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Abstract

Genetic algorithms are a class of search algorithms that have been around since

the 1970s. Despite their age, genetic algorithms still see a great deal of use in

various applications and so many efforts have gone into addressing some of their

limitations. Chief among the genetic algorithm’s limitations is its tendency to

converge to singular answers even when working with problem spaces that feature

multiple optima. Furthermore, genetic algorithms will often converge to answers

that are only local optima and not globally optimum. To that end, various re-

searchers have developed methods to both encourage exploration of a problem

space as well as promote diversification of genes to avoid global convergence.

The most promising method is speciation, a term and concept borrowed from

biology. New research shows that genetic structures using diploid chromosome

models, meiotic inheritance, and gene dominance encourage speciation without

the need for expensive selection modifications. Current implementations of dom-

inance are hypothesized to skew exploration of search spaces. This work modifies

the diploid approach to encourage exploration more generally by allowing domi-

nance to evolve alongside the genes affecting the phenotype of the chromosome.

These changes encourage speciation by allowing more symmetric exploration of

the search space. While the modifications are not perfect, they serve as an ex-

cellent proof of concept for future work.
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Chapter 1

Introduction

Nature has guided human ingenuity and engineering for time immemorial. It is

no surprise, then, that the field of computer science has also looked to biology for

inspiration. One of the most well known inventions inspired by the natural world

in computer science is the genetic algorithm, a heuristic search method based on

the theory of natural selection and evolutionary biology.

Genetic algorithms are effective and easy to implement, but are not without

their shortcomings. Of interest to this thesis is their tendency to converge to sin-

gular solutions in a search space, which presents several problems when applying

genetic algorithms to multi-modal problems and can reduce the effectiveness of

a genetic algorithm approach. A common approach to tackling this issue is to

introduce some method of encouraging speciation, a term and concept borrowed

from biology. Several well-developed methods of encouraging speciation exist,

but they introduce additional computational complexity to genetic algorithms.

This thesis expands on previous work that used a diploid model of gene ex-

pression capable of speciating without the need for a more expensive form of se-

lection (Booker and Hougen, 2018). This thesis introduces a new genetic model
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archetype that not only speciates without using a O(N2) speciation method, but

also does so regardless of where the initial population starts in the search space.

In doing so, this work serves as a proof of concept for a powerful new genetic

model with promising applications to future technologies.

In creating this new model of gene expression, this thesis spearheads the con-

cept of genes being affected by dominance scalars, numerical representations of

the effect genes have on the phenotype of the organism they belong to. Further-

more, this thesis proposes a new form of mutation in which dominance scalars

evolve alongside the chromosomes they modify. This new form of mutation is

called variable dominance.

It is hypothesized that variable dominance will perform better than the domi-

nance in Booker and Hougen (2018) in regards to exploration of the search space.

This is because the key hypotheses of this thesis are that the non-variable domi-

nance present in Booker and Hougen (2018) will lead to asymmetrical exploration

of the search space, variable dominance will feature symmetrical exploration, and

that the methods will both speciate at the same rate.

The experiments for this thesis are empirical studies based on the work done

in both Woehrer et al. (2012) and Booker and Hougen (2018), but with some

modifications to accommodate the new model and test its effectiveness.

Ultimately, this thesis broadens the understanding of how dominance and

meiotic inheritance interact with speciation, and how artificial evolution might

be directed to better perform in multi-modal environments. It is important for

the reader to understand that the speciation method introduced in this thesis

is inspired by biology, but does not strictly adhere to the mechanisms of real-

world evolution. While the results of this study may be less informative of the

natural world because of this, the potential applications to problem solving from
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a computer science perspective are believed to offset this penalty.

Chapter 2 explains how genetic algorithms work and examines some of the

problems with genetic algorithms that stem from their tendency to converge

early. Additionally, the next chapter describes speciation in more detail, and

how computer scientists have applied speciation as a way to avoid the pitfalls

of early convergence. The last two experiments discussed in chapter two are

of particular relevance to this thesis. The first experiment demonstrates how

genetic models featuring haploid (single chromosome) genetic models necessitate

assortative mating strategies in order to speciate (Woehrer et al., 2012). The

second experiment introduces a novel diploid (two chromosome) genetic model

that removes the need for assortative mating to produce speciation (Booker and

Hougen, 2018).

In Chapter 3, this thesis discusses some hypothesized drawbacks to the dom-

inance model employed in Booker and Hougen (2018) and a theoretical method

of addressing these drawbacks. New terms are designed to discuss dominance as

a spectrum rather than in binary terms. Furthermore, a new method of gene

expression is proposed that leverages dominance to encourage a broader range to

speciation.

Chapter 4 focuses on the implementation of the proposed changes as well as

the experimental design used to test the effectiveness of the changes.

Chapter 5 explores the results of the experiments. It is found that the in-

troduction of variable dominance has mixed results on speciation. On one hand,

variably dominant models exhibit a reduced rate of speciation compared to the

model of Booker and Hougen (2018), in which dominance is tied to phenotypic

value. On the other hand, the variably dominant models developed in this thesis

demonstrate an ability to speciate into a wider range of niches when compared

3



to the models employed by Booker and Hougen (2018).

In Chapter 6, the hypotheses are revisited to determine how well they hold

given the results of the experiments, conclusions are drawn, and future work is

discussed.
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Chapter 2

Related Work

This chapter provides an overview of what a genetic algorithm is. It also covers

some key limitations of genetic algorithms. After discussing the limitations of

genetic algorithms, this chapter gives an overview of speciation, how it is applied

in genetic algorithm research, and some well known speciation methods. Finally,

this chapter discusses in detail two experiments that are the predecessors to this

thesis.

2.1 The Genetic Algorithm

As early as the 1950s, scientists and mathematicians looked to evolution as an

inspiration for developing new algorithm paradigms (Mitchell and Forrest, 1994).

By the end of 1975, John Holland of the University of Michigan had cemented

the fundamental structure of genetic algorithms (Holland, 1975; Mitchell and

Forrest, 1994). While genetic algorithms have seen many variations in form and

application since Holland’s time, they follow this general procedure:

1. Generate an initial population of chromosomes, with each chromosome rep-
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resenting a solution to the problem at hand.

2. Assign a fitness to each chromosome. Fitness is a value representing the

likelihood of a particular chromosome to pass on its genes.

3. Mate the solutions together by applying selection, crossover, and mutation

(each defined later in this chapter). The offspring of this mating produces

the next generation of candidate solutions.

4. Repeat steps 2 and 3 until a stopping criterion is reached.

To understand how these steps can lead to optimal answers, first we need to

understand the basic data model underlying genetic algorithms: the chromosome.

A chromosome in the genetic algorithm has this basic structure:

Figure 2.1: A depiction of a chromosome in a genetic algorithm.

As can be seen in Figure 2.1, A1, A2, etc. are arguments to a function of some

kind; this function is called the objective function. The objective function is the

function representing the problem we aim to solve. The domain of this function

is called the search space. This string of arguments is conceptually thought of as

a chromosome. The goal is to eventually evolve a chromosome whose arguments

maximize the problem function we are evaluating them on. We do this through

a process reminiscent of natural selection.

Natural selection, in the genetic algorithm sense, has three basic components

to it. The first part of the process is assigning fitness to a chromosome. In the

traditional genetic algorithm model, fitness is assigned explicitly to each chromo-

some every generation by a fitness function. Exactly what the fitness function
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evaluates depends on the application. In some applications, the ideal answer is

known, but the steps to get there are not. In this case, the fitness function could

very well measure a given chromosome’s performance compared to the ideal an-

swer and assign higher fitness to the better performing chromosomes. In other

applications, the ideal answer is unknown; in this case, fitness must be assigned

to chromosomes relative to the performance of their peers. It is important to note

that fitness and performance are not necessarily interchangeable. For instance,

sometimes the fitness function rewards novelty, rather than performance (Conti

et al., 2017). Sometimes fitness is implicitly assigned rather than explicitly; this

is particularly apparent in simulations of biological evolution in which the “fit-

ness function” is actually just low performance individuals failing to thrive rather

than an explicit call to a well defined function (Woehrer et al., 2012). Regardless

of the mechanism, fitness is a key part of the genetic algorithm’s ability to make

incremental improvement towards an optimal solution.

