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Abstract

Overshooting cloud tops can cause severe weather conditions, such as aviation

turbulence, lightning, strong winds, heavy rainfall, hail, and tornadoes. Due

to hazards caused by overshooting tops, several methods have been developed to

detect them. Convolutional neural networks are an approach to machine learning

that performs well on image-based tasks such as object detection. This study uses

convolutional neural networks to detect overshooting tops in GOES-14 satellite

imagery from NOAA’s Geostationary Operational Environmental Satellite.

Visible and infrared images of GOES-14 satellite imagery are the primary

source of input data. These images are divided into patches of size 31 × 31. The

model takes in each patch and outputs its classification for that patch, whether

it contains an overshooting top or not. The distribution of patches containing

overshooting tops and those do not contain overshooting tops in the data is imbal-

anced. In this study, we first implement data sampling and cost-sensitive learn-

ing techniques to deal with imbalanced data. Next, we investigate approaches

using tropopause temperature data to increase the performance of the model.

The method we propose using tropopause temperature data in the preprocessing

step performs better overall than other methods with a probability of detection

79.31%, false alarm ratio 90.94%, and critical success index 0.088. Most of the

false alarms are located close to overshooting occurrence, and using a prepro-
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cessing step decreases the testing time significantly. This thesis compares the

performance of different imbalanced learning techniques on satellite images.
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Chapter 1

Introduction

Overshooting tops (OTs) are important weather phenomenon because of the haz-

ards associated with them. Having a system to automatically detect them would

be helpful for weather forecasters. Overshooting tops have characteristics that

can be observed in visible and infrared images of satellite data. Convolutional

neural networks (CNNs) seem like an appropriate basis for developing a auto-

matic overshooting top detection system. Consequently, this thesis uses CNNs

for detecting OTs. This chapter gives a brief introduction to OTs, outlines the

research objectives of this thesis, overviews important results, discusses the con-

tributions of this thesis to the research community, then outlines the organization

of the rest of the thesis.

1.1 Background

Overshooting tops (OTs), also called the penetrating tops, is a dome-like protru-

sions forming above a cumulonimbus anvil (Bedka and Khlopenkov, 2016). They

form when an air parcel in a deep convective cloud protrudes its equilibrium
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level near the tropopause due to momentum from a thunderstorm’s updraft. In

meteorology, equilibrium level is the height at which rising parcel of air is at

the same temperature of its surroundings (Wikipedia contributors, 2019). The

tropopause is the boundary between Earth’s atmosphere between troposphere

and stratosphere. Overshooting tops with strong ascending force can penetrate

the tropopause and extend into the lower stratosphere. These OTs can transport

gases and cloud ice into the lower stratosphere, which has a direct impact on

global climate change (Homeyer and Kumjian, 2015).

Figure 1.1: Image of an OT forming above anvil cloud (weather events, tumblr).

Thunderstorms with OTs can cause hazardous weather conditions such as

heavy rainfall, large hail, and tornadoes, and these hazards are typically concen-

trated near OT regions (Bedka et al., 2010; Homeyer and Kumjian, 2015; Bedka

and Khlopenkov, 2016; Kim et al., 2017, 2018). Detecting OTs can be useful to

forecasters for warning decision making as OTs can precede severe weather events
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by 30 minutes or more (Bedka and Khlopenkov, 2016). OTs can produce turbu-

lences at vast distance as they interact and penetrate through the tropopause,

which can be a significant hazard for the aircraft (Bedka et al., 2007, 2010). Be-

cause of the hazards associated with OTs, various OT detection models have been

developed (Bedka et al., 2010; Bedka and Khlopenkov, 2016; Kim et al., 2017,

2018).

Satellite data is commonly used for detecting OTs. Several studies have used

images of visible and infrared channels to detect OTs (Bedka and Khlopenkov,

2016; Kim et al., 2017, 2018). OTs can penetrate more than 2 km above the

surrounding anvil cloud (Homeyer and Kumjian, 2015; Bedka and Khlopenkov,

2016), having a cauliflower-like structure in the visible image and producing shad-

ows on the surrounding anvil clouds. Most OTs appear as a small cluster of cold

infrared window (IRW) brightness temperatures (BTs) surrounded by a warmer

anvil cloud.

1.2 Research Objectives

The specific objectives of this research are as follows:

1. To prepare GOES-14 imagery data to be input to the convolutional neural

network (CNN) model using interpolation, image patching, and normaliza-

tion techniques.

2. To develop a convolutional neural network model to detect the OTs in the

given input data.

3. To validate the model performance on the test data.

4. To analyze different approaches to increase the performance of the model.
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1.3 Overview of the Results

We also investigate six approaches to increase the performance of the CNN model

on GOES-14 satellite data. This study compares the performance of these differ-

ent approaches in terms of POD, FAR, and CSI. Approach 1 has a better POD

of 97.29%, while Approach 2 has the least POD of 72.66%. Approach 2 has a

low FAR of 90.44%, and Approach 4 has a higher FAR of 99.4%. CSI values for

these approaches are within range of 0.005 to 0.092. Approach 2 has the best

CSI value 0.092. However, Approach 7 has the second-best CSI value 0.088, and

has more advantages. Approach 7 has better POD compared to Approach 2,

and false positives generated using this approach are closer to OT occurrences

compared to Approach 2.

1.4 Contributions to the Research Community

In this thesis, we looked at how convolutional neural networks approach work

on the detection of overshooting cloud tops in satellite data. The first approach

mentioned in this thesis is like the method mentioned in Kim et al. (2018) but

is distinguished in terms of data used and data preparation steps. This research

shows how imbalanced machine learning techniques, data preparation or prepro-

cessing techniques work on satellite imagery. The results in this thesis shows

that the CNN model is sensitive to the overshooting top features and is detecting

overshooting top regions before and after they are detected by people.
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1.5 Organization of the Thesis

This thesis is organized into seven chapters. Chapter 1 discusses the background

of this study and the research objectives of the thesis. Chapter 2 reviews OT

detection methods that researchers have previously developed on satellite images.

Chapter 3 explains in detail the GOES-14 satellite data and tropopause tempera-

ture data used in the study, followed by data preprocessing steps and how data is

calibrated as train and test data. Chapter 4 introduces neural networks, discusses

the components of the CNN, the architecture of the CNN used in this study, and

the modeling approach. Chapter 5 explain the approaches that are implemented

in this study to detect OTs along with the results of each approach. Chapter 6

discusses the analysis made on the test data. Finally, Chapter 7 concludes the

thesis and presents future work based on the results.
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Chapter 2

Literature Overview

Previous studies have shown that OTs can be detected using visible channel

and infrared channel imagery (Setvák et al., 2010; Bedka and Khlopenkov, 2016;

Bedka et al., 2018; Kim et al., 2017, 2018). An OT can be observed in a

daylight reflectance image (visible) as it protrudes above a cloud forming a

dome/cauliflower-like structure and shadows by sunlight. Infrared images are

used to get brightness temperatures. OTs continue to cool at a rate of 7−9

Kkm−1 as they ascend into the lower stratosphere (Negri and Adler, 1981; Negri,

1982) and are usually colder than surrounding regions. So, OTs are often isolated

regions of cold infrared window (IRW) brightness temperatures (BTs) relative to

warmer surrounding anvil clouds. In this thesis, tropopause temperature data is

also used because anvil clouds have temperatures at or near to that of tropopause

temperature (Adler et al., 1985).

