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ABSTRACT OF THESIS 

University of Central Oklahoma 

Edmond, Oklahoma 

NAME:   Ivanov, Todor 

TITLE OF THESIS: FLOWS IN A ROTATING CYLINDER 

DIRECTOR OF THESIS: David L. Martin 

PAGES: 66 

ABSTRACT: 

The purpose of this work is to focus on studying Görtler vortices inside a 

rotating cylinder.   The literature review chapter, (Chapter 1), gives us insight 

from Görtler and Hämmerlin on the dominant - centrifugal and viscous forces.  

Their theoretical work inspired the hypothesis of this paper that for a fixed 

volume-fill, and diameter cylinder, there is a discrete set of tangential speeds of 

rotation when the Görtler vortices become axially stable. Or, equivalently, that 

the down-wash regions of the vortices do not move along the z-axes .  In the 

Findings chapter we will discuss what we have discovered on how the coriolis 

effects shape the flow front for a cylinder with a low fill-volume fraction.  The 

gravitational effects from the suspended over the boundary layer pool can not 

be ignored for cylinder fill-volumes of 7/10, 8/10 and 9/10 fill.  The axial  end 

effects are linked to the existence of a Gibbs phenomenon in a whole section in 

Chapter 3.  

 Two flow phenomena are described in the literature: 
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o Hygrocysts-  sheets of water that form along the z-axes [2]  

o “Shark teeth”- for a low fill volume fraction, the flow front takes on 

periodically varying in axial direction angular values. [14] 

We will link the above two flow phenomena to a common underlying cause: 

the Görtler vortices. The first resulting from strong vortices and the second 

from a coriolis force.  We will introduce the hypothesis that for some values of 

the tangential speed of rotation the vortices stop shifting axially and become 

axially fixed (along the z-axis).  That makes the axially unstable vortices the far 

more common event in the domain of tangential speeds for a finite rotating 

cylinder.   

The Literature Review (Chapter 1) answers the question if there is a lower 

limit on the tangential speed of rotation for the vortices first to appear.  This is 

the main question answered by the Hämmerlin’s 1955 paper.  It will show that 

the vortices  exist even for very low free stream velocity (Görtler number).  The 

overview of Hämmerlin’s breakthrough solution on the Görtler problem is 

covered exclusively in Chapter 1 since it is the most detailed theoretical work 

concerning the vortices (according to Görtler ).  Hämmerlin solves a system of 

coupled non-adjoint differential equations for the value of a common parameter.  

That parameter describes when the two coupled equations have a joint solution.  

The algorithm is by H. Wielandt from 1944 [7].  The algorithm gives the 

common parameter as a function of the other dimensionless number in the 

system, Eqs. 28, 29.  The graph of the Görtler number as a function of the 

other dimensionless number is on Figure 9.  The three curves on that figure 
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result from different levels in the iteration algorithm.  At the end Hämmerlin 

shows that the parameter does not take on a positive local minimum within the 

approximations that he used to simplify the original Navier-Stokes’ equations.  

He also includes a section on why the parameter (Görtler number) cannot take 

on negative values.  

We then will use the air bubbles that incorporate in the water to visualize 

and record the action of the vortices under the surface.  We will find 

experimentally that axially stable vortices exist for a given: cylinder curvature, 

tangential speed of rotation, and fill-volume fraction.  There is a whole section 

in  Chapter 3 on the gravitational effects, of the suspended pool of water over 

the boundary layer. 

This paper will link the vortices to a coriolis force that determines the shape 

of the flow front for low fill-volume fractions, Chapter 3.  Hämmerlin’s work for 

a flow over a concave wall is also valid for the case of an axially infinite cylinder, 

compare with Bottaro [16].  We will show experimentally that “Hygrocysts”, or 

sheets of water originate from the down-wash regions.  

I want to thank Dr. Martin for his interest in the work and willingness to work 

with me. 
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1.  LITERATURE REVIEW  

Hygrocysts 

According to Balmer the phenomenon of forming of vertical discs of liquid 

in a horizontally rotating cylinder has been overlooked [2].  He reports that his 

paper is the first study on the subject.  The author gives it the name 

“Hygrocyst”. 

Görtler Vortices 

Here is the form of the Görtler number: Gö ൌ ܴ݁ටఋ

ோ
, ሺܴ݁ ൌ ௎బఋ 

௩
ሻ, where ߜ is 

the boundary layer thickness,  ݒ is the kinematic viscosity, and ܴ is the radius 

of curvature.  Zebib and Bottaro in their 1993 paper expanded the scope of the 

computations to include also a coriolis term from the Navier-Stokes equations 

in their calculations [16].  Their solution method is more contemporary yet it 

lacks the physical insight that gives the work of a doctorial student of Görtler 

by the name of G. Hämmerlin that was also presented to the German Academy 

of Sciences personally by H. Görtler.   

For the case of pure Görtler vortices (influenced only by viscous and 

centrifugal forces) the ratio of boundary layer thickness to radius of curvature 

of the cylinder has to be very small.  The centrifugal and viscous forces 

dominate the flow.  Hämmerlin limited the four Navier-Stokes equations to only 

two and forced both of the equations to depend on a single parameter.  Görtler 
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created the Green’s functions that transformed the system of non-adjoint 

coupled differential equations into a system of coupled integral equations.   

There is also a discussion in Chapter 3 of this paper on the coriolis 

effects of the vortices.  It was inspired by the coriolis term that Zebib and 

Bottaro included in their paper [16] and a picture by Thoroddsen showing the 

effects of higher dynamic viscosity on the shape of the flow front, Figure 33.  

The reason for the review of Hämmerlin’s paper is Görtler‘s 1955 paper 

highlighting the need for studying these very destructive vortices, where he also  

recommended the work of Günter Hämmerlin [8,10].  There was a very large 

discrepancy (orders of magnitude difference) between the results of Görtler and 

Meksyn [pg. 287, 10].  Meksyn’s error in solving a system of coupled differential 

equations was in choosing a constant velocity profile that erases the RHS of a 

differential equaton, Eq. (25), [10].  The error is magnified by adding a third 

equation that is simply a derivative of Eq. (26), [10].  Meksyn’s  final results 

differed orders of magnitude from the Görtler’s.   Hämmerlin’s paper in 1955 

settled this dispute by showing that a system of coupled differential equations 

where one depends on a parameter and the eigenvalues of that parameter are 

the topic of study, then the other of the coupled differential equations must be 

forced to also depend on the same parameter.  He uses a major solution 

algorithm by H. Wielandt  [7,10] The work on the forming of vortices between 

two concentric vertical cylinders was first quantized by Rayleigh and later by 

G.I. Taylor in cylindrical coordinates, that required a lot of Bessel functions 

[13].  
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Görtler‘s vortices, in a partially filled horizontally rotating cylinder, differ 

from the Taylor-Coyette vortices in that there is no limitation on the maximum 

height of the boundary layer (diameter of the vortices). The Taylor-Coyette flow 

has the advantage of allowing a greater free-stream velocity, defined to be the 

difference between the speed of the liquid at the top and bottom of the 

boundary layer. 

Görtler’s vortices were unforeseeable by the two-dimensional models of 

Tollmien and Schlichting [26].  Görtler applied the Navier-Stokes equations to 

the horizontal flow over slightly concave surface.  The vortices that emerge are 

not present in the flow over a flat plate.  With increase in the free stream 

velocity the effects of vortices in creating a wavy flow front become noticable.  

The vortices’ rotation axes are in direction of the free stream velocity.  There are 

similarities with Taylor’s vortices: 

 

Figure 1.  Taylor vortices forming in the annulus between two vertical cylinders, 
the inner one rotating with respect to the outer one [11] 
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Figure 2 Picture of Taylor vortices  [20] 

 

Figure 3 Picture of Taylor vortices [20] 

The figure is in full agreement with Figure 1.  The down-wash regions are at 

the round spots and the inward cusped spots are the up-wash regions. 
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Figure 4 Picture of Taylor vortices [20] 

These are more powerful vortices at a higher angular velocity of the inner 

cylinder.  Note the longer vortex wavelength, since it took only 7 down-wash 

regions (Figure 4) to fill the whole cylinder where earlier there could fit 10 

(Figure 3). 

