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Abstract 

 Jobs in various work fields (e.g., flying airplanes; Helmreich, 2000) require a high 

ability to successfully handle more than one task at a time, or to multitask.  Researchers 

usually explain multitasking by having priorities in which individuals either attend to one 

task at a time, or one task receives more time processing than the other task.  The current 

study approaches multitasking from a dynamical systems perspective.  Fourteen general 

psychology students participated in the study by pressing a pedal attempting to maintain a 

steady beat and text messaging.  Researchers recorded behavior over time (2 min. for 

each task and multitasking).  The inputs to the data analysis were the X-Y coordinates of 

thumb movement (in pixels) over time and the recorded beat’s deviation (in sec) from the 

metronome’s beat over time.  The patterns of behavior were recorded.  Nonlinear 

analyses (Iterated Function Systems and a MANOVA on Hurst exponents for 

monofractality, and Wavelet Modulus Transform Maxima for multifractality) tested for 

fractal patterns which characterized both tasks in both conditions (single task or 

multitasking).  Thumb movement’s patterns during texting were not significantly 

different for single task and multitasking conditions, both displaying short–term 

correlations (brown noise).  Patterns in tapping deviations were significantly different 

between the two conditions.  Structure of deviations while only tapping was characterized 

by strong long–term correlations (pink noise); the structure while multitasking was also 

positively long–term correlated, but less strong.  Results showed that texting and tapping 

behavior, as single tasks or during multitasking, are fractal. 
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Texting and Tapping: A Dynamical Approach to Multitasking 

 The ability to accomplish two or more tasks in the same general time period, or 

multitasking (Delbridge, 2001), seems effortless in certain situations (e.g., walking and 

talking) and difficult in other situations (e.g., talking and listening at the same time).  

Understanding and explaining performance might be straightforward when attending to a 

single task.  Multitasking requires mental processes and skills not easily attained, which 

complicate the attempts to explain performance.  

   One proposed explanation was that when multitasking, individuals attend to only 

one task at a time (Broadbent, 1958).  When texting while driving, for example, they 

either pay attention to texting or to driving.  Another proposed explanation was that 

individuals do attend to driving and texting simultaneously.  However, a decrease in both 

tasks’ performance occurs (Kahneman, 1973).  A different explanation states that driving 

and texting form autonomous streams of thoughts which are executed in a parallel and 

serial manner depending on the cognitive resources available (Salvucci & Taatgen, 

2008).  But what if texting and driving behavior are part of a functional system?  Texting 

influences driving while driving influences texting.  Adding more tasks or increasing the 

complexity of the tasks would add to the complexity of the system, thus to the difficulty 

to maintain quality of performance.  The challenge of any viable explanation is that it 

needs to account not only for the humans’ capacity to multitask, but also for the severe 

limitations in performance (Salvucci & Taatgen, 2008).     

Traditional Theories 

 Drivers attend to other vehicles, pedestrians, and traffic signs while engaging in 

steering and managing the foot pedals.  Nurses administer medicine to patients while 

following and giving medical instructions.  Pilots manage a plane’s panel while listening 
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and giving instructions.  The emphasis on the ability to multitask in various fields and 

jobs is compelling.  Failure to multitask comes with great risks, however.  The risk of an 

accident when texting and driving is four times higher than when just driving (Drews, 

Yazdani, Godfrey, Cooper, & Strayer, 2010).  Seventy–four percent of the procedural 

errors made by nurses administering medicine to patients (Kalish & Aebersold, 2010) and 

23% of errors in airplane piloting (Helmreich, 2000) involve failed attempts to multitask.  

Researchers attempted to explain successful and failed multitasking behavior (Broadbent, 

1958; Kahneman, 1973).  Each developed theory was built on and improved the previous 

theoretical and empirical frameworks. 

Structural Bottleneck Models    

 Initial beliefs about the multitasking phenomenon stated that mental processes 

engaged in one task cannot engage in a second task.  Processing stages (e.g., stimulus 

input, execution) constitute a single global channel (hence the global single–channel 

hypothesis) which cannot attend simultaneously to two coexisting stimuli.  Individuals do 

not attend to both tasks, but rather switch rapidly between tasks (Craik, 1948; Telford, 

1931).  Adopting the global single–channel hypothesis’ core idea that individuals cannot 

multitask, researchers intended to localize the stage where multitasking performance is 

constrained.  Thus, a series of bottleneck models developed.  

 Perceptual bottleneck model (Broadbent, 1958) states that the constraints (the 

bottleneck) occur at the stimulus identification and meaning determination stage.  The 

sensorial representation of the raw stimulus, its conversion to a symbolic stimulus code 

and meaning attribution for the converted code might impose constraints when dealing 

with two concurrent tasks.  Therefore, individuals are forced to attend to only one task at 

a time (Meyer & Kieras, 1997).  The most influential perceptual bottleneck models 
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belong to Broadbent (1958), Treisman (1960), and Deutsch and Deutsch (1963).  

Treisman’s (1960) model is an amendment to Broadbent’s filter theory (1958), both 

recognizing the constraints occurring at stimulus identification and meaning 

determination stage.  Treisman’s (1960) model allows for all stimuli to reach conscious 

perception, however.  Treisman’s attenuation filter does allow unattended messages 

through the channel in an attenuated form, as opposed to Broadbent’s (1958) selective 

(all or nothing) filter, which does not allow unattended messages through the channel.  

Unattended messages will be semantically processed if they meet specific characteristics.  

Deutsch and Deutsch (1963) extend Broadbent (1958) and Treisman’s (1960) models 

even further by stating that there is no separate low–level filter.  All stimuli will reach the 

same perceptual and discriminatory mechanisms and physical and contextual 

characteristics of the stimuli will determine their selection.  Stimuli will be attended or 

not depending on the importance of the discrimination mechanisms.  Nevertheless, 

semantic information passed the stimulus identification and meaning determination stage 

in presumed unattended auditory messages (Treisman, 1964).  Thus, the option of the 

bottleneck residing in a different stage within the information processing arose.           

