
UNIVERSITY OF CENTRAL OKLAHOMA

Edmond, Oklahoma

Dr. Joe C. Jackson College of Graduate Studies

A THREE-DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS MODEL FOR

FLOW THROUGH POROUS MEDIA

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for

the degree of

MASTER OF SCIENCE IN ENGINEERING PHYSICS

By

CHRIS KISER

Oklahoma City, Oklahoma

2011

ii

A THREE-DIMENSIONAL COMPUTATIONAL FLUID DYNAMICS MODEL FOR

FLOW THROUGH POROUS MEDIA

A THESIS

APPROVED FOR THE DEPARTMENT OF ENGINEERING PHYSICS

June 8, 2011

By__________________________

Dr. Evan Lemley, Chairman

Dr. David Martin

Dr. Jaehoon Seong

iii

ACKNOWLEDGEMENTS

 I would first like to thank Dr. Evan Lemley for

agreeing to be my thesis advisor and for allowing me to be

a part of his research group. My experience with the group

helped mold my research in loss coefficients and flow in

porous media. I am grateful for Dr. Lemley’s insight and

support throughout the lengthy programming and simulation

process involved in my thesis.

 I would also like to thank the Lord, my family, and my

friends for the love and support shown to me all along the

way.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

ABSTRACT ... v

CHAPTER

 I. INTRODUCTION 1

 II. BACKGROUND 4

 III. METHODS 10

 IV. RESULTS AND DISCUSSION 24

 V. SUMMARY 29

REFERENCES ... 31

APPENDICES

 I. REALIZATION TEXT FILE SAMPLE.................. 36

 II. PMCFD CODE SAMPLE 39

 III. PMCFD RESULTS FILE SAMPLE 53

v

ABSTRACT OF THESIS

University of Central Oklahoma

Edmond, Oklahoma

NAME: Chris Kiser

TITLE OF THESIS: A Three-Dimensional Computational Fluid
Dynamics Model for Flow Through Porous Media

DIRECTOR OF THESIS: Evan Lemley

PAGES: 53

ABSTRACT: This thesis covers the development of a model for
fluid flow which incorporates computational fluid dynamics
simulations using three-dimensional planar porous media
networks. Porous media are introduced along with
applications and the need for computational models is
discussed. Previous experiments and models are presented
as well as features of the current model. This model
constructs three-dimensional planar networks from
cylindrical pipes and elbows of varying length, diameter,
and angle. Simulations are carried out using a finite
volume based computational fluid dynamics software. A
methodology is provided to discuss the source code of the
executable created to automate the modeling process. This
process begins with the network creation from an existing
code, which generates sets of random pore networks called
“realizations” and ends with linear and polynomial
regressions used to provide curve fits for Darcy’s law and
Forchheimer’s equation. Findings of these parameters are
presented for varying porosity values of Berea sandstone
simulated with single phase liquid water. Results show
that the model follows Forchheimer’s equation for certain
porosities and follows experimental results. Finally,
remarks on future work are given and a closing summary is
presented.

1

CHAPTER 1

INTRODUCTION

 Porous media exist in a number of naturally occurring

substances and man-made materials. Rocks and soils are common

examples of natural porous media. Other porous media examples

include biological sources such as our skin and bones. Packed

beds of beads, cement, and ceramics are all examples of man

made porous media. In each example there is a medium or

material which contains void spaces known as pores that fluid

may pass through. Figure 1 below is an illustration of a

porous medium with the pore space and medium space labeled.

The pores shown have varying shape, length, diameter, and

connectivity.

 Porous media have numerous applications in applied

sciences areas such as geoscience and petroleum engineering.

Many applications involving porous media are

Figure 1. Two-dimensional illustration of a porous medium.

2

related to aquifers and petroleum reservoirs, which are porous

media that contain resources like water, natural gas, and crude

oil. Understanding how fluid travels through these porous

media, especially at high flow rates, is essential in recovery

of these resources.

Porous media may be studied experimentally or by using

computational models. Experiments involve taking samples of a

porous media and applying a pressure gradient from one end of

the sample to the other1. This process emulates what occurs

naturally in porous media, but it can be expensive and

difficult to implement. Computational models make

idealizations of real porous media by treating the pore space

as an interconnected network of common geometric shapes such as

spheres and cylinders. Models designed in this way are well

suited for numerical methods used to determine the desired

properties.

 The goal of this work is to create a stochastic,

computational model for porous media, namely Berea sandstone.

This model is given the name Porous Media Computational Fluid

Dynamics or PMCFD. PMCFD consists of pore space networks

composed of cylinders connected by elbows. These cylinders and

elbows have varying geometry (length, diameter, spatial

orientation, etc.) determined by another model known as Flow

3

Through Porous Media or FTPM2-4. FTPM generates data files,

called “realizations”, which contain geometric data based on

measurements taken from real Berea sandstone5. These data

files are used by PMCFD to create three-dimensional pore space

networks within a plane. Figure 2 below is an example of a

pore space network created using PMCFD. These networks are

created, meshed into finite volumes, and simulated with fluid

flow using an Ansys® Fluid Dynamics software package comprised

of the programs Gambit®6 and Fluent®7 (See http://www.ansys.com

for more information on these products). Finally, PMCFD uses

linear and polynomial regressions to curve fit pressure and

volume flow rate data for comparison to two empirical

equations, Darcy’s law8 and Forchheimer’s equation9. The PMCFD

model and all of its functions described above are automated by

an executable file called pmcfd.exe.

Figure 2. Pore space network created with the PMCFD model.

4

CHAPTER 2

BACKGROUND

 Porous media contain networks of interconnected pore space

that differ depending on the medium and its dimensions. An

important property of porous media is the permeability, which

is a measure of a porous medium’s capability of transferring

fluid throughout the pore space within the medium. Henry Darcy

discovered this property in 1856 when he developed an

experimental apparatus to measure water flowing through

vertically oriented sand packed columns1,8. His experiments led

to him to propose a relationship known as Darcy’s law in

Equation 1 below.

() LhhKq
21

−= (Eq. 1)

Here q (m/s) is the specific discharge from the column, K (m/s)

is a proportionality constant, L (m) is the height of the

column, and h1-h2 (m) is the difference in fluid height above

the sand pack. It can be shown that for a one dimensional,

horizontally oriented column, Equation 1 may be restated as

Equation 2.

fu
dx

dP

κ

µ
=− (Eq. 2)

Here dP/dx (N/m³) is the pressure gradient along the x axis or

length of the column, µ (N-s/m2) is the fluid viscosity, uf

5

(m/s) is the filtration velocity or ratio of total pore space

volume flow rate (m³/s) to total pore space area (m²), and κ

(m2) is the average medium permeability. Permeability is also

expressed in Darcy (D) or milliDarcy (mD) units where 1 D =

9.869233*10-13m2.

 Equation 2 describes pressure losses in a porous medium

due to viscous effects as a linear relationship between

pressure gradient and filtration velocity. This relationship

is generally considered valid for small flow rates within a

medium. A good way to define flow rates within a medium is to

use a dimensionless parameter known as Reynolds number shown in

Equation 3.

µ

ρuD
=Re (Eq. 3)

Here ρ (kg/m3) is the fluid density, u (m/s) is the mean

velocity, D (m) is the characteristic diameter, and µ (N-s/m2)

is the fluid viscosity. Equation 2 is generally considered to

describe flow in porous media for 0 < Re < 1 which occurs often

in different media10.

 In 1901, Philippe Forchheimer discovered that for higher

flow rates (Re > 1) in porous media, the pressure gradient

begins to deviate from a linear relationship9. He proposed

6

adding a quadratic term to Darcy’s law to describe this

deviation as seen in Equation 4 on the next page.

2

ff uu
dx

dP
ρβ

κ

µ
+=− (Eq. 4)

This is known as Forchheimer’s equation and β (m-1) is often

referred to as Forchheimer’s coefficient. The quadratic term

relates pressure losses within a porous media to inertial

dissipation. Forchheimer’s equation has been shown10,11 to be

valid for Re < 100 and Re < 300, respectively.

 Both Equation 2 and Equation 4 are helpful in

understanding flow in porous media, but solving for the unknown

parameters is not simple. To experimentally determine κ and β

requires constructing an apparatus that can apply a wide

variety of pressure gradients across numerous samples of porous

media. This can be an expensive and time consuming process.

Therefore, computational models have been developed to simulate

flow in porous media and numerically solve Equations 2 and 4

for κ and β.

 Several models have been created to study flow in porous

media as well other properties. Many of the models are

stochastic2-5,12-21 meaning that pore space geometry within model

is determined randomly according to pre-determined distribution

functions.

7

 Balhoff and Wheeler12 used a pore-scale network model to

study the applicability of Forchheimer’s equation for variable

sized sphere packings as well as x-ray computed microtomography

images of sandstone. The pore space in their model is

comprised of pores connected by throats in sinusoidal shaped

ducts.

 Lin and Slattery13 used a three-dimensional, face-

centered, cubic network to create a porous media model. The

pore space was represented as circular ducts with radii based

as a sinusoidal function of axial position.

 Adler, Jacquin, and Quiblier14 created a three-

dimensional, homogeneous, isotropic porous medium composed of

cubes which were assigned to be a solid or a liquid based off a

probability of 0 and 1, respectively. The pore space was

modeled on two average statistical properties measured from

thin sections of Fontainbleau sandstone.

 Quiblier15 developed a three-dimensional model that is

based on statistical data taken thin samples of porous media

subjected to a light source. A threshold for minimum light

intensity was established and the reflected and transmitted

light were used to determine medium and pore space,

respectively.

8

 Koplik and Lasseter16, Thauvin and Mohanty17, and Rajaram,

Ferrand, and Celia18 modeled porous media using a lattice

structure made up of variable sized spherical pore bodies

connected by cylindrical pore throats. Haring and Greenkorn19,

Chatzis and Dullien20, and Androutsopoulos and Mann21 all

modeled pore space within a medium using randomly generated

cylindrical segments from various pore size distributions.

 The model used in this work is based largely on the works

of Handy, Kiser, Lemley, Lao, Papavassiliou, Neeman, Simpson,

Yanuka, Dullien, and Elrick2-5,22-24. Some of these works22-24

involve development and use of an automated code to perform

computational fluid dynamics (CFD) simulations on microscale

elbows and bifurcations. Other works2-5 involve the concepts

and use of the porous media model FTPM.

 FTPM is a computational method developed to determine the

correlation between permeability and Forchheimer’s coefficient

and to investigate the factors that affect the correlation3.