Previous studies have proposed various OT detection methods using visible

and/or infrared images. Infrared images are widely used because infrared images

can be utilized irrespective of procuring time, while visible images are only avail-

able during daytime. Dual Channel Difference (Setvák et al., 2007) and InfraRed
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Window texture (IRW-texture) (Bedka et al., 2010) are the two most widely

used methods to detect OTs with infrared images. The Dual Channel Difference

or Water Vapor-InfraRed Window channel Brightness Temperature Difference

(WV-IRW BTD) approach uses the brightness temperature difference between

water vapor and window channels to detect OTs. However, the threshold used in

this method varies with the characteristics of satellite data used.

The IRW-texture algorithm was developed to identify OTs as characteristics

of groups of low IRW BT pixels within surrounding anvil clouds. However, the

thresholds used in this approach are not sufficient to cover all the characteristics

of OTs. This method have a POD 35.1% and FAR 24.9%. Bedka and Khlopenkov

(2016) developed a probabilistic OT detection approach, that the gives the prob-

ability of occurrence of OTs using logistic regression. This method uses both

infrared and visible image data. Although this approach has better results than

above mentioned approaches this approach involves pattern recognition analysis

and several rating approaches that are time consuming. This method has POD

69% and FAR 18.4%.

Two machine learning OT detection methods are developed recently using

Himawari-8 satellite data. One of the methods uses multiple channels in himawari-

8 satellite images and spatial texture information to extract 15 input variables

to the model (Kim et al., 2017). In this approach, authors used three machine

learning techniques—random forest, extremely randomized trees, and logistic re-

gression to get the probability of OT/non-OT occurrence. This method has POD

77.06% and FAR 36.13%. The other method (Kim et al., 2018) uses a deep learn-

ing approach to detect OTs. This method uses visible and infrared image channels

in Himawari-8 satellite images as input to the deep learning model. This method

has POD 79.68% and FAR 9.78%.
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Chapter 3

Data Processing

3.1 Overview

This chapter is divided into three sections. Section 3.2 describes the data used in

this study. The data used in this study includes GOES-14 satellite images and

tropopause temperature data. Section 3.3 of this chapter discusses the data pre-

processing methods that are used in this study. The preprocessing steps include:

• Downscaling infrared images to 1 km resolution

• Downscaling infrared and visible images to 500 m resolution

• Normalization of both infrared and visible images

• Construction of OT center references on satellite imagery

Section 3.4 presents the data constructions steps for both training and testing.

The data construction steps include:

• Dividing images into patches of size 31 × 31

• Calibrating training data for the CNN model

8



• Calibrating test data

3.2 Data

There are two basic types of data that are used in this thesis. They are GOES-

14 imagery and tropopause temperature data. This section has two subsections.

The two subsections 3.2.1 and 3.2.2 will explain those two data types in greater

detail.

3.2.1 GOES-14 Imagery

Geostationary Operational Environmental Satellite (GOES)-14 imager is oper-

ated by National Oceanic and Atmospheric Administration (NOAA). The GOES-

14 imager has five channels with a spatial resolution ranging from 1 km to 8 km.

This study uses both visible and infrared images. Visible images of Channel 1

(wavelength 0.55 − 0.75 um) have a spatial resolution of 1 km. The infrared

image of Channel 4 (wavelength 10.20 − 11.20 um) has a spatial resolution of

4 km. The infrared images are used to get the brightness temperature. OTs are

usually colder than surrounding regions (Setvák et al., 2008, 2010). So, OTs are

often isolated regions of cold IRW brightness temperatures (BTs) relative to a

warmer surrounding anvil cloud. GOES-14 imagery is collected with a temporal

resolution of 1 min for the infrared and visible images used in this thesis.
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Figure 3.1: Raw visible image.

Satellite imagery used in this study is for nine hours duration from 1200–2059

UTC, and then 2245 on 25 May 2015. We collected GOES Imager data from

NOAA comprehensive large array-data stewardship system (CLASS) website

(NOAA CLASS). There are a total of 459 GOES–14 images in the time interval

mentioned above. We divided these 459 images into training and validation sets.

Each visible and infrared image is downloaded in netCDF format and contains

information about the data at each pixel, latitude and longitude for each pixel,

timestamp, other data (not relevant to this thesis). Visible images have 1 km geo-

graphic field of view (i.e., resolution) at nadir. This means that the data value at

each pixel is for 1km. Each visible image is of the size 1387 × 2428. An example

visible image can be seen in Figure 3.1. Infrared images have 4 km geographic

field of view (i.e., resolution) at nadir. This means that for the infrared image,

we have only one reading for 4 km, while the visible image has one reading for

every 1 km. Infrared image is of size 346 × 608. An example of infrared image

can be seen in Figure 3.2.

10



Figure 3.2: Raw infrared image.

3.2.2 Tropopause Temperature

In this study, the tropopause temperature is used to reduce the number of false

positives. The Modern-Era Retrospective Analysis for Research and Applica-

tions, version 2 (MERRA-2), is the latest atmospheric reanalysis of the mod-

ern satellite era produced by NASA’s Global Modeling and Assimilation Office

(GMAO) (Gelaro et al., 2017). MERRA-2 reanalysis fields were used to cal-

culate the tropopause temperature. MERRA-2 has a 0.5°× 0.625°grid spacing

and provides hourly surface analyses and 3-hourly vertical profiles at 72 vertical

levels. The MERRA-2 data to compute tropopause temperatures was down-

loaded from the Global Modeling and Assimilation Office (GMAO) (2015). The

tropopause temperature data has readings for every 1° latitude and 1° longitude

with a temporal resolution of 1 minute. This tropopause temperature data is used

to interpolate to the coordinates of the GOES-14 imagery at 500 m resolution.
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3.3 Data Preprocessing

Infrared and visible images are at different spatial resolutions. To be able to use

these images together, we first downscale infrared images to 1 km resolution in

the first data preprocessing step. In the later steps, we downscale both infrared

and visible images to 500m resolution, normalize values in these images in the

range 0–1, and the construct OT center references on satellite images. Section

3.3 discuses the data preprocessing steps mentioned above.

3.3.1 Downscaling Infrared Images to 1 km Resolution

Infrared images have a spatial resolution of 4 km, while visible images have a

1 km spatial resolution. To use both visible and infrared images together as a

two-channel image, both the images should have the same resolution. To achieve

this, we downscale infrared images to 1 km resolution. There are various methods

to downscale the image or increase in the size of the image. After studying

several image processing methods, interpolation methods seem to work well for

remote sensing data. Previous studies (Han, 2013/03; Titus and Geroge, 2013)

on the comparison of different interpolation techniques have shown that bicubic

interpolation is the best interpolation technique for satellite images.
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Figure 3.3: Infrared image before interpolation.