 Response–selection bottleneck model (Welford, 1967) starts with several basic 

assumptions: (a) the possibility of concurrent identification of multiple stimuli, (b) the 

possibility of concurrent storage of multiple stimuli in working memory (a neural system 

that allows the storage and processing of information required in performing a task; 

Baddeley & Hitch, 1974), and (c) in relation to response selection, an individual can 

attend to only one task at a time.  When faced with concurrent tasks, the corresponding 

response–selection stages cannot overlap, not even temporarily.  The mechanism still 

implies a single–channel mechanism.  However, individuals can select a response for the 
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secondary task only after selecting a response for and accomplishing the primary task 

(Hyman, 1953; Sternberg, 1969; Welford, 1967).  Participants’ response times (RTs) 

slowed down as the initial task’s stimulus–response (S−R) compatibility (Smith, 1969) 

and numerosity (Broadbent & Gregory, 1967) increased, supporting the model’s 

predictions.  When varying both task’s S−R numerosity and the stimulus onset 

asynchrony (SOA) or the distance between two stimuli presentation, however, the 

obtained interactions did not support the theory.  Specifically, at short SOAs, RTs were 

not influenced by numerosity; at longer SOAs, RTs were shorter for lower S−R 

numerosity.  These results suggest the possibility of a temporary overlap between the 

response selection processes in simultaneous tasks, which is contrary to the assumptions 

of the response–selection bottleneck model.  Thus, researchers approached the next 

possible problematic stage, the task execution.     

 Movement–production bottleneck model (Keele, 1973) agrees with a simultaneous 

identification of multiple stimuli, concurrent storage of multiple stimuli in working 

memory, and response selection.  When preparing and initiating individual movements 

successively, however, an organism can accommodate only one task at a time.  The 

movement production stage represents the bottleneck; that is, a lower priority task must 

wait temporarily until the higher priority task is attended to and accomplished (Pashler, 

1984).  A major problem posed by the movement–production bottleneck model is the 

observed indirect effect that the second task factors on performance on the first task.  

Such findings cannot be accounted for by the model without affecting the main 

assumptions of the theory.  Without a unitary framework and with no success in 

discovering where the bottleneck resides, the search continued.  The idea of a central 

processor with limited capacity allocated to competing tasks arose; the result was the  
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development of a series of resource theories (Meyer & Kieras, 1997).      

The Unitary–Resource Theory   

 The unitary–resource theory does not hypothesize a bottleneck mechanism, but 

rather that a mental commodity required in task performance mediates multitasking.  This 

commodity is quantifiable, divisible, and scarce (Wickens, 1991).  Moreover, it can be 

allocated in a controllable and selective manner (Kahneman, 1973).   

 The unitary–resource theory is centered on four basic assumptions referring to the 

nature of processing capacity (Kahneman, 1973).  First, attention has its limitations 

which vary from moment to moment.  Indices of physiological arousal are correlated with 

the momentary limit.  Second, the amount of attention allocated to a task is contingent on 

the demands of the task.  Third, attention is divisible.  At highly difficult tasks, attention 

becomes more unitary, however.  Fourth, attention is selective and controllable, reflecting 

permanent dispositions and temporary intentions.  Other peripheral and central structures, 

such as sensory receptors, memory stores, and motor effectors are also considered part of 

the multitasking process.  Multitasking performance will decrease when concurrent tasks 

compete for access to the same structure because individuals face simultaneous demands 

on an overloaded resource of central processing capacity or mental effort.  

 Inconsistencies reached the unitary–resource theory also.  Participants’ 

performance in the second task (digit cancellation task) was not affected by difficulty 

manipulations of the primary task (visual–manual choice RT task; North, 1977).  Issues 

such as performance insensitivity to the primary task’s difficulty manipulations showed 

that structural interference rather than central capacity interference may constitute the 

primary source of performance decrements in multitasking (Meyer & Kieras, 1997).  A 

relational approach to central and peripheral processing structures replaced the 
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presumably counterproductive, limited central–processing capacity approach to 

multitasking.  

The Multiple–Resource Theory 

 Multiple–resource theory involves distinct processing resources sets combined to 

accomplish an individual task (Navon & Gopher, 1979).  Each processing resources set 

has its individual source capacity.  When two tasks require access to the same resources, 

the tasks’ demands determine the allocated resources’ availability and flexibility.  

Individuals can attend to two tasks simultaneously; the performance in both tasks will be 

affected, however, due to the need to share resources.  In contrast, if the tasks require two 

or more different sets of resources, they can be performed simultaneously without 

interference because the need to share resources is not present.   

 The concept of multiple resources seems to lack satisfactory principle constraints 

however (Neumann, 1987).  It involves the risk of constantly revising the theory and 

constantly hypothesizing new capacity sources sets whenever problematic data is 

encountered.  Such risk affects the characteristics essential to any valid theory, such as 

parsimony and predictive power (Meyer & Kieras, 1997).  In addition, the need to 

explain in more detail the executive mechanisms involved in multitasking without relying 

on the homunculus of cognitive control became more stringent, leading to the 

development of the threaded cognition theory (Salvucci & Taatgen, 2008).      

Threaded Cognition Theory 

 Threaded cognition theory conceptualizes single task or multitasking behavior as 

a set of processing streams of thought or threads, each thread corresponding to a current 

active task (Salvucci & Taatgen, 2008).  These threads require access to specific sets of 

resources depending on the tasks’ demands.  An organism acquires necessary 
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environmental information from the perceptual resources when facing one task.  The 

information is processed by accessing individuals’ cognitive resources, which in turn will 

guide further motor actions by accessing motor resources.  When multitasking, the 

behavior will consist in a series of threads, with each series accessing its specific and 

necessary set of resources.  There will be no interference from one task on the other 

task’s performance whenever the threads access separate sets of resources and function in 

a parallel manner.  Thus, individuals will multitask.  The tasks will interfere with each 

other whenever the threads meet and access the same set of resources.  In such cases, 

prioritization will occur.  Thus, individuals do multitask but sporadically when attending 

simultaneously to two tasks at a time.  In conclusion, when individuals multitask, 

information is processed in serial and parallel manner depending on the processing 

mechanisms’ and resource availability.    

 Threaded cognition theory is an attempt to compromise the previous theories 

(bottlenecks and resource theories) by emphasizing an information processing 

mechanism that performs in both serial and parallel manner.  It is also more integrative, 

taking into account not only cognitive, but also motor and perceptual behavioral aspects.  

Multitasking behavior is still a result of independent processing threads which feed into 

sets of specialized available resources coordinated by cognition, however.  Behavior 

displayed patterns and interdependency between its components along a time continuum 

in different situations (e.g., human heart beat, Ivanov et al., 1999; human gait, Scafetta, 

Griffin, & West, 2008), suggesting a different way to approach behavior.  Dynamical 

systems theory provides such an alternate approach to multitasking.      

