	Н3	0.959	1.005	0.062	6.121%	POS
	A4	1.119				
	B4	1.081				
	C4	0.990				
	D4	0.955				
	E4	0.993				
	F4	0.925				
	G4	1.021				
	H4	1.004				
		Pa	ge 98 of 128			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.760	1.760	*****	••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.166 1.393	1.279	0.160	12.542%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.847	1.847	*****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	1.149	1.149	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 99 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
A	1.760	1.611	1.308	1.119	••••	*****	••••	*****	*****	••••	••••	****
3	1.166	1.536	1.192	1.081	*****			*****	••••	••••	••••	****
0	1.393	1.346	1.102	0.990	••••	••••	••••	*****	••••	••••	*****	****
0	1.847	1.487	1.217	0.955	*****	••••	*****	*****	••••	••••	••••	
Ε	1.149	1.408	1.049	0.993	*****		••••	*****	••••	••••	••••	
F	1.358	1.331	1.118	0.925	*****	••••	••••	*****	••••	••••	••••	****
3	1.371	1.125	1.133	1.021	*****	••••	*****	*****	*****		••••	****
4	1.385	1.344	0.959	1.004	*****	*****	*****	*****	*****	*****	*****	

***** Indicates an unread well or value out of range

Page 100 of 128

TEST NO. TEST NAME PLATE OXYCODONE-OXYMORPHONE ACCURACY Accuracy AmpOxy120308 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/8/2012 : 3:33:08 PM : admin OPERATOR

OXYCODONE-OXYMORPHONE ACCURACY,
Accuracy Ampo.
Acid Stop.
ElA Buffer,
SHBue,
OXYCODONE-/OXYMORPHONE CONJUGATE,
GROUP 1 CUTOFF,
GROUP 1 NEGATIVE,
OXYCODONE/OXYMORPHONE CUTOFF,
OXYCODONE/OXYMORPHONE NEGATIVE,
Distilled Water,
Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.329>1.390 = CO = 1.390 = CO = 1.390 + equation - equation

	1	2	3	4	5	6	7	8	9	10	11	12
A [NC1	NEG	POS	POS				
в					CO1	NEG	POS	POS				
c					CO1	NEG	POS	POS				
ь					NNC1	NEG	POS	POS				
E					NCO1	NEG	POS	POS				
F					NEG	NEG	POS	POS				
g					NEG	POS	POS	POS				
н					NEG	POS	POS	POS				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Oxycodone -50%]	F5	1.887	1.828	0.059	3.219%	NEG	
	G5	1.827					
	H5	1.910					
	A6	1.891					
	B6	1.794					
	C6	1.747					
	D6	1.759					
	E6	1.797					
	F6	1.840					
[Oxycodone CO]	G6	1.423	1.377	0.032	2.296%	POS	
	H6	1.392					
	A7	1.414					
	B7	1.362					
	C7	1.329					
	D7	1.343					
	E7	1.368					
	F7	1.363					
	G7	1.395					
[Oxycodone +50%]	H7	1.667	1.047	0.237	22.594%	POS	
	A8	0.984					
	B8	0.964					
	C8	0.944					
	D8	0.961					
	E8	1.019					
	F8	0.877					
	G8	0.979					
	H8	1.028					
		Pag	e 102 of 128				

Page 101 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5	2.330	2.330	••••	••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B5 C5	1.467 1.314	1.390	0.108	7.781%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D5	2.378	2.378	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E5	1,161	1.161	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 103 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
١	*****	••••	••••	••••	2.330	1.891	1.414	0.984	****	••••	*****	••••
3	*****	*****	••••	••••	1.467	1.794	1.362	0.964	*****	••••	••••	••••
;	*****		*****	••••	1.314	1.747	1.329	0.944	*****	*****	*****	****
)	*****	*****	*****	••••	2.378	1.759	1.343	0.961	*****	*****	*****	••••
•	••••	••••	*****	*****	1.161	1.797	1.368	1.019	*****	*****	*****	****
F	*****	*****	*****	••••	1.887	1.840	1.363	0.877	*****	*****	*****	••••
3	••••	*****	*****	••••	1.827	1.423	1.395	0.979	*****	*****	*****	••••
4	*****	*****	*****	*****	1.910	1.392	1.667	1.028	*****	*****	*****	****

Dynex Technologies

Page 104 of 128

TEST NO. TEST NAME PLATE : : BENZODIAZEPINE GROUP ACCURACY : Accuracy BenzCoc120308

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : 3/8/2012 : 3:13:29 PM : admin DATE TIME OPERATOR

BENZODIAZEPINE GROUP ACCURACY,
Accuracy BenzCoc120308,
Adid Stop,
BENZODIAZEPINE GROUP CONJUGATE,
COCAINE/BZE CONJUGATE,
EIA Buffer,
BENZODIAZEPINE GROUP CUTOFF,
BENZODIAZEPINE GROUP CUTOFF,
BENZODIAZEPINE GROUP NEGATIVE,
GROUP 2 CUTOFF,
GROUP 2 STEGATIVE,
Distilled Water,
Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

1.963>0.861 NC>CO

= CO = 0.862 = CO = 0.862 - equation

Page 105 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	POS	POS								
В	CO1	NEG	POS	POS								
С	CO1	NEG	POS	POS								
D	NNC1	NEG	POS	POS								
Ε	NCO1	NEG	POS	POS								
F	NEG	NEG	POS	POS								
G	NEG	POS	POS	POS								4.
н	NEG	POS	POS	POS								

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Benzodiazepine -50%]	F1	1.012	1.036	0.022	2.168%	NEG
,,	G1	1.037				
	H1	1.067				
	A2	1.076				
	B2	1.026				
	C2	1.028				
	D2	1.010				
	E2	1.030				
	F2	1.034				
[Benzodiazepine CO]	G2	0.832	0.835	0.055	6.609%	POS
	H2	0.934				
	A3	0.873				
	B3	0.761				
	C3	0.802				
	D3	0.761				
	E3	0.862				
	F3	0.856				
	G3	0.837				
[Benzodiazepine +50%]	H3	0.775	0.688	0.051	7.455%	POS
	A4	0.700				
	B4	0.700				
	C4	0.682				
	D4	0.621				
	E4	0.601				
	F4	0.717				
	G4	0.694				
	H4	0.700				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.963	1.963	*****	••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	0.839 0.885	0.862	0.032	3.736%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.656	1.656	••••		NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.642	0.642	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 107 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.963	1.076	0.873	0.700	*****	*****	*****	*****	••••	*****	*****	****
В	0.839	1.026	0.761	0.700	*****	*****	*****	••••	••••	*****	*****	****
С	0.885	1.028	0.802	0.682	*****	••••	••••	••••	*****	*****	*****	••••
D	1.656	1.010	0.761	0.621	*****	••••		••••	••••		••••	****
Е	0.642	1.030	0.862	0.601	*****	*****		••••		••••	*****	••••
F	1.012	1.034	0.856	0.717	*****	*****	*****	*****	*****	*****	*****	••••
G	1.037	0.832	0.837	0.694	*****	*****	*****	*****			*****	*****
н	1.067	0.934	0.775	0.700	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 108 of 128

TEST NO. TEST NAME PLATE : COCAINE-BZE ACCURACY : Accuracy BenzCoc120308 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm DATE TIME OPERATOR : 3/8/2012 : 3:13:29 PM : admin COCAINE-BZE ACCURACY, Accuracy BenzCoc120308, Acid Stop, COCAINE/BZE CONJUGATE, EIA Buffer, K-Blue, COCAINE/BZE CUTOFF, COCAINE/BZE NEGATIVE, GROUP 2 CUTOFF, GROUP 2 CUTOFF, Distilled Water, Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 1.258>1.077 = CO = 1.077 = CO = 1.077 + equation - equation

1	2	3	4	5	6	7	8	9	10	11	12
A				NC1	NEG	POS	POS				
в				CO1	NEG	POS	POS				
: -				CO1	NEG	POS	POS				
\neg				NNC1	NEG	POS	POS				
E				NCO1	NEG	POS	POS				
F				NEG	NEG	POS	POS				
3				NEG	POS	POS	POS				
4				NEG	POS	POS	POS				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Cocaine -50%]	F5	1.088	1.098	0.061	5.595%	NEG	
	G5	1.031					
	H5	1.079					
	A6	1.240					
	B6	1.136					
	C6	1.092					
	D6	1.090					
	E6	1.079					
	F6	1.043					
[Cocaine CO]	G6	0.951	0.917	0.094	10.203%	POS	
,,	H6	0.886					
	A7	1.109					
	B7	1.013					
	C7	0.890					
	D7	0.844					
	E7	0.893					
	F7	0.819					
	G7	0.843					
[Cocaine +50%]	H7	0.792	0.804	0.066	8.255%	POS	
	A8	0.923					
	B8	0.868					
	C8	0.792					
	D8	0.832					
	E8	0.806					
	F8	0.714					
	G8	0.716					
	H8	0.794					
		Pag	e 110 of 128				

Page 109 of 128

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5	1.259	1.259	••••	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B5 C5	1.092 1.063	1.077	0.021	1.924%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D5	0.812	0.812	****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E5 -	0.419	0.419	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

**** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 111 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
A	*****	*****	••••	••••	1.259	1.240	1.109	0.923	*****	*****	*****	••••
В	••••	*****	••••	••••	1.092	1.136	1.013	0.868	••••	••••	••••	
С	*****	*****	*****	*****	1.063	1.092	0.890	0.792	••••	••••	••••	••••
D	*****	*****	*****	••••	0.812	1.090	0.844	0.832	••••	*****	*****	****
Е	••••		*****	*****	0.419	1.079	0.893	0.806	*****	*****	*****	••••
F	••••		*****	*****	1.088	1.043	0.819	0.714	*****	*****	*****	****
G	•••••		*****	••••	1.031	0.951	0.843	0.716	*****	*****	*****	••••
н	*****	*****	*****	****	1.079	0.886	0.792	0.794	*****	*****	*****	*****

Dynex Technologies

Page 112 of 128

: 3/8/2012 : 2:32:13 PM : admin

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE : COTININE ACCURACY : Accuracy Cot120308

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm

DATE TIME OPERATOR

Kit Lot Data Plate Lot Data Reagent Lot Data

: COTININE ACCURACY, Accuracy Cot120308, Acid Stop., COTININE CONJUGATE, EIA Buffer, K-Biue, COTININE CUTOFF, COTININE NEGATIVE, GROUP 1 NEGATIVE, GROUP 1 NEGATIVE, Distilled Water, Neogen Wash Buffer,

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

3.164>2.113 NC>CO

= CO = 2.113 = CO = 2.113 + equation - equation

Page 113 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	POS	POS			-					
В	CO1	NEG	POS	POS								
С	CO1	NEG	POS	POS								
D	NNC1	NEG	POS	POS								
Е	NCO1	NEG	POS	POS								
F	NEG	NEG	POS	POS								
G	NEG	POS	POS	POS								
н	NEG	POS	POS	POS								

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Cotinine -50%]	F1	2.374	2.335	0.082	3.499%	NEG
	G1	2.328				
	H1	2.416				
	A2	2.491				
	B2	2.322				
	C2	2.229				
	D2	2.326				
	E2	2.267				
	F2	2.266				
[Cotinine CO]	G2	1.954	2.016	0.072	3.584%	POS
	H2	2.008				
	A3	2.178				
	B3	2.090				
	C3	1.977				
	D3	1.975				
	E3	1.966				
	F3	1.994				
	G3	2.003				
[Cotinine +50%]	Н3	1.893	1.843	0.066	3.590%	POS
	A4	1.983				
	B4	1.830				
	C4	1.859				
	D4	1.822				
	E4	1.809				
	F4	1.742				
	G4	1.814				
	H4	1.839				
		Pa	ge 114 of 128			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	3.164	3.164	****	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	2.188 2.039	2.113	0.105	4.976%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	2.582	2.582		••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	1,406	1.406	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

DATA MATRIX/TABLE : OD

Page 115 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
4	3.164	2.491	2.178	1.983	••••	*****	••••	••••	••••	••••	*****	
3	2.188	2.322	2.090	1.830	*****	*****	••••	*****	*****	••••	*****	
;	2.039	2.229	1.977	1.859	*****	*****	*****	••••	••••	••••	••••	****
)	2.582	2.326	1.975	1.822	*****	*****	••••	••••	*****	*****	*****	••••
:	1.406	2.267	1.966	1.809	*****	*****	*****	••••	*****	*****	*****	••••
=	2.374	2.266	1.994	1.742	*****	*****	*****	*****	*****	••••	*****	****
6	2.328	1.954	2.003	1.814	*****	*****	*****	*****	*****	••••	*****	••••
4	2.416	2.008	1.893	1.839	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 116 of 128

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE

: OPIATE GROUP ACCURACY : Accuracy Opi120309

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/9/2012 : 1:43:23 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.389>1.145

= CO = 1.145 = CO = 1.145 + equation

Page 117 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	POS	POS								
В	CO1	NEG	POS	POS								
С	CO1	NEG	POS	POS								
D	NNC1	NEG	POS	POS								
E	NCO1	NEG	POS	POS								
F	NEG	NEG	POS	POS								
G	NEG	POS	POS	POS								
н	NEG	POS	POS	POS								

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Opiate -50%]	F1	1.126	1.169	0.075	6.413%	NEG
	G1	1.311				
	H1	1.153				
	A2	1.131				
	B2	1.199				
	C2	1.216				
	D2	1.083				
	E2	1.224				
	F2	1.081				
[Opiate CO]	G2	0.894	0.929	0.061	6.531%	POS
	H2	1.032				
	A3	0.879				
	B3	0.894				
	C3	0.901				
	D3	0.999				
	E3	0.943				
	F3	0.973				
	G3	0.850				
[Opiate +50%]	Н3	0.798	0.780	0.057	7.271%	POS
	A4	0.769				
	B4	0.738				
	C4	0.720				
	D4	0.807				
	E4	0.800				
	F4	0.827				
	G4	0.691				
	H4	0.874				
		Pag	e 118 of 128			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A1	1.389	1.389	****	*****	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B1 C1	1.227 1.063	1.145	0.116	10.106%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D1	1.654	1.654	*****	****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E1	0.842	0.842	*****	*****	NCO1

- [...] Indicates manual entry if Sample ID is bracketed

 ***** Indicates an unread well or value out of range

 0 Indicates an equivocal response

 * Indicates an unread well or value out of range

 # Indicates combined data

DATA MATRIX/TABLE : OD

Page 119 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.389	1.131	0.879	0.769	••••	*****	*****	••••	*****	*****	*****	••••
В	1.227	1.199	0.894	0.738	*****	*****	*****	*****	*****	*****	*****	••••
С	1.063	1.216	0.901	0.720	*****	*****	*****	••••	••••			••••
D	1.654	1.083	0.999	0.807	*****	*****		••••	*****	*****	*****	••••
Е	0.842	1.224	0.943	0.800	*****	*****	*****	*****	*****	*****	*****	
F	1.126	1.081	0.973	0.827	*****	*****	*****	*****	••••	*****	*****	••••
G	1.311	0.894	0.850	0.691	*****	*****		*****	*****	*****	*****	
н	1.153	1.032	0.798	0.874	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 120 of 128

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE

: : OPIATE GROUP ACCURACY : Accuracy OpiTHC120308

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm : *

DATE TIME OPERATOR

: 3/8/2012 : 3:23:49 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: OPIATE GROUP ACCURACY, ...
Accuracy OpiTHC120308, ...
Acid Stop., ...
EIA Buffer, ...
CPIATE GROUP CONJUGATE, ...
THC CONJUGATE, ...
GROUP 2 CUTOFF, ...
GROUP 2 CUTOFF, ...
OPIATE GROUP CUTOFF, ...
OPIATE GROUP CUTOFF, ...
DPIATE GROUP NEGATIVE, ...
DPIATE GROUP NEGATIVE, ...
DPIATE GROUP NEGATIVE, ...
Distilled Water, ...
Neogen Wash Buffer, ...

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.415>1.057

+ equation - equation = CO = 1.057 = CO = 1.057

Page 121 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NC1	NEG	NEG	NEG				-				
В	CO1	NEG	NEG	NEG								
С	CO1	NEG	NEG	NEG								
D	NNC1	NEG	NEG	NEG								
Ε	NCO1	NEG	NEG	NEG								
F	NEG	NEG	NEG	NEG								
G	NEG	NEG	NEG	NEG								
н	NEG	NEG	NEG	NEG								

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Opiate -50%]	F1	1.300	1.255	0.077	6.143%	NEG
	G1	1.268				
	H1	1.368				
	A2	1.218				
	B2	1.213				
	C2	1.129				
	D2	1.172				
	E2	1.323				
	F2	1.299				
[Opiate CO]	G2	1.158	1.129	0.068	5.987%	NEG
	H2	1.221				
	A3	1.189				
	B3	1.120				
	C3	1.116				
	D3	1.007				
	E3	1.137				
	F3	1.044				
	G3	1.165				
[Opiate +50%]	H3	1.112	1.077	0.045	4.211%	NEG
	A4	1.091				
	B4	1.108				
	C4	1.080				
	D4	1.062				
	E4	1.099				
	F4	1.070				
	G4	0.966				
	H4	1.106				
		Pac	ge 122 of 128			

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	1.416	1.416	*****	••••	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	B1 C1	1.136 0.978	1.057	0.112	10.594%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	D1	1.549	1.549	*****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	E1	0.807	0.807	*****	*****	NCO1	

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 123 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.416	1.218	1.189	1.091	*****	*****	*****	*****	*****	*****	*****	*****
В	1.136	1.213	1.120	1.108	****	*****	*****	*****	*****	*****	*****	*****
С	0.978	1.129	1.116	1.080	****	*****	*****	*****	*****	*****	*****	*****
D	1.549	1.172	1.007	1.062	*****	*****	*****	*****	*****	*****	*****	*****
Е	0.807	1.323	1.137	1.099	*****	*****	*****	*****	*****	*****	*****	*****
F	1.300	1.299	1.044	1.070	*****	*****	*****	••••	*****		*****	*****
G	1.268	1.158	1.165	0.966	*****	*****	*****		*****	*****	*****	*****
н	1.368	1.221	1.112	1.106	*****	*****	*****	*****	*****	*****	*****	

***** Indicates an unread well or value out of range

Page 124 of 128

TEST NO. TEST NAME PLATE

: THC ACCURACY : Accuracy OpiTHC120308

W/L MODE TEST FILTER REF. FILTER

: SINGLE : 450 nm

DATE TIME OPERATOR

: 3/8/2012 : 3:23:49 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: THC ACCURACY,
: Accuracy OpiTHC120308,
: Acid Stop,
: ElA Buffer,
:K-Blue,
: THC CONJUGATE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: THC CUTOFF,
: THC NEGATIVE,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.929>1.321

= CO = 1.322 = CO = 1.322 + equation - equation

Page 125 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
A					NC1	NEG	POS	POS				
в					CO1	NEG	POS	POS				
c					CO1	NEG	POS	POS				
▫┆					NNC1	NEG	POS	POS				
E					NCO1	NEG	POS	POS				
F					NEG	NEG	POS	POS				
G					NEG	POS	POS	POS				
н					NEG	POS	POS	POS				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[THC -50%]	F5	1.576	1.561	0.071	4.556%	NEG
	G5	1.535				
	H5	1.652				
	A6	1.693				
	B6	1.571				
	C6	1.484				
	D6	1.529				
	E6	1.515				
	F6	1.493				
[THC CO]	G6	1.228	1.305	0.044	3.347%	POS
	H6	1.314				
	A7	1.368				
	B7	1.367				
	C7	1.285				
	D7	1.283				
	E7	1.313				
	F7	1.284				
	G7	1.301				
[THC +50%]	H7	1.216	1.246	0.043	3.414%	POS
	A8	1.276				
	B8	1.284				
	C8	1.272				
	D8	1.257				
	E8	1.208				
	F8	1.190				
	G8	1.200				
	H8	1.307				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A5	1.930	1.930		••••	NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	B5 C5	1.405 1.238	1.322	0.118	8.923%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	D5	1.949	1.949	*****	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	E5	0.774	0.774	****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

DATA MATRIX/TABLE : OD

Page 127 of 128

	1	2	3	4	5	6	7	8	9	10	11	12
A	*****	*****	••••	*****	1.930	1.693	1.368	1.276	*****	*****	*****	*****
В	*****	*****	••••	••••	1.405	1.571	1.367	1.284	••••	••••	*****	*****
С	*****	*****	*****	••••	1.238	1.484	1.285	1.272	****	*****	*****	*****
D	*****	*****			1.949	1.529	1.283	1.257	*****	*****	*****	*****
Ε	*****	*****	*****		0.774	1.515	1.313	1.208	****	*****	*****	*****
F	*****	*****	*****	••••	1.576	1.493	1.284	1.190	*****		*****	
G		*****	*****	*****	1.535	1.228	1.301	1.200	*****	*****	*****	
н	*****	*****	*****		1.652	1.314	1.216	1.307	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 128 of 128

Appendix G

ELISA Results for Validation #3

Kit, Plate, and Reagent Lot Data

Date: 03/27/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0047B	BGF-0061B	BZF-0078B	CTI-0034	MOF-0056B	OXF-0037B	TCF-0055B
Kit Exp. Date	1/30/2013	1/23/2013	2/22/2013	7/10/2012	2/22/2013	1/16/2013	2/9/2013
Plate #	120119	120119	120116FAM	1102211	120213F	111103F	120208
Plate Exp. Date	1/19/2014	1/19/2014	1/16/2014	2/21/2013	2/13/2014	11/3/2013	2/8/2014
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	026	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	036	050	055	034	044	028	044
CONJ Exp.	1/30/2013	1/23/2013	2/22/2013	-	2/22/2013	1/16/2013	2/9/2013

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 03/27/2012 Negative and Cutoff Calibrators were prepared 03/27/2012

Kit, Plate, and Reagent Lot Data

Date: 03/28/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0047B	BGF-0061B	BZF-0078B	CTI-0034	MOF-0056B	OXF-0037B	TCF-0055B
Kit Exp. Date	1/30/2013	1/23/2013	2/22/2013	7/10/2012	2/22/2013	1/16/2013	2/9/2013
Plate #	120119	120119	120116FAM	1102211	120213F	111103F	120208
Plate Exp. Date	1/19/2014	1/19/2014	1/16/2014	2/21/2013	2/13/2014	11/3/2013	2/8/2014
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	026	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	036	050	055	034	044	028	044
CONJ Exp.	1/30/2013	1/23/2013	2/22/2013	-	2/22/2013	1/16/2013	2/9/2013

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 03/28/2012 Negative and Cutoff Calibrators were prepared 03/28/2012

Kit, Plate, and Reagent Lot Data

Date: 03/29/2012

Amphetamine Benzodiazepine Oxycodone/ ASSAY Cocaine/BZE Cotinine Opiate Group THC Ultra Group Oxymorphone Kit# AUF-0047B BGF-0061B BZF-0078B CTI-0034 MOF-0056B OXF-0037B TCF-0055B Kit Exp. Date 1/30/2013 1/23/2013 2/22/2013 7/10/2012 2/22/2013 1/16/2013 2/9/2013 Plate # 120119 120119 120116FAM 1102211 120213F 111103F 120208 Plate Exp. 1/19/2014 1/19/2014 1/16/2014 2/21/2013 2/13/2014 11/3/2013 2/8/2014 Date C/O & NEG 111212-WB 110811-WB 110715-WB 120117-WB 110826-WB 111110-WB 026 lot# C/O & NEG 1/8/2013 12/28/2012 11/9/2012 1/10/2013 1/16/2013 12/26/2012 Exp. Date CONJ lot # 036 050 055 034 044 028 044 CONJ Exp. 1/30/2013 1/23/2013 2/22/2013 2/22/2013 1/16/2013 2/9/2013

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 03/29/2012 Negative and Cutoff Calibrators were prepared 03/29/2012