Figure 3.4: Infrared image after interpolation.

In downscaling, bicubic interpolation interpolates the value of unknown pixel

p in an amplified image based on the 16 adjacent pixels (4 × 4) and their distance

to p. In Figure 3.5, intermediate pixel F̂ (p′, q′) is created by interpolating nearest

4 × 4 pixels from F (p−1, q−1) to F (p+2, q+2). The coordinates of the amplified

image must be provided to get the magnified image. Latitude and longitude of

the infrared image are taken as the coordinates of the original image, and the

13



latitude and longitude of the visible image are used as the coordinates of the

interpolated image. Previous studies have shown that the bicubic interpolation

technique gives a smooth, amplified image. On comparing the original Figure 3.3

and interpolated Figure 3.4 both the images looked similar. The advantage of

the interpolation method other than providing a smooth image is that the values

in the interpolated image and the original image are on the same scale.

F(p-1,q-1) F(p-1,q) F(p-1,q+1) F(p-1,q+2)

F(p,q-1) F(p,q) F(p,q+1) F(p,q+2)

F(p+1,q-1) F(p+1,q) F(p+1,q+1) F(p+1,q+2)

F(p+2,q-1) F(p+2,q) F(p+2,q+1) F(p+2,q+2)

𝐹 ො𝑝, ො𝑞

b

a

Figure 3.5: Bicubic interpolation logic (Santhosh G, 2011).
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3.3.2 Downscaling Infrared and Visible Images to 500 m Resolution

Figure 3.6: Infrared image at 1 km spatial resolution.

Figure 3.7: Infrared image at 500 m spatial resolution.

CNN models are widely used for image recognition tasks (LeCun et al., 2010;

Sermanet et al., 2013; Girshick et al., 2014; Ren et al., 2015; Redmon et al., 2016;

Krizhevsky et al., 2017; Redmon and Farhadi, 2019). Consequently, we used the

CNN model for this thesis. Generally, in convolutional neural networks, as we go

15



deeper into layers, the size of output for the layer decreases. The input to the

CNN model should be large enough so that the output layers are not very small.

Infrared and visible images are downscaled to 500 m resolution to increase the

size of input to the model.

Figure 3.8: Visible image at 1 km spatial resolution.

Figure 3.9: Visible image at 500 m spatial resolution.

Latitude and longitude coordinates for the 500 m resolution are calculated by

taking the mean values between every pair of adjacent rows and, correspondingly

16



every pair of adjacent columns. Newly generated coordinates are approximately

500 m apart. Bicubic interpolation is used to generate infrared and visible im-

ages at 500 m spatial resolution. The images at 500 m resolution are of size

2773 × 4855.

3.3.3 Normalization of both Infrared and Visible Images

The data values for both infrared and visible images have a range in thousands.

In neural networks, especially for gradient-based methods, if the input values are

on different scales, model performance can be degraded as the learning speed

becomes slow, and it will be difficult for the learning algorithm to converge (Ioffe

and Szegedy, 2015; Kim et al., 2018). The data values of the infrared and visible

images are normalized using a min-max approach. For each value at pixel X, the

normalized value is (X − Xmin)/(Xmax − Xmin), where Xmin and Xmax are the

minimum and maximum values of an input image respectively.
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Figure 3.10: Infrared image before normalization.

Figure 3.11: Infrared image after normalization.
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Figure 3.12: Visible image before normalization.

Figure 3.13: Visible image after normalization.

3.3.4 Construction of Overshooting Top Center Reference on Satel-

lite Imagery

The OT database used for this study has the timestamp at which each OT is

observed, and the co-ordinates (latitude and longitude) of the overshooting top

centers occurring at that timestamp. OT centers are marked by a high school

19



intern at NASA and are provided for this study by Kristopher Bedka at NASA

Langley Research Center. The database has information for every image ana-

lyzed from 1200-2059 UTC, and then 2245 UTC for 25 May 2015 for a long-lived

mesoscale convective system (MCS) across Texas. Each OT center pixel is iden-

tified by calculating the distance between the coordinates of the OT center and

the coordinates of each pixel. The pixel with the coordinates closest to the OT

center is marked as the OT center. These marked pixel values are used to ex-

tract patches from the image while training and label them as OT and non-OT

occurrence.

3.4 Data Construction for Training and Testing

Section 3.4 presents the steps involved in constructing the training and testing

data. First, the whole image is divided into patches of size 31 × 31. Since

OTs are rare events and are small in size compared to whole image, the number

of patches having OT occurrences is far less than the number of patches not

having OT occurrence. For training, a data augmentation technique is used to

oversample OT occurring patches and randomly undersampled non-OT patches.

For testing, each image is divided into patches of size 31 × 31 and tested on the

model. While testing, an image patch is marked as OT occurrence only if that

patch contains OT center pixel. The reasons for choosing the patch size, data

augmentation techniques, and the test data construction is discussed in detail in

this section.
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3.4.1 Dividing Images into Patches of Size 31 × 31

After all the preprocessing steps mentioned above, both infrared and visible im-

ages are at 500 m resolution, and the size of each image is 2773 × 4855. There are

several steps to prepare data for training. First, the infrared and visible images

are chopped into images of size 31 × 31. Figure 3.14 shows part of an image

divided into patches. The maximum size to which an OT can grow is 20 km

(Bedka et al., 2012; Setvák et al., 2013; Mikuš and Mahović, 2013). We took

31 × 31 as the patch size to make sure that OTs can be fully distinguished in the

patch, and the patch size is not too large for the CNN model so as to be difficult

to find the localized OT regions. If the patch size is small, the distinguishable

characteristics of OTs from the surrounding anvil clouds may not be captured. In

infrared images, OTs are cold brightness temperature compared to the surround-

ing anvil clouds. In visible images, OTs can be identified as cauliflower-shape

clouds forming shadows on the surrounding clouds. So, the patch size should be

large enough to capture the distinguishable characteristics of OTs.

Conversely, if the patch size is large, it is difficult for the CNN model to find

the localized OT regions because the features may not be clearly distinguishable

in the large patch. Although OTs can grow to a maximum size of 20 km, most

of the OTs have a diameter in the range of 5 km to 10 km. We used a patch

size of 31 × 31 as in Kim et al. (2018) to balance between reducing the risk of

misclassification and finding local OT regions. The distance between two OTs

occurring together is typically more than 16 km. By using a 31 × 31 patch, we

will not have two overshooting top centers in the same image patch.
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Figure 3.14: Image partially divided into 31 × 31 patches.

3.4.2 Calibrating Training Data for CNN Model

Each image is divided into 31× 31 patches with no overlap. A full image generates

13884 patches. The total number of OTs for all the 459 images in our dataset is

close to 3400. So the total number of patches for 459 images is 6372756 and the

percentage of patches having OT center is 0.05%. This means that most of the

patches are clear sky (do not contain OT). In machine learning models, if one of

the classes is much larger than the other class, the model will be biased towards

the class with a larger sample size. We used sampling methods on the training

data to get a balanced distribution.