Dynamical Systems Theory 

  Lashley was one of the first psychologists to emphasize the presence of complex  
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action sequences in individuals’ behavior (Lashley, 1951).  Ever since, the presence of 

behavioral patterns have been observed in a diverse areas, such as human gait (Scafetta, 

Griffin, & West, 2008), conversational head movement (Ashenfelter, Boker, Waddell, & 

Vitanov, 2009), or human heart beat (Ivanov et al., 1999).  Dynamical systems theory 

approaches and analyzes behavior as a complex system whose state evolves with time.  

Such systems are highly sensitive to initial conditions, are self–similar, and nonlinear 

(Paulson, 2005).   

 Lorenz described the butterfly effect and emphasized how small changes could 

have significant consequences in time (Lorenz, 2000).  A behavior’s sensitive 

dependence on initial conditions translates into the idea that small variations within a 

system do not just pass inconsequently, but have long term effects.  Variations change the 

course of the system.  Although the term refers to initial conditions, one need not think in 

terms of beginnings and endings of behavior, just as one need not assume that a 

butterfly’s wings flapping in Brazil is the beginning of a devastating tornado which ends 

in Texas (Paulson, 2005).  Many factors influenced the outcome at each point in time 

between the flapping of wings and the tornado and a constant interaction between those 

changing factors generated the outcome later.  Behavior, just like weather, is 

continuously changing.  Each point in time is possibly considered the beginning of the 

following behavior or the end of the preceding behavior.  Thus, the observed result is a 

continuous behavioral process that evolves in time under the constant influence of 

multiple variables (collective variable).   

 Given that behavior is a result of interactions between variables, it follows that the 

matter of interest is relations among those variables.  From relations emerge more or less 

obvious patterns, a combination of components generating a consistent, iterative, and 
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characteristic design (Kelso, 1995).  Patterns can be determined and analyzed at different 

time scales.  The greater the magnification, the greater the details observed.  If a structure 

or a behavior displays patterns at all scales, it is characterized by self–similarity (i.e., 

fractal structure).   

 As observed, the shape of Britain’s coast will show similar patterns whether one 

views it from space, a plane, or foot (Mandelbrot, 1967).  Different measurement tools 

(e.g., a ruler, a yardstick) will generate different numbers but similar patterns.  If at any 

magnification the structure displays the same pattern (scale–invariant), the structure is 

monofractal (Figure 1; Thelen & Smith, 1994).  Snowflakes, trees, and broccoli are a few 

examples of monofractal structures.  Most natural structures are not as simple, however.  

Whenever a structure displays different patterns at different scaling, the structure is 

multifractal (Figure 2).  The wind and the earth’s topography (Lovejoy & Schertzer, 

2007) are examples of multifractal structures.  Thus, simple structures display one scale–

invariant pattern (monofractal) whereas more complex structures display an infinite 

hierarchy of fractal sets at different scales (multifractal).   

Figure 1. Formation of von Koch snowflake (monofractal). 

 

Figure 2. Mendelbrot like structure (multifractal). 

 



MULTITASKING  11 

 

 Dynamical systems theory emphasizes the interactions between variables that 

result in a specific behavior.  Feedback is an important concept whenever interactions 

occur, each variable being influenced by and influencing all other variables.  For 

example, a tornado is not generated solely by wind, temperature, or humidity.  It is a 

result of complex interactions between them.  Each variable influences and is influenced 

by the other and assuming that either one alone caused the outcome is at least 

questionable.  Cause–effect relations are revered in psychological research.  Dynamical 

systems theory eschews the directionality issue by stating that the feedback loop 

generated by the interaction results in a circular causality, a typical characteristic of self–

organizing structures (Kelso, 1995).  Thus, every part of the whole is important and 

pinpointing only one factor as causing the outcome is erroneous and misleading.   

 A logical question follows.  If a behavior consists of iterative, self–similar 

patterns, why do researchers not see the same behavior all the time?  How does the 

change occur?  The factors within the collective variable that generates the behavior are 

the parameters within which the system functions.  Any system seeks equilibrium, a way 

to maintain its stability and its functionality.  The system may vary within its parameters, 

as the factors within the collective variable change in time; it maintains its equilibrium as 

long as possible, however.  The system is attracted by a specific behavior, an attractor 

being the behavior in which the system will engage given a specific set of parameters.  

The strength of the attractor is related to the system’s stability.  Enough change in any of 

its main interacting factors (control parameters) will lead to the system’s instability or 

disequilibrium.  The result is a change in the behavior now centered around a different 

attractor characterized by the new set of parameters.   

 A drastic change in behavior does not necessarily mean a drastic change in the  



MULTITASKING  12 

 

control parameters (Thelen & Smith, 1994).  A stable system has its critical point beyond 

which the system loses its stability and its attractor loses strength.  When reaching the 

critical point, a small change in the control parameter is sufficient to destabilize the 

system.  For example, an infant’s development of walking ability does not mean, as 

suggested before, a sudden change in the brain’s maturation (Thelen & Smith, 1994).  

Walking develops progressively.  When walking behavior reaches its critical point (i.e., 

enough maturation occurred), behavior changes and infants walk.  Thus, a sufficient 

change in one of the system’s control parameters will result in a different behavior.      

 Linear processes are those where increasing the magnitude of one variable leads 

to a same amount of increase in the other variable (Lorenz, 1993).  The relationship 

between the variables fits a straight line (hence the linearity term).  Psychologists’ 

standard statistical tools use only data that follows such a line (explained variance) and 

eliminates anything that falls outside the line (unexplained variance).  Removed, 

unexplained variance can actually be characterized by a temporal and spatial structure 

that is overlooked by linear model analyses (Boker & Wenger, 2007).  Moreover, linear 

analyses require random variability and independence of observations, requirements hard 

to meet when the data belongs to the same participant.  Consequently, dynamical systems 

theory assumes nonlinearity of the data and provides a less restrictive statistical 

framework along with a more realistic conceptual one.   

 In conclusion, dynamical systems theory emphasizes the functional interrelation 

between variables by avoiding the logical fallacy of causality.  Structures and behavior 

consist in self–similar, iterative, and dependent on initial conditions patterns.  The 

variability within a system is just as important as its linearity.  With such a matter of 

state, the methodological (measurements over time) and statistical tools (nonlinear 
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analyses such as time series) also align with the theory’s arguments and goals by 

becoming part of psychologists’ tools.  