Page 4 of 9

C:\.\DriftAmpOxyBe Plate ID: DriftAmpOx			3/30/2012 at 11:0 HETAMINE ULTI				Page 1 of
	-	REVELA	TION DSX	5.21			
TEST NO. TEST NAME PLATE		AMINE ULTRA DxyBenz12032					
N/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : •		DATE TIME OPERATOR		: 3/28/2012 : 4:53:09 Al : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: AMPHETAMINE : AmpOxyBenz, : Adid Stop. : Adid Stop. : AMPHETAMINE : BENZODIAZEPI : EIA BUffer, : K-Blue, : OXYCODONE/C : AMPHETAMINE : AMPHETAMINE : GROUP 1 NEG/ : GROUP 1 NEG/ : Distilled Water, : Neogen Wash B	ULTRA CONJ NE GROUP C XYMORPHON ULTRA CUTC ULTRA NEGA IFF.,	JUGATE, , ONJUGATE, , NE CONJUGAT DFF, ,	Ε.,			
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	LTS			
Q.C. equations							
NC>CO				1.420>1.0	15		
equation equation	= CO = 1.015 = CO = 1.015						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
1] 2] 3] 4]	G1 H1 A2 B2	1.482 1.503 1.524 1.407	1.482 1.503 1.524 1.407	*****	*****	NEG NEG NEG NEG	
5] 6]	C2 D2	1.476 1.389	1.476 1.389			NEG NEG	
			Page 1 of 99				

C:\.\DriftAmpOxyBenz1 Plate ID: DriftAmpOxyB			/30/2012 at 11 HETAMINE UL				Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[7]	E2	1.391	1.391	*****	*****	NEG	
[8]	F2	1.379	1.379	*****	*****	NEG	
[9]	G2	1.438	1.438	*****	*****	NEG	
[10]	H2	1,471	1,471	*****	****	NEG	
[11]	A3	1.480	1.480	*****	*****	NEG	
[12]	В3	1.448	1.448	*****	*****	NEG	
[13]	C3	1.372	1.372			NEG	
[14]	D3	1.407	1.407	*****	*****	NEG	
[15]	E3	1.397	1.397	*****	*****	NEG	
[16]	F3 G3	1.361 1.421	1.361 1.421	*****	*****	NEG NEG	
[Group 1 NEG]				*****			
[Group 1 Cutoff]	Н3	1.046	1.046	••••	••••	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	1.453 1.387	1.420	0.047	3.288%	NC1	
Sample ID	Location C1	Data 1.019	Mean 1.015	S.D. 0.005	C.V. 0.498%	Result	
	D1	1.011					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	1.490	1.490	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.005	1.005	••••	*****	NCO1	
	0	indicates manu indicates an ur indicates an ed indicates an ur indicates comb	nread well or v quivocal respo nread well or v	alue out of ra	inge		

-4	2	3			6	IX/TAE	8		10	36	12
1,453	1	1.480		****	****		*****	*****	*****		
1.387	-	1.448	*****	*****	****	*****	*****	*****	,,,,,	****	*****
1.015	1.476	1.372				****	Tanan'				
1.011	1.389	1.407		*****		****					
1.490	1.391	1.397					*****	*****	*****	****	
1.005	1.379	1.361		*****	****	*****	*****	·		*****	****
1.482	1.438	1.421		*****	1000	*****	Cadaga	*****	****	*****	*****
1.503	1.471	1.046	*****	*****	*****	*****		· ime	*****	*****	****
1.503	1.471	1.046				ad well				349	

Page 3 of 99

Printed on 3/30/2012 at 11:04:28 PM AMPHETAMINE ULTRA

C:\.\DriftAmpOxyBenz120327.DAT Plate ID: DriftAmpOxyBenz120327

	: DriftAmpOx		ORPHONE 327			
W/L MODE	SINGLE		DATE		3/28/2012	2
TEST FILTER	: 450 nm		TIME		4:53:09 A	
REF. FILTER			OPERATOR		admin	7-
Kit Lot Date Plate Lot Data Reagent Lot Data	OXYCODONE-OX AmpOxyBenz Acid Stop ElA Buffer K-Blue OXYCODONE/OX GROUP 1 CUTOF	YMORPHO				
	: GROUP 1 NEGAT : OXYCODONE/OX : OXYCODONE/OX : Distilled Water, : Neogen Wash Buf	YMORPHO)		
OVER limit Calculation mode	3,500 Endpoint					
		THRES	HOLD RESU	ILTS		
Q.C. equations						
NC>CO				2.082>1.23	36	
427.40	= CO			2.082>1.23	36	
* equation	= CO = 1,236 = CO = 1,236			2.082>1.23	36	
equation equation	= 1,236 = CO	Data	Mean	2.082>1.23	G.V.	Result
equation equation Sample (D)	= 1,236 = CO = 1,236					17.77
equation equation Sample ID [1]	= 1,236 = CO = 1,236	2.162	2,162	S.D.	cv.	Result NEG NEG
equation equation Sample (D [1] [2]	= 1,236 = CO = 1,236			S.D.	CV.	NEG
+ equation - equation Sample (D [1] [2] [3]	= 1,236 = CO = 1,236 Location G4 H4	2.162 2.184	2,162 2,184	S.D.	CV.	NEG NEG
NC>CO + equation - equation Sample (D [1] [2] [3] [4]	= 1,236 = CO = 1,236 Location G4 H4 A5 B5	2.162 2.184 2.204 2.143	2,162 2,184 2,204 2,143	S.D.	CV.	NEG NEG NEG NEG
+ equation - equation Sample (D [1] [2] [3] [4]	= 1.236 = CO = 1.236 Lecation G4 H4 A5	2.162 2.184 2.204 2.143 2.139	2,162 2,184 2,204 2,143 2,139	S.D.	CV.	NEG NEG NEG NEG
* equation - equation Sample (D [1] [2] [3] [4] [5]	= 1,236 = CO = 1,236 Lecation G4 H4 A5 B5 C5 D6	2.162 2.184 2.204 2.143 2.139 2.106	2.162 2.184 2.204 2.143 2.139 2.106	S.D.	GV.	NEG NEG NEG NEG NEG
+ equation - equation Sample (D. [1] [2] [3]	= 1,236 = CO = 1,236 Lecation G4 H4 A5 B5	2.162 2.184 2.204 2.143 2.139	2,162 2,184 2,204 2,143 2,139	S.D.	CV.	NEG NEG NEG NEG
+ equation - equation Sample (D [1] [2] [3] [4] [5] [6] [77 [6]	= 1,236 = CO = 1,236 Lecation G4 H4 A5 B5 C6 D6 E5 F5	2.162 2.184 2.204 2.143 2.139 2.106 2.157 2.151	2,162 2,184 2,204 2,143 2,139 2,106 2,157 2,151	S.D.	CV.	NEG NEG NEG NEG NEG NEG NEG
+ equation - equation Sample (D [1] [2] [3] [4] [5] [6] [7]	= 1,236 = CO = 1,236 Lecation G4 H4 A5 B5 C5 D5	2.162 2.184 2.204 2.143 2.139 2.106 2.157	2,162 2,184 2,204 2,143 2,139 2,106 2,157	S.D.	CV.	NEG NEG NEG NEG NEG NEG

Printed on 3/30/2012 at 11:04:28 PM OXYCODONE/OXYMORPHONE

C:_\DriftAmpOxyBenz120327 DAT Plate ID: DriftAmpOxyBenz120327

TEST NO.

Page 3 of 9

VALIDATION OF ELISA IN BREAST MILK

20327 DAT enz120327		3/30/2012 at 11 ONE/OXYMOR				Page 5 of 9
Location	Data	Mean	S.D.	C.V.	Result	
86	2.141	2,141		****	NEG	
C6	2,133	2.133				
D6	2.131	2.131			NEG	
G6	2.059				3.166.00	
HG	1.258	1.258	****	*****	NEG	
Location	Data	Mean	S.D.	C.V.	Result	
A4	2.117	2.082	0.049	2.344%	NC1	
84	2.048					
Location	Data	Mean	S.D.	C.V.	Result	
C4	1 342	1 236	0.149	12 045%	COL	
D4	1,131	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30,070	(5)4)4)	340	
Location	Data	Mean	S.D.	C.V.	Result	
E4	2,162	2.162		*****	NNC1	
Location	Data	Mean	S.D.	C.V.	Result	
F4	1.151	1.151	23413		NCO1	
0	Indicates an u Indicates an e	nread well or v guivocal respo nread well or v	ralue out of r	angu		
	Location B6 C6 D8 E8 F6 G6 H6 Location A4 B4 Location C4 D4 Location E4 Location F4	Location	Location	Location Data Mean S.D.	Location Data Mean S.D. C.V.	Location Data Mean S.D. C.V. Result

					DATA	MATR	IX/TA	BLE : (OD				
	1	2	3	4	5	6	7	8	9	10	11	12	
A	*****		1000	2.117	2.204	2.199	*****	*****	****	*****	****	*****	
В	*****	*****	*****	2.048	2.143	2.141	****	*****	1000	*****	*****	*****	
c	*****	****	*****	1.342	2.139	2.133	*****	*****	*****	*****	*****	*****	
D	*****	****		1.131	2.106	2.131	*****	*****	*****	·****	*****	****	
E	*****	*****	*****	2.162	2.157	2.138	****		*****	****	*****	*****	
F	*****		*****	1,151	2.151	2,144	*****		*****			*****	
G	••••		****	2.162	2.141	2.059							
н	4000		1000	2.184	2.182	1.258	****		*****		rein	*****	

indicates an unread well or value out of range

Page 6 of 99

Plate ID: DriftAmpOx	nz120327.DAT xyBenz120327		1/30/2012 at 11:0 DIAZEPINE GRO				Page 7 of 9
TEST NO. TEST NAME PLATE	: BENZODIA : DriftAmpOx						
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR		3/28/2012 4:53:09 A admin		
Kit Lol Dala Plate Lot Data Reagent Lol Data	BENZODIAZEPINI AmpOxyBenz. Aeid Stop. BENZODIAZEPINI EIA Buffer . K-Blue, . BENZODIAZEPINI BENZODIAZEPINI GROUP 2 PINGAT Distilled Water . Neogen Wash Buf	E GROUP C E GROUP N E GROUP N F, I IVE.	ONJUGATE,				
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	LTS			
Q,C equations		THRESH	OLD RESU	LTS			
Q.C equations		THRESH	OLD RESUI	1.813>1.15	3		
30 A Y	= CO = 1.154	THRESH	OLD RESUI		3		
NC>CO	= CO	THRESH	OLD RESUI		3		
NC>CO • equation	= CO = 1.154 = CO	Data	OLD RESUI		c.v	Result	
NC>CO • equation - equation Sample ID [1]	= CO = 1,154 = CO = 1,154			1.813>1.15	C.V.	Result	
NC>CO + equation - equation Sample ID	= CO = 1,154 = CO = 1,154	Data 2.030 2.080	Mean	1.813>1.15	C.V.	NEG NEG	
NC>CO • equation - equation Sample ID [1]	= CO = 1,154 = CO = 1,154 Location	Data 2.030 2.080 2.056	Mean 2 030	1.813>1.15	C.V.	NEG NEG NEG	
NC>CO + equation - equation Sample ID [1]	= CO = 1,154 = CO = 1,154 Location G7 H7	Data 2.030 2.080	Mean 2 030 2 080	1.813>1.15	C.V.	NEG NEG	
NC>CO + equation - equation Sample ID [1] [2] [3] [4]	= CO = 1,154 = CO = 1,154 Location G7 H7 A8	Data 2.030 2.080 2.056	Mean 2.030 2.080 2.056	1.813>1.15	C.V.	NEG NEG NEG	
NC>CO * equation - equation Sample ID [1] [2] [3] [4]	= CO = 1.154 = CO = 1.154 Location G7 H7 A8 B8	Data 2.030 2.080 2.056 2.040	Mean 2.030 2.080 2.056 2.040	1.813>1.15	C.V.	NEG NEG NEG NEG	
NC>CO + equation - equation Sample ID [1] [2] [3] [4]	= CO = 1,154 = CO = 1,154 Location G7 H7 A8 B8	Data 2.030 2.080 2.056 2.040 2.025	Mean 2 030 2 080 2 056 2 040 2 025	S.D.	C.V.	NEG NEG NEG NEG	
NC>CO • equation • equation Sample ID (1) [2] [3], [4] [5]	= CO = 1.154 = CO = 1.154 Location G7 H7 A8 B8 C8 D8	Data 2.030 2.080 2.056 2.040 2.025 1.971	Mean 2.030 2.080 2.056 2.040 2.025 1,971	1.813>1.15	C.V.	NEG NEG NEG NEG NEG	
NC>CO	= CO = 1,154 = CO = 1,154 Location G7 H7 A8 B8 C8 D8 E8 F8	Data 2.030 2.080 2.050 2.040 2.025 1.971 2.046 2.047	Mean 2 030 2 080 2 056 2 055 1 971 2 046 2 047	S.D.	C.V.	NEG NEG NEG NEG NEG NEG NEG	
NC>CO - equation - equation Sample ID [1] [2] [3] [4] [5] [6] [7] [8]	= CO = 1,154 = CO = 1,154 Location G7 H7 A8 B8 C8 D8 E8	Data 2.030 2.080 2.050 2.040 2.025 1.971 2.046	Mean 2 030 2 080 2 056 2 040 2 025 1,971 2 046	S.D.	C.V.	NEG NEG NEG NEG NEG NEG	
NC>CO	= CO = 1.154 = CO = 1.154 Location G7 H7 A8 B8 C8 D8 E8 F8	Data 2.030 2.080 2.056 2.040 2.025 1.971 2.046 2.047 2.038	Mean 2 030 2 080 2 056 2 040 2 025 1 971 2 046 2 047 2 038	S.D.	C V.	NEG NEG NEG NEG NEG NEG NEG NEG	

C:\.\DriftAmpOxyBenz1 Plate ID: DriftAmpOxyB			3/30/2012 at 11 DIAZEPINE GI				Page 8 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[12]	B9	2.023	2.023	*****	*****	NEG	
[13]	C9	2.033	2.033	*****	*****	NEG	
[14]	D9	2.010	2.010	*****	*****	NEG	
[15]	E9	2.035	2.035	*****	*****	NEG	
[16]	F9	1.983	1.983	*****	*****	NEG	
[Group 2 NEG]	G9	1.924	1.924	*****	*****	NEG	
[Group 2 Cutoff]	H9	1.048	1.048		••••	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A7 B7	1.763 1.863	1.813	0.071	3.922%	NC1	
Sample ID	Location C7 D7	Data 1.157 1.150	Mean 1.154	S.D. 0.005	C.V. 0.410%	Result CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.396	1.396	****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.535	0.535	*****	*****	NCO1	

- [...] Indicates manual SID entry or manual pipetting
 ***** Indicates an unread well or value out of range
 0 Indicates an equivocal response
 * Indicates an unread well or value out of range
 # Indicates combined data

Page 8 of 99

Page 3 of 9

ite l	D: DriftA	mpOxyBe	enz12032	7	E	BENZODI	AZEPINE	GROUP						
	DATA MATRIX/TABLE : OD													
	1	2	3	4	5	6	7	8	9	10	11	12		
A	•••••	*****		*****	*****	*****	1.763	2.056	2.047	*****	*****	*****]	
в	••••			•••••	••••		1.863	2.040	2.023	••••	••••			
С	*****	*****	*****	*****	*****	*****	1.157	2.025	2.033	*****	*****			
D	*****	*****	*****	••••	*****		1.150	1.971	2.010	*****	••••			
Е	*****	••••	*****	*****	*****	*****	1.396	2.046	2.035	*****	•••••			
F	****	*****	*****	*****	*****	*****	0.535	2.047	1.983	*****	••••			
G	*****		*****	*****	*****	••••	2.030	2.038	1.924	*****	*****	*****		
н	*****	*****	*****	*****	*****	*****	2.080	2.085	1.048	*****	*****	*****	1	

***** Indicates an unread well or value out of range

Dynex Technologies

Page 9 of 99

C:\\DriftCocOpiTHC Plate ID: DriftCocOp			3/30/2012 at 11:05:24 PM COCAINE/BZE		Page 1 of 9
		REVELA	TION DSX 6.21		
TEST NO. TEST NAME PLATE	: : COCAII : DriftCoo	NE-BZE :OpiTHC120327			
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR	: 3/28/2012 : 5:11:13 AM : admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	: COCAINE-BZE : COCOPITHC, : COCAINE/BZE : EIA Buffer, : CPIATE GROU : THC CONJUG : COCAINE/BZE : COCAINE/BZE : COCAINE/BZE : GROUP 2 CUT : GROUP 2 NEC : Distilled Water : Neogen Wash	CONJUGATE, JP CONJUGATE ATE, CUTOFF, NEGATIVE, GATIVE,			
OVER limit Calculation mode	: 3.500 : Endpoin	at			
		THRESH	OLD RESULTS		
Q.C. equations					
NC>CO			1.280>	0.570	
+ equation	= CO = 0.571				

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[1]	G1	1.704	1.704	*****	*****	NEG
[1] [2] [3]	H1	1.806	1.806	*****	*****	NEG
isi	A2	1.863	1.863	*****	*****	NEG
[4]	B2	1.762	1.762	*****	*****	NEG
[5]	C2	1.735	1.735	*****	*****	NEG
[6]	D2	1.752	1.752	*****	*****	NEG

- equation

C:\.\DriftCocOpiTHC120327.DAT Plate ID: DriftCocOpiTHC120327

Page 10 of 99

Printed on 3/30/2012 at 11:05:24 PM COCAINE/BZE

C:\.\DriftCocOpiTHC12 Plate ID: DriftCocOpiTH			3/30/2012 at 11 COCAINE/BZE	:05:24 PM			Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[7]	E2	1.490	1.490	*****	*****	NEG	
[8]	F2	1.724	1.724	*****	*****	NEG	
[9]	G2	1.720	1.720	*****	*****	NEG	
[10]	H2	1.959	1.959	*****	*****	NEG	
[11]	A3	1.902	1.902	*****	*****	NEG	
[12]	B3	1.889	1.889	*****	*****	NEG	
[13]	C3	1.828	1.828	*****	*****	NEG	
[14]	D3	1.761	1.761	*****	*****	NEG	
[15]	E3	1.730	1.730	*****	*****	NEG	
[16]	F3	1.706	1.706	*****	*****	NEG	
[Group 2 NEG]	G3	1.262	1.262	*****	*****	NEG	
[Group 2 Cutoff]	Н3	0.426	0.426	••••	••••	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	1.297 1.264	1.281	0.023	1.773%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	0.601 0.540	0.571	0.043	7.541%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	0.808	0.808	*****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	0.447	0.447	*****	*****	NCO1	

		manual SID entry or manual pipetting
*****	Indicates	an unread well or value out of range
	Indicator	on equipment response

Indicates an equivocal response
 Indicates an unread well or value out of range
 Indicates combined data
 Page 11 of 99

	DATA MATRIX/TABLE : OD												
									_				
Α	1.297	1.863	1.902		*****	*****	*****	*****	*****	*****	*****	*****	
В	1.264	1.762	1.889	*****	*****	*****	*****	*****	*****	*****	*****	*****	
С	0.601	1.735	1.828	*****	*****	*****	*****	••••	*****	*****	*****	*****	
D	0.540	1.752	1.761		*****	*****	••••	••••	••••	*****	*****	••••	
Е	0.808	1.490	1.730	••••	*****	*****	••••	••••	*****	*****	*****	••••	
F	0.447	1.724	1.706	*****	*****	*****	••••	•••••		••••	••••		
G	1.704	1.720	1.262		*****	••••		••••		*****	*****	••••	
н	1.806	1.959	0.426		••••	*****		••••		*****	*****	••••	
				****	Indicates	s an unre	ead well o	or value	out of rai	nge			

Page 12 of 99

C:\.\DriftCocOpiTHC Plate ID: DriftCocOpi			3/30/2012 at 11:0 OPIATE GROUP	5:24 PM			Page 4 of
TEST NO. TEST NAME PLATE	: : OPIATE G : DriftCocOp		,				
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR		: 3/28/2012 : 5:11:13 A : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: OPIATE GROUP, : CocOpiTHC, , : Acid Stop, . : EIA Buffer , : K-Blue, . : OPIATE GROUP : GROUP 2 CUTOR : GROUP 2 NEGAT : OPIATE GROUP : OPIATE GROUP : OPIATE GROUP : Distilled Water , : Neogen Wash Bu	CONJUGAT FF, , IVE, , CUTOFF, , NEGATIVE,	Ε, ,				
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	LTS			
Q.C. equations							
NC>CO				1.466>0.9	15		
+ equation	= CO = 0.915						
- equation	= CO = 0.915						
Sample ID	Location	Data	Mean	S.D.	c.v.	Result	
[1]	G4	1.752	1.752	*****	*****	NEG	
[2]	H4 A5	1.685 1.752	1.685 1.752	*****	*****	NEG NEG	
[3] [4]	85 85	1.752	1.737	••••	*****	NEG	
[5]	C5	1.827	1.827	*****	*****	NEG	
[6]	D5	1.684	1.684	*****	****	NEG	
[7]	E5	1.771	1.771	*****	*****	NEG	
	F5	1.496	1.496	*****	*****	NEG	
[8]	G5	1.742	1.742	*****	*****	NEG	
[8] [9]					*****	NEG	
	H5 A6	1.627 1.719	1.627 1.719	*****	*****	NEG	

C:\.\DriftCocOpiTHC12 Plate ID: DriftCocOpiTH			1/30/2012 at 11 PIATE GROUP				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[12]	B6	1.725	1.725	*****	*****	NEG	
[13]	C6	1.804	1.804			NEG	
[14]	D6	1.737	1.737	*****	*****	NEG	
[15]	E6	1.733	1.733		*****	NEG	
[16]	F6	1.795	1.795	*****	*****	NEG	
[Group 2 NEG]	G6	1.609	1.609			NEG	
[Group 2 Cutoff]	H6	0.841	0.841	••••	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4 B4	1.352 1.581	1.467	0.162	11.053%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	0.841 0.989	0.915	0.105	11.436%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	1.698	1.698	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	0.939	0.939	****	****	NCO1	
	[]	Indicates manu	ual SID entry o	or manual pig	petting ange		

Indicates an equivocal response
 Indicates an unread well or value out of range
 Indicates an unread well or value out of range
 Indicates combined data

Page 14 of 99

		piTHC120 ocOpiTH			riiii	ed on 3/3/ OPI/	ATE GRO		1 101				Page 6 of
					DATA	MATR	IX/TAI	BLE : (OD				
	1	2	3	4	5	6	7	8	9	10	11	12	
A	••••			1.352	1.752	1.719		••••	••••	••••	*****]
в	*****			1.581	1.737	1.725	*****	*****		*****	*****	*****	
С	••••	••••	*****	0.841	1.827	1.804	••••	*****		*****	*****	*****	
D	*****	*****		0.989	1.684	1.737	*****	*****	*****	*****	*****	••••	
Е	*****	••••		1.698	1.771	1.733	••••			*****			
F	*****	*****	*****	0.939	1.496	1.795	*****	*****	*****	*****	*****	*****	
G	*****	*****		1.752	1.742	1.609	*****		••••	*****	*****	••••	
н	****	*****	••••	1.685	1.627	0.841	*****		*****	*****	*****	*****	

Plate ID: DriftCocOp	THC120327		THC				_
TEST NO.	:						
TEST NAME	: THC						
PLATE	: DriftCocOpiTh	HC12032	27				
W/L MODE	: SINGLE		DATE		: 3/28/2012		
TEST FILTER	: 450 nm		TIME		: 5:11:13 A	M	
REF. FILTER	: *		OPERATOR		: admin		
Kit Lot Data	: THC, TCF-0055B,						
Plate Lot Data	: CocOpiTHC, ,						
Reagent Lot Data	: Acid Stop, ,						
	: EIA Buffer, ,						
	: K-Blue, ,						
	: THC CONJUGATE, ,						
	: GROUP 2 CUTOFF,						
	: GROUP 2 NEGATIV	Ε,,					
	: THC CUTOFF, ,						
	: THC NEGATIVE, , : Distilled Water, ,						
	: Neogen Wash Buffer						
OVER limit	: 3.500						
Calculation mode	: 3.500 : Endpoint						
	т	HRES	HOLD RESUL	.TS			
Q.C. equations							
NC>CO				1.480>1.34	10		
NC>CO				1.480>1.34	19		
+ equation	= CO						
	= 1.349						
 equation 	= CO						
	= 1.349						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[1]	G7	1.501	1.501	*****	*****	NEG	
[2]	H7	1.593	1.593	*****	*****	NEG	
[3]	A8	1.699	1.699	*****	*****	NEG	
[4]	B8	1.599	1.599	*****	*****	NEG	
[5]	C8	1.596	1.596	*****	*****	NEG	
[6]	D8	1.510	1.510	*****	*****	NEG	
[7]	E8	1.517	1.517	*****	*****	NEG	
[8]	F8	1.499	1.499			NEG	
	G8	1.537	1.537	*****	••••	NEG	
[9]	H8	1.497	1.497		*****	NEG	
[10]		4 000					
[9] [10] [11]	A9	1.632	1.632 Page 16 of 99	*****		NEG	

