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Abstract 

 Respiratory rate (RR) is an important vital sign for diagnosing and treating a 

number of medical conditions. Current respiration monitoring systems require that a 

special device is continuously attached to the human body. However, contactless 

respiration monitoring systems have recently been developed to overcome this 

inconvenience. Research has shown that channel state information (CSI) measured by WiFi 

devices can be used for estimating RR. Although pattern-based respiration detection has 

been used to extract RR from periodic changes in CSI, systems based on this method do 

not perform well when channel conditions are not favorable. This thesis highlights newly 

introduced learning-based approaches used for RR estimation. Off-the-shelf WiFi devices 

were used to collect fine-grained wireless CSI data, which was then used to train and 

evaluate machine learning models.  

Results show that classification algorithms, including KNN, SVM, Random Forest, 

Logistic Regression and MLP, achieve over 96% accuracy when predicting RR.  

Regression models were compared to an existing pattern-based system, demonstrating that 

the majority of regression models have better performance when estimating RR. For 

instance, Logistic Regression’s Root Mean Square Error (RMSE) is 0.35, while pattern-

based system’s RMSE is 2.7. It is important to note that classification and regression 

models cannot be generalized, nor can they accurately predict respiratory rate using the 

data collected from a new and previously unseen subject. To improve and make the models 

more generalizable, data used to train the models must be collected from a larger number 

of subjects.  
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Chapter 1: Introduction 

Vital signs are collected to measure essential body functions. Respiratory rate 

(RR)—the number of breaths taken per minute—is a critical vital sign for assessing an 

individual’s health. Normal RR for an adult at rest is 12 to 20 breaths per minute (bpm). 

An RR below 12 or above 25 bpm is considered abnormal [1].  RR consists of important 

information for detecting and monitoring medical problems. In fact, daily monitoring of 

RR could help diagnose and treat a variety of pathological conditions (e.g., respiratory, 

metabolic, and cardiovascular disorders, to name a few [2]). Moreover, RR monitoring has 

aided in diagnosing pulmonary disease, heart failure, anxiety, and sleep disorders. 

Obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease 

(COPD) are among the chronic diseases requiring constant RR monitoring [3]. Each year, 

cardiovascular diseases account for 17.9 million deaths worldwide, while chronic 

respiratory diseases account for 3.9 million [4]. Respiratory monitoring is important for 

both in-patient and in-home health care settings.  

1.1 Contact-based RR Monitoring Systems 

Traditional technologies used for measuring RR are contact-based, which means 

that they require attaching a sensor to a subject’s body. Figure 1-1 shows contact-based 

techniques for measuring RR, as well as the related human body areas where sensors should 

be attached [5]. These include the face, neck, chest, wrists, fingers, and abdominal area. 

Contact-based technologies are intrusive, limiting a subject’s activity and mobility. For 

example, a patient might be required to wear a chest or wrist band, nasal probe or finger 

clip. The need to constantly wear such technologies also renders them inconvenient, 

causing discomfort, especially for people with sensitive or burned skin. Furthermore, there 
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is a general risk of a sensor becoming detached; also some sensors must be wired to a 

monitor.   

 

 

Figure 1-1. Contact-based techniques and locations. 

 

1.2 Contactless RR Monitoring Systems 

 The many disadvantages of contact-based sensors have been the impetus for 

developing a number of contactless RR monitoring systems. A camera-based system, 

which extracts raw breathing signals from the video stream and measures RR without any 

body contact,  was proposed in [6]. Notably, system performance relies on appropriate 

lightning conditions and the availability of direct line of sight (LoS). Such vision-based 

approaches often raise privacy concerns, as well. Authors of [7] describe an RR monitoring 

system that leverages a smartphone’s microphone to capture human breathing sound and 
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measure RR based on signal envelope detection. System drawbacks include sensitivity to 

background noise and short sensing distance.  

Radio frequency (RF)-based systems have also been proposed. These are neither 

intrusive nor sensitive to lighting conditions. A transmitter first sends a signal to a receiver, 

and then the signal’s amplitude and phase are modulated by the subject’s breath-induced 

inhalation and exhalation chest movements. Next, signal changes are measured at the 

receiver [8]. RF systems include Doppler [9], ultra-wideband (UWB) [10], and Frequency 

Modulated Carrier Waves (FMCW) radar [11]. Although these systems accurately measure 

RR, they require costly, highly complex, specialized devices, making them difficult to 

deploy in a home setting.  

To address this limitation, narrowband commodity off-the-shelf (COTS), device-

based RR monitoring systems have been developed. These utilize widely available Wi-Fi 

infrastructure that is both cheap and easy to deploy. Similar Wi-Fi devices are becoming 

more common in homes and in buildings due to the growth of Internet of Things (IoT). 

Many are currently used for wirelessly transmitting data, all the while their channel 

measurements can be used for RR monitoring. Notably, although Wi-Fi received signal 

strength (RSS) from COTS devices can be used to extract a person’s breathing pattern [12], 

systems leveraging Wi-Fi channel state information (CSI) have shown superior 

performance as a result of fine signal granularity. CSI measurements describe the 

amplitude and phase of the wireless channel at the sub-carrier level, while the RSS provides 

a single measurement averaged over the entire channel. The RR monitoring system 

presented in this work focuses on Wi-Fi CSI. 
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1.3  Background of CSI 

A growing demand for wireless data traffic has been the impetus for Wi-Fi to leverage 

multiple input multiple output (MIMO) technology. With this solution, data rates are high, 

because multiple antennas are placed at the transmitter and receiver to create multiple 

spatial streams [13]. In a Wi-Fi system using MIMO and orthogonal-division multiplexing 

(OFDM), CSI can be obtained for every transmitter and receiver antenna pair at each sub-

carrier frequency. CSI of every sub-carrier is a complex number, which represents 

amplitude attenuation and phase shift impacted by multi-path effects (See Figure 1-2) [14]. 

For a packet transmitted using M number of transmitting and N number of receiving 

antennas on a 20 MHz wide channel, CSI is a 3D complex matrix of size MxNx56. The 

number 56 represents the number of subcarriers, which is a result of dividing a 20 MHz 

channel by OFDM.  