The next part of the natural selection process is the selection of genes to

be passed on to the next generation. The key part of selection, regardless of the

particular mechanism employed, is that more fit individuals should be more likely

to pass on their genes than less fit individuals. Examples include:

• Roulette wheel selection, in which an individual’s chance of being selected

to reproduce is proportional to its fitness relative to its peers.

• Tournament selection, in which a sample of the population is taken and

ranked. With this ranking, winners are chosen with a probability related

to their positions in the ranking, often with the highest fitness individual

in the tournament selected with probability 1 (higher rank means a higher

probability of mating).
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• Reward-based selection, in which the cumulative reward obtained by an

individual determines its probability of reproducing. This model also allows

a child to inherit some of its parent’s fitness (Loshchilov et al., 2011).

Crossover, in genetic algorithms, is the mixing of chromosomes to produce

new individuals. Often this process is stochastic. For example, the chromosome

produced by the mating of two individuals may have a 50% chance to inherit

each of its genes from either parent.

The final ingredient to a successful genetic algorithm is mutation, in which

chromosomes are changed in some stochastic way to increase genetic diversity

in the mating pool. Genetic diversity is important as it helps to avoid early

convergence to an non-optimal solution. Generally speaking, the offspring of two

different chromosomes has a small chance to mutate upon creation. Under clonal

reproduction, the copying of single individuals without mating, mutation may be

applied to clones as well. Mutation may involve changing only part of a gene, or

the entirety of the chromosome, but the important part of mutation is to diversify

the gene pool.

Algorithm 1 shows a generalized genetic algorithm approach. The algo-

rithm distinguishes between an organism’s fitness (obtained from the fitness

function) and its score (obtained from the objective function). The function

INITIALIZE RANDOM POPULATION is assumed to produce a properly di-

verse starting population. The function SELECT BASED ON FITNESS re-

turns a subset of a given population based on the fitness values of the indi-

viduals and the selection strategy involved in mating. The subset returned by

SELECT BASED ON FITNESS will be sized according to a given fraction of

the population. Similarly, the function SELECT PARTNERS determines how
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many mating partners a particular individual will have and which partners they

will be. MUTATE has a random chance to mutate an individual. Finally, SE-

LECT MAX BASED ON SCORE is used to determine what individual scores

the highest using the objective function.

2.2 Limitations of Genetic Algorithms

Genetic algorithms are not without limitations. Genetic algorithms tend to con-

verge to singular, local optima in any given search space (Bäck, 1996). This

creates several problems:

• Many problems are deceptive, in that the search space encourages conver-

gence early on to a local optimum that is not competitive with other, global

optima (Lehman and Stanley, 2010). This is thought to arise whenever

lower-order schemas give misleading information about the probable aver-

age fitness about the higher-order schemas contained within them (Forrest

and Mitchell, 1994).

• With some problems, such as travelling salesman problems, the knowledge

of multiple optimal solutions would be beneficial. Traditional genetic algo-

rithms fail to reliably capture more than one solution at a time.

• It can be difficult to maintain genetic diversity even with mutation, and as

such, it is possible to not sufficiently explore a search space with traditional

genetic algorithms.

Different solutions have been proposed and implemented to correct these lim-

itations to varying degrees of success. For example, in many cases of deception, a

better fitness evaluation metric can overcome early convergence. A good example
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of this would be the experiment shown in Conti et al. (2017), in which an agent

is trained to walk. This paper features a problem designed to be intentionally

deceptive, and then demonstrates that changing the fitness function to reward

novelty, rather than performance, allows a genetic algorithm to overcome the

deception. While in this case the limitations of a genetic algorithm approach

could be mitigated, at least partially, by a change in the fitness function alone,

in other cases we require a more radical approach to encouraging diversity while

avoiding early convergence. One promising solution is to implement some form

of speciation.

2.3 Speciation: A Promising Solution

Speciation, in brief, is the process that causes one species to split and become two

new species (Berlocher, 1998). Generally speaking, speciation is thought to occur

when subpopulations of a species are physically divided from one another, thus

causing them to continue to evolve independent of one another. Over time, the

differences in the mating pools bring about enough change that they are no longer

the same species. However, not all forms of speciation occur through a physical

separation of subpopulations. Sympatric speciation is the emergence of a new

species from an existing species’ population in the same region. Under sympatric

speciation both species continue to inhabit the same environment (Smith, 1966).

While there is some controversy as to whether or not sympatric speciation occurs

in the wild, from a computer science standpoint sympatric speciation has the

potential to overcome some of the most glaring constraints of genetic algorithms.

It is important to understand that evolution in the natural world is an unguided

process, and that computer scientists use objective fitness in an effort to turn
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evolution into a guided process (Shah and Hougen, 2019). With this in mind,

it is no surprise that much of the speciation research in the field of computer

science focuses on controlling speciation rather than explaining it.

Combining speciation and genetic algorithms is not a new idea, but it is still

a growing field of study. Some of the more basic attempts at this are through

niching methods. The idea behind niching methods is to actively choose what

chromosomes will reproduce in order to maximize genetic diversity; these meth-

ods can be somewhat expensive, and, in general, do not find optimal solutions

quickly (Yu and Suganthan, 2010). Because of some of the issues niching methods

present, some researchers moved to modifications of the genetic algorithm struc-

ture (Yu and Suganthan, 2010). Such modifications include the introduction of

taxon strings and other tags to indicate how similar a particular chromosome was

to another one. The end goal of these mechanisms is to encourage similar chro-

mosomes to mate with each other; however, they still require more computation

time in order to compare individuals during selection (Bäck et al., 1997).

2.3.1 Example Niching Methods

NSGA-II is a good example of a niching algorithm based on distances in the search

space (Deb et al., 2002). While the paper introducing the algorithm notes how

NSGA-II is remarkably more performative than other popular niching algorithms,

it is still limited by the need to compare every solution to every other solution.

PRISM is another example of a distance-based speciation algorithm. However,

unlike NSGA-II, it takes into account common ancestors as well (Grouchy et al.,

2009). An interesting part of PRISM is that as an island model it actually enforces

a strict mating barrier between subpopulations with only periodic migrations of
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individuals between each mating pool providing genetic flow between them. Once

more, this system requires every solution to be compared to one another and can

become computationally expensive.

Both NSGA-II and PRISM require the programmer to specify the distance

at which a species is considered distinct (Deb et al., 2002; Grouchy et al., 2009).

In an effort to avoid parameters such as this, Della Cioppa et al. (2011) presents

a niching method called Adaptive Species Discovery (ASD). In practice, ASD

often avoids the worst case complexity of N2 by having species defined by key

individuals, not large collections. However, in order to do this ASD employs a

more complicated distance function that relies on finding hills and valleys in the

search space. This function requires a good set of sampling points to function

correctly, and can be computationally expensive (Della Cioppa et al., 2011).

A recurring theme in the algorithms discussed is the need to compare each

individual in a population to every other individual. The next section discusses a

paper of particular importance to this thesis. In this paper, evidence is collected

which suggests that the traditional model for genetic algorithms requires modified

selection in order to exhibit speciation.

2.4 Sexual Selection Leads to Speciation

One of the predecessors to this work is Woehrer et al. (2012), which aims to

explore how speciation can be induced through the actions of individual agents

in the environment as well as a preference for mating with similar individuals

(Woehrer et al., 2012). In order to accomplish this, Woehrer et al. (2012) de-

velops a simulation of an island populated by finches. These finches’ beak sizes

determined what resources they could exploit. The experiment is briefly detailed
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in this section.

Woehrer et al. (2012) features five, key hypotheses. The hypotheses, in order,

are:

1. Speciation will occur in the case of a bimodal resource distribution and

assortative mating.

2. In the case of a bimodal resource distribution and random mating, only one

resource will be exploited and speciation will not occur.

3. With a uniform resource distribution and assortative mating, speciation

may occur from the assortative mating alone.

4. With a uniform resource distribution and random mating, no speciation

should occur.

5. Increasing the availability of resources will lead to larger population sizes

and more stability, but not affect the behavior of any speciation.