FTPM creates two-dimensional and three-dimensional pore space

networks comprised of cylindrical pipes with varying size,

orientation, and connectivity. Probability distribution

functions, specifically experimental pore radius distributions

of randomly packed glass beads (177 to 350µm) and Berea

sandstone from Yanuka, Dullien, and Elrick5, are used to

9

generate the geometric properties of the pore space networks.

Collections of the pore space networks are known as

“realizations” in FTPM and geometric data describing the

realizations is written to text files by FTPM.

 FTPM assumes flow as steady-state, fully-developed, and

incompressible within each pore network. With these

assumptions, FTPM uses the Poiseuille25 equation, conservation

of mass, and mechanical energy balance equations (including

assumed energy losses) along with appropriate boundary

conditions to form a closed, nonlinear system of equations that

are solved using Newton’s method3 for root finding.

 Finally, FTPM computes κ and β using a Monte Carlo3 style

process to check the running averages for several realizations

of a given porous medium. The results of κ and β are compared

to experimental results of Jones26 for Berea sandstone or the

empirical equation of Ergun and Orning27 for packed beds of

glass beads. The development of the PMCFD model is focused on

extending the FTPM model by removing the assumptions based on

fully-developed flow, Poiseuille’s equation, and the mechanical

energy balance equation with known energy losses.

10

CHAPTER 3

METHODOLOGY

 The implementation of the PMCFD model was achieved by

writing a computer code, entitled pmcfd.cpp, which is based on

the works of several researchers2-5,22-24. The PMCFD code was

created using the procedural based programming language, C++28.

The code is composed of 24 custom functions, contains more than

150 variables, and can be used with the Windows XP and Windows

7 operating systems. Several key ideas used in the PMCFD code

were gained through review of the code created by Handy22,23 for

use with microscale elbows and bifurcations and the text by

Horstmann and Budd28. The PMCFD code can be divided into two

main methods which are: modeling of a porous medium and

processing the resulting data to obtain κ and β. See Figures 3

and 4 on the next page for flowcharts of the two coding

methods.

 The modeling method of PMCFD utilizes many of the custom

functions contained in the code. The first of these functions

prompts the user to select a FTPM data file or realization.

These realizations contain all of the geometrical data (i.e.

lengths, diameters, angles, etc.) required to create pore space

networks.

11

Figure 3. Flowchart of the PMCFD modeling method.

Figure 4. Flowchart of the PMCFD processing method.

12

Each realization is composed of a variable number of pore space

networks, which are in turn made up of a variable number of

cylindrical pipes and interconnecting junctions. The junctions

can be either elbows or bifurcations depending on the

specifications made in FTPM. For PMCFD, all junctions in FTPM

are pre-selected to be elbows. The number of pore space

networks for a realization is determined by the specified

porosity3 in FTPM, which is shown in Equation 5 below.

medium

pores

V

V
=φ (Eq. 5)

Here Vpores (m
3) is the volume of the pore space within a medium

and Vmedium (m
3) is the total volume of the medium. See Appendix

I for a sample of the geometric data contained within a

realization text file for Berea sandstone with porosity of

15.0%.

 Next, the user is presented with 20 different options, set

to default values, which can be modified to control the output

of the code. See Table 1 for a list of options and choices

associated with each. These options control several aspects of

the pore space network generation, meshing, and CFD simulation

processes. Once the user has made any desired changes in the

options shown in Table 1, the code proceeds to the next step of

reading data.

13

PMCFD Options

Option Description Choices

1
mesh volumes created
in CAD software

1 - no
2 – yes

2
cylindrical pipe
volume mesh type

1 - cooper
2 - tetrahedral

3
optimization criteria
for reading .TRN files

1 - continuity || xyz momentum
residuals
2 - xyz momentum residuals
3 - continuity residuals
4 - inlet and outlet pressure
within 1% of their specified
values

4
platform to use for
modeling

1 – linux
2 - windows

5
number of iterations
to perform

Any integer value greater than
zero

6
pore space network
inlet pressure

Any value greater than zero
expressed in Pascals

7
number of pressure
variations to use

Any integer value greater than
zero

8
momentum under-
relaxation factor to
use

Any value between 0 and 1

9
pressure under-
relaxation factor to
use

Any value between 0 and 1

A
momentum
discretization scheme

1 – second order upwind
6 – third-order MUSCL

B
pressure
discretization scheme

10 – standard
12 – second order

C
pressure-velocity
coupling

20 – SIMPLE
21 – SIMPLEC

D
pressure variation
multiplier

Any value greater than zero
expressed in Pascals not to
exceed the ratio of option 6 to
option 7

E
pore space network
fluid type

1 – water-liquid
2 – water-vapor
3 - air

F
pore space network
fluid density

Any value expressed in kg/m3
between 0 and 13600

G
pore space network
fluid viscosity

Any value expressed in
N-s/m2 between 0 and 1

14

Option Description Choices

H
residual convergence
criteria

Any value between 0.000001 and
0.01

I
minimum allowed elbow
angle in pore space
networks

Any value expressed in degrees
between 10 and 90

J
pore space network
scale factor

1 – 1 x 10-4
2 – 1 x 10-5
3 – 1 x 10-6

K
number of processors
to use per node on
cluster

Any integer value between 1 and
6

Table 1. Available options and choices in the PMCFD code.

 The PMCFD code reads the chosen realization text file

created by FTPM in two functions. In the first function, the

code reads fixed data from the text file describing the chosen

porous medium. This data may include: total number of pore

space networks and junctions, number of junctions for each pore

space network, domain length, domain volume, domain density,

domain viscosity, Reynolds numbers, etc. In the second

function, the code reads data describing each pore space

network contained within the realization text file. For each

junction within a network, the cylindrical pipe length,

diameter, orientation angle, and position are recorded by the

PMCFD code. Therefore, all the information required to model a

given porous medium is obtained.

 The next step in the modeling process is to select the

pressure variations or dP to apply across each of the pore

15

space networks. This is essential to the verification of

Equation 4 that takes place later in the processing section of

the code. Pressure variations are chosen based on options 6,

7, and D seen in Table 1. The inlet pressure to a network is

kept constant while the outlet pressure is set to a multiple of

the pressure variation multiplier. Thus for 3 pressure

variations with an inlet pressure of 100 Pa and a pressure

variation multiplier of 25 Pa, the outlet pressures would be

specified as 75, 50, and 25 Pa, respectively. This function

also allows the user to specify the outlet pressures manually.

 Once the pressure variations are decided, the modeling

process moves on to the pore space network selection function.

This function allows the user to choose from three options.

The first option is for the code to model all of the networks

contained within the chosen realization text file. The second

option is for the code to model a range of the networks within

the file. The final option is for the code to model a single

network within the file. This function is essential for

running trials with different parameters on a subset of

networks or for troubleshooting a defective network.

 The next two functions in the modeling portion of the

PMCFD code determine the pore space network averages, extremes,

and file path names using the chosen realization text file.

16

The averages include the average cylindrical pipe diameter and

pipe length. The extremes include the shortest and longest

pipe lengths with corresponding pipe diameters as well as the

smallest and largest pipe diameters with corresponding pipe

lengths. These values are all stored to be reported by another

function of the code. The file path names are based on the

realization text file name, the pore space network numbers, and

the chosen pressure variations.

 This brings us to functions controlling the computer-aided

design (CAD) and finite volume meshing software known as

Gambit®6. The first is a scaling function used to increase all

of the diameters and lengths of the cylindrical pipes from

micrometers (µm) to meters (m). This is done to avoid meshing

errors in Gambit® due to finite volume tolerances. Additional

scaling or increasing is required for pipes that are shorter

than 50µm or narrower than 10µm.

 The next function calculates parameters associated with

the geometry and meshing of each junction and pipe. Because

each pipe has a different diameter, the junctions or elbows

must be allowed to contract or expand to connect pipes of

different diameters. Elbow starting and ending angles are

allowed to range from 90° to -90° in increments of 1° meaning

each resulting elbow created has an angle between 0° and 180°.

17

However, due to limitations in the CAD section of Gambit®, the

actual elbow angle has a minimum limit set by option I listed

in Table 1.

 This function also calculates the average pore space

network diameter using Equation 6.

∑= ii

total

avg LD
L

D
1

 (Eq. 6)

Here, Davg (m) is the average diameter of the network, Ltotal (m)

is the total length of a network, and Di (m) and Li (m) are the

diameter and length of each pipe and elbow with the network.

 Finally, this function calculates the mesh interval sizes

or number of discretized volumes for the elbows and pipes of

the network. PMCFD requires each pore space network to

maintain 100 cross sectional faces throughout the network as

seen in Figure 5 below. Size functions are attached to each of

the contracting or expanding elbows to maintain 100 faces.

Figure 5. Cross section of a meshed cylinder in PMCFD.

18

These size functions are based on a geometric series with a

closed form from the text by Spiegel, Lipschutz, and Liu29

shown in Equation 7 below.

r

r
as

n

−

−
=

1

1
 (Eq. 7)

Here, s is the sum of the series or the length of the elbow, a

is the first term of the series or the initial mesh size, r is

the common ratio or growth-rate of the size function, and arn

is the last term in the series or the final mesh size. See

Figure 6 on the next page for an example of size functions

attached to a section of meshed network. Mesh interval sizes

were also based on a mesh resolution study from a previous

work24 involving the Gambit® software.

 The third function relating to geometry creation and

meshing involves calculation of the pipe and elbow coordinates

for the networks. These coordinates are based off of the

scaled diameters, lengths, and angles for the pipes and elbows

within each network. Once these coordinates are calculated,

the x axis network length or dx is calculated and stored.

 The remaining functions in the PMCFD modeling process

involve the creation of several text files. The first function

generates a verification file which lists all of the

information read from the realization text file in a

19

Figure 6. Size functions attached to a section of meshed pore
space network.

reorganized, easy-to-read format. The second function creates

a processing file written to be used in the processing

functions of PMCFD. The third function writes a journal file

used by the Gambit® software to create and mesh all of the pore

space networks selected by the user.