Given that a 40 MHz-wide channel is used for transmission, the number of subcarriers 

is 114 [14]. CSI is measured in the following way. First, a Wi-Fi transmitter sends long 

training symbols (LTFs) to the receiver, wherein the LTF packet preamble contains pre-

defined symbols for each sub-carrier. After LTFs are received, the receiver estimates CSI 

matrix using the original LTFs and the received signal. The Wi-Fi channel for each sub-

carrier is modeled using the following formula 

𝑦 = 𝐻𝑥 + 𝑛,    Eq.  1 

 

where y is the received signal; H is the CSI matrix; x is the pre-defined transmitted 

signal; and n is the noise. The receiver estimates H using x and y signals [15]. CSI of a 

single subcarrier is defined as 

ℎ = |ℎ|𝑒𝑗𝑠𝑖𝑛∠h ,   Eq.  2 
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where |h| is the CSI amplitude, and ∠h is the CSI phase. 

CSI describes the way in which a Wi-Fi signal propagates from transmitter to 

receiver at different sub-carrier frequencies through multiple paths. CSI is sensitive to the 

presence and movements of humans and objects; therefore, a time series of CSI data can 

be used for various wireless sensing purposes. For example, variations in CSI amplitude 

can be used for human-presence detection, motion detection, activity recognition, gesture 

recognition, and human identification. CSI phase shifts can be used for human localization 

and tracking [15]. CSI measurements can also be used to estimate RR. Amplitude and CSI 

phase on many subcarriers are affected by breathing-induced chest movement. CSI-based 

RR estimation can be divided into two categories: pattern-based and model-based, which 

are described in sections 1.4 and 1.5, respectively.  

 

Figure 1-2. CSI format.  

 

1.4  Pattern-based RR Estimation  

 

Figure 1-3. RR estimation block diagram. 
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Pattern-based RR estimation studies changes in the Wi-Fi CSI patterns to extract 

RR. Methods that are most commonly used in pattern-based RR estimation are depicted in 

Figure 1-3. First, pre-processing is used to remove the noise form CSI measurements. Then, 

filtering is used to remove the unwanted frequency content to extract a breathing signal. 

Next, channel selection is performed to select the stream or subcarrier with the greatest 

potential of showing changes due to person’s breathing. This selection is needed because 

due to the constructive and destructive interference of multipath signal components, some 

streams are more sensitive to person’s respiration than the others. Motion detection is used 

to flag time periods during which RR estimation is not reliable because the signal is 

affected by person’s movements. Lastly, the selected stream is utilized for RR estimation.  

There are two methods commonly used for estimating RR. The first method, which 

is called power spectral density (PSD) method, obtains average PSD in a 10 to 30 s 

measurement window. PSD is computed between a minimum and maximum frequency, 

which accounts for a range of normal breathing rates. Estimated RR is the frequency at 

which PSD is maximum. The second method is called inter-breath interval (IBI) method. 

Using this method, the peaks of the stream are identified and the time difference between 

the peaks is calculated. Estimated RR is the inverse of average time difference [8]. 

1.5 Model-based RR Estimation 

Model-based RR estimation uses physical theories or statistical models to relate 

breathing to received CSI measurements. The most common model-based algorithm for 

RR estimation application is Fresnel Zone Model. Fresnel zones (See Figure 1-4) are 

concentric elliptical regions with foci in a pair of transceivers used in radio propagation 
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theory to study diffraction loss caused by an obstruction between transmitter and receiver. 

The radius of the nth Fresnel zone can be expressed using the following formula: 

𝑟𝑛 = √
𝑛𝜆𝑑1𝑑2

𝑑1+𝑑2
,   𝑑1, 𝑑2 ≫ 𝑟𝑛 ,   Eq.  3 

 

where 𝜆 is the radio wavelength; 𝑑1 is the distance from the transmitter; and 𝑑2 is the 

distance from the receiver. The important zones for transmission are the first 8 to 12 zones. 

Additionally, more than 70% of the energy is transferred via the first Fresnel zone (FFZ). 

Movements in this zone can greatly affect received signal amplitude and phase [16]. 

Moreover, when an object moves across a series of Fresnel zones, received signal looks 

like a continuous sinusoid. 

 
Figure 1-4. Geometry of the Fresnel diffraction at point Q [16].  
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Chapter 2: Related Work 

In recent years, contactless RR monitoring systems based on Wi-Fi CSI have 

sparked significant interest in research. There has been a growing interest in these systems 

because they are non-invasive, low cost and easy to implement. Previous work can be 

divided into two primary types: 1) pattern-based and 2) model-based RR estimation 

systems. 

2.1 Pattern-based RR Estimation Systems   

 Liu, et al. (2014) [17] developed Wi-Sleep—the first system analyzing CSI data 

from COTS Wi-Fi devices for monitoring human respiration during sleep. This work was 

extended in [18], where abnormal breathing and varied sleeping postures were examined. 

The authors discovered that the ripple-like pattern in the CSI amplitude is related to chest 

movement. Accordingly, they used the CSI amplitude as an input for respiration 

monitoring. In this work, all CSI streams from all subcarriers were combined and weighted 

based on their periodicity to obtain an RR estimate.  

 Liu, et al. (2015) [19] developed a CSI-based system to track RR and heart rate 

during sleep for one- and two-person scenarios. CSI amplitude streams for one-person RR 

estimation were selected and weighted according to their variance. For two-person RR 

estimation, the PSD for each selected subcarrier was obtained. K-means clustering was 

applied to classify the strong peaks into two clusters relative to PSD amplitude and the 

frequency. Estimated RRs of two persons were the average values of frequencies in two 

clusters. One notable issue was the difficulty in determining which RR belonged to whom.  

 Wu, et a.l (2015) [20] developed a system, called DeMan, that did not require that 

a person lays on a bed. Instead, respiration was detected for a person in a standing position. 
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The DeMean system investigated the likelihood that a measured signal has the same 

frequency as human breathing. Given that the estimated frequency falls within the range of 

human breathing frequencies, a stationary person can be detected.  