Reconsidering the Study of Multitasking 

 The differences between traditional (e.g., bottlenecks, resource theories) and non–

traditional (dynamical systems theory) explanations of multitasking seem to concern a 

conceptual difference that is accompanied by a methodological one.  Conceptually, 

traditional theories consider multitasking a process initiated at cognitive level in the 

brain.  First, bottlenecks were present at various information processing stages (e.g., 

stimulus identification, decision making) and did not allow individuals to multitask 

(Broadbent, 1958).  Individuals were switching between tasks due to the serial 

functioning of brain processes.   

 Then, access to specific sets of resources and a parallel functioning of brain 

processes allowed individuals to multitask (Kahneman, 1973).  Individuals did multitask 

but performance was affected whenever the concurrent tasks tap into the same resources.  

Threaded cognition theory (Salvucci & Taatgen, 2008) also recognizes the ability to 

multitask; it allows for serial and parallel processing of information depending on the 

processing mechanisms’ availability and resources accessed.  

 The connecting concept of the traditional theories is the brain viewed as a 

collection of more or less specialized devices, each playing their part in generating 

behavior (Van Orden, Holden, & Turvey, 2003).  Multitasking behavior starts in humans’ 

brains and brain processes cause the observed behavior whether stages of information 

processing as part of a unitary processing channel or specialized sets of resources that 

interact or not are involved in the behavior.  Any motor activity involves control and 

coordination ordered spatially and temporally and the brain is responsible for imposing 
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such order (Kelso, 1995).  The brain seems to rule over the other components of the 

system and to be the causal agent of multitasking behavior. 

 If the brain behaves like a keyboard for all behavior, then stimulating one point in 

the brain should result in the same behavior all the time.  Stimulating a gorilla’s cortex 

with the same stimulus in the same point multiple times resulted in opposite movements 

(i.e., flexion and extension; Leyton & Sherrington, 1917).  When a drop of warm water 

touched a man’s face he felt it as the water touched his recently amputated hand 

(Ramachandran, Rogers-Ramachandran, & Stewart, 1992).  Such results contradict the 

keyboard analogy, showing an intrinsic chaotic processing of the brain.  In addition, if the 

brain is the main controller who coordinates all behavior, the problematic issue of self–

actional explanation arises: who controls and coordinates the brain?   

 Dynamical systems theory approaches the issue of self–actional explanation by 

considering systems as self–organizing (Kelso, 1995).  The brain is not an entity on its 

own with its own intentions to generate or control behavior.  The brain does not exist 

independently and outside context.  Synergy occurs within the brain and between the 

brain, environment, emotions, and any other variable contributing to a behavior (Kelso, 

1995).  Synergies translate into patterns of behavior at various scales based on the 

feedback loop between variables.  Such patterns imply organization.  The organization is 

dependent on the context, thus on all variables that create the context.  Sensitivity to the 

context and pattern formation are signs of self–organizing systems that enable flexibility 

and adaptability of functional behavior.  Multitasking behavior is, therefore, a product of 

a collective variable (e.g., cognition, motor, environment, emotions), functioning as a 

self–organizing dynamical system.      

 The methodological difference between traditional and nontraditional  
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explanations of multitasking behavior is related to the conceptual one and refers to a 

methodology that is appropriate to attain the conceptual goal.  Linear analyses (e.g., 

ANOVAs, regressions) rely heavily on linearity of the data and assume that data varies 

along a straight line (Howell, 2007).  However, if the linearity assumption is not met, 

data is transformed to fit the line.  Measurement values larger than a specified cut–off are 

eliminated and the data is forced to fit the linear model by eliminating some of the 

variability within the data.  Traditional analyses also require error terms to be 

independent of one another.  Such a requirement is questionable when the recorded data 

belongs to the same participant (Gilden, 2001).  In contrast, dynamical systems theory 

emphasizes the need to analyze variability within the data.  The variability is typically 

nonlinear and displays fractal patterns (Boker & Wenger, 2007).  Patterns develop over 

time.  Therefore, analyzed behavior needs to be given enough time for the patterns to 

emerge.  The need to analyze variability patterns over time led dynamical systems theory 

researchers to use as methodological tools recordings of behavior along a time continuum 

in contrast with researchers using traditional analyses that rely on recorded behavior at 

specific and isolated moments in time.  Thus, snapshot recordings can provide limited 

information about the behavior at certain moments in time and no information about the 

process occurring between two moments, while analyzing behavior over time provide 

researchers with the missing between moments information.     

 Nonlinear behavior recorded in time can be analyzed using time series analysis as 

a statistical tool (Tabachnick & Fidel, 2004).  Time series analysis does not rely on 

averages or other measures of central tendency (Carello & Moreno, 2005).  It is possible, 

for example, to have two samples with similar means but different distributions and 

variability within the data.  It is also possible to have two samples with significantly 
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different means but a very similar distribution of the variability within the data.  

Conventional analysis would consider the first example as samples belonging to the same 

population and the second example as belonging to different populations.  But how 

accurate are traditional statistics?  If learning how to tie a shoe is an infants’ goal, infants 

could indeed achieve that goal in an average amount of time.  The way to reach the goal, 

however, will be different and unique for each infant.  Conventional analyses do not use 

such uniqueness.  Nonlinear dynamical systems analysis (e.g., Fourier, Wavelet 

Transform) studies the unexplained variability.  It studies the dreaded noise which is 

eliminated from conventional analyses.  It does not look for differences between means, 

but rather how each series’ mean varies and how it relates with the time series at different 

scales.  Thus, nonlinear analyses use more of the dependent variable measurements and 

offer a more realistic perspective on recorded data than linear analyses.   

The Current Study 

 The current study approached multitasking through a dynamical systems theory 

perspective.  The tasks involved motor activity.  Participants texted, tapped in an attempt 

to maintain a steady beat, and simultaneously texted and tapped.  Researchers recorded 

behavior over time (2 min. allocated for each task performed individually and for 

multitasking).  Researchers hypothesize that multitasking behavior is a complex 

dynamical system with subsystems that interact in different ways at different levels.  The 

interaction results into a self–organized pattern that reflects a nonlinear process.  