2.4.1 Experimental Design

The experiment consisted of an artificial island, 100 × 100 units in size, populated

with birds and seeds. Birds have the following properties: age, beak size, energy

level, and gender; beak size is determined by a bird’s genetics. Birds have a

maximum energy capacity of two units as well as a lifespan of four years. Seeds

have an energy value, size, and location.

A single run of an experiment consists of up to 1000 generations of birds; a

run can end before 1000 generations if all birds die out. At each generation the

age, beak size, energy, gender, and mating count are recorded for all birds.
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Two different seed distributions are used. The first is a bimodal seed dis-

tribution. Under this distribution, seed sizes are drawn from two Gaussian dis-

tributions with means of 3 and 8 and variances of 0.5. Both of the Gaussian

distributions have an equal chance of being selected each time a seed is gener-

ated. The second distribution is a uniform distribution from 1 to 10. The number

of seeds depends on the resource availability; the small population condition calls

for 5000 seeds each generation, but the large population condition calls for ten

times that number.

Each generation is split into two phases, a dry season and a mating season.

Dry seasons consist of 100 consecutive days. Each day during the dry season,

each bird will attempt to feed. Individuals first pick a random 10 × 10 region of

the island to search, then search within that region for an acceptable seed. Birds

can only eat a seed whose size falls within one unit of their beak size.1 Seeds

contain a uniform random amount of energy between zero and two. A feeding

attempt itself costs 0.1 units of energy to perform. After feeding, if a bird’s energy

level falls below zero, it is removed from the population and considered dead. At

the end of a dry season, mating takes place. During a mating season, food is

considered abundant. Because of this, the only part of the season simulated is

the mating attempt as all birds are assumed to survive.

Two forms of sexual selection are allowed: assortative mating or random

mating. Under assortative mating rules, females choose a mate within one unit

of their beak size. Males are randomly chosen if multiple qualify. Under random

mating, a mate is selected at random from the whole population. In either case,

males are restricted to only mating five times per generation in order to ensure

genetic diversity. Offspring have a beak size that is the average of the sizes of

1For example, a bird whose beak size is 4 must eat a seed of size [3, 5].

14



the parents’ beaks plus some mutation in the form of Gaussian noise (mean 0,

variance 0.2). Gender is assigned with an equal chance of being either male or

female, and the energy level starts at zero. Finally, after reproduction is finished,

the age of all birds is incremented by one and birds with an age over four are

removed. After the removal of the old birds is complete, the simulation removes

all uneaten seeds and begins the next dry season.

For the cases with 5000 seeds, 48 trials were run for each combination of seed

distribution and mating strategy. For the cases with 50000 seeds, 24 trials were

run.

2.4.2 Results

The results of the experiments largely line up with the hypotheses put forth.

In the case of bimodal seeds and assortative mating, 31 out of 48 of the trials

resulted in a speciation event that created a stable population that persisted

throughout the trial. In the case of bimodal seed distribution and random mating,

41 of the trials resulted in only one branch being present, with the remaining 7

yielding complete extinctions. With a uniform seed distribution and random

mating, constant branching took place, but these branches were highly unstable

and tended to disappear in a few generations. With a uniform distribution and

random mating, the norm was for there to be one population of birds, with the

only exceptions being 13 trials that ended by extinction.

In the case of the 10× seeds condition, the only tangible difference came in

the case with uniform seed distribution and assortative mating. In this case the

unstable branching was replaced with four distinct populations featuring frequent

interbreeding.
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Woehrer et al. (2012) illustrates that without modified selection parameters,

the standard genetic algorithm fails to speciate. In order to encourage speciation

without relying on expensive comparisons during selection, a new genetic model

needed to be designed. The next paper discussed introduces a new genetic model

that overcomes the need for modified selection.

2.5 Meiotic Inheritance: A New Model for the

Genetic Algorithm

Booker and Hougen (2018) builds on what Woehrer et al. (2012) demonstrates;

using the same environment, Booker and Hougen (2018) investigates a very novel

approach to speciation by changing the fundamental model of a genetic algo-

rithm. The model used by Woehrer et al. (2012), like most models used in

genetic algorithms, features a genetic structure with only one chromosome. How-

ever, many species of animals inherit two sets chromosomes from their parents,

not just one. Booker and Hougen (2018) develops a new framework based on

a two-chromosome model, hypothesizing that this change in combination with

a concept of gene dominance could accomplish speciation. Booker and Hougen

(2018) calls this new form of inheritance meiotic inheritance.

The two relevant hypotheses put forth in the paper are as follows:

1. Meiotic inheritance will allow for speciation without assortative mating.

2. Complete dominance, which will be explained below, will amplify the effect

that meiotic inheritance has on speciation.
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2.5.1 Experimental Design

The experimental design Booker and Hougen (2018) uses is similar to the one em-

ployed in Woehrer et al. (2012). The largest changes were designing a new genetic

structure, new forms of inheritance, and a modified system of gene expression.

Furthermore, only 5,000 seeds were used.

Figure 2.2: A depiction of a diploid genetic algorithm.

In the new model, an individual has two chromosomes, not one, as shown in

Figure 2.2. The genes denoted as F1, F2, ..., Fn represent the genes received from

the father of an organism, and the genes labeled M1,M2, ...,Mn represent the

genes inherited from the organism’s mother. For the simulation, chromosomes

contain one-hundred genes. The starting population’s chromosomes are initialized

randomly, with each gene represented by a floating-point value chosen from a

uniform distribution with a mean of 0.055 and a range of 0.245.2 When two birds

mate, one chromosome is randomly selected from each parent to construct the

offspring. During the mating process, each gene copied from a parent has a 10%

chance to be mutated. When mutated, a gene has a random value taken from a

2Booker and Hougen (2018) explains these values were chosen to mimic the behavior of the
single-gene model employed in Woehrer et al. (2012), with the final beak size being the average

of two sums of 100 genes: 1
2

∑200
i=1 Xi. The distribution of the beak sizes is considered normal

by the central limit theorem. The mean and standard deviation are thus 1
2 (200 ∗ 0.055) = 5.5

and 1
2

√∑200
i=1 Var(Xi) = 0.5, respectively. Xi denotes the value for gene i in chromosome X.
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uniform distribution with a range of 0.310 and a mean of 0 added to it.3

The experiment featured two forms of inheritance for the diploid model:

blending and discrete inheritance. Under blending inheritance, an offspring’s

genes are the average of its inherited genes, while in a discrete model its genes

are kept distinct from one another. The blending model designed in Booker and

Hougen (2018) mimics the performance of the Woehrer et al. (2012) model, and

is more similar to the traditional genetic algorithm chromosome. The model of

inheritance of interest to this thesis is the discrete version, and thus it will be the

form of inheritance discussed in this section. This is because discrete inheritance

produced speciation under random mating, as explained later in this section.

One of the largest consequences of switching to a diploid model is the need for

a new form of expression. Booker and Hougen (2018) considers two different forms

of expression: incomplete dominance and complete dominance. In both forms of

expression, the phenotypic value of a chromosome is determined by summing up

the values of the genes making up that chromosome. Where the models differ is

how these values are used. In the incomplete dominance case, the beak size of

a bird was the average of its two chromosome values. For complete dominance,

the larger of the chromosome values was used as the beak size, with the smaller

chromosome value not affecting the phenotype of a bird but still having a chance

to be passed on to offspring.

2.5.2 Results

The introduction of a two-chromosome genetic structure did, in fact, encourage

speciation. Out of 48 trials with random mating and a bimodal seed distribution,

3These values were determined empirically by the researchers in order to mimic the mutation
rate of the single-gene model used in Woehrer et al. (2012).

18



33 of them featured speciation using complete dominance. All this shows that

by switching to a diploid model with some concept of dominance, speciation is

attainable without the need for some kind of assortative selection process. This

concept could radically change how genetic algorithms operate in the future, as

more costly methods of speciation may be avoided entirely by simply adopting a

more expressive genetic structure.

In particular, complete dominance shows great potential in the experiments

of Booker and Hougen (2018). However, complete dominance depends on the

user to determine what phenotype is more dominant than another, and as such

introduces some user bias in how the model operates. This thesis aims to improve

on complete dominance by creating a model that is devoid of this bias.

