
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

NONLINEAR EQUALIZATION AND DIGITAL PRE-DISTORTION

TECHNIQUES FOR FUTURE RADAR AND COMMUNICATIONS DIGITAL

ARRAY SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

NICHOLAS LOUIS PECCARELLI
Norman, Oklahoma

2020



NONLINEAR EQUALIZATION AND DIGITAL PRE-DISTORTION
TECHNIQUES FOR FUTURE RADAR AND COMMUNICATIONS DIGITAL

ARRAY SYSTEMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Caleb Fulton, Chair

Dr. Nathan Goodman

Dr. Hjalti Sigmarsson

Dr. Jay McDaniel

Dr. Alexander Grigo



c© Copyright by NICHOLAS LOUIS PECCARELLI 2020
All Rights Reserved.



Dedicated to my grandfather, Louis Peccarelli, who taught me that knowledge is

irreplaceable.

iv



Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency

(DARPA) under grant no. D15A00090.

v



Table of Contents

Abbreviations xiv

1 Background, Motivation, and Previous Work 1

1.1 Digital Array Radar Systems . . . . . . . . . . . . . . . . . . . . . 7

1.2 5G MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Digital Array Beamforming . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Digital Array Calibration . . . . . . . . . . . . . . . . . . . . . . . 14

2 Nonlinear Models and Linearization Techniques 17

2.1 Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Volterra Series . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Wiener Model . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Hammerstein Model . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 Wiener-Hammerstein Model . . . . . . . . . . . . . . . . . 28

2.1.5 Parallel Wiener Model . . . . . . . . . . . . . . . . . . . . 29

2.1.6 Parallel Hammerstein Model . . . . . . . . . . . . . . . . . 30

2.1.7 Memory Polynomial . . . . . . . . . . . . . . . . . . . . . 32

2.2 Generalized Memory Polynomial . . . . . . . . . . . . . . . . . . . 34

2.2.1 NARMAX Model . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Neural-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Radial-Basis Function Neural Networks . . . . . . . . . . . 36

2.3.2 Comparison of the Models . . . . . . . . . . . . . . . . . . 38

2.4 Nonlinear Distortion . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Types of Nonlinear Distortion and Radar Considerations . . . . . . 45

2.6 Transmit Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Summary of NLEQ Techniques . . . . . . . . . . . . . . . 58

vi



3 Digital Array Modeling and Dynamic Range 60

3.1 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Transceiver Architectures . . . . . . . . . . . . . . . . . . 61

3.1.2 Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.3 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Digital Array Dynamic Range . . . . . . . . . . . . . . . . . . . . 66

4 Waveforms for Nonlinear Calibration 73

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Generalized Calibration Waveform . . . . . . . . . . . . . . . . . . 78

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Mutual Coupling Calibration of Digital Array Systems 86

5.1 In-Situ Calibration Techniques . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Mutual Coupling . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Mutual Coupling for DPD/NLEQ Calibration . . . . . . . . . . . . 91

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Frequency Dependence . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.3 Receiver NLEQ Calibration . . . . . . . . . . . . . . . . . 101

5.3.4 Transmitter DPD Calibration . . . . . . . . . . . . . . . . . 105

5.3.5 Tx Beamforming with DPD . . . . . . . . . . . . . . . . . 109

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion and Future Work 111

vii



List of Figures

1 Input-output power plot of a generic nonlinear device, showing the

third-order intercept (IP3) and 1-dB compression point (P1dB). . . . 4

2 The input-power vs output-power plot, comparing a linear system,

a weakly-nonlinear system, and a strongly-nonlinear system. . . . . 19

3 Wiener model block diagram . . . . . . . . . . . . . . . . . . . . . 25

4 Hammerstein model block diagram . . . . . . . . . . . . . . . . . . 27

5 Wiener-Hammerstein model block-diagram . . . . . . . . . . . . . 28

6 Parallel Wiener model block diagram . . . . . . . . . . . . . . . . . 29

7 Parallel Hammerstein model block diagram . . . . . . . . . . . . . 31

8 Nonlinear Tx channel, demonstrating IMD pollution of adjacent

channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 General nonlinear Rx channel of digital MIMO array with typical

nonlinear components in red and the bandpass filter in blue, since it

can be linear when active components are used for tuning. . . . . . 54

10 An example of a superheterodyne receiver. . . . . . . . . . . . . . . 61

11 An example of a direct conversion (homodyne) receiver. . . . . . . 62

12 An example of a direct sampling receiver . . . . . . . . . . . . . . 62

13 The two fundamental blocks of nonlinear systems; (a) the input-

output power plot describing the static nonlinearity block, and (b)

the frequency response of the LTI system block. . . . . . . . . . . . 68

14 Step by step plots of a signal of two continuous wave (CW) tones

passing through (a) a Hammerstein model system and (b) a Wiener

model system. These plots show how the placement of the lin-

ear and time-invariant (LTI) system and the nonlinearity affect the

magnitude of the resulting signals. . . . . . . . . . . . . . . . . . . 69

viii



15 Comparison between the output of a Hammerstein model and a

Wiener model when two CW tones are input into their nonlinear

region. It is evident that the location of the nonlinearity and fre-

quency dependence can impact the magnitude of the resulting non-

linear spurs, as well as the main input signals. . . . . . . . . . . . . 70

16 An step-by-step example of two CW tones passing through the non-

linear region of a Wiener-Hammerstein Model. . . . . . . . . . . . 71

17 Digital beamforming results from [23], [144], showing two received

signals and their nonlinear third-order intermodulation distortion

(IM3) spurs. (A) the suprious-free dynamic range (SFDR) of the

array, limited by the IM3, (B) the SFDR of the array with nonlinear

equalization (NLEQ), and (C) the dynamic range (DR) improve-

ment with NLEQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

18 (a) the typical tradeoffs made when evaluating and choosing the

best calibration waveform and (b) an example of the dynamic spec-

tral situations to which the calibration waveform must properly train

the NLEQ algorithm to respond (from [81]) . . . . . . . . . . . . . 76

19 A simple example of an linear frequency modulation (LFM) wave-

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

20 An example of the frequency-step through time for an LFM wave-

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

21 Results from two different waveforms being passed through a mem-

oryless nonlinear system, with (a) a two-tone waveform, with very

low SFDR from the large IM3, and (b) a LFM waveform that is

deep into compression, but maintains a high SFDR since none of

the frequencies mixed. . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



22 Comparison of bandwidth efficiency for NLEQ/DPD calibration

with (a) the proposed offset LFMs being able to place probing tones

near the band-edge, limited by the frequency delta between the two

waveforms, while (b) an example of a generic wideband waveform

with third-order spectral regrowth of 3BW . . . . . . . . . . . . . . 82

23 Two-tone results from AB testing of the (a) two-tone calibration

waveform and (b) the proposed two-tone-LFM generalized calibra-

tion waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

24 Comparison between a single two-tone training and the proposed

offset-LFMs waveform. The dashed lines at the bottom are the

fifth-order IMD, while the solid lines at the bottom are the third-

order IMD: (a) the results for when the two-tone testing waveforms

are at the same power of the training waverforms, (b) the testing

waveforms are 1 dB lower in power than the training waveforms,

and (c) the testing waveforms are 2 dB lower in power than the

training waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

25 The general proposed mutual coupling calibration procedure. . . . . 92

x



26 Mutual coupling DPD/NLEQ calibration method, NLEQ calibra-

tion: (a) the low-power Tx signals in blue, (b) the Rx signals cou-

pled from the Tx output in orange with their IMD in green, and

(c) the Rx signals after NLEQ has been effectively calibrated and

applied, removing the spurs. DPD calibration: (d) the high-power

Tx signals in blue with their IMD in yellow, (e) the Rx signals cou-

pled from the Tx output in orange with their IMD in green and the

Tx IMD shown again in yellow, (f) the Rx signals after NLEQ has

been applied, removing the Rx induced spurs, effectively showing

the remaining Tx spurs, and (g) the Tx output after DPD has been

calibrated from the NLEQ Rx signals. DPD/NLEQ validation: (h)

