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Abstract 

 

Cough is one of the most common symptoms for many of the diseases. Physicians 

have been using characteristics of cough for preliminary diagnosis of certain respiratory 

diseases for ages.  But the methods have been subjective and often depend on self-

reported history and description of cough by the patients. Recently, with advent of the 

omnipresent recording devices and advances in machine learning capabilities, many 

studies have attempted to partially fill the gap.  These studies have approached the 

problem objectively to create devices like cough monitors, cough counters, and partial 

automatic cough detection using machine learning. There is still a huge gap that exists in 

detecting and diagnosing the cough in a practical way. This study is an attempt to 

contribute towards filling this gap. We propose and analyze a machine learning based 

method to automatically detect cough in presence of background noise. After successful 

cough detection, we investigate the possibility of preliminary differential diagnosis by 

distinguishing the cough associated with Asthma, Bronchitis, Bronchiolitis, Pertussis 

patients and healthy people.   

As more training data could be collected for cough and non-cough sounds, it 

allowed us to leverage the potential of powerful deep architecture like ResNet for the 

cough detection part.  For the diagnosis part of the work, not much data was available.  In 

this case the preliminary results show  that XGBoost performed better than CNN and 

ResNet architectures. While the cough detection part of the study offers mature results, 

lot more cough sound data for the examined diseases is needed before  generalizable 

conclusions  can be drawn from the diagnosis  results observed in  this study. 
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_______________________________________________________ 

CHAPTER 1 
_______________________________________________________  

Introduction 

1.1. Introduction and Background 

We live in the era where artificial intelligence is very widely used technology in 

many fields. It already affected the way we live and drastically changed this world we live-

in in the past decade. Artificial intelligence has a potential to revolutionize our lives for 

good. Medicine is one of those fields that is being revolutionized but has a lot more 

potential to leverage AI in its field. AI has a very huge potential to leverage that data to 

make useful predictions on the image data especially after the introduction of the 

Convolutional Neural Networks. 

One of the medium that can be leveraged for finding the symptoms of a disease is 

cough. Many doctors that are researching on the cough sounds believe that a cough carries 

valuable information to at least preliminarily diagnose the underlying disease. The 

premise is that the underlying disease determines the physical character of the cough [1]. 

According to WHO, Pertussis is one of the diseases that has taken the lives of 89,000 

people in the year of 2008 alone while infecting 151, 074 globally. 

The premise is, if the lungs are affected then the sound of the cough should be 

affected as well, but the human ear may not capable of differentiating the coughs of 

various diseases. This is where the AI comes into play to detect the complex patterns or 

latent features or distinctive features in an signal/cough. 
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 In this work five kinds of cough sounds are used Asthma, Bronchitis, Bronchiolitis, 

Normal and Pertussis with the size of 37, 96, 35, 247 and 130 respectively. RESNET and 

XGBoost models are used for detection and the diagnosis which are expounded in the 

following sections. The precision and the recall of the model on this dataset is high and is 

useful for medical purposes assuming the model performs at least the same, if not better 

with the large data.  

 This model could be then deployed on an App and it can be accessible for anyone 

with a smartphone to detect and diagnose a cough. 

1.2. Previous Works 

Cough has been used for diagnosing by physician for centuries. Recently machine 

learning has been leveraged to do the same as well for Pertussis, wet-cough and dry-

coughs. For automatic cough segmentation, Martinek et al. [3] extracted many time, 

frequency, and entropy features and used a decision tree to discriminate between 

voluntary cough sounds and speech. They used data from 20 subjects, with 46 coughs 

from each subject, and reported median sensitivity and specificity values of 100% and 