Previous studies (Yu et al., 2017; Perez and Wang, 2017; Inoue, 2018) have

proposed several data augmentation techniques to overcome limited samples or

create diverse data set with variants. In this thesis, we used data augmentation

technique to oversample the minority class (OT occurrence) data. For training

data, we extracted three different categories of patches for each OT occurrence.

The first category has an OT center as the center or close to center of the 31 × 31
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patch. The second category is offset images with the center of OT slightly offset

from the center of the 31 × 31 patch. The third category is peripheral images with

the center of OT within the 2.5 km edge of the 31 × 31 window. The schematic

diagram of the 31 × 31 patch showing the OT center location in 3 different

locations is shown in Figure 3.15. This data augmentation process increases the

number of OT patches by three times. This method of data augmentation may

also be helpful in predicting on the test data. The center of OT may not always

be at the center of the patch when the whole image is chopped into 31 × 31

patches with no overlap while testing.

OT centerVisibleInfrared

Center

Center

Off 
center

Peripheral

(a)

11

5
5
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1
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Center

Off center
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11

(b)

Figure 3.15: (a) Example of an image patch with OT centered at different posi-
tions. (b) OT center is placed at center, slightly off center and edge centered.

The patches having OT center at the center or offset from the center or at

the peripheral are labeled as OT occurrences. Non-OT occurrence patches are
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randomly generated from each image to get the same number of OT occurrence

patches. We chose the center of these non-OT occurrences at random. The

distance of these randomly generated OT centers are calculated and only nine

patches out of eight thousand nine hundred and thirty have OT center.

3.4.3 Calibrating Test Data

Out of the 459 images, 50 images are taken for testing. Images in test data are

not included in the training data. For testing, the CNN-based model is tested

on the whole satellite image. The complete image is chopped into patches of size

31 × 31 with no overlap. We labeled each patch as “OT” or “non-OT” depending

on whether the patch has an OT center or not. Then, we applied the CNN model

on the patches.
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Chapter 4

Convolutional Neural Networks

Artificial Neural Networks (ANNs) are composed of artificial neurons that retain

the biological concept of neurons, which receive input, combine the input with

their internal state, and produce output using an output function. ANNs gen-

erally consists of a set of layers, where each layer is a set of neurons. The first

layer of a layered ANN is called the input layer, the last layer is called the output

layer, and the layers in between are called hidden layers. Neurons in one layer

are connected to the following and/or previous layers. Each connection has a

strength, referred to as a weights.

The first section of this chapter discuss the components of the convolutional

neural networks (CNN) which are convolutional layer, pooling layer, fully con-

nected layer, and activation functions. The second and third sections of the

chapter discuss the architecture of the CNN and the modeling approach imple-

mented in this thesis.
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4.1 Components of CNNs

This section explains how convolutional neural networks can be used to extract

features from images. The main components of convolutional neural networks

are the convolutional layer, pooling layer, fully connected layer, and activation

function. Convolutional and pooling layers are used to extract features from the

image, and fully connected layers use these features to give the output based on

the training set. This section, also discusses dropout.

4.1.1 Convolutional Layer

Convolution is a mathematical way of combining two functions to produce third

function. A convolutional layer uses a filter (kernel) to generate a convolved fea-

ture of the input image. Stride is the amount of movement between applications

of filter to the input image. In the convolutional layer, there will be a kernel

matrix that sweeps through the input image with a given stride and outputs the

value that is generally the sum of the product of corresponding elements in an

image. This process extracts features from the image called a feature map.
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Figure 4.1: An example of 2D convolutional layer with kernel size 3 × 3 and
stride = 1. The input is 5 × 5 and we have shown the values of the kernel in
input layer that gives the value of highlighted value in the feature map.

4.1.2 Pooling Layer

A pooling layer replaces the output of the network at a certain location with

a summary statistic of the nearby outputs (Goodfellow et al., 2016). Typical

pooling functions include max pooling, average pooling, and L2 -norm pooling

that respectively output maximum, average, and the square root of the sum of

squares (Scherer et al., 2010). A pooling layer is usually applied after a convo-

lutional layer. Pooling is a way to effectively reduce the amount of computation

because it sub-samples the features in the feature map. The down-sampling or

sub-sampling of the pooling layer also reduces the resolution of the feature map

and achieves spatial invariance (Scherer et al., 2010).
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Figure 4.2: An example of pooling layer with filter size 2 × 2 and stride = 2.

4.1.3 Fully Connected Layer

The fully connected layer is same as a traditional ANN. The term fully connected

implies that every neuron in the previous layer is connected to every neuron in the

next layer. Convolutional and pooling layers extract high-level features from the

input image. The purpose of the fully connected layers is to take in these features

and provide output based on the training dataset. Sigmoid or softmax activation

functions are commonly used as activation functions for fully connected layers.

4.1.4 Activation Function

The purpose of the activation function is to make the neural network learn non-

linear functional mappings between the inputs and the output variable. The

output of a neuron is generally the activation function applied to the sum of

products of its inputs and their corresponding weights. The most popular acti-

vation functions are sigmoid, tanh, softmax, and ReLU functions. The following

subsections discusses these activation functions, their mathematical representa-

tions, and graphical representations.
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Sigmoid

The sigmoid activation function is also referred to as the logistic function. It

is an S-shaped curve. The output of a sigmoid activation function is between 0

and 1. Therefore, it is especially used for models where we have to predict the

probability as an output. Since probability of anything exists only between the

range of 0 and 1, sigmoid is usually used in the output layer of a binary classifier.

The mathematical expression for the sigmoid function is

f(x) =
1

1 + e−x
(4.1)

where x is the net value computed based on inputs, weights, and bias of that

neuron.

Figure 4.3: Graphical representation of sigmoid activation function.

Hyperbolic Tangent Function: Tanh

The hyperbolic tangent function, known as tanh, is similar to the sigmoid func-

tion. Tanh is a smooth zero-centered function. The range of tanh function is

between −1 and 1. The mathematical expression for the tanh function is
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f(x) =
ex − e−x

ex + e−x
(4.2)

where x is the net value computed based on inputs, weights, and bias of that

neuron.

Figure 4.4: Graphical representation of tanh activation function.

Softmax

The softmax computes the exponent of the individual input divided by the sum

of exponents of all the inputs. The output of a softmax function is a vector of

length equal to number of classes, and range of values lies between 0 and 1. The

sum of these vector values is equal to 1. The softmax function is preferred in the

output layer of the multi-class models (Nwankpa et al., 2018). The mathematical

expression of the softmax function is

f(xi) =
exi∑
j e

xj
(4.3)

where xi is the real number of a input vector.
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Rectified Linear Unit (ReLU) Function

The Rectified Linear Unit (ReLU) activation function (Nair and Hinton, 2010) is

widely used for deep learning applications. Sigmoid and tanh activation functions

have gradients (derivative of the function) that are smaller than one. If multiple

layers are used, the product of these gradients decreases exponentially and results

in vanishing gradient problem. Vanishing gradient slows the learning process in

deep learning applications. ReLU activation has gradient of 1 for positive values

and zero for any value less than zero. The ReLU activation function is given by

f(x) = max(0, x) (4.4)

Figure 4.5: Graphical representation of ReLU activation function.