the high-power Tx signals in blue with their DPD IMD in purple,

(i) the Tx output, showing an effectively linear spur free signal, (j)

the Rx signals coupled from the Tx output in orange with their IMD

in green, and (k) the Rx signals after NLEQ has been applied, re-

moving the Rx induced spurs, showing a linear spur free signal. . . 93

27 The geometry used for the simulated 9× 9 array. . . . . . . . . . . 95

28 The mutual coupling values between the 81 elements. The diagonal

shows self-coupling, which is by far the strongest. . . . . . . . . . . 96

29 The frequency response of all 81 Tx channels, with the mean re-

sponse shown in black. The other responses are Normally distributed. 97

xi



30 Showing the effectiveness of linear, frequency dependence calibra-

tion. Orange shows the digitally compensated waveform, while

the ideal linear response is shown in blue. After the calibration

waveform passes through the transmitter, the response, in yellow,

matches the intended linear signal. Additionally, the purple re-

sponse is the received waveform prior to calibration. Finally, the

green waveform shows that the receiver calibration is also effective

at removing the frequency dependence. . . . . . . . . . . . . . . . 98

31 The resulting coupling values from the first transmitter to the 81

receivers, obtained from linear calibration. . . . . . . . . . . . . . . 99

32 (a) the input-power vs output-power plot for the transmitters and

(b) an example of the nonlinearities produced by the transmitter’s

nonlinear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

33 (a) the input-power vs output-power plot for the receivers and (b) an

example of the nonlinearities produced by the receiver’s nonlinear

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

34 Offset-LFM output from the first transmitter, operating in its linear

low-power region, showing an output that well matches the expe-

dted linear output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

35 The received offset-LFM coupled over from the adjacent transmit-

ter. There is noticeable effect from frequency dependence in the

main band of the waveform. Additionally, third- and fifth-order

spurs are showing some spectral regrowth at the edges of the wave-

form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xii



36 The NLEQ training results, in yellow, show a good reduction in the

nonlinear spectral regrowth, in addition to a mitigation of the strong

frequency dependence. . . . . . . . . . . . . . . . . . . . . . . . . 103

37 (a) the transmitter (Tx) output for NLEQ validation; shows the

transmitter is operating linearly, (b) the receiver (Rx) output, show-

ing a significant amount of nonlinear spectral regrowth in addition

to the strong frequency dependence evident in the main bandwidth

of the waveform, and (c) the NLEQ corrected waveform (in yel-

low) has effectively mitigated the spectral regrowth and frequency

dependence with the previously calibrated NLEQ coefficients. . . . 104

38 The Tx output for the digital pre-distortion (DPD) calibration. The

output waveform shows a significant amount of spectral regrowth

with the system being operated deep into its nonlinear region. . . . . 105

39 The received waveform, after being attenuated with the switched

radio frequency (RF) attenuator. There is further a further addition

of nonlinearities by the Rx chain. . . . . . . . . . . . . . . . . . . . 106

40 NLEQ, in yellow, having mitigated the Rx nonlinearities and fre-

quency dependence, leaving only the nonlinearities and frequency

dependence induced by the Tx chain. . . . . . . . . . . . . . . . . . 107

41 The DPD trained waveform, in yellow, showing good mitigation of

the Tx nonlinearities. . . . . . . . . . . . . . . . . . . . . . . . . . 108

42 The Tx beamforming results from an input of two CW tones and

their IM3 products. The calibrated DPD coefficients were also ap-

plied, mitigating the IM3 beams by more than 40 dB. . . . . . . . . 109

xiii



Abbreviations

4G fourth generation

5G fifth generation

ACPR adjacent channel power ratio

ADBF adaptive digital beamforming

ADC analog-to-digital converter

BB baseband

BPF bandpass filter

C-SWaP cost, size, weight, and power

CMD crossmodulation distortion

COTS commercial off-the-shelf

CW continuous wave

DAR Digital Array Radar

DBF digital beamforming

DCR direct conversion receiver

DOF degrees-of-freedom

DPD digital pre-distortion

DR dynamic range

DSP digital signal processing

FAA Federal Aviation Administration

FIR finite impulse response

xiv



I/Q inphase and quadrature

IC integrated circuit

IF intermdeiate frequency

IIP3 input third-order intercept

IM3 third-order intermodulation distortion

IMD intermodulation distortion

IP3 third-order intercept

LFM linear frequency modulation

LNA low noise amplifier

LO local oscillator

LS least squares

LTE Long-Term Evolution

LTI linear and time-invariant

LUT lookup table

MC mutual coupling

MIMO multiple-input-multiple-output

MP memory polynomial

NF noise figure

NLEQ nonlinear equalization

NMSE normalized mean-square error

OIP3 output third-order intercept

xv



P1dB 1-dB compression point

PA power amplifier

PAPR peak-to-average power ratio

PVT process-voltage-temperature variation

RCS radar cross-section

RF radio frequency

Rx receiver

SFDR suprious-free dynamic range

SINR signal-to-interference-plus-noise Ratio

SNR signal-to-noise ratio

SoI signal-of-interest

THAAD Theater High Altitude Area Defense

Tx transmitter

UWB ultra wideband

WiMAX Worldwide Interoperability for Microwave Ac-

cess

WLAN wireless local-area-networks

xvi



Abstract

Modern radar (military, automotive, weather, etc.) and communication systems

seek to leverage the spatio-spectral efficiency of phased arrays. Specifically, there

is an increasingly large demand for fully-digital arrays, with each antenna element

having its own transmitter and receiver. Further, in order to makes these systems

realizable, low-cost, low-complexity solutions are required, often sacrificing the

system’s linearity. Lower linearity paired with the inherent lack of RF spacial fil-

tering can make these highly digital systems vulnerable to high-power interferering

signals– potentially introducing spectral regrowth and/or gain compression, distort-

ing the signal-of-interest.