95% respectively. However, their method is subject-dependent since the subjects are 

required to cough at the beginning of each recording to obtain individual cough signal 

patterns. Tracey et al. [5] developed an algorithm for cough detection to monitor patient 

recovery from tuberculosis. They extracted MFCCs from the audio signals of 10 test 

subjects. These were used to detect coughs with a combination of artificial neural 

networks (ANN) and support vector machine (SVM) classifiers achieving an overall 

sensitivity of 81%. In both these methods, the total number of coughs in the dataset were 
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not reported. Barry et al. [4] used linear predictive coding (LPC) coefficients with a 

probabilistic neural network (PNN) classifier to create an automatic cough counting tool 

called Hull Automatic Cough Counter (HACC). This successfully discriminated between a 

cough and non-cough events from 33 subjects with a sensitivity of 80% and specificity of 

96%. Swarnkar et al. [6] used other spectral features such as formant frequencies, 

kurtosis, and B-score together with MFCC features for cough detection. These were fed 

into a neural network resulting in a sensitivity of 93% and a specificity of 94% for a test 

dataset consisting of 342 coughs from 3 subjects only. Matos et al. [8] extracted thirteen 

MFCCs which were classified using a Hidden Markov Model (HMM). Their test dataset 

consisted of 2155 coughs from 9 subjects and their method resulted in 82% sensitivity for 

cough detection. The total number of false detections was not reported, however, the 

average false positives per hour were 7 with the high variance between subjects. Amrulloh 

et al.  [7] used ANN classification to develop a cough detector using a non–contact 

recording system for pediatric wards achieving sensitivity and specificity values of 93% 

and 98% respectively using over 1400 cough sounds from 14 subjects. Liu et al. [9] used 

Gammatone Cepstral Coefficient (GMCC) features with SVM classification of 903 coughs 

from 4 subjects resulting in sensitivity and specificity of 91% and 95% respectively. Larson 

et al. [11] presented a method of cough detection using the built-in microphone of a 

mobile phone for data collection. Their algorithm, which was not implemented on the 

phone, used random forest classification with a maximum for 500 decision trees 

achieving 92% sensitivity on over 2500 cough sounds from 17 subjects. Lucio et al. [10] 

extracted 79 MFCC and Fast Fourier Transform (FFT) coefficients and used k-Nearest 

Neighbor (kNN) for classification. From a dataset acquired from 50 individuals, their 

algorithm achieved a sensitivity of 87% in classifying 411 cough sounds with a specificity 
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of 84%. All these methods work to identify cough segments from audio recordings but do 

not classify them. 

  Several algorithms for automatic cough classification have been published to 

identify various cough types. Chatrzarrin et al. [12] studied the different phases of dry and 

wet coughs and found the second phase of dry coughs to have lower energy compared to 

wet coughs. They also noted that, during this phase, most of the signal power is contained 

between 0-750 Hz in case of wet coughs and 1500-2250 Hz in case of dry coughs. Using a 

simple thresholding method, they successfully identified 14 wet and dry coughs with 

100% accuracy. Swarnkar et al. [13] used a Logistic Regression Model (LRM) based 

classifier to discriminate between dry and wet coughs from pediatric patients with 

different respiratory illnesses. They used several features including B–score, non-

gaussianity, formant frequencies, kurtosis, zero-crossing rate, and MFCCs. For a test 

database with 117 coughs from 18 subjects, they reported sensitivities of 84% and 76% for 

detecting wet and dry coughs respectively. Kosasih et al. [14] developed an algorithm for 

the automatic diagnosis of childhood pneumonia by assessing cough sounds and crackles. 

They used MFCCs, non–gaussianity index, and wavelet features with an LRM classifier to 

differentiate between pneumonia and non–pneumonia cough sounds. Their method 

achieved sensitivity and specificity of 81% and 50% respectively for a total of 375 cough 

samples from 25 subjects. Specific to pertussis coughs, Parker et al. [15] studied the 

performance of three different classifiers for their classification. They used audio files of 

pertussis cough sounds available on the internet to create a dataset consisting of 16 non-

pertussis cough signals and 31 pertussis cough signals. From this data, the cough sounds 

were then manually isolated and divided into three parts for which 13 MFCC features and 
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the energy level were extracted. These features were subsequently classified using an 

ANN, a random forest classifier, and a kNN classifier. For each of these classifiers, the 

false-positive error was 7%, 12%, and 25% respectively while the false negative error was 

8%, 0%, and 0% respectively[16]. 