Leaky ReLU

While training a neural network with ReLU activation function, if the output of

a unit is zero the gradient for that unit is zero and the unit dies. Leaky ReLU

(Maas et al., 2013) was introduced to avoid the dying ReLU problem. For x ≤ 0,

LReLU has a small slope α. The LReLU activation function is given by
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f(x) =


x, if x>0

αx, if x ≤ 0.

(4.5)

Figure 4.6: Graphical representation of LReLU activation function.

4.1.5 Dropout

In neural nets, increasing the number of hidden layers improves the network’s

ability to learn complicated relations between their inputs and outputs. However,

with limited training data, these models may learn the noise in the training data,

which may not exist in the test data. This leads to overfitting in such networks.

Large networks are slow to learn and require more training data to get favorable

results. To address this problem, dropout was introduced (Srivastava et al.,

2014). Dropout refers to randomly removing neurons and its weights at the

training phase. This prevents units from co-adapting too much. In the simplest

case, each neuron is retained with a probability p independent of other neurons,

where p can be picked using a validation set or simply set to 0.5.
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4.2 Architecture of CNN

The schematic of the CNN used in this study is shown in Figure 4.7. The archi-

tecture of the CNN used in this study is from Kim et al. (2018). The input to

the CNN layer is 2 × 31 × 31 image. The first channel is the visible image and

the second channel is the infrared image. The first two layers are convolutional

layers with filter size 3 × 3. The next layer is a max pooling layer, followed by

two convolutional layers and another max pooling layer. The first layer has a

filter size of 2 × 3 × 3; and the number of filters is 32 with a stride of 1. This

will extract 32 feature maps of size 29 × 29. The second layer has a filter size

of 2 × 3 × 3, and the number of filters is 32 with a stride of 1. This layer

will extract feature maps of size 27 × 27. After two convolutional layers, a max

pooling layer is used with a filter size of 2 × 2, and a stride of 2. The output of

this layer will be 32 feature maps with a size of 13 × 13. The third and fourth

layers are convolutional layers with 64 filters, followed by the second max pooling

layer. The output of the last pooling layer is flattened (i.e., converting data into

1-dimensional array for inputting it to the next layer) and sent as an input to the

fully connected layer with 256 neurons. The last layer is the output layer with

two neurons for classification. The predicted class is the class corresponding to

the highest value in the output vector.
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Figure 4.7: Schematic diagram of CNN.

Leaky ReLU with a slope (α) of 0.01 is used for the first convolutional layer.

The softmax activation function is used in the output layer. The ReLU activation

function is used on second, third, and fourth convolutional layers. As the neural

networks become deeper, they are likely to fall into overfitting. To solve this

problem, dropout (Srivastava et al., 2014) is used after two max pooling layers

with p value 0.5.

From the model summary in Table 4.1, the CNN consisted of 328194 parame-

ters. In the first convolutional layer, the shape of the filter is 2 × 3 × 3 and there

is a bias term with 32 filters. Therefore, number of parameters in the first convo-

lutional layer is (2 × 3 × 3 + 1) × 32 = 608. Similarly, the number of parameters

in the second convolutional layer is (32 × 3 × 3 + 1) × 32 = 9248, the number of

parameters in the third convolutional layer is (32 × 3 × 3 + 1) × 64 = 18496, the

number of parameters in the fourth convolutional layer is (64 × 3 × 3 + 1) × 64 =

36928, the number of parameters in the first fully connected layer is (1024 + 1) ×

256 = 262400 and the number of parameters in the second fully connected layer

is (256 + 1) × 2 = 514. Pooling layers do not have any parameters. This gives

a total of 328,194 parameters.
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Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (32, 29, 29) 608
conv2d_2 (Conv2D) (32, 27, 27) 9248
max_pooling2d_1 (32, 13, 13) 0
dropout_1 (Dropoout) (32, 13, 13) 0
conv2d_3 (Conv2D) (64, 11, 11) 18496
conv2d_4 (Conv2D) (64, 9, 9) 36928
max_pooling2d_2 (64, 4, 4) 0
dropout_2 (Dropoout) (64, 4, 4) 0
flatten_1 (Flatten) (1024) 0
dropout_3 (Dropoout) (1024) 0
dense_1 (Dense) (256) 262400
dense_2 (Dense) (2) 514
Total Parameters: 328194

Table 4.1: Summary of the CNN model.

4.3 Modeling

While training feedforward neural networks for supervised learning, the output is

calculated using forward propagation. Output is calculated by multiplying inputs

with weights and adding bias at various layers. Loss is calculated using the true

label and predicted value. Backpropagation is a widely used algorithm in feedfor-

ward neural networks. During backpropagation, the gradient of the loss function

is calculated with respect to parameters (weights and bias) of a neural network.

Parameters of a neural network are updated using the above gradients. In most

feedforward neural networks, parameters are learned by forward propagation and

backpropagation. Cross-entropy loss or log loss is used as a loss function in this

thesis. Cross-entropy loss measures the performance of a classification model

whose output is a value between 0 and 1. Cross-entropy loss increases as pre-

dicted values diverge from the actual labels. An ideal model has a cross-entropy

loss of zero. Below is an equation used to compute cross-entropy loss for binary
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classifier.

L(y, ŷ) = −y log ŷ + (1− y) log(1− ŷ) (4.6)

where y is a vector of true labels and ŷ is a vector of estimated values.

Gradient descent (Ruder, 2017) is an optimization algorithm used to minimize

or maximize a function. Here we used gradient descent to minimize cross-entropy

loss. Thus, gradient descent is used to update parameters of our model. There

are various types of gradient descent, depending upon the amount of data used

to calculate the gradient of the cost function during gradient descent. The first

type is batch gradient descent, in which the complete dataset is used to compute

the gradient of the cost function and perform one update. Batch gradient descent

may take a long time to converge as parameters get updated only once for each

forward and backpropagation on entire data. The second type is stochastic gradi-

ent descent (SGD), in which only one training example is used in every iteration

to compute the gradient of a cost function. SGD is faster for large datasets but

may not achieve accuracy. SGD is faster because parameters get updated for

each observation, i.e., parameters get updated for forward and backpropagation

on each observation. It may not achieve better accuracy as the parameters are

always updated for each observation, thereby SGD updates parameters locally to

that observation. The third type is mini-batch gradient descent, in whichm train-

ing examples are used as a batch to compute the gradient of the cost function.