Digital linearization solutions such as Digital Pre-Distiortion (DPD) and Non-

linear Equalization (NLEQ) have been shown to effectively mitigate nonlinearities

for transmitters and receivers, respectively. Further, DPD and NLEQ seek to ex-

tend the effective dynamic range of digital arrays, helping the systems reach their

designed dynamic range improvement of 10 log10(N) dB, where N is the number

of transmitters/receivers. However, the performance of these solutions is ultimately

determined by training model and waveform. Further, the nonlinear characteristics

of a system can change with temperature, frequency, power, time, etc., requiring a

robust calibration technique to maintain a high-level of nonlinear mitigation.

This dissertation reviews the different types of nonlinear models and the cur-

rent NLEQ and DPD algorithms for digital array systems. Further, a generalized

calibration waveform for both NLEQ and DPD is proposed, allowing a system to

maximize its dynamic range over power and frequency. Additionally, an in-situ cal-

ibration method, leveraging the inherent mutual coupling in an array, is proposed as

a solution to maintaining a high level of performance in a fielded digital array sys-

tem over the system’s lifetime. The combination of the proposed training waveform

xvii



and in-situ calibration technique prove to be very effective at adaptively creating a

generalized solution to extending the dynamic range of future low-cost digital array

systems.
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1 Background, Motivation, and Previous Work

There continues to be a growing demand for highly digital phased array systems,

which has produced a plethora of research. Specifically, there is a desire for low-

cost, reconfigurable, multi-mission fully-digital phased array and multiple-input-

multiple-output (MIMO) systems for radar and wireless communication [1]–[10].

This functionality is increasingly accompanied by the use of ultra wideband (UWB),

tunable components, with each antenna element having its own transmit and receive

channels allowing for easy scalability – based on the number of antenna elements.

Due to each element requiring its own transciever, low-cost and low-complexity

is required in order to create affordable systems [2]. Such systems offer advan-

tages such as active electronic beamsteering, digital control over each element, and

graceful degradation over the system’s lifetime, etc. Further, the large number of

required components leads to larger costs per element compared to standard single

channel systems; on the other hand, since DR scales roughly linearly with array size

– on the order of 10 log10(N), where N is the number of transceivers – the power

requirements (and, therefore, linearity) for each channel can be relaxed [8]. Digital

arrays also suffer from nonlinearities – exacerbated by the use of low-cost, low-

power components – inphase and quadrature (I/Q) imbalance at each channel, local

oscillator (LO) synchronization issues as well as correlated LO phase noise, and

phase and gain mismatches between channels. Furthermore, the correction and cal-

ibration of such issues and non-idealities has been studied [4], [11]–[14] – allowing

realized systems to meet their theoretical performance gains.

The radar community has spent decades working to increase the digitization of

radar systems [7]–[9], [15], through phased arrays, in order to quickly scan volumes

– making use of electronic beamsteering, digital beamforming (DBF), and ultimatly

adaptive digital beamforming (ADBF) – form multiple simultaneous beams, track
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multiple targets, and have the ability to fullfil multiple missions. More recently,

however, fourth generation (4G) Long-Term Evolution (LTE) wireless communi-

cations standards brought some of the first MIMO systems to the wireless com-

munications community, with the fifth generation (5G) revolution further demand-

ing highly-digital solutions. Additionally, MIMO systems have seen uses in other

communications standards, such as Worldwide Interoperability for Microwave Ac-

cess (WiMAX) [16], [17], and wireless local-area-networkss (WLANs) like IEEE

802.11n and IEEE 802.11ac [17]–[19].

Currently, the dream of low-cost, wideband, reconfigurable digital arrays is be-

coming a reality, and, thus, there is growing interest in the characterization and

calibration of these systems, especially to be accomplished in real-time for fielded

systems. This type of in-situ calibration method has been studied in [8], [12], [20]–

[22], provides a method to continue to opperate the fielded systems at their maxi-

mum performance level throughout their lifetime. Additionally, many solutions for

lowering the cost, size, weight, and power (C-SWaP) for digital array systems for

both civilian and military radar, as well as wireless communication systems have

been researched and proposed. Further, there has been a recent increase in the avail-

ability of higher frequency commercial off-the-shelf (COTS) RF components due

to the continued growth in wireless communications and automotive radar. Making

use of these low-cost COTS components has helped modern systems to align with

C-SWaP, producing affordable digital array systems. One example of a COTS-

based digital array was the Army Digital Array Radar (DAR) [1], which addition-

ally provided one of the first published examples of mutual coupling in-situ cali-

bration for a digital array. Additionally, to the author’s knowledge, it was the first

digital array to demonstrate the application of NLEQ (which will be discussed in

detail throughout this dissertation) and spur decorrelation [4]. Lastly, partial filter-
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ing for digital arrays comes digitally, after all signals have passed through the RF

components, which, compared to analog arrays and subarray-digital arrays, makes

digital arrays especially sensitive to interferers [7], [9], [23]. This lack of spatial

filtering makes digital arrays more likely to be forced to operate in the nonlinear

region due to large, unwanted signals.

On transmit, in general, as much power as possible is pushed through the sys-

tem, forcing the front-end power amplifiers (PAs) to operate in their nonlinear re-

gion, or forcing inefficient backoff to remain linear. Operating PAs in their non-

linear region is highly power efficient since a lower bias voltage is needed to out-

put a specified power-level compared to linear operation. However, operating in

the nonlinear region can cause intermodulation distortion (IMD), crossmodulation

distortion (CMD), harmonic distortion, and gain compression [23]–[25]. Further,

low-cost RF active components tend to be even more nonlinear in nature [4]. Gen-

erally, the nonlinear characteristics of a component or system are defined by the IP3

and/or the P1dB, shown in Fig. 24a. Additionally, Padaki, Tandon, and Reed give a

good overview of the differences between the different types of nonlinear distortion

in [26]. In brief, nonlinear distortions can be described as:

1. IMD – when two or more signals combine to produce distortion at a new

frequency, which is determined by the frequencies of the combined input

signals.

2. CMD – is distortion in the form of gain and phase effects from one input

frequency onto another input frequency.

3. Harmonic distortion – the introduction of higher order terms (harmonics),

such as 2f , 3f , . . . , nf .

4. Gain compression – effects from the odd order terms that fall at their original

3



input frequency adding gain and phase effects that reduce the output power

of a given signal.

Most research has been focused on eliminating IMD since this distortion causes

adjacent-band spectral spreading and, with modern communication channels neigh-

boring each other, the IMD can pollute adjacent channels [27]. Much development

has been done to correct this spectral spreading on transmit through the use of DPD

and on receive using NLEQ. These linearization techniques and a more indepth

analysis on nonlinear systems is given in Chapter 2.

Figure 1: Input-output power plot of a generic nonlinear device, showing the IP3
and P1dB.