1.3. Contributions 

The works that are presented above contribute on similar lines in terms of 

diagnosing and detecting the cough. The novel contributions of this work are: 

1. Detecting cough in presence of background noise.  It is not only the latent 

features of cough that has value for the medical diagnosis using machine 

learning,  but knowing intensity and temporal pattern of cough also has value 

for diagnosis by doctors. The cough detection algorithm developed in this thesis 

when deployed via a smart phone or wearable device can help gather this 

valuable data. 

2. Preliminary differential diagnosis of screening of five respiratory diseases. 

Other studies have focused on Pertussis, wet and dry cough.  No existing study 

has have focused on differential diagnosis while considered mixed cough 

sounds from Asthma, Bronchiolitis, Bronchitis, Pertussis patients and healthy 

people. 
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1.4. Limitations 

a. Majority of effort during this study was consumed by data collection and pre-

processing. While we managed to collect reasonable amount of training data to 

train and develop a robust cough detection algorithm in presence of various 

type of background and environmental noises, the data that could be collected 

for training and testing the diagnosis algorithm is still too small. Therefore, 

while the 2nd part of this work investigates first feasibility study of possible 

preliminary diagnosis from cough sound for Asthma, Bronchiolitis, Bronchitis 

and Pertussis, its generalization capability remains an open question till more 

data becomes available.  

b. ResNet while being powerful and proven tool, is a very deep model with 

millions of parameters to be tuned during the training process. Given the small 

amount of training data available for the diagnosis part of this study, it is quite 

possible that it has memorized instead of learning. More data and investigation 

into interpretability in future would be needed to address this limitation. 

1.5. Articles currently under review for Publication 

C. Bales Et al., “Can Machine Learning Be Used to Recognize and Diagnose 

Coughs?”  (Submitted) 

 The major contribution I have done for this work was data collection, pre-

processing, and detection part of the algorithm 
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Charles John Et al., “Practical and Deployable Cough Detection and Differential 

Diagnosis of Screening Using Artificial Intelligence”  (In preparation) 

 My contribution in this paper was data preprocessing, collecting more data, 

applying machine learning and deep learning techniques for detection and 

the diagnosis of the coughs 

1.6. Organization 

The rest of this thesis is structured as follows: Data Generation and Preprocessing 

methodology is presented in Chapter II and Chapter III respectively. Chapter IV presents 

the method for Detection and Diagnosis model which includes ResNet, CNN, and 

XGBoost models used in this thesis. Performance Analysis and Final Results are 

presented in Chapter V. Chapter VI concludes the thesis and Future Work is presented in 

Chapter VII.  
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_______________________________________________________ 

CHAPTER 2 
1. _______________________________________________________  

Data Generation and Preprocessing 

2.1. Data Generation 

The data for the detection algorithm was collected through various mediums, via 

the AI4Lyf app, social media, and used online datasets ESC-50, FSDKaggle 2018 and 

2019. All the data was in the wav form and it was converted to spectrograms.  

 

Figure 2.1.: Wave form of a sound 

 

The data consists of cough sounds, male voices, singing, female voices, music, 

speech, random noises, and the 50 categories from ESC-50 dataset. All these sounds are 

of 44 kHz converted to spectrogram using the librosa library in python. Here are the steps 

involved to convert a wave form representation to spectrogram representation: 
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 The Fourier Transform is applied to the sound and because human hearing 

range is concentrated in very small frequencies and amplitude ranges, a small 

adjustment is made to transform both the y-axis (frequency) to log scale, and 

the “color” axis (amplitude) to Decibels 

 In contrast to Hz scale, where the difference between 500 and 1000 Hz is 

obvious, whereas the difference between 7500 and 8000 Hz is barely noticeable 

 This representation is called Spectrogram, as shown in Fig. 2 below 

 