Page 15 of 99

VALIDATION OF ELISA IN BREAST MILK

C:\.\DriftCocOpiTHC12 Plate ID: DriftCocOpiTH		Printed on 3	/30/2012 at 11 THC	:05:24 PM		Page 8 of 9	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[12] [13]	B9 C9	1.620 1.565	1.620 1.565	*****	*****	NEG NEG	
[14] [15]	D9 E9	1.561 1.508	1.561 1.508	*****		NEG NEG	
[16] [Group 2 NEG]	F9 G9	1.558 1.415	1.558 1.415	*****	*****	NEG NEG	
[Group 2 Cutoff]	Н9	1.269	1.269	*****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A7 B7	1.467 1.495	1.481	0.020	1.338%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C7 D7	1.353 1.345	1.349	0.005	0.378%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.560	1.560	••••	••••	NNC1	-
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.670	0.670	*****	*****	NCO1	
	0	Indicates manu Indicates an ur Indicates an ed Indicates an ur Indicates comb	nread well or v quivocal respo nread well or v	alue out of ra	ange		

Page 17 of 99

C:\.\DriftCocOpiTHC120327.DAT Plate ID: DriftCocOpiTHC120327 Printed on 3/30/2012 at 11:05:24 PM THC Page 9 of 9 DATA MATRIX/TABLE : OD 3 6 7 9 10 11 12 ***** **** ***** ***** ***** ***** 1.467 1.699 1.632 **** 1.495 1.599 1.620 С 1.353 1.596 1.565 D 1.345 1.510 1.561 Е 1.560 1.517 1.508 F 0.670 1.499 1.558 G 1.501 1.537 1.415 **** **** ***** ***** ***** 1.593 1.497 1.269 ***** *****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 18 of 99

C:\\DriftCot120327. Plate ID: DriftCot120			3/30/2012 at 11: COTININE				Page 1 of 3
		REVELA	ATION DSX	6.21			
TEST NO. TEST NAME PLATE	: : COTININE : DriftCot120	327					
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/28/2012 : 4:03:20 A : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: COTININE, CTI-00: Cot, : Acid Stop., : COTININE CONJU: EIA Buffer, : K-Blue, : COTININE CUTOI : COTININE NEGA: GROUP 1 NEGAT Distilled Water, : Neogen Wash Buf	JGATE, , FF, , TIVE, , F, , IVE, ,					
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	IOLD RESU	ILTS			
Q.C. equations							
NC>CO				3.273>1.79	14		
+ equation - equation	= CO = 1.795 = CO = 1.795						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[1] [2] [3] [4]	G1 H1 A2 B2	3.289 3.400 3.410 3.406	3.289 3.400 3.410 3.406			NEG NEG NEG NEG	
[5] [6] [7] [8]	C2 D2 E2 F2	3.393 3.390 3.356 3.362	3.393 3.390 3.356 3.362			NEG NEG NEG NEG	
			Page 19 of 99				

C:\\DriftCot120327.DAT Plate ID: DriftCot120327		Printed on 3	3/30/2012 at 11: COTININE		Page 2 of		
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[9]	G2	3.364	3.364	*****	*****	NEG	
[10]	H2	3.385	3.385	*****	*****	NEG	
[11]	A3	3.287	3.287	*****	*****	NEG	
[12]	B3	3.241	3.241	*****	*****	NEG	
[13]	C3	3.245	3.245	*****	*****	NEG	
[14]	D3	3.190	3.190	*****	****	NEG	
[15]	E3	3.140	3.140	*****	*****	NEG	
[16]	F3	3.124	3.124	*****	*****	NEG	
[Group 1 NEG]	G3	3.115	3.115	*****	*****	NEG	
[Group 1 Cutoff]	Н3	1.898	1.898	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	3.272 3.275	3.274	0.002	0.053%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.829 1.760	1.795	0.049	2.713%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	2.420	2.420	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.413	1.413	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

Page 20 of 99

Page 3 of 3

Page 3 of 3

Printed on 3/30/2012 at 11:06:06 PM COTININE

DATA MATRIX/TABLE : OD A 3.272 3.410 3.287 3.275 3.406 3.241 ***** 1.829 3.393 3.245 ***** ***** D 1.760 3.390 3.190 ***** ***** 2.420 3.356 3.140 **** ***** 1.413 3.362 3.124 G 3.289 3.364 3.115 Н 3.400 3.385 1.898

C:\..\DriftCot120327.DAT Plate ID: DriftCot120327

***** Indicates an unread well or value out of range

Dynex Technologies

Page 21 of 99

C:\.\DRIFT2_THC.DA Plate ID: DRIFT2_TH		Printed on 3	3/30/2012 at 11: THC	03:10 PM			Page 1 of 3
		REVELA	TION DSX	6.21			
TEST NO. TEST NAME PLATE	: : THC : DRIFT2_TH	IC					
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR		: 3/29/2012 : 12:59:28 : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: THC, TCF-0055B, : THC, : Acid Stop, : ElA Buffer, : K-Blue, : THC CONJUGATE : GROUP 2 CUTOF : GROUP 2 NEGAT : THC CUTOFF, : THC NEGATIVE, : Distilled Water, : Neogen Wash Buff	F, , IVE, ,					
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	ILTS			
Q.C. equations							
NC>CO				1.473>1.0	68		
equation equation	= CO = 1.069 = CO						
	= 1.069						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2CO_OLD]	G1	1.055	1.055	*****	*****	POS	
[1]	H1 A2	1.534 1.648	1.534 1.648	*****	*****	NEG NEG	
2] 3]	B2	1.534	1.534	****	****	NEG	
[4]	C2	1.527	1.527	****	*****	NEG	
[5]	D2	1.559	1.559	*****	*****	NEG	
[6] [7]	E2 F2	1.476 1.507	1.476 1.507	*****	*****	NEG NEG	
			Page 22 of 99				

C:\\DRIFT2_THC.DAT Plate ID: DRIFT2_THC		Printed on 3	3/30/2012 at 11 THC			Page 2 of	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[8]	G2	1.498	1.498	*****	*****	NEG	
[9]	H2	1.484	1.484	*****	*****	NEG	
[10]	A3	1.377	1.377	*****	*****	NEG	
[11]	B3	1.596	1.596	*****	*****	NEG	
[12]	C3	1.500	1.500	*****	*****	NEG	
[13]	D3	1.531	1.531	****	****	NEG	
[14]	E3	1.468	1.468	*****	*****	NEG	
[15]	F3	1.489	1.489	••••	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	1.475 1.472	1.473	0.002	0.140%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.081 1.057	1.069	0.017	1.580%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	1.495	1.495	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	0.544	0.544	****	****	NCO1	

[...] Indicates manual SID entry or manual pipetiting

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

					DATA	MATR	IX/TAI	BLE : (OD			
	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.475	1.648	1.377	*****	*****	*****	*****	*****	••••	*****	*****	*****
В	1.472	1.534	1.596	*****	*****	*****	*****	••••		*****	*****	*****
С	1.081	1.527	1.500	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.057	1.559	1.531	*****	*****	*****	*****	*****	*****	*****	*****	*****
Е	1.495	1.476	1.468	*****	*****	*****	••••			*****	*****	
F	0.544	1.507	1.489	••••	*****	••••	••••			••••	*****	
G	1.055	1.498	••••	••••	*****	*****	*****	*****	•••••	*****	*****	
н	1.534	1.484		••••	••••	••••						

Printed on 3/30/2012 at 11:03:10 PM THC

C:\..\DRIFT2_THC.DAT Plate ID: DRIFT2_THC

***** Indicates an unread well or value out of range

Dynex Technologies

Page 24 of 99

TEST NO. : BENZODIAZEPINE GROUP ACCURACY - ND : BenzCocOpiDRIFT BenzACC 120405 W/L MODE TEST FILTER REF. FILTER : SINGLE DATE : 4/5/2012 : 4:27:38 PM : 450 nm : • OPERATOR Kit Lot Data Plate Lot Data Reagent Lot Data : BENZODIAZEPINE GROUP ACCURACY - ND, , : BenzCooOpiDRIFT BenzACC 120405, , : Acid Stop, , : BENZODIAZEPINE GROUP CONJUGATE, , EIA Buffer, . : K-BINE, : BENZODIAZEPINE GROUP CUTOFF, : BENZODIAZEPINE GROUP NEGATIVE, , : GROUP 2 CUTOFF, , : GROUP 2 NEGATIVE, , : Distilled Water, , : Neogen Wash Buffer, , OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO 2.032>1.096 = CO = 1.097 + equation = CO = 1.097 - equation Sample ID Location 1.152 1.307 1.368 1.298 1.208 1.350 G10 1.280 0.084 6.564% NEG [Benzodiazepine -50%] H10 A11 B11 C11 D11 [Benzodiazepine C/O] 0.858 7.988% E11 0.943 G11 H11 1.036 A12 1.077 1.034 Page 25 of 99

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Benzodiazepine +50%]	C12	0.919	0.930	0.052	5.541%	POS
	D12	0.834				
	E12	0.941				
	F12	0.938				
	G12	0.965				
	H12	0.981				
Sample ID NC1	Location A10 B10	Data 2.016 2.049	Mean 2.033	S.D. 0.024	C.V.	Result NC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C10 D10	1.042 1.151	1.097	0.077	7.024%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E10	1.663	1.663	•••••	*****	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F10	0.623	0.623	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

Page 26 of 99

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
А	*****		*****	*****	*****	••••		*****	*****	2.016	1.368	1.077
в	••••		••••	*****	••••	••••			*****	2.049	1.298	1.034
С	*****	*****	*****	*****	*****	••••		*****	*****	1.042	1.208	0.919
D	*****			*****	*****	••••		*****	*****	1.151	1.350	0.834
Е	*****	••••	*****			••••				1.663	0.858	0.941
F	*****	••••	*****	*****	*****	*****		*****	*****	0.623	0.943	0.938
G	*****			••••	*****				••••	1.152	0.995	0.965
н	*****	*****	*****	*****	*****	*****	*****	*****	*****	1.307	1.036	0.981

***** Indicates an unread well or value out of range

Dynex Technologies

REVELATION DSX 6.15

TEST NO. TEST NAME PLATE

: BENZODIAZEPINE GROUP : DRIFT2 BenzCocOpi 120406

W/I MODE SINGLE TEST FILTER REF. FILTER

DATE TIME OPERATOR · 4/6/2012 : 4:52:22 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

BENZODIAZEPINE GROUP, , DRIFTZ BenzCocOpi 120406, , Acid Stop, , BENZODIAZEPINE GROUP CONJUGATE, ,

BENZODIAZEPINE GROUP CONJUGATE; COCAINE/BZE CONJUGATE,; EIA Buffer, K-Blue,; OPIATE GROUP CONJUGATE,; BENZODIAZEPINE GROUP CUTOFF,; BENZODIAZEPINE GROUP NEGATIVE,; GROUP 2 CUTOFE

: GROUP 2 CUTOFF, , : GROUP 2 NEGATIVE, , : Distilled Water, , : Neogen Wash Buffer, ,

OVER limit Calculation mode : 3,500

: Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

0.050>0.046

= CO = 0.046 = CO = 0.046 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	G1	0.052	0.052	*****	*****	NEG
[Blank 2]	H1	0.051	0.051	*****	*****	NEG
[Blank 3]	A2	0.047	0.047	*****	*****	NEG
[Blank 4]	B2	0.049	0.049	*****	*****	NEG
[Blank 5]	C2	0.045	0.045	*****	*****	POS
Blank 6]	D2	0.046	0.046	*****	*****	POS
[Blank 7]	E2	0.049	0.049 age 28 of 99	*****	*****	NEG

Page 27 of 99

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Blank 8]	F2	0.050	0.050	*****	*****	NEG	
[Blank 9]	G2	0.068	0.068	*****	*****	NEG	
[Blank 10]	H2	0.065	0.065	*****	*****	NEG	
[Blank 11]	A3	0.057	0.057	*****	*****	NEG	
[Blank 12]	B3	0.048	0.048	*****	*****	NEG	
[Blank 13]	C3	0.049	0.049	*****	*****	NEG	
[Blank 14]	D3	0.047	0.047	*****	*****	NEG	
[Blank 15]	E3	0.048	0.048	*****	*****	NEG	
[Blank 16]	F3	0.053	0.053	*****	*****	NEG	
[Group 2 NEG]	G3	0.049	0.049	*****	*****	NEG	
[Group 2 C/O]	Н3	0.048	0.048	••••	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	0.055 0.047	0.051	0.006	11.785%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	0.046 0.046	0.046	0.000	0.152%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	0.045	0.045	*****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	0.050	0.050	*****	*****	NCO1	

[...] Indicates manual entry if Sample ID is bracketed

**** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

Page 29 of 99

DATA	MATRIX/	TABLE	:	OD
------	---------	-------	---	----

	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.055	0.047	0.057	*****	*****	*****	*****	*****	*****	*****	•••••	*****
В	0.047	0.049	0.048	*****				*****	*****	*****	*****	*****
С	0.046	0.045	0.049	*****	••••	••••	*****	••••	*****	*****	*****	••••
D	0.046	0.046	0.047	****	*****	*****	*****	*****	*****	*****	*****	*****
Е	0.045	0.049	0.048	*****	*****	••••	*****	*****	*****	*****	*****	*****
F	0.050	0.050	0.053	*****	*****	*****	*****	*****	*****	*****	*****	*****
G	0.052	0.068	0.049	*****	*****	••••	*****	••••			*****	*****
н	0.051	0.065	0.048	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 30 of 99

TEST NO. TEST NAME PLATE : : COCAINE-BZE : DRIFT2 BenzCocOpi 120406

: SINGLE : 450 nm : * DATE TIME OPERATOR W/L MODE TEST FILTER REF. FILTER : 4/6/2012 : 4:52:22 PM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: COCAINE-BZE,
DRIFT2 BenzCocOpi 120406,
Acid Stop.
COCAINE/BZE CONJUGATE,
EIA Buffer,
K-Blue,
COCAINE/BZE CUTOFF,
COCAINE/BZE CUTOFF,
GROUP 2 CUTOFF,
GROUP 2 CUTOFF,
Distilled Water,
Neogen Wash Buffer,

: 3.500 : Endpoint

THRESHOLD RESULTS

NC>CO

= CO = 1.004 = CO = 1.004 + equation - equation

OVER limit Calculation mode

Q.C. equations

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 1]	G4	2.446	2.446	*****	*****	NEG
[Blank 2]	H4	2.649	2.649	*****	*****	NEG
[Blank 3]	A5	2.326	2.326	*****	*****	NEG
[Blank 4]	B5	2.377	2.377	*****	*****	NEG
[Blank 5]	C5	2.359	2.359	*****	*****	NEG
[Blank 6]	D5	2.391	2.391	*****	*****	NEG
[Blank 7]	E5	2.380	2.380	*****	*****	NEG
[Blank 8]	F5	2.439	2.439	*****	*****	NEG
[Blank 9]	G5	2.430	2.430	*****	*****	NEG
[Blank 10]	H5	2.500	2.500	*****	*****	NEG
[Blank 11]	A6	2.368	2.368	*****	*****	NEG
[Blank 12]	B6	2 385	Page 37 8859	*****	*****	NEG

1.714>1.003

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[Blank 13]	C6	2.376	2.376	*****	*****	NEG	
[Blank 14]	D6	2.354	2.354	*****	*****	NEG	
[Blank 15]	E6	2.398	2.398	*****	*****	NEG	
[Blank 16]	F6	2.407	2.407	*****	*****	NEG	
[Group 2 NEG]	G6	1.775	1.775	*****	*****	NEG	
[Group 2 C/O]	Н6	1.127	1.127	••••	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4	1.655	1.714	0.084	4.873%	NC1	
	B4	1.773					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	1.052 0.955	1.004	0.069	6.840%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	1.270	1.270	****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	0.728	0.728	*****	*****	NCO1	

[...] Indicates manual entry if Sample ID is bracketed

**** Indicates an unread well or value out of range

0 Indicates an equivocal response

1 Indicates an unread well or value out of range

Indicates combined data

Page 32 of 99

					DATA	MATE	RIX/TA	BLE :	OD			
	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	••••	1.655	2.326	2.368	*****	••••	*****	*****	••••	****
В	•••••	*****	••••	1.773	2.377	2.385	••••	••••	*****	••••	••••	••••
С	*****			1.052	2.359	2.376	••••				••••	
D	*****	*****	••••	0.955	2.391	2.354	*****	*****	*****	*****	*****	****
Е	*****	*****	••••	1.270	2.380	2.398	*****	•••••	*****		••••	****
F	*****	••••	••••	0.728	2.439	2.407	*****	••••	*****		*****	****
G		••••		2.446	2.430	1.775	••••	*****	*****			****
н	*****	****	*****	2.649	2.500	1.127	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 33 of 99

TEST NO. TEST NAME PLATE : OPIATE GROUP : DRIFT2 BenzCocOpi 120406 W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 4/6/2012 : 4:52:22 PM : admin : OPIATE GROUP,
DRIFT2 BenzCocOpi 120406,
Acid Stop,
EllA Buffer,
K-Blue,
OPIATE GROUP CONJUGATE,
GROUP 2 CUTOFF,
GROUP 2 NEGATIVE,
OPIATE GROUP CUTOFF,
OPIATE GROUP NEGATIVE,
DISTILIED Water,
Neogen Wash Buffer, Kit Lot Data Plate Lot Data Reagent Lot Data OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.357>0.931 NC>CO = CO = 0.932 = CO = 0.932 + equation - equation S.D. C.V. Result Sample ID Location Data Mean [Blank 1] [Blank 2] [Blank 3] [Blank 4] G7 H7 A8 B8 1.672 1.905 1.481 1.453 1.672 1.905 1.481 1.453 NEG NEG NEG [Blank 5] [Blank 6] [Blank 7] [Blank 8] C8 D8 E8 F8 1.430 1.486 1.495 1.508 1.430 1.486 1.495 1.508 NEG NEG NEG NEG [Blank 9] [Blank 10] [Blank 11] G8 H8 A9 1.586 1.586 1.858 1.858 1.570 1.570 4 545 Page 34 64 99 ***** NEG NEG NEG

						_
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[Blank 13]	C9	1.520	1.520	*****	*****	NEG
[Blank 14]	D9	1.532	1.532	*****	*****	NEG
[Blank 15]	E9	1.575	1.575	*****	*****	NEG
[Blank 16]	F9	1.551	1.551	*****	*****	NEG
[Group 2 NEG]	G9	1.427	1.427	*****	*****	NEG
[Group 2 C/O]	H9	1.166	1.166	••••	••••	NEG
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NC1	A7	1.385	1.358	0.039	2.865%	NC1
	В7	1.330				
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
CO1	C7 D7	0.939 0.924	0.932	0.010	1.092%	CO1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NNC1	E7	1.585	1.585	••••	••••	NNC1
Sample ID	Location	Data	Mean	S.D.	C.V.	Result
NCO1	F7	0.864	0.864	*****	*****	NCO1

[...] Indicates manual entry if Sample ID is bracketed

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

					DATA	MAT	RIX/TA	BLE :	OD			
	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	••••	*****	*****	*****	••••	1.385	1.481	1.570	*****	*****	****
В	*****	••••	*****	*****	••••	*****	1.330	1.453	1.515	*****	*****	
С	••••		••••	*****	••••	••••	0.939	1.430	1.520	*****	*****	****
D	*****	*****	*****	*****	*****	*****	0.924	1.486	1.532	*****	*****	****
Е	••••		••••	*****	••••	••••	1.585	1.495	1.575	*****	*****	
F	*****	*****	*****	*****	*****	*****	0.864	1.508	1.551	*****	*****	****
G	••••			*****	*****	*****	1.672	1.586	1.427	*****	*****	••••
н	*****	*****	*****	*****	*****	*****	1.905	1.858	1.166	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 35 of 99

Page 36 of 99

	OxyBez032812.DAT AmpOxyBez032812		3/30/2012 at 11:1 HETAMINE ULT				Page 1 of
		REVELA	TION DSX	6.21			
TEST NO. TEST NAME PLATE		MINE ULTRA AmpOxyBez					
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/29/2012 : 1:20:27 A : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: AMPHETAMINE L AmpOxyBen, Acid Stop, : AMPHETAMINE L BENZODIAZEPIN EIA Buffer, K-Blue, OXYCODONE/OV AMPHETAMINE L GROUP 1 CUTOF GROUP 1 NEGAT Distilled Water, Neogen Wash Buf	JILTRA CON. E GROUP C CYMORPHON JILTRA CUTC JILTRA NEGA FF.,	JUGATE, , ONJUGATE, , NE CONJUGAT	Ε.,			
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	LTS			
Q.C. equations							
NC>CO				1.453>1.0	88		
+ equation	= CO = 1.088 = CO = 1.088						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
G1NEG#1] G1CO#1] G1NEG#2] G1CO#2]	G1 H1 A2 B2	1.401 1.068 1.423 0.995	1.401 1.068 1.423 0.995			NEG POS NEG POS	
G1NEG#3] G1CO#3]	C2 D2	1.415 1.037	1.415 1.037	*****		NEG POS	
			Page 37 of 99				

C:\\Percession Amp Plate ID: Percession			amphetamine ultra						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result			
[G1NEG#4]	E2	1.382	1.382	*****	*****	NEG			
[G1CO#4]	F2	1.034	1.034	*****	*****	POS			
[G1NEG#5]	G2	1.339	1.339	*****	*****	NEG			
[G1CO#5]	H2	1.130	1.130	*****	*****	NEG			
[G1NEG#6]	A3	1.364	1.364	*****	*****	NEG			
[G1CO#6]	B3	1.071	1.071	*****	*****	POS			
[G1NEG#7]	C3	1.372	1.372			NEG			
[G1CO#7]	D3	1.009	1.009	*****	*****	POS			
[G1NEG#8]	E3	1.381	1.381	*****	*****	NEG			
[G1CO#8]	F3 G3	1.007 1.330	1.007 1.330	*****	*****	POS NEG			
[G1NEG#9]									
[G1CO#9]	Н3	1.063	1.063	••••	••••	POS			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result			
NC1	A1 B1	1.479 1.428	1.453	0.036	2.480%	NC1			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result			
CO1	C1 D1	1.066 1.110	1.088	0.031	2.805%	CO1			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result			
NNC1	E1	1.509	1.509	••••	*****	NNC1			
Sample ID	Location	Data	Mean	S.D.	C.V.	Result			
NCO1	F1	0.965	0.965	*****	*****	NCO1			
	0 li	ndicates an un ndicates an ed ndicates an un ndicates comb	ual SID entry of nread well or v quivocal respo nread well or v bined data Page 38 of 99	alue out of ra	inge				

C:\.\Percession AmpOxyBez032812.DAT Plate ID: Percession AmpOxyBez032812	Printed on 3/30/2012 at 11:12:20 PM AMPHETAMINE ULTRA	Page 3 of 9
Titale ID: T Grocosion Timpoxybozoozo Iz	THE THE PERIOR	