Thus mini-batch gradient descent is a tradeoff between batch gradient descent

and SGD and has advantages of both batch gradient descent and SGD. Therefore,

mini-batch gradient descent is accurate and fast to implement. In this thesis, we

used mini-batch gradient descent with a batch size m of 128.
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In most cases, gradient descent with momentum works faster than standard

gradient descent. The primary idea is to compute exponentially weighted average

of gradients and then use this gradient to update parameters. Another variation

of gradient descent is RMSprop (Root Mean Square prop). In search space, RM-

Sprop helps to make progress (learns faster) in the direction of optimal solution

and decrease oscillations in other directions. Thereby, RMSprop helps to converge

to optimal parameters quickly. Adaptive moment estimation (Adam) optimizer is

a combination of both gradient descent with momentum and RMSprop (Kingma

and Ba, 2017). So, it has advantages of both gradient descent with momentum

and RMSprop. Recommended parameters in Kingma and Ba (2017) are used

in this thesis. Epoch is one forward propagation and backpropagation on entire

training data. Learning algorithms like feedforward neural networks use multiple

epochs during their training. We trained the CNN model with 100 epochs on the

training data.
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Chapter 5

Approaches and Results

This chapter discusses approaches to detect OTs along with the results of these

approaches. The CNN architecture in all these methods is almost the same. In

one of the methods, we used tropopause temperature data as the third channel

in the input. The performance of the models was measured using probability of

detection (POD), false alarm ratio (FAR) and critical success index (CSI).

Actual positive Actual negative
Predict positive True positive (TP) False Positive (FP)
Predict negative False negative (FN) True negative (TN)

Table 5.1: An example of cost matrix for binary classification.

POD =
Number of OTs detected correctly

Total number of OT reference points

=
TP

TP + FN
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FAR =
Number of OTs falsely detected by the CNN model

Number of OTs detected by the CNN

=
FP

TP + FP

CSI =
Number of OTs detected correctly

Total number of OT reference points + Number of OTs falsely detected

=
TP

TP + FP + FN

The performance of each approach is evaluated using these metrics. It is better

to have a model with high probability of detection (POD) and low false alarm

ratio (FAR). Fifty full images at different timestamps are used for validation. The

OT centers on satellite images that are labelled by people are used as reference.

The test images are chopped into patches of size 31 × 31. Each patch is labelled

as “OT” or “non-OT” depending on whether that patch has OT center or not.

There are total 406 OT occurrence patches, and 693794 non-OT patches in test

data. So, the ratio of OT and non-OT patches in test data is 1:1709.

5.1 Approach 1: Random Undersampling

In this approach, training data is prepared from infrared and visible images as

explained in Section 3.4. The image patches labeled as OT occurrences have OT

centers either at the center, or slightly offset from the center, or close to the
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edge of the 31 × 31 patch. Non-OT occurrence images are taken using a random

undersampling technique such that the number of OT occurrences and non-OT

occurrences is in the ratio 1:1.

The model is tested on full images in the test data. The model has a POD

of 97.3% , FAR of 97.92% and CSI 0.02. It is observed that most of the patches

having colder pixels are detected by the model as OT occurrence. In Figure 5.1,

the above image is an infrared image showing the actual OT occurrences and

the below image is an infrared image showing model detected OT regions in red

circle. Based on the results, the CNN model is identifying the difference between

cold temperature and warmer temperature pixels instead of the actual difference

between OT occurrence and non-OT occurrence. This model generated a lot

of false positives because there are many colder regions which do not have OT

occurrences. On comparing both the images in Figure 5.1a and 5.1b, we can

say that the model classifies most of the cold regions as OT regions. This can

be because random undersampling of majority class (non-OT) can increase the

variance of the classifier by discarding important samples.

40



(a) An infrared image with actual OT center marked as white ×.

(b) An infrared image with predicted OT center marked in red circle.

Figure 5.1: A figure showing the actual and predicted OT centers with Ap-
proach 1. The model is predicting most of the cold regions as OT occurrence.

5.2 Approach 2: Targeted Undersampling

In the above approach, the model classifies most patches having colder pixels

as OT occurrence and other images as non-OT occurrence. We hypothesized

that adding additional targeted non-OT occurrence patches that are colder to

the training data would help the model to learn the difference between OT and
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non-OT regions rather than cold and warm regions. All the training data used in

random undersampling is used for this approach. Additional non-OT occurrence

patches that are close to an OT center but do not contain an OT center are

added to the training data. The centers of these targeted samples are chosen at

a distance between 12.5–20 km far from the OT center.

The POD, FAR, and CSI for this model are 72.66%, 90.44% and 0.092 respec-

tively. Figure 5.2a shows the actual and predicted OT centers using Approach 2.

It is clear from the image that this model is not detecting most cold regions as

OT occurrences. Training using the new targeted undersampling data helped

the model in learning the difference between cold patches that actually have OT

occurrence vs the cold patches that do not have OT occurrence. Although the

number of false positives in the model dropped significantly and the skill (CSI)

increased, the probability of detection is reduced.
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(a) An infrared image with actual and predicted OT centers with
Approach 2.

(b) An infrared image with actual and predicted OT centers with
Approach 3.

Figure 5.2: A figure showing the actual and predicted OT centers with Approach 2
and Approach 3. Actual OT centers are marked as white × and predicted OT
centers are marked as red dot.

5.3 Approach 3: Cost-Sensitive Learning

Cost-sensitive learning addresses the imbalanced classification problem by using

different costs for misclassifying any particular class. For binary classification,

the cost or penalty of misclassifying the minority class as the majority class is
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generally higher than misclassifying the majority class as a minority class. The

backpropagation algorithm updates the weights of a neural network using the

weighted misclassification cost. This approach makes neural networks pay more

attention to the minority class. Let the cost of misclassifying OT reference as

non-OT be n times the contrast case. Our hypothesis in this approach is that the

cost-sensitive learning model will increase the probability of correctly detecting

OT reference samples. After training and validating on test data, we took 10

as the optimal value of n. The approach uses the same training data used in

targeted undersampling approach

The POD increased to 88.9% but FAR also increased to 96%. CSI value for

this model is 0.039. Subfigure 5.2b shows the actual and predicted OT centers

with this approach. This class-weighted model performed better in detecting the

number of OT references as we hypothesized but the skill is reduced. By compar-

ing Subfigure 5.2a and 5.2b, we can observe that the model using cost-sensitive

learning along with targeted undersampling is detecting more OTs compared to

Approach 2.

5.4 Approach 4: Local Normalization

For local normalization, the values of both infrared and visible images are nor-

malized using a min-max approach. For other approaches, Xmin and Xmax values

are calculated for the full image. The minimum and maximum values have a

wide range, and when all pixels in an image are normalized based on these val-

ues, some important information may be lost. Mainly, this loses the difference

in temperature between the overshooting top and its surrounding anvil clouds.

To address this problem, the local normalization approach normalizes 31 × 31
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infrared patches during training and testing. We hypothesized that using local

normalization may help in clearly identifying OTs from their surroundings.

(a) Locally normalized image patch. (b) Normalization image patch.

Figure 5.3: Comparison of locally normalized and normalized image patches with
OT at the center.

For training data, we took image patches similar to Approach 1 but brightness

temperature patches are extracted from interpolated images at 500 m resolution

before they are normalized. These patches are individually normalized using min-

max approach, where Xmin and Xmax are the minimum and maximum values of

the 31 × 31 patch respectively. While testing, the interpolated infrared images

at 500 m are taken and the average value of the complete image is computed

and subtracted from all pixels. Later, the image is chopped into patches of

size 31 × 31. Each of these patches is normalized using the min-max approach

mentioned above and tested on the trained model.