 The fourth function generates a set of journal files that

are used by the CFD software known as Fluent®7 to simulate flow

in the meshed networks. Fluent® is used to solve the steady-

state, incompressible Navier-Stokes30 equations for pressure

and velocity components within the pore space networks. Fluent

performs CFD using the finite volume method with the parameters

specified in Table 2 on the next page. Please refer to the

20

Fluent® Parameters

Parameter Description Choice

grid/scale
scales a meshed pore space
networks by a specified amount

1 x 10-6

convergence
criteria

defines a stopping point for
simulations based on the
continuity and momentum
residuals

1 x 10-5

boundary
condition type

defines the type of boundaries
used for the pore space network
inlet and outlet

pressure

p-v-coupling
specifies how the pressure and
momentum equations are coupled

SIMPLE

momentum under-
relaxation
factor

multiplier used to improve the
momentum solutions

0.25

pressure under-
relaxation
factor

multiplier used to improve the
pressure solution

0.75

momentum
discretization
scheme

determines how the momentum
equations are solved within a
meshed pore space network

Second
Order
Upwind

pressure
discretization
scheme

determines how the pressure
equation is solved within a
meshed pore space network

Second
Order

iterations

determines how many times the
pressure and momentum equations
are solved for a pore space
network

3000

Table 2. Parameters used in Fluent® for CFD simulations.

text by Versteeg and Malalasekera30 for information on finite

volume CFD simulations. The number of Fluent® journal files

generated by PMCFD is equal to the number of created pore space

networks multiplied by the number of pressure variations used.

 The fifth and final text writing function creates a batch

file that automates the execution of the Gambit® and Fluent®

journal files. The end result of the modeling process is a set

21

of transcript files equal in number to the Fluent® journal

files. These transcript files contain pressure and volume flow

rate values calculated by Fluent®.

 After the transcript files are generated, the processing

functions of PMCFD are utilized. The first two functions read

the processing text file generated previously by PMCFD. From

this file, PMCFD can determine how many transcript files need

to be read as well as the pathway to each file. The next

function involves reading of the transcript files based on the

criteria specified in option 3 shown in Table 1. From each

transcript file, the inlet and outlet pressures (Pa) along with

the volume flow rate (m3/s) are recorded for a pore space

network.

 Once all of the pressure and volume flow rates are

recorded, the next function solves Equation 4 for κ and β in a

series of steps. Step one calculates the pressure gradient,

dP/dx, for all of the chosen pressure variations. This is done

using averages of the recorded inlet pressures, outlet

pressures, and the x axis network lengths. Step two calculates

the filtration velocities, uf, using Equation 8 below.

∑=
2

,

4

avgi

i
f

D

Q
u

π
 (Eq. 8)

22

Here Qi (m
3/s) and Di,avg (m

2) are recorded volume flow rate and

average pore space diameter calculated using Equation 6,

respectively, for each pore space network. Once dP/dx and uf

are known for every chosen pressure variation, step three

performs linear and polynomial regressions to fit the available

data to a line and second order polynomial, respectively. This

is done according to the text by Chapra and Canale31, using

Equations 9 and 10.

xaay
10

+= (Eq. 9)

2

210
xaxaay ++= (Eq. 10)

Equations 9 and 10 are solved for coefficients a0, a1, and a2

and these are used to solve Equations 2 and 4, respectively.

In the case of polynomial regression, matrix algebra was

performed using Cramer’s rule described in the text by

Lindeburg32. These line and curve fits are used to test

PMCFD’s ability to describe flow in a porous medium using

Darcy’s8 law and Forchheimer’s9 equation.

 The last processing function in PMCFD writes results to a

text file for the user. This file contains the pressure

gradient and filtration velocity for each pressure variation.

The file also stores the results of linear and polynomial

regression including a correlation coefficient, r2, which

describes how well Equations 9 and 10 represent the given data.

23

Finally, the file displays the optimized values of pressure and

volume flow rate read from the transcript files. See Appendix

II for a sample of PMCFD functions discussed in the preceding

sections. Also see Appendix III for a results file written by

PMCFD that was used to model Berea sandstone with 5 pressure

variations and a porosity of 10.0%.

24

CHAPTER 4

RESULTS AND DISCUSSION

 The PMCFD model was used to generate five models of Berea

sandstone from five realization text files generated by FTPM

with porosity values of 10.0, 12.5, 15.0, 17.5, and 20.0%.

These models contained 22, 28, 33, 39, and 44 pore space

networks, respectively. An inlet pressure of 3 x 1012 Pa or 3

TPa was used at the inlet of each network and outlet pressures

of 2.7, 2.4, 2.1, 1.8, and 1.5 TPa were used at the outlets of

each network. The resulting flow rates in the models produced

an average Re in the range of 100 to 300. The fluid modeled

was liquid water at room temperature.

 Modeling took place on a PC desktop as well as a 3 node,

24 processor cluster on the campus of the University of Central

Oklahoma (UCO). Models generated and processed on the PC

desktop took an average of six days to complete with models on

the cluster completing in about half the time.

 The transcript files created by Fluent® for each model

were processed by PMCFD to obtain values of inlet pressure,

outlet pressure, and volume flow rate for each pore space

network. Pressure gradients and filtration velocities were

calculated for each variation of pressure within a model.

Finally, values of κ and β were calculated for each model using

25

linear and polynomial regression. Figure 7 below shows a plot

of dP/dx vs uf for the 10% porosity model with regression lines

included. Tables 3 and 4 on the next page list the results for

both linear and polynomial regressions for all five porosity

models along with the calculated values of Darcy permeability,

κD, Forchheimer permeability, κF, and Forchheimer coefficient,

β.

 From Figure 7 along with Tables 3 and 4, it appears that

polynomial regression provides a better curve fit to the dP/dx

vs uf data for every porosity modeled. This is seen by

examining the r2 value in Tables 3 and 4.

Figure 7. Pressure gradient vs filtration velocity for the 10%
porosity model.

26

Linear Regression Results y=a0+a1x

φ(%) a0(10
14) a1(10

14) r2 κD(mD)

10.0 8.39 -1.55 0.68 -0.64
12.5 3.00 0.23 0.02 4.31
15.0 11.2 -1.74 0.58 -0.57
17.5 -1.16 1.54 0.26 0.64
20.0 12.2 -1.60 0.47 -0.62

Table 3. Linear regression results of PMCFD for five porosity

models.

Polynomial Regression Results y=a0+a1x+a2x
2

φ(%) a0(10
14) a1(10

14) a2(10
14) r2 κF(mD) β(1010m-1)

10.0 4.21 1.14 -0.40 0.70 0.87 -4.03
12.5 12.4 -4.61 0.57 0.14 -0.21 5.75
15.0 4.33 1.77 -0.42 0.60 0.56 -4.24
17.5 31.1 16.2 -1.72 0.40 0.06 -17.2
20.0 -11.2 8.84 -1.11 0.62 0.11 -11.1

Table 4. Polynomial regression results of PMCFD for five

porosity models.

A value of r2 closer to one means the regression is able to

describe the desired trend within the data. A value closer to

zero means the desired trend cannot be described by the data.

While this observation does appear to validate Forchheimer’s

equation over Darcy’s law using PMCFD with higher flow rates,

some of the regression results are inconclusive due to small

values of r2 and negative values of κD, κF, and β.

 Figure 8 on the next page is a comparison of the magnitude

of β vs κF for the five porosities modeled to experimental

results of Jones26 as well as computational results of Lao,

Papavassiliou, and Neeman3 using FTPM.

27

Figure 8. Comparison of PMCFD to Jones and FTPM for Berea
sandstone.

All data seen in Figure 8 is for Berea sandstone. The results

show better agreement between PMCFD and Jones than PMCFD and

FTPM.

 Currently, PMCFD is designed to model a porous medium as a

collection of pore space networks comprised of cylindrical

pipes connected by expanding or contracting elbows. This model

is a simplification of the complex nature of porous media shown

in Figure 1. Future work with this model would involve

modifying PMCFD to allow for junctions or bifurcations within a

network. Other considerations would include: improving the

performance of UCO’s cluster to decrease the time taken to

model using PMCFD, modifying PMCFD to model packed beds of

28

glass beads as well as other porous media, and general

improvement of the CFD portion of PMCFD to ensure the best

possible values of pressure and volume flow rate are obtained.

29

CHAPTER 5

SUMMARY

 A three-dimensional model was developed to model fluid

flow in networks of a porous medium. The PMCFD model is

operated by an executable file named pmcfd.exe which was

written using the C++ computer language. The PMCFD code can be

broken into two methods dealing with modeling of flow in a

porous media and processing of the resulting data. Modeling of

flow is achieved by reading a realization text file created by

FTPM, generating and meshing the pore space networks in the

Gambit® software, and simulating flow within the networks using

the Fluent® CFD software. Processing the resulting data is

achieved by reading transcript files generated by Fluent®,

calculating pressure gradients and filtration velocities from

that data, and performing linear and polynomial regressions on

that data to solve for the unknown coefficients of Darcy’s law

and Forchheimer’s equation.

 PMCFD was used to model five porosities of Berea

sandstone. Five pressure variations were applied to all of the

networks within the five models. Regression analysis was

performed to show the validity of using both Darcy’s law and

Forchheimer’s equation to describe fluid flow using PMCFD.

Results show Forchheimer’s equation does describe flow better

30

than Darcy’s law in PMCFD at the higher flow rates simulated.

Results also show agreement between PMCFD and experimental

results obtained by Jones22.

31

REFERENCES

1 J. Bear, Dynamics of Fluids in Porous Media, (Dover, New

York, 1972).

2 E.C. Lemley, D.V. Papavassiliou, and H.J. Neeman, Non-Darcy

Flow Pore Network Simulation Development and Validation of a 3D

Model, Proceedings of FEDSM2007, 5th Joint ASME/JSME Fluids

Engineering Conference, paper FEDSM2007-37278.

3 H-W. Lao, D.V. Papavassiliou, and H.J. Neeman, A Pore Network

Model for the Calculation of Non-Darcy Flow Coefficients in

Fluid Flow Through Porous Media, Chem. Eng. Comm. 191, 1301-

1338 (2004).

4 H.J. Neeman, H-W. Lao, D. Simpson, and D.V. Papavassiliou,

Multiscale Characterization of Porous Media Properties for

Hydrocarbon Reservoir Simulation, Proc. SPIE 4528, 87 (2001).

5 M. Yanuka, F.A.L. Dullien, and D.E. Elrick, Percolation

Proccesses and Porous Media, J.Colloid Interface Sci. 112(1),

24-41 (1986).

6 Gambit 2.4 User’s Guide, (Fluent, Inc., New Hampshire, 2007).

7 Fluent 6.3 User’s Guide, (Fluent, Inc., New Hampshire, 2006).

8 H. Darcy and P. Bobeck, The Public Fountains of the City of

Dijon, (Kendall Hunt, Iowa, 2004).

9 P. Forchheimer, Wasserbewegung durch Boden. Zeit. Ver. Deut.

Ing., 45, 1781-1788 (1901).

32

10 R.D. Barree, and M.W. Conway, Beyond Beta Factors: A

Complete Model for Darcy, Forchheimer, and Trans-Forchheimer

Flow in Porous Media, SPE 89325, SPE Annual Technical

Conference, Houston, Texas. (2004).