With a good understanding of nonlinear models from Chapter 2, Chapter 3 goes

over digital array nonlinearities. Each component of a typical digital array channel

is considered. Additionally, using the nonlinear models from the previous chapter,

4



the different ways to model and simulate these component and system nonlinear-

ities is discussed. Further, the architecture of the transceiver itself and how that

affects the system nonlinearities is discussed. Specifically, the direct-conversion

transceiver, which eliminates the RF image rejection filter and intermediate fre-

quency (IF) stages required by super-heterodyne transceivers, and has played a large

role in lowering the cost, complexity, and size of modern communication and radar

systems [1], [2], [4], [28]–[32] is focused on. In addition to the system nonlinear-

ities, additional impairments such as I/Q imbalance, LO leakage, phase and gain

mismatches, and mutual coupling [4], [29], [33]–[35] are reviewed. Additionally,

a further digital architecture in direct sampling is briefly discussed. Lastly, array

nonlinearities correlate during beamforming, limiting the 10 log10(N) gain in DR

[4], [8], [23]–[25], [36], [37]. Additionally, radar systems often operate in environ-

ments where a system’s ability to correctly detect and track targets can affect peo-

ple’s lives – for example, automotive radar, Federal Aviation Administration (FAA)

radar, military radar, and even weather radar. Therefore, these systems not only

need to be properly calibrated, but they also need to be resilient to interferering

signals, sometimes referred to as blockers. Chapter 3 goes over how the differ-

ent types of nonlinear distortion affect a radar system’s performance. Specifically,

pulse-Doppler radars seek to pull the return signal out from the noise through coher-

ent integration gain, however, an incoherent interferer can produce nonlinear dis-

tortion that affects the signal-of-interest (SoI) in the form of IMD, CMD, and gain

compression. Further, Chapter 3 then focuses on decorrelation-based techniques

to mitigate transceiver nonlinearities. Specifically these techniques can be broken

down into decorrelation through LO differences and digital signal processing (DSP)

techniques. The LO techniques can be used to mitigate even-order baseband (BB)

and RF nonlinearities as well as BB and RF harmonics [4], [24], [25], [37], [38].

5



Additionally, the DSP technique is an array-level approach to NLEQ, which can

also be extended to DPD, that was first discussed in [14] and then extended in [39].

Waveforms for NLEQ and DPD calibration and nonlinear system characteriza-

tion are then discussed in Chapter 4, where a new calibration waveform is proposed.

The goal of the proposed waveform is the efficiently calibrate the entire system’s

operational bandwidth and power in order to find one set of linearization coeffi-

cients to be used for any transmit/receive waveform. Essentially, the goal of digital

array calibration, in general, is to reduce the required computational load during

ADBF, or eliminate the need for the adaptive aspect completely. Thus, it is also

essential to reduce the computational requirements of the calibration itself, allow-

ing for opportunities for in situ calibration of fielded, operational systems. Lastly,

information about a system’s nonlinear characteristics can be realized from the use

of different waveforms; for example, the system’s frequency dependence [40], [41].

In general, all electronic systems require some level of calibration; low-cost

digital arrays are no different and have many aspects that need to be calibrated, such

as LO synchronization, I/Q imbalance, gain and phase offsets, and nonlinearities.

Chapter 5 goes over a method for calibrating the NLEQ and DPD coefficients for

a digital array, leveraging the system’s inherent mutual coupling. This method was

first proposed in [22] which calibrated an array with a memory-less nonlinearity

and identical channel characteristics. Here this method is extended to calibrate a

system with memory-nonlinearities and channel variations. Ultimately, this is an

in-situ calibration technique to correct for a majority of digital array non-idealities.

Finally, Chapter 6 summarizes the work and speaks to future concepts.
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1.1 Digital Array Radar Systems

Phased arrays have been used for the most modern and sophisticated radars for the

past several decades, however, arrays have historically only been used for military

applications. More recently, however, arrays have been used for weather radar [42]

and automotive radar as well. This is impart due to the decrease in cost, the in-

crease in COTS components, as well as the continued progress in Moore’s law.

Further playing off of Moore’s law, digital arrays have been well received by the

radar community. Both fully-digital [43] as well as subarray-digital [44], [45] array

radars have been developed, specifically during the past decade. However, there has

been very little published work pertaining to the calibration and nonlinear correc-

tion of these systems.

Radar systems can suffer greatly from both transmit and receive nonlinearities,

with both of these issues relating in some fashion to the radar range equation, given

by

Rmax =

[
PtGAeσ

(4π)2Smin

]1/4

(1)

where Pt is the transmit power, G is the gain of the antenna, Ae is the antenna

efficiency, σ is the radar cross-section (RCS) of the target, Smin is the minimum

detectable signal, and Rmax is the furthest range that a target of a specific RCS can

be to be detected by the system. Therefore, it is important to maximize the trans-

mit power, often achieved by operating the PAs in the nonlinear region. Further,

the receiver needs to be able to detect the smallest signal possible, which can be

accomplished by increasing the amount of gain throughout the receive chain, as

well as minimizing the noise figure (NF). One way to lower the NF is for the first

component to have a large gain and a low NF itself, as described in Eq. (2), given
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by

Fsys = F1 +
(F2 − 1)

G1

+
(F3 − 1)

G1G2

+ . . . . (2)

This means that the first component in the receiver, after the antenna, would need to

be a low noise amplifier (LNA). However, this prevents a bandpass filter (BPF) from

being able to remove any spectral interferers, opening the LNA up to more spectrum

and, thus, increasing the likelyhood of operating in the nonlinear region. A strong

interferer can easily distort the SoI through IMD, CMD, and gain compression –

this is especially true for pulse-Doppler radars, which rely on coherent integration

to maximize the signal-to-noise ratio (SNR). Therefore, it is important to provide

some level of protection against nonlinear components, which can be done through

DPD for Tx and NLEQ for Rx. Additionally, it is necessary that digital array radar

systems are correctly calibrated and are able to be quickly and easily re-calibrated

in the field in order to accurately beamform, enabling the radar to determine the

range, velocity, and direction of a target.

1.2 5G MIMO Systems

Massive MIMO for 5G wireless networks will make use of low-cost, low-power,

low-complexity components in order to properly scale array sizes and provide a

high density of base-stations. System-level DR increases linearly with the number

of antenna elements, allowing for the use of lower-cost/power/complexity transceivers

than are required for legacy systems [8]. The past decade has seen a great increase

in the number of mobile, wireless devices, with data traffic increasing 24-fold from

2010 to 2015, and expected to increase by 500- to 1000-fold from 2010 to 2020

[46], [47]. Smart-devices, such as phones, watches, televisions, and multiple other

in-home devices, have created a saturated in-door spectral environment, making up

70 percent of all data consumption [47]. Furthermore, the advent of the Internet-of-

8



Things (IoT), with an estimated 50 billion connected devices by 2020, will increase

mobile data traffic to an expected 24 Exabytes per month [48]. Along with this large

increase in the number of mobile devices has come a strong demand for increased

data rates – due to the desire for high speed mobile internet, smart cars/homes, aug-

mented reality (AR), virtual reality (VR), and IoT [48]. To satisfy this need, data

rates are expected to achieve 10-50 Gbps for 5G, compared to the 100 Mbps that

4G provides [48].

The increase and diversity in Radio Access Technologies (RATs) has forced

researchers to look for more efficient ways to use the limited available spectrum.