Using this approach the model has a POD of 90.39%, FAR of 99.47% and

CSI value 0.005. Although locally normalizing each patch enhances the differ-

ence between each OT center and its surroundings in brightness temperature
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image, discontinuity is created in the image visually. Subfigure 5.4 is the image

patch with OT center at the center of the 31 × 31 patch. Subfigure 5.3b is

the image patch from normalized image. Although these two patches look the

same they differ in values at each pixel. While testing, dividing the full image

to 31 × 31 patches and locally normalizing is causing discontinuity in patches

and OT features are disrupted. Subfigure 5.4b shows part of an image with OT

center at the center of patch while testing. It can be observed that OT features

are discontinued in the individual patches.

(a) Locally normalized image patch using
data construction method for training.

(b) Locally normalized image patch using
data construction method for testing.

Figure 5.4: Comparison of locally normalized image patches constructed using
training and testing methods.

5.5 Approach 5: 3-Channel Image

OTs can penetrate 2 km above the surrounding anvil clouds and have colder BTs

compared to the anvil cloud temperature. These surrounding anvil clouds are said

to have temperature at or near to that of tropopause level (Adler et al., 1985).

46



In the above mentioned four approaches, regions that are colder and do not have

any OT region close to them are also identified as the OT occurrence. It is ob-

served that the tropopause temperature in those regions is also colder. It can be

observed from Figure 5.6 that both images have colder temperatures in the right

regions. So, we used tropopause temperature data as a third channel in the input

to the CNN model. Adding third channel image in the input increases the num-

ber of trainable parameters in first layer from 608 to 896 and the total trainable

parameters are 328482. We hypothesized that including tropopause temperature

as input would help the model to learn the relation between tropopause temper-

ature and the infrared brightness temperature in classifying whether the given

image has an OT or not. Training data in this approach is extracted similar to

the targeted undersampling data and this approach also uses cost-sensitive learn-

ing method with the cost of misclassifying the OT as non-OT is ten times the

contrast case.

This approach has a POD of 93.59%, FAR of 97.18%, and CSI of 0.028. This

approach helped in detection of more OTs but the number of false positives are

also increased.
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(a) Infrared image.

(b) Image of tropopause temperature in Kelvin.

Figure 5.5: Infrared and tropopause temperature images.

5.6 Approach 6: Temperature Difference

Some of the false positives in the previous approaches are at places that are

colder in general. After looking at the tropopause values, it is observed that the

tropopause temperature in those regions is colder compared to other regions. In

the temperature difference approach, infrared images are converted to Kelvin by

first calculating the scene radiance, followed by the effective temperature, and
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then the brightness temperature. The steps for converting infrared image values

to temperature are described in National Oceanic and Atmospheric Administra-

tion (2011) as follows:

Step 1: Scene radiance R at a pixel with value X is calculated using the

formula

R =
X − b

m
(5.1)

where the value of b and m are 5.2285 and 15.6854, respectively.

Step 2: Radiance is converted to effective temperature using the function

Teff =
c2v

log

(
1 +

c1 + v3

R

) (5.2)

where c1 = 1.191 066× 10−5 , c2 = 1.438833, and v = 936.20.

Step 3: Actual temperature T in Kelvin is computed from effective tempera-

ture Teff using the following equation

T = α + βTeff (5.3)

where α = −0.287 561 6 and β = 1.001 258.
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(a) Infrared image.

(b) Temperature difference image.

Figure 5.6: Infrared image and temperature difference image generated by sub-
tracting tropopause temperature from infrared image.

In infrared images, the value at each pixel is converted to actual temperatures

using the steps mentioned above. New feature images are generated by subtract-

ing tropopause temperature from actual temperature at each pixel. This results

in negative values only at pixels that are colder than the tropopause tempera-

ture. These feature images are normalized using min-max approach. The new

temperature image is similar to the tropopause temperature image and is shown

in Figure 5.6b. For training, data is extracted similar to targeted sampling ap-
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proach and cost-sensitive learning learning is used with 10 as value of n. POD,

FAR, and CSI for this approach are 89.9%, 96.33%, and 0.036. The number of

false positives reduced in this approach compared to the previous approach.

5.7 Approach 7: Tropopause Temperature Preprocessing

Most overshooting tops have temperatures colder than the tropopause tempera-

ture. In this approach, only patches having a minimum temperature colder than

the minimum tropopause temperature in that patch are considered for training.

In this step, all full images are divided into 31 × 31 size patches similar to how

test images are divided in the previous approaches. If a patch has a minimum

brightness temperature lower than the minimum tropopause temperature and

contains an OT center, it is marked as an OT occurrence. Other patches that

have a minimum temperature colder than the minimum tropopause temperature

but do not contain an OT center are marked as a non-OT occurrence.

For training, non-OT labeled patches are randomly sampled and cost-sensitive

learning is used with 10 as a value of n. While testing, all images are chopped into

patches of size 31 × 31. If these patches have a minimum temperature warmer

than the tropopause temperature in that patch, then that patch is marked as non-

OT occurrence. Otherwise, the image patch is tested using the trained model to

find OT occurrences. In this preprocessing step, some of the OTs are by default

considered to be non-OT references. In the test data, 12% of the actual OTs

are considered as non-OTs in the preprocessing step. For testing, using the same

preprocessing approach all the 31 × 31 patches with a minimum BT warmer than

minimum tropopause temperature in that location are labelled as non-OT. The

remaining patches are tested using the CNN model to get the classification for
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that patch. On the complete test data this approach performed with a POD of

79.31%, FAR of 90.94%, and CSI value 0.088. In this approach although the

FAR is high, the false positives are closely located around the OT occurrences.

This approach is time efficient. Testing on a full image using this approach takes

significantly less time compared to the previous approaches.

Figure 5.7: An infrared image with actual and predicted OT centers with Ap-
proach 7. Actual OT centers are marked as white × and predicted OT centers
are marked as red dot.

5.8 Overall Results

The total number of actual OT references in the test data is 406. Table 5.2

summarises the number of true positive (TP), number of false positive (FP),

POD, FAR, and CSI for all the approaches presented in this thesis. Approach 1

random undersamling has the best POD 97.29% with number of true positives

395. Approach 2 have lower FAR of 90.44% and number of false positives is 2794.

Approach 2 also has the best CSI value of 0.092.