11 H. Huang and J Ayoub, Applicability of the Forchheimer

Equation for Non-Darcy Flow in Porous Media, SPE 102715, SPE

Annual Technical Conference, San Antonio, Texas, (2006).

12 M.T. Balhoff and M.F. Wheeler, A Predictive Pore-Scale Model

for Non-Darcy Flow in Anisotropic Porous Media. SPE 110838, SPE

Annual Technical Conference, Anaheim, California. (2007).

13 C.-Y. Lin and J.C. Slattery, Three-Dimensional, Randomized,

Network Model for Two-Phase Flow Through Porous Media. AIChE J.

28(2), 311-324 (1982).

14 P.M. Adler, C.G. Jacquin, and J.A. Quiblier, Flow in

Simulated Porous Media, International Journal of Multiphase

Flow 16(4), 691-712 (1990).

15 J.A. Quiblier, A New Three-Dimensional Modeling Technique

for Studying Porous Media. J. Coll. Int. Sci. 98(1), 84-102

(1984).

16 J. Koplik and T.J. Lasseter, Two-Phase Flow in Random

Network Models of Porous Media. SPE J. (February), 89-100

(1985).

33

17 F. Thauvin, and K.K. Mohanty, Network modeling of Non-Darcy

flow through porous media, Transport in porous media, 31, 19-37

(1998).

18 H. Rajaram, L.A. Ferrand, and M.A. Celia, Prediction of

Relative Permeabilities for Unconsolidated Soils using Pore-

scale Network. Water Resources Research. Vol. 3, No. 1. pp 43-

52 (1997).

19 R.E. Haring and R.A. Greenkorn, A Statistical Model of a

Porous Medium with Nonuniform Pores. AICHE J. 16(3), 477-483

(1970).

20 I. Chatzis and F.A.L. Dullien, Modelling Pore Structure by

2-D and 3-D Networks with Application to Sandstones. J. Can.

Pet. Tech. 16(1), 97-108 (1977).

21 G.P. Androutsopoulos and R. Mann, Evaluation of Mercury

Porosimeter Experiments using a Network Pore Structure Model.

Chem. Eng. Sci. 34S, 1203-1212 (1979).

22 T.A. Handy, E.C. Lemley, D.V. Papavassiliou, and H.J.

Neeman, Loss Coefficients in Microelbows, Proceedings of

FEDSM2009, 2009 ASME Fluids Engineering Conference, paper

FEDSM2009-78517.

23 T.A. Handy, E.C. Lemley, D.V. Papavassiliou, and H.J.

Neeman, Simulations to Determine Laminar Loss Coefficients for

Flow in Circular Ducts with Arbitrary Planar Bifurcation

34

Geometries, Proceedings of FEDSM2008, 2008 ASME Fluids

Engineering Conference, paper FEDSM2008-55181.

24 C.C. Kiser, T.A. Handy, E.C. Lemley, D.V. Papavassiliou, and

H.J. Neeman, Reynolds Number Dependence for Laminar Flow Loss

Coefficients in Tee and Wye Junctions, Proceedings of ASME 2010

3rd Joint US-European Fluids Engineering Summer Meeting and 8th

International Conference on Nanochannels, Microchannels, and

Minichannels, paper FEDSM2010-ICNMM2010-31026.

25 F. White, Fluid Mechanics 7th Ed., (McGraw-Hill, New Jersey,

2010).

26 S.C. Jones, Using the Inertial Coefficient, B, To

Characterize Heterogeneity in Reservoir Rock, SPE 16949, SPE

Annual Technical Conference, Dallas, Texas. (1987).

27 S. Ergun, and A. A. Orning, Fluid Flow Through Randomly

Packed Columns and Fluidized Beds, Ind. Eng. Chem., 41(6),

1179-1184 (1949).

28 C. Horstmann and T. Budd, Big C++, (John Wiley & Sons, New

Jersey, 2005).

29 M.R. Spiegel, S. Lipschutz, and J. Liu, Mathematical

Handbook of Formulas and Tables 3rd Ed., (McGraw-Hill, New

York, 2009).

35

30 H.K. Versteeg and W Malalasekera, An Introduction to

Computational Fluid Dynamics: The Finite Volume Method 2nd Ed.,

(Pearson, New York, 2007).

31 S.C. Chapra and R. P. Canale, Numerical Methods for

Engineers 5th Ed., (McGraw-Hill, New York, 2006).

32 M.R. Lindeburg, FE Review Manual, (Professional Publications

Inc., California, 2006).

36

APPENDIX I

The following is a sample of geometric data contained within a
realization text file for Berea sandstone with porosity of 15%.

PipeNetworkRealization:
 Domain Geometry Values:
 Computational Rank: 2
 Physical Rank: 2
 Domain Length: [0.001 0.001]
 Domain Volume: 1e-06
 Structure Values:
 Maximum Number of Children Per Junction: 1
 Network Counts:
 Number of Networks:
 Total: 33
 Number of Network Junctions:
 Network # 0: 6
 Network # 1: 11
 Network # 2: 9
 Network # 3: 10
 Network # 4: 9
 Network # 5: 7
 Network # 6: 12
 Network # 7: 9
 Network # 8: 6
 Network # 9: 9
 Network # 10: 8
 Network # 11: 10
 Network # 12: 12
 Network # 13: 10
 Network # 14: 6
 Network # 15: 9
 Network # 16: 10
 Network # 17: 8
 Network # 18: 10
 Network # 19: 10
 Network # 20: 8
 Network # 21: 7
 Network # 22: 10
 Network # 23: 11
 Network # 24: 6
 Network # 25: 12
 Network # 26: 7
 Network # 27: 10
 Network # 28: 10
 Network # 29: 9
 Network # 30: 6
 Network # 31: 9
 Network # 32: 10
 Total: 296
 Pipe Networks:
 Network #0:
 Network #1:
 Network #2:
 Network #3:
 Network #4:
 Network #5:
 Network #6:
 Network #7:
 Network #8:
 Network #9:
 Network #10:
 Network #11:
 Network #12:
 Network #13:
 Network #14:
 Network #15:
 Network #16:
 Network #17:
 Network #18:
 Network #19:
 Network #20:
 Network #21:
 Network #22:

37

 Network #23:
 Network #24:
 Network #25:
 Network #26:
 Network #27:
 Network #28:
 Network #29:
 Network #30:
 Network #31:
 Network #32:
 Network Representation Arrays:
 Network #0, Junction #0:
 Parent ID: -1
 Number of Children: 1
 Child #0: 1
 Pipe Length in m: 0
 Pipe Diameter in m: 3.27709e-06
 Pipe Angle in degrees: [0]
 Position in m: [0 0.000840188]
 Network #0, Junction #1:
 Parent ID: 0
 Number of Children: 1
 Child #0: 2
 Pipe Length in m: 0.000222839
 Pipe Diameter in m: 3.27709e-06
 Pipe Angle in degrees: [4]
 Position in m: [0.000222296 0.000855732]
 Network #0, Junction #2:
 Parent ID: 1
 Number of Children: 1
 Child #0: 3
 Pipe Length in m: 0.000471054
 Pipe Diameter in m: 5.75291e-05
 Pipe Angle in degrees: [-38]
 Position in m: [0.000593492 0.000565722]
 Network #0, Junction #3:
 Parent ID: 2
 Number of Children: 1
 Child #0: 4
 Pipe Length in m: 0.000199227
 Pipe Diameter in m: 5.6621e-05
 Pipe Angle in degrees: [49]
 Position in m: [0.000724197 0.00071608]
 Network #0, Junction #4:
 Parent ID: 3
 Number of Children: 1
 Child #0: 5
 Pipe Length in m: 0.000310637
 Pipe Diameter in m: 4.32605e-05
 Pipe Angle in degrees: [-39]
 Position in m: [0.000965607 0.00052059]
 Network #0, Junction #5:
 Parent ID: 4
 Number of Children: 0
 Pipe Length in m: 0.000142165
 Pipe Diameter in m: 2.71664e-05
 Pipe Angle in degrees: [76]
 Position in m: [0.001 0.000658532]
 Network #1, Junction #0:
 Parent ID: -1
 Number of Children: 1
 Child #0: 1
 Pipe Length in m: 0
 Pipe Diameter in m: 3.11892e-05
 Pipe Angle in degrees: [0]
 Position in m: [0 0.000394383]
 Network #1, Junction #1:
 Parent ID: 0
 Number of Children: 1
 Child #0: 2
 Pipe Length in m: 5.11241e-05
 Pipe Diameter in m: 3.11892e-05
 Pipe Angle in degrees: [81]
 Position in m: [7.99757e-06 0.000444878]
 Network #1, Junction #2:
 Parent ID: 1
 Number of Children: 1
 Child #0: 3
 Pipe Length in m: 5.87071e-05

38

 Pipe Diameter in m: 3.30425e-05
 Pipe Angle in degrees: [-56]
 Position in m: [4.08262e-05 0.000396207]
 Network #1, Junction #3:
 Parent ID: 2
 Number of Children: 1
 Child #0: 4
 Pipe Length in m: 0.000309549
 Pipe Diameter in m: 2.37547e-05
 Pipe Angle in degrees: [-27]
 Position in m: [0.000316636 0.000255675]
 Network #1, Junction #4:
 Parent ID: 3
 Number of Children: 1
 Child #0: 5
 Pipe Length in m: 4.08927e-05
 Pipe Diameter in m: 8.83812e-05
 Pipe Angle in degrees: [-8]
 Position in m: [0.000357131 0.000249984]

39

APPENDIX II

 The following is a sample of some important functions used
in the PMCFD code.

void simulate_networks_or_process_previous_simulations(string& decide, string&
user_fpath, string& path, string p_filename, string r_filename, string&
r_filepath)
{
 //VARIABLE DECLARATION
 bool valid=true, check=true;
 char choice1, choice2, choice3, choice4;
 /*EXE_PATH_LENGTH SUBJECT TO CHANGE BASED ON NUMBER OF CHARACTERS IN
 THIS PROGRAM'S NAME (INCLUDING UNDERSCORES AND THE .EXE EXTENSION) */
 int exe_path_length=16, path_storage_length;
 string path_storage, temp_ntype, temp_num, temp_nopv, temp_ptype, n="\n",
 u="_", s="\\", cp="Current path: ", pv="pv";

 //RETURN PATH TO USE FOR FILE WRITING
 char buffer[MAX_PATH];//always use MAX_PATH for filepaths
 GetModuleFileName(NULL,buffer,sizeof(buffer));
 path_storage=buffer;
 path_storage_length=path_storage.length();
 path=path_storage.substr(0,(path_storage_length-exe_path_length));