Booker and Hougen (2018) opened a doorway to new methods of encouraging

speciation, and research needed to be done to determine how best to utilize this

new method to effectively cover search spaces more generally. This thesis aims

to do just that, and the details of this endeavor are detailed in the following

chapters.
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Algorithm 1: Genetic Algorithm Example

Input: MaxGenerations // The maximum number of generations until
solution is returned

CrossoverRate //The fraction of the population that is generated by
crossover [0, 1]
Output: BestIndividual // The best performing individual found during

the last generation of the search
GenerationNumber ← 0;
Population ← INITIALIZE RANDOM POPULATION();
while GenerationNumber < MaxGenerations do

foreach P ∈ Population do
P.Fitness ← FITNESS FUNCTION(P);

end
MatingPopulation ← SELECT BASED ON FITNESS(Population,
CrossoverRate);

CloningPopulation ← SELECT BASED ON FITNESS(Population, 1
− CrossoverRate);

NewPopulation ← ∅;
foreach P ∈ MatingPopulation do

MatingPartners ← SELECT PARTNERS(MatingPopulation);
foreach Q ∈ MatingPartners do

M ← CROSSOVER(P, Q ∈ MatingPopulation);
MUTATE(M );
NewPopulation.add(M );

end

end
foreach P ∈ CloningPopulation do

MUTATE(P);
NewPopulation.add(P);

end
Population ← NewPopulation;
GenerationNumber ← GenerationNumber +1;

end
foreach P ∈ Population do

P.Score ← OBJECTIVE FUNCTION(P);
end
BestIndividual ← SELECT MAX BASED ON SCORE(Population);
return BestIndividual ;
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Chapter 3

Hypotheses

In order to capture a deeper understanding of the effects that a dominance schema

might have on speciation, a new concept is proposed. A dominance scalar is a

numerical representation of how dominant one chromosome is over another, or in

other words a measurement of how much weight a chromosome or gene has on

the expression of a organism’s genes. In Booker and Hougen (2018), dominance

was either directly tied to the phenotypic value a chromosome possessed, or it

was equal for all chromosomes and independent of genetics entirely. While this

led to fascinating and field-changing discoveries, it also opened up research into

how manipulations of the dominance scalars present in a population might affect

speciation, or even alter its course. This thesis delves into this topic in order to

demonstrate a new dominance model that treats dominance scalars as pieces of

a genetic algorithm open to evolution themselves. Previous research with diploid

models indicates that variable dominance schemes tend to outperform schemes

where dominance is considered fixed (Smith and Goldberg, 1992). However, un-

like in Smith and Goldberg (1992), this thesis proposes a dominance model that

blends incomplete dominance and complete dominance. Under the proposed
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model, chromosomes will affect the phenotype of an individual proportionally to

their dominance scalars, as opposed to the more “all or nothing” implementation

in Smith and Goldberg (1992). This paradigm of dominance scalars changing

with the genes they affect is dubbed variable dominance.

3.1 Hypothesis H1: Trait-Based Dominance is

Directional

The first hypothesis addresses a theorized limitation of dominance being directly

related to expression. It is proposed that with larger beaks being more dominant,

exploration of the search space becomes feasible in the direction of smaller beaks,

but stunted in the direction of larger beak. To illustrate this, consider a bird

with one large-beak chromosome and one small-beak chromosome. The small-

beak genes could very well be nonviable, but they could still persist in the gene

pool as they have no effect on the bird’s survival chances. However, if the large-

beak genes would leave the bird to starve, the bird starves; the large-beak genes

dictate beak size and thus decide whether or not the bird can live to pass on its

genes. Intuitively, we can see that large beaks being dominant leaves smaller-beak

genes more likely to survive, as not every bird carrying them expresses them. It

also follows that a higher survival rate allows for a greater degree of exploration.

This conjecture leads to the first hypothesis of this thesis:

H1: Under the model with large beaks being dominant, exploration will be

asymmetrically skewed toward niches that require small beaks.
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3.2 Hypothesis H2: Variable Dominance is Sym-

metric

The second hypothesis addresses how variable dominance will encourage symmet-

ric exploration. Consider again the case of a bird with one large-beak chromosome

and one small-beak chromosome. However, this time dominance is evolved as part

of a chromosome rather than tied to beak size. It could be that for this bird the

large-beak chromosome has a lower dominance scalar than the small-beak chro-

mosome; in that case the bird’s genes are free to explore in the direction of larger

beaks rather than smaller ones. Alternatively, the dominance scalars could be

close to or identical to what they would have been under the model in which large

beaks are dominant, in which case the genes are free to explore in the direction

of smaller sizes. While freedom of exploration in either direction for an individ-

ual is not guaranteed, as a population it becomes very likely that at least a few

low-dominance chromosomes will exist on both sides of the size spectrum, thus

facilitating more symmetric exploration of the search space. Thus, the second

hypothesis of this thesis becomes:

H2: Under the variable gene dominance model, exploration will be symmetric.

Both smaller and larger beak sizes will be explored.

3.3 Hypothesis H3: Trait-Based Dominance and

Variable Dominance are Comparable

The third hypothesis addresses a possible shortcoming to variable dominance.

Under the model used by Booker and Hougen (2018), speciation was a common
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occurrence when using meiotic inheritance, but not guaranteed. The biggest

concern with variable dominance is if it will reduce the rate of speciation as com-

pared to dominance based on expression. It is possible that with the bimodal

seed distribution, too many pairings between large-beak and small-beak chromo-

somes with similar dominance scalars could produce many individuals who die

out due to the lack of seeds in the middle ground between the modes, and these

die outs could limit genetic diversity too much to speciate. However, it can also

be reasoned that variable dominance will actually encourage fewer extinctions to

occur. Take, for instance, a scenario in which large beaks are dominant, but all

large beaked individuals have died. In this scenario, it becomes very hard for the

large beak niche to become filled again, as no genes dictating large beak sizes are

present in the population. If there had been any, the birds that had them would

have had large beaks and thus died. However, in a variable dominance model,

some of the small beaked birds are likely to have large-beak chromosomes that are

not expressed because of their low dominance scalars. All it takes is pairings be-

tween several of these individuals to produce a viable population of large-beaked

individuals again. Considering the competing factors, the third hypothesis of this

thesis states:

H3: Variable gene dominance will allow for speciation at a comparable rate

to a model in which size determines dominance.

3.4 Hypothesis Testing

All hypotheses listed above are defined in such a way that two sample hypothesis

testing should be used. For H1 and H2, an experiment must be formed that can

test each model on its ability finding a larger seed size and smaller seed size.
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For H1 to hold, a significant difference between the performance of finding the

smaller seed niche and finding the larger seed niche will need to be detected. In

contrast, for H2 to hold, no significant difference should be detected. In order

to test a model’s ability to locate a niche compared to another model, several

runs will be performed. The number of times the models located the additional

niche in each collection of runs will be recorded and compared to each other to

determine if there is a statistically significant difference in performance.

For H3, the variable dominance model will need to be compared to the size-

based dominance model to determine if there is a significant difference in the

rate of speciation; if no difference is detected, the hypothesis holds. In order to

test the speciation rate, the process will be similar to how H1 and H2 are tested.

The key difference is the total number of speciation events, regardless of whether

or not any additional niche was located, will be recorded. This will determine

if there is a significant difference in the likelihood of speciation to occur at all

between models.
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Chapter 4

Experimental Design

The experimental design of this project is similar to the one employed in Booker

and Hougen (2018). The experiment features a 100 × 100 unit sized island, a dry

season of one-hundred days, and a mating season that follows. However, there are

some key changes made to test the hypotheses put forth in the previous chapter.

These changes include two new genetic structures, a new form of expression, and

two more seed distributions. This chapter will detail the changes made to the

environment used in Booker and Hougen (2018) as well as the new speciation

mechanisms developed as part of this thesis. First, this chapter will briefly dis-

cuss the unchanged characteristics of the environment. Next, it will discuss the

modifications made to test the hypotheses.