Figure 2.2.: Spectrogram of the sound file 

 

As there the data for the cough sounds was less, several data augmentation techniques are 

used to generate huge number of data to train the neural network. Noise injection, shifting 

time, changing speed, changing pitch and the combination of these are used to increase 

the dataset size. The number has increased from 1,470 to 14,700 for cough and to 29,080 

for the non-cough class. The majority of the data for the diagnosis is obtained from the 

YouTube. No data augmentation is used for diagnosis dataset. 
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2.2. Data Preprocessing 

The size of the detection training dataset is approximately 35,000 images with the 

size of 640 x 480 each. The test data is separated in a separate folder, carefully examining 

to see that there is no same sample or augmented image split between the training and 

the test sets. The diagnosis dataset is of the same size but the size of the image is reduced 

to 432 x 288 during the runtime. All the different types of diseases are in their respective 

folders. The raw data obtained were listened physically and individually and cut them into 

two second events each. It is done for all the cough and the non-cough samples. 

All the images before they are fed to the model, are converted to greyscale images 

to reduce the computational costs and the complexity of the model and training. A 

greyscale image is represented by a pixel matrix. Each pixel in the image is presented by 

one integer from 0 – 255. The training dataset is further divided into validation and 

training sets. 

For the diagnosis part of this work, the image data is reshaped into one-directional 

array then it is given to the machine learning model, which is XGBoost here. 

This is the procedure followed for most of the data collection and pre-processing: 

1. Downloaded the audio file from the internet sources of the particular diseases 

– some from the social media website, some from the online open source 

websites. 
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2. Listened to each sound file and extracted the cough sound by cutting that part 

from the audio file using an audio cutter. This was done for all the audio sound 

files extracting three second files from each sound file 

3. Each sound then is preprocessed with a python program to make it precisely 

three seconds each as most of the cough sounds are less than three seconds by 

adding silence to the file 

4. All the sound files are converted to mono and the output was given as 44kHz 

with .wav as the format of the sound file 

5. This then was fed to a python program that converts the sound file into a 

spectrogram image by using the package ‘librosa’ 

6. All the images are stored in a folder which is then fed to the machine 

learning/deep learning algorithm 

7. Inside the algorithm, all the images are resized to 432 x 288 images and was 

reshaped to greyscale image for the sake of reducing complexity and 

computational costs 

Until here, the process is the same for all the algorithms used. For XGBoost there are a 

few extra steps to follow, the input cannot be a matrix, so the input has to be flattened to 

one directional array. The training dataset is then split to validation and test dataset and 

is fed to the algorithm. 
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_______________________________________________________ 

CHAPTER 3 
2. _______________________________________________________  

Detection and Diagnosis  

3.1. Residual Networks 

One of the problems that very deep models face is the problem of vanishing/exploding 

gradients[1,9], which hamper convergence from the beginning. This problem, however, 

has been largely addressed by normalized initialization [23, 9, 37, 13] and intermediate 

normalization layers [16], which enable networks with tens of layers to start converging 

for stochastic gradient descent (SGD) with backpropagation [22]. When the deeper 

networks’ depth increases the accuracy degrades rapidly, this problem is addressed by 

Deep Residual Learning framework. 

The core of these networks is introducing a ‘identity shortcut connection’ that skips 

one or more layers. This block is called Residual Block, as shown in the figure below. This 

identity mapping does not have any parameters and is just there to add the output from 

the previous layer to the layer ahead. However, sometimes x and F(x) may not have the 

same dimension. A convolution operation typically shrinks the spatial resolution of an 

image, e.g. a 3x3 convolution on a 32 x 32 image results in a 30 x 30 image. The identity 

mapping is multiplied by a linear projection W to expand the channels of shortcut to 

match the residual. So the input x and F(x) are added as input to the next layer.  The Skip 

Connections between layers add the outputs from previous layers to the outputs of 
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stacked layers. This results in the ability to train much deeper networks than the previous 

ones.  