 So far, the systems that use the amplitudes of Wi-Fi CSI measurements have been 

discussed. They do not use the CSI phase information due to large variations caused by 

asynchronous times and frequencies of the transmitter and receiver. TensorBeat [21] and 

PhaseBeat [22] systems were the first to utilize CSI-phase difference data for two receiver 

antennas to monitor RR. Researchers found CSI-phase difference after appropriate 

calibration.  

 Although pattern-based RR estimation systems have shown encouraging results, 

they are mainly based on empirical experiments. Also, they do not perform well when the 

fading conditions are unfavorable. If multipath components are added destructively at the 

receiver, the breathing signal will be hidden in noise. When this occurs, it is difficult to 

estimate RR for a majority of selected streams.      

2.2 Model-based RR Estimation Systems   

Wang et al. (2016) [23] introduced a Fresnel model for indoor Wi-Fi radio 

propagation. Researchers applied this model to an RR detection system using COTS Wi-

Fi devices. They used the system developed in [19] to validate their theory. Moreover, they 

investigated how user location, body orientation, and frequency diversity affect system 

performance. Results showed that user location and body orientation influence CSI signal 

quality. Likewise, blind-spot locations in the sensing range of a transceiver range where 

the RR detection is not guaranteed. Specifically, the worst location for RR sensing was 

around the boundary within each Fresnel Zone; the best location was in the middle.  
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Wang et al. (2017) [24] used multiple transmitter and receiver antenna pairs to 

improve RR detection by overlapping multiple Fresnel Zones. Researchers proposed an 

approach for multi-user respiration detection. In their system, a receiver is placed beside 

each user. In a multi-user scenario, respiration information of a user is found in the shortest 

reflection path. Hence, for each user, they filter out the data that is greatly affected by the 

longer paths. In fact, the data whose time of arrival (TOA) is greater than a truncation 

threshold was filtered out.  

Zeng et al. (2018) [25] eliminated blind spot locations where respiration couldn’t 

be detected by combining both CSI amplitude and phase. Researchers observed that an 

undetectable location wherein CSI amplitude is used for RR estimation might be a 

detectable area when CSI phase is used, and vice versa. Accordingly, a conjugate 

multiplication (CM) of CSI between two receiver antennas was used as an input for RR 

estimation.  

Pattern-based and modeling-based systems typically require a lot of signal 

processing. Model-based algorithms are generally not reusable or robust enough for new 

scenarios and environments. To the best of my knowledge, learning-based approaches have 

not been used for estimating RR based on CSI data. Learning-based algorithms attempt to 

learn a function for estimating RR by using labeled training samples of CSI measurements. 

The advantage of this method over previous ones is that very little or no signal processing 

is required; also the method is evolvable, meaning estimated RR could improve with more 

training data. 
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Chapter 3: Predicting RR Using Machine Learning Algorithms 

Learning-based algorithms were applied to estimate RR based on collected CSI 

measurements. Given the model expressed by 

       y = f(x),    Eq.  4 

 

where y are RR estimation results and x are CSI measurements, the goal of the algorithm 

is learning mapping function f by training samples of x and y. After CSI data was collected 

and analyzed, machine learning models were trained on training data. Finally, models were 

used to make predictions on test data, and then evaluated based on the predictions. 

3.1 Data Collection 

3.1.1 Equipment 

The data collection was performed using two TP-Link TL-WDR4300 routers. One 

served as a transmitter (Tx), and the other as a receiver (Rx). Each router had three external 

omnidirectional antennas (See Figure 3-1).  

 

Figure 3-1. TP-Link TL-WDR4300 router. 
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Atheros CSI tool [14], which is an OpenWrt firmware for CSI acquisition, was installed on 

the routers. OpenWrt was chosen for the operating system (OS), since it is a commonly 

used Linux OS for embedded devices. The network setup used to obtain CSI data is shown 

in Figure 3-2. Routers were configured to utilize IEEE 802.11n protocol and operate in the 

5 GHz frequency band, primarily because this frequency band offers lower levels of 

interference and improved spectrum efficiency compared with the 2.4 GHz frequency 

band. Wi-Fi channel 20 was selected for transmission with 5.2 GHz center frequency. 

Channel bandwidth was 20 MHz, meaning that for every packet received, 𝑁𝑇𝑥 𝑥 𝑁𝑅𝑥 𝑥 56 

CSI measurements were available. 𝑁𝑇𝑥 represents the number of transmitting antennas; 

𝑁𝑅𝑥 represents the number of receiver antennas; and 56 is the number of subcarriers. In the 

tested scenario, 3 x 3 x 56 CSI matrix was obtained for every received packet.  

 

Figure 3-2. Network setup. 

3.1.2 Test Setup 

 CSI data was collected separately from four human subjects in a laboratory room 

located in a semi-underground space. Subjects were approximately 25 years old with 

slightly different heights and weights.  Routers were placed on wooden tables at an 

elevation of 1 m and separated by a distance of 2 m (See Figure 3-3 and Figure 3-4).  Each 
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subject sat still in a chair with his or her chest perpendicular to and between both routers. 

Only the test subject was present in the room, and the only movements in the room were 

caused by subject’s chest during data collection.  

 

Figure 3-3. Data collection setup scheme. 

 

 

Figure 3-4. Data collection setup. 
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CSI data for each subject was collected for one minute during each test, wherein 10 

packets were sent per second, for a total of 600 packets. At first, test subjects were 

breathing at a 12 bpm RR. During each follow-up test, RR was incremented by 1 bpm until 

23 bpm was reached. Each test was repeated three times. A spectrum analyzer was used to 

ensure no unintended signals were present in the room.  

3.1.3 Ground Truth 

To label each test, ground truth RR values were recorded using the counting method 

and the respiration monitor belt logger sensor NUL-236 [26], which is shown in Figure 

3-5. This sensor measures the air pressure in the belt, which changes according to the 

breathing of the subject, and it calculates the RR based on those air pressure measurements. 

The sensor uses the piezoresistive effect to monitor respiration. Its transducer composed of 

silicon between metal foils changes resistance according to pressure and outputs a voltage 

depending on absolute pressure. In this way, when a subject breathes, pressure applied to 

the respiration monitor belt is detected by the sensor and converted to a voltage. The 

voltage reading is further converted into arbitrary units to monitor RR. The sensor’s 

specifications are listed in Table 1.  