Nonlinear analyses (Hurst exponent and Iterated Function Systems for monofractality, as 

well as Wavelet Modulus Transform Maxima for multifractality) tested for fractal 

patterns which will characterize both tasks in both conditions (single task or 

multitasking). 
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 The Hurst Exponent   

 The global Hurst exponent (H) is a symbol of monofractality that measures the 

strength of the long range correlations within the time series.  That is, H shows the 

dependence between sequential data points in time.  H describes also a system’s 

complexity, different H values being associated with more or less complex systems 

(Munoz-Diosdado, 2005).  H is obtained by estimating the dependence of the rescaled 

range (a measure of the time series’ variability and its fluctuations with the time scale) on 

the time span of the series being considered.  A time series is divided into shorter time 

series, the average rescaled range being calculated for each resulting short time series 

(Jens, 1988).  An H of or close to 0.5 would be interpreted as no relationship between 

data and an H of or close to 1 would be interpreted as a highly complex relationship 

between data (Scafetta et al., 2008).        

Iterated Functions System (IFS) Clumpiness Test 

 The IFS clumpiness test is an alternate way to determine the presence of temporal 

correlations within the time series (Aks, 2005).  IFS provides a visual representation of 

present or absent fractals by generating clumped patterns of colored noise and filled 

spaces based on correlations within the data.  Different degrees of correlation generate 

different noise colors (1/f noise; Figure 3).  Noise follows a 1/f scaling relation (Gilden, 

1997) and implies an inverse relationship between temporal scales and frequency.  The 

higher the scale, the lower the frequency of a signal and vice versa.  White noise (1/f0) is 

represented by a pattern characterized by homogenously filled in spaces and it describes 

the absence of a correlation within the time series (also known as random walk).  Brown 

noise (1/f2) is represented by a pattern characterized by dot concentrations along the 

diagonals and some of the sides of the representational space (squares); the rest of the 
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space is left empty.  Brown noise suggests a short term history within the time series; that 

is, the influence of one data point on the following data points dissipates after a short 

amount of time.  Pink noise (1/f1) is represented by a pattern characterized by different 

size, repeating self–similar triangles dispersed along the diagonals of the squares (Aks, 

2005).  Pink noise involves a long–term correlation within the time series; that is, the 

influence of one data point persists across the time series. 

Figure 3.  Example of IFS output for white, pink, and brown noise data (Aks, 2005). 

  

Wavelet Transform Modulus Maxima (WTMM) 

 Complex patterns and signals can be successfully analyzed by decomposing them 

in different frequencies.  The most popular frequency domain analysis is the Fourier 

transform that analyzes signals whose frequency content do not change in time 

(stationary) or at different scales (monofractal) and provides a time–frequency 

representation of a pattern or signal.  If the signal’s frequency varies in time (non–

stationary) or at different scales (multifractal), a WTMM is the appropriate analytical  
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tool, providing a time–frequency representation of the signal (Jouck, 2004).   

     WTMM tests the time series on multiple scales by parsing it into segments 

(wavelets) and compare them to a one–dimensional mother wavelet, a prototype function 

of the entire series.  All segments are then compared with the mother wavelet at all 

scales.  Then the wavelet is stretched (dilated), and the same procedure repeats at all 

scales.  The higher the dilation, the longer the segment of time series to which the 

wavelet is compared.  Dilation allows detection of persistent singularities or irregular 

structures, which often carry the most important information in a signal (Mallat & 

Hwang, 1992).  Dilation generates similarity coefficients that reveal the degree of 

similarity between the mother wavelet and the time series wavelets.  The thermodynamic 

partitioning function determines the number and the strength of the local maxima (the 

segment with the highest similarity) at each scale, based on the similarity coefficient 

series.   

 Next, WTMM generates a function based on the partitioning results.  The newly 

generated function estimates the multifractal dimension, focusing on scaled wavelets’ 

local maxima.  The Hölder exponent (h) is calculated based on the scaling of wavelet 

transform coefficient across all scales.  The absolute values of the similarity coefficients 

are arranged in a two–dimensional time–scale matrix, with time point in the signal and 

frequency scale as the two dimensions (Robertson, Farrar, & Sohn, 2002).  The log of the 

frequency spectrum of the signal at the first time point (the first column of the matrix) is 

then plotted against the time scale at which the wavelet is calculated.  The resulting slope 

is the signal’s h for the first time point.  The same process is repeated for each time point 

of the wavelet modulus (Robertson et al., 2002).   

 The Hölder exponent measures rapid changes of the time series singularities and  
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their strength (Scafetta et al., 2008).  When the time series is monofractal, h will be the 

same as H because the series has one attractor.  When the time series is multifractal, 

different time scales have different attractors, thus h will be different than H and will 

become the local version of H (Enescu, Ito, & Struzik, 2006).  The statistical distribution 

of h is plotted with h on the X axis and the D(h) (fractal dimension of the attractor) on the 

Y axis (Van den Berg, 2004).  Monofractal data will be represented by one fractal 

exponent; therefore, the D(h) plot will show one point.  Multifractal data will be 

represented by an arc across h, showing that the attractor’s strength varies in time (Figure 

4).  The maximum possible value of D(h) is one, which would indicate that h’s strength is 

present throughout the entire signal. 

Figure 4. Hypothisized monofractal Cantor set and multifractal WTMM distribution. 

 

 Researchers in the current study approached multitasking from a dynamical 

systems perspective and used nonlinear statistical analyses to analyze the data.  Hurst 

exponent and IFS tested for monofractality and WTMM for multifractality.  Thus, 

researchers applied a new methodology to show an alternative theoretical explanation to 

multitasking behavior and performance.     
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Method 

Participants 

 Participants were 14 undergraduates (mean age = 21, SD = 3.37) who participated 

in exchange for course credit.  All were at least 18 years old, had normal or corrected 

vision, and were right–handed.  Twelve reported English as their first language.  Data 

from 6 participants were excluded because of technical difficulties.  Only one participant 

reported experience with drums.   

Materials 

 The task involved attempting to maintain a steady beat with a mechanical drum 

pedal while text messaging.  The drum pedal was a PDP Single Pedal model SP400 

chosen for its ease of use, versatility, and lateral stability.  The impact of the pedal on 

61x14x14 cm wooden block generated the sound.  The block was 5 cm from the pedal, 

parallel with the front side of the pedal support.  The sound of the pedal striking the block 

was recorded with a Dynex microphone model DX–54.  The LG cell phone model CF360 

used for texting had the following features: 262K Color TFT, 320 x 240 Pixels, display 

dimensions of 3.97” (H) x 1.89” (W) x 0.665” (D); and a weight of 3.51 oz.  Video of the 

session was recorded with a 15 megapixels Sony camera on a tripod.  Appendix A shows 

these materials.   