Traditionally, the spectrum bands were allocated for specific services, leading to

an inefficient use of the RF spectrum, but recent research has suggested a dynamic

sharing of the spectrum based on spatio-temporal needs. To facilitate this idea,

the US Federal Communications Commission (FCC) has recently made the 3550-

3700 MHz band available, along with 600 MHz of the AWS-3 band [26], [49].

The Citizens Broadband Radio Service (CBRS) bands – 3550-3700 MHz – which

were previously dedicated to Naval Radar (3550-3650 MHz) and Fixed Satellite

Systems (3650-3700 MHz), recently made available for wireless broadband, have

received much attention and research [50]–[54]. The authors of [53], [54] studied

the coexistence of Naval Radar and mobile communication systems, further focus-

ing on co-channel and adjacent channel interference. The authors in [51] further

studied spectrum sharing in the 5 GHz Unlicensed National Information Infras-

tructure band, commonly used for WiFi. Additionally, [55] studied the effect of

spatio-spectral interference in an unlicensed mmWave band, such as the 60 GHz

band. Furthermore, one of the most popular proposed methods for better utilizing

the spectrum is through spatial multiplexing.

Multiple-input-multiple-output (MIMO) systems offer a solution to the demands
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of 5G mobile networks through the use of spatial multiplexing. MIMO systems are

related to phased array technology, which has been used for military radar and re-

searched for decades [7]–[9], [15]. MIMO consists of multiple antenna elements

for both transmit and receive, improving throughput, capacity, and coverage [56].

MIMO has seen initial uses in some 4G Long-Term Evolution (LTE) standards,

wireless local-area-networks (WLAN, IEEE 802.11n, IEEE 802.11ac) [17]–[19],

Worldwide Interoperability for Microwave Access (WiMAX) [16], [17], and radar

[57]. Massive MIMO, which consists of orders of magnitude more antennas than

standard MIMO, will further increase network capacity, and spectral and energy

efficiency [6], [9], [56], [58], [59].

Massive MIMO consists of hundreds of antennas, relying on spatial multiplex-

ing to serve tens of users and increase spectral efficiency [6], [15]. In order to

make massive MIMO systems affordable, the elements need to consist of low-cost,

low-power, low-complexity components. Creating such systems is one of the major

goals for 5G, due to the need for higher network densification and the socioeco-

nomic consequences of expensive systems [6], [9], [47]. Higher network density is

required for multiple reasons; higher frequencies – which offer larger bandwidths,

and thus, higher data rates, such as millimeter-wave (mmWave) – suffer much more

from indirect path loss and therefore have limited non-line-of-sight (NLOS) com-

munication performance. Denser networks also help to reduce power consumption

because each base station (BS) will have a shorter radius to cover before another

BS takes over coverage. Power requirements can further be reduced in massive

MIMO systems because equivalent isotropic radiated power (EIRP) increases by

M2 when the number of antenna elements is increased by M , further reducing both

component and operational costs [9].

mmWave, which covers the frequencies of 30-300 GHz, provides a promising
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solution for the high data rates and spatial flexibility demanded by 5G MIMO sys-

tems [55], [60]. The small wavelength of mmWave frequencies will allow MIMO

antennas to effectively fit into mobile devices, such as smartphones and IoT sen-

sors, allowing them to take advantage of larger bandwidths and spatial multiplex-

ing. Furthermore, the misconception that higher frequencies suffer insurmountable

propagation loss can be invalidated when arrays are used to compensate for loss of

physical aperture area [15], [61]–[63]. Therefore, increased propagation loss for

line-of-sight (LOS) communications at mmWave frequencies is readily compen-

sated for through the use of multiple antennas. It is important to note that mmWave

NLOS communications suffer greater degradation from blocking by obstacles (e.g.

buildings, cars, and people) or attenuation from environmental factors (e.g. fo-

liage, precipitation, etc.) relative to traditional “beachfront” frequencies below 6

GHz [61]–[64]. However, such degradation can be compensated for by the ad-

ditional spatial diversity available at the higher frequencies for sufficiently dense

networks [61]. Further, if networks are sufficiently dense, restricted NLOS com-

munications can improve spectral efficiency by using spatial blocking/attenuation

to enable spectral re-use by nearby cells. mmWave frequencies have seen initial

uses for communication systems in IEEE 802.11ad, which makes use of the unli-

censed 60 GHz band [59], [64], [65]. In addition to the 60 Ghz band, the 28-30

GHz, 38 GHz, and 73 GHz bands have also been heavily studied for mobile com-

munications [46], [59]–[61], [64], [66]–[73]. Lastly, mmWave MIMO systems are

physically very small, containing many components, and are thus constrained by

the need for heat dissipation [69].

One of the most important benefits provided by massive MIMO is the reduc-

tion of spatial interference through the use of beamforming, allowing spectrum to

be reused for simultaneous communication with multiple users [9]. Using narrow
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beams can help to mitigate spatial interference, but on the other hand, it increases

the risk of link failure [47] – especially in the case of moving users [64], [74].

Furthermore, narrow beams on transmit help add a physical layer of security, pre-

venting eavesdroppers outside of the spatial-beam from detecting the transmission

[58]. While narrow beamforming techniques on transmit help to mitigate interfer-

ing with other BSs and users, on receive some low-cost massive MIMO systems,

like digital phased arrays, are particularly sensitive to interference due to some level

of reduction in analog spatial filtering [7]–[9], [15], [75]. This will be exacerbated

by the simultaneous operation of 5G small cells and legacy macro cells, leading to

irregular cell shapes/sizes and producing inter-cell interference [46]. This is also

of concern for WLANs operating in unlicensed bands – such as the industrial, sci-

entific and medical (ISM) band, which are deployed with little to no coordination

[46].

In a naively deployed, densely populated systems environment such as WLAN

and the initial deployment of 5G BSs operating along with legacy cells, interferers

will be a limiting factor of system capacity [9]. Strong, unmitigated interferers de-

crease the signal-to-interference-plus-noise Ratio (SINR), which, for wireless com-

munication systems, decreases the throughput. Additionally, strong interferers can

drive the receiver into compression, producing IMD, further distorting the SoI, or

even saturating the analog-to-digital converter (ADC). Therefore, it is imperative

to implement methods – both analog and digital – to mitigate spatial and spectral

interferers along with their residual IMD. Further, transmitter nonlinearities, which

are typically introduced by the PA, need to be mitigated to prevent the spectral

pollution of adjacent channels [27]. Lastly, an in-situ calibration method will be

required, especially for massive MIMO BSs, in order to maximize the attainable

data-throughput enabled by 5G.
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1.3 Digital Array Beamforming

Beamforming is the process of the frequency-dependent linear combination of the

signals from each element of the array [8]. A good review of DBF and its trade

spaces is given by Fulton in [8], which is briefly reviewed here. DBF of an array of

M elements can be described as

Yp(ω) =
M∑
m=1

Hm,p(ω)Xm(ω) (3)

where Yp(ω) is the frequency-domain result of the pth beam,Hm,p(ω) is the frequency-

domain DBF processing of the mth element and pth beam, and Xm(ω) is the Rx

signal of the mth element. The received signal can be given by

Xm(ω) = Fm(ω, θ, φ)Gm(ω) (4)

where Gm(ω) is the frequency-dependent gain of the mth element, and Fm(ω, θ, φ)

is the embedded element pattern of the mth element, which includes all mutual

coupling and finite array effects, as well as the element’s location on the array.