NeuLog’s software application was used to display respiration data in the form of a 

graph; arbitrary units were plotted versus time. An example of the graph is shown in Figure 

3-6. In this graph, each wave represents one breath. Respiratory data was exported to a .csv 

file, and a Matlab program was used to count peaks. Since the duration of each test was 60 

seconds, RR is determined by counting the number of peaks in each graph. To eliminate 

detecting fake peaks, minimum peak prominence was set to 200 and minimum peak 

distance was set to 2.4. An example of the Matlab program output is shown in Figure 3-7. 
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Table 1. Respiration Monitor Belt Logger Sensor NUL-236 Specifications 

 

 

 

Figure 3-5. Respiration monitor belt logger sensor NUL-236. 
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Figure 3-6. NeuLog software application. 

 

 

Figure 3-7. Peak counting to obtain RR. 
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3.2 Exploratory Data Analysis 

The CSI data collected for each test was stored as an 𝑁𝑝𝑘 x 504 (3x3x56) matrix, 

where 𝑁𝑝𝑘 is the number of received and CSI decoded packets. Since packet transmission 

rate was 10 packets per second, expected number of received packets during a 60 second 

test was 600. However, not all 600 packets were received and decoded during each test; 

the number of decoded packets varied from 500 to 600. This phenomenon could be 

explained by several reasons: a) wireless interference was coming from surrounding 

buildings, b) receiving a non-sounding packet was received, or c) a problem with the 

firmware. For consistency, CSI data for the first 500 packets was used in the analysis. Fifty-

six sub-carriers were counted for each Tx-Rx antenna pair, and three antennas were used 

at Tx and Rx, totaling 504 sub-carriers. The absolute value of the CSI matrix was obtained 

to determine amplitude values. The matrix was transposed so that each row represented a 

sub-carrier and each column represented CSI amplitude value for consecutive packets. 

Hence, collected data for each test was plotted in a 500 x 504 complex matrix. 

  CSI amplitude variations reported in each row (i.e., sub-carrier) are the result of 

measured breathing. In fact, every row (i.e. sub-carrier) is used as a data observation 

labeled by the subject’s breathing rate. For example, after a one-minute data collection for 

a subject breathing at 12 bpm, 504 data rows were collected and each row was labeled with 

the number “12.” CSI amplitude for one of the tests where a subject was breathing at 12 

bpm is displayed in Figure 3-8. The y-axis shows sub-carrier index, and the x-axis shows 

the packet index. Figure 3-8 illustrates the way in which periodic changes in CSI amplitude 

represent the breathing signal for different sub-carriers. 
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Figure 3-8. Image of a 12 bpm test. 

 

Data was collected individually from four subjects for 12 different breathing rates, 

ranging from 12-23 bpm. Each RR represented a class, and data collection for each class 

was repeated three times. Figure A-1 and Figure A-2 in Appendix A offer image examples 

of classes for four subjects, namely A, B, C and D. Figure 3-9 shows CSI amplitude 

variations for a randomly chosen single subcarrier for each class. Total data collected had 

72, 576 rows or observations, and 500 columns or features.  

The number of rows was obtained, as follows: 504 observations/test * 3 tests * 4 

subjects * 12 classes/ subject = 72, 576 observations. The dataset is balanced, and its class 

balance is shown in Figure 3-10. Number of data observations for each class is 6,048.     
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Figure 3-9. CSI amplitude variations for a single subcarrier for each class. 

 

 
Figure 3-10. Class frequency. 

 

The dataset was divided into two subsets:  1) a training set containing 70% of the 

original dataset and is used to train the model, and 2) a test set containing the remaining 

30% of the original dataset and is used to test the trained model. Python’s scikit-learn 

library was used to split the dataset into training and test-data subsets. The resulting subsets 

were shuffled and were characterized by the same proportions of class labels as the input 

dataset (i.e., balanced). The new training dataset contained 50,803 data instances, while the 
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test dataset contained 21,773. Figure 3-11 and Figure 3-12 show the plots of the first four 

training and the test data instances with their labels, respectively. 

 

Figure 3-11 Plot of the first four training data instances. 

 

3.3 Data Preparation 

Before training the models, features were scaled (or normalized) so that they can be 

uniformly evaluated. For example, KNN calculates the distance between two data points 

by measuring the Euclidean distance. If one of the features’ values vary widely, the distance 

will be governed by this feature. Hence, it is important to normalize the data so that every 

feature’s contribution to the final distance is proportional. Scaling the features was done 

using StandardScaler class from scikit-learn package, which standardizes features by 

removing the mean and scaling to unit variance. Standardization (or Z-score normalization) 

is expressed by 

𝑥′ =
𝑥−𝑥̅

𝜎
,    Eq.  5 
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where 𝑥̅ is the mean of the feature vector, and 𝜎 is its standard deviation. This method is 

widely used in many machine learning algorithms because it helps objective functions to 

work properly and it helps the gradient descent to converge faster.   

3.4 Classification Models to Predict RR 

Since RR variable can take a discrete set of values, predicting RR can be a 

classification problem. Classification algorithms have been applied to develop models for 

predicting RR based on CSI collected from a person breathing when sitting still between 

two routers. The classification algorithms that were used in this work are k-Nearest 

Neighbor (KNN), Support Vector Machine (SVM), Decision Tree, Random Forest, Naïve 

Bayes, Logistic Regression, and a Neural Network (NN). 

Classification algorithms were implemented in Python. To build the models, the 

proper packages, and their functions and classes were used. NumPy—a fundamental 

package for scientific and numerical computing in Python—was used because it allows 

high-performance operations on single- and multi-dimensional arrays. Scikit-learn [27], 

which is a widely used Python library for machine learning, was used for data 

preprocessing, and for implementing classification algorithms. Matplotlib was a package 

used for data visualization and for visualization of classification results.  
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Figure 3-12. Plot of the first four test data instances. 

 

3.4.1 KNN 

K-Nearest Neighbor (KNN) classifier takes a test data sample and it finds the 

closest k number of the training samples. Predicted label for the test sample is the most 

frequent label of the closest k training samples. Notably, the distance used to determine the 

closest samples can be any metric measure, although Euclidean distance is the most 

common choice. An example of KNN with K=3 is shown in Figure 3-13 [28]. To predict 

blue star class, the three nearest samples are considered. Because the three closest points 

belong to red circles, a blue star is classified as a red circle, as well. 