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	. 7	8	9	10	11	12
Α	1.479	1.423	1.364	*****	*****	*****	*****	*****	*****	*****	*****	••••
В	1.428	0.995	1.071	*****	*****	*****	*****	*****	*****	*****	*****	••••
С	1.066	1.415	1.372		*****						••••	••••
D	1.110	1.037	1.009		••••	••••	••••	••••	••••	••••	••••	••••
Е	1.509	1.382	1.381	*****	*****	*****			*****	••••	*****	
F	0.965	1.034	1.007	*****	*****	*****	••••	••••	*****	••••	••••	*****
G	1.401	1.339	1.330	••••								
н	1.068	1.130	1.063	*****	••••	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Plate ID: Percession	AmpOxyBez032812	OXYCOD	ONE/OXYMOR	PHONE			
TEST NO.	:						
TEST NAME		NE-OXYMO					
PLATE	: Percession	AmpOxyBez	032812				
W/L MODE	: SINGLE		DATE		: 3/29/2012	2	
TEST FILTER	: 450 nm		TIME		: 1:20:27 A	M	
REF. FILTER	: *		OPERATOR		: admin		
Kit Lot Data	: OXYCODONE-OX	YMORPHON	E. OXF-0037	В.			
Plate Lot Data	: AmpOxyBen, ,						
Reagent Lot Data	: Acid Stop						
	: EIA Buffer						
	: K-Blue, ,						
	: OXYCODONE/OX	YMORPHON	IE CONJUGA	TE, ,			
	: GROUP 1 CUTOF	F, ,					
	: GROUP 1 NEGAT						
	: OXYCODONE/OX						
	: OXYCODONE/OX	YMORPHON	IE NEGATIVE				
	: Distilled Water, ,						
	: Neogen Wash Buf	fer, ,					
OVER limit	: 3.500						
Calculation mode	: Endpoint						
		THRESH	OLD RESI	JLTS			
Q.C. equations							
NC>CO				2.032>1.19	98		
+ equation	= CO						
.,	= 1.199						
- equation	= CO						
	= 1.199						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG#1]	G4	2.018	2.018	*****	*****	NEG	
[G1CO#1]	H4	1.337	1.337	*****	*****	NEG	
[G1NEG#2]	A5	2.096	2.096	*****		NEG	
[G1CO#2]	B5	1.239	1.239			NEG	
[G1NEG#3]	C5	2.035	2.035	*****	*****	NEG	
[G1CO#3]	D5	1.313	1.313	*****	*****	NEG	
[G1NEG#4]	E5	2.034	2.034	*****	*****	NEG	
[G1CO#4]	F5	1.316	1.316	*****	*****	NEG	
				****	*****	NEO	

1.976 1.315 2.019 Page 40 of 99

1.976 1.315 2.019

[G1NEG#5] [G1CO#5] [G1NEG#6]

Page 39 of 99

C:\.\Percession Amp Plate ID: Percession			/30/2012 at 11: ONE/OXYMOR				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1CO#6]	B6	1.272	1.272	*****	*****	NEG	
[G1NEG#7]	C6	2.050	2.050	*****	*****	NEG	
[G1CO#7]	D6	1.304	1.304	*****	*****	NEG	
[G1NEG#8]	E6	2.036	2.036	*****	*****	NEG	
[G1CO#8]	F6	1.273	1.273	*****	*****	NEG	
[G1NEG#9]	G6	1.846	1.846	*****	*****	NEG	
[G1CO#9]	H6	1.291	1.291	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4 B4	2.048 2.018	2.033	0.022	1.071%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	1.263 1.135	1.199	0.091	7.584%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	2.134	2.134	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	1.148	1.148	*****	*****	NCO1	
	0 li	ndicates an ur ndicates an ec	ual SID entry of nread well or v quivocal respo nread well or v bined data	alue out of ra	ange		

C:\.\Percession AmpOxyBez032812.DAT Printed on 3/30/2012 at 11:12:20 PM Plate ID: Percession AmpOxyBez032812 Printed on 3/30/2012 at 11:12:20 PM OXYCODONE/OXYMORPHONE Page 6 of 9 DATA MATRIX/TABLE : OD **** 2.048 2.096 2.019 ***** **** ***** •••• В ***** 2.018 1.239 1.272 ***** **** **** ***** **** ***** ***** ***** С ***** 1.263 2.035 2.050 ***** D 1.135 1.313 1.304 ***** ***** ***** ***** Ε 2.134 2.034 2.036 ***** F 1.148 1.316 1.273 ***** G 2.018 1.976 1.846 1.337 1.315 1.291 н

***** Indicates an unread well or value out of range

Page 42 of 99

Page 41 of 99

Plate ID: Percession	OxyBez032812.DAT AmpOxyBez032812	Printed on 3 BENZO	DIAZEPINE GR				Page 7 of
TEST NO. TEST NAME PLATE	: : BENZODIA : Percession						
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR		: 3/29/2012 : 1:20:27 A : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: BENZODIAZEPINI : AmpOxyBen, , : Acid Stop, , : BENZODIAZEPINI : EIA Buffer, , : K-Blue, , : BENZODIAZEPINI : GROUP 2 CUTOF : GROUP 2 CUTOF : GROUP 2 NEGAT	E GROUP CO E GROUP NO E GROUP NO F, , IVE, ,	ONJUGATE, ,				
OVER limit	: Neogen Wash Buff	fer, ,					
Calculation mode	: Endpoint						
		THRESH	OLD RESU	LTS			
Q.C. equations		THRESH	OLD RESU	LTS			
Q.C. equations		THRESH	OLD RESU	LTS 1.675>0.74	5		
	= CO = 0.746	THRESH	OLD RESU		5		
NC>CO	= CO	THRESH	OLD RESU		5		
NC>CO + equation	= CO = 0.746 = CO	Data	OLD RESU		5 C.V.	Result	
NC>CO + equation - equation Sample ID [G2NEG#1]	= CO = 0.746 = CO = 0.746 Location	Data 1.720	Mean 1.720	1.675>0.74	C.V.	NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1]	= CO = 0.746 = CO = 0.746 Location G7 H7	Data 1.720 0.740	Mean 1.720 0.740	1.675>0.74	C.V.	NEG POS	
NG>CO + equation - equation Sample ID [G2NEG#1] [G2C0#1] [G2NEG#2]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8	Data 1.720 0.740 1.691	Mean 1.720 0.740 1.691	1.675>0.74	C.V.	NEG POS NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#2]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8	Data 1.720 0.740 1.691 0.771	Mean 1.720 0.740 1.691 0.771	1.675>0.74	C.V.	NEG POS NEG NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2NEG#2] [G2CO#2] [G2NEG#3]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8	Data 1.720 0.740 1.691 0.771	Mean 1.720 0.740 1.691 0.771 1.740	1.675>0.74	C.V.	NEG POS NEG NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2NEG#3] [G2CO#3]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8 C8	Data 1.720 0.740 1.691 0.771 1.740 0.814	Mean 1.720 0.740 1.691 0.771 1.740 0.814	1.675>0.74	C.V.	NEG POS NEG NEG NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#2] [G2NEG#3] [G2NEG#4]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8	Data 1.720 0.740 1.691 0.771 1.740 0.814 1.744	Mean 1.720 0.740 1.691 0.771 1.740 0.814 1.744	1.675>0.74	C.V.	NEG POS NEG NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2C0#1] [G2C0#2] [G2C0#2] [G2NEG#3] [G2NEG#3] [G2C0#3] [G2NEG#4]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8 C8 D8 E8 F8	Data 1.720 0.740 1.691 0.771 1.740 0.814 1.744 0.784	Mean 1.720 0.740 1.691 0.771 1.740 0.814 1.744 0.784	S.D.	C.V.	NEG POS NEG NEG NEG NEG NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#3] [G2NEG#4] [G2CO#4] [G2CO#4] [G2NEG#4]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8 C8 D8 E8 F8	Data 1.720 0.740 1.691 0.771 1.740 0.814 1.744 1.744 1.701	Mean 1.720 0.740 1.691 0.771 1.740 0.814 1.744 0.784	1.675>0.74	C.V.	NEG POS NEG NEG NEG NEG NEG NEG	
NC>CO + equation - equation Sample ID [G2NEG#1] [G2C0#1] [G2C0#2] [G2C0#2] [G2NEG#3] [G2NEG#3] [G2C0#3] [G2NEG#4]	= CO = 0.746 = CO = 0.746 Location G7 H7 A8 B8 C8 D8 E8 F8	Data 1.720 0.740 1.691 0.771 1.740 0.814 1.744 0.784	Mean 1.720 0.740 1.691 0.771 1.740 0.814 1.744 0.784	S.D.	C.V.	NEG POS NEG NEG NEG NEG NEG	

C:\\Percession Amp Plate ID: Percession			0/30/2012 at 11 DIAZEPINE GI				Page 8 of 9
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2CO#6] [G2NEG#7]	B9 C9	0.865 1.746	0.865 1.746	*****	*****	NEG NEG	
[G2CO#7]	D9	0.776	0.776	*****	*****	NEG	
[G2NEG#8]	E9	1.726	1.726	*****	*****	NEG	
[G2CO#8]	F9	0.787	0.787	*****	*****	NEG	
[G2NEC#9]	G9	1.741	1.741	*****	*****	NEG	
[G2CO#9]	Н9	0.877	0.877	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A7 B7	1.665 1.686	1.675	0.014	0.864%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C7 D7	0.728 0.763	0.746	0.025	3.291%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.372	1.372	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.526	0.526	****	*****	NCO1	

- [...] Indicates manual SID entry or manual pipetting
 ***** Indicates an unread well or value out of range
 0 Indicates an equivocal response
 1 Indicates an unread well or value out of range
 # Indicates combined data

Page 44 of 99

C:\..\Percession AmpOxyBez032812.DAT Plate ID: Percession AmpOxyBez032812 Printed on 3/30/2012 at 11:12:20 PM BENZODIAZEPINE GROUP Page 9 of 9 DATA MATRIX/TABLE : OD 3 7 8 9 10 11 12 **** **** 1.665 1.691 1.762 ***** ***** ***** ***** С 0.728 1.740 1.746 D 0.763 0.814 0.776 1.372 F 0.526 0.784 0.787 G 1.720 1.701 1.741

***** Indicates an unread well or value out of range

0.740 0.796 0.877

***** ***** *****

Н ***** ***** ***** ***** *****

Dynex Technologies

Page 45 of 99

C:\..\PER CocOpiTHC032812.DAT Plate ID: PER CocOpiTHC032812 Printed on 3/30/2012 at 11:07:46 PM COCAINE/BZE Page 1 of 9 **REVELATION DSX 6.21** TEST NO. TEST NAME PLATE : COCAINE-BZE : PER CocOpiTHC032812 W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/29/2012 : 1:39:01 AM : SINGLE Kit Lot Data Plate Lot Data COCAINE-BZE, BZF-0079B, : CocOpiTHC, , : Acid Stop, , : COCAINE/BZE CONJUGATE, , Reagent Lot Data : COCAINE/BZE CONJUGATE, ,
: EIA Buffer, ,
: K-Blue, ,
: OPIATE GROUP CONJUGATE, ,
: THC CONJUGATE, ,
: COCAINE/BZE CUTOFF, , COCAINE/BZE NEGATIVE. : GROUP 2 CUTOFF, , : GROUP 2 NEGATIVE, ; : Distilled Water, , : Neogen Wash Buffer, , : 3.500 : Endpoint **OVER** limit Calculation mode THRESHOLD RESULTS Q.C. equations NC>CO 1.188>0.497 = CO = 0.498 = CO = 0.498 + equation - equation Sample ID Location Data S.D. G1 H1 A2 B2 1.316 0.550 1.334 0.496 1.316 0.550 1.334 0.496 [G2NEG#1] [G2CO#1] NEG NEG **** ***** [G2NEG#2] [G2CO#2] NEG POS [G2NEG#3] [G2CO#3] C2 1.179 0.476 1.179 NEG D2

C:\\PER CocOpiTHO Plate ID: PER CocOp			8/30/2012 at 11 COCAINE/BZE	:07:46 PM			Page 2
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2NEG#4]	E2	1.296	1.296	*****	*****	NEG	
[G2CO#4]	F2	0.500	0.500	*****	*****	NEG	
[G2NEG#5]	G2	1.310	1.310	*****	*****	NEG	
[G2CO#5]	H2	0.524	0.524	*****	*****	NEG	
[G2NEG#6]	A3	1.236	1.236	*****	*****	NEG	
[G2CO#6]	B3	0.538	0.538	*****	*****	NEG	
[G2NEG#7]	C3	1.284	1.284	*****	*****	NEG	
[G2CO#7]	D3	0.485	0.485	*****	*****	POS	
[G2NEG#8]	E3	1.247	1.247	*****	*****	NEG	
[G2CO#8]	F3	0.550	0.550	*****	*****	NEG	
[G2NEC#9]	G3	1.256	1.256	*****	*****	NEG	
[G2CO#9]	Н3	0.503	0.503	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	1.289	1.189	0.141	11.903%	NC1	
	B1	1.089					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	0.543 0.452	0.498	0.064	12.900%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	0.953	0.953	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	0.466	0.466	*****	*****	NCO1	

[]	Indicates	manual	SID	entry	or ma	anual	pipetting
****	to disease.				and the same		

unread well or value out of range	
equivocal response	
unread well or value out of range	
nbined data	
Page 47 of 99	

C:\.\PER CocOpiTHC032812.DAT Plate ID: PER CocOpiTHC032812	Printed on 3/30/2012 at 11:07:46 PM COCAINE/BZE	Page 3 of 9

Page 46 of 99

DATA MATRIX/TABLE : OD 2 3 5 6 8 9 10 11 12 1.289 1.334 1.236 ***** ***** В 1.089 0.496 0.538 С 0.543 1,179 1.284 ***** D 0.452 0.476 0.485 ***** ***** ***** ***** ***** ***** ***** ***** 1.296 1.247 0.466 0.500 0.550 G 1.316 1.310 1.256 0.550 0.524

***** Indicates an unread well or value out of range

Page 48 of 99

Indicates an u
Indicates an e
Indicates an u

Plate ID: PER CocO	C032812.DAT piTHC032812	Printed on 3/30/2012 at 11:07:46 PM OPIATE GROUP					Page 4 of 9	
TEST NO. TEST NAME PLATE	: : OPIATE G : PER Coc	ROUP OpiTHC03281:	2					
W/L MODE	: SINGLE		DATE		: 3/29/2012	!		
TEST FILTER	: 450 nm		TIME		: 1:39:01 A	M		
REF. FILTER	: *		OPERATOR		: admin			
Kit Lot Data Plate Lot Data Reagent Lot Data	: OPIATE GROUP : CocOpITHC, . : Acid Stop, . : EIA Buffer, . : K-Blue, . : OPIATE GROUP : GROUP 2 CUTO : GROUP 2 NEGA : OPIATE GROUP : OPIATE GROUP : OPIATE GROUP : Distilled Water, . : Neogen Wash Bu	CONJUGATE FF, , TIVE, , CUTOFF, , NEGATIVE, ,	E.,					
OVER limit Calculation mode	: 3.500 : Endpoint							
		THRESH	OLD RESUI	LTS				
O.C. equations								
Q.C. equations				1.425>0.85	8			
	= CO = 0.858				8			
NC>CO + equation					8			
NC>CO + equation - equation	= 0.858 = CO	Data	Mean		8 C.V.	Result		
NC>CO + equation - equation Sample ID	= 0.858 = CO = 0.858	Data 1.440	Mean 1,440	1.425>0.85	C.V.	Result NEG		
NC>CO + equation - equation Sample ID G2NEG#1] G2CO#1]	= 0.858 = CO = 0.858 Location G4 H4	1.440 0.941	1.440 0.941	1.425>0.85	C.V.	NEG NEG		
NC>CO + equation - equation Sample ID G2NEG#1] G2CO#1] G2NEG#2]	= 0.858 = CO = 0.858 Location G4 H4 A5	1.440 0.941 1.381	1.440 0.941 1.381	1.425>0.85	C.V.	NEG NEG NEG		
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#2]	= 0.858 = CO = 0.858 Location G4 H4 A5 B5	1.440 0.941 1.381 0.874	1.440 0.941 1.381 0.874	1.425>0.85	C.V.	NEG NEG NEG NEG		
NC>CO + equation - equation Sample ID [G2NEG#1] [G2NEG#2] [G2NEG#2] [G2NEG#3]	= 0.858 = CO = 0.858 Location G4 H4 A5 B5	1.440 0.941 1.381 0.874	1.440 0.941 1.381 0.874	1.425>0.85	C.V.	NEG NEG NEG NEG		
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#2] [G2CO#3]	= 0.858 = CO = 0.858 Location G4 H4 A5 B5	1.440 0.941 1.381 0.874 1.384 0.908	1.440 0.941 1.381 0.874 1.384 0.908	1.425>0.85	C.V.	NEG NEG NEG NEG NEG		
NC>CO + equation - equation Sample ID [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#3] [G2NEG#4]	= 0.858 = CO = 0.858 Location G4 H4 A5 B5 C5 D5 E5	1.440 0.941 1.381 0.874 1.384 0.908 1.373	1.440 0.941 1.381 0.874 1.384 0.908 1.373	1.425>0.85	C.V.	NEG NEG NEG NEG NEG NEG		
NC>CO + equation - equation Sample ID (G2NEG#1) (G2CO#1) (G2CO#2) (G2CO#2) (G2CO#3) (G2NEG#3) (G2CO#4)	= 0.858 = CO = 0.858 Location G4 H4 A5 B5 C5 D5 E5 F5	1.440 0.941 1.381 0.874 1.384 0.908 1.373 0.817	1.440 0.941 1.381 0.874 1.384 0.908 1.373 0.817	S.D.	C.V.	NEG NEG NEG NEG NEG NEG NEG POS		
NC>CO + equation - equation - equation - equation - equation - (G2NEG#1) - (G2NEG#2) - (G2NEG#2) - (G2NEG#3) - (G2CO#3) - (G2CO#3) - (G2CO#4) - (G2NEG#4) - (G2NEG#4) - (G2NEG#5)	= 0.858 = CO = 0.858 Location G4 H4 A5 B5 C5 D5 E5 F5	1.440 0.941 1.381 0.874 1.384 0.908 1.373 0.817	1.440 0.941 1.381 0.874 1.384 0.908 1.373 0.817	S.D.	C.V.	NEG NEG NEG NEG NEG NEG NEG NEG NEG		
NC>CO + equation - equation Sample ID (G2NEG#1) (G2CO#1) (G2CO#2) (G2CO#2) (G2CO#3) (G2NEG#3) (G2CO#4)	= 0.858 = CO = 0.858 Location G4 H4 A5 B5 C5 D5 E5 F5	1.440 0.941 1.381 0.874 1.384 0.908 1.373 0.817	1.440 0.941 1.381 0.874 1.384 0.908 1.373 0.817	S.D.	C.V.	NEG NEG NEG NEG NEG NEG NEG POS		

C:\\PER CocOpiTH0 Plate ID: PER CocOp			9/30/2012 at 11: PIATE GROUP				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2CO#6] [G2NEG#7]	B6 C6	0.907 1.499	0.907 1.499	*****	*****	NEG NEG	
[G2CO#7] [G2NEG#8]	D6 E6 F6	0.833 1.420 0.861	0.833 1.420 0.861			POS NEG NEG	
[G2CO#8] [G2NEC#9]	G6	1.602	1.602	****	****	NEG	
[G2CO#9]	H6	0.822	0.822	*****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4 B4	1.450 1.401	1.425	0.035	2.427%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	0.828 0.888	0.858	0.042	4.935%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	1.746	1.746	****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	0.977	0.977	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting

***** Indicates an unread well or value out of range

0 Indicates an equivocal response

* Indicates an unread well or value out of range

Indicates combined data

Page 50 of 99

		OpiTHC0: CocOpiTl			Printe	ed on 3/3/ OPIA	0/2012 at ATE GRO		PM			
	DATA MATRIX/TABLE : OD											
	1	2	3	4	5	6	7	8	9	10	11	12
А		*****	*****	1.450	1.381	1.520	*****	*****	*****	*****		
в	*****		*****	1.401	0.874	0.907	*****	*****	*****	*****	*****	*****
С	*****			0.828	1.384	1.499	*****	*****	*****		••••	
D	*****	*****	*****	0.888	0.908	0.833	*****	*****	*****	*****	*****	*****
- 1				_					_	_		_

E 1.746 1.373 1.420 0.977 0.817 0.861 G ***** ••••• ***** ***** ***** ***** ***** ***** 1.440 1.450 1.602 0.941 0.816 0.822 *****

***** Indicates an unread well or value out of range

C:\\PER CocOpiTHo		Printed on 3/30/2012 at 11:07:46 PM THC		Page 7 of 9
TEST NO. TEST NAME PLATE	: : THC : PER CocOpi	THC032812		
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *	DATE TIME OPERATOR	: 3/29/2012 : 1:39:01 AM : admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	: THC, TCF-0055B, CocOpiTHC, Acid Stop. : EIA Buffer, : K-Blue, : THC CONJUGATE, GROUP 2 CUTOFF GROUP 2 NEGATN : THC CUTOFF, : THC NEGATIVE, Distilled Water, Neogen Wash Buffe	,, /E, ,		
OVER limit Calculation mode	: 3.500 : Endpoint			
	1	THRESHOLD RESULTS		
Q.C. equations				
NC>CO		1.559>1.	113	

= CO = 1.114 = CO = 1.114 Sample ID Location Data Mean S.D. C.V. Result 1.378 1.088 1.607 1.148 :::: [G2NEG#1] [G2CO#1] [G2NEG#2] [G2CO#2] G7 H7 A8 B8 1.378 1.088 1.607 1.148 NEG POS NEG NEG [G2NEG#3] [G2CO#3] [G2NEG#4] [G2CO#4] C8 D8 E8 F8 1.455 1.132 1.454 1.110 1.455 1.132 1.454 1.110 NEG NEG NEG POS [G2NEG#5] [G2CO#5] [G2NEG#6] G8 H8 A9 1.369 1.143 1.515 1.369 1.143 1.515 Page 52 of 99 NEG NEG NEG

+ equation

Page 51 of 99

C:\\PER CocOpiTH Plate ID: PER CocOp		Printed on 3	7/30/2012 at 11:	:07:46 PM			Page 8 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2CO#6]	В9	1.197	1.197	*****	*****	NEG	
[G2NEG#7]	C9	1.483	1.483			NEG	
[G2CO#7]	D9	1.130	1.130	*****	*****	NEG	
[G2NEG#8]	E9 F9	1.434 1.126	1.434	*****	*****	NEG NEG	
[G2CO#8] [G2NEC#9]	G9	1.424	1.126	*****	*****	NEG	
[G2CO#9]	H9	1.107	1.107	*****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A7 B7	1.559 1.560	1.559	0.001	0.044%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C7 D7	1.162 1.065	1.114	0.069	6.175%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.508	1.508	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.594	0.594	*****	*****	NCO1	
	0	Indicates mani Indicates an ur Indicates an er Indicates an ur Indicates comb	nread well or v quivocal respo nread well or v	alue out of ra	ange		

Page 53 of 99

ite l	D: PER	CocOpiTh	C03281	2			THC						
					DATA	MATR	IX/TAE	3LE : (OD				
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	••••	*****	*****	*****	*****	*****	1.559	1.607	1.515	*****	*****	•••••	
В	••••		*****	*****	*****	*****	1.560	1.148	1.197	*****	*****	••••	
С	*****		*****		*****	*****	1.162	1.455	1.483	••••	*****	*****	
D	*****	*****	*****	*****	*****	*****	1.065	1.132	1.130	*****	*****	*****	
Е	*****	*****	••••		*****	*****	1.508	1.454	1.434	••••	••••		
F	••••	••••	••••		****	••••	0.594	1.110	1.126	*****			
G	*****		*****		*****	*****	1.378	1.369	1.424	*****	*****	*****	
н	*****	*****	*****	*****	*****	*****	1.088	1.143	1.107	*****	*****	*****	