From the table 5.2, we can observe that Approach 2 Targeted Undersampling

results in the best CSI value followed by Approach 7 Tropopause Temperature

Preprocessing. Although the targeted undersampling approach results in slightly

52



Approach true positives false positives POD (%) FAR (%) CSI
Approach 1:
Random Undersampling 395 18649 97.29 97.92 0.021

Approach 2:
Targeted Undersampling 295 2794 72.66 90.44 0.092

Approach 3:
Cost-Sensitive Learning 361 8775 88.92 96.04 0.039

Approach 4:
Local Normalization 367 69695 90.39 99.47 0.005

Approach 5:
3-Channel Image 380 13114 93.59 97.18 0.028

Approach 6:
Temperature Difference 365 9598 89.90 96.33 0.036

Approach 7:
Tropopause Temperature
Preprocessing

322 3234 79.31 90.94 0.088

Table 5.2: Comparison of performances for different approaches.

better CSI value than the Approach 7, the model is predicting OTs that are not

in the OT region. On the other hand, the tropopause temperature preprocessing

method predicts most of its false positives close to actual OT occurrence. So, the

tropopause temperature preprocessing method is more useful than other models.
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Chapter 6

Discussion

This chapter discusses why the models are failing to detect some OTs and also

the reasons for more false positives. After analysing the results of Approach 7 on

each test image, we found three main points that are leading to low performance

of the model. These three points will be discussed in this chapter.

6.1 Location of OT centers in Test Data

The results from the Approach 7 Tropopause temperature preprocessing show

that the model is often detecting OT surrounding regions as OT occurrences

even though they do not have the OT center. When the test images are randomly

divided into patches, most of the OT centers are located close to edges. An OT

occurrence is at center if the center of OT is located at the center 11 × 11 region

of a 31 × 31 patch. A patch having OT center within 5 pixels offset from the

center 11 × 11 region of a 31 × 31 patch is called offset patch. A peripheral

patch is a 31 × 31 patch with the OT center within 5 pixels of the edge. Out of

the total 406 OT occurrences, 61 OTs are located at center, 114 OTs are slightly
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offset from the center, and 231 OTs are located at the periphery. The presence of

OT centers near the edges not only generates false alarms in surrounding regions

but also generates false negatives for the OT center patch itself.

(a) (b)

(c) (d)

Figure 6.1: Four patches of size 31 × 31 taken from test images with OT center
pixel marked in red circle.

The two patches in Figure 6.1a, 6.1b are detected by the model with their

surrounding regions falsely detected as OT occurrences. The two patches in

55



(a) Infrared image. (b) Visible image.

(c) An infrared image with actual OT marked as white × and
predicted OT center as red circle.

Figure 6.2: Region where OTs occur together.

Figure 6.1c, 6.1d have OT centers very close to the edge and they are not detected

by the model. In case of Figure 6.1c, the three patches close to the OT center

are incorrectly marked as positive.

6.2 Number of OTs occurring Together

We have observed that the number of false alarms is high when there are multiple

OTs occurring together. This may be because all the regions between these OTs

have colder temperatures in their infrared image and have features of a dome

when images are chopped into patches.
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In Figure 6.2 it can be observed that when multiple OTs occur together, all

the regions in between are also detected as OTs. This can be because these

regions are cold and have dome-like structures.

6.3 OT Detection Model Sensitivity

We observed the actual OT occurrences and the regions detected by the model

as OTs across time on the test data. It is observed that the OT detection model

is identifying regions as OT regions before and after there is an actual OT occur-

rence. The reason for this is that the model is sensitive to OT features. Either

our model is detecting those features before and after OT occurrence or there is

an actual OT occurrence that is not detected by the person while labeling data.

In Figure 6.3, we can observe that the model detected two regions as OT

occurrence that are not marked as OT regions in the image at 15:25:37 UTC

but are marked as OT occurrence in the image at 15:28:42 UTC. Similarly in

Figure 6.4, we can observe that there are three regions where OTs are occurring

at 15:41:05 UTC. The same three regions are detected as OT occurrence by

model on image at 15:47:20 UTC but only one of those regions is marked as OT

occurrence by the person assigned to label them.
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(a) An infrared image at 25 May 2015, 152537 UTC showing
actual and predicted OT centers.

(b) An infrared image at 25 May 2015, 152842 UTC showing
actual and predicted OT centers.

Figure 6.3: An example of the model detecting OTs in regions before they are
no longer detected by the person assigned to label OTs. Actual OT centers are
marked as white × and predicted OT centers are marked as red dot.
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(a) An infrared image at 25 May 2015, 154105 UTC showing
actual and predicted OT centers.

(b) An infrared image at 25 May 2015, 154720 UTC showing
actual and predicted OT centers.

Figure 6.4: An example of the model detecting OTs in regions after they are
no longer detected by people. Actual OT centers are marked as white × and
predicted OT centers are marked as red circle.
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Chapter 7

Conclusions and Future Work

This chapter is divided into two sections. The first section presents conclusions

based on the analysis conducted for this research. The second section presents

the recommendations of this thesis.

7.1 Conclusions

Detection of overshooting tops is important for weather forecasters, given the

impact of storms producing OTs on weather conditions and global climate. In

this thesis, GOES-14 satellite images are the primary sources of input to detect

the OTs. The data collected for training and testing is for 9 hrs on 25 May 2015

for a long-lived mesoscale convective system (MCS) across Texas. Convolutional

neural networks are used to extract features from the given images and output

if there is an OT occurrence or not. Data undersampling and oversampling

techniques are used to prepare data for training and tested on a test set. The

performance of this model is increased by including data from regions closer to

OTs that are non-OT occurrences and by implementing a cost sensitive learning
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method. Tropopause temperature data is used in three different approaches.

The final approach uses tropopause temperature data in the preprocessing step.

Although this approach includes bias in classifying all OTs that are warmer than

tropopause temperature as non-OTs, this approach reduces the number of false

positives and computing time significantly. Although Approach 7 have higher

FAR, most of the false positives are surrounding the OT reference. This may be

due to the fact that most OT centers are close to the edges when the image is

chopped into patches. Also, it is observed that the model is classifying an image

patch as an OT before and after sometime of OT occurrence. From the results,

we are able to show how imbalanced learning techniques can be used on satellite

images.

7.2 Future Work

Based on the analysis conducted in this thesis, the following future work can be

done:

1. One of the future work would be to combine the Approach 2 and Ap-

proach 7. In Approach 7, non-OT occurrence data is randomly sampled

for training. If targeted sampling method can be implemented along with

Approach 7, there is chance to decrease the number of false positives.

2. The detection models in this thesis find multiple detections of the same

overshooting top. To detect each OT only once, we believe that the detec-

tion algorithm can be tested by using a smaller stride and then applying

non-max suppression. Currently, we divide each complete test image into

31 × 31 patches with stride 31. If the stride is reduced the same pixels will
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appear in more than one patch and there is more chance that an OT will be

near the center of a patch in this case and this patch can have highest value

for OT occurrence. To make sure the system detects each object only once

a non-max suppression method can be used and only one patch is detected

for each OT occurrence.

3. Application of postprocessing steps can increase the performance of the

model. Previous studies have shown that applying postprocessing steps

has reduced the false alarms significantly. One of the postprocessing steps

can be used to first identify the coldest pixel in each OT detected patches

and select only coldest pixel within any 15.5 km radius. The reason for

suggesting 15.5 km radius is that minimum distance between any two OTs

is 15.5 km. This will also make sure that each overshooting top is detected

only once.

4. GOES-14 images are available with a temporal resolution of 1 minute.

GOES-14 image data can be treated as a time-series data which can help

in improving the performance of OT detection model.
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