     Free, open source software from Audacity (Audacity, n.d.) sampled the drumming 

sound at a rate of 60 kHz with 32 bits per sample.  MaxTRAQ motion analysis software 

(MaxTRAQ, n.d.) can track a designated object in a video recording.  In the current study 

MaxTRAQ tracked the participants’ thumb movements along the X and Y coordinates at 

a sampling rate of 30 frames per second.  The Automatic Tracking feature allows frame–

by–frame analysis of movement measurements (e.g., distance between points, angles).   
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Procedure 

     Each participant listened to a short description of the tasks then practiced using 

the mechanical drum pedal and the text feature of the cell phone separately until he or she 

reported feeling confident enough to use both instruments.  Necessary adjustments to the 

position of the video camera, the drum pedal, and the chair were made during the two–

minute practice session.   

     Participants spent two minutes on each of three tasks: texting only, tapping a beat 

only, and simultaneously texting and tapping.  The order of the initial task (tapping or 

texting) was counterbalanced between participants; multitasking was always the final 

task.  The texting task involved producing the same message, “I am a general psychology 

student at the university of central oklahoma,” as many times as possible in 2 

minutes.  Before texting, participants repeated the message aloud until they could say it 

three times without error.  They were to ignore errors of spelling, punctuation, 

capitalization and to use only their preferred hand, and not to rest their hands on their legs 

while texting (to eliminate the interference of leg movements).  MaxTRAQ tracks objects 

according to contrast, so a black Velcro strap (4cm long x 1cm wide) with white Velcro 

squares (with a side of 80mm) was wrapped around the texting thumb.  One white square 

was designated as the tracking target.  The tapping task involved maintaining a steady 

beat by pressing the drum pedal with the preferred foot.  Participants listened (via 

headphones) to a metronome set at 60 beats per minute, a beat they were to match by 

tapping the pedal on the wooden block.  The multitasking condition involved attempting 

to simultaneously perform the texting and tapping tasks following the same instructions–

texting the same sentence and keeping the metronome’s steady beat.      
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Data analysis   

 The inputs to the data analysis were the X-Y coordinates of thumb movement (in 

pixels) over time (3600 data points per participant; Figure 5) and the recorded beat’s 

deviation (in seconds) from the metronome’s beat over time (120 data points per 

participant; Figure 6).  A positive deviation indicated a late beat and a negative deviation 

indicated an early beat.  Thumb movement data had to be transformed into integers, and a 

constant five (higher than the range) was added to each deviation score to eliminate 

negative numbers for analysis purposes.  All final deviation scores were positive 

numbers.   

Figure 5.  MaxTRAQ output for thumb movement. 

 

 

  

 

 

 

Figure 6.  Audacity output for the foot beat recordings. 

 

 

 Researchers examined the time series data for signs of fractal structures.  Figure 7 

displays an example of time series for one participant’s horizontal thumb movement in 
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single task and multitasking condition.  Behavior over time (2 minutes) is plotted with 

time (in milliseconds) on X axis and distance in pixels on Y axis.  R statistical language 

aided in the examination.  The H value for each participant’s horizontal, vertical thumb 

movement time series and beat deviations time series was computed.  Next, a multiple 

analysis of variance (MANOVA) tested the statistical significance of the difference 

between the average H of single task and multitasking data.  An IFS test also helped in 

our search for fractals in the time series, providing a visual representation of the 

complexity of the underlying structures. 

Figure 7. Time series example for horizontal thumb movement: (a) single task condition 

and (b) multitasking condition. 

 

 In addition, a WTMM analysis determined the presence of multifractal structures 

for the horizontal and vertical thumb movement time series and the D(h) plot was 

obtained.  Beat deviation scores did not enter the WTMM analysis due to insufficient 

amount of data points.  The inherently discrete empirical data (Audacity software 

samples at a 60KH rate, MaxTRAQ software at 60 frames/sec.) entering the WTMM 

analysis was converted to a continuous form by a continuous one–dimensional wavelet 

transform that was applied to the variation of the time series.  The transformation also 

ensured consistency with the underlying mathematical structure of the analysis 

(Ashenfelter, Boker, Waddell, & Vitanov, 2009). 

a. b. 
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Results 

Hurst exponent and MANOVA 

 H was computed for each participant’s dependent variables (DVs), for each level 

of the independent variable (IV) to search for monofractal structures.  The time series 

was whitened before entering the analysis in order to reduce measurement errors usually 

occurring due to human and equipment error and imprecision.  The means and SDs of H 

calculated for all DVs are presented in Table 1.   

Table 1:  Means and SDs (in parentheses) for thumb movement data (on X and Y axes, in 

pixels) and foot beat deviations (in seconds). 

   X axis Y axis Deviations 

Single Task 1.36 (0.04) 1.35 (0.03) 1.01 (0.30) 

Multitask 1.34 (0.04) 1.40 (0.20) 0.8 (0.12) 
 

    

 A one–way within subjects MANOVA was performed on the H for the three DVs: 

horizontal thumb movement, vertical thumb movement, and beat deviations.  The Task 

condition was the within participants independent variable with two levels: single task 

and multitasking.  DVs entered the analysis simultaneously to protect for Type I error 

rate.  Mauchly’s test checked the sphericity assumption, which was not violated, showing 

that the matrix had approximately equal variance and covariance.  There was no 

significant multivariate effect.   

 The univariate Analysis of Variance (ANOVA) revealed a significant main effect 

for beat deviations H, F(1, 13) = 5.82, p = .03, ηp
2= .31, observed power of .61.  Multiple 

comparisons analysis showed that H values for the single task condition (M = 1.01, SD = 

0.30) was higher than H for multitasking condition (M = .80, SD = 0.12).  In multitasking 

condition, patterns of deviations from the beat were complex, but less cohesive than the  
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patterns in the single task condition.  There were no other significant findings.      

IFS Clumpiness Test 

 For a visual representation of H, an IFS clumpiness test was also performed on 

participants’ time series.  IFS showed brown noise for horizontal (Figure 8) and vertical 

movement in single task and multitasking conditions.  A difference emerged within the 

beat deviations DV.  IFS showed results resembling pink noise for both conditions 

(Figure 9); the single task condition was closer to pink noise than the multitasking 

condition however, involving a lower strength of the attractor.  