 //DECIDE WHETHER TO SIMULATE NEW NETWORKS OR PROCESS OLD SIMULATIONS
 while (valid)
 {
 cout << "\nPlease enter the number corresponding to the network code" <<
 " choice.\n";
 cout << "1: Simulate Networks\n" << "2: Process Previous Simulation " <<
 "Data\n";
 cin.get(choice1);
 if (choice1!='\n') cin.ignore();
 if (choice1!='1' && choice1!='2')
 {
 cout << "\nError, please try again.\n";
 }
 if (choice1=='1' || choice1=='2') valid=false;
 if (choice1=='1') decide="simulate";
 if (choice1=='2') decide="process";
 }

 //DETERMINE THE FILE FOLDER TO OPEN TO LOOK FOR THE PTRNs AND VTRNs
 if (decide=="process")
 {
 while (check)
 {
 valid=true;
 temp_ntype="@@@@@";
 temp_ptype="@@@@@";
 temp_num="##";
 temp_nopv="##";
 cout << "\nDETERMINE PATH TO PROCESSING_INFO.txt\n";
 cout << n+cp+path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv <<
 pv+s+p_filename+n;
 while (valid)
 {
 cout << "\nPlease enter the number corresponding to the " <<
 "platform type.\n";
 cout << "1: windows\n" << "2: linux\n";
 cin.get(choice2);
 if (choice2!='\n') cin.ignore();
 if (choice2!='1' && choice2!='2')
 {
 cout << "\nError, please try again.\n";
 }
 if (choice2=='1' || choice2=='2')
 valid=false;
 if (choice2=='1') temp_ptype="windows";
 if (choice2=='2') temp_ptype="linux";
 }
 valid=true;
 cout << n+cp+path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv <<
 pv+s+p_filename+n;

40

 while (valid)
 {
 cout << "\nPlease enter the number corresponding to the " <<
 "network type.\n";
 cout << "1: full\n" << "2: exitable\n" << "3: realization\n" <<
 "4: pipe\n";
 cin.get(choice3);
 if (choice3!='\n') cin.ignore();
 if (choice3!='1' && choice3!='2' && choice3!='3' &&
 choice3!='4')
 {
 cout << "\nError, please try again.\n";
 }
 if (choice3=='1' || choice3=='2' || choice3=='3' ||
 choice3=='4')
 valid=false;
 if (choice3=='1') temp_ntype="full";
 if (choice3=='2') temp_ntype="exitable";
 if (choice3=='3') temp_ntype="realization";
 if (choice3=='4') temp_ntype="pipe";
 }
 cout << n+cp+path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv <<
 pv+s+p_filename+n;
 cout << "\nPlease enter the network realization number (include " <<
 "'0' if <10).\n";
 cin >> temp_num;
 cin.ignore();
 cout << n+cp+path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv <<
 pv+s+p_filename+n;
 cout << "\nPlease enter the number of pressure variations.\n";
 cin >> temp_nopv;
 cin.ignore();
 cout << n+cp+path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv <<
 pv+s+p_filename+n;
 cout << "\nIs this the correct path (y/n)?\n";
 valid=true;
 while (valid)
 {
 cin.get(choice4);
 if (choice4!='\n') cin.ignore();
 if (choice4!='y' && choice4!='Y' && choice4!='n' &&
 choice4!='N')
 {
 cout << "\nError, please try again.\n";
 }
 if (choice4=='y' || choice4=='Y' || choice4=='n' ||
 choice4=='N')
 {
 valid=false;
 }
 if (choice4=='y' || choice4=='Y') check=false;
 }
 }
 user_fpath=path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv+pv+s+
 p_filename;
 r_filepath=path+temp_ptype+u+temp_ntype+temp_num+u+temp_nopv+pv+s+
 r_filename;
 }

 /*cout << "\nsimulate_networks_or_process_previous_simulations function " <<
 "successful.\n";*/
}

void get_info_for_network_simulation(string& i_filename, string& o_filename,
string& g_o_filename, string& ntype, string& num, string& P_L_V_M_T, string&
M_V, string& net_bat, string& time_log, string& F_S_F_C, int& N_o_C_P, string&
P_T, vector<string>& shell_script, vector<string>& hosts_filename, int& F_I,
int& N_o_P_V, double& F_I_P, double& F_M_U_R_F, double& F_P_U_R_F, int& F_M_D,
int& F_P_D, int& P_V_C, double& P_V_M, double& D_D, double& D_V, double& F_C_C,
string& F_T, double& M_E_A, double& F_S, char& O_C, string& L_F_N, string&
S_F_S)
{
 //VARIABLE DECLARATIONS
 bool check=true, valid=true, value_good;
 char choice, response, type_change, value_change[12];
 double value_convert2=0, MPV=0;
 int count, value_convert1=0;
 string spacesaver="montecarloincompressible1phaseflow_out.txt_", u="_",

41

 node, fmd, fpd, pvc, oc;

 //GET VALID FILE TYPE AND NUMBER AND ASK FOR CONFIRMATION OF FILENAME
 while (check)
 {
 cout << "\nPlease enter the number corresponding to the network " <<
 "type.\n";
 cout << "1: full\n" << "2: exitable\n" << "3: realization\n" <<
 "4: pipenetwork\n";
 cin.get(choice);
 if (choice!='\n') cin.ignore();
 if (choice!='1' && choice!='2' && choice!='3' && choice!='4')
 {
 cout << "\nError, please try again.\n";
 valid=false;
 }
 else
 {
 cout << "\nPlease enter the network file number (include '0' if <"
 << " 10).\n";
 cin >> num;
 cin.ignore();
 if (choice=='1')
 {
 ntype="full";
 i_filename=spacesaver+"full00"+num+".txt";
 }
 if (choice=='2')
 {
 ntype="exitable";
 i_filename=spacesaver+"exitable00"+num+".txt";
 }
 if (choice=='3')
 {
 ntype="realization";
 i_filename=spacesaver+"realization00"+num+".txt";
 }
 if (choice=='4')
 {
 ntype="pipe";
 i_filename="pipenetwork_"+num+".txt";
 }
 o_filename=ntype+num+".txt";
 g_o_filename="gambit_"+ntype+num+".txt";
 time_log="timelog_"+ntype+num+".txt";
 }
 while (valid)
 {
 cout << "\nThe file name to read is " << i_filename << endl;
 cout << "\nIs this correct y/n?\n";
 cin.get(response);
 if (response!='\n') cin.ignore();
 if (response=='y' || response=='Y')
 {
 valid=false;
 check=false;
 }
 else if (response=='n' || response=='N')
 {
 valid=false;
 check=true;
 }
 else cout << "\nError, please select y/n.\n";
 }
 valid=true;
 }

 //SET DEFAULT PARAMETERS
 M_V="yes";
 P_L_V_M_T="tetrahedral";
 O_C='4';
 oc="specified pressure tolerance of 1%";
 F_S_F_C="Linux - The Cluster";
 P_T="linux";
 F_I=3000;
 F_I_P=3e12;
 F_M_D=1;
 fmd="Second Order Upwind";
 F_M_U_R_F=0.25;

42

 F_P_D=12;
 fpd="Second Order";
 F_P_U_R_F=0.75;
 N_o_P_V=5;
 P_V_C=20;
 pvc="SIMPLE";
 P_V_M=3e11;
 D_D=998.2;
 D_V=0.001003;
 F_C_C=1e-005;
 F_T="water-liquid";
 M_E_A=10;
 F_S=1e-006;
 N_o_C_P=6;
 S_F_S="1e-006scale";

 //DISPLAY DEFAULTS AND ALLOW FOR MODIFICATIONS
 check=true;
 while (check)
 {
 cout << "\nELBOW NETWORK DEFAULTS\n\n";
 cout << "1) Mesh Volumes?: " << M_V << endl;
 cout << "2) Pipe Length Volume Mesh Type: " << P_L_V_M_T << endl;
 cout << "3) Optimization Criteria for reading .TRN files: " << O_C <<
 " - " << oc << endl;
 cout << "4) Fluent Script Files written for: " << F_S_F_C << endl;
 cout << "5) Number of Iterations in Fluent: " << F_I << endl;
 cout << "6) Network Inlet Pressure in Fluent: " << F_I_P << "Pa\n";
 cout << "7) Number of Pressure Variations to Apply in Fluent: " <<
 N_o_P_V << endl;
 cout << "8) Momentum Under-Relaxation factor in Fluent: " <<
 F_M_U_R_F << endl;
 cout << "9) Pressure Under-Relaxation factor in Fluent: " <<
 F_P_U_R_F << endl;
 cout << "A) Momentum Discretization Scheme in Fluent: " <<
 F_M_D << " - " << fmd << endl;
 cout << "B) Pressure Discretization Scheme in Fluent: " <<
 F_P_D << " - " << fpd << endl;
 cout << "C) Pressure Velocity Coupling in Fluent: " <<
 P_V_C << " - " << pvc << endl;
 cout << "D) Pressure Variation Multiplier in Fluent: " <<
 P_V_M << endl;
 cout << "E) Network Fluid Type: " << F_T << endl;
 cout << "F) Network Domain Density: " << D_D << "kg/m^3\n";
 cout << "G) Network Domain Viscosity: " << D_V << "N-s/m^2\n";
 cout << "H) Fluent Convergence Criteria: " << F_C_C << endl;
 cout << "I) Minimum Elbow Angle allowed in networks: " << M_E_A <<
 " degrees\n";
 cout << "J) Fluent scale: " << F_S << endl;
 if (F_S_F_C=="Linux - The Cluster")
 {
 cout << "K) Number of Cluster Processors to use per node: " <<
 N_o_C_P << endl;
 }
 cout << "\nWould you like to change any of these defaults (y/n)?\n";
 cin.get(response);
 if (response!='\n') cin.ignore();
 if (response=='n' || response=='N' || response=='y' || response=='Y')
 {
 valid=false;
 }
 while (valid)
 {
 cout << "\nError, please select y/n.\n";
 cin.get(response);
 if (response!='\n') cin.ignore();
 if (response=='n' || response=='N' || response=='y' ||
 response=='Y') valid=false;
 }
 if (response=='n' || response=='N') check=false;
 if (response=='y' || response=='Y')
 {
 valid=true;
 cout << "\nWhich default would you like to change ";
 if (F_S_F_C=="Linux - The Cluster") cout << "(1-K)?\n";
 if (F_S_F_C=="Windows - This Computer") cout << "(1-J)?\n";
 cin.get(response);
 if (response!='\n') cin.ignore();
 }