The DBF processing can be implemented in an finite impulse response (FIR)

type form, given by

yp[n] =
M∑
m=1

K−1∑
k=0

am,p[k]xm[n− k] (5)

where am,p[k] are the DBF weights for the pth beam for the mth element at time

k, and xm[k] is the time-domain signal from element m. Estimation of the errors

in Fm and Gm is required to accurately derive the weights am,p[k], while ADBF

can be used to remove any residual errors – however, this requires an increase in

computational expenses. Further, the Gm change with temperature, frequency, and

13



power (nonlinearities) and require calibration to reduce the number of degrees-of-

freedom (DOF) in ADBF.

Fully-digital arrays offer the highest DOF, down to the element level, for ADBF

processing. However, this can become extremely computationally expensive as ar-

rays increase in size, therefore subarray-based processing is discussed as a solution

in [8]. Further, it was shown that with accurate array calibration, the requirements

of ADBF can be greatly reduced and even eliminated [8].

1.4 Digital Array Calibration

In general, arrays, both digital and analog, need to be calibrated; specifically, it is

required that the amplitude and phase of each element is performing properly to

ensure that the desired beam pattern is established [12], [13]. Further, even more

important for small, finite arrays, the mutual coupling between elements can lead to

pattern and/or frequency variations in each element [12]. In general, two types of

calibration exist: “external calibration,” typically performed in a spectrum-quiet en-

vironment, such as an anechoic chamber, before the system is fielded, and “internal

calibration,” which can be used to update the calibration of the fielded system [12].

Low-cost digital arrays make use of low-cost, low-complexity components, which

are typically nonlinear in nature [4], [14], [76] – this characteristic often being de-

fined by the IP3 and/or the P1dB – have been a topic of much interest in the recent

decade. Initially, the issues of linearity were focused on the transmitter, specifically

the PA, which is typically the most power hungry component in the system. There-

fore, reducing the cost and power-consumption of the Tx PAs, allowing them to

operate in the more efficient nonlinear region, is a seemingly straightforward way

to meet the goals defined by C-SWaP. However, operating PAs in their nonlinear

region has its consequences, such as the addition of memory effects (causing equal-
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ization issues), compression of the higher power parts of the transmitted waveform,

and spectral regrowth. Spectral regrowth, though undesired for radar, is a topic

of much concern for communication systems – spectral regrowth pollutes adjacent

bands, effecting nearby (in spectrum) users, often measured by the adjacent channel

power ratio (ACPR) [77]. Furthermore, in recent years low-cost COTS components

have also been used for receivers – lowering the linearity requirements, further ex-

acerbating the sensitivity of digital arrays to interferers. On a side note, digital

arrays are more sensitive to spatial interferers than analog (or subarray-digital) ar-

rays due to their lack of spatial selectivity in the RF front-end and the typically

wide-open embedded element pattern design for array antenna elements [7]. In

order to mitigate these issues caused by nonlinear components many linearization

techniques have been studied.

Digital pre-distortion (DPD) and nonlinear equalization (NLEQ) have both re-

ceived a large amount of attention and research, the latter more recently, however.

DPD and NLEQ have both been used to extend the spur-free dynamic range (SFDR)

of systemss, mitigating intermodulation distortion (IMD) products and removing

high-power signal compression. In general, DPD and NLEQ techniques have fo-

cused on single channel calibration and correction, while more recently some array

system-level approaches have been investigated. Additionally, as with array cali-

bration, there exist two types of DPD/NLEQ calibrations, also considered “external

calibration,” and “internal calibration.” External calibration, as with array calibra-

tion, is completed prior to the device being fielded, often making use of look-up-

tables (LUTs) to be used for different frequency and power combinations. Further,

internal calibration can be implemented in situ, often with added system complex-

ity, making use of loop-back receivers for DPD and lower DR reference receivers

for NLEQ. This added complexity, however, goes against the goals of C-SWaP and
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the desire to create systems of low-cost and low-complexity; therefore, in this paper

we propose a mutual coupling-based calibration method for both DPD and NELQ

in a digital array. Additionally, the characteristics of a nonlinear system can change

with power, frequency, and temperature [12], [14], [77]–[81], further justifying a

need for an in situ calibrtaion method.

The remainder of this dissertation lays out some of the inherent nonidealities in

digital array systems and then goes over current methods for mitigating these distor-

tions. Further, new calibration techniques are proposed for training the NLEQ and

DPD algorithms for mitigating the system nonlinearities of digital arrays. However,

before these linearization solutions can be discussed, nonlinearities, in general, are

reviewed and discussed in the next Chapter.
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2 Nonlinear Models and Linearization Techniques

A nonlinear system, in the most general sense, is a system that is not linear (i.e. it

cannot be accuratly described by the elementary y = mx + b) – that is, a system

that does not follow the superposition principle [82], [83]. The simplest way to

describe a nonlinear system is through expansion of the elementary linear system,

often referred to as a power series (or Taylor series) [84], and is given by

y(t) =
∞∑
n=0

cnx
n(t). (6)

In most systems, the linear term dominates the input-output relationship and, there-

fore, engineers typically model the system as LTI. However, some components

function through their inherent nonlinearity – mixers, frequency multipliers, etc.

Further, as we continue to push toward smaller form factor, lower cost, and in-

creasingly wider bandwidth systems, engineers need to begin to consider the non-

linearities of all components and find low cost solutions, such as NLEQ and DPD,

to mitigate the added distortions. This Chapter will first review the most common

ways to model nonlinear systems, then will go over the types of nonlinear distor-

tions that occur in RF systems, and finally will present ways to mitigate system

nonlinearities. Additionally, in this Dissertation when referring to nonlinear sys-

tems, it is assumed that they are nonlinear systems with memory unless otherwise

specified.

2.1 Nonlinear Models

In general, nonlinear systems can be broken up into two types: weakly-nonlinear,

and strongly-nonlinear; a simple example of these is shown in Fig. 2. Weather

a system is weakly or strongly nonlinear is partially subjective, but, generally, the
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difference lies in the sharpness of the knee or bend in the transition from the linear to

nonlinear regions of the power curve. Most active RF components can be described

as both weakly and strongly nonlinear depending on how far into the nonlinear

region the component is being operated. However, some components, such as an

analog-to-digital converter (ADC) or limiter are best described as strongly nonlinear

since a sharp cut-off in the output power exists. Ultimately, this paper focuses on

weakly nonlinear systems (i.e. we assume that the components limiting the linearity

of an RF system are weakly linear and enter compression much before the strongly

nonlinear components, such as the ADC). Additionally, two generalized bandwidth

cases are considered: narrow band and wideband. Narrow band will, in general,

refer to a case where there is a generally flat response in the frequency response of

the system; that is, there is little to no frequency dependence or memory effects.