WTMM 

 The WTMM provided evidence that when texting and tapping, thumb movement 

(horizontal and vertical) displays scaling regions of self–similarity over time, and that 

different fractal structures characterize different scales of the behavior.  If the behavior 

would be monofractal, results would show only one singularity exponent for the whole 

time series and one point on the D(h) plot.  The current study’s time series showed many 

subsets characterized by different local exponents, the D(h) plots illustrating the specific 

arc shaped trajectory for each participant’s horizontal and vertical thumb movement 

series.  Figure 10 contains D(h) plots for two of the participants’ thumb movement.  First, 

fractal dimension (which is related to degrees of freedom of a system) decreased with an 

increase in attractor strength.  Second, the highest levels of fractal dimension were related 

with the moderate strength attractors.  Third, dimensionality also decreased when the 

strength passed a minimum level of attractor strength.  Thus, texting and tapping 

behavior are intrinsically complex and nonlinear.   
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Figure 8.  IFS clumpiness test results for one participant’s horizontal thumb movement in 

single task condition.  The clumping pattern indicates brown noise. 

 

 

Figure 9.  IFS clumpiness test results for one participant’s foot beat deviations in single 

task condition.  The clumping pattern indicates pink noise. 
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Figure 10. D(h) plots for a participants’ (a) thumb movement on X axis for single task 

condition and (b) multitasking condition. 

     

 

 

 

Discussion 

  Multitasking behavior does show fractal characteristics.  That is, depending on 

the scale at which behavior is analyzed, patterns in behavior occur.  When performed 

individually or simultaneously texting and tapping revealed fractal patterns with texting 

behavior revealing different patterns at different scales (multifractality).  The MANOVA 

results showed a significant difference only for the beat deviations time series and not for 

the horizontal and vertical thumb movement.  Horizontal and vertical thumb movement 

display fractal patterns, however.  H mean values (approximately 1.35) for both 

conditions on both DVs are close to 1.5 which is a sign of brown noise (1/f2).  Thus, 

horizontal and vertical thumb movement show short–term history within the time series 
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meaning that each data point has an effect on the following data points and is influenced 

by the previous ones.  The short–term characteristic implies a high complexity level of 

the behavior given that the strength of the positive correlations or attractors dissipates 

rather quickly in time.  Beat deviations also show fractal characteristics with H values for 

single task condition distributed around the mean of 1.01 and H values for multitasking 

condition distributed around the mean of .80.  The two H values are significantly 

different.  Both behaviors have H values close to 1 which indicates pink noise (1/f1).  The 

multitasking condition is closer to a white noise, however.  Beat deviations during single 

task condition seem to be highly structured and complex, clustering around a highly 

strong attractor.  Each data point displays a long–term history by having a long–term 

effect on the following time series.   

   IFS clumpiness test figures aid in better observing the fine structure of the time 

series by distinguishing between different noise colors and associating it with specific 

noise and correlations.  The IFS test supports the observed H values; the points cluster 

along the diagonals and some on the sides of the square for horizontal and vertical thumb 

movement.  IFS test shows pink noise for beat deviations in single task condition; the 

dots cluster in repetitive triangles along the diagonals.  IFS test also shows pink noise for 

the multitasking beat deviations.  Even if the dots are still clustering in repetitive triangles 

along the diagonals, they are less structured.  That is, the attractor strength 

weakened.  There is a complex, structured long–term fractal pattern; its strength and 

cohesiveness, however, decreases during multitasking.   

 WTMM provided evidence for that texting behavior is multifractal.  Horizontal 

and vertical thumb movement behavior is characterized by different patterns and different 

attractors at different scales.  Attractors’ strengths are related to the system’s fractal 
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dimensionality and degrees of freedom.  Fractal dimension level decreased with strength.  

That is, an attractor’s strength along with its influence on behavior increased with a 

decrease of degrees of freedom.  The highest levels of fractal dimension related to 

moderate levels of attractors’ strengths.  Thus, increased degrees of freedom result in 

high adaptability needed when the system functions at its criticality points.  Fractal 

dimension along with degrees of freedom decrease when an attractor’s strength passes a 

minimal threshold.  The decrease implies that behavior is highly dependent on task’s 

demands.  Thus, texting behavior is a complex behavior with nonlinear, multifractal 

characteristics.   

 Results showed besides fractality in all tasks in all conditions that when 

attempting to text while maintaining a steady beat participants are not as affected in their 

texting behavior as they seem to be affected in their tapping behavior.  Adding an extra 

motor task (which increases cognitive load) does not seem to affect texting behavior.  

Participants show similar patterns in texting in horizontal and vertical thumb movement.  

Tapping seems to be more affected by adding an extra task however; the behavior is 

highly structured when solely tapping and with a weaker structure while multitasking.  

Participants’ deviations patterns were significantly different in multitasking and single 

task condition.   

 A reasonable explanation for the current study’s results would be that texting 

behavior is a commonly encountered behavior.  Participants might have much more 

experience with the task.  Consequently, having more experience with texting (which is a 

behavior commonly performed along with other tasks such as driving) might lead to an 

increased similarity in thumb movement patterns in both conditions.  Tapping is not such 

a commonly encountered behavior; for example, only one participant in the current study 
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mentioned having any experience in drumming.  Thus, participants’ lack of experience 

with the task might have made a difference in the pattern’s strength in tapping; the 

pattern’s structure loses strength and becomes easier to break while multitasking.  

Drummers might display a more similar pattern in both tasks.  Future studies should take 

experience with the task into account.   

 Another possible explanation relates to the materials used to generate and record 

the behaviors.  Participants might have found the mechanical pedal hard to press, 

especially during multitasking, which occurred between three and five minutes after 

performing at the single task.  Fatigue due to participants not being accustomed with the 

task’s physical demands might have played a role in the multitasking performance.  Also, 

MaxTRAQ’s ability to track the thumb movement was not always present; the program 

did not constantly track the specified point.  In a few situations, the program lost the 

tracked point and researchers had to manually track it, frame by frame, for a certain 

amount of recording time.  Researchers’ intervention can add noise in the time series, 

noise that will be integrated in the performed analysis.  

 Using time series analyses gives the current study a great advantage.  Recording 

behavior on a time continuum provides more detailed information about the studied 

behavior.  In contrast, other methodologies provide just a few frames of a continuous 

behavior.  Time series not only provides the information that traditional methodologies 

do but it also fills the missing behavior.  Such behavior is usually disregarded and 

forgotten.  Traditional methodology assumes that behavior recorded at specific points in 

time reflects the behavior occurring between those points.  The current study’s 

methodology eschews such an assumption by taking into account the dynamical 

characteristics of behavior. 
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      On a conceptual level, dynamical systems theory states that multitasking is a 

system characterized by sensitivity to initial conditions, fractality, and nonlinearity.  