43

 while (valid)
 {
 if (response=='1' || response=='2' || response=='3' ||
 response=='4' || response=='5' || response=='6' ||
 response=='7' || response=='8' || response=='9' ||
 response=='A' || response=='B' || response=='C' ||
 response=='D' || response=='E' || response=='F' ||
 response=='G' || response=='H' || response=='I' ||
 response=='J' || response=='K')
 {
 valid=false;
 }
 else
 { cout << "Error, please select ";
 if (F_S_F_C=="Linux - The Cluster") cout << "(1-K)?\n";
 if (F_S_F_C=="Windows - This Computer") cout << "(1-J)?\n";
 cin.get(response);
 if (response!='\n') cin.ignore();
 }
 }
 if (response=='1')
 {
 cout << "\nDo you want to Mesh the Volumes (1 or 2)?\n";
 cout << "1) no\n";
 cout << "2) yes\n";
 cin.get(type_change);
 if (type_change!='\n') cin.ignore();
 if (type_change=='1')
 cout << "\nThe Fluent files will not be written!!!\n";
 }
 if (response=='2')
 {
 cout << "\nPlease choose an volume mesh type (1 or 2).\n";
 cout << "1) cooper\n";
 cout << "2) tetrahedral\n";
 cin.get(type_change);
 if (type_change!='\n') cin.ignore();
 }
 if (response=='3')
 {
 cout << "\nWhich optimization criteria would you like to use to " <<
 "read the .TRN files after simulation (1 through 4)?\n";
 cout << "1) continuity or xyz momentum residuals\n";
 cout << "2) xyz momentum residuals\n";
 cout << "3) continuity residuals\n";
 cout << "4) fluent inlet and outlet pressures are within 1% of" <<
 " their specified values\n";
 cin.get(type_change);
 if (type_change!='\n') cin.ignore();
 }
 if (response=='4')
 {
 cout << "\nWhich platform would you like the Fluent Script Files" <<
 " written for (1 or 2)?\n";
 cout << "1) Linux - The Cluster\n";
 cout << "2) Windows - This Computer\n";
 cin.get(type_change);
 if (type_change!='\n') cin.ignore();
 }
 if (response=='E')
 {
 cout << "\nWhich fluid type would you like to use in Fluent " <<
 "(1 through 3)?\n";
 cout << "1) water-liquid\n";
 cout << "2) water-vapor\n";
 cout << "3) air\n";
 cin.get(type_change);
 if (type_change!='\n') cin.ignore();
 }
 if (response=='J')
 {
 cout << "\nWhat scale would you like use in Fluent (1 through " <<
 "3)?\n";
 cout << "1) 1e-004\n";
 cout << "2) 1e-005\n";
 cout << "3) 1e-006\n";
 cin.get(type_change);
 if (type_change!='\n') cin.ignore();
 }

44

 if (response=='5' || response=='6' || response=='7' || response=='8' ||
 response=='9' || response=='A' || response=='B' || response=='C' ||
 response=='D' || response=='F' || response=='G' || response=='H' ||
 response=='I' || response=='K')
 {
 value_good=true;
 count=0;
 MPV=F_I_P/N_o_P_V;
 if (response=='5')
 {
 cout << "\nHow many iterations would you like to use in " <<
 "Fluent (>0)?\n";
 }
 if (response=='6')
 {
 cout << "\nWhat Inlet Pressure (Pa) would you like to use in" <<
 " Fluent (>0)?\n";
 }
 if (response=='7')
 {
 cout << "\nHow many Pressure Variations would you like to " <<
 "use in Fluent (better curve fits are given for 5+ " <<
 "variations)?\n";
 }
 if (response=='8')
 {
 cout << "\nWhat momentum under-relaxation factor would you " <<
 "like to use in Fluent (must be between 0 and 1)?\n";
 }
 if (response=='9')
 {
 cout << "\nWhat pressure under-relaxation factor would you " <<
 "like to use in Fluent (must be between 0 and 1)?\n";
 }
 if (response=='A')
 {
 cout << "\nWhat momentum discretization scheme would you " <<
 "like to use in Fluent (enter the appropriate number)?\n";
 cout << "1 - Second Order Upwind\n";
 cout << "6 - Third-Order MUSCL\n";
 }
 if (response=='B')
 {
 cout << "\nWhat pressure discretization scheme would you " <<
 "like to use in Fluent (enter the appropriate number)?\n";
 cout << "10 - Standard\n";
 cout << "12 - Second Order\n";
 }
 if (response=='C')
 {
 cout << "\nWhat pressure velocity coupling would you like " <<
 "to use in Fluent (enter the appropriate number)?\n";
 cout << "20 - SIMPLE\n";
 cout << "21 - SIMPLEC\n";
 }
 if (response=='D')
 {
 cout << "\nWhat pressure variation multiplier would you like" <<
 " to use in Fluent (must not exceed " << MPV << ")?\n";
 }
 if (response=='F')
 {
 cout << "\nWhat fluid density (kg/m^3) would you like to use" <<
 " (must be between 0 and 13600)?\n";
 }
 if (response=='G')
 {
 cout << "\nWhat fluid viscosity (N-s/m^2) would you like to " <<
 "use (must be between 0 and 1)?\n";
 }
 if (response=='H')
 {
 cout << "\nWhat Convergence criteria would you like to use " <<
 "in Fluent (must be between 0.000001 and 0.01)?\n";
 }
 if (response=='I')
 {
 cout << "\nWhat minimum angle (degrees) would you like to " <<
 "allow in the networks (must be between 10 and 90)?\n";

45

 }
 if (response=='K')
 {
 cout << "\nHow many processors would you like to use on the " <<
 "cluster per node(1 to 6)?\n";
 }
 cin >> value_change;
 cin.ignore(12,'\n');
 if (value_change[0]=='-') value_good=false;
 while (value_good)
 {
 if ((response=='5' || response=='7' || response=='A' ||
 response=='B' || response=='C' || response=='K') &&
 isdigit(value_change[count])) count++;
 else if ((response=='6' || response=='8' || response=='9' ||
 response=='D' || response=='F' || response=='G' ||
 response=='H' || response=='I') &&
 (isdigit(value_change[count]) || value_change[count]=='.'))
 {
 count++;
 }
 else value_good=false;
 if (count>strlen(value_change)-1) value_good=false;
 }
 if (count>strlen(value_change)-1 && (response=='5' ||
 response=='7' || response=='A' || response=='B' || response=='C' ||
 response=='K')) value_convert1=atoi(value_change);
 if (count>strlen(value_change)-1 && (response=='6' ||
 response=='8' || response=='9' || response=='D' || response=='F' ||
 response=='G' || response=='H' || response=='I'))
 {
 value_convert2=atof(value_change);
 }
 }
 if (response=='1' || response=='2' || response=='3' || response=='4' ||
 response=='5' || response=='6' || response=='7' || response=='8' ||
 response=='9' || response=='A' || response=='B' || response=='C' ||
 response=='D' || response=='E' || response=='F' || response=='G' ||
 response=='H' || response=='I' || response=='J' || response=='K')
 {
 valid=true;
 }
 while (valid)
 {
 if (response=='1' && (type_change=='1' || type_change=='2'))
 {
 if (type_change=='1') M_V="no";
 if (type_change=='2') M_V="yes";
 }
 else if (response=='2' && (type_change=='1' || type_change=='2'))
 {
 if (type_change=='1') P_L_V_M_T="tetrahedral";
 if (type_change=='2') P_L_V_M_T="cooper";
 }
 else if (response=='3' && (type_change=='1' || type_change=='2' ||
 type_change=='3' || type_change=='4'))
 {
 if (type_change=='1')
 {
 oc="continuity or xyz momentum residuals";
 O_C='1';
 }
 if (type_change=='2')
 {
 oc="xyz momentum residuals";
 O_C='2';
 }
 if (type_change=='3')
 {
 oc="continuity residuals";
 O_C='3';
 }
 if (type_change=='4')
 {
 oc="specified pressure tolerance of 1%";
 O_C='4';
 }
 }
 else if (response=='4' && (type_change=='1' || type_change=='2'))

46

 {
 if (type_change=='1')
 {
 F_S_F_C="Linux - The Cluster";
 P_T="linux";
 }
 if (type_change=='2')
 {
 F_S_F_C="Windows - This Computer";
 P_T="windows";
 }
 }
 else if (response=='5' && count>strlen(value_change)-1 &&
 value_convert1>0) F_I=value_convert1;
 else if (response=='6' && count>strlen(value_change)-1 &&
 value_convert2>0)
 {
 F_I_P=value_convert2;
 P_V_M=0.5*F_I_P/N_o_P_V;
 }
 else if (response=='7' && count>strlen(value_change)-1 &&
 value_convert1>=1)
 {
 N_o_P_V=value_convert1;
 MPV=F_I_P/N_o_P_V;
 if (0.5*MPV>P_V_M) P_V_M=0.5*MPV;
 }
 else if ((response=='8' || response=='9' || response=='G') &&
 count>strlen(value_change)-1 &&
 value_convert2>0 && value_convert2<=1)
 {
 if (response=='8') F_M_U_R_F=value_convert2;
 if (response=='9') F_P_U_R_F=value_convert2;
 if (response=='G') D_V=value_convert2;
 }
 else if (response=='A' && count>strlen(value_change)-1 &&
 (value_convert1==1 || value_convert1==6))
 {
 F_M_D=value_convert1;
 if (F_M_D==1) fmd="Second Order Upwind";
 if (F_M_D==6) fmd="Third-Order MUSCL";
 }
 else if (response=='B' && count>strlen(value_change)-1 &&
 (value_convert1==10 || value_convert1==12))
 {
 F_P_D=value_convert1;
 if (F_P_D==10) fpd="Standard";
 if (F_P_D==12) fpd="Second Order";
 }
 else if (response=='C' && count>strlen(value_change)-1 &&
 (value_convert1==20 || value_convert1==21))
 {
 P_V_C=value_convert1;
 if (P_V_C==20) pvc="SIMPLE";
 if (P_V_C==21) pvc="SIMPLEC";
 }
 else if (response=='D' && count>strlen(value_change)-1 &&
 value_convert2>0 && value_convert2<=MPV) P_V_M=value_convert2;
 else if (response=='E' && (type_change=='1' || type_change=='2' ||
 type_change=='3'))
 {
 if (type_change=='1')
 {
 F_T="water-liquid";
 D_D=998.2;
 D_V=1.003e-03;
 }
 if (type_change=='2')
 {
 F_T="water-vapor";
 D_D=0.5542;
 D_V=1.34e-05;
 }
 if (type_change=='3')
 {
 F_T="air";
 D_D=1.225;
 D_V=1.7894e-05;
 }