***** Indicates an unread well or value out of range

Dynex Technologies

Page 54 of 99

C:\\PER Cot032812 Plate ID: PER Cot03:		Printed on	3/30/2012 at 11:1 COTININE	1:18 PM			Page 1 of
		REVEL	ATION DSX 6	5.21			
TEST NO. TEST NAME PLATE	: : COTININE : PER Cot03	2812					
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/29/2012 : 12:31:03 : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: COTININE, CTI-00: COt, Acid Stop., COTININE CONJU: EIA Buffer, K-Blue, COTININE CUTOI COTININE CUTOI COTININE NEGA: GROUP 1 CUTOF GROUP 1 NEGAT Distilled Water, Neogen Wash Bul	JGATE, , FF, , FIVE, , F, , IVE, ,					
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	IOLD RESU	LTS			
Q.C. equations							
NC>CO				3.228>1.79	50		
+ equation - equation	= CO = 1.751 = CO = 1.751						_
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG#1] [G1CO#1] [G1NEG#2] [G1CO#2]	G1 H1 A2 B2	3.231 1.900 3.312 1.815	3.231 1.900 3.312 1.815		*****	NEG NEG NEG NEG	
[G1NEG#3] [G1CO#3] [G1NEG#4] [G1CO#4]	C2 D2 E2 F2	3.264 1.756 3.226 1.735	3.264 1.756 3.226 1.735		*****	NEG NEG NEG POS	
			Page 55 of 99				

C:\.\PER Cot032812.DAT Plate ID: PER Cot032812		Printed on 3	3/30/2012 at 11 COTININE	:11:18 PM			Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG#5]	G2	3.263	3.263	*****	*****	NEG	
[G1CO#5]	H2	1.864	1.864	*****	*****	NEG	
[G1NEG#6]	A3	3.154	3.154	*****	*****	NEG	
[G1CO#6]	B3	1.773	1.773	*****	*****	NEG	
[G1NEG#7]	C3	3.091	3.091	*****	•••••	NEG	
[G1CO#7]	D3	1.736	1.736	*****	*****	POS	
[G1NEG#8]	E3	3.078	3.078	*****	*****	NEG	
[G1CO#8]	F3	1.768	1.768	*****	*****	NEG	
[G1NEG#9]	G3	3.085	3.085	*****	*****	NEG	
[G1CO#9]	Н3	1.812	1.812	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	3.281 3.177	3.229	0.073	2.266%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.789 1.712	1.751	0.054	3.104%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	2.390	2.390	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.276	1.276	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

Page 56 of 99

Page 3 of 9

C:\.\PER Cot032812.DAT Plate ID: PER Cot032812 Printed on 3/30/2012 at 11:11:18 PM COTININE Page 3 of 3

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	. 7	8	9	10	11	12
Α	3.281	3.312	3.154	*****	*****	*****	*****	*****	*****	*****	*****	
В	3.177	1.815	1.773	*****	*****	*****	*****	*****	*****	*****	*****	*****
С	1.789	3.264	3.091	••••	*****	•••••	••••	••••		••••	••••	*****
D	1.712	1.756	1.736	*****	*****	*****	****	*****	*****	*****	*****	••••
Е	2.390	3.226	3.078		••••	••••			•••••		••••	
F	1.276	1.735	1.768	*****	*****	*****	•••••	•••••	*****	*****	*****	*****
G	3.231	3.263	3.085	*****	*****	••••		*****	*****	*****	••••	*****
н	1.900	1.864	1.812	••••	••••	*****		*****	*****	*****	••••	••••

***** Indicates an unread well or value out of range

Dynex Technologies

Page 57 of 99

C:\.\PREC2AMPOXYBENZ032812.DAT Plate ID: PREC2AMPOXYBENZ032812 Printed on 3/30/2012 at 11:13:11 PM AMPHETAMINE ULTRA Page 1 of 9 **REVELATION DSX 6.21**

TEST NO. TEST NAME PLATE : AMPHETAMINE ULTRA : PREC2AMPOXYBENZ032812

W/L MODE TEST FILTER REF. FILTER : SINGLE : 450 nm : * DATE TIME OPERATOR : 3/29/2012 : 4:53:03 AM : admin

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA, AUF-0047B, : AMPONYBENZ, : Acid Stop, : AMPHETAMINE ULTRA CONJUGATE, : BENZODIAZEPINE GROUP CONJUGATE, : EIA Buffer,

: EIA Buffer,
: K-Blue,
: OXYCODONE/OXYMORPHONE CONJUGATE,
: AMPHETAMINE ULTRA CUTOFF,
: AMPHETAMINE ULTRA NEGATIVE,
: GROUP 1 CUTOFF,
: GROUP 1 CUTOFF,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO 1.562>1.145

= CO = 1.145 = CO = 1.145 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG1]	G1	1.396	1.396	*****	*****	NEG	
[G1CO1]	H1	1.150	1.150	*****	*****	NEG	
[G1NEG2]	A2	1.538	1,538	*****	*****	NEG	
[G1CO2]	B2	1.143	1.143	*****	*****	POS	
[G1NEG3]	C2	1.528	1.528	*****	*****	NEG	
[G1CO3]	D2	1.160	1.160	*****	*****	NEG	

Page 58 of 99

C:\\PREC2AMPOX Plate ID: PREC2AM			3/30/2012 at 11 HETAMINE UL				Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG4]	E2	1.503	1,503	****	****	NEG	
[G1CO4]	F2	1.076	1.076	*****	*****	POS	
[G1NEG5]	G2	1.444	1.444	*****	*****	NEG	
[G1CO5]	H2	1.137	1.137	*****	*****	POS	
[G1NEG6]	A3	1.581	1.581	*****	*****	NEG	
[G1CO6]	B3	1.091	1.091	*****	*****	POS	
[G1NEG7]	C3	1.494	1.494	*****	*****	NEG	
[G1C07]	D3	1.105	1.105	****	*****	POS	
[G1NEG8]	E3	1.454	1.454	*****	*****	NEG	
[G1CO8]	F3	1.095	1.095	*****	*****	POS	
[G1NEG9]	G3	1.483	1.483	*****	*****	NEG	
[G1CO9]	Н3	1.059	1.059	*****	••••	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	1.528 1.596	1.562	0.048	3.068%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.173 1.118	1.145	0.039	3.417%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	1.589	1.589	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.074	1,074	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

Page 59 of 99

Plate ID: PREC2AMPOXYBENZ032812	AMPHETAMINE ULTRA	

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.528	1.538	1.581	*****	*****	*****	*****	*****	*****	*****	*****	••••
В	1.596	1.143	1.091	*****	*****	*****	*****	*****	*****	*****	*****	••••
С	1.173	1.528	1.494		*****	*****	*****					••••
D	1.118	1.160	1.105	••••	*****	••••	*****	••••	*****	••••	*****	••••
Ε	1.589	1.503	1.454	*****	*****	*****	*****	*****			*****	*****
F	1.074	1.076	1.095	*****	*****	*****	*****	*****	*****	••••	*****	*****
G	1.396	1.444	1.483		*****				••••	••••	••••	*****
н	1.150	1.137	1.059	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 60 of 99

TEST NO.	C:\\PREC2AMPOX Plate ID: PREC2AMI	YBENZ032812.DAT POXYBENZ032812		1/30/2012 at 11: ONE/OXYMORI				Page 4 of
PREC2AMPOXYBENZ032812	TEST NO.	:						
W/L MODE								
TEST FILTER	PLATE	: PREC2AM	POXYBENZ0	32812				
TEST FILTER	W/L MODE	: SINGLE		DATE		: 3/29/2012	!	
Comparison				TIME				
Plate Lot Data AMPOXYBENZ Reagent Lot Data Add Stop, EIA Buffer EIA Buf	REF. FILTER	; •		OPERATOR		: admin		
Plate Lot Data AMPOXYBENZ Reagent Lot Data Add Stop, EIA Buffer EIA Buf	Kit Lot Data	· OXYCODONE-OX	YMORPHON	IF. OXF-0037F	1			
Acid Stop., EAB Buffer., EAI B			trimora rior	L, 0/4 000/L				
: K-Blue, : DXYCODONE/OXYMORPHONE CONJUGATE, : GROUP 1 CUTOFF, : GROUP 1 NEGATIVE, : OXYCODONE/OXYMORPHONE CUTOFF, : OXYCODONE/OXYMORPHONE NEGATIVE, : Distilled Water, : Neogen Wash Buffer, OVER limit : 3.500 Calculation mode : Endpoint THRESHOLD RESULTS O.C. equations NC>CO 2.127>1.267 + equation = CO = 1.267 - equation = CO = 1.287 Sample ID Location Data Mean S.D. C.V. Result GINEG1] G4 2.092 2.092	Reagent Lot Data							
: OXYCODONE/OXYMORPHONE CONJUGATE, . : GROUP 1 CUTOFF, . : GROUP 1 CUTOFF, . : OXYCODONE/OXYMORPHONE CUTOFF, . : OXYCODONE/OXYMORPHONE NEGATIVE, . : Distilled Water, . : Neogen Wash Buffer , . : . : Neogen Wash Buffer , . : : : Neogen Wash Buffer , . : : : : : Neogen Wash Buffer , . : : : : : : Neogen Wash Buffer , . : : : : : : : : : : : : : : : : : :	-							
GROUP 1 CUTOFF.								
GROUP 1 NEGATIVE, CONTRODORE/OXYMORPHONE CUTOFF, CONTRODORE/OXYMORPHONE NEGATIVE, CONTRODORE/OXYMORPHONE NEGATIVE				E CONJUGAT	Έ,,			
: OXYCODONE/OXYMORPHONE CUTOFF, . : OXYCODONE/OXYMORPHONE NEGATIVE, . : Distilled Water, . : Neogen Wash Buffer, . OVER limit : 3.500 Calculation mode : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO								
: OXYCODONE/OXYMORPHONE NEGATIVE, , : Distilled Water, , : Neogen Wash Buffer, , OVER limit : 3.500 Calculation mode : Endpoint THRESHOLD RESULTS Q.C. equations NC>CO				E CUITOEE				
: Distilled Water., : Neogen Wash Buffer, OVER limit : 3.500 Calculation mode : Endpoint THRESHOLD RESULTS O.C. equations NC>CO								
: Neogen Wash Buffer, , OVER limit : 3.500 Calculation mode : Endpoint THRESHOLD RESULTS O.C. equations NC>CO			TMORFHON	L NEGATIVE,				
THRESHOLD RESULTS			ffer, ,					
THRESHOLD RESULTS 2.C. equations NC>CO 2.127>1.267 + equation = CO = 1.267 - equation = CO = 1.267 Sample ID Location Data Mean S.D. C.V. Result GINEG1] G4 2.092 2.092 NEG G1CO1] H4 1.353 1.353 NEG G1CO2] B5 1.319 1.319 NEG G1NEG3] G1CO2] B5 1.319 1.319 NEG G1CO3] D6 1.409 1.400 1	OVER limit	. 3 500						
THRESHOLD RESULTS Q.C. equations NC>CO 2.127>1.267 + equation = CO = 1.267 - equation = 1.267 - equation = 1.267 Equation								
O.C. equations NC>CO 2.127>1.267 + equation = CO = 1.267 - equation = CO = 1.267 Sample ID Location Data Mean S.D. C.V. Result GINEGI GIOCOI H4 1.353 1.353 NEG GINEGG GIOCO2 B5 1.319 1.319 NEG GINEGG GICO3 D5 1.409 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.4								
+ equation = CO = 1.267 - equation = 1.267 - equation = CO = 1.267 Sample ID Location Data Mean S.D. C.V. Result [G1NEG1] G4 2.092 2.092 NEG [G1C01] H4 1.353 1.353 NEG [G1NEG2] A5 2.088 2.088 NEG [G1NEG3] C5 2.110 2.110 NEG [G1C02] B5 1.319 1.319 NEG [G1C03] D5 1.409 1.409 NEG [G1C04] E5 2.139 2.139 NEG [G1NEG4] E5 2.139 2.139 NEG [G1NEG5] G6 2.095 2.095 NEG [G1NEG5] G5 2.095 2.095 NEG [G1NEG5] G6 2.095 2.095 NEG [G1NEG5] G6 4.2110 2.110 NEG								
= 1.267 = CO = 1.267 Sample ID Location Data Mean S.D. C.V. Result [GINEG1] G4 2.092 2.092 NEG [GICO1] H4 1.353 1.353 NEG [GICO2] B5 1.319 1.319 NEG [GINEG2] C5 2.110 2.110 NEG [GINEG3] C5 2.110 2.110 NEG [GINEG4] E5 2.139 2.139 NEG [GICO3] D6 1.409 1.409 NEG [GICO4] F5 1.369 1.369 NEG [GICO4] F5 1.369 1.369 NEG [GICO5] G5 2.095 2.095 NEG [GINEG5] G5 2.095 2.095 NEG [GINEG6] A6 2.110 2.110 NEG	NC>CO				2.127>1.26	57		
- equation = CO = 1.267 Sample ID Location Data Mean S.D. C.V. Result [GINEG1] G4 2.092 2.092 NEG [GIOC01] H4 1.353 1.353 NEG [GINEG2] A5 2.088 2.088 NEG [GIOC02] B5 1.319 1.319 NEG [GIOC03] C5 2.110 2.110 NEG [GIOC03] D5 1.409 1.409 NEG [GIOC03] D5 1.409 1.409 NEG [GINEG4] E5 2.139 2.139 NEG [GINEG4] E5 2.139 2.139 NEG [GINEG5] G1C0A] F5 1.369 1.369 NEG [GIOC04] F5 1.369 1.369 NEG [GIOC05] H5 1.325 1.325 NEG [GIOC05] H5 1.325 1.325 NEG [GINEG5] A6 2.110 2.110 NEG	+ equation							
= 1.267 Sample ID Location Data Mean S.D. C.V. Result								
Control Cont	 equation 							
GINEG1] G4 2.092 2.092 NEG GICO1] H4 1.353 1.353 NEG GINEG2] A5 2.088 2.088 NEG GINEG3] G5 2.110 2.110 NEG GICO3] D5 1.319 1.319 NEG GICO3] D5 1.409 1.409 NEG GICO3] D5 1.409 1.409 NEG GICO3] D5 1.409 1.409 NEG GICO3] D5 1.369 1.369 NEG GICO4] F5 1.369 1.369 NEG GICO4] F5 1.369 1.369 NEG GICO5] G1NEG5] G5 2.095 2.095 NEG GICO5] H5 1.325 1.325 NEG GICO6]								
GINEGS] G5 2.092 2.092		11201						
G1CO1	Sample ID		Data	Mean	S.D.	C.V.	Result	
GINEG3] C5 2.110 2.110 NEG GINEG3] C5 2.139 1.319 NEG GINEG3] C5 2.110 2.110 NEG GINEG4] E5 2.139 2.139 NEG GINEG4] E5 2.139 2.139 NEG GINEG5] G5 2.095 2.095 NEG GINEG6] G5 2.095 2.095 NEG GINEG6] G1NEG6] A6 2.110 2.110 NEG GINEG6] A6 2.110 2.110 NEG		Location						
CINEGS C5 2.110 2.110 NEG GINEGS C5 2.110 2.110 NEG GIOCO3 D5 1.409 1.409 NEG GINEG4 E5 2.139 2.139 NEG GICO4 F5 1.369 1.369 NEG GINEG5 G5 2.095 NEG GINEG5 H5 1.325 1.325 NEG GINEG6 A6 2.110 2.110 NEG GINEG6 NEG6 NEG NEG NEG GINEG6 NEG6 NEG NEG GINEG6 NEG NEG NEG GINEG6 NEG NEG NEG GINEG6 NEG NEG NEG GINEG6 NEG NEG NEG NEG GINEG6 NEG NEG NEG NEG GINEG6 NEG	[G1NEG1]	Location G4	2.092	2.092	*****	*****	NEG	
GINEGS C5 2.110 2.110 NEG GICO3 D5 1.409 1.409 NEG GICO3 D5 1.409 2.139 NEG GICO4 F5 2.139 2.139 NEG CICO4 F5 1.369 1.369 NEG CICO5 H5 1.325 1.325 NEG CICO5 H5 1.325 1.325 NEG CICO5 NEG CI	[G1NEG1] [G1CO1] [G1NEG2]	Location G4 H4 A5	2.092 1.353 2.088	2.092 1.353 2.088		*****	NEG NEG NEG	
GINEG4 E5 2.139 2.139	[G1NEG1] [G1CO1] [G1NEG2]	Location G4 H4 A5	2.092 1.353 2.088	2.092 1.353 2.088		*****	NEG NEG NEG	
GICO4 F5 1.369 1.369 NEG NEG NEG N	[G1NEG1] [G1CO1] [G1NEG2] [G1CO2] [G1NEG3]	Location G4 H4 A5 B5	2.092 1.353 2.088 1.319 2.110	2.092 1.353 2.088 1.319 2.110			NEG NEG NEG NEG	
[G1NEG5] G5 2.095 2.095 **** NEG (G1C0S) H5 1.325 1.325 **** NEG (G1C0G) A6 2.110 2.110 **** NEG	[G1NEG1] [G1C01] [G1NEG2] [G1C02] [G1NEG3] [G1C03]	G4 H4 A5 B5 C5 D5	2.092 1.353 2.088 1.319 2.110 1.409	2.092 1.353 2.088 1.319 2.110 1.409			NEG NEG NEG NEG NEG	
G10C95 H5 1.325 1.325 NEG G1NEG6] A6 2.110 2.110 NEG	[G1NEG1] [G1CO1] [G1NEG2] [G1CO2] [G1NEG3] [G1CO3] [G1NEG4]	Location G4 H4 A5 B5 C5 D5 E5	2.092 1.353 2.088 1.319 2.110 1.409 2.139	2.092 1.353 2.088 1.319 2.110 1.409 2.139			NEG NEG NEG NEG NEG NEG	
G1NEG6] A6 2.110 2.110 **** NEG	[G1NEG1] [G1CO1] [G1NEG2] [G1CO2] [G1NEG3] [G1CO3] [G1NEG4] [G1CO4]	Location G4 H4 A5 B5 C5 D5 E5 F5	2.092 1.353 2.088 1.319 2.110 1.409 2.139 1.369	2.092 1.353 2.088 1.319 2.110 1.409 2.139 1.369			NEG NEG NEG NEG NEG NEG NEG	-
[GTNEG0] A0 2.110 2.110 NEG	[G1NEG1] [G1C01] [G1NEG2] [G1NEG2] [G1C02] [G1NEG3] [G1C03] [G1C03] [G1NEG4] [G1C04]	Location G4 H4 A5 B5 C5 D5 E5 F5 G5	2.092 1.353 2.088 1.319 2.110 1.409 2.139 1.369 2.095	2.092 1.353 2.088 1.319 2.110 1.409 2.139 1.369 2.095			NEG NEG NEG NEG NEG NEG NEG NEG	
	[G1NEG1] [G1CO1] [G1NEG2] [G1NEG3] [G1CO3] [G1NEG4] [G1CO4] [G1NEG5] [G1NEG5]	Location G4 H4 A5 B5 C5 D5 E5 F5 G5 H5	2.092 1.353 2.088 1.319 2.110 1.409 2.139 1.369 2.095 1.325	2.092 1.353 2.088 1.319 2.110 1.409 2.139 1.369 2.095 1.325			NEG NEG NEG NEG NEG NEG NEG NEG	

C:\\PREC2AMPOX\ Plate ID: PREC2AMP			0/30/2012 at 11 ONE/OXYMOR				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1CO6] [G1NEG7]	B6 C6	1.301 2.153	1.301 2.153	*****	*****	NEG NEG	
[G1CO7] [G1NEG8]	D6 E6	1.353	1.353 2.148	*****	*****	NEG NEG	
[G1CO8] [G1NEG9]	F6 G6	1.359	1.359	*****	*****	NEG NEG	
[G1CO9]	H6	1.347	1.347	*****	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4 B4	2.146 2.108	2.127	0.027	1.254%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	1.325 1.209	1.267	0.082	6.463%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	2.289	2.289	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	1.365	1.365	*****	*****	NCO1	

Indicates an unread well or value out of range
Indicates an equivocal response
Indicates an unread well or value out of range
Indicates combined data

Page 62 of 99

C:\.\PREC2AMPOXYBENZ032812.DAT Plate ID: PREC2AMPOXYBENZ032812 Printed on 3/30/2012 at 11:13:11 PM OXYCODONE/OXYMORPHONE

DATA MATRIX/TABLE : OD 6 7 9 10 11 12 **** 2.146 2.088 2.110 **** **** ***** ***** 2.108 1.319 1.301 1.325 2.110 2.153 1.353 2.289 2.139 2.148 1.365 1.369 1.359 ***** ***** ***** ***** ***** ***** 2.092 | 2.095 | 2.111 ***** *****

С

D

Е

F

G

***** Indicates an unread well or value out of range

***** ****

1.347

1.353 1.325

C:\\PREC2AMPOX Plate ID: PREC2AMI		Printed on 3/30/2012 at 11:13:11 PM BENZODIAZEPINE GROUP		Page 7 of 9
TEST NO. TEST NAME PLATE W/L MODE TEST FILTER REF. FILTER	: PREC2AMI : SINGLE	ZEPINE GROUP POXYBENZ032812 DATE TIME OPERATOR	: 3/29/2012 : 4:53:03 AM : admin	
	: AMPOXYBENZ, , : Acid Stop, , : BENZODIAZEPINI : EIA Buffer, , : K-Blue, , : BENZODIAZEPINI	IVÉ, ,		
OVER limit Calculation mode	: 3.500 : Endpoint			
		THRESHOLD RESULTS		

Q.C. equations	
NC>CO	1.873>0.919

+ equation	= CO
- equation	= 0.920 = CO
	= 0.920

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[G2NEG1]	G7	1.812	1.812	*****	*****	NEG
[G2CO1]	H7	0.833	0.833	*****	*****	POS
G2NEG2]	A8	1.694	1.694	*****	*****	NEG
[G2CO2]	B8	0.827	0.827	*****	*****	POS
[G2NEG3]	C8	1.744	1.744	*****	*****	NEG
[G2CO3]	D8	0.852	0.852	*****	*****	POS
G2NEG41	E8	1.798	1.798	*****	*****	NEG
[G2CO4]	F8	0.813	0.813	*****	*****	POS
[G2NEG5]	G8	1.860	1.860	*****	*****	NEG
[G2CO5]	H8	0.867	0.867	*****	*****	POS
[G2NEG6]	A9	1.764	1.764 Page 64 of 99	••••	*****	NEG

Page 63 of 99

Data 0.779 1.795 0.804 1.736 0.801 1.760 0.770 Data 1.869 1.877	Mean 0.779 1.795 0.804 1.736 0.801 1.760 0.770 Mean 1.873	S.D.	C.V.	Result POS NEG POS NEG POS NEG POS NEG POS NEG POS	
1.795 0.804 1.736 0.801 1.760 0.770 Data 1.869 1.877	1.795 0.804 1.736 0.801 1.760 0.770	s.D.	 	POS NEG POS NEG POS NEG POS	
1.736 0.801 1.760 0.770 Data 1.869 1.877	1.736 0.801 1.760 0.770	S.D.	C.V.	NEG POS NEG POS	
0.801 1.760 0.770 Data 1.869 1.877	0.801 1.760 0.770 Mean	S.D.	C.V.	POS NEG POS	
Data 1.869 1.877	Mean	S.D.	C.V.	Result	
1.869 1.877					
1.877	1.873	0.006	0.302%	NC1	
Data					
	Mean	S.D.	C.V.	Result	
0.889 0.950	0.920	0.043	4.729%	CO1	
Data	Mean	S.D.	C.V.	Result	
1.427	1.427	••••		NNC1	
Data	Mean	S.D.	C.V.	Result	
0.605	0.605	••••	*****	NCO1	
	Data 0.605	Data Mean 0.605 0.605	Data Mean S.D. 0.605 0.605 ***** ates manual SID entry or manual pip	Data Mean S.D. C.V.	Data Mean S.D. C.V. Result 0.605 0.605 ***** NCO1

C:\.\PREC2AMPOXYBENZ032812.DAT Plate ID: PREC2AMPOXYBENZ032812 Printed on 3/30/2012 at 11:13:11 PM BENZODIAZEPINE GROUP Page 9 of 9 DATA MATRIX/TABLE : OD 2 3 6 7 8 9 10 11 12 ***** ***** ***** ***** 1.877 0.827 0.779 С 0.889 1.744 1.795 D 0.950 0.852 0.804 Ε 1.427 1.798 1.736 F 0.605 0.813 0.801 G ***** ***** ***** ***** 1.812 1.860 1.760 ***** ***** ***** **** ***** ***** 0.833 0.867 0.770 ***** ***** ****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 66 of 99

*****	Indicates an unread well or value out of range
0	Indicates an equivocal response
	Indicates an unread well or value out of range
#	Indicates combined data