Results showed the presence of short–term history for the texting behavior, and long–

term history for tapping.  Any type of history involves correlations between the data 

points and a change at any point in the time series might result in a more or less 

observable change in the following behavior.  If everything affects everything else and 

everything is related within a system, then any change in a variable will result in a change 

in the outcome.  This is the main idea of sensitivity to initial conditions which seems to 

hold true in this case.   

 A dynamical system is also fractal.  It consists in self–similar structures, which 

might be the same or might vary at different scaling.  Results showed fractality within all 

DVs.  The behaviors showed an intrinsic correlation.  Each thumb movement influenced 

its own following behavior while each foot beat in tapping influenced the following beat.  

The relationship persisted in time.  Thus, the second characteristic of a dynamical system 

is met.   

 Pink and brown noise imply that local means and SDs of the time series depend 

on the sample of the time series that is analyzed.  White noise implies that local means 

and SDs are representative of the population (Holden, 2005).  While linear statistical 

analyses’ assumptions require the presence of white noise in the sampled data, therefore a 

random variability independent of the other observations, pink and brown noise wear the 

signs of nonlinearity.  That is, correlations within the one participant’s data violate the 

independence of observation assumption.  The current study’s results showed presence of 

pink and brown noise in the DVs.  Therefore, another characteristic of dynamical systems 

is displayed.        
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 The studied behaviors displayed sensitivity to initial conditions, fractal patterns, 

and nonlinearity.  These are all characteristics of a dynamical system.  Fractals are related 

to self–organization.  Dynamical systems theory assumes that any behavior, including 

multitasking, is a more or less stable and complex self–organized system.  No causal 

agent is present, yet organization occurs.  If traditional theories have a self–actional, 

directional approach and consider that all coordination and control reside within one’s 

brain, dynamical systems theory does not adhere to such a view and leaves the system’s 

organization to its components.  The current study showed that both behaviors organized 

themselves in correlated structures.  Each frame within each behavior influenced the 

following behavior and at a larger scale, one task interacted with the other.  Thus, 

considering the brain as a single coordinator of the behaviors would be questionable.  The 

brain is one component of the system and its role in the system’s functioning exceeds the 

purpose of this study.  If motor behavior can generate its own patterns at a milliseconds 

level of vertical and horizontal thumb movement, it seems reasonable to assume that the 

brain is not the only coordinator of the system.  Interaction and self–organization are the 

key with the behavior being a result of all the system’s variables.         

 Searching for fractal characteristics in the two behaviors is a first step in a 

dynamical approach to multitasking and literature in the field lacks such a perspective on 

the phenomenon.  More details about both behaviors and their interactions can be 

obtained given the expanding list of available data analysis.  Patterns for both behaviors 

could be superimposed (e.g., by using crossed windowed correlations) with the goal to 

observe how one behavior’s patterns change as a function of the other behavior’s pattern.  

Researchers could observe the changes in variability within the different tasks’ time 

series and the interrelationship between them.  For example, just as healthy heart’s beat 
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has been shown to be irregular and to reduce its variability and become more regular 

before a heart failure (Ivanov et al., 1999), the same trend could be observed within 

multitasking.  It is highly possible that the amount of variability within the data increases 

when individuals are multitasking, whereas variability decreases before the system 

crashes.  Discovering the intricacies of behavioral systems involved in multitasking can 

provide valuable knowledge within the human factors field.  Observing how individuals 

multitask and what parameters delimitate one’s ability to multitask increase the 

possibility of creating technology that would accentuate our strengths and compensate for 

our weaknesses in multitasking performance.    

 Bottleneck models suggest that individuals switch between texting and tapping.  

Resources theories suggest that resources are being allocated to one task (texting for 

example) resulting in a depletion of resources allocated for the other task (tapping).  

Threaded cognition theory suggests that texting and tapping sometimes are performed 

simultaneously and sometimes individually.  Dynamical systems theory suggests that 

texting and tapping are part of a system and they interact with each other and with other 

variables.  How does this system function, however?       

 The system is guided by a collective variable which sets the control parameters 

within which the system functions.  They form a coalition of constraints which dictated 

the multitasking behavior.  The motor system allows individuals to perform the tasks by 

providing the mechanical mechanism involved in the multitasking behavior.  The motor 

system regulates individuals’ capacity to coordinate motor behavior (Carson, 2004).  The 

brain provides the neural structures that aid in the motor activity.  Muscle synergies 

directly influenced neural activity in the context of limb coordination (Carson & Riek, 

2000).  Thus, neural structures are sensitive to the muscle synergies that are involved in 
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the observed motor behavior.  Attention also influences motor coordination (Scholz & 

Kelso, 1990) and neural activity in its attempt to maintain stability in coordinated motor 

behavior (Temprado, 2004).  The result is a circular causality between attention and 

coordinated motor behavior such that they constrain reciprocally.  Tasks demands dictate 

which muscles are required to perform the tasks, requirements which will reflect at neural 

level.  Intrinsic and extrinsic variables are interrelated and each depends on the others.  

The system is context dependent and functions based on the feedback loops generated by 

the variables.  A sufficient change in any variable leads to a change in behavior.  A 

change in behavior translates into a change in performance.  The observed result is 

multitasking behavior with varying performance across the task.               

 In conclusion, multitasking behavior showed the main traits of a dynamical 

system.  Studied behaviors showed sensitivity to initial conditions, fractality, and 

nonlinearity.  Thumb movement’s patterns during texting were not significantly different 

for single task and multitasking conditions.  Both displayed short–term correlations.  

Patterns in deviations in tapping were significantly different for the two conditions.  

Structure of deviations while only tapping was characterized by strong long–term 

correlations.  The structure while multitasking was also positively long–term correlated 

but less strong.  These results, while being interesting, leave room for more questions.  

The emphasis falls on how the structures look like, what are their controlling parameters, 

etcetera.  However, researchers should distance themselves from the mathematical 

intricacies and attractive, eye–catching visual effects of fractals, and ask themselves: 

what do they mean?  The meaning might be more profound and complex than all the 

mathematical underlying structures.  Until the question is answered, dynamical systems 

theory will keep researchers’ interest alive, the search for fractals continuing.      
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Materials 

 

                                           

  

   PDP SP400 Single Pedal                 Dynex DX-54 microphone 

  

                             

    LG CF360 model cell phone            Sony recording camera 

 

  

 