47

 }
 else if (response=='F' && count>strlen(value_change)-1 &&
 value_convert2>0 && value_convert2<=13600) D_D=value_convert2;
 else if (response=='H' && count>strlen(value_change)-1 &&
 value_convert2>=1e-006 && value_convert2<=1e-002)
 {
 F_C_C=value_convert2;
 }
 else if (response=='I' && count>strlen(value_change)-1 &&
 value_convert2>=10 && value_convert2<=90) M_E_A=value_convert2;
 else if (response=='J' && (type_change=='1' || type_change=='2' ||
 type_change=='3'))
 {
 if (type_change=='1')
 {
 F_S=1e-004;
 S_F_S="1e-004scale";
 }
 if (type_change=='2')
 {
 F_S=1e-005;
 S_F_S="1e-005scale";
 }
 if (type_change=='3')
 {
 F_S=1e-006;
 S_F_S="1e-006scale";
 }
 }
 else if (response=='K' && count>strlen(value_change)-1 &&
 value_convert1<=6 && value_convert1>0) N_o_C_P=value_convert1;
 else cout << "\nThe entry was invalid. Please try again\n\n";
 valid=false;
 }
 valid=true;
 }

 //NAME THE NETWORK BATCH FILE & SHELL SCRIPT FILE ACCORDING TO TYPE
 net_bat=P_T+"_batch_"+ntype+num+".bat";
 if (P_T=="linux")
 {
 cout << "You have selected the cluster (linux) to run the " <<
 "simulations, please specify a folder name to be used on the cluster" <<
 " (e.g. 12point5percentporosity)\n";
 getline (cin,L_F_N,'\n');
 for (int i=0; i<3; i++)
 {
 //CONVERT NODE NUMBER INTO STRING
 ostringstream nodeoutstr;
 nodeoutstr << i;
 node="node"+nodeoutstr.str();
 shell_script[i]=node+"_shell_script.sh";
 hosts_filename[i]=node+"_fluent_hosts.hosts";
 }
 }

 //cout << "\nget_simulation_info function successful.\n";
}

void calculate_junction_coordinates(int T_N_o_N, int T_N_o_J, vector<int> N_J,
vector<double> S_P_L, vector<double> S_P_D, vector<double> C_E_A, vector<double>
S_P_R, vector<double> E_R, vector<double> D_A, vector<double>& S_X_C,
vector<double>& S_Y_C, vector<double>& M_X_C, vector<double>& M_Y_C,
vector<double>& E_X_C, vector<double>& E_Y_C, vector<int>& C_S_N,
vector<double>& Ac_D_L_x, double& Av_D_L_x, double& T_D_L_x, int S_N_N, int
E_N_N, double F_S)

{
 //VARIABLE DECLARATIONS AND INITIALIZATION
 int CNoJ=0, NNoJ=0, CToJ=0, jn, start_angle_quad, mid_angle_quad,
 end_angle_quad, counter=0;
 double start_angle, mid_angle, end_angle, act_start_angle, act_mid_angle,
 act_end_angle, cur_x, cur_y, start_radius, end_radius, length, eoc_length,
 domain_start, domain_end, numnet=E_N_N-S_N_N+1, ZT, pi;
 ZT=1e-10;
 pi=atan(1.0)*4;
 T_D_L_x=0;

48

 //CALCULATE ALL COORDINATES FOR EACH JUNCTION IN ALL NETWORKS
 for (int i=0; i<T_N_o_N; i++)
 {
 C_S_N[i]=counter;
 NNoJ=N_J[i];
 CToJ=CNoJ+NNoJ;
 cur_x=0;
 cur_y=0;
 for (int j=CNoJ; j<CToJ-1; j++)
 {
 start_angle=C_E_A[j];
 end_angle=C_E_A[j+1];
 mid_angle=(start_angle+end_angle)/2;
 start_radius=S_P_R[j];
 end_radius=S_P_R[j+1];
 length=S_P_L[j+1];
 eoc_length=0.25*S_P_L[j+1];//must equal E_L in function above
 //CALCULATE ELBOW AND SURFACE PLANE COORDINATES FOR UNEQUAL ANGLES
 if (start_angle!=end_angle)
 {
 //DETERMINE QUADRANTS FOR START, MIDDLE, & END ANGLES
 if (start_angle<=0 && mid_angle<0 && end_angle<0 &&
 start_angle>end_angle)
 {
 start_angle_quad=1;
 mid_angle_quad=1;
 end_angle_quad=1;
 }
 if (start_angle>0 && mid_angle>0 && end_angle>=0 &&
 start_angle>end_angle)
 {
 start_angle_quad=2;
 mid_angle_quad=2;
 end_angle_quad=2;
 }
 if (start_angle<0 && mid_angle<0 && end_angle<=0 &&
 start_angle<end_angle)
 {
 start_angle_quad=3;
 mid_angle_quad=3;
 end_angle_quad=3;
 }
 if (start_angle>=0 && mid_angle>0 && end_angle>0 &&
 start_angle<end_angle)
 {
 start_angle_quad=4;
 mid_angle_quad=4;
 end_angle_quad=4;
 }
 if (start_angle>0 && mid_angle>0 && end_angle<0)
 {
 start_angle_quad=2;
 mid_angle_quad=2;
 end_angle_quad=1;
 }
 if (start_angle>0 && mid_angle<=0 && end_angle<0)
 {
 start_angle_quad=2;
 mid_angle_quad=1;
 end_angle_quad=1;
 }
 if (start_angle<0 && mid_angle<0 && end_angle>0)
 {
 start_angle_quad=3;
 mid_angle_quad=3;
 end_angle_quad=4;
 }
 if (start_angle<0 && mid_angle>=0 && end_angle>0)
 {
 start_angle_quad=3;
 mid_angle_quad=4;
 end_angle_quad=4;
 }
 //DETERMINE ACTUAL START, MIDDLE, & END ANGLES
 if (start_angle_quad==1 || start_angle_quad==2)
 act_start_angle=(start_angle+90)*pi/180;
 if (start_angle_quad==3 || start_angle_quad==4)
 act_start_angle=(start_angle+270)*pi/180;

49

 if (mid_angle_quad==1 || mid_angle_quad==2)
 act_mid_angle=(mid_angle+90)*pi/180;
 if (mid_angle_quad==3 || mid_angle_quad==4)
 act_mid_angle=(mid_angle+270)*pi/180;
 if (end_angle_quad==1 || end_angle_quad==2)
 act_end_angle=(end_angle+90)*pi/180;
 if (end_angle_quad==3 || end_angle_quad==4)
 act_end_angle=(end_angle+270)*pi/180;
 //DETERMINE ELBOW AND SURFACE PLANE VERTICES COORDINATES
 S_X_C[counter]=cur_x;
 S_Y_C[counter]=cur_y;
 M_X_C[counter]=cur_x+E_R[j]*(cos(act_mid_angle)-
 cos(act_start_angle));
 M_Y_C[counter]=cur_y+E_R[j]*(sin(act_mid_angle)-
 sin(act_start_angle));
 E_X_C[counter]=cur_x+E_R[j]*(cos(act_end_angle)-
 cos(act_start_angle));
 E_Y_C[counter]=cur_y+E_R[j]*(sin(act_end_angle)-
 sin(act_start_angle));
 //DETERMINE X DOMAIN LENGTH
 if (j==CNoJ) domain_start=S_X_C[counter];
 //CORRECT COORDINATES BELOW ZERO TOLERANCE
 if (fabs(S_X_C[counter])<ZT) S_X_C[counter]=0;
 if (fabs(S_Y_C[counter])<ZT) S_Y_C[counter]=0;
 if (fabs(M_X_C[counter])<ZT) M_X_C[counter]=0;
 if (fabs(M_Y_C[counter])<ZT) M_Y_C[counter]=0;
 if (fabs(E_X_C[counter])<ZT) E_X_C[counter]=0;
 if (fabs(E_Y_C[counter])<ZT) E_Y_C[counter]=0;
 //UPDATE POSITION & COUNTER
 cur_x=E_X_C[counter];
 cur_y=E_Y_C[counter];
 counter++;
 }
 //CALCULATE EXPANSION OR CONTRACTION AND SURFACE PLANE COORDINATES
 //FOR EQUAL ANGLES
 if (start_angle==end_angle)
 {
 //DETERMINE ACTUAL ANGLES FOR TOP & BOTTOM VERTICES
 if (end_angle<=0) act_end_angle=(end_angle+90)*pi/180;
 if (end_angle>0) act_end_angle=(end_angle-90)*pi/180;
 //DETERMINE EOC PIPE AND SURFACE PLANE VERTICES COORDINATES
 S_X_C[counter]=cur_x;
 S_Y_C[counter]=cur_y;
 M_X_C[counter]=cur_x+0.5*eoc_length*cos(end_angle*pi/180);
 M_Y_C[counter]=cur_y+0.5*eoc_length*sin(end_angle*pi/180);
 E_X_C[counter]=cur_x+eoc_length*cos(end_angle*pi/180);
 E_Y_C[counter]=cur_y+eoc_length*sin(end_angle*pi/180);
 //DETERMINE X DOMAIN LENGTH
 if (j==CNoJ) domain_start=S_X_C[counter];
 //CORRECT COORDINATES BELOW ZERO TOLERANCE
 if (fabs(S_X_C[counter])<ZT) S_X_C[counter]=0;
 if (fabs(S_Y_C[counter])<ZT) S_Y_C[counter]=0;
 if (fabs(M_X_C[counter])<ZT) M_X_C[counter]=0;
 if (fabs(M_Y_C[counter])<ZT) M_Y_C[counter]=0;
 if (fabs(E_X_C[counter])<ZT) E_X_C[counter]=0;
 if (fabs(E_Y_C[counter])<ZT) E_Y_C[counter]=0;
 //UPDATE POSITION & COUNTER
 cur_x=E_X_C[counter];
 cur_y=E_Y_C[counter];
 counter++;
 }
 //DETERMINE PIPE LENGTH AND SURFACE PLANE VERTICES COORDINATES
 if (end_angle<=0) act_end_angle=(end_angle+90)*pi/180;
 if (end_angle>0) act_end_angle=(end_angle-90)*pi/180;
 S_X_C[counter]=cur_x;
 S_Y_C[counter]=cur_y;
 M_X_C[counter]=cur_x+0.5*length*cos(end_angle*pi/180);
 M_Y_C[counter]=cur_y+0.5*length*sin(end_angle*pi/180);
 E_X_C[counter]=cur_x+length*cos(end_angle*pi/180);
 E_Y_C[counter]=cur_y+length*sin(end_angle*pi/180);
 //DETERMINE X DOMAIN LENGTH
 if (j==CToJ-2) domain_end=E_X_C[counter];
 //CORRECT COORDINATES BELOW ZERO TOLERANCE
 if (fabs(S_X_C[counter])<ZT) S_X_C[counter]=0;
 if (fabs(S_Y_C[counter])<ZT) S_Y_C[counter]=0;
 if (fabs(E_X_C[counter])<ZT) E_X_C[counter]=0;
 if (fabs(E_Y_C[counter])<ZT) E_Y_C[counter]=0;
 //UPDATE POSITION & COUNTER
 cur_x=E_X_C[counter];