KNN was implemented in Python by using scikit-learns’s 

sklearn.neighbors.KNeighborsClassifier class. K number of neighbors must be chosen to 

build the model. To find the optimal number of K, 10% of training data was used as a 

validation set. KNN classifier models were built for k=1, 3, 5, 7, 10, 15, 20, 30, 40, 50, 60, 

70, 80, 90, and 100. To build each model, KnearestNeighbor class was used from Python’s 

sklearn package. Each model was evaluated on the validation set. Figure 3-14 illustrates 
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model accuracy versus number of neighbors. The figure shows that the most accurate 

model evaluated on validation set is the model with k=1. 

 

 

Figure 3-13. Visualization of KNN. 

 

 

Figure 3-14. KNN accuracy vs number of K. 

 

After k=1 was chosen as the optimal hyperparameter, the model was evaluated 

using test data; model accuracy was 96.38%. The accuracy of the model is the number of 

correct predictions divided by the number of total predictions. Figure 3-15 shows the 

confusion matrix, which visualizes model performance, shows that all classes were 
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predicted nearly 100%, accuracy, except for classes 14 bpm and 15 bpm. Nearly 20% of 

14 bmp data samples were classified as 15 bpm and vice versa.  

Table 2 shows the classification report with the most common metrics. Class 

precision is the number of correctly predicted data samples for any given class, divided by 

the number of total predictions for the class. On the other hand, class recall is the number 

of correctly predicted data samples for the class, divided by the actual number of data 

samples belonging to the same class. The F-1 score is a weighted harmonic mean of 

precision and recall, with best value at 1 and worst at 0. The support is the number of 

occurrences for each class. Table 2 shows that the precision and recall are 100% for all 

classes, except for classes 14 bpm and 15 bpm.  

 

 

Figure 3-15. KNN confusion matrix. 
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Table 2. KNN Classification Report 

 

 

3.4.2 Support Vector Machine (SVM)  

Support Vector Machine (SVM) classifier attempts to make a decision boundary so 

that the separation between classes is as wide as possible. SVM algorithm finds the points 

(i.e., support vectors) that are closest to the line between the classes. The distance between 

line and support vectors is called the margin, and the goal of the algorithm is maximizing 

margin. The optimal hyperplane is the one with the largest margin (See Figure 3-16) [29]. 

 

Figure 3-16. Visualization of SVM. 
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To build an SVM classifier in Python, sklearn.svm.SV class from scikit-learn 

library was used, and the default parameters were passed to the class. The model was 

trained using training data, and then evaluated using test data. The model predicted 96.55% 

of the test data samples correctly. Figure 3-17 shows the confusion matrix, and Table 3 

shows the classification report. SVM classified approximately 15% of the data samples 

belonging to 14 bpm class as 15 bpm, and vice versa. In fact, SVM’s performance was 

similar to KNN performance.  

Table 3. SVM Classification Report 

 

 

Figure 3-17. SVM confusion matrix. 
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3.4.3 Decision Tree 

 

Figure 3-18. Decision tree example. 

 

The goal of a decision trees is creating a predictive model by using learning 

decision rules, in form of if-then-else statements inferred from the data features. Decision 

trees build a classification model in the form of a tree structure. An example of a decision 

tree is shown in Figure 3-8 [30]. Decision trees are built using an algorithm that determines 

how to split a data set based on different conditions. Constructing a decision tree includes 

deciding on which features to choose and which conditions should be used for splitting. 

Various split points are tested, and then a cost function is used to select the best splits. The 

final decision tree consists of decision nodes, which are split into branches and leaf nodes 

that cannot be further split, representing a classification or decision. The root node is the 

uppermost decision node and also the best predictor. The longest path from a root to a leaf 

defines the depth of a decision tree. The complexity of decision rules and fitness of the 

model increases with the depth of the tree.  

Scikit-learn’s DecisionTreeClassifier class was used to build a decision tree 

classifier in Python. This function takes criterion as a parameter, which measures the 
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quality of a split. Gini impurity—a measure of how often a randomly chosen element from 

the set would be incorrectly labeled—was used as a criterion. The maximum tree depth 

was set to none, meaning that the nodes are expanded until all leaves are pure or until all 

leaves contain less than the minimum number of samples required to split an internal node. 

The minimum number of samples required to split an internal node was set to the default 

number of 2, and the minimum number of samples required to be at a leaf node was set to 

the default number of 1. The model was trained using training data. Model accuracy on 

predictions made using test data was 88.84%. The corresponding confusion matrix is 

shown in Figure 3-19, and the classification report is shown in Table 4. 

Table 4. Decision Tree Classification Report 

 

 

Figure 3-19. Decision tree confusion matrix. 
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Decision tree classifier achieved an accuracy less than 10% lower than SVM and 

KNN. Similar to KNN and SVM performance, decision tree classified approximately 20% 

of the 14 bpm data samples as 15 bpm, and vice versa. A section of a resulting decision 

tree is displayed in Figure 3-20, even though this particular decision tree is too complex to 

visualize or interpret. 

 

Figure 3-20. Section of the decision tree. 

 

3.4.4 Random Forest 

Random forest consists of several individual decision trees that operate as an 

ensemble. Each tree in the random forest predicts a class, and the class with the most votes 

is model’s prediction. Figure 3-21 shows an example of how a random forest model makes 

a prediction [31]. RandomForestClassifier class from scikit-learn library was used to build 

the classifier. The number of trees in the forest was the default number of 100. Gini 

impurity was used to measure the quality of the split. The maximum depth of the trees was 

not specified; hence, the nodes are expanded until all leaves are pure or until all leaves 

contain less than two samples. After the model was trained and evaluated using test data, a 
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96.28% accuracy was achieved. Figure 3-22 shows the confusion matrix, and the 

classification report is shown in Table 5. Results are consistent with KNN, SVM, and 

decision tree results. 

 

 

Figure 3-21. Visualization of a random forest model making a prediction 

 

. 