 

Figure 5. Görtler vortices over a concave wall: λ is the wavelength of the vortex, 
δ is the boundary layer thickness, R is the radius of curvature of the plate [4] 
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Figure 6.  Up- and down-wash regions [4] 

 

Figure 7. Free stream velocity profiles for up-wash and down-wash regions [15] 

All of the drown velocity profiles are for the velocity component in the ݔ 

direction and they are a function of the radial distance from the concave 

surface.  Typically the problem was described through cylindrical coordinates 

and with Bessel functions, [13].  To describe the time-independent fully 

developed flow, Görtler used rectangular coordinates with a fixed on the 

concave surface origin.  
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Figure 8 First view of the Görtler’s vortices from the rising side of a 3” cylinder 
(follow the suspended air bubbles in the water) 3“, 5/10, 580 RPM, the arrow 

shows the Up-wash region, there a stream of bubbles is carried by the up-wash 
to the surface.  

 In 1950 Meksyn published a work on the Görtler problem.  His results 

for a local minimum of the curve fit that connects the discrete calculated 

values for the Görtler number were orders of magnitude higher than those of 

Görtler from 1940.  The difference could not be attributed to an error from the 

approximations [10, p.287].  Then H. W. Liepmann tried, yet unsuccesfully, to 

verify experimentally either of the results.  Then Hämmerlin applied a method 

by H. Wielandt from 1944 on solving eigenvalue problems for a system of 

coupled non-adjoint differential equations for the values of a common (to both 

equations) parameter [7].  He showed that Görtler’s results to a slight 

approximation were correct [10].  From here on till the end of Chapter 1  

follows a brief overview of Hämmerlin’s paper.  

Coordinates 

Here follow the Navier-Stokes‘ equations in rectangular coordinates for a 

steady state incompressible flow, that is not disturbed by gravity. 
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௧ݑ൫ߩ ൅ ௫ݑݑ ൅ ௬ݑߴ ൅ ௭൯ݑ߱ ൌ െ݌௫ ൅ ௫௫ݑ൫ߤ ൅ ௬௬ݑ ൅   ௭௭൯, 1ݑ

௧ߴ൫ߩ ൅ ௫ߴݑ ൅ ௬ߴߴ ൅ ߱ ௭൯ߴ ൌ െ݌௬ ൅ ௫௫ߴ൫ߤ ൅ ௬௬ߴ ൅   ௭௭൯, 2ߴ

൫߱௧ߩ ൅ ௫߱ݑ ൅ ௬߱ߴ ൅ ߱߱௭൯ ൌ െ݌௭ ൅ ൫߱௫௫ߤ ൅ ߱௬௬ ൅ ߱௭௭൯. 3  

Here also follows the Continuity equation, 4  

௫ݑ ൅ ௬ߴ ൅ ߱௭ ൌ 0. 5  

The coorinate system used by Hämmerlin is a rectangular one fixed on the 

concave surface, Figure 7.  Hämmerlin uses ሺܴ ൐ 0ሻ to describe a concave 

surface.  In the above coordinate orientation follows the first of the Navier-

Stokes equations: 

Notation: 

o ݑ, ,ߴ ߱ െvelocity components in x,y,z directions 

o ݌ െpressure 

o subscripts at first will denote derivatives with respect to 

o ߩ െdensity (constant, non-compressible liquid, no incorporation of 

bubbles) 

o ݒ െkinematic viscosity (constant, ignore heating or cooling effects) 

o ܷ െwill stand for free stream velocity  
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Schlichting first gives the form of the Navier-Stokes‘ equations that 

appers in Eq. 6 [26, pg. 163, pg. 166].  Görtler uses Schlichting’s 

transformations without going into any detail [27, pg. 139]: 

 

Note: The angular direction of a cylindrical coordinate system fixed at the 

center of curvature coincides with the ݔ direction for a rectangular coordinate 

system fixed on the concave surface a distance ܴ from the center of curvature. 

௧ݑ ൅
ܴ

ܴ െ ݕ
௫ݑݑ ൅ ௬ݑߴ െ

ߴݑ
ܴ െ ݕ

൅ ௭ݑ߱ ൌ െ
ܴ

ܴ െ ݕ
1
ߩ

௫݌ ൅ 

ݒ ቊ
ܴଶ

ሾܴ െ ሿଶݕ ௫௫ݑ ൅ ௬௬ݑ ൅ ௭௭ݑ െ
1

ܴ െ ݕ
௬ݑ െ

2ܴ
ሾܴ െ ሿଶݕ ௫ߴ െ

ݑ
ሾܴ െ  ሿଶቋݕ

6 

This is the first of the Navier-Stokes‘ equations and is taken directly from 

Görtler, [9].  Similar equations exist for the flow in the ݕ and ݖ directions and 

also for the continuity.  Görtler developes  ଵ

ோି௬
 and ோ

ோି௬
 in powers of ௬

ோ
, and keeps 

only terms with denominator less than ܴଶ, since ܴ is big, so ଵ

ோି௬
ൎ ଵ

ோ
, and 

ோ

ோି௬
ൎ 1 ൅ ௬

ோ
, [9].  

Boundary Conditions For Flow in The x Direction 

௫ݑ ൌ ௫ߴ ൌ 0 

These are the result from him studying fully developed flow.  The strength of 

the vortices does not vary with angular position on the concave surface.  In 

other words the vortex wavelength is constant since increasing wavelength 

corresponds to stronger vortices.  Since a pressure difference is not the driving 

factor behind the vortices then: 
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௫݌ ൌ 0. 

Here are the steps that Hämmerlin follows: 

o Substituting in Eq. 6 the above boundary conditions and the series 

expansions 

o Retains only the terms with denominator smaller than ܴଶ. 

o The series expansions introduce terms 
௨೤

ோ
,

௩೤

ோ
,

௪೤

ோ
 that are orders of 

magnitude smaller than ݑ௬௬, ,௬௬ݒ  ௬௬ , so they are dropped at this level ofݓ

approximation ,  (since ݑ௬௬~
௨೤

௬
ݕ   , ൑ ߜ and  ,ߜ ا ܴ).    Here the boundary 

layer thickness ߜ is a fixed quantity. 

After these approximations Hämmerlin obtains the following system of 

partial differential equations: 

௧ݑ ൅ ௬ݑߴ െ ߴݑ  
1
ܴ

൅ ௭ݑ߱ ൌ ௬௬ݑ൫ݒ ൅  ,௭௭൯ݑ

௧ߴ ൅ ௬ߴߴ ൅  
ଶݑ

ܴ
൅ ߱ ௭ߴ ൌ െ

1
ߩ

௬݌ ൅ ௬௬ߴ൫ݒ ൅  ,௭௭൯ߴ

߱௧ ൅ ௬߱ߴ ൅ ߱߱௭ ൌ െ ଵ

ఘ
௭݌ ൅ ൫߱௬௬ݒ ൅ ߱௭௭൯, 

௬൅߱௭ߴ ൌ 0. 

7 

The first three were the Navier-Stokes’ equations and the last one is the 

Continuity equation.  Hämmerlin introduces the following slight perturbations. 

The perturbed quantities have a subscript 1 , and the unperturbed, the 

subscript 0.  The unperturbed solution is for laminar flow and the 

perturbations will describe mathematically the vortices. 



11 

 

 

Notation for the Perturbations 

o ߙ ൌ ଶగ

ఒ
  is the wave number, and ߣ is the vortex wavelength, Figure 5, 

Figure 7.  Here is the last place where ߣ stands for wavelength.  Later ߣ  

will be just a parameter to keep the standard notation for the Fredholm 

integral equations.                  

o ݌଴ሺݕሻ,  ሻ are a solution for a completely laminar flow.  All otherݕ଴ሺݑ

expressions on the RHS of the perturbations 8 describe the vortices from 

Figure 7.   ݑଵሺyሻ, ,ሻݕ଴ሺ݌ ଵሺyሻ, and ߱ଵሺyሻ are small compared toߴ   .ሻݕ଴ሺݑ

ݑ ൌ ሻݕ଴ሺݑ ൅ ଵሺyሻݑ cosሺݖߙሻ · ݁ఉ௧ 

ߴ ൌ ሻݖߙଵሺyሻcosሺߴ · ݁ఉ௧ 

߱ ൌ ߱ଵሺyሻsinሺݖߙሻ · ݁ఉ௧ 

݌ ൌ ሻݕ଴ሺ݌ ൅ ሻݖߙଵሺyሻcosሺ݌ · ݁ఉ௧. 