Page 65 of 99

Printed on 3/30/2012 at 11:14:05 PM

C:\.\PREC2COCOPITHC032812.DAT

Plate ID: PREC2COC	OPITHC032812		OCAINE/BZE				
		REVELA	TION DSX	(6.21			
TEST NO. TEST NAME PLATE	: : COCAINE- : PREC2CO	BZE COPITHC032	2812				
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR	2	: 3/29/2012 : 5:11:20 A : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: COCAINE-BZE, B : COCOPITHC., : Acid Stop., : COCAINE/BZE CO: EIA Buffer, ; K-Blue, ; : OPIATE GROUP 4: : THC CONJUGATE : COCAINE/BZE CI: : COCAINE/BZE CI: : GROUP 2 CUTOF : GROUP 2 CUTOF : GROUP 2 NEGAT : Distilled Water, ; : Neogen Wash Buf	CONJUGATE, CONJUGATE E,, JTOFF,, EGATIVE,, F,,					
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RES	ULTS			
Q.C. equations							
NC>CO				1.210>0.417	7		
+ equation - equation	= CO = 0.418 = CO = 0.418						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2NEG1]	G1 H1	1.295 0.515 1.155	1.295 0.515 1.155	*****		NEG NEG NEG	
[G2CO1] [G2NEG2] [G2CO2]	A2 B2	0.438	0.438	*****	*****	NEG	
[G2CO1] [G2NEG2]				*****	****	NEG NEG NEG	_

C:\.\PREC2COCOP Plate ID: PREC2CO			/30/2012 at 11 COCAINE/BZE	:14:05 PM			Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
G2NEG4]	E2	1.298	1.298	*****	*****	NEG	
G2CO4]	F2	0.482	0.482	*****	*****	NEG	
G2NEG5]	G2	1.265	1.265	*****	*****	NEG	
G2CO5]	H2	0.508	0.508	*****	*****	NEG	
G2NEG6]	A3	1.320	1.320	*****	*****	NEG	
G2CO6]	B3	0.485	0.485	*****	*****	NEG	
G2NEG7]	C3	1.192	1.192	*****	*****	NEG	
G2CO71	D3	0.481	0.481	*****	*****	NEG	
G2NEG8]	E3	1.303	1.303	*****	*****	NEG	
G2CO8]	F3	0.523	0.523	*****	*****	NEG	
G2NEG9]	G3	1.233	1.233	*****	*****	NEG	
G2CO9]	НЗ	0.447	0.447	*****	••••	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
VC1	A1 B1	1.231 1.190	1.210	0.029	2.399%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
001	C1 D1	0.471 0.365	0.418	0.075	17.892%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
INC1	E1	0.937	0.937	*****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
ICO1	F1	0.481	0.481	*****	*****	NCO1	
	0	Indicates manu Indicates an ur Indicates an er Indicates an ur Indicates comb	nread well or v quivocal respo nread well or v	ralue out of r	ange		

Page 68 of 99

C:\.\PREC2COCOPITHC032812.DAT Plate ID: PREC2COCOPITHC032812 Printed on 3/30/2012 at 11:14:05 PM COCAINE/BZE Page 3 of 9

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.231	1.155	1.320	••••	*****	*****						****
В	1.190	0.438	0.485	*****	*****	*****		*****	*****	*****	*****	*****
С	0.471	1.120	1.192		••••	••••		••••		*****	*****	
D	0.365	0.492	0.481	*****	*****	*****	*****	*****	*****	*****	*****	*****
Е	0.937	1.298	1.303		*****	••••						••••
F	0.481	0.482	0.523	••••	*****	*****	*****	*****	*****	*****	*****	••••
G	1.295	1.265	1.233		*****	*****	*****	*****			••••	••••
н	0.515	0.508	0.447	*****	*****	*****	*****	*****	*****	*****	*****	****

***** Indicates an unread well or value out of range

Page 69 of 99

C:\\PREC2COCOPI Plate ID: PREC2CO			3/30/2012 at 11:1 OPIATE GROUP	4:05 PM			Page 4 of 9
TEST NO.	:						
TEST NAME	: OPIATE G						
PLATE	: PREC2CC	COPITHC03	2812				
W/L MODE	: SINGLE		DATE		: 3/29/2012	2	
TEST FILTER	: 450 nm		TIME		: 5:11:20 A	M	
REF. FILTER	: *		OPERATOR		: admin		
Kit Lot Data	: OPIATE GROUP	MOF-0056B	3.				
Plate Lot Data	: COCOPITHC, ,						
Reagent Lot Data	: Acid Stop, ,						
	: EIA Buffer, ,						
	: K-Blue, ,						
	: OPIATE GROUP		Ε, ,				
	: GROUP 2 CUTO						
	: GROUP 2 NEGA : OPIATE GROUP						
	: OPIATE GROUP						
	: Distilled Water	NEGATIVE,					
	: Neogen Wash Bu	ffer, ,					
OVER limit	: 3.500						
Calculation mode	: Endpoint						
		THRESH	IOLD RESU	LIS			
Q.C. equations							
NC>CO				1.450>0.8	14		
+ equation	= CO						
	= 0.814						
equation	= CO						
	= 0.814						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
G2NEG1]	G4	1.642	1.642	*****	*****	NEG	
G2CO1]	H4	0.985	0.985	*****	*****	NEG	
[G2NEG2] [G2CO2]	A5 B5	1.597 0.850	1.597 0.850	*****	*****	NEG NEG	
G2NEG3]	C5	1.640	1.640	*****	*****	NEG	
G2CO3]	D5	0.898	0.898	*****	*****	NEG	
G2NEG4]	E5	1.327	1.327	****	*****	NEG	
G2CO4]	F5	0.874	0.874	*****	*****	NEG	
G2NEG5]	G5	1.622	1.622	****	*****	NEG	
G2CO51	H5	0.862	0.862	*****	*****	NEG	
G2NEG6]	A6	1.618	1.618	*****	*****	NEG	

C:\\PREC2COCOP Plate ID: PREC2CO			N/30/2012 at 11: PIATE GROUP				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2CO6] [G2NEG7]	B6 C6	0.938 1.606	0.938 1.606	*****	*****	NEG NEG	
[G2CO7] [G2NEG8] [G2CO8] [G2NEG9]	- D6 E6 F6 G6	0.758 1.447 0.908 1.532	0.758 1.447 0.908 1.532			POS NEG NEG NEG	
[G2CO9]	Н6	0.810	0.810	****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4 B4	1.410 1.491	1.451	0.057	3.922%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	0.886 0.742	0.814	0.102	12.486%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	1.439	1.439	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	0.918	0.918	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

				DATA MATRIX/TABLE : OD													
	1	2	3	4	5	6	7	8	9	10	11	12					
A	****	*****	••••	1.410	1.597	1.618	••••	*****	*****		••••	*****					
в	*****	••••		1.491	0.850	0.938	••••	*****	*****			*****					
С	••••	••••		0.886	1.640	1.606	••••	••••	*****		••••						
ь	*****	*****	*****	0.742	0.898	0.758	*****	*****	*****	*****	*****	*****					
E	••••	••••	*****	1.439	1.327	1.447	••••	••••	••••	*****	••••	••••					
F	****	*****	*****	0.918	0.874	0.908	*****	*****	*****	*****	*****	*****					
G	*****		*****	1.642	1.622	1.532	••••	••••	••••	*****	••••	••••					
нΪ	••••	*****	*****	0.985	0.862	0.810	*****	*****	*****	*****	*****	*****					

Page 71 of 99

Page 72 of 99

Plate ID: PREC2COO			THC				
TEST NO. TEST NAME	: : THC						
PLATE	: PREC2COC	OPITHC0	32812				
W/L MODE	: SINGLE		DATE		: 3/29/2012		
TEST FILTER	: 450 nm		TIME		: 5:11:20 A	M	
REF. FILTER	: *		OPERATOR		: admin		
Kit Lot Data	: THC, TCF-0055B,						
Plate Lot Data	: COCOPITHC, ,						
Reagent Lot Data	: Acid Stop, ,						
	: EIA Buffer, , : K-Blue, ,						
	: THC CONJUGATE						
	: GROUP 2 CUTOFF						
	: GROUP 2 NEGATI						
	: THC CUTOFF, ,						
	: THC NEGATIVE, ,						
	: Distilled Water, , : Neogen Wash Buffe						
	: Neogen wasn bull	er, ,					
OVER limit	: 3.500						
Calculation mode	: Endpoint						
		THRESI	HOLD RESUL	.TS			
Q.C. equations							
NC>CO				1.624>1.23	30		
+ equation	= CO						
equation	= 1.231 = CO						
equation	= 1.231						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
G2NEG1]	G7	1.443	1.443	*****	*****	NEG	
G2CO1]	H7	1.198	1.198	*****	*****	POS	
G2NEG2]	A8	1.698	1.698	*****	*****	NEG	
G2CO2]	B8	1.295	1.295			NEG	
G2NEG3] G2CO3]	C8 D8	1.630 1.191	1.630 1.191	*****	*****	NEG POS	
G2CO3] G2NEG4]	E8	1.520	1.520	*****	*****	NEG	
G2CO4]	F8	1.238	1.238	*****	*****	NEG	
	G8	1.521	1,521	*****	*****	NEG	
G2NEG51	H8	1.247	1.247	*****	*****	NEG	
G2NEG5] G2CO5]		1.647	1.647 Page 73 of 99	****	*****	NEG	
	A9	1.047	Page 73 of 99				

C:\\PREC2COCOPI* Plate ID: PREC2COC		Printed on 3	3/30/2012 at 11: THC	:14:05 PM			Page 8 of 9
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G2CO6]	B9	1.321	1.321		*****	NEG	
[G2NEG7]	C9	1.638	1.638	•••••		NEG	
[G2CO7]	D9	1.244	1.244	*****	*****	NEG	
[G2NEG8]	E9	1.597	1.597	••••	••••	NEG	
[G2CO8]	F9	1.165	1.165	*****	*****	POS	
[G2NEG9]	G9	1.481	1.481	*****	*****	NEG	
[G2CO9]	Н9	1.193	1.193	*****	*****	POS	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A7 B7	1.613 1.636	1.624	0.016	0.966%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C7 D7	1.270 1.191	1.231	0.056	4.567%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.623	1,623	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.733	0.733	*****	*****	NCO1	

[...] indicates an unread well or value out of range
0 Indicates an unread well or value out of range
1 Indicates an unread well or value out of range
Indicates combined data

Page 74 of 99

	1	2	3	4	5	6	7	8	9	10	11	12
Α	••••	*****	*****	*****	*****	••••	1.613	1.698	1.647	*****	*****	*****
в	••••		*****	*****	*****		1.636	1.295	1.321	*****	*****	*****
С	*****	*****	*****	*****	*****	*****	1.270	1.630	1.638	*****	*****	*****
D	••••				****		1.191	1.191	1.244	••••	••••	••••
Ε	*****	*****	*****	*****	*****		1.623	1.520	1.597	*****	*****	••••
F	*****	*****	*****	*****	*****	*****	0.733	1.238	1.165	*****	*****	*****
G	*****	*****	••••	*****	*****	*****	1.443	1.521	1.481	*****	*****	••••
н	*****	*****	*****	*****	*****	*****	1.198	1.247	1.193	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

C:\\PREC2COT032 Plate ID: PREC2COT		Printed on	3/30/2012 at 11:1 COTININE	4:47 PM			Page 1 of 3
		REVELA	ATION DSX	5.21			
TEST NO. TEST NAME PLATE	: COTININE : PREC2CO						
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/29/2012 : 4:03:18 A : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	COTININE, CTI-0 COT, Acid Stop, COTININE CONJI EIA Buffer, K-Blue, COTININE CUTO COTININE NEGA GROUP 1 CUTOF GROUP 1 NEGAT Distilled Water, Neogen Wash Bul	JGATE, , FF, , TIVE, , TIVE, ,					
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	OLD RESU	LTS			
Q.C. equations							
NC>CO				3.441>1.8	53		
+ equation - equation	= CO = 1.853 = CO = 1.853						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG1] [G1CO1] [G1NEG2] [G1CO2]	G1 H1 A2 B2	3.337 1.978 OVER 1.850	3.337 1.978 OVER 1.850	*****	*****	NEG NEG * POS	
G1NEG3] G1CO3] G1NEG4] G1CO4]	C2 D2 E2 F2	3.398 1.836 3.337 1.860	3.398 1.836 3.337 1.860		****	NEG POS NEG NEG	

Page 76 of 99

Page 75 of 99

VALIDATION OF ELISA IN BREAST MILK

C:\.\PREC2COT032 Plate ID: PREC2COT		Printed on 3	/30/2012 at 11: COTININE	:14:47 PM			Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[G1NEG5]	G2	3.300	3.300	****	*****	NEG	
[G1CO5]	H2	1,941	1,941	*****	*****	NEG	
G1NEG6]	A3	3.449	3.449	*****	*****	NEG	
[G1CO6]	B3	1.882	1.882	*****	*****	NEG	
[G1NEG7]	C3	3.321	3.321	*****	*****	NEG	
[G1CO7]	D3	1.741	1.741	*****	*****	POS	
[G1NEG8]	E3	3.161	3.161	*****	*****	NEG	
[G1CO8]	F3	1.681	1.681	*****	*****	POS	
[G1NEG9]	G3	3.102	3.102	*****	*****	NEG	
[G1CO9]	НЗ	1.930	1.930		••••	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	3.480 3.402	3.441	0.055	1.600%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.879 1.827	1.853	0.036	1.961%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	2.441	2.441	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.335	1.335	••••	*****	NCO1	
	0	Indicates manu Indicates an ur Indicates an ed Indicates an ur Indicates comb	nread well or v quivocal respo nread well or v	ralue out of ra	ange		

C:\.\PREC2COT032812.DAT Plate ID: PREC2COT032812	Printed on 3/30/2012 at 11:14:47 PM COTININE	Page 3 of 3

DATA MATRIX/TABLE : OD

1	2	3	4	5	6		8	. 9	10	11	12
3.480	OVER	3.449	••••	*****		••••	••••	••••		••••	••••
3.402	1.850	1.882	*****	*****	*****	****	*****	*****	*****	*****	*****
1.879	3.398	3.321		*****	••••	••••	••••		*****	••••	••••
1.827	1.836	1.741	••••	*****	*****	*****	••••	*****	*****	*****	*****
2.441	3.337	3.161	*****	*****	*****	••••	••••	*****	••••	*****	••••
1.335	1.860	1.681	*****	*****	*****	*****	*****	*****	*****	*****	••••
3.337	3.300	3.102		••••	••••		••••			••••	••••
1.978	1.941	1.930	*****	*****	*****	*****	*****	*****	*****	*****	*****
	3.402 1.879 1.827 2.441 1.335 3.337	3.480 OVER 3.402 1.850 1.879 3.398 1.827 1.836 2.441 3.337 1.335 1.860 3.337 3.300	3.480 OVER 3.449 3.402 1.850 1.882 1.879 3.398 3.321 1.827 1.836 1.741 2.441 3.337 3.161 1.335 1.860 1.681 3.337 3.300 3.102	3.402 1.850 1.882 1.879 3.398 3.321 1.827 1.836 1.741 2.441 3.337 3.161 1.335 1.860 1.681 3.337 3.300 3.102	3.480 OVER 3.449 ····· 3.402 1.850 1.882 ···· 1.879 3.398 3.321 ···· 1.827 1.836 1.741 ···· 1.335 1.860 1.681 ···· 1.335 1.860 1.681 ··· 1.335 1.860 1.881 ··· 1.335 1.880 1.881 ··· 1.335 1.881 ··· 1.335 1.880 1.881 ··· 1	3.480 OVER 3.449 ····· ···· ··· ··· ··· ··· ··· ··· ·	3.480 OVER 3.449	3.480 OVER 3.449 3.402 1.850 1.882 1.879 3.398 3.321 1.827 1.836 1.741 2.441 3.337 3.161 1.335 1.860 1.681 3.337 3.300 3.102	3.480 OVER 3.449 3.402 1.850 1.882 1.879 3.398 3.321 1.827 1.836 1.741 2.441 3.337 3.161 1.335 1.860 1.681 3.337 3.300 3.102	3.480 OVER 3.449	3.480 OVER 3.449

***** Indicates an unread well or value out of range

Dynex Technologies

Page 78 of 99

C:\.ACURACYAMPOXYBENZ032912.DAT Printed on 3/30/2012 at 11:01:12 PM Plate ID: ACURACYAMPOXYBENZ032912 AMPHETAMINE ULTRA Page 1 of 9

Page 77 of 99

REVELATION DSX 6.21

TEST NO. TEST NAME PLATE

: AMPHETAMINE ULTRA ACCURACY : ACURACYAMPOXYBENZ032912

W/L MODE TEST FILTER REF. FILTER

DATE

: SINGLE TIME OPERATOR : 450 nm

: 3/30/2012 : 12:18:38 AM

Kit Lot Data Plate Lot Data Reagent Lot Data

: AMPHETAMINE ULTRA ACCURACY, AUF-0047B,
: AMPOXYBENZ,
: Adid Stop,
: AMPHETAMINE ULTRA CONJUGATE,
: BENZODIAZEPINE GROUP CONJUGATE,
: ELA BUffer,
: K-Blue,
: OXYCODONE/OXYMORPHONE CONJUGATE,
: AMPHETAMINE ULTRA CUTOFF,
: AMPHETAMINE ULTRA CUTOFF,
: GROUP 1 CUTOFF,
: GROUP 1 CUTOFF,
: GROUP 1 CUTOFF,
: GROUP 1 CUTOFF,
: ORGUP 1 CUTOFF,
: ORGUP 1 CUTOFF,
: ORGUP 1 CUTOFF,
: Distilled Water,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit Calculation mode

: 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.641>1.154

+ equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[AMP-50]	G1	1.290	1.259	0.038	3.000%	NEG
	H1	1.206				
	A2	1.288				
	B2	1.219				
	C2	1.264				
	D2	1.288				

Page 79 of 99

	OXYBENZ032912.DAT AMPOXYBENZ032912		3/30/2012 at 11 HETAMINE ULT				Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[AMP CO]	E2	1.064	1.068	0.022	2.093%	POS	
tram col	F2	1.105	1.000	0.022	2.00070		
	G2	1.068					
	H2	1.070					
	A3	1.066					
	B3	1.035					
[AMP+50]	C3	0.975	0.961	0.041	4.284%	POS	
pan cool	D3	0.991	0.001	0.011	1120170		
	E3	0.992					
	F3	0.936					
	G3	0.984					
	H3	0.888					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1	1.669	1.641	0.039	2.399%	NC1	
	B1	1.613					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1	1,149	1.154	0.007	0.622%	CO1	
	D1	1.159		0.007	0.02270		
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	1.623	1.623	*****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.100	1.100	*****	*****	NCO1	
	0 Ir	ndicates an un ndicates an e	ual SID entry on read well or v quivocal responread well or v	alue out of ra	ange		

[#] Indicates combined data

Page 80 of 99

C:\.\ACURACYAMPOXYBENZ032912 DAT Printed on 3/30/2012 at 11:01:12 PM Plate ID: ACURACYAMPOXYBENZ032912 AMPHETAMINE ULTRA Page 3 of 9

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	,	8	9	10	11	12
Α	1.669	1.288	1.066	*****	*****	*****	••••				*****	*****
В	1.613	1.219	1.035	*****	*****	*****	*****	*****	*****	*****	*****	*****
С	1.149	1.264	0.975	*****	*****	*****	*****	*****	*****	••••	••••	*****
D	1.159	1.288	0.991	*****		*****		*****			•••••	*****
Е	1.623	1.064	0.992	*****	*****	*****	*****	*****	*****	•••••	••••	*****
F	1.100	1.105	0.936	*****	*****		*****	*****	*****	*****	*****	
G	1.290	1.068	0.984	*****	••••	••••	*****	*****	*****	••••	*****	*****
н	1.206	1.070	0.888	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 81 of 99

					Page 4 of
			′		
: SINGLE : 450 nm	TI	ME	: 12:1	18:38 AM	
: AMPOXYBENZ, ,	ORPHONE C C ORPHONE C ORPHONE N	CONJUGATE, ,	-0037В,		
: 3.500 : Endpoint					
TH	RESHOL	D RESULTS			
		2.00	5>1.230		
= CO = 1.231 = CO = 1.231					
	AMPOXYBENZ032912 : OXYCODONE : ACURACYAMI : SINGLE : 450 nm : 450 nm : OXYCODONE-OXYM : AMPOXYBENZ, : Acid Stop, : Acid Stop, : ElA Buffer, : K-Blue, : OXYCODONE/OXYM : GROUP 1 CUTOFF, : GROUP 1 NEGATIVE : OXYCODONE/OXYM : Distilled Water, : Neopen Wash Buffer, : 3.500 : Endpoint Th	AMPOXYBENZ032912 OXYCODONI : OXYCODONE-OXYMORPH- : ACURACYAMPOXYBENZ0 : SINGLE DV. 1450 nm Til. : AMPOXYBENZ. : AIG Stop. 2. AIG Stop.	AMPOXYBENZ032912 OXYCODONE-OXYMORPHONE ACCURACY ACURACYAMPOXYBENZ032912 SINGLE 450 nm TIME OPERATOR OXYCODONE-OXYMORPHONE ACCURACY, OXF. AMPOXYBENZ, Acid Stop., EIA Buffer, K-Blue, OXYCODONE/OXYMORPHONE CONJUGATE, GROUP 1 CUTOFF, GROUP 1 NEGATIVE, OXYCODONE/OXYMORPHONE CUTOFF, OXYCODONE/OXYMORPHONE CUTOFF, OXYCODONE/OXYMORPHONE NEGATIVE, Distilled Water, Endpoint THRESHOLD RESULTS 2.000 = CO = 1.231 = CO	: OXYCODONE-OXYMORPHONE ACCURACY :ACURACYAMPOXYBENZ032912 : SINGLE DATE :3/3/ : 450 nm TIME :12: OPERATOR :adm : OVYCODONE-OXYMORPHONE ACCURACY, OXF-0037B, :AMPOXYBENZ, :Adid Stop, :EIA Buffer, :K-Blue, OXYCODONE/OXYMORPHONE CONJUGATE, :GROUP 1 NEGATIVE, :OXYCODONE/OXYMORPHONE CUTOFF, :OXYCODONE/OXYMORPHONE CUTOFF, :OXYCODONE/OXYMORPHONE NEGATIVE, :DISIBLED Wash :THRESHOLD RESULTS THRESHOLD RESULTS 2.006>1.230 = CO = 1.231 = CO	AMPOXYBENZ032912 OXYCODONE/OXYMORPHONE : OXYCODONE-OXYMORPHONE ACCURACY : ACURACYAMPOXYBENZ032912 : SINGLE DATE : 3/30/2012 : 450 nm TIME : 12:18:38 AM OPERATOR : admin : OXYCODONE-OXYMORPHONE ACCURACY, OXF-0037B, AMPOXYBENZ, AID SIDE SIDE SIDE SIDE SIDE SIDE SIDE SI

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[OXY-50]	G4	1.700	1.657	0.030	1.790%	NEG
	H4	1.666				
	A5	1.645				
	B5	1.631				
	C5	1.623				
	D5	1.679				
[OXYCO]	E5	1.370	1.280	0.049	3.853%	NEG
	F5	1.266				
	G5	1.288				
	H5	1.232				
	A6	1.283				
			Page 82 of 99			

C:\.\ACURACYAMPOXYBENZ032912.DAT Printed on 3/30/2012 at 11:01:12 PM Plate ID: ACURACYAMPOXYBENZ032912 OXYCODONE/OXYMORPHONE Page 5 of 9

Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
	B6	1.242					
[OXY+50]	C6	1.052	0.948	0.057	5.983%	POS	
	D6	0.941					
	E6	0.918					
	F6	0.928					
	G6	0.887					
	H6	0.962					
	,						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4	2.018	2.007	0.016	0.806%	NC1	
	B4	1.995					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
						CO1	_
CO1	C4 D4	1.304 1.157	1.231	0.104	8.459%	COI	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	2.129	2.129	*****	*****	NNC1	

[...] Indicates manual SID entry or manual pipetting
**** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

Mean

1.439

S.D.