Figure 3-22. Random forest confusion matrix. 
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Table 5. Random Forest Classification Report 

 

 

3.4.5 Naïve Bayes 

Naive Bayes classifier uses Bayes Theorem, expressed by Eq. 6. In Eq. 6, A and B 

are events and P(B) is not equal to zero. P(A|B) and P(B|A) are conditional probabilities. 

P(A|B) is the probability of event A occurring, given that B is true. P(A) and P(B) are 

probabilities of A and B occurring, respectively. For every data point, Naïve Bayes 

classifier predicts membership probabilities for each class. The class with the highest 

probability is the predicted class. Naïve Bayes classifier assumes that features are unrelated 

to each other, and conditionally independent [32]. Gaussian Naïve Bayes assumes that the 

probability of features is Gaussian, which is described in Eq. 7. In Eq. 7, 𝑥𝑖 represents the 

features, and y represents the output. The parameters 𝜎𝑦 and 𝜇𝑦 are estimated using 

maximum likelihood. 

𝑃(𝐴 | 𝐵) =
𝑃(𝐵 | 𝐴)𝑃(𝐴)

𝑃(𝐵)
    Eq.  6 

  

𝑃(𝑥𝑖  |𝑦) =
1

√2𝜋𝜎𝑦
2

exp (−
(𝑥𝑖−𝜇𝑦)

2

2𝜎𝑦
2 )   Eq.  7  
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GaussianNB class from Pyhton’s scikit-learn library was used to build a Naive 

Bayes model. The model was trained on training data and evaluated on test data. The model 

achieved 15.43% accuracy, which is significantly lower than model accuracy for KNN, 

SVM, decision tree, and random forest classifier. The confusion matrix is shown in Figure 

3-23, revealing that a large number of data samples for every class has been misclassified 

as a 14 bpm class. The classification report is shown in Table 6.  Naive Bayes classifier did 

not perform well because of the “naive” assumption of conditional independence between 

every pair of features, given the value of the class variable. 

 

Figure 3-23. Naive Bayes confusion matrix. 

 

Table 6. Naive Bayes Classification Report 
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3.4.6 Logistic Regression 

The logistic regression classification algorithm uses a Sigmoid function, expressed 

by Eq. 8, as the prediction function that returns a probability value that can then be mapped 

into discrete classes. The output of the Sigmoid function are the probability estimates that 

fall between 0 and 1. To predict the label of a data point, the class with the highest score 

or probability is chosen [33]. 

𝑆(𝑧) =
1

1+𝑒−𝑧    Eq.  8 

 

 Class sklearn.linear_model.LogisticRegression was used to implement logistic 

regression in Python,. After training the model, test data evaluation showed 97.46% 

accuracy. The confusion matrix is shown in Figure 3-24, and the classification report is 

shown in Table 7. Model performance was very similar to KNN, SVM, decision tree, and 

random forest classifiers. 

Table 7. Logistic Regression Classification Report 
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Figure 3-24. Logistic regression confusion matrix. 

 

3.4.7 Neural Network Model (MLP) 

Multilayer perceptron (MLP) is a class of feedforward neural network (FFNN)—a 

classification algorithm that learns a function 𝑓(∙): 𝑅𝑚 → 𝑅𝑜 by training on data, where m 

is the number of dimensions for input, and o is the number of dimensions for output. Using 

a set of features 𝑋 = 𝑥1, 𝑥2, … 𝑥𝑚 and a target y, MLP learns a non-linear approximator for 

classification. It differs from logistic regression because it has one or more hidden layers 

between the input and the output layer. There can be many such hidden layers making the 

architecture deep. Figure 3-25 shows the architecture of MLP with one hidden layer.  

There are three steps in training the MLP model, which are forward pass, 

calculating the loss, and the backward pass. In the forward pass, input is passed to the 

model. At each layer, the input received to the layer is multiplied with weights and bias is 

added. In fact, each neuron in the hidden layer uses a weighted linear summation 𝑥1𝑤1 +

𝑥2𝑤2 + ⋯ + 𝑥𝑚𝑤𝑚 to transform values from the previous layer. Model output is calculated 

using an activation function. The second step in MLP training is calculating error or loss 

by comparing the output with the ground truth labels. The third step is a backward pass, 
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where backpropagation is used from the output layer to the previous layers to minimize 

loss function. The gradient descent is used to update the weights [34]. The algorithm stops 

when the preset number of maximum iterations is reached, or when the loss falls below a 

certain threshold.  

Scikit-learn’s class MLPClassifier implements an MLP algorithm, which uses 

backpropagation for training. The number of hidden layers was set to 4, and the number of 

neurons in hidden layers were 200, 150, 100, and 50, respectively. The activation function 

for hidden layers was relu, which is the rectified linear unit function expressed by Eq. 9. 

𝑓(𝑥) = max (0, 𝑥)    Eq.  9 

 

 

Figure 3-25. MLP with one hidden layer, 

 

Adam, which is a stochastic gradient-based optimizer, was chosen as the solver for weight 

optimization. MLP trained on two arrays: training data array of size (n_samples, 

n_features), and array y of size (n_samples,), which consists of class labels for training 

data samples. The model achieved 97.3% accuracy. The confusion matrix is shown in 
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Figure 3-26, and the classification report is shown in Table 8. Model performance is similar 

to other models, with the exception of Naïve Bayes.  

 

Figure 3-26. MLP confusion matrix. 

 

Table 8. MLP Classification Report 

 

 

3.4.8 Summary of Classification Modelling Results 

Model accuracies are summarized in Figure 3-27. Logistic Regression proved to be 

the model with the highest accuracy, followed by MLP, SVM, KNN, and random forest. 

Together with the decision tree, these often misclassify 14 bpm as 15 bpm, and vice versa. 

Naive Bayes classifier achieved significantly lower accuracy than other models, primarily 
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because Naïve Bayes assumes that all predictors are independent of the others. This is a 

very strong assumption and it would be difficult to claim that it is realistic for this problem. 

 

Figure 3-27. Classification model accuracies. 

 

3.5 Regression Models to Estimate RR 

Estimating RR is a regression problem because RR variable takes continuous values 

or real numbers. Regression models were trained using collected CSI data to estimate the 

RR of a subject breathing and sitting still between the transmitting and receiving routers. 