4.1 Unchanged Environmental Properties

The island used in this experiment is exactly the same as the one used by Booker

and Hougen (2018) and Woehrer et al. (2012): 100 × 100 units and populated

with birds and seeds. No changes were made to these properties as it was decided
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not to yield any useful information about speciation.

Birds again have the following properties: age, beak size, energy level, and

gender. Their lifespans are four years, and they have a maximum energy capacity

of two units. Seeds remain unchanged as well, being defined by their energy value,

size, and location as in the previous experiments.

As before, a single run of an experiment consists of up to 1000 generations

of birds. Runs can end before 1000 generations if all birds die out. At each

generation the beak sizes of all birds are recorded.

The mating strategy employed is random mating. Female birds select a mate

each year at random and males are restricted to five mates per year. Since the

hypotheses of this thesis concerned random mating only there was no need to

include the assortative mating from the previous experiments.

4.2 New Genetic Structures

In order to capture the idea of a variable dominance, a new genetic structure

needed to be designed that could allow for the evolution of dominance scalars.

Two such structures were tested as part of this experiment.

The first model developed for exploring variable dominance is a poly-weighted

approach. Under this model, each gene in a chromosome carries a weight that

determines the effect it will have in expression. The initial weights of the chromo-

somes are integers randomly assigned from a uniform distribution ranging from

1 to 100. Other than these weights, the model is identical to the one used by

Booker and Hougen (2018).

The second model is similar to the first; however, under this mono-weighted

model, all the genes in a chromosome share the same weight rather than having
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independent weights. This weight still ranges from 1 to 100, and is assigned at

random for the initial population.

In addition to two different structures being used, two forms of mutation are

tested on the weights. Under the high variance model, when a weight is mutated

it is changed to another value drawn from a uniform distribution ranging from

1 to 100. Under the low variance model, when a weight is mutated the weight’s

value has a 50% chance to be shifted 5 points up and a 50% chance to be shifted

down 5 points. If the shift up would cause a weight to become greater than 100,

it is capped at 100 instead. Likewise, a weight will never fall below 1.

For poly-weighted chromosomes, each weight independently has an 8% chance

of being mutated during reproduction. For mono-weighted chromosomes, the

single weight that all genes share has an 8% chance of being mutated during

reproduction.

4.3 New Form of Expression

The new genetic structures demand a new form of expression. For poly-weighted

chromosomes, a bird’s beak size is determined using the formula

100∑
i=0

Xi ∗Mi + Yi ∗ Fi

Xi + Yi

(4.1)

where Xi indicates the weight for gene i in the chromosome originating from a

bird’s mother while Mi indicates the value of that gene. Similarly, Yi indicates

the weight for gene i in the chromosome originating from a bird’s father, and Fi

indicates the value of that gene. The goal of this equation is to ensure that genes

with greater weight than their counterpart have more control over the beak size
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of the individual they belong to.

For mono-weighted chromosomes, the equation becomes

100∑
i=0

X ∗Mi + Y ∗ Fi

X + Y
(4.2)

Here, only one weight is used for each chromosome, so no indices are needed for

them. This can also be seen as a special case of the first chromosome where

X1 = X2 = ... = X100 and likewise for the father’s chromosome.

4.4 New Seed Distributions

Seeds are once again the resource that the birds will evolve to exploit. In this

experiment, the uniform seed distribution is not explored as the new genetic

structures are more aimed towards finding peaks in the problem space than en-

couraging speciation for its sake alone. Consequently, the bimodal seed distri-

bution makes a return as one of the seed distributions to be tested. A bimodal

distribution is made by drawing 2500 seeds from a Gaussian distribution with a

mean of 3 and standard deviation of 0.5 and another 2500 seeds from a Gaussian

distribution with a mean of 8 and a standard deviation of 0.5.

Two more distributions are employed in this study. The first, called trimodal

large, adds an additional niche to the bimodal distribution centered at 13. This

is accomplished by drawing 2500 more seeds from a Gaussian distribution with a

mean of 13 and a standard deviation of 0.5. The second, called trimodal small,

adds a niche centered at −2 and is again formed by drawing 2500 more seeds from

a Gaussian distribution similar to the other niches. Note that seed and beak sizes

are arbitrary integers with little meaning beyond what resources a bird has access
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to, so negative numbers work perfectly fine. These additional distributions will be

used to test how well a given method can explore in a particular direction in the

problem space. A model’s success rate in finding and exploiting these additional

niches will allow us to answer hypotheses H1 and H2. Note that the starting

population of birds will have chromosomes specifying beak sizes identical to the

starting population of the experiments in Booker and Hougen (2018). Considering

that the chromosomes will have a mean value of 5.5 and a variance of 0.5, it is very

unlikely a significant portion of the starting population will begin with beaks sized

to exploit these additional niches. Because of this, these distributions will require

the model to explore the search space far more than the bimodal distributions

did in order for all resources to be exploited.

Algorithm 2 gives an overview of the island simulation. The inputs to this al-

gorithm are the seed distribution to use (bimodal, trimodal large, trimodal small)

and the genetic model (complete dominance, incomplete dominance, etc.). Note

that both Woehrer et al. (2012) and Booker and Hougen (2018) used additional

seed distributions, such as uniform seed distributions or larger numbers of seeds.

The function INITIALIZE RANDOM POPULATION produces the initial popu-

lation of birds randomly as described in Booker and Hougen (2018). The function

GENERATE SEEDS FOR ISLAND produces a two-dimensional array of loca-

tions, with each location having a list of seeds. The function FIND SEEDS IN

RANDOM AREA takes this array and returns a list of the seeds found in a

random area as defined in Booker and Hougen (2018).
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Algorithm 2: Island Simulation

Input: SeedDistribution // The seed distribution for this run
GeneticModel // The genetic model to use

Year ← 0;
Population ← INITIALIZE RANDOM POPULATION();
PopulationSize ← Population.size();
OutputLogs ← ∅;
while Year < 1000 ∧ PopulationSize > 0 do

Island ← GENERATE SEEDS FOR ISLAND(SeedDistribution);
for Day = 0;Day < 100;Day ← Day + 1 do

foreach Bird ∈ Population do
Bird.energy ← Bird.energy − 0.1;
FoundSeeds ← FIND SEEDS IN RANDOM AREA(Island);
SHUFFLE(FoundSeeds);
foreach Seed ∈ FoundSeeds do

if Bird.beakSize− 1 ≤ Seed.size ≤ Bird.beakSize + 1
then

Bird.energy ← MIN(2, Bird.energy + Seed.energy);
Island.remove(Seed);
BREAK;

end

end

end

end
// recording the beak sizes and energy levels
// of this generation of birds and removing dead birds
foreach Bird ∈ Population do

OutputLogs.add(TUPLE(Y ear, Bird.energy, Bird.beakSize));
Bird.age← Bird.age + 1;
if Bird.energy ≤ 0 ∨ Bird.age ≥ 4 then

Population.remove(Bird);
end

end
NewMembers ← MATE(Population);
Population ← Population ∪ NewMembers ;
Year ← Year +1;
PopulationSize ← Population.size();

end
FileHandle ← a file to write to;
WRITE(FileHandle, OutputLogs);
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Chapter 5

Results and Discussion

This chapter details the methods used for analysis of the results, specifically with

regards to how speciation is measured and what determines statistical signifi-

cance. Furthermore, this chapter discusses the results of the experiments and

how well the models performed relative to each other.

5.1 Methods Used

Several methods of analysis are used in this study. For clarity, this section outlines

what methods are used to determine population counts as well as statistically

significant differences.

5.1.1 Population Counts

To determine whether or not speciation occurs, this thesis employs a method

using histograms. The beak sizes of all birds that survived for each generation

are binned. In the case of the bimodal seed distribution, beak sizes in the interval

[2, 4] were binned together and beak sizes in the interval [7, 9] were binned
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together. Speciation is said to have occurred if both bins contain at least 15%

of the total number of birds which survived a year for that run. Any run that

failed to complete 1000 years before extinction was considered to have featured

no speciation.

In the case of the trimodal large seed distribution, the bins were similar to the

bimodal case except beak sizes in the interval [12, 14] are also binned together.

The model is said to have found this additional niche if at least 15% of the total

number of birds that survived fall into the larger bin. Similarly, for the trimodal

small seed distribution, beak sizes in the interval [−3, −1] are binned together.