Wideband, on the other hand, will be the most generalized case, where frequency

dependence has an effect – in some cases, a great effect – and needs to be taken into

account.

The proceeding subsections will go over different nonlinear models, not nece-

cearily in any order of complexity, but in more of a derivation/historical order. The

Taylor series, Eq. (6), was already metioned and is the simplest way to represent

a nonlinear system with a polynomial. The remainder of the models in this sec-

tion will all include memory, also referred to as frequency dependence. This, of

course, adds to the complexity of the models, but also helps them to better model

real systems, especially in the wideband sense.

2.1.1 Volterra Series

The Volterra series, (11), is a general expression of nonlinear systems, which was

the subject of much of the early work on nonlinear systems. Initially, in order to
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Figure 2: The input-power vs output-power plot, comparing a linear system, a
weakly-nonlinear system, and a strongly-nonlinear system.

model a system, restrictions such as the input being required to be Gaussian white

noise, and the measurement of only the first two kernels were applied [83]. Many of

these methods were extended in the 1940s to 1960s at MIT by Wiener, Lee, Bose,

Schetzen, and others, including the development of the Wiener series and the Lee-

Schetzen method [83]. Due to the complexity and large size of the Volterra series,

block-structure models were developed, including the Hammerstein, Wiener, and

Wiener-Hammerstein models – these all being special cases of the Volterra series.

The most generalized way to represent a nonlinear system with memory using

a polynomial is the Volterra series [85]–[88]. The Volterra series can be seen as an

extension of a Taylor series, which is given by (6). The Volterra series [88]–[90] is
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simply the k-dimensional convolution and can be represented as

y(t) = h0 +

∫ ∞
−∞

h1(τ1)x(t− τ1)dτ1

+

∫ ∞
−∞

∫ ∞
−∞

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

+

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3

+ · · ·

(7)

which can be expressed more compactly as

y(t) = h0 +H1[x(t)] +H2[x(t)] + · · ·+Hn[x(t)] + · · · (8)

where

Hn[x(t)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, . . . , τn)x(t− τ1) · · ·x(t− τn)dτ1 · · · dτn (9)

Taking a look at this convolution in the discrete domain [88], [90], the Volterra

series is given by

y(n) =
K∑
k=1

yk(n) (10)

where

yk(n) =
M−1∑
m1=0

· · ·
M−1∑
mk=0

hk(m1, . . . ,mk)
k∏
l=1

x(n−ml) (11)

20



or, simply

y(n) =
M−1∑
m=0

h1(m)x(n−m)

+
M−1∑
m1=0

M−1∑
m2=0

h2(m1,m2)x(n−m1)x(n−m2)

+
M−1∑
m1=0

M−1∑
m2=0

M−1∑
m3=0

h3(m1,m2,m3)x(n−m1)x(n−m2)x(n−m3) + · · ·

(12)

with hk being referred to as the kth Volterra kernel. The Volterra series model is

effective for modeling weakly-nonlinear systems with memory – systems that are

not driven too far into compression, (i.e. ADC saturation is a strongly-nonlinear

system)[86], [91]. This is due to the Volterra series needing to expand to have

an extremely large number of parameters to model systems with strong nonlinear-

ities and long memory effects, making it inefficient to implement [86], [91]. In

other words, a weakly nonlinear system can be well described by only the first few

Volterra kernels [89], [90]. Typically, the Volterra series has been limited to third

or fifth order models, which can realistically only model extremely weak nonlin-

earities [85]. Due to the large number of parameters that can make up a Volterra

series and its usefulness at modeling nonlinear systems with memory (it is linear

in its parameters – the Volterra kernels [92], [93]) many truncated/pruned, special

cases of the Volterra series have been studied [91]–[94]. Three commonly studied,

specialized cases of the Volterra series are the Wiener, Hammerstein, and Wiener-

Hammerstein models, discussed later in this Chapter.

A method was proposed by Zhu and Brazil [85] to reduce the number of pa-

rameters in a Volterra series model by projecting the Volterra series onto a set of

orthonormal basis functions called the Laguerre functions. Laguerre functions, de-
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fined by their Z-transform, are given by

Lk(z, λ) =

√
1− |λ|2

1− z−1λ

{
−λ∗ + z−1

1− z−1λ

}
k ≥ 0 (13)

with the Volterra model becoming

Ỹ (n) =
L−1∑
k=0

c1(k)lk(n)

+
L−1∑
k1=0

L−1∑
k2=0

L−1∑
k3=0

c3(k1, k2, k3)lk1(n)lk2(n)l∗k3(n) + · · ·
(14)

where

lk(n) =
M−1∑
m=0

φk(m)X̃(n−m) = Lk(z, λ)X̃(n) (15)

It can be seen that the size, and thus accuracy, of the model depends on L, though it

can also been seen that the use of Laguerre basis functions leads to a great reduction

in the number of parameters needed when compared to the Volterra model.

Generally, when linear filters are used for Volterra filtering, the linear filters are

extended into a multichannel system, with each parallel linear filter processing an

order of the Volterra series. To more directly apply linear filtering techniques to

Volterra filtering, V-vector algebra was developed in [94], preserving the time-shift

property. The V-vector algebraic structure is that of a nonrectangular matrix, al-

lowing Volterra filters to be treated in the exact same way as classical linear filters.

Additionally, they suggest an extension of the V-vector algebra for linear multi-

channel systems, where the channels have different memory lengths.

The V-vector developed in [94] was then used in [92] to model a PA with non-

linear memory (due to the use of wideband signals). The V-vector was employed

using parallel linear FIR filters, with the coefficients being solved for using the

recursive least-square (RLS) algorithm.

22



Continuing from the V-vector algebra and its application in [94] and [92], re-

spectively, Zhu and Brazil in [91] develop a near-diagonality structural restriction

to simplify the Volterra series by pruning the redundant kernels. This elimination

of some of the kernels reduces the total number of parameters in the Volterra series,

allowing it to be used to model systems with higher-order nonlinearities and longer

memory effects. Further, this near-diagonality restriction is actually a generaliza-

tion of the memory polynomial, discussed later, which only includes on-diagonal

terms. They define the distance from the diagonal as l, where |im − in| ≤ l. Ad-

ditionally, they imply that the distance away from the diagonal, l, can depend on

the order – a larger value of l can be used for lower-order nonlinearities to model

longer memory effects, while a smaller value of l can be used for higher-order non-

linearities. Lastly, results were provided, showing that the diagonality restriction

improved complexity, greatly reducing the required number of parameters, while

having very little effect on its ability to model the system.