Models were trained on 70% of the collected data and tested on the remaining 30% of the 

collected data. Logistic Regression, SVM, decision tree, and random forest algorithms, 

which were explained in Section 3.4, can also be used for regression. Additional regression 

algorithms for developing the models include Linear Regression, Least Absolute 

Shrinkage, and Selection Operator (LASSO). To evaluate regression model performance, 

the following four metrics were used, namely Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and R-squared. R-squared is the proportion of variance in the 
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observed data that is explained by the model. R-squared normally takes values between 0 

and 1. Values closer to 1 are superior, as more variance is explained by the model. Metrics 

are calculated using the following formulas: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − 𝑦𝑖|𝑛

𝑖,𝑗=1    Eq.  10 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑗 − 𝑦𝑖)

2𝑛
𝑖,𝑗=1   Eq.  11 

 

and 𝑅2 =
𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
=

∑ (𝑦𝑗−𝑦̅)
2

𝑗

∑ (𝑦𝑖−𝑦̅)2
𝑖

 ,   Eq.  12 

 

where 𝑦𝑗 refers to predicted labels, and 𝑦𝑖 refers to true labels. 𝑆𝑆𝑟𝑒𝑔 is the regression sum 

of squares (i.e., explained sum of squares), and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares, which is 

proportional to the variance of the data.  

3.5.1 Linear Regression 

Linear regression is a linear model, meaning it assumes a linear relationship 

between input variables and a single output variable. More specifically, a target can be 

calculated from a linear combination of the features. For example, a model for a simple 

linear regression problem with a single feature x and target y can be expressed by 

𝑦 =  𝛽0 + 𝛽1𝑥 ,    Eq.  13 

 

where 𝛽0 and 𝛽1 are model parameters, referred to as regression coefficients. The goal of 

linear regression is finding regression coefficients that minimize a cost function. The class 

sklearn.linear_model.LinearRegression was used to implement linear regression in Python. 

The model was fit using training data, and then used to make predictions on test data. Figure 

3-28 shows true values and predicted values for the first 10 test-data samples. Regression 
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metrics are shown in Table 9. Notably, the value of root mean squared error is 2.17, which 

is more than 10% of the mean value for RR, which is 17.5. This means that although the 

linear regression algorithm is not very accurate, it is able to make reasonably good 

predictions. 

 

 

Figure 3-28. Linear regression estimated and true values 

 

Table 9. Linear Regression Metrics 

Mean Absolute Error 1.69 

Root Mean Squared Error 2.17 

R-squared 0.60 

 

3.5.2 LASSO 

LASSO is a type of linear regression that uses shrinkage, where data values are 

shrunk towards a central point. LASSO regression performs L1 regularization, which limits 

the size of coefficients. L1 penalty equals to the absolute value of coefficient magnitude. 

The goal of LASSO is minimizing Eq. 15, which is the sum of squares with a constraint on 

coefficients.  
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𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =  ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑗 )
2

+ 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑛
𝑖=1   Eq.  14 

 

Regression metrics of LASSO are shown in Table 10. Since R-squared is extremely close 

to 0, the model explains none of the observed data variance. MAE and RMSE are greater 

when compared with linear regression, rendering LASSO estimation less accurate. Figure 

3-29 shows predicted and true RR values for the first 10 test data samples. LASSO 

estimated RR at 17.5 bpm for the entire test data; hence, it cannot be used to accurately 

estimate RR.  

 

Table 10. LASSO Regression Metrics 

Mean Absolute Error 3.0 

Root Mean Squared Error 3.45 

R-squared 4.43e-9 

 

 

Figure 3-29. LASSO regression estimated and true values. 
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3.5.3 Summary of Regression Modelling Results 

Regression metrics for all models are listed in Table 11. Considering errors and R-

squared value, logistic regression offers superior performance, and LASSO offers the 

worst. SVR, decision tree, and random forest regressors also accurately estimated RR based 

on test data samples, as evidenced by insignificant error and an R-squared value close to 

1. 

Table 11.  Regression Metrics for All Regression Models 

Regression Model MAE RMSE R-squared 

Linear Regression 1.69 2.17 0.60 

LASSO 3.0 3.43 4.43e-9 

SVR 0.58 1.16 0.89 

Decision Tree Regressor 0.35 1.32 0.85 

Random Forest Regressor 0.34 0.68 0.96 

Logistic Regression 0.04 0.35 0.97 

 

3.6 Evaluating Classification and Regression Models Using a Blind 

Test Set 

Data collected from all four subjects was divided into 70% training- and 30% test-

data. Most models showed promising performance when evaluated using test-data. To 

determine if models could perform similarly when making predictions for a new and 

unknown subject, data collected from subjects A, B, and D were used to train the models. 

Data collected from subject C was then used as test-data to evaluate the models. Subject C 

data served as a blind test data, as none of the models had seen samples from the data. The 
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training data consisted of 54,432 data samples, each with 500 attributes from three subject. 

The test data was 18,144 data observations, with 500 attributes from a single subject. After 

training data was used to fit the models, predictions were made on test data.  

All classification models achieved approximately 7 to 8% accuracy using the blind 

test data. Results were significantly lower than when models were trained using 70% data 

from all subjects. Comparisons are shown in Figure 3-30. Table 12 shows the regression 

metrics of the regression models obtained when evaluated on blind test-data. Regression 

models showed significantly higher errors when compared with previous testing. In 

addition, R-squared values were negative, zero, or close to zero, meaning that models 

performed very poorly.  

Results show that models cannot be generalized, as they are unable to adapt 

properly to new and previously unseen subjects. The reason for this could be due to the 

fact that the data used for training was collected from only three subjects. To make models 

more generalized, data should be collected from a large number of subjects. Also, models 

were not generalizable because in this test, each subject significantly changed the signal 

multi-path in a different way.   
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Figure 3-30. Comparison of performance when 70/30 split was used vs. blind test data. 