The model is said to have found the additional niche if 15% or more of surviving

birds fell within the smaller bin.

For each model, a total of 96 runs are performed for each seed distribution.

Runs are independent of one another.

Figure 5.1: Temporal plots of select runs. Blue dots indicate birds that survived
that year. Red dots are birds that died that year.

Figure 5.1 shows the results of four runs temporally, with the horizontal axis

representing years and the vertical axis the phenotypic beak size. Each bird is

represented by a single dot for each year it of its existence, with blue indicating

surviving that year and red indicating death. The leftmost plot in Figure 5.1

shows a typical run in which the initial population of birds, with mean beak size
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approximately 5.5, finds the small seed niche (with a mean seed size of 3.0) and

the population survives for all 1000 years. The surviving birds mostly have beak

sizes between 2 and 4 (central blue band) whereas birds outside this range starve

(flanking red bands). The plot second from the left shows a run in which the

initial population finds both the small seed niche (with a mean seed size of 3.0)

and the larger seed niche (with a mean seed size of 8.0). Two distinct populations

are seen, with one population having beak sizes between 2 and 4 and the other

population having beak sizes between 7 and 9. The plot second from the right in

Figure 5.1 shows a run in which three seed size niches are found, having mean seed

sizes of 3.0, 8.0, and 13.0. Here three distinct populations of birds are formed,

whose beak sizes range from 2 to 4, 7 to 9, and 12 to 14, respectively. Finally, the

rightmost plot in Figure 5.1 shows a run in which an early extinction occurred,

and the simulation did not reach 1000 years.

Figure 5.2: Example histograms used for population counting. Green bars indi-
cate that the bin contains at least 15% of the birds present in the population.
Red bars indicate that the 15% cutoff was not reached.

Figure 5.2 shows how the temporal results translate to the histogram method.

Note that distinct populations are reflected in the histograms created from them.

In the leftmost plot of Figure 5.2, created from the same data that the leftmost

plot in Figure 5.1 was created from, the majority of surviving birds fall into one
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bin. Similarly, the second plot from the left in 5.2 shows that surviving birds

generally fell into two bins, and in the second plot from the right, the surviving

birds generally fell into three bins. The rightmost plot in Figure 5.2 depicts the

case in Figure 5.1 in which early extinction occurred and is marked as such.

5.1.2 Statistical Significance

A key part of evaluating the hypotheses lies in the ability to detect if a perceived

difference in the methods is statistically significant. For H1 and H2, success is

defined as whether the population populated the additional niche introduced in

either of the trimodal distributions. In the case of H3, success is whether the

population speciated at all. Since it is common for a model to feature a success

rate of 0, chi-square and G-tests can be misleading and give p-values that are

too low (McDonald, 2014). Instead, this thesis will use Fisher’s exact test as

calculated in R. The main drawback to this method is that the unfixed rates of

speciation will cause the test to become more conservative, in which case the p-

value reported becomes the upper bound for the actual p-value (McDonald, 2014).

This was decided to be preferable to using chi-square as a statistically significant

p-value reported by Fisher’s exact test will more accurately reflect whether a

difference between the models exists. For each comparison, the p-value of the

observed counts reported using a two-tailed hypothesis test. A p-value less than

0.05 will be considered evidence to reject the null hypothesis that there exists no

difference in speciation between the models in question.
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5.2 Preliminary Comparisons of New Models

This section presents preliminary results of the new models. These comparisons

were made to show which of the new models seem to speciate the most.

As seen in Table 5.1 and Table 5.2, both the mono-weighted and poly-weighted

models display similar performance under both forms of mutation. Also, as tables

5.3 and 5.4 show, the mono-weighted models clearly outperform the poly-weighted

models. As such, it is the mono-weighted models that will be used for hypothesis

testing.

Model Times Speciated Times Did Not
Mono-Weighted Low Variance 49 47
Mono-Weighted High Variance 36 60

Table 5.1: A comparison of the rates of speciation using the mono-weighted mod-
els. Here the key difference is whether low variance or high variance dominance
mutation was used.

Model Times Speciated Times Did Not
Poly-Weighted Low Variance 4 92
Poly-Weighted High Variance 6 90

Table 5.2: A comparison of the rates of speciation using the poly-weighted mod-
els. Here the key difference is whether low variance or high variance dominance
mutation was used.

Model Times Speciated Times Did Not
Mono-Weighted Low Variance 49 47
Poly-Weighted Low Variance 4 92

Table 5.3: A comparison of the rates of speciation using the mono-weighted model
versus the poly-weighted model. Here both models use low-variance dominance
mutation.
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Model Times Speciated Times Did Not
Mono-Weighted High Variance 36 60
Poly-Weighted High Variance 6 90

Table 5.4: A comparison of the rates of speciation using the mono-weighted model
versus the poly-weighted model. Here both models use high-variance dominance
mutation.

5.3 Test of Hypothesis 1

To test hypothesis H1, we must examine how skewed complete dominance is in its

exploration of the the search space. To do this, the complete dominance model’s

ability to locate the larger beak size niche versus its ability to find the smaller

beak size niche. Table 5.5 shows the results of this comparison, there exists a

detectable difference in the complete dominance model’s ability to locate the two

niches. With a p-value < 0.001, there exists enough evidence to reject the null

hypothesis, and as such it can be reasonably concluded that complete dominance

does lead to a skew in exploration. As such, hypothesis H1 is supported.

Distribution Times Found Niche Times Did Not
Trimodal Large 0 96
Trimodal Small 14 82

Table 5.5: A comparison of the rates of finding the additional niche for complete
dominance in the trimodal large case versus the trimodal small case. Statistical
test returns p-value of 7.328e− 05.

5.4 Test of Hypothesis 2

To test hypothesis H2, we must see if variable dominance is skewed in its explo-

ration of the search space. Similarly to the last section, the variable dominance

models’ ability to locate the larger beak size niche versus their ability to find
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the smaller beak size niche will be investigated for evidence of any skew. Table

5.6 and Table 5.7 both show how there is no discernible difference in exploration

for any of the mono-weighted models. As such, it is fair to conclude that H2 is

supported by these results.

Distribution Times Found Niche Times Did Not
Trimodal Large 9 87
Trimodal Small 8 88

Table 5.6: A comparison of the rates of finding the additional niche for the mono-
weighted model with high variance in the trimodal large case versus the trimodal
small case. Statistical test returns p-value of 1.

Distribution Times Found Niche Times Did Not
Trimodal Large 1 95
Trimodal Small 2 94

Table 5.7: A comparison of the rates of finding the additional niche for the mono-
weighted model with low variance in the trimodal large case versus the trimodal
small case. Statistical test returns p-value of 1.

5.5 Tests of Hypothesis 3

To test hypothesis H3, we must compare how often speciation occurs for the

mono-weighted models versus the complete dominance model. Note that because

of the preliminary results, the poly-weighted models are not compared to the

complete dominance model here.

5.5.1 Hypothesis 3: Bimodal Distribution

For the bimodal distribution, the mono-weighted distribution with low-variance

mutation is found to be statistically similar to complete dominance, as seen in
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Table 5.8. However, the p-value obtained in Table 5.9 shows a statistically sig-

nificant difference between the two models.

Model Times Speciated Times Did Not
Mono-Weighted Low Variance 49 47

Complete Dominance 56 40

Table 5.8: A comparison of the rates of speciation between the mono-weighted
model using low-variance dominance and complete dominance in the bimodal
seed distribution. Statistical test returns p-value of 0.3844.

Model Times Speciated Times Did Not
Mono-Weighted High Variance 36 60

Complete Dominance 56 40

Table 5.9: A comparison of the rates of speciation between the mono-weighted
model using high-variance dominance and complete dominance in the bimodal
seed distribution. Statistical test returns p-value of 0.00591.

5.5.2 Hypothesis 3: Trimodal Distribution

In the trimodal distributions, there is greater evidence for a difference in specia-

tion rates. Table 5.10 and Table 5.11 both show that, regardless of the mutation

method, the mono-weighted model is statistically outperformed by complete dom-

inance in exhibiting any speciation in the trimodal large case. As Table 5.12 and

Table 5.13 both show, the mono-weighted model is also statistically outperformed

in the trimodal small case.