C.V.

Result

NCO1

Page 83 of 99

Data

1.439

Location

F4

Sample ID

NCO1

C:\.\ACURACYAMPOXYBENZ032912.DAT Printed on 3/30/2012 at 11:01:12 PM Plate ID: ACURACYAMPOXYBENZ032912 OXYCODONE/OXYMORPHONE

					DATA	MATR	IX/TAI	BLE : (OD			
	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****		2.018	1.645	1.283	*****	*****	••••	*****	*****	
В	*****	*****		1.995	1.631	1.242	*****	*****		••••	*****	••••
С	*****	*****		1.304	1.623	1.052	••••	*****			••••	
D	*****	*****	••••	1.157	1.679	0.941	*****	*****	*****	••••		••••
Ε	*****	*****	••••	2.129	1.370	0.918	*****		*****	*****	*****	*****
F	*****	*****	*****	1.439	1.266	0.928	*****	*****	*****	*****	*****	*****
G	••••	*****	*****	1.700	1.288	0.887	*****	*****	*****			••••
н	*****	••••	*****	1.666	1.232	0.962	*****	*****	*****	••••	••••	*****

***** Indicates an unread well or value out of range

Page 84 of 99

	OXYBENZ032912.DAT AMPOXYBENZ032912		3/30/2012 at 11:0 ODIAZEPINE GR				Page 7 o
TEST NO. TEST NAME PLATE	: : BENZODIA : ACURACY		ROUP ACCURA	CY			
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm		DATE TIME OPERATOR		: 3/30/2012 : 12:18:38 : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: BENZODIAZEPIN : AMPOXYBENZ, , Acid Stop, , Acid Stop, ; Ela Buffer , K-Blue, , BENZODIAZEPIN : BENZODIAZEPIN : BENZODIAZEPIN : GROUP 2 CUTON : GROUP 2 NEGAT : Distilled Water , Neogen Wash Bu	IE GROUP (IE GROUP (IE GROUP) FF, , TIVE, ,	CONJUGATE, ,	F-0061B,			
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	IOLD RESU	LTS			
Q.C. equations							
NC>CO				1.714>0.8	109		
+ equation	= CO = 0.809						
- equation	= CO = 0.809						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[BENZ-50]	G7 H7 A8 B8 C8 D8	0.985 0.971 1.026 1.021 1.001 1.029	1.005	0.024	2.398%	NEG	
[BENZCO]	E8 F8 G8 H8	0.787 0.807 0.790 0.863	0.805	0.029	3.639%	POS	

	OXYBENZ032912.DAT AMPOXYBENZ032912		3/30/2012 at 11 DIAZEPINE GI				Page 8 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
	B9	0.793					
[BENZ+50]	C9	0.741	0.784	0.056	7.184%	POS	
,	D9	0.729					
	E9	0.754					
	F9	0.803					
	G9 H9	0.793 0.882					
Sample ID NC1	Location A7 B7	Data 1.682 1.746	Mean 1.714	S.D. 0.045	C.V. 2.631%	Result NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C7 D7	0.770 0.849	0.809	0.056	6.972%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.314	1.314	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.539	0.539	*****	*****	NCO1	
	0 li	ndicates an un	ual SID entry on read well or v quivocal responread well or v pined data	alue out of ra	inge		

Page 86 of 99

Page 9 of 9

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	••••	*****	*****	*****	*****	1.682	1.026	0.791	*****	*****	
В	*****		*****		*****	*****	1.746	1.021	0.793	••••	••••	••••
С	*****	••••	*****	*****	*****	••••	0.770	1.001	0.741	*****	*****	*****
D	*****	••••			*****		0.849	1.029	0.729	*****	•••••	*****
Е	*****	••••	*****	*****	*****	*****	1.314	0.787	0.754	*****	*****	*****
F	*****	••••	*****	*****		*****	0.539	0.807	0.803	*****	*****	*****
G	••••	••••	*****	*****	*****	*****	0.985	0.790	0.793	*****	*****	*****
н	****	*****	****	*****	*****	*****	0.971	0.863	0.882	*****	*****	****

***** Indicates an unread well or value out of range

Dynex Technologies

C:\.\ACCURACYCOCOPITHC032912.DAT Printed on 3/30/2012 at 10:58:49 PM Plate ID: ACCURACYCOCOPITHC032912 COCAINE/BZE

Page 1 of 9

: 3/30/2012 : 12:31:03 AM : admin

REVELATION DSX 6.21

TEST NO. TEST NAME PLATE

: COCAINE-BZE ACCURACY : ACCURACYCOCOPITHC032912

W/L MODE TEST FILTER REF. FILTER

Kit Lot Data Plate Lot Data Reagent Lot Data

: SINGLE : 450 nm : *

DATE TIME OPERATOR

: OPERATO
: COCAINE-BZE ACCURACY, BZF-0079B,
: COCOPITHC, ,
: Acid Stop, .
: COCAINE/BZE CONJUGATE, ,
: EIA Buffer, ,
: K-Blue, ,
: OPIATE GROUP CONJUGATE, ,
: THC CONJUGATE, ,
: COCAINE/BZE CUTOFF, ,
: COCAINE/BZE NEGATIVE, ,
: GROUP 2 CUTOFF, ,
: GROUP 2 NEGATIVE, ,
: GROUP 2 NEGATIVE, ,
: Distilled Water, ,

OVER limit Calculation mode : 3.500 : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO

1.315>0.497

= CO = 0.498 = CO = 0.498 + equation - equation

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[COC-50]	G1	0.906	0.807	0.081	9.994%	NEG
	H1	0.840				
	A2	0.706				
	B2	0.712				
	C2	0.852				
	D2	0.828				

Page 88 of 99

Page 87 of 99

PITHC032912.DAT DCOPITHC032912		//30/2012 at 10 COCAINE/BZE	58:49 PM			Page 2
Location	Data	Mean	S.D.	C.V.	Result	
F2	0.560	0.500	0.045	9.029%	NEG	
F2	0.478	0.000	0.040	3.02370	INLO	
G2	0.473					
H2	0.493					
	0.549					
B3	0.446					
C3	0.366	0.327	0.025	7.735%	POS	
D3	0.302					
Н3	0.336					
Location	Data	Mean	S.D.	C.V.	Result	
Δ1	1 383	1 316	0.096	7 286%	NC1	
		1.510	0.000	7.20070	1101	
Location C1 D1	Data 0.543 0.452	Mean 0.498	S.D. 0.064	C.V. 12.946%	Result	
Location E1	Data 0.991	Mean 0.991	S.D.	C.V.	Result NNC1	
Location	Data	Mean	S.D.	C.V.	Result	
F1	0.476	0.476	*****	*****	NCO1	
	E2 F2 G2 H2 A3 B3 C3 D3 E3 F3 G3 H3 Location C1 D1	E2 0.560 F2 0.478 G2 0.473 H2 0.493 A3 0.549 B3 0.446 C3 0.366 D3 0.302 E3 0.311 F3 0.341 G3 0.304 H3 0.336 Location Data A1 1.383 B1 1.248 Location Data C1 0.543 D1 0.452 Location Data E1 0.991 Location Data	E2 0.560 0.500 F2 0.478 0.473 H2 0.493 0.493 A3 0.549 0.327 B3 0.446 0.327 C3 0.366 0.327 B3 0.341 0.302 E3 0.341 0.336 H3 0.336 0.304 H3 0.336 0.304 H3 0.336 0.304 H3 0.336 0.304 H3 0.336 0.311 Location Data Mean C1 0.543 0.498 D1 0.452 0.498 Location Data Mean E1 0.991 0.991 Location Data Mean	E2 0.560 0.500 0.045 F2 0.478 0.473 0.045 H2 0.493 0.493 0.046 0.327 0.025 B3 0.446 0.327 0.025	E2 0.560 0.500 0.045 9.029% F2 0.478 0.473 0.045 9.029% H2 0.493 0.493 0.446 0.025 7.735% B3 0.446 0.327 0.025 7.735% D3 0.302 0.311 0.341 0.341 0.336 H3 0.336 0.304 0.096 7.286% Location Data Mean S.D. C.V. A1 1.383 1.316 0.096 7.286% Location Data Mean S.D. C.V. C1 0.543 0.498 0.064 12.946% Location Data Mean S.D. C.V. E1 0.991	E2 0.560 0.500 0.045 9.029% NEG F2 0.478 9.029% NEG F2 0.473 9.0473 9.029% NEG H2 0.493 9.0493 9.029% NEG H2 0.493 9.0493 9.029% NEG C3 0.366 0.327 0.025 7.735% POS D3 0.301 9.0341 9.029% POS POS E3 0.311 9.0341 9.029% POS POS Location Data Mean S.D. C.V. Result A1 1.383 1.316 0.096 7.286% NC1 Location Data Mean S.D. C.V. Result Location Data Mean S.D. C.V. Result Location Data Mean S.D. C.V. Result

C:\.\ACCURACYCOCOPITHC032912.DAT Plate ID: ACCURACYCOCOPITHC032912	Printed on 3/30/2012 at 10:58:49 PM COCAINE/BZE	Page 3 of 9

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.383	0.706	0.549	*****	*****	*****	••••	*****	*****	*****	*****	*****
В	1.248	0.712	0.446	*****	*****	*****		*****	*****	*****	*****	*****
С	0.543	0.852	0.366	*****	*****	••••	*****	••••	••••	*****	*****	••••
D	0.452	0.828	0.302	*****	*****	*****	*****	*****	*****	*****	*****	*****
Ε	0.991	0.560	0.311	*****	*****	*****	*****	*****	*****	*****	*****	****
F	0.476	0.478	0.341	*****	*****	*****	*****	*****	*****	*****	*****	*****
G	0.906	0.473	0.304	*****	*****	*****	*****	*****	*****	*****	*****	••••
н	0.840	0.493	0.336	*****	*****	*****	*****	*****	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Page 90 of 99

	COPITHC032912.DAT YCOCOPITHC032912		3/30/2012 at 10:5 OPIATE GROUP				Page 4 o
TEST NO.	:						
TEST NAME	: OPIATE GF						
PLATE	: ACCURAC	YCOCOPIT	HC032912				
W/L MODE	: SINGLE		DATE		: 3/30/2012	2	
TEST FILTER	: 450 nm		TIME		: 12:31:03	AM	
REF. FILTER	: *		OPERATOR		: admin		
Kit Lot Data	: OPIATE GROUP	ACCURACY	. MOF-0056B.				
Plate Lot Data	: COCOPITHC, ,		,				
Reagent Lot Data	: Acid Stop, ,						
	: EIA Buffer, ,						
	: K-Blue, ,		-				
	: OPIATE GROUP (: GROUP 2 CUTOF		Ε, ,				
	: GROUP 2 NEGAT						
	: OPIATE GROUP (
	: OPIATE GROUP N	NEGATIVE,					
	: Distilled Water, ,						
	: Neogen Wash Buf	ier, ,					
OVER limit	: 3.500						
Calculation mode	: Endpoint						
		THRESH	OLD RESU	LTS			
Q.C. equations							
NC>CO				1.585>0.8	88		
+ equation	= CO						
	= 0.888						
- equation	= CO						
	= 0.888						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[OPI-50]	G4	1.079	1.002	0.072	7.203%	NEG	
, ,	H4	0.934					
	A5	0.930					
	B5	0.997					
	C5 D5	0.974 1.100					
OPICO]	E5	0.911	0.857	0.066	7.663%	POS	
OFICO	F5	0.853	0.657	0.000	7.003%	PU3	
	G5	0.891					
	H5	0.733					
	A6	0.851					
			Page 91 of 99				

	COPITHC032912.DAT COCOPITHC032912		V30/2012 at 10: PIATE GROUP				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
	B6	0.903					
[OPI+50]	C6 D6	0.812 0.680	0.721	0.077	10.674%	POS	
	E6 F6 G6	0.636 0.715 0.666					
	H6	0.818					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A4 B4	1.678 1.494	1.586	0.130	8.199%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C4 D4	0.948 0.828	0.888	0.085	9.550%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E4	1.684	1.684	*****	****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F4	0.942	0.942	*****	*****	NCO1	
	[]	ndicates man	ual SID entry o	or manual pi	petting		
			nread well or v quivocal respo		ange		

* Indicates an unread well or value out of range # Indicates combined data

Page 92 of 99

C:\LACCURACYCOCOPITHC032912.DAT Plate ID: ACCURACYCOCOPITHC032912 Printed on 3/30/2012 at 10:58:49 PM OPIATE GROUP Page 6 of 9 DATA MATRIX/TABLE : OD ***** 1.678 0.930 0.851 ***** ***** В 1.494 0.903 0.997 С ***** 0.948 0.974 0.812 ***** **** **** ***** ***** ***** ***** ***** D 0.828 1.100 0.680 Е 1.684 0.911 0.636 F 0.942 0.853 0.715 G 1.079 0.891 0.733 0.818 н 0.934

***** Indicates an unread well or value out of range

Page 93 of 99

C:\..\ACCURACYCOCOPITHC032912.DAT Printed on 3/30/2012 at 10:58:49 PM Page 7 of 9 Plate ID: ACCURACYCOCOPITHC032912 : THC ACCURACY : ACCURACYCOCOPITHC032912 DATE : SINGLE : 3/30/2012 W/L MODE TEST FILTER REF. FILTER : 12:31:03 AM : 450 nm OPERATOR Kit Lot Data Plate Lot Data Reagent Lot Data : THC ACCURACY, TCF-0055B, : COCOPITHC, , : Acid Stop, , : EIA Buffer, , : EIA BUTIEF, ; : K-Blue, , : THC CONJUGATE, , : GROUP 2 CUTOFF, , : GROUP 2 NEGATIVE, , : THC CUTOFF, , : THC NEGATIVE, , : Distilled Water, , : Neogen Wash Buffer, , OVER limit Calculation mode : 3.500 : Endpoint THRESHOLD RESULTS Q.C. equations 1.374>1.060 NC>CO = CO = 1.061 = CO = 1.061 + equation S.D. C.V. Sample ID Data Location NEG [THC-50] G7 H7 A8 B8 C8 D8 1.131 1.229 0.065 5.253% 1.285 1.312 1.227 1.228 1.193 [THCCO] E8 F8 G8 H8 A9 1.014 1.072 1.054 0.043 4.058% POS 0.998 1.106 1.089 Page 94 of 99

	COPITHC032912.DAT YCOCOPITHC032912	Printed on 3	7/30/2012 at 10 THC	:58:49 PM			Page 8 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
	B9	1.042					
THC+50]	C9 D9	0.972 0.898	0.933	0.048	5.172%	POS	
	E9	0.914					
	F9	0.869					
	G9	0.945					
	Н9	0.998					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A7	1.403	1.375	0.041	2.957%	NC1	
	В7	1.346					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C7	1.055	1.061	0.009	0.832%	CO1	
	D7	1.067					
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E7	1.399	1.399	••••	****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F7	0.597	0.597	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

Page	95	of	99
rage	90	vi	00

	ATA MATRIY/TARI E · OD
C:\\ACCURACYCOCOPITHC032912.DAT	Printed on 3/30/2012 at 10:58:49 PM
Plate ID: ACCURACYCOCOPITHC032912	THC

THC	

Page 9 of 9

	1	2	3	4	5	6	7	8	9	10	11	12
١,	••••	••••	*****	*****	*****	*****	1.403	1.312	1.089	*****	*****	****
3	*****	••••	*****	*****	*****	••••	1.346	1.227	1.042	*****		••••
;	••••	••••	*****	*****	*****	••••	1.055	1.228	0.972	*****	*****	*****
,	••••	••••	••••	*****	••••	••••	1.067	1.193	0.898	*****	••••	****
:	••••	••••	*****	*****	*****	*****	1.399	1.014	0.914	*****	*****	••••
:	*****	••••	••••	*****	*****	*****	0.597	1.072	0.869	*****	*****	••••
,	••••	••••	••••	*****	*****	*****	1.131	0.998	0.945	*****		*****
4	*****	*****	*****	*****	*****	*****	1.285	1,106	0.998	*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 96 of 99

C:\\ACCURACYCO Plate ID: ACCURAC'		Printed on	3/30/2012 at 11 COTININE	:00:52 PM			Page 1 of
		REVELA	ATION DSX	6.21			
TEST NO. TEST NAME PLATE		ACCURACY CYCOT03291					
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR	t	: 3/29/2012 : 11:34:21 : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: COTININE ACCU : COT., : Acid Stop., : COTININE CONJ. : EIA Buffer,, : K-Blue, : COTININE CUTC : COTININE CUTC : COTININE NEGA GROUP 1 CUTO! : GROUP 1 NEGA* : Distilled Water, : Neogen Wash Bu	UGATE, , OFF, , TIVE, , TIVE, ,	0034,				
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	IOLD RESI	JLTS			
Q.C. equations							
NC>CO				3.257>1.7	53		
+ equation - equation	= CO = 1.753 = CO = 1.753						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[COT-50]	G1 H1 A2 B2 C2 D2	2.014 1.920 1.915 1.928 1.884 1.847	1.918	0.056	2.907%	NEG	
[сотсо]	E2 F2	1.672 1.534	1.581	0.058	3.660%	POS	
	F2	1.534	Page 97 of 99				

ACCURACYCOT032912.DAT ID: ACCURACYCOT032912		Printed on 3	/30/2012 at 11: COTININE	:00:52 PM		Page 2 of	
ple ID Loc	ation	Data	Mean	S.D.	C.V.	Result	
	32	1.558					
	12	1,633					
	A3	1.557					
E	33	1.532					
'+50] C	23	1.556	1,473	0.063	4.269%	POS	
	03	1.423					
E	3	1.394					
F	-3	1.482					
G	33	1.451					
٠	13	1.533					
ple ID Loc	ation	Data	Mean	S.D.	C.V.	Result	
	A1	3.268	3.258	0.014	0.427%	NC1	
	31	3.248	3.230	0.014	0.42776	NOT	
ple ID Loc	ation	Data	Mean	S.D.	C.V.	Result	
	21	1.774	1.753	0.030	1.686%	CO1	
C	01	1.732					
ole ID Loca	ation	Data	Mean	S.D.	C.V.	Result	
1 E	≣1	2.411	2.411	••••		NNC1	
ole ID Loca	ation	Data	Mean	S.D.	C.V.	Result	
1 F	1	1.305	1.305	*****	*****	NCO1	
ole ID Loc	[] Ir	Data 1.305 Indicates manuficates an undicates an endicates an endicate an en	Mean	S.D.	C.V.	Result	

Page 98 of 99

C:\..\ACCURACYCOT032912.DAT Plate ID: ACCURACYCOT032912 Printed on 3/30/2012 at 11:00:52 PM COTININE Page 3 of 3

DATA MATRIX/TABLE : OD

	1	2	3	. 4	5	6	7	8	9	10	11	12
Α	3.268	1.915	1.557	*****	*****	*****	*****	*****	*****	*****	*****	*****
В	3.248	1.928	1.532	*****	*****	*****	••••		••••		*****	
С	1.774	1.884	1.556	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	1.732	1.847	1.423	*****	*****	*****	*****	*****	*****	*****	*****	*****
Е	2.411	1.672	1.394	*****	*****	*****	*****	*****		*****	*****	*****
F	1.305	1.534	1.482	*****	*****	*****	*****	••••	••••	*****	*****	*****
G	2.014	1.558	1.451	*****	*****	*****	*****	•••••		••••	*****	••••
н	1.920	1.633	1.533	*****	*****	*****	*****			*****	*****	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 99 of 99

Appendix H

ELISA Results for Sample Analysis

Kit, Plate, and Reagent Lot Data

Date: 03/30/2012

ASSAY	Amphetamine Ultra	Benzodiazepine Group	Cocaine/BZE	Cotinine	Opiate Group	Oxycodone/ Oxymorphone	THC
Kit #	AUF-0047B	BGF-0061B	BZF-0078B	CTI-0034	MOF-0056B	OXF-0037B	TCF-0055B
Kit Exp. Date	1/30/2013	1/23/2013	2/22/2013	7/10/2012	2/22/2013	1/16/2013	2/9/2013
Plate #	120119	120119	120116FAM	1102211	120213F	111103F	120208
Plate Exp. Date	1/19/2014	1/19/2014	1/16/2014	2/21/2013	2/13/2014	11/3/2013	2/8/2014
C/O & NEG lot #	111212-WB	110811-WB	111110-WB	026	110715-WB	120117-WB	110826-WB
C/O & NEG Exp. Date	1/8/2013	12/28/2012	11/9/2012	-	1/10/2013	1/16/2013	12/26/2012
CONJ lot #	036	050	055	034	044	028	044
CONJ Exp.	1/30/2013	1/23/2013	2/22/2013	-	2/22/2013	1/16/2013	2/9/2013

Acid Stop, EIA Buffer, K-Blue, Distilled Water, and Neogen Wash Buffer were prepared on 03/30/2012 Negative and Cutoff Calibrators were prepared 03/30/2012

Page 4 of 9

C:\\AmpOxyBen033 Plate ID: AmpOxyBe			3/31/2012 at 12: HETAMINE ULT				Page 1 of	
		REVELA	TION DSX	6.21				
TEST NO. TEST NAME PLATE	: : AMPHETA : AmpOxyB	AMINE ULTRA en033012	A					
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/30/2012 : 11:58:49 : admin			
Kit Lot Data Plate Lot Data Reagent Lot Data	: AMPHETAMINE : AmpOxyBen,, : Acid Stop., : Add Stop., : AMPHETAMINE : BENZODIAZEPII : EIA Buffer, : K-Blue,, : OXYCODONE/O : AMPHETAMINE : AMPHETAMINE : GROUP 1 NEGA : Distilled Water,, : Neogen Wash Bu	ULTRA CON. NE GROUP C XYMORPHOI ULTRA CUTO ULTRA NEG/ FF, TIVE,	JUGATE, , CONJUGATE, , NE CONJUGAT DFF, ,	Ε, ,				
OVER limit Calculation mode	: 3.500 : Endpoint							
		THRESH	OLD RESU	LTS				
Q.C. equations								
NC>CO				1.625>1.2	59			
+ equation - equation	= CO = 1.260 = CO = 1.260							
Sample ID	Location	Data	Mean	S.D.	c.v.	Result		
[47753] [47603] [47551] [47726]	G1 H1 A2 B2	1.641 1.925 1.762 1.719	1.641 1.925 1.762 1.719			NEG NEG NEG NEG		
[47691] [47703]	C2 D2	1.721 1.631	1.721 1.631	*****	*****	NEG NEG		
			Page 1 of 21					

C:\.\AmpOxyBen033 Plate ID: AmpOxyBe			3/31/2012 at 12 HETAMINE ULT				Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47714]	E2	1.751	1.751	*****	*****	NEG	
[47613]	F2	1.913	1.913	*****	*****	NEG	
[47670]	G2	1.785	1.785	*****	*****	NEG	
[47716]	H2	1.707	1.707	*****	*****	NEG	
[47729]	A3	1.679	1.679	*****	*****	NEG	
[47692]	B3	1.666	1.666	*****	*****	NEG	
[47619]	C3	1.729	1.729	*****	*****	NEG	
[47702]	D3	1.736	1.736	••••	*****	NEG	
[47690]	E3	1.867	1.867	*****	*****	NEG	
[47682]	F3	1.753	1.753		*****	NEG	
[47725]	G3	1.930	1.930			NEG	
[47571]	H3	1.905	1.905	*****	*****	NEG	
[47728]	A4	1.771	1.771			NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	1.607 1.645	1.626	0.027	1.640%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.292 1.228	1.260	0.045	3.563%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	1.846	1.846	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1.169	1.169	*****	*****	NCO1	
	0	Indicates manu Indicates an ur Indicates an ed Indicates an ur	read well or v quivocal respo	alue out of ra	inge		

C:\..\AmpOxyBen033012.DAT Plate ID: AmpOxyBen033012 Printed on 3/31/2012 at 12:44:35 AM AMPHETAMINE ULTRA Page 3 of 9 # Indicates combined data