 

Figure 3.1.: Residual Block 

 

This architecture is used for detection of cough and non-coughs sounds. The input 

given was 432 x 288. The model used is ResNet50 which consists of 5 stages each with a 

convolution and Identity block. Each convolution block has 3 convolution layers and 

each identity block also has 3 convolution layers. The ResNet-50 has over 23 million 

trainable parameters. 

 

Figure 3.2.: ResNet 50 Model 
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There are two fully connected layers with the drop out of 50% and with the SoftMax 

activation function. 

The input is then given to this model which outputs the binary value, whether a 

sound file is a cough or not. There are a total of 30 epochs and the learning rate was 0.001 

and with the batch size of 32 while using binary_crossentropy as the loss function and 

adam as the optimizer. 

3.2. XGBoost 

One of the models used for diagnosis in this work is XGBoost. It is one of the 

dominating algorithms in the field of machine learning for tabular data. XGBoost stands 

for eXtreme Gradient Boosting. XGBoost is a decision-tree-based ensemble Machine 

Learning algorithm that uses a gradient boosting framework. When it comes to the small 

tabular data, XGBoost is dominant in this field of machine learning. Gradient boosting as 

the name suggests it is Gradient blended with Boosting. 

In boosting, the individual models are not built on completely random subsets of 

data and features but sequentially by adding more weight on instances with wrong 

predictions and high errors. The general idea behind this is that instances, which are hard 

to predict correctly is focused during learning, so that the model learns from the past 

mistakes. When the model is trained on each ensemble on a subset of the training set, it 

is called Stochastic Gradient Boosting, which can help improve generalizability of the 

model.   
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The gradient is used to minimize a loss function. In each round of training, the 

weak learner is built and its predictions are compared to the correct outcome that we 

expect. The distance between prediction and true value represents the error rate of the 

model. These errors can now be used to calculate the gradient. The gradient is the 

derivative of the loss function - so it describes the steepness of the error function. The 

gradient can be used to find the direction in which to change the model parameters in 

order to reduce the error in the next round of training by “descending the gradient”. Here, 

the image data is flattened to make it a single directional array and then is fed to the 

XGBoost algorithm. 

The flattened input is given to this model which outputs the categorical value, if it 

is one of the four diseases or normal. The model then was trained and fitted and the model 

is tested on the test set that gave an average of 97% accuracy, mode details in the results 

section 4.1. 

3.3. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) is heavily used in the field of Computer 

Vision. As with every neural network it has many hidden layers and these typically consist 

of convolutional layers, pooling layers, fully connected layers, and normalization layers. 

Here instead of using the normal activation functions as in multi-layer perceptron 

models, CNN uses convolution and pooling functions as activation functions.  

In Convolutional Layer, a weight matrix is defined and it extracts certain features 

from the image. Let’s say, we have initialized the weight of a matrix 3*3, this weight matrix 

will run across the image such that all the pixels are at least covered once, to give a 
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convolved output. This weight can perform different functions like, extracting edges, 

corners, colors, etc. The weights are learnt such that the loss function is minimized. In the 

convolutional layered network, one layer might extract the basic features and the others 

might extract more complex features from the image. The stride which is the movement 

of the weight matrix on the image can be determined as a hyperparameter. As the stride 

value increases the size of the image decreases. Padding reduces the problem of decreased 

image size.  

In Pooling Layer, the number of the trainable parameters are reduced. This is used 

mostly when we have very large images and wanted to reduce the size of the images. 

Pooling is done independently on each depth dimension, therefore the depth of the image 

is not changed. The most commonly used one is called max pooling. 