 

Table 12. Regression Metrics for All Regression Models – Blind Test Set 

Regression Model MAE RMSE R-squared 

Linear Regression 4.61 6.04 -2.07 

LASSO 3.0 3.45 0.00 

SVR 3.36 4.10 -0.41 

Decision Tree Regressor 3.87 4.74 -0.88 

Random Forest Regressor 3.04 3.56 -0.06 

Logistic Regression 4.51 5.46 0.07 
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Chapter 4: Comparison with an Existing Pattern-based System 

4.1 Description of the Pattern-based System 

One of the existing pattern-based system that uses Wi-Fi CSI data for estimating RR 

was developed by a previous OU student, Mohamad Omar Al Kalaa. He developed a full 

control, processing and RR estimation Matlab program.  

4.1.1 Tx and Rx Configuration 

In this program, a new cmd process was started, and the ssh command was 

repeatedly executed for logging into the routers. After exiting this process, the program 

returned to the Matlab process. The original Atheros tool source code for sending and 

receiving data to obtain CSI was modified. The sender and receiver programs were placed 

in the root directory of the transmitting and receiving router, respectively. The Matlab 

program first started the CSI receiving program on the Rx device, and then commenced 

transmission from the Tx device. Packet transmission rate was 10 packets per second, for 

a total of 60 seconds. Data acquisition was then performed. The program included signal 

processing, stream selection, and RR estimation. 

4.1.2 Pre-processing  

Raw CSI data comprised a complex 3x3x56 matrix for each packet received. 

Absolute values of data were obtained to determine the CSI amplitude values. Data was 

then resampled to 10 Hz, and the negative values were removed. CSI amplitude values 

were converted to dB scale, and the DC component was removed. Finally, the signal was 

smoothed with a moving average using 10 samples, which is the message frequency.  
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4.1.3 Stream Selection 

During the stream selection process, CSI amplitude streams were selected on 

subcarriers most sensitive to breathing. Each time subcarrier selection was performed, a 

signal with maximum power in the frequency band (i.e., frequency limits 0.1 and 1.6 Hz) 

was selected. The remainder of subcarriers were filtered out and not used for RR 

estimation. The program offers real-time RR monitoring, in which RR is reported every 

second after 10 seconds. In this case, a new subcarrier was selected and used for RR 

estimation in every 10 second window. The program also offers post-processing, where 

RR is estimated after the data collection. During post-processing, only one subcarrier was 

selected over the entire test period and used for RR estimation. 

4.1.4 RR Estimation 

To calculate the RR, CSI amplitude stream peaks are determined so that the 

minimum peak-to-peak distance is one sample and minimum peak prominence is one dB. 

Setting minimum peak-to-peak distance and prominence helps to prevent fake peaks that 

are not caused by breathing. Inter-breath interval (IBI) method was used to obtain an RR 

estimate. First, the mean time difference between the peaks is calculated. Then, the inverse 

of the mean is computed to obtain the estimated RR. Given that the peaks are found at time 

𝜏1, 𝜏2, … , 𝜏𝑛, then the estimated RR is calculated using the following formula, 

RR =
60

1

n−1
∑ (τi+1− τi)n−1

i=1

 ,    Eq.  15  

     
where the factor of 60 is used to convert the frequency from Hz to bpm. Examples of post-

processing and real-time RR estimation program output are shown in Figure 4-1 and Figure 

4-2, respectively. These examples are test outputs for a subject breathing at a rate of 19 
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bpm for a time period of 60 seconds. The real-time system showed the last 10-second 

window. The legend for both graphs shows the index of a selected subcarrier. 

 

Figure 4-1. Post-processing RR estimation example. 

 

 

Figure 4-2.  Real-time RR monitoring example. 
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4.2 Evaluation of the Pattern-based System and Comparison with the 

Regression Models 

The pattern-based system described in Section 4.1 was used to estimate RR using the 

collected data to train and evaluate the machine learning models described in Chapter 3. 

The system was evaluated using regression metrics described in Section 3.5. Both post-

processing and real-time RR estimation were evaluated. Since real-time system reports an 

RR value every second, the estimated RR represents the average value over 60 seconds. 

Results are shown in Table 13 and show that the real-time system estimated RR values 

slightly better than when post-processing was used. The reason for these results is due to 

the fact that real-time monitoring selects a new subcarrier most sensitive to breathing every 

10 seconds, and during post-processing, only one subcarrier is selected for RR estimation.  

Table 13. Pattern-based System Regression Metrics 

Pattern-based System MAE RMSE R-squared 

Postprocessing RR Estimation 2.14 2.9 0.49 

Real-time RR Estimation 0.78 2.7 0.60 

 

When comparing regression models (See Table 11), all—except for LASSO—have 

lower error and higher R-squared value than the pattern-based system. This indicates that 

learning-based models perform better when estimating RR based on the collected CSI data. 

One drawback of regression models is that they cannot be generalized, thus no ability to 

accurately predict blind test data from a new subject. It is likely, however, performance 

could improve with additional training data. 
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Conclusion and Future Work 

The work in this thesis presented machine learning models used to predict RR using 

CSI collected from four human subjects who were breathing while sitting still in a chair 

located between two WiFi routers. Seventy percent of the collected data used for training 

classification and regression models; the remaining 30% was used for evaluating the 

models. Model accuracy was used to evaluate classification models. The logistic regression 

model demonstrated the highest accuracy rate of 97.46%. Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R-squared metrics were used to evaluate regression 

models. Logistic regression also demonstrated both the lowest error and the highest R-

squared. Regression model performance was compared with existing pattern-based system 

performance. Results show that with the exception of LASSO, all regression models were 

able to predict RR more accurately than pattern-based systems. Drawbacks of models 

developed for this thesis are that they cannot be generalized, and they do not perform well 

when predicting RR using unseen CSI data collected from a new subject. 

In future work, CSI data used to train the models should be collected from a large 

number of subjects. Accordingly, models might show improvement and become more 

generalizable. Also, the data should be collected in various environments under different 

scenarios with a variety of Tx-Rx distances, subject body positions, and orientations. 

Because the work in this thesis focused on predicting RR for a single subject, future work 

should consider multi-user scenarios.  
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Appendix A: Example Images of 12 Classes for 4 Subjects 

 

Figure A-1. Example image of classes 12-17 for all subjects. 
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Figure A-2. Example mage of classes 17-23 for all subjects. 