8 

The above expressions describe the flow with the origin chosen at the center of 

a down-wash region, Figure 7 .  Apply the perturbations 8 to Eqs. 7 and ignore 

any term with a product of two of the three: ݑଵሺyሻ, ,ଵሺyሻߴ or ߱ଵሺyሻ, one obtains: 

ଵݑߚ ൅ ଵߴ
଴ݑ߲

ݕ߲
ൌ ݒ ቆ

߲ଶݑଵ

ଶݕ߲ െ αଶݑଵቇ 9 

ଵߴߚ ൅ ଵݑ
଴ݑ2

ܴ
൅

1
ߩ

ଵ݌߲

ݕ߲
ൌ ݒ ቆ

߲ଶߴଵ

ଶݕ߲ െ αଶߴଵቇ 10 

ଵ߱ߚ െ
ߙ
ߩ

ଵ݌ ൌ ݒ ቆ
߲ଶ߱ଵ

ଶݕ߲ െ αଶ߱ଵቇ 11 

߱ଵ ൌ െ
1
ߙ

ଵߴ߲

ݕ߲
. 12 
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Substituting Eq. 12 in Eq. 11, he gets an expression for ݌ଵand then he 

subsitutes that in for ݌ଵ , Eq. 10.  The substitution leads to only two non-

adjoint equations.  After simplifying and collecting terms, he gets: 

ݒ
߲ସߴଵ

ସݕ߲ െ ሺ2αଶݒ ൅ ሻߚ 
߲ଶߴଵ

ଶݕ߲ ൅ߙଶሺߚ ൅ ଵߴଶሻߙݒ ൌ െ
଴ݑଶߙ2

ܴ
 ଵ. 13ݑ

 

Eq. 9 is unchanged:  

ݒ
߲ଶݑଵ

ଶݕ߲ െ ሺαଶݒ ൅ ଵݑሻߚ ൌ ଵߴ
଴ݑ߲

ݕ߲
. 14 

Hämmerlin changes to the dimensionless variables shown: 

ߟ ൌ
ݕ
ߜ

, ݕ ൌ ߜߟ , ݕ݀ ൌ  ߟ݀ߜ

ܷ ൌ
଴ݑ

ܷ଴
, ଴ݑ ൌ ܷ ܷ଴ 

15 

where ߜ is the height of the boundary layer, is constant and approximately 

equal to half a wavelength Figure 7. 

Substituting ߟ and ܷ into the Equations (20) and multyplying out the 

constants in front of the highest derivative in each equation, gives: 

߲ସߴଵ

ସߟ߲ െ ቆ2αଶߜଶ  ൅  
ଶߜߚ

ݒ
ቇ

߲ଶߴଵ

ଶߟ߲ ൅ߙଶߜଶ ቆߙଶߜଶ ൅
ଶߜߚ

ݒ
ቇ ଵߴ ൌ െ

ସܷ ܷ଴ߜଶߙ2

ܴݒ
 ଵ 16ݑ

߲ଶݑଵ

ଶߟ߲ െ ቆαଶߜଶ ൅
ଶߜߚ

ݒ
ቇ ଵݑ ൌ

ܷ଴ߴߜଵ

ݒ
߲ܷ
ߟ߲

. 17 

The dimensionless constants that he introduces in Eqs. (18,19,20,21,22) 

change the form of Eqs. (16,17) into the form of Eqs. (23,24): 

ߪ ൌ ,ߜߙ ߙ ൌ
ߪ
ߜ

, ൬ߙ ൌ
ߨ2
ߣ

൰, 18 
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where ߜ is constant, and is the maximum height of the boundary layer.  Here ߣ 

still stands for the wave length, see Figure 7, Figure 33, Figure 34.   

߬ ൌ ඨቆߙଶߜଶ ൅
ଶߜߚ

ݒ
ቇ ൌ ඨሺߪଶ ൅

ଶߜߚ

ݒ
ሻ , ݎ݋ ߬ଶ ൌ ଶߜଶߙ ൅

ଶߜߚ

ݒ
ൌ ଶߪ  ൅

ଶߜߚ

ݒ
 19 

ߤ ൌ 2 ൬
ܷ଴ߜ

ݒ
൰

ଶ ߜ
ܴ

, ݋ݏ ට
ߤ
2

ൌ ܴ݁ඨ
ߜ
ܴ

ؠ Gö 20 

ܴ݁ is the boundary layer Reynolds number.  For a cylinder  ܷ଴ is the tangential  

speed of  the inner edge, since that is also the speed of the flow front.   The 

mathematics are for an axially infinite concave surface, or an axially infitite 

rotating cylinder Figure 7.  The primed notation that follows is for new 

dimensionless variables and not for differentiation, differentiation is still shown 

with subscripts. 

ᇱݑ ൌ
ଵݑ

൬
ܷ଴ߜ 

ݒ ൰
ଵݑ   ݎ݋     ൌ ൬

ܷ଴ߜ
ݒ

൰ ,ᇱݑ ଵݑ݀ ൌ ൬
ܷ଴ߜ

ݒ
൰  ᇱ 21ݑ݀

ᇱߴ ൌ ,ଵߴ ଵߴ݀ ൌ  ᇱ. 22ߴ݀

Note: The SI units of kinematic viscosity ݒ are ݉ଶ ·  ,has units of ݉ିଵ ߙ ,ଵିݏ

and ߚ has  ିݏଵ. 

Substitute (18) and (19) in  (16) and (17), then use (20) and (21) to 

simplify and again return to unprimed notation for ݑ and ݒ, so the primes 

again stand for derivatives with respect to ߟ like in (16) and (17) 

ᇱᇱݑ െ ߬ଶݑ ൌ ߴ
߲ܷ
ߟ߲

, 23 

ᇱᇱᇱᇱߴ െ ሺ߬ଶ ൅ ᇱᇱߴଶሻߪ ൅ ߬ଶߪଶߴ ൌ െߪߤଶܷ24 .ݑ 
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Fully developed flow is most important and that is the one he solves for:ሺߚ ൌ 0 ,  

or equivalently ߬ ൌ   .ሻߪ

The time-independent equations become: 

ᇱᇱݑ െ ݑଶߪ ൌ ߴ
߲ܷ
ߟ߲

 25 

ᇱᇱᇱᇱߴ െ ᇱᇱߴଶߪ2 ൅ ߴସߪ ൌ െߪߤଶܷݑ.  26 

These equations were also used by Meksyn yet his solution involved a 

constant velocity profile that is contrary to Boundary Layer Theory.  He used 

that velocity profile to turn Eq. (25) into a  homogeneous equation, thus 

destroying the coupling of the Eqs. (25) and (26) [10].  ܷ is a function of ߟ, since 

ܷ଴ is a constant, ݑ଴ ൌ ݕ ,ሻݕ଴ሺݑ ൌ ܷ and ,ߜߟ ൌ ௨బ

௎బ
 , so డ௎

డఎ
ൌ ଵ

௎బ

డ௨బ

డఎ
.  Here ߜ is a 

constant, since the vortex wavelength is set constant, as in see Figure 5.  Later 

in determining meaningful expressions for the velocity profiles for ܷ  Figure 7 

will be very important.  The focus of study is again the point of change from 

laminar flow to flow with vortices over an axially-infinite concave surface, or 

axially infinite rotating cylinder.  From here on ߣ will be just a paramenter 

(dimensionless number), to fit the standard notation for the Fredholm integral 

equation of the second kind.  It will be clarified if ߣ takes on again the meaning 

of wavelength like it did in (18): 

ߤ
భ
మ ൌ ߤ  ,ߣ ൌ  ଶ, 27ߣ
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 here is just a parameter, multiple of Gö incorporating the 2 from the RHS of ߣ

Eq. 16.  ߣ is not the wavelength from Figure 5, and Figure 7. It is the 

dimensionless number  ߣ ൌ ߤ√ ൌ √2Gö ൌ √2ܴ݁ටఋ

ோ
,  (20).   