The output layer gives the output in the form of a class. To generate a final output 

there has to be a fully connected layer to generate an output equal to the number of 

classes. The output has a loss function like categorical cross-entropy, to compute the error 

in prediction. Once the forward pass is complete the backpropagation begins to update 

the weight and biases for error and loss reduction.  

The input is then given to this model which outputs the categorical value, whether if it is 

one of the four diseases or normal and the batch size for training was 8, the learning rate 

is set to 0.001 and the maximum number of epochs is 15, while using 

categorical_crossentropy as the loss function and adam as the optimizer. 
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_________________________________________________________ 

CHAPTER 4 
4. ________________________________________________________  

Performance Analysis 

4.1. Results 

In this section, the results of the models of this work are presented. For the 

detection of cough, the accuracy of the model 0.99 and the loss is 0.03. The number of 

epochs were 8, early stopping is used to avoid overfitting. The figures are shown in fig. 5 

and 6. 

 

Figure 4.1.: Loss of ResNet 50 Model 
 

The loss and accuracy for the detection model are useful in the real time scenarios, 

which is yet to be tested practically. This model performs better than CNN, which has an 

accuracy of 90.08%. 
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 For the diagnosis models the CNN, Resnet and XGBoost almost performed the 

same and gave the same accuracy with XGBoost having a slight more accuracy than the 

rest. Repeatedly the results are able to be replicated without a lot of margin.  

 

Figure 4.2.: Accuracy of ResNet 50 Model 

 

XGBoost performed better than the neural network models CNN and ResNet see 

Fig. 8, Fig. 9 and Table 1. The formulas for calculating the metrics are mentioned below, 

the Support indicates the number of the test set. One of the reasons might be that the data 

required for the deep networks is very large and this dataset is relatively very small when 

compared and XGBoost performs well with the smaller data. Getting more data might 

increase the prediction probability of the neural networks. 
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 Precision Recall F-1 Score  Support 

Bronchitis 0.95 0.95 0.95 35 

Normal 0.98 0.98 0.98 99 

Pertussis 0.93 1.00 0.96 52 

Bronchiolitis 1.00 0.86 0.92 14 

Asthma 1.00 0.87 0.93 15 

 

Table 4.1.: Classification Report for XGBoost 

 

 

Figure 4.3.: XGBoost Log Loss 
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The test loss function of the XGBoost performed well when compared to the training set, 

with a test log loss of 0.2% and classification error of 0.045. This performance is good for 

the testing data and there is a very high chance for improvement by training on more data 

using the ResNet.  

 

 

Figure 4.4.: XGBoost Classification Error 

 

These are the formulas to calculate the metrics: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Positive
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Negative
 

 

𝐹1 = 2 ∗
Precision ∗ Recall

Precision + Recall
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_______________________________________________________ 

CHAPTER 5 
_______________________________________________________  

Conclusion and Future Work 

5.1. Conclusion 

Cough detection is one of the most needed step in order to diagnose a disease. By 

using ResNet, this model are able to achieve an accuracy of 99% which outperforms many 

of the models that are in existence [17],[18] using just a cough sound without extra 

equipment to be worn. 

The diagnosis part of this work has good results also in diagnosing different kinds 

of coughs with an average accuracy of 97% which makes this work unique and is unlike 

existing solutions in literature. For this solution to be deployable, it has to be tested on 

more data and has to be proven to maintain the same accuracy that is now with this small 

dataset. For now, this solution cannot be relied to be deployed as no clinical trials are 

done so far.  
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5.2. Future Work 

For future works there is a more need of medical labeled data to carry on this work. 

Furthermore, the ResNet model can be applied even for diagnosis. 

 This work can be continued with other techniques for other diseases  or other 

techniques for the same diseases, using speech or breath sounds. It can also be combined 

with other diseases are disabilities that can help people with speech or hearing 

disabilities. This work can be further carried on for counting cough sounds, which give a 

lot of information on the severity of a disease that can be used to measure the health of a 

person. 
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