DATA MATRIX/TABLE : OD

	1	2	3	4	5	0	/	0	9	10	- 11	12
Α	1.607	1.762	1.679	1.771	*****	••••	••••	••••	••••	••••	••••	*****
В	1.645	1.719	1.666	*****	*****			••••	••••		*****	****
С	1.292	1.721	1.729	*****	*****		*****	••••	*****	*****	*****	
D	1.228	1.631	1.736	*****	*****	*****	*****	*****	*****	*****	*****	****
Ε	1.846	1.751	1.867	*****	*****	••••	*****		*****	*****	*****	****
F	1.169	1.913	1.753	*****	*****	*****	*****	••••	****	*****	*****	*****
G	1.641	1.785	1.930	*****	*****	*****	*****	••••	*****	*****	*****	*****
н	1.925	1.707	1.905	*****	*****	*****	*****	••••	*****	*****	*****	*****

***** Indicates an unread well or value out of range

Plate ID: AmpOxyBe		OXYCOD	ONE/OXYMOR	PHONE			
TEST NO. TEST NAME PLATE	: : OXYCODO : AmpOxyBe	NE-OXYMOI n033012	RPHONE				
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/30/2012 : 11:58:49 : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: OXYCODONE-OX : AmpOxyBen, , : Acid Stop, , : EIA Buffer , : EIA Buffer , : K-Blue, : OXYCODONE/OX : GROUP 1 CUTOF : GROUP 1 NEGAT : OXYCODONE/OX : OXYCODONE/OX : Distilled Water , ; Neogen Wash Buf	(YMORPHON FF,, TVE,, TYMORPHON	IE CONJUGA	TE, ,			
OVER limit Calculation mode	: 3.500 : Endpoint	,					
		THRESH	OLD RESU	JLTS			
Q.C. equations							
NC>CO				2.137>1.38	6		
+ equation - equation	= CO = 1.386 = CO = 1.386						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47753] [47603] [47551] [47726]	G5 H5 A6 B6	2.036 2.152 2.140 2.137	2.036 2.152 2.140 2.137	*****	*****	NEG NEG NEG NEG	
47691] 47703] 47714] 47613]	C6 D6 E6 F6	2.126 2.152 2.140 2.111	2.126 2.152 2.140 2.111			NEG NEG NEG NEG	
[47670]	G6	2.120	2.120	****	*****	NEG	

Printed on 3/31/2012 at 12:44:35 AM

C:\..\AmpOxyBen033012.DAT

[47670] [47716] [47729] 2.120 2.133 2.116 2.120 2.133 2.116 Page 4 of 21

Page 3 of 21

C:\\AmpOxyBen033 Plate ID: AmpOxyBe			/31/2012 at 12 ONE/OXYMOR			Page 5 of 9	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47692]	B7	2.127	2.127	*****	*****	NEG	
[47619]	C7	2.129	2.129	*****	*****	NEG	
[47702]	D7	2.096	2.096	****	*****	NEG	
[47690]	E7	2.124	2.124	*****	*****	NEG	
[47682]	F7	2.082	2.082	*****	*****	NEG	
[47725]	G7	2.094	2.094	*****	*****	NEG	
[47571]	H7	2.079	2.079	*****	*****	NEG	
[47728]	A8	2.214	2.214	*****	•••••	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A5 B5	2.134 2.140	2.137	0.004	0.183%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C5 D5	1.451 1.321	1.386	0.092	6.622%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E5	2.230	2.230	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F5	1.213	1.213	••••	*****	NCO1	
	0 1	ndicates manu ndicates an ur ndicates an ec ndicates an ur ndicates comb	nread well or v quivocal respo nread well or v	alue out of ra	ange		

Page 5 of 21

C:\..\AmpOxyBen033012.DAT Plate ID: AmpOxyBen033012 Printed on 3/31/2012 at 12:44:35 AM OXYCODONE/OXYMORPHONE Page 6 of 9

DATA MATRIX/TABLE: OD

	2.134 2.140	2.140 2.137	2.116	2.214				
	2.140	2.137	2.127	*****	*****	*****		
*****	+							
	1.451	2.126	2.129	*****	*****	*****	*****	*****
****	1.321	2.152	2.096	*****	****	****	*****	*****
	2.230	2.140	2.124		*****	*****	*****	*****
****	1.213	2.111	2.082	••••	*****	*****	*****	*****
*****	2.036	2.120	2.094	••••	*****	*****	*****	*****
*****	2.152	2.133	2.079	••••	*****	*****	••••	*****
		1.321 2.230 1.213 2.036	1.451 2.126 1.321 2.152 1.321 2.152 1.321 2.140 1.321 2.111 1.321 2.111 1.321 2.120	1.431 2.162 2.129 1.321 2.152 2.096 1.321 2.152 2.096 1.321 2.140 2.124 1.213 2.111 2.082 1.2036 2.120 2.094	1.321 2.162 2.096	1.31 2.16 2.129	1.321 2.152 2.096	1.321 2.152 2.096

***** Indicates an unread well or value out of range

Page 6 of 21

C:\\AmpOxyBen033 Plate ID: AmpOxyBer			n 3/31/2012 at 12:4 CODIAZEPINE GR				Page 7 of
TEST NO.	:						
TEST NAME	: BENZODIA	AZEPINE G	ROUP				
PLATE	: AmpOxyBe	en033012					
W/L MODE	: SINGLE		DATE		: 3/30/2012	:	
TEST FILTER	: 450 nm		TIME		: 11:58:49	PM	
REF. FILTER	: *		OPERATOR		: admin		
Kit Lot Data	: BENZODIAZEPIN	IE GROUP,	BGF-0061B,				
Plate Lot Data	: AmpOxyBen, ,						
Reagent Lot Data	: Acid Stop, ,						
	: BENZODIAZEPIN	IE GROUP	CONJUGATE, ,				
	: EIA Buffer, ,						
	: K-Blue, ,		OUTOFF				
	: BENZODIAZEPIN						
	: BENZODIAZEPIN : GROUP 2 CUTOR		NEGATIVE, ,				
	: GROUP 2 NEGAT						
	: Distilled Water, ,						
	: Neogen Wash Bu	ffer, ,					
OVER limit	: 3.500						
Calculation mode	: Endpoint						
		THRES	HOLD RESU	LTS			
Q.C. equations							
NC>CO				1.826>1.07	1		
+ equation	= CO						
	= 1.072						
 equation 	= CO						
	= 1.072						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47753]	G9	1,563	1.563	****	****	NEG	
[47603]	H9	1.831	1.831	****	*****	NEG	
[47551]	A10	1.796	1.796	****	*****	NEG	
[47726]	B10	1.826	1.826	*****	*****	NEG	
[47691]	C10	1.775	1.775	*****		NEG	
[47703]	D10	1.844	1.844	*****	*****	NEG	
[47714]	E10	1.818	1.818	*****	*****	NEG	
[47613]	F10	1.793	1.793			NEG	
[47670]	G10	1.638	1.638	*****	*****	NEG	
[47716]	H10	1.664	1.664	*****		NEG NEG	
[47729]	A11	1.695	1.695				

C:\.\AmpOxyBen033 Plate ID: AmpOxyBe			3/31/2012 at 12 DIAZEPINE G				Page 8 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47692] [47619]	B11 C11	1.732 1.861	1.732 1.861	****	*****	NEG NEG	
[47702] [47690] [47682] [47725]	D11 E11 F11 G11	1.748 1.826 1.743 1.782	1.748 1.826 1.743 1.782			NEG NEG NEG NEG	
[47571] [47728]	H11 A12	1.740 1.855	1.740 1.855		*****	NEG NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A9 B9	1.832 1.821	1.827	0.007	0.402%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C9 D9	1.041 1.102	1.072	0.043	4.056%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E9	1.298	1.298	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F9	0.522	0.522	*****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
* Indicates an unread well or value out of range
Indicates combined data

Page 8 of 21

C:\.\AmpOxyBen033012.DAT Plate ID: AmpOxyBen033012 Printed on 3/31/2012 at 12:44:35 AM BENZODIAZEPINE GROUP Page 9 of 9 DATA MATRIX/TABLE : OD 3 6 7 11 5 9 10 12

**** 1.832 1.796 1.695 1.855 1.821 1.826 1.732 С 1.041 1.775 1.861 D 1.748 1.102 1.844 Ε ***** ***** ***** ***** ***** ***** 1.298 1.818 1.826 **** ***** ***** ***** 0.522 1.793 1.743 G 1.563 1.638 1.782

Н

***** Indicates an unread well or value out of range

1.831 1.664 1.740

Dynex Technologies

Page 9 of 21

C:\.\CocOpiTHC033012.DAT Plate ID: CocOpiTHC033012 Printed on 3/31/2012 at 12:45:05 AM COCAINE/BZE Page 1 of 9 **REVELATION DSX 6.21**

TEST NO. TEST NAME PLATE : COCAINE-BZE : CocOpiTHC033012

W/L MODE TEST FILTER REF. FILTER DATE TIME OPERATOR : 3/31/2012 : 12:16:51 AM : admin : SINGLE

Kit Lot Data Plate Lot Data Reagent Lot Data

: COCAINE-BZE, BZF-0079B, : CocOPITHC, : Acid Stop., : COCAINE/BZE CONJUGATE, : ELA Buffer, : K-Blue, : OPIATE GROUP CONJUGATE, : THC CONJUGATE, : COCAINE/BZE CUCTOFF, : COCAINE/BZE NEGATIVE : COCAINE/BZE CUTOFF,, : COCAINE/BZE NEGATIVE, : GROUP 2 CUTOFF, : GROUP 2 NEGATIVE, : Distilled Water, : Neogen Wash Buffer,

OVER limit : 3.500 Calculation mode : Endpoint

THRESHOLD RESULTS

Q.C. equations

NC>CO 1.398>0.835

= CO = 0.835 = CO = 0.835 + equation - equation

Sample ID [47753] [47603] [47551] [47726] 1.522 1.734 1.713 1.581 G1 H1 1.522 1.734 1.713 1.581 NEG NEG NEG NEG A2 B2 [47691] [47703] C2 1.608 1.453 1.608 NEG NEG D2

Page 10 of 21

C:\\CocOpiTHC0330 Plate ID: CocOpiTHC			3/31/2012 at 12 COCAINE/BZE	:45:05 AM			Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47714]	E2	1.558	1,558	*****	****	NEG	
[47613]	F2	1.679	1.679	*****	****	NEG	
[47670]	G2	1.686	1.686	*****	*****	NEG	
[47716]	H2	1.755	1.755	*****	*****	NEG	
[47729]	A3	1.681	1.681	*****	*****	NEG	
[47692]	B3	1.656	1.656	*****	*****	NEG	
[47619]	C3	1.665	1.665	*****	*****	NEG	
[47702]	D3	1.370	1.370	*****	*****	NEG	
[47690]	E3	1.842	1.842	*****	*****	NEG	
[47682]	F3	1.684	1.684	*****	*****	NEG	
[47725]	G3	1.574	1.574	****	*****	NEG	
[47571]	Н3	1.638	1.638	*****	*****	NEG	
[47728]	A4	1.593	1.593	****	••••	NEG	
Sample ID	Location	Data	Mean	\$.D.	C.V.	Result	
NC1	A1	1.382	1.399	0.024	1.704%	NC1	
NOT	B1	1.416	1.000	0.024	1.70470	1401	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	0.904 0.766	0.835	0.097	11.648%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	1.067	1.067	****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	0.560	0.560	*****	*****	NCO1	

[...] Indicates manual SID entry or manuar pupcuing indicates an unread well or value out of range 0 Indicates an equivocal response Indicates an unread well or value out of range Page 11 of 21

C:\..\CocOpiTHC033012.DAT Plate ID: CocOpiTHC033012 Printed on 3/31/2012 at 12:45:05 AM Page 3 of 9 COCAINE/BZE # Indicates combined data

DATA MATRIX/TABLE: OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1.382	1.713	1.681	1.593	*****	*****	*****	*****	*****	*****		*****
В	1.416	1.581	1.656	*****	*****		*****		*****		••••	*****
С	0.904	1.608	1.665	*****	*****	*****	*****	*****	*****	*****	*****	*****
D	0.766	1.453	1.370	*****	••••			•••••	*****	*****	••••	*****
Ε	1.067	1.558	1.842	*****	••••		*****	*****	*****	*****	••••	*****
F	0.560	1.679	1.684	*****	*****	••••	*****	*****	*****	*****	••••	*****
G	1.522	1.686	1.574	*****	••••	•••••	*****	*****	*****	*****	*****	*****
н	1.734	1.755	1.638	*****	*****	*****	*****	*****	*****	*****	****	*****

***** Indicates an unread well or value out of range

Page 12 of 21

C:\\CocOpiTHC033I Plate ID: CocOpiTHC			3/31/2012 at 12:4 OPIATE GROUP	5:05 AM			Page 4 of
TEST NO. TEST NAME PLATE	: : OPIATE G : CocOpiTH						
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : •		DATE TIME OPERATOR		: 3/31/2012 : 12:16:51 : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: OPIATE GROUP : CocOPITHC, . . Acid Stop, . : EIA Buffer, . K-Blue. : OPIATE GROUP : GROUP 2 CUTO: : GROUP 2 NEGA : OPIATE GROUP : OPIATE GROUP : Distilled Water, . : Neogen Wash Bu	CONJUGATI FF, , TIVE, , CUTOFF, , NEGATIVE,	Ε, ,		_		
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	IOLD RESU	LTS			
Q.C. equations							
NC>CO				1.477>1.0	05		
+ equation	= CO = 1.006						
- equation	= CO = 1.006						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47753]	G5	1.546	1.546	*****	*****	NEG	
[47603]	H5	1.601	1.601	*****	*****	NEG	
	A6 B6	1.608 1.637	1.608 1.637	*****	*****	NEG NEG	
[47551]	-	1.612	1.612	*****	*****	NEG	
[47551] [47726]	CE			*****	*****	NEG	
[47551] [47726] [47691]	C6 D6		1.473		*****		
[47551] [47726] [47691] [47703]	C6 D6 E6	1.473 1.666	1.473 1.666	*****	*****	NEG	
[47551] [47726] [47691] [47703] [47714]	D6	1.473		*****	*****	NEG NEG	
[47551] [47726] [47691] [47703] [47714] [47613]	D6 E6 F6	1.473 1.666 1.686	1.666 1.686			NEG	
[47551]	D6 E6	1.473 1.666	1.666	****	••••		

C:\.\CocOpiTHC0330 Plate ID: CocOpiTHC			1/31/2012 at 12 PIATE GROUP				Page 5 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47692] [47619]	B7 C7	1.517 1.726	1.517 1.726	*****	*****	NEG NEG	
[47702] [47690] [47682] [47725]	D7 E7 F7 G7	1.605 1.777 1.752 1.514	1.605 1.777 1.752 1.514			NEG NEG NEG NEG	
[47571] [47728]	H7 A8	1.630 1.374	1.630 1.374	****	*****	NEG NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A5 B5	1.580 1.376	1.478	0.144	9.758%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C5 D5	1.044 0.967	1.006	0.055	5.472%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E5	1.691	1.691	****	*****	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F5	0.900	0.900	****	*****	NCO1	

[...] Indicates manual SID entry or manual pipetting
***** Indicates an unread well or value out of range
0 Indicates an equivocal response
1 Indicates an unread well or value out of range
Indicates combined data

Page 14 of 21

C:\.\CocOpiTHC033012.DAT Plate ID: CocOpiTHC033012	Printed on 3/31/2012 at 12:45:05 AM OPIATE GROUP	Page 6 of 9

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	8	9	10	11	12
Α	*****	*****	*****	*****	1.580	1.608	1.536	1.374	*****	*****	*****	*****
В	*****	*****	*****		1.376	1.637	1.517	*****	*****	*****	*****	*****
С	*****	*****	*****		1.044	1.612	1.726	*****	*****	*****	*****	*****
D	*****		*****		0.967	1.473	1.605	*****	*****	*****	*****	****
Е	*****	*****	*****	••••	1.691	1.666	1.777	*****	••••			••••
F	*****	*****	*****	*****	0.900	1.686	1.752	*****	••••	*****	••••	*****
G	*****				1.546	1.631	1.514	••••	••••		••••	••••
н	*****	*****	*****	••••	1.601	1.579	1.630	*****	••••	*****	*****	

***** Indicates an unread well or value out of range

C:\.\CocOpiTHC033 Plate ID: CocOpiTH0		Prin	ted on 3/31/2012 at 12:45:05 A THC	M	Page 7 of 9
TEST NO. TEST NAME PLATE	: : THC : CocOg	THC0330	12		
W/L MODE TEST FILTER REF. FILTER	: SINGL : 450 nr		DATE TIME OPERATOR	: 3/31/2012 : 12:16:51 AM : admin	
Kit Lot Data Plate Lot Data Reagent Lot Data	: THC, TCF-00 : CocOPiTHC, : Acid Stop, ,	55B,			

eagent Lot Data : Acid Stop,
: EIA Buffer,
: FK-Blue,
: THC CONJUGATE,
: GROUP 2 CUTOFF,
: GROUP 2 NEGATIVE,
: THC CUTOFF,
: THC CUTOFF,
: THC CUTOFF,
: Distilled Water,
: Neogen Wash Buffer,

OVER limit : 3.500
Calculation mode : Endpoint

THRESHOLD RESULTS

1.526>1.331

Q.C. equations

NC>CO

+ equation = CO = 1.332 - equation = CO = 1.332

Sample ID	Location	Data	Mean	S.D.	C.V.	Result
[47753]	G9	1.618	1.618	*****	****	NEG
[47603]	H9	1.639	1.639	*****	*****	NEG
[47551]	A10	1.601	1.601	*****	*****	NEG
[47726]	B10	1.551	1.551	*****	*****	NEG
[47691]	C10	1.588	1.588	*****	*****	NEG
[47703]	D10	1.584	1.584	*****	*****	NEG
[47714]	E10	1.539	1.539	*****	*****	NEG
[47613]	F10	1.625	1.625	*****	*****	NEG
[47670]	G10	1.548	1.548	*****	*****	NEG
[47716]	H10	1.576	1.576	*****	*****	NEG
[47729]	A11	1.489	1.489 Page 16 of 21	*****	*****	NEG

Page 15 of 21

C:\\CocOpiTHC033 Plate ID: CocOpiTHC		Printed on 3	/31/2012 at 12 THC	:45:05 AM			Page 8 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47692] [47619]	B11 C11	1.556 1.575	1.556 1.575	*****	*****	NEG NEG	
[47702]	D11 E11	1.557 1.649	1.557 1.649	*****	*****	NEG NEG	
[47690] [47682]	E11	1.569	1.569	*****	*****	NEG	
[47725]	G11	1.588	1.588	*****	*****	NEG	
[47571] [47728]	H11 A12	1.536 1.436	1.536 1.436	*****	*****	NEG NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A9 B9	1.508 1.546	1.527	0.027	1.764%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C9 D9	1.322 1.341	1.332	0.014	1.042%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E9	1.510	1.510	••••	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F9	0.676	0.676	•••••	••••	NCO1	
	0	Indicates manu Indicates an ur Indicates an ed Indicates an ur Indicates comb	nread well or v quivocal respo nread well or v	alue out of ra	ange		

Page 17 of 21

C:\.\CocOpiTHC033012.DAT Plate ID: CocOpiTHC033012 Printed on 3/31/2012 at 12:45:05 AM THC Page 9 of 9

DATA MATRIX/TABLE : OD

	1	2	3	4	5	6	7	. 8	9	10	11	12
Α	*****	••••	*****	*****	*****	*****	*****	*****	1.508	1.601	1.489	1.436
В	*****	*****	*****			••••			1.546	1.551	1.556	******
С	*****	*****	*****		*****	*****			1.322	1.588	1.575	*****
D	*****	*****	*****	*****	*****	*****		*****	1.341	1.584	1.557	*****
Е	****	*****	*****	*****	*****	*****	*****	*****	1.510	1.539	1.649	*****
F	****	*****	*****	*****	*****	*****	*****	*****	0.676	1.625	1.569	*****
G	*****	*****	*****	*****	*****	*****	*****	*****	1.618	1.548	1.588	*****
н	****	*****	*****	*****	*****	*****	*****	*****	1.639	1.576	1.536	*****

***** Indicates an unread well or value out of range

Dynex Technologies

Page 18 of 21

C:\\Cot033012.DAT Plate ID: Cot033012		Printed on	3/30/2012 at 11:09 COTININE	9:40 PM			Page 1 o
		REVELA	TION DSX 6	.21			
TEST NO. TEST NAME PLATE	: : COTININE : Cot033012						
W/L MODE TEST FILTER REF. FILTER	: SINGLE : 450 nm : *		DATE TIME OPERATOR		: 3/30/2012 : 11:08:29 F : admin		
Kit Lot Data Plate Lot Data Reagent Lot Data	: COTININE, CTI-00: Cot., Acid Stop., COTININE CONJU : EIA Buffer, : K-Blue, : COTININE CUTOF : COTININE NEGAT : GROUP 1 CUTOFF : GROUP 1 NEGATI : Distilled Water, : Neogen Wash Buffi	GATE, , F, , IVE, , E, , VE, ,					
OVER limit Calculation mode	: 3.500 : Endpoint						
		THRESH	IOLD RESUL	_TS			
Q.C. equations							
NC>CO				3.160>1.57	5		
+ equation - equation	= CO = 1.576 = CO = 1.576						
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47753] [47603] [47551] [47726]	G1 H1 A2 B2	3.092 3.220 3.226 3.113	3.092 3.220 3.226 3.113	*****	*****	NEG NEG NEG NEG	
[47691] [47703] [47714] [47613]	C2 D2 E2 F2	2.900 3.183 3.192 3.139	2.900 3.183 3.192 3.139	*****		NEG NEG NEG NEG	
			Page 19 of 21				

C:\\Cot033012.DAT Plate ID: Cot033012		Printed on 3	/30/2012 at 11: COTININE	09:40 PM			Page 2 of
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
[47670]	G2	3.195	3.195	****	*****	NEG	
[47716]	H2	3.300	3.300	*****	*****	NEG	
[47729]	A3	3.179	3.179	*****	*****	NEG	
[47692]	B3	3.131	3.131	*****	*****	NEG	
[47619]	C3	3.121	3.121	*****	*****	NEG	
[47702]	D3	3.043	3.043	****	****	NEG	
[47690]	E3	3.103	3.103	*****	*****	NEG	
[47682]	F3	3.022	3.022	*****	*****	NEG	
[47725]	G3	3.095	3.095	*****	*****	NEG	
[47571]	нз	3.089	3.089	*****	*****	NEG	
[47728]	A4	3.246	3.246	••••	*****	NEG	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NC1	A1 B1	3.194 3.127	3.161	0.048	1.517%	NC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
CO1	C1 D1	1.667 1.484	1.576	0.130	8.221%	CO1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NNC1	E1	2.199	2.199	*****	••••	NNC1	
Sample ID	Location	Data	Mean	S.D.	C.V.	Result	
NCO1	F1	1,075	1.075	*****	*****	NCO1	

- [...] Indicates manual SID entry or manual pipetting
 ***** Indicates an unread well or value out of range
 0 Indicates an equivocal response
 * Indicates an unread well or value out of range
 # Indicates combined data

Page 20 of 21

	Cot033012 ID: Cot03			Printed on 3/30/2012 at 11:09:40 PM COTININE								Page 3 of	
					DATA	MATR	IX/TAE	BLE : 0	OD				
	1	2	3	4	5	6	7	8	9	10	11	12	
Α	3.194	3.226	3.179	3.246	*****	*****	*****	*****	*****	*****	*****	*****	
В	3.127	3.113	3.131	••••	*****	*****	*****	*****	*****	*****	*****	*****	
С	1.667	2.900	3.121		*****	•••••	*****	*****	*****	*****	*****	*****	
D	1.484	3.183	3.043	*****	*****	•••••	••••	*****	*****	*****	*****	*****	
Ε	2.199	3.192	3.103	••••	••••	••••	••••	*****	*****	*****	*****	*****	
F	1.075	3.139	3.022	••••	•••••	••••	••••	*****	*****	*****	*****	*****	
G	3.092	3.195	3.095	••••	••••	••••	••••	*****	*****	*****	*****	*****	
Н	3.220	3.300	3.089		••••	••••	••••	*****	*****	*****	*****	*****	
				••••					out of ra	nge			
					Dy	nex Te	chnol	ogies					
						Pa	ge 21 of 2	21					