He rewrites ݑ as ݑߣ to include the parameter also in the RHS of Eq. 25. In 

this form after simplifying he makes both equations to depend on a single 

parameter: 

ᇱᇱݑ െ ݑଶߪ ൌ ߣ
߲ܷ
ߟ߲

 28 ߴ

ᇱᇱᇱᇱߴ െ ᇱᇱߴଶߪ2 ൅ ߴସߪ ൌ െߪߣଶܷ29 .ݑ 

This set of equations is unique to Hämmerlin’s paper.  Equations (28, 29) are 

important since they show the time independent behavior. We will be looking at 

the eigenvalues ߣ of the system formed by Eqs. (28, 29). The boundary 

conditions, 

ሺ0ሻݑ ൌ ሺ0ሻߴ ൌ 0 

follow from Boundary Layer Theory.  The boundary condition,  

Ԣሺ0ሻߴ ൌ 0 

follows from Eq. 12 and is equivalent to ߱ଵሺ0ሻ ൌ 0. 

The boundary conditions (30) stand for the fact that high enough over the 

concave surface there is no flow and there are no vortices, 

ሺ∞ሻݑ ൌ ሺ∞ሻߴ ൌ Ԣሺ∞ሻߴ ൌ 0. 30  
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Solutions for the flow 

The following Green’s functions were developed by Görtler.  Unlike the 

series expansions that Görtler used in his 1940 paper.  These Green’s 

functions guarantee completeness of the set of solutions.  The transformed 

LHS‘s of the Eqs. (25) and (26) follow through Green‘s functions into kernels of 

integral equations. ߬ ൌ  means a time independent solution for the fully ߪ

developed flow: 

,ߟሺܩ ଴ሻߟ ൌ
1
ߪ

݁ିఙఎబ sinh ߟߪ ߟ ݎ݋݂           ൑  ଴ 31ߟ

,ߟሺܩ ଴ሻߟ ൌ
1
ߪ

݁ିఙఎ sinh ଴ߟߪ ଴ߟ ݎ݋݂          ൑  32   ߟ

,ߟሺܪ ଴ሻߟ ൌ
1

ଷߪ4 ሾ݁ିఙሺఎబାఎሻሼ2ߪଶߟ଴ߟ ൅ ଴ߟሺߪ ൅ ሻߟ ൅ 1ሽ

െ ݁ିఙሺఎబିఎሻሼߪሺߟ଴ െ ሻߟ ൅ 1ሽሿ ߟ ݎ݋݂    ൑  ଴ߟ

33 

,ߟሺܪ ଴ሻߟ ൌ
1

ଷߪ4 ൣ݁ିఙሺఎାఎబሻሼ2ߪଶߟߟ଴ ൅ ߟሺߪ ൅ ଴ሻߟ ൅ 1ሽ

െ ݁ିఙሺఎିఎబሻሼߪሺߟ െ ଴ሻߟ ൅ 1ሽሿ. ଴ߟ  ݎ݋݂   ൑  ߟ

34 

 Then the coupled Equations (28, 29) can be transformed in coupled integral 

equations with kernels ܪሺߟ, ,ߟሺܩ ଴ሻ andߟ   .଴ሻߟ

ሻߟሺݑ ൌ െߣ න ,ߟሺܩ ଴ሻߟ
ܷ݀ሺߟ଴ሻ

଴ߟ݀

ஶ

଴
 ଴ 35ߟ଴ሻ݀ߟሺߴ

ሻߟሺߴ ൌ ߣ න ,ߟሺܪ ଴ߟ଴ሻ݀ߟሺݑ଴ሻߟଶܷሺߪ଴ሻߟ

ஶ

଴
. 36 

Only the velocity profiles remain to be defined.  Görtler’s velocity profiles have 

the property that ܷሺߟሻ ൌ 1 for ߟ ൒ 1 (that is for ݕ ൒ ݕ since ,ߜ ൌ  so the ,(ߜߟ

interval for the first integral equation falls on  0 ൑ ଴ߟ ൑ 1.  In the second integral 
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equation he: limits the upper limit of integration to ߟ଴, integrates, allows for 

଴ߟ ՜ ∞, and adjusts ݑሺߟ଴ሻ to connect exponentially to the soluton.   Hämerlin 

selects for numerical evaluation the interval 0 ൑ ଴ߟ ൑ 1.   

The Physical Nature of ߣ, a theorem by Jentzsch [12, p.298] 

The following steps show that the vortices can and do appear only over concave 

surfaces ሺܴ ൐ 0ሻ, 

1. Change of variables, so the integration domain in the new variables 

becomes ሾ0,1ሿ,   

଴ߟ ൌ
ߞ

1 െ ߞ
, ߟ ൌ

ݔ
1 െ ݔ

. 37  

2. In the new variables the kernels take on the form: 

,ݔҧሺܩ ሻߞ ൌ ܩ ൬
ݔ

1 െ ݔ
,

ߞ
1 െ ߞ

൰
1

ሺ1 െ   ሻଶ 38ߞ

,ݔഥሺܪ ሻߞ ൌ ܩ ൬
ݔ

1 െ ݔ
,

ߞ
1 െ ߞ

൰
1

ሺ1 െ   ሻଶ. 39ߞ

3. He changes variables once more 

ߞ ՜   40 ݐ

ݔ ՜   41 .ߞ

4. He constructs a single integral by placing  (35) in (36), so the information 

from the Navier-Stokes equations now in just one equation.  

ሻݔҧሺߴ ൌ െߣଶ න ,ݔഥሺܪ ሻߞ ഥܷሺߞሻ
ଵ

଴
ቌ඲ ,ߞҧሺܩ ሻݐ

݀ ഥܷሺݐሻ

ݐ݀

ଵ

଴

ݐሻ݀ݐҧሺߴ ቍ   42 .ߞ݀

The constant in front of the outer integral sign now becomes െߣଶ 

5. He creates a new kernel: 
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,ݔሺܭ ሻݐ ൌ െ
݀ ഥܷሺݐሻ

ݐ݀
න ,ݔഥሺܪ ሻߞ ഥܷሺߞሻܩҧሺߞ, ߞሻ݀ݐ

ଵ

଴
 43  

for 

ሻݔҧሺߴ ൌ ଶߣ න ,ݔሺܭ ሻݐ ݐሻ݀ݐҧሺߴ
ଵ

଴
 44  

and similarly 

ሻݔതሺݑ ൌ ଶߣ න ,ݔሺܭ .ݐሻ݀ݐതሺݑሻݐ
ଵ

଴
 45  

6. He creates new function out of Eq.  

݃ሺݏሻ ൌ ሻݏതሺݑ 0 ൑ ݏ ൑ 1 46  

݃ሺݏሻ ൌ ݏҧሺߴ െ 1ሻ 1 ൑ ݏ ൑ 2 47  

݃ሺݏሻ ൌ න ,ݏሺܮ ݐሻ݀ݐሻ݃ሺݐ
ଶ

଴
 48  

Where: 

,ݏሺܮ ሻݐ ൌ െܩҧሺݏ, ݐ െ 1ሻ ௗ௎ഥሺ௧ିଵሻ

ௗ௧
,         0 ൑ ݏ ൑ 1, 1 ൑ ݐ ൑ 2 49  

,ݏሺܮ ሻݐ ൌ ,ݏഥሺܪ ሻݐ ഥܷሺݐሻ,                         0 ൑ ݐ ൑ 1, 1 ൑ ݏ ൑ 2. 50  

7. A theorem from Jentzsch in the theory of the Fredholm Integral Equatons 

of The Second Kind states that any kernel that is square integrable and 

becomes zero at most once, always has smallest real positive eigenvalue.   

[12, p.298].  