5.5.3 Hypothesis 3: Summary

Considering how the mono-weighted model only performed comparably to com-

plete dominance in one comparison, it is reasonable to conclude that variable
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dominance does negatively impact the speciation rate. As such, there is evidence

to reject hypothesis H3.

Model Times Speciated Times Did Not
Mono-Weighted Low Variance 41 55

Complete Dominance 57 39

Table 5.10: A comparison of the rates of speciation between the mono-weighted
model using low-variance dominance and complete dominance in the trimodal
large environment. Statistical test returns p-value of 0.03008.

Model Times Speciated Times Did Not
Mono-Weighted High Variance 35 61

Complete Dominance 57 39

Table 5.11: A comparison of the rates of speciation between the mono-weighted
model using high-variance dominance and complete dominance in the trimodal
large environment. Statistical test returns p-value of 0.0023.

Model Times Speciated Times Did Not
Mono-Weighted Low Variance 31 65

Complete Dominance 55 41

Table 5.12: A comparison of the rates of speciation between the mono-weighted
model using low-variance dominance and complete dominance in the trimodal
small environment. Statistical test returns p-value of 0.0008.
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Model Times Speciated Times Did Not
Mono-Weighted High Variance 33 63

Complete Dominance 55 41

Table 5.13: A comparison of the rates of speciation between the mono-weighted
model using high-variance dominance and complete dominance in the trimodal
small environment. Statistical test returns p-value of 0.0023.
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Chapter 6

Conclusions

This chapter addresses the hypotheses laid out earlier in the thesis, discusses the

contributions of this work in the field of computer science, and proposes some

promising avenues for future work.

6.1 Hypotheses

This section will examine each of the hypotheses of this thesis in turn, and de-

termine whether or not each hypothesis is supported by the evidence collected.

H1: Under the model with large beaks being dominant, exploration will be

asymmetrically skewed towards niches that require small beaks.

The results of the experiments with the trimodal seed distributions support

this hypothesis. There was a significant difference in the complete dominance

model’s ability to find the smaller seed size compared to its ability to find the

larger one. This confirms a skew towards exploration in one direction within the

search space.

H2: Under the variable gene dominance model, exploration will be symmet-
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rical.

This hypothesis is also supported by the results of the experiment. Under

both models using high variance mutation, exploration in one direction was not

significantly different than exploration in the other. This indicates a lack of a

skew in the exploration of a problem space when using variable dominance.

H3: Variable gene dominance will allow for speciation at a comparable rate

to a model in which size determines dominance.

This hypothesis, unlike the others, is not supported by the results. While

speciation did still occur at an appreciable rate, it was markedly less often than

under the complete dominance model. When making this hypothesis, several

competing factors were taken into consideration; namely, it was assumed that the

increase in exploratory ability and re-population potential would offset the added

randomness of variable dominance. However, it appears that these factors were

not balanced. Most likely, it is the higher rates of extinction that hurt the model.

As can be seen in Figure 6.1, mono-weighted chromosomes with high-variance

mutation featured more genetic diversity in their beak sizes. Unfortunately, this

may have led to them dying more often than birds whose genetics used complete

dominance, as more individuals would have beaks not sized to exploit existing

resources in the environment. If the higher rates of extinction are to blame, then

fixing the speciation decrease would be as simple as using an environment in

which organisms cannot die off. Such a fix would be easy to implement in future

work.
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Figure 6.1: Population over time for complete dominance verses mono-weighted
dominance with high-variance mutation. Note that blue dots represent birds that
survived while red dots represent birds that died.

6.2 Contributions

This thesis introduces a new concept for genetic algorithm research in the form

of dominance scalars. While the concept of dominance is not new to genetic

algorithms, previous research tends to treat it as a categorical value instead of a

numerical value (Smith and Goldberg, 1992). This thesis proposes a new line of

thought when it comes to dominance by treating dominance as spectrum.

This thesis also introduced the concept of variable dominance to utilize and

evolve dominance scalars. This allows for the implementation of a dominance

schema without prior knowledge of a given search space, thus eliminating the

bias introduced in complete dominance.

Multiple approaches to variable dominance were devised, and each approach

was investigated to determine its relative effectiveness. Due to the demonstrated

effectiveness of mono-weighted dominance with high-variance mutation, future

endeavors can use that model as a starting block for implementing variable dom-

inance.

While not successful in all its goals, this project does serve as a proof of con-

cept for variable dominance in future work. If the negative impact on the speci-
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ation rate could be addressed, more genetic algorithm applications could adopt

a variably dominant, diploid based genetic structure as a means to encourage

exploration while only minimally affecting exploitation of known solutions. This

could greatly increase the effectiveness and applicability of genetic algorithms as

a whole without a significant performance trade-off. By eliminating the need for

a modified selection process and instead encouraging speciation through changes

in the genetic structure alone, variable dominance turns what was an O(N2) pro-

cess into an O(N) one. This is because mating can be accomplished without

every solution needing to be compared to its peers.

In addition to performance increases, variable dominance will allow for more

open exploration than complete dominance. This is because it explores in all

directions in a problem space, thus allowing for sufficient exploration without

prior knowledge of the search space to begin with.

6.3 Future Work

Considering the potential of variable dominance, several ideas for future work

come to mind.

Developing a more multidimensional problem space to test how well variable

dominance scales may go a long way to understanding how effective it could

be in other environments. Considering that variable dominance outperformed

complete dominance in finding distant niches despite its lower rate of speciation,

variable dominance may shine in a multimodal environment with a large number

of peaks.

Another endeavor worth taking would be to test how well variable dominance

performs when compared to older diploid models. While many of these older
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models employ binary dominance, variable dominance employs a scaling dom-

inance that could more easily adapt to subtleties in a search space that cause

difficulty for the more rigid notions of dominance (Smith and Goldberg, 1992).

While the biological simulation proves to be an excellent environment for

speciation research, applying variable dominance to a industry related problem

could accomplish two things. First, it would demonstrate that variable dominance

is not constrained to biological simulations. Second, it may show that variable

dominance performs even better in an environment in which extinction is not

supported. Special care must be taken when designing the genetic algorithm so

that dominance has a meaningful impact on speciation.

Building on the idea presented in this thesis that recessive traits are more free

to explore than dominant ones, it may be worth exploring mutation methods that

increase mutability in chromosomes inversely proportional to their dominance

scalars. This could allow for a greater degree of exploration while not sacrificing

much in terms of exploitation. As long as there existed a stable population of

dominant chromosomes, the genetic algorithm could evolve incremental changes

improving a found peak while still encouraging enough diversity to find other

niches in the search space.

Finally, it is believed that changing the representation of dominance scalars

may lead to better results. While different forms of mutation were tested on

the dominance scalars in this thesis, the basic structure of weights remained the

same. Possible alternatives to integers ranging from 1 to 100 include dominance

functions, dominance maps, or simply integers drawn from a different distribu-

tion.
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Appendix A

Population Bands

The following are the results of each of the 96 trials for all combinations of genetic
models and seed distributions. Blue dots represent birds that survived while red
dots represent birds that died. Due to the number of trials only half of the trials
in a run can fit on one page. As such, each run is split into two parts, labeled
“Part 1” and “Part 2” respectively.
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Figure A.1: Performance of the complete dominance model under the bimodal
seed distribution. Part 1.