50

 cur_y=E_Y_C[counter];
 counter++;
 }
 //CALCULATE ACTUAL DOMAIN LENGTH ALONG THE X DIRECTION INCLUDING SCALING
 Ac_D_L_x[i]=F_S*domain_end-domain_start;
 CNoJ+=N_J[i];
 }

 //CALCULATE AVERAGE DOMAIN LENGTH FOR NETWORKS SELECTED
 for (int i=S_N_N; i<=E_N_N; i++) T_D_L_x+=Ac_D_L_x[i];
 Av_D_L_x=T_D_L_x/numnet;

 //cout << "\ncalculate_junction_coordinates function successful.\n";
}

void calculate_final_results(int S_N_N, int E_N_N, vector<double> R_N,
vector<double>& R_N_A, vector<double>& R_N_S_D, vector<double> P_D_A, double&
T_A, vector<double> T_V_F_R, vector<double>& F_V, vector<double>& P_G, double&
F_C, double& F_N_P, double Av_D_L_x, vector<double> N_O_P, vector<double> N_I_P,
vector<double> A_V_F_R, double& P_C_C, double D_D, double D_V, double& P_R_C_1,
double& P_R_C_2, double& P_R_C_3, int N_o_P_V, vector<double>& R_N_I_A, double&
L_R_C_1, double& L_R_C_2, double& L_C_C, double& D_N_P, double& I_P_D,
vector<bool> N_S)
{
 //VARIABLE DECLARATIONS I
 double pi=atan(1.0)*4, nopsum, nipsum, avfrsum, rnsum, rndev_pow2_sum,
 pda_sum=0, pda_pow2_sum=0, avgnop, avgnip;
 int counter=S_N_N*N_o_P_V, numnet=E_N_N-S_N_N+1, badnet;

 for (int i=0; i<N_o_P_V; i++)
 {
 //INITIALIZE BAD NETWORK, SUM, AND AVERAGE VARIABLES
 badnet=0;
 nopsum=0;
 nipsum=0;
 avfrsum=0;
 rnsum=0;
 avgnop=0;
 avgnip=0;
 rndev_pow2_sum=0;
 //SUM THE VOLUME FLOW RATES, DIAMETER AVERAGES, PRESSURES, AND REYNOLDS
 for (int j=S_N_N; j<=E_N_N; j++)
 {
 counter=i+j*N_o_P_V;
 if (N_S[counter])
 {
 nopsum+=N_O_P[counter];
 nipsum+=N_I_P[counter];
 avfrsum+=A_V_F_R[counter];
 rnsum+=R_N[counter];
 if (i==0)
 {
 pda_pow2_sum+=pow(P_D_A[j], 2);
 pda_sum+=P_D_A[j];
 }
 }
 else badnet++;
 }
 //CALCULATE REYNOLDS VALUES, PRESSURE GRADIENT AND FILTRATION VELOCITY
 avgnip=nipsum/(numnet-badnet);
 avgnop=nopsum/(numnet-badnet);
 if (i==0) I_P_D=pda_sum/(numnet-badnet);
 R_N_A[i]=rnsum/(numnet-badnet);
 for (int j=S_N_N; j<=E_N_N; j++)
 {
 counter=i+j*N_o_P_V;
 if (R_N[counter]>0 && N_S[counter])
 {
 rndev_pow2_sum+=pow((R_N[counter]-R_N_A[i]), 2);
 }
 }
 if ((numnet-badnet)>1)
 {
 R_N_S_D[i]=sqrt(rndev_pow2_sum/(numnet-badnet-1));
 }
 else
 {
 R_N_S_D[i]=0;

51

 cout << "Standard deviation of Reynolds number could not be " <<
 "calculated for pressure variation " << i+1 << " due to lack of " <<
 "two or more network values\n";
 }
 P_G[i]=(avgnip-avgnop)/Av_D_L_x;
 T_A=pi/4*pda_pow2_sum;
 T_V_F_R[i]=avfrsum;
 F_V[i]=T_V_F_R[i]/T_A;
 R_N_I_A[i]=(D_D/D_V)*F_V[i]*I_P_D;
 }

 //VARIABLE DECLARATIONS II
 double a0=0, a1=0, a2=0, b00=0, b01=0, b02=0, b10=0, b11=0, b12=0, b20=0,
 b21=0, b22=0, c0=0, c1=0, c2=0, detb=0, detb0=0, detb1=0, detb2=0, x_sum=0,
 y_sum=0, prod_xy_sum=0, x_pow2_sum=0, y_pow2_sum=0, x_sum_pow2=0,
 y_sum_pow2=0, fv_sum=0, fv_pow2_sum=0, fv_pow3_sum=0, fv_pow4_sum=0,
 pg_sum=0, prod_fv_pg_sum=0, prod_fv_pow2_pg_sum=0, r_pow2, S_t=0,
 S_r_linear=0, S_r_polynomial=0, x_avg, y_avg;

 //DETERMINE FORCHHEIMER EQUATION FIT AND CORRELATION COEFFICIENTS
 for (int i=0; i<N_o_P_V; i++)
 {
 x_sum+=F_V[i];
 y_sum+=P_G[i];
 prod_xy_sum+=F_V[i]*P_G[i];
 x_pow2_sum+=pow(F_V[i], 2);
 y_pow2_sum+=pow(P_G[i], 2);
 fv_sum+=F_V[i];
 fv_pow2_sum+=pow(F_V[i], 2);
 fv_pow3_sum+=pow(F_V[i], 3);
 fv_pow4_sum+=pow(F_V[i], 4);
 pg_sum+=P_G[i];
 prod_fv_pg_sum+=F_V[i]*P_G[i];
 prod_fv_pow2_pg_sum+=pow(F_V[i], 2)*P_G[i];
 }
 x_avg=x_sum/N_o_P_V;
 x_sum_pow2=pow(x_sum, 2);
 y_avg=y_sum/N_o_P_V;
 y_sum_pow2=pow(y_sum, 2);
 a1=(N_o_P_V*prod_xy_sum-x_sum*y_sum)/(N_o_P_V*x_pow2_sum-x_sum_pow2);
 a0=y_avg-a1*x_avg;
 L_R_C_1=a0;
 L_R_C_2=a1;
 b00=N_o_P_V;
 b01=fv_sum;
 b02=fv_pow2_sum;
 b10=fv_sum;
 b11=fv_pow2_sum;
 b12=fv_pow3_sum;
 b20=fv_pow2_sum;
 b21=fv_pow3_sum;
 b22=fv_pow4_sum;
 c0=pg_sum;
 c1=prod_fv_pg_sum;
 c2=prod_fv_pow2_pg_sum;
 detb=b00*(b11*b22-b12*b21)+b01*(b12*b20-b10*b22)+b02*(b10*b21-b11*b20);
 detb0=c0*(b11*b22-b12*b21)+b01*(b12*c2-c1*b22)+b02*(c1*b21-b11*c2);
 detb1=b00*(c1*b22-b12*c2)+c0*(b12*b20-b10*b22)+b02*(b10*c2-c1*b20);
 detb2=b00*(b11*c2-c1*b21)+b01*(c1*b20-b10*c2)+c0*(b10*b21-b11*b20);
 a0=detb0/detb;
 a1=detb1/detb;
 a2=detb2/detb;
 P_R_C_1=a0;
 P_R_C_2=a1;
 P_R_C_3=a2;
 for (int i=0; i<N_o_P_V; i++)
 {
 S_t+=pow((P_G[i]-y_avg), 2);
 S_r_linear+=pow((P_G[i]-L_R_C_1-L_R_C_2*F_V[i]), 2);
 S_r_polynomial+=pow((P_G[i]-P_R_C_1-P_R_C_2*F_V[i]-P_R_C_3*
 pow(F_V[i], 2)), 2);
 }
 r_pow2=(S_t-S_r_linear)/S_t;
 L_C_C=r_pow2;
 r_pow2=(S_t-S_r_polynomial)/S_t;
 P_C_C=r_pow2;

 //DETERMINE FORCHHEIMER COEFFICIENT AND PERMEABILITIES
 D_N_P=D_V/L_R_C_2;

52

 F_N_P=D_V/P_R_C_2;
 F_C=P_R_C_3/D_D;

 //cout << "\ncalculate_final_results function successful.\n";
}

53

APPENDIX III

 The following is a results file written by PMCFD to model
Berea sandstone with 5 pressure variations and a porosity of
10%. The optimized transcript file data has been omitted.

RESULTS for realization00_5pv

 Inlet Pressure: 3e+012Pa
 Average Domain Length: 0.00258851m
Idealized Pipe Diameter: 5.18219e-005m

Outlet Pressure(Pa) dP/dx(Pa/m) u_f(m/s) Avg. Reynolds Reynolds S.D. Ideal Avg. Reynolds
 2.7e+012 1.18643e+014 4.55766 228.53 287.952 235.056
 2.4e+012 2.30341e+014 3.60164 182.925 181.265 185.751
 2.1e+012 3.47741e+014 2.27356 129.872 116.954 117.256
 1.8e+012 4.6228e+014 3.14493 215.344 275.667 162.196
 1.5e+012 5.77743e+014 2.27088 129.765 152.441 117.118

Linear Equation General Form: a0+a1*x

Linear Regression Fit Coefficients
a0= 8.39465e+014 a1=-1.55254e+014 r^2= 0.678645

Darcy's Law General Form: -dP/dx=(mu/kappa)u_f

User Specified Value
 mu= 0.001003N-s/m^2

Calculated Value
kappa=-6.46037e-018m^2
 = -0.637589mD

Second Order Polynomial General Form: a0+a1*x+a2*x^2

Polynomial Regression Fit Coefficients
a0= 4.2062e+014 a1= 1.138e+014 a2=-4.02132e+013 r^2= 0.700763

Forchheimer Equation General Form: -dP/dx=(mu/kappa)u_f+(rho*beta)u_f^2

User Specified Values
 rho= 998.2kg/m^3 mu= 0.001003N-s/m^2

Calculated Values
kappa= 8.81371e-018m^2 beta=-4.02857e+010m^-1
 = 0.869845mD