Hämmerlin goes on to show that the requirements of the Jentzsch 

theorem are fulfilled, since: all Green’s functions: ܩሺߟ, ,଴ሻߟ ,ߟሺܪ  ଴ሻ go to zeroߟ

exponentially in the limit ሺߟ଴ ՜ 0, ߟ ՜ 0ሻ, see (31, 32, 33, 34).  Similarly the 

velocity profile ܷሺߟ଴ሻ and its derivative ௗ௎ሺఎబሻ

ௗఎబ
 exponentially approach zero 
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whithin the boundaries of the kernel ܭሺݔ, ሻ: 0ݐ ൏ ݔ ൏ 1, 0 ൏ ݐ ൏ 1. That shows 

that ܭሺݔ,  ሻ becomes zero only once, and that is at the boundary of theݐ

interval, what is one of the main requirements of the Jentzsch theorem.  The 

other two requirements are that the kernel ܭሺݔ,  ሻ has to be positive andݐ

square integrable.  He shows those requirement to be present.  Then in result 

the theorem states that the integral equation has a smallest, real, simple 

eigenvallue that is smaller than all other eigenvalues.  Then  ߣଶ (the 

eigenvalue of the integral equation for ݃ሺݏሻ) has to be positive, simple, and 

real,  meaning that ܴ has to be positive and the flow can only appear over a 

concave surface (ߣଶ ൌ ߤ ൌ 2ܴ݁ଶ ఋ

ோ
ؠ 2Göଶ).  Imaginary ߣ would mean a negative 

radius, descriptive of a convex surface.  

Note:  The 2  multiplying Gö comes from RHS of (16) it is just a factor 

there, see also (20). 

Iteration Method for Finding the Lowest Eigenvalue 

The following iterations method for a system of non-adjoint integro/differential 

equations was proposed by H. Wielandt, [7].  Its main requirement is that for 

the method to give results the eigenvalues must be real and simple.   

For any integral equation of the form: 

݄ሺݔሻ ൌ ߝ න ,ݔሺܯ ݐሻ݀ݐሻ݄ሺݐ
ଵ

଴
 

the series ݄௩ሺݔሻ converges.  Since for the algorithm the eigenvalue is the 

unknown the actual calculation that takes place is of the form: 
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݄௩ሺݔሻ ൌ න ,ݔሺܯ ,ݐሻ݀ݐሻ݄௩ିଵሺݐ
ଵ

଴
 

so that the reciprocal ratio converges uniformly to the smallest eigenvalue ߝଵ.  

Here since the algorithm converges uniformly, see (51), and ݄௩ିଵሺݔሻ ൐ ݄௩ሺݔሻ then 

the initial guess for the function ݄଴ , in our case ߴ଴ should be high.   The ratio of  

of ݄௩ିଵሺݔሻ and ݄௩ሺݔሻ for a fixed value of the independent variable converges to 

the smalles eigenvalue ߝଵ.  In our case ߴ and ݑ are functions of the 

dimensionless number ߪ   ׷

lim
௩՜ஶ

ሻݔ௩ିଵሺ݄ࡸ
ሻݔ௩ሺ݄ࡸ

ൌ   ଵ 51ߝ

where L  denotes linear functional.  Linear functional means that the integral 

maps a function into a real number [25] and here is used directly following 

Hämmerlin [10].  

ሻݔ௩ିଵሺݑࡸ
ሻݔ௩ାଵሺݑࡸ

ൌ
ሻݔ௩ିଵሺݑࡸ

ሻݔ௩ሺݑࡸ
ሻݔ௩ሺݑࡸ

ሻݔ௩ାଵሺݑࡸ
ൌ   ଶ 52ߝ

ሻݔ௩ିଵሺߴࡸ
ሻݔ௩ାଵሺߴࡸ

ൌ
ሻݔ௩ିଵሺߴࡸ

ࡸ ሻݔ௩ሺߴ
ࡸ ሻݔ௩ሺߴ

ሻݔ௩ାଵሺߴࡸ
ൌ .ଶߝ  53  

 Since Eqs. (35, 36) are coupled, Hämmerlin starts the iteration algorithm 

by choosing a constant value for the function ߴ௢ for initial guess of  ߴ௢ ൌ 1.  He 

also chooses the straight line velocity profile: ܷሺߟሻ ൌ for 0 ߟ ൑ ߟ ൑ 1, ܷሺߟሻ ൌ 1 for 

1 ൑  ଵ and uses that valueݑ He substitutes these in  (35) and gets a value for  . ߟ

in (36) and the above velocity profile to get a value for ߴଶ and so on. It is the 

values of ݑଵ, ,ଷݑ ,଴ߴ ହ that he uses for the ratio on the LHS of (52) andݑ ,ଶߴ  ସ forߴ

the ratio on the LHS of (53).  He finds curves for ߤ that are a function of ߪ (the 
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other dimensionless varible Eqs. 25, 26).  He also in the just like Gö makes the 

results for the straight line velocity profile comparable with several other 

velocity profiles with using equal momentum thickness, to compare the results 

for the lowest value of the Görtler number with similar results from other 

velocity profiles.  Hämmerlin starts with the simplest velocity profile-the 

straight line. The ratios of the functionals from (52, 53): 

ణబሺ௫ሻࡸ

ణమሺ௫ሻࡸ
 , 

௨భሺ௫ሻࡸ

௨యሺ௫ሻࡸ
, 

ణమሺ௫ሻࡸ

ణరሺ௫ሻࡸ
, 

௨యሺ௫ሻࡸ

௨ఱሺ௫ሻࡸ
, give values for ߣଶ waht was equivalent to ߤ. 

The curves of the eigenvalues ሺGöሻ ؠ ටఓభ
ሺೡሻ

ଶ
ሺߪሻ are shown in Figure 9.  The index 

 .is the index of the numerator on the left side of Equations (52, 53) ݒ
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Figure 9 Graph of the results from Eqs. 43.1 for ݒ ൌ 2,3,4 for the straight line 

velocity profile as a function of σ [10]. ට
ఓ

ଶ
ሺߪሻ  is the Görtler number ට

ఓ

ଶ
ൌ

௎బఋ 

௩
ටఋ

ோ
ؠ Gö.  For ߪ see  (18),(19) ߪ ൌ ߜߙ ൌ ߨ2 ఋ

ఒ
. 

      Figure 9 shows values that are a little lower than those of Görtler. In 

Hämmerlin‘s solution there is no lowest value for ට
ఓ

ଶ
ሺߪሻ (the Görtler number) in 
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the domain ߪ ൐ .1 , see Figure 9..  Apparently for a flow over a slightly concave 

surface the vortices are present even for very low free stream velocity.  The 

shallow flow over an axially infinite concave surface is very similar to the 

shallow flow in an axially infinite rotating cylinder.     

Conclusion 

    Hämmerlin succeeded in showing that the vortices exist for very small values 

of Gö, Figure 9.   Solving the Navier-Stokes equations for the existence of the 

vortices requires knowledge in solving a system of two non-adjoint integral 

eigenvalue equations.  A method for solving those was first published by 

Helmut Wielandt in 1944 [7].  To understand this iterative method one needs 

an example and Hämmerlin provides one by applying the method to the fully 

developed Görtler vortices.    
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2.  METHODS 

Discussion 

The apparatus for studying the flow consists of: 

o digital video camera: SONY DCR-SR200  

o Laser Photo/Contact Tachometer, Extech Instruments- to measure the 

rotation rate of our cylinder. 

o Red food dye color for the water 

We experienced a lot of turbulence from the lower viscosity.  The lower surface 

tension though helped with bubble incorporation and vortex visualization.  

Balmer [2] used SAE motor oil with dynamic viscosity of ൎ 150 cP, and 

Thoroddsen [14] used liquids of ൎ10-1000 cP, a lot higher than our distilled 

water at ൎ1 cP.  Increasing the dynamic viscosity, lowers the Görtler number. 

We observed a more non-uniform, less defined flow front due to our much 

lower dynamic viscosity and higher tangential speeds.  Our rotation rates, of up 

to 1400 RPM were 3-4 times higher than those used by Thoroddsen [14].  The 

ability of our cylinder to spin more than two gallons of water made it 

indispensible in studying the gravitational effects of liquid over the Boundary 

layer.  Since the vertical gravitational push of the suspended pool of water on 

the boundary layer can be compared to the normal centrifugal push of water on 

the boundary layer in a curved duct, the study of the vortices in a rotating 

cylinder increases in importance. 
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In the stage before bubble formation the vortices become evident by 

surface waves and a wavy pattern of the flow front along the ݖ െ axes Figure 33, 

Figure 34.  In chapter 3 it is shown that that pattern is a result of a Coriolis 

force. 

Benefits from the lower viscosity, higher rotation rates, and higher fill volume 

fractions include: higher Görtler number, stronger vortices, better visualization.  