50



year

B
ea

k
S
iz

e

Figure A.2: Performance of the complete dominance model under the bimodal
seed distribution. Part 2.
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Figure A.3: Performance of the incomplete dominance model under the bimodal
seed distribution. Part 1.
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Figure A.4: Performance of the incomplete dominance model under the bimodal
seed distribution. Part 2.
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Figure A.5: Performance of the poly-weighted dominance model with high vari-
ance under the bimodal seed distribution. Part 1.
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Figure A.6: Performance of the poly-weighted dominance model with high vari-
ance under the bimodal seed distribution. Part 2.
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Figure A.7: Performance of the poly-weighted dominance model with low variance
under the bimodal seed distribution. Part 1.
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Figure A.8: Performance of the poly-weighted dominance model with low variance
under the bimodal seed distribution. Part 2.
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Figure A.9: Performance of the mono-weighted dominance model with high vari-
ance under the bimodal seed distribution. Part 1.
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Figure A.10: Performance of the mono-weighted dominance model with high
variance under the bimodal seed distribution. Part 2.
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Figure A.11: Performance of the mono-weighted dominance model with low vari-
ance under the bimodal seed distribution. Part 1.
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Figure A.12: Performance of the mono-weighted dominance model with low vari-
ance under the bimodal seed distribution. Part 2.
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Figure A.13: Performance of the complete dominance model under the trimodal
large seed distribution. Part 1.
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Figure A.14: Performance of the complete dominance model under the trimodal
large seed distribution. Part 2.
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Figure A.15: Performance of the incomplete dominance model under the trimodal
large seed distribution. Part 1.
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Figure A.16: Performance of the incomplete dominance model under the trimodal
large seed distribution. Part 2.

65



year

B
ea

k
S
iz

e

Figure A.17: Performance of the poly-weighted dominance model with high vari-
ance under the trimodal large seed distribution. Part 1.
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Figure A.18: Performance of the poly-weighted dominance model with high vari-
ance under the trimodal large seed distribution. Part 2.
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Figure A.19: Performance of the poly-weighted dominance model with low vari-
ance under the trimodal large seed distribution. Part 1.
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Figure A.20: Performance of the poly-weighted dominance model with low vari-
ance under the trimodal large seed distribution. Part 2.
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Figure A.21: Performance of the mono-weighted dominance model with high
variance under the trimodal large seed distribution. Part 1.
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Figure A.22: Performance of the mono-weighted dominance model with high
variance under the trimodal large seed distribution. Part 2.
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Figure A.23: Performance of the mono-weighted dominance model with low vari-
ance under the trimodal large seed distribution. Part 1.
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Figure A.24: Performance of the mono-weighted dominance model with low vari-
ance under the trimodal large seed distribution. Part 2.
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Figure A.25: Performance of the complete dominance model under the trimodal
small seed distribution. Part 1.

74



year

B
ea

k
S
iz

e

Figure A.26: Performance of the complete dominance model under the trimodal
small seed distribution. Part 2.
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Figure A.27: Performance of the incomplete dominance model under the trimodal
small seed distribution. Part 1.
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Figure A.28: Performance of the incomplete dominance model under the trimodal
small seed distribution. Part 2.
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Figure A.29: Performance of the poly-weighted dominance model with high vari-
ance under the trimodal small seed distribution. Part 1.
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Figure A.30: Performance of the poly-weighted dominance model with high vari-
ance under the trimodal small seed distribution. Part 2.
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Figure A.31: Performance of the poly-weighted dominance model with low vari-
ance under the trimodal small seed distribution. Part 1.
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Figure A.32: Performance of the poly-weighted dominance model with low vari-
ance under the trimodal small seed distribution. Part 2.
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Figure A.33: Performance of the mono-weighted dominance model with high
variance under the trimodal small seed distribution. Part 1.
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Figure A.34: Performance of the mono-weighted dominance model with high
variance under the trimodal small seed distribution. Part 2.
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Figure A.35: Performance of the mono-weighted dominance model with low vari-
ance under the trimodal small seed distribution. Part 1.
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Figure A.36: Performance of the mono-weighted dominance model with low vari-
ance under the trimodal small seed distribution. Part 2.
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Appendix B

Histograms

The following are the histograms constructed of each of the 96 trials for all combi-
nations of genetic models and seed distributions. Green bars represent bins that
featured a large enough population to be counted. Red bars represent bins that
did not make the 15% cutoff. Due to the number of trials only half of the trials
in a run can fit on one page. As such, each run is split into two parts, labeled
“Part 1” and “Part 2” respectively.
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Figure B.1: Histogram of the complete dominance model under the bimodal seed
distribution. Part 1.
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Figure B.2: Histogram of the complete dominance model under the bimodal seed
distribution. Part 2.
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Figure B.3: Histogram of the incomplete dominance model under the bimodal
seed distribution. Part 1.
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Figure B.4: Histogram of the incomplete dominance model under the bimodal
seed distribution. Part 2.
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Figure B.5: Histogram of the poly-weighted dominance model with high variance
under the bimodal seed distribution. Part 1.
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Figure B.6: Histogram of the poly-weighted dominance model with high variance
under the bimodal seed distribution. Part 2.
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Figure B.7: Histogram of the poly-weighted dominance model with low variance
under the bimodal seed distribution. Part 1.
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Figure B.8: Histogram of the poly-weighted dominance model with low variance
under the bimodal seed distribution. Part 2.
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Figure B.9: Histogram of the mono-weighted dominance model with high variance
under the bimodal seed distribution. Part 1.
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Figure B.10: Histogram of the mono-weighted dominance model with high vari-
ance under the bimodal seed distribution. Part 2.
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Figure B.11: Histogram of the mono-weighted dominance model with low vari-
ance under the bimodal seed distribution. Part 1.
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Figure B.12: Histogram of the mono-weighted dominance model with low vari-
ance under the bimodal seed distribution. Part 2.
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Figure B.13: Histogram of the complete dominance model under the trimodal
large seed distribution. Part 1.
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Figure B.14: Histogram of the complete dominance model under the trimodal
large seed distribution. Part 2.
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Figure B.15: Histogram of the incomplete dominance model under the trimodal
large seed distribution. Part 1.
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Figure B.16: Histogram of the incomplete dominance model under the trimodal
large seed distribution. Part 2.
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Figure B.17: Histogram of the poly-weighted dominance model with high variance
under the trimodal large seed distribution. Part 1.

103



Beak Size

P
er

ce
n
ta

ge
of

P
op

u
la

ti
on

Figure B.18: Histogram of the poly-weighted dominance model with high variance
under the trimodal large seed distribution. Part 2.
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Figure B.19: Histogram of the poly-weighted dominance model with low variance
under the trimodal large seed distribution. Part 1.
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Figure B.20: Histogram of the poly-weighted dominance model with low variance
under the trimodal large seed distribution. Part 2.
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Figure B.21: Histogram of the mono-weighted dominance model with high vari-
ance under the trimodal large seed distribution. Part 1.

107



Beak Size

P
er

ce
n
ta

ge
of

P
op

u
la

ti
on

Figure B.22: Histogram of the mono-weighted dominance model with high vari-
ance under the trimodal large seed distribution. Part 2.
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Figure B.23: Histogram of the mono-weighted dominance model with low vari-
ance under the trimodal large seed distribution. Part 1.
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Figure B.24: Histogram of the mono-weighted dominance model with low vari-
ance under the trimodal large seed distribution. Part 2.
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Figure B.25: Histogram of the complete dominance model under the trimodal
small seed distribution. Part 1.
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Figure B.26: Histogram of the complete dominance model under the trimodal
small seed distribution. Part 2.
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Figure B.27: Histogram of the incomplete dominance model under the trimodal
small seed distribution. Part 1.
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Figure B.28: Histogram of the incomplete dominance model under the trimodal
small seed distribution. Part 2.
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Figure B.29: Histogram of the poly-weighted dominance model with high variance
under the trimodal small seed distribution. Part 1.
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Figure B.30: Histogram of the poly-weighted dominance model with high variance
under the trimodal small seed distribution. Part 2.
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Figure B.31: Histogram of the poly-weighted dominance model with low variance
under the trimodal small seed distribution. Part 1.
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Figure B.32: Histogram of the poly-weighted dominance model with low variance
under the trimodal small seed distribution. Part 2.
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Figure B.33: Histogram of the mono-weighted dominance model with high vari-
ance under the trimodal small seed distribution. Part 1.
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Figure B.34: Histogram of the mono-weighted dominance model with high vari-
ance under the trimodal small seed distribution. Part 2.
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Figure B.35: Histogram of the mono-weighted dominance model with low vari-
ance under the trimodal small seed distribution. Part 1.

121



Beak Size

P
er

ce
n
ta

ge
of

P
op

u
la

ti
on

Figure B.36: Histogram of the mono-weighted dominance model with low vari-
ance under the trimodal small seed distribution. Part 2.
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