Bubbles caught in the vortices are easier to track at high speeds, by making 

almost continuous flow lines, allowed for great slow motion recording.  An 

attempt to visualize the vortices with pellets failed with the pellets severely 

scratching the inside of the cylinder even at low tangential speeds.    

The viscous interference of the suspended over the boundary layer pool of 

water with the Coriolis effects of the vortices increases with increase of the fill-

volume.  So the pool of water indirectly places a brake on the vortices. 

Apparatus 

 The apparatus for generating the flows in a rotating cylinder consists of 

a) The supporting frame  

It is precision aligned and milled from aluminum bars that have a right triangle 

profile.    We used 1" wide rollers for support of the cylinder, see Figure 10 

through Figure 23. 
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Figure 10. Left view of supporting frame and cylinder   

 

 

Figure 11. Right symmetrical view of supporting frame and cylinder  

 

 

Figure 12. Detail of groove and hole.  Such fastening allows for the horizontal 
bar to fit flush against the inside of the vertical bar 
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Figure 13. Front view of cylinder and the supporting frame 

 

 

Figure 14. Groove and hole allows vertical flush fit and utilizes the concept 
from the Vernier caliper with the smallest increment for hole and groove 

alingment of .2”. 

 

Figure 15. Sliding assembly 
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Figure 16 View of one of the ends of the sliding assembly attached with a bolt 
to the fixed rail.  The fixed rail has the thicker border 

The groove and hole method allows precise incremental horizontal 

alignment for the sliding assemblies.  The groove and hole slider connections 

prevent lateral misalignment, it lowers the 2 degrees of freedom for 

translational motion in a plane to only 1.  The distance between the two 

vertical grooves was inspired by the Vernier caliper and set so the connected 

frame can slide by incremets of half the distance between the round holes.  
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b) Acrylic cylinder 

 

Figure 17 From left to right: lid away from motor, cylinder, lid toward the motor, 
and the lid that fits over the pulley and bolts to the cylinder lid that is toward 

the motor, all units in (in.) 

The lids were built by gluing .37” and .25” thick acrylic.  The lids are milled to  

1/1000-th of an inch precision on a Roland MDX-650 3-D milling machine.  

They fit tight and are held in place by a radial frictional force between the lid 

and the cylinder.   For the higher volume-fill fractions exist sleeves, with up to 

1" radial width and .37” thickness.  The sleeves fit radially outward from the 

ends of the cylinder and clamp the cylinder tighter against the end lids.  

Applying to the contact area high viscosity Dow Corning High Vacuum Grease, 

creates a water tight seal in the micro gaps between the two lids and the 

cylinder.  
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c) Stand for the motor  

 

Figure 18. Motor and its base 

 

 

Figure 19. Adjustable base for the motor, all units in (in.) 

The base for the motor is shown in Figure 19.  The elevation of the four corners 

is adjusted through bolts that fit through the ׎. 8ԢԢ holes.  This method of 
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support allows us to change the azimuth and zenith orientation of the motor 

axle.  If all four big bolts are turned simultaneously that changes the distance 

from the motor axle to the table. 

We solved the alignment problems by adding a lid to fit over the pulley of 

the motor on the side between the pulley and the motor, Figure 10, Figure 11, 

Figure 20, and Figure 22.   The lid between the pulley and the motor can be 

improved with increasing its outer radius and being built on a 3-d printer.   

  

Total Apparatus 

 

Figure 20. Complete apparatus, side view,  

 

Figure 21. The complete apparatus, view opposite from the motor 
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Figure 22. Angled side view, of the sliding assemblies, fixed rails, motor, motor 
frame, cylinder, and lids. 

Advantages of the Apparatus: 

o Ability to accept cylinders with big radius and more importantly with big 

volume, up to 7500 mL. 

o Ease of alignment of cylinder and motor  

o The direct drive eliminates friction losses and damage of transmission or 

belt.  It allowed us to reach very high rotation speeds, up to 15 m/s 

tangential speed.  The pulsed starts of the motor would have damaged 

any transmission. 
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3. FINDINGS 

 

Papers on the topic “Fluid in a rotating cylinder” focus on naming 

different flows resulting from the Görtler vortices or from the motion of the 

enveloping the vortices boundary layer: like Hygrocyst [2] , Shark teeth, ribbing 

flow, pendant waves,  [5,6].  Many authors do not even mention the Görtler 

vortices.  They missed the opportunity of studying the properties of the 

underlying engine of all meaningful flow patterns in a rotating cylinder.  The 

vortices are related to the Taylor vortices (Figure 1, Figure 2, Figure 3, and 

Figure 4) with differences in the way the gravitational force affects the flow and 

the limiting factors on the growth of the boundary layer.  For the Taylor 

vortices the maximum diameter of the vortices is limited by the distance 

between the inner and the outer cylinders.  For Görtler vortices in a 

horizontally rotating cylinder the limit, if there is enough water, is the diameter 

of the cylinder.  The size of the vortices is a function, see Görtler number, of 

the free-stream velocity, defined to be the velocity difference between liquid at 

the lowest and the highest radial points of the boundary layer.  The vortices are 

periodic for any tangential speed of rotation only in a semi-infinite cylinder, one 

that is infinite in the axial direction.  In a finite cylinder is impossible to fit an 

integer number of wavelengths for each value of the tangential speed, since the 

wavelength is a function of the free-stream velocity.  In the length of the 

cylinder we have observed that for all diameter cylinders and for any liquid fill 

fraction there is a discrete set of tangential speeds of the inner edge of the 
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cylinder which form axially stable down-wash regions.  They do not fluctuate 

along the symmetry axes of the cylinder.  Only at specific small intervals in the 

tangential speed of the inner edge can vortex wavelengths be definitively 

measured for a finite cylinder.   The wavelength is the most important variable 

since it determines the location of the important down-wash regions.   

Hämmerlin’s paper gives the most insight into the boundary conditions that 

might be a result of his discussions with Görtler what other contemporary 

papers on the topic lack,   [16].      

Flow over a concave surface is similar to the flow in a rotating cylinder. 

In the first, liquid moves over a surface, and in the second the surface moves 

from under the liquid.  The advantage of the rotating cylinder is the localizing 

in space of the flow front.  Günter Hämmerlin already showed for a concave 

surface that the vortices exist even for negligible free-stream velocity.   One of 

Hämmerlin’s assumptions, the fixed wavelength, is only valid for the axially-

infinite cylinder.  The hypothesis is that for every fill-volume fraction exists a 

discrete set of speeds each member of the set corresponding to an axially stable 

down-wash regions and therefore to an even number of vortices that have a 

fixed in space axial position.   

Unlike for the Taylor case in the case of the horizontal cylinder air 

bubbles start incorporating in the flow so that the kinematic viscosity ሺݒሻ 

increases making the flow more compressible, Gö ൌ ௎బఋ 

௩
ටఋ

ோ
  decrases and the 

average wavelength slightly decreases, Figure 5.  It is apparent that slight 
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imprecision will prevent the manifestation of the stable Hygrocysts/down-wash 

regions.  The imprecisions for us come from nonuniform wall thickness of the 

Plexiglas cylinders.  The supporting rollers do not stay rigid but deform during 

the rotation.   

Our apparatus is superior to any other that I have seen in its range of 

operating speeds and weight of the enclosed liquid.   It allows for the spin of 

8789 mL of water at up to 800 RPM in a 7” ID cylinder, or 1900 mL at 1500 

RPM in a 3” ID cylinder.  Small imperfections in cylinders with small radius 

can add to obstructive centrifugal forces like in the case of our 3” cylinder.   We 

only used long cylinders since short ones will allow for very few down-washes 

to form.  An important consequence of recording the distance between axially 

stable down-wash regions is that it is also a measure of the boundary layer 

thickness-BLT, namely the BLT is equal to half a wavelength, Figure 5.  

The wavelength increases with increase in the water volume and the 

tangential speed.  For example here is a list of the maximum down-washes in 

the 9/10 fill before forming solid body: 

 in the 3” cylinder form 6 Hygrocysts, 

 in the 5” cylinder form 3 Hygrocysts, 

 in the 7” cylinder form 2 Hygrocysts,   

The vortices have a cylindrical symmetry that can grow in diameter up to the 

diameter of the cylinder.  So for the 3” cylinder the 6 Hygrocysts stand for 12 

vortices.   In conclusion to have comparable data for similar RPM for different 
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diameter cylinders, the cylinders should have the same aspect ratio ቀܴܣ ൌ

௅

஽
 ሾ23ሿቁ.  

The higher aspect ratio of the 3.012” cylinder allows it to contain more 

vortices than the 5” or 7” cylinders, Figure 26.  While in the 5” and 7” cylinders 

the vortices could become axially fixed, for the 3” cylinder the vortices were too 

weak to observe the phenomenon of axially fixed vortices.  The Görtler number 

increases with decreasing the radius of curvature, but the important thing here 

is not curvature but the square root of the centrifugal acceleration that hides in 

the Görtler number.  That acceleration is low for the 3” cylinder, and is highest 

for the 7” cylinder, and that determines the width of the intervals in the 

domain of tangential speeds where the vortices become axially stable.  The 

intervals in the RPM domain at which the down-wash regions become axially 

stable is narrower for the 3” cylinder.     

Additional problems that prevented us from observing stable down-wash 

regions came from the inner and outer edges of the 3.012” cylinder not being 

concentric, Figure 23. 
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Figure 23 Difference in concentricity of inner and outer edge for the 3” cylinder 

This imprecision added a small centrifugal instability that lead to a 

vibration that may have affected the axial stability intervals in the RPM domain. 

For the existence of Görtler vortices in a rotating axially infinite cylinder 

Bottaro and Abdelfattah solved the Navier-Stokes equations with the continuity 

equation, and similarly to the flow over a semi-infinite concave surface they 

calculated that the vortices are present even for very low tangential speed of 

cylinder rotation [10,24].  This thesis is an extension to the theoretical work of 

Hämmerlin and Görtler where the fixed wavelength was one of their solving 

assumptions.   Here the question is what if the wavelength varies like is the 

case for varying boundary layer thickness that results from changing the free 

stream velocity.  The vortices’ wavelength is a measure of their individual 

strength.  This paper proposes the existence of a discrete set of speeds of 

rotation, that represent axially stable vortices.  The theoretical notion of a fixed 

wavelength for a flow over an axially-infinite concave surface does not 

automatically translate to finite horizontally-rotating cylinders.   
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For the horizontally-rotating cylinder the axial boundaries introduce the 

Gibbs phenomenon, the notion of the fixed wavelength for axially infinite 

cylinder is substituted with the notion of axially stable vortices, for an axially 

finite cylinder.  The Gibbs phenomenon present in rotating finite cylinders 

manifests itself through stronger vortices close to the axial walls Figure 26.   

The gravitational effects from the pool of water suspended over the boundary 

layer largely influence the flow in cylinders of varying curvature and 7/10, 

8/10 and 9/10 fill-volume, see the section on it on pg. 45. 

Gibbs Phenomenon in a Rotating Cylinder   

The Gibbs phenomenon appears when expanding discontinuous functions in 

Fourier series.  The Fourier series approximation of the rectangular function 

takes on an integer number of peaks within the domain of the rectangular 

function.  

 

Figure 24. Gibbs phenomenon 2 terms [19] 
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Figure 25. Gibbs phenomenon 16 terms (note the 16 half wavelengths)  [19] 

The rectangular function expanded in sin and cos terms by the Fourier 

series approximates on a closed interval a function that is not differentiable at 

everywhere in the interval (nonsmooth function) with an everywhere infinitely 

differentiable smooth wave function. If we named the distance between two 

neighboring local maxima half a wavelength, the Fourier transform 

approximates the rectangular function with an integer number of half 

wavelengths (terms) Figure 24, Figure 25.  The partially filled cylinder, even if it 

were semi-infinite, has axial boundaries and within them for a random value 

for the RPM the vortex wavelength takes on a value from the set of real 

numbers.  The Gibbs phenomenon manifests through fractionally stronger 

vortices at the axial ends, evidenced by a longer wavelength Figure 26.   
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Figure 26 End view of the Gibbs phenomenon in a cylinder with an aspect ratio 
of ~10, 5/10 fill-volume, (extracted from video). 

In the cylinder just like in the case for the Fourier series expansion of the 

rectangular function there are two boundaries that limit a one-dimensional 

(axial) domain of the vortices.  It is the vortices that do the Fourier transform of 

the cylinder since they are unit entities that can take on an integer number of 

wavelengths within the axial walls of the cylinder (for certain intervals in the 

continuous set of tangential speeds).  That Fourier wave function has an 

integer number of local extrema.  At the ends of the interval the Fourier series 

overshoots .  An analog to the overshoot from analysis are the fractionally 

stronger vortices toward the ends that lift more water than the ones closer to 

the center. 

Other natural systems where the Gibbs phenomenon is present are:  It is 

the source of the 9% overshoot at the discontinuity of a square wave signal fed 

into an amplifier [pg.53, 21] The beam in cathode ray tubes if is made to 

rapidly reverse direction, like if it is traveling from left to right and is suddenly 

reversed back toward the left then the overshoot can cause problems [pg.53, 

21]. The Gibbs phenomenon causes artifacts in spinal MRI imaging that can 

even lead to the (false visual) appearance of syringomyelia  [22]. 
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Centripetal Acceleration Effects on the Axial Stability of the Vortices 

 Contributing to the stability of the vortices could be the centripetal 

acceleration.  We kept the dynamic viscosity constant at 1cp.  Since the square 

root of the centripetal acceleration (௎బ

√ோ
) is part of the Görtler number, and in 

light of our observation of the complete instability for the flows of various fill-

fractions in the 3” cylinder (the one with the highest curvature) we can 

conclude that the higher the centripetal acceleration, the higher the Görtler 

number, the stronger the vortices yet wider the RPM intervals where they are 

stable. Maybe this is why other researchers have not found the existence of 

axially stable vortices, since they were interested in studying smaller diameter 

cylinders with low fill-volume, spinning at low RPM.  They used much higher 

dynamic viscosities [14,2], which diminishes the vortex strength.  The intervals 

in the RPM domain where the Hygrocysts are stable are small, and easy to miss 

if (௎బ

√ோ
) is low and one is not looking for them.   For the 3” cylinders they are too 

small and must be searched for with a digital tachometer.  For a fixed 

kinematic viscosity, it is the square root of the centripetal acceleration (௎బ

√ோ
), that 

is in the Gö, is in general the most frequently varying parameter defining the 

strength of the vortices.  
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Figure 27 Line-fit for various fill-volumes for a 3” cylinder not affected by the 
gravitational effects of the pool of water over the boundary layer   

Figure 27 recommends a starting point, in the domain of tangential 

speeds for a 3” cylinder of random fill-volume  between 3/10 and 6/10, for 

easy search of axially stable vortices.  That speed is approximately 8.7 m/s. 

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

A
xi
al
ly
 s
ta
b
le
 d
o
w
n
‐w

as
h
 r
e
gi
o
n
s

Tangential speed (m/s)

1/10

2/10

3/10

4/10

5/10

6/10

7/10

8/10

9/10

Linear ( 3/10)

Linear ( 4/10)

Linear ( 5/10)

Linear ( 6/10)



43 

 

 

 

Figure 28 Line-fit for various fill-volumes for a 5” cylinder not affected by the 
gravitational effects of the pool of water over the boundary layer 

Figure 28 similarly to Figure 27 shows a beginning point, for search for axially 

stable vortices for a 5” cylinder of random fill-volume between 3/10 and 6/10, 

at around 12 m/s. 
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Figure 29 Line-fit for various fill-volumes for a 7” cylinder not affected by the 
gravitational effects of the pool of water over the boundary layer 

Figure 27, Figure 28, and Figure 29 show stability regions for the various fill-

volume fractions not affected by the gravitational push from the suspended 

pool of water over the boundary layer.  The pool’s gravitational interference 

with the vortices is much more evident for the 7/10, 8/10 and 9/10 fill-volume 

fractions.  These stability regions occur: for the 3” cylinder at 8.7 m/s, for the 5” 

cylinder at 12 m/s, and for the 7” cylinder at 11m/s .  So, to observe axially 

stable vortices for a random volume fill between 3/10 and 6/10 for a 5” 

cylinder  one will need to spin it at around 12 m/s (900 RPM). 
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Gravitational Interference by the Suspended Pool Water With the 

Boundary Layer 

 An interesting phenomenon appears for the, 7/10, 8/10 and 9/10 fill  

cylinder where it becomes evident the growth of the vortices up until the point 

where the gravitational force of the suspended over the boundary layer liquid is 

the highest.  Past that point the vortices disappear.  With increased fill-volume 

fraction, the gravitational force by the suspended water pool on the boundary 

layer increases.  That pool adversely affects the strength of the vortices.   It 

increases the viscous drag and hinders the tangential shift between down- and 

up-wash regions.  That shift is a result of the coriolis force acting on the down- 

and up-wash regions, see the section ‘Coriolis Effects Determine the Shape of 

the Flow Front‘ .  For this reason in the 7/10, 8/10 and 9/10 fill-volume the 

vortices exist only up until the point in the interior of the cylinder where the 

gravitational force is the greatest.  The jets of water that still come up from the 

rising side of the cylinder at the points of down-wash are results of inertial 

effects and do not possess any trace of vorticity in them like for the  3/10 to 

6/10 fill-volume fractions. 

This effect is more pronounced for heavier water pools suspended over 

the boundary layer Figure 30, Figure 31, Figure 32.  This effect is unique to a 

rotating cylinder since in a deep flow over a curved surface or in a flow through 

a curved duct the velocity difference between liquid at the top and bottom of 

the boundary layer is constant.  For the case of a horizontally rotating cylinder 
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the suspended pool of water starts to rotate in the same direction as the 

cylinder dragged by the viscous pull of the boundary layer. 

 

Figure 30. Picture of a small pool of water standing over the boundary layer (7”, 
4/10, 444 RPM).  The angular velocity is into the picture. The boundary layer is 

visualized by the water at the rising end of the cylinder. The color scheme of 
the picture has been altered to improve visibility.   

Note the high bubble density in fig. 34.  The main difference with Figure 31 and 

Figure 32 is the pool of water over the boundary layer that is also dragged into 

rotation by the boundary layer. 
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Figure 31.  The standing pool of water over the narrow boundary layer, 7” cyl. 
7/10 full, 320 RPM, (the picture is extracted from a video).  The angular 

velocity is into the picture.  The color scheme of the picture has been altered to 
improve visibility. 
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Figure 32. The standing pool of water over the narrow boundary layer , 7” cyl., 
7/10 full, 303 RPM.  The angular velocity is into the picture.  The color scheme 

of the picture has been altered to improve visibility. 

 Notice how the bright spot on the bottom right of Figure 32 ends almost 

completely at the lowest point of the cylinder.  Its lighter color is from the 

suspended bubbles.  Once they are gone and the liquid becomes darker.  The 

weight of the liquid not only pushes the bubbles out of the boundary layer, it 

also, places a viscous break on the coriolis effects of the vortices.  Evidence of 
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that is the lack of vorticity in the small, periodic, by momentum driven lumps 

of water that pop up on the rising inner wall.   

Coriolis Effects Determine the Shape of the Flow Front 

 Knowing the fixed locations on the z-axes of the vortices is helpful in 

using localized methods for heat exchange, like placing fins there whose length 

and shape will depend on the kinematic viscosity of the fluid that will surround 

the cylinder.  The immense amount of bubbles that start to incorporate in the 

water with increasing the strength of the vortices increase many fold the water 

to air surface in the cylinder making it possible to create an evaporative heat 

exchanger.  Again in this case the cylinder will have fins that optimize the heat 

exchange at each down-wash region. 

 

Figure 33. Shark teeth, high dynamic viscosity, rotating at 3.2 rpm, dynamic 
viscosity ߤ ൌ 49 cp, fill-fraction 6% [14] 

The following figure shows a picture of the same surface effects by the vortices 

for much lower viscosity. 
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Figure 34. Picture of the surface formed at low rotational rates and low water 
volume fraction (7”, 417 RPM).  The color scheme of the picture has been 

altered to improve visibility. 

Notice how Thoroddsen’s vortices are radially bigger, Figure 33.  That is 

from the higher dynamic viscosity of their liquid: 8 to 1030cP. In comparison 

our distilled water has a dynamic viscosity of 1 cP , Figure 34 [18].  The liquid 

that the vortices shoot up in the up-wash regions is slow in flowing down so it 

concentrates so well in periodic lumps at the down-wash regions. The Coriolis 

force cannot be ignored since the down- and up- wash flows are at right angles 

with the angular velocity of the cylinder.   At the down-wash regions the 

Hygrocysts originate (Figure 8), and also the regions at the front of 
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Thoroddsen’s “shark teeth” , Figure 33, Figure 34.  The following expression is 

the Coriolis acceleration:  

௖௢௥௜௢௟௜௦ࢇ ൌ 2࢜ௗ௢௪௡ሺ௨௣ሻି௪௔௦௛࢝௖௬௟௜௡ௗ௘௥. 

It explains the different tangential velocity profiles for down-, up-wash regions,  

Figure 7.  The orthogonality of the vectors and the factor of two make the 

Coriolis force a considerable force causing a tangential shift between the down- 

and up-wash regions.  It explains how the gravitational force of the suspended 

pool of water over the boundary layer hinders the propagation of the vortices 

past lowest point in the cylinder, typical for 8/10 or 9/10 fill-volume.  

 

Figure 35. The Coriolis force pushes the down-wash regions in direction 
opposite of the tangential velocity (upstream) 
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Figure 36. The Coriolis force pulls the up-wash regions downstream  

From Hämmerlin’s exact solution to the eigenvalue problem for the onset of 

Görtler vortices, it is known that the vortices exist for small values of the 

Görtler number, Figure 9.  As a result the above observation is simply a 

manifestation of the Görtler vortices.  The vortices’ single condition for 

existence is fulfilled: there is a flow over a concave surface.   

Application 

 In practice the applications of this paper are in using the benefits of the 

Görtler vortices for heat exchange with a liquid enclosed in a rotating cylinder.   

People have been finding ways for using the benefits of the vortices, like: 

o passing air under pressure through a radially-narrow curved duct for 

purposes of heat exchange [17]  A cylinder-analog to such open system is 

turning the cylinder into an evaporator by introducing an opening at the 

side far from the motor and placing fins at the down-wash regions on the 

outside of the cylinder. 
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o Dr. Forney and Dr. Pierson used the Taylor type setup (Figure 2, Figure 3, 

and Figure 4) to proto sanitize fresh milk with ultraviolet light [1]. The 

discovery of fixed along the z-axes down-wash regions allows shining 

ultra-violet light at the down-wash regions for opaque to ultra violet light 

liquids, like milk. 

o Heating of a liquid inside of a Plexiglas cylinder by laser  is also possible 

by using the intense bubble density at the down-wash regions. The heat 

exchange mechanism will be Fresnel’s losses for power losses for light 

crossing the boundary of two media with different indexes of refraction, 

and the intense convective heat exchange at the down-wash regions will 

prevent melting of the cylinder. 

o For using the closed cylinder for a convective exchange with the ambient 

fluid (air, or other), further study must be done in shapes and lengths of 

fins and especially in techniques for depositing the fins through the 

cylinder wall without disturbing the smoothness of the inner surface of 

the cylinder. 
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SUMMARY 

The main differences of a flow in a rotating cylinder with flow over a 

concave surface are: the presence of the Gibbs phenomenon, and the 

localization in space of the flow front.  The suspended pool of water  acts like a 

gravitaional-viscous brake on the Coriolis forces produced by the up- and 

down-wash regions of the vortices.  The gravitational effects by suspended 

stationary pool of water, for cylinders of a fill-volume fraction more than 7/10, 

stop the vortices at the point on the bottom of the horizontally-rotating cylinder 

where the gravitatioinal force is the greatest.  That pool is also an analog to the 

centrifugal force applied by the fluid outside of the boundary layer in a curving 

duct.  This connects this work and the study of flows in a curved duct.  We 

discovered the existence of axiallly-stable down-wash regions in a partially 

filled horizontally rotating cylinder, for specific narrow intervals of the 

tangential speed of rotation.  This paper’s findings were mostly inspired by the 

theoretical work of H. Görtler and G. Hämmerlin covered in some detail in 

Chapter 1.   

To view videos that support the findings go to: 

http://www.physics.uco.edu/~dmartin/ , and use the link:  ”Flows in partially 

filled horizontally rotating cavities” 
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