A dynamic deviation reduction-based (DDR) Volterra model was proposed by

Zhu, Pedro, and Brazil in [93], which is similar to that of the pruned Volterra series

model presented by Zhu in [91]. They rewrite the Volterra series in ?? to be

y(n) =
P∑
p=1

hp,0(0, . . . , 0)xp(n)

+
P∑
p=1

{
p∑
r=1

[
xp−r(n)

M∑
i1=1

. . .
M∑

ir=ir−1

hp,r(0, . . . , 0, i1, . . . , ir)
r∏
j=1

x(n− ij)

]}
(16)

where r represents the order of the dynamics of the products. Thus, the pruning of

the Volterra model is accomplished by restricting the value of r, such that 1 ≤ r ≤

R. This is referred to as the DDR because r is the order of the dynamic deviation of

the Volterra model. Additionally, the DDR Volterra model is much more flexible as
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it has three parameters that can be altered, P ,M , and r. Results for a Volterra model

with an order P = 5 and memory of M = 3 were displayed in a well-organized

table, showing that while when only first-order dynamics (r = 1) were considered

the model performance was poor, but performance greatly increased when second-

order dynamics (r = 2) were included. Further, while increasing the order of the

dynamics only slightly improved the model performance, the peak performance was

actually when r = 3 (for r = 4, 5 the performance was actually less than when the

model was restricted to a maximum of third-order dynamics). The authors explain

that this is actually a common occurrence in nonorthogonal Volterra models due

to use of too many coefficients, adding more uncertainty to the estimation process.

They DDR Volterra model provides an effective method for reducing the number of

parameters in the Volterra model, and can actually lead to an increase, not only in

computational efficiency and complexity, but also in model performance.

In the following subsections, simplified versions of the Volterra series will be

reviewed. Generally, each model can be seen as taking a specific cut from the

Volterra kernel. These models seek to reduce the number of terms, attempting to

focus on the “most important” terms. Many of these models are what are referred

to as “block” based models, meaning that their components can be broken down

into different general blocks, such as static nonlinearity and frequency dependence

(filter) blocks.

2.1.2 Wiener Model

The Wiener model is an important, special case of the Volterra series for three rea-

sons: 1.) it only contains two vectorized polynomials (think of the Volterra kernels

as matricies), which can be easily solved for, 2.) most RF systems/components can

be generally represented as a Wiener model, and 3.) the use of blocks help give
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the system a better physical representation. The Wiener model is made up of two

blocks, an LTI system, H(q), followed by a static nonlinearity, N(·), [81], [86],

[87], shown in Fig 3. The Wiener model is a good, simplified, representation of a

receiver; first there is generally an antenna and a BPF, which introduce linear fre-

quency dependence and are represented by the LTI system, followed by an LNA,

which can be represented (in the narrowband sense) by the static nonlinearity.

Figure 3: Wiener model block diagram

The RF Wiener model is given by

y(n) = N [H(q)u(n)]

=
K∑
k=1

ak

[
M−1∑
m=0

h(m)x(n−m)

]k (17)

where M is the memory depth and P is the order of the nonlinear polynomial.

The number of coefficients for a Wiener model is simply M + P allowing it to

better model higher order, more strongly nonlinear systems. However, it can also

be seen that the output y(n) is nonlinearly related to the filter coefficients h(n) [87].

Therefore, it can be stated that the Wiener model is nonlinear in its parameters,

making it difficult to estimate. Lastly, a baseband representation with only odd-
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order powers from [81], [86] is given in Eq. (18).

y(n) = N [H(q)u(n)]

= N [
M∑
m=0

bmu(n−m)]

=
P∑
p=1

h2p−1[|
M∑
m=0

bmu(n−m)|]2(p−1) ×
M∑
m=0

bmu(n−m)]

(18)

Wiener models contain cross-terms – nonlinear terms consisting of the multi-

plication of multiple different time delays (i.e. x(t)x(t − 1)x(t − 3)). Most RF

systems contain cross-terms (embedded in the general, Volterra series); however, in

many cases the cross-terms do not dominate the overall nonlinear response. Fur-

ther, cross-terms are more difficult to de-embed from a system response since they

are, as shown by the Wiener model, nonlinear in their own creation. On the other

hand, the cross-terms have a more intuitive physical relationship; think of the input

signal bouncing around a device – a time delay – and then combining with the cor-

rect input or a different time delay. Lastly, the Wiener model has an inverse, in the

Hammerstein model, described in the following subsection.

2.1.3 Hammerstein Model

The Hammerstein model is another important special case of the Volterra series for

many of the same reasons why the Wiener model is important. In general, the Ham-

merstein model is the inverse of the Wiener model; that is, the Hammerstein model

is described by a static nonlinearity, N(·), followed by an LTI system, H(q), [81],

[84], [86], [87], shown in Fig. 4. Further, if we cascade a Wiener and Hammerstein

system (order doesn’t matter) and the LTI systems and static nonlinearities of the

models are inverses of each other (i.e. the Hammerstein model’s LTI system is the

inverse of the Wiener model’s LTI system, etc.), the cascade actually becomes a
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linear system. This relationship can be leveraged for nonlinearity mitigation, de-

scribed later in this Chapter.

Figure 4: Hammerstein model block diagram

The RF Hammerstein model is given by

y(n) = H(q)N [u(n)]

=
M−1∑
m=0

g(m)
K∑
k=1

akx
k(n−m).

(19)

As with the Wiener model, the Hammerstein model has M + P coefficients; how-

ever, the Hammerstein model, since the nonlinearity precedes the frequency depen-

dence, is linear in its parameters (g(m)ak) [81], [87]. This property makes the

coefficients of the Hammerstein model much easier to estimate. Additionally, the

baseband representation, with only odd-order powers, from [81], [86] is given in

Eq. (20).

y(n) = H(q)N [u(n)]

=
M∑
m=0

bm

P∑
p=1

h2p−1|u(n−m)|2(p−1)u(n−m)
(20)

The Wiener and Hammerstein models are both special cases of the Volterra

series, easily represented using block diagrams of a simple LTI filter and static non-

linearity. Furthermore, they are two of the simplest ways to represent nonlinear

systems with memory effects, however this simplicity limits their effectivness for

DPD or NLEQ. For example, in [95], the authors used a Hammerstein model-based

approach to modele PAs with strong memory effects. As with the Hammerstein
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model, first there was a static nonlinearity, but then instead of a simple LTI fil-

ter, a memory polynomial (MP)-based model was employed. Furthermore, instead

of a simple MP model, an orthogonaly MP model was used to further lower the

normalized mean-square error (NMSE), linearizing the PAs. The MP model, a gen-

eralization of the Hammerstein model, is discussed later in this chapter.

2.1.4 Wiener-Hammerstein Model

Another common block-based method used to capture a wider array of models is

to add more blocks in series with a Wiener or Hammerstein model; a common ver-

sion of this method is the Wiener-Hammerstein model. The Wiener-Hammerstein

model, Fig. 5, is an LTI system followed by a static nonlinearity followed by an-

other LTI system [81]. There is also a Hammerstein-Wiener model, which is a static

nonlinearity followed by an LTI system and another static nonlinearity [96], [97] –

it should be mentioned that this model is much less common in the literature than

the Wiener-Hammerstein model.

Figure 5: Wiener-Hammerstein model block-diagram

The RF Wiener-Hammerstein model is given by

y(n) = G(q)N [H(q)u(n)]

=
M−1∑
m1=0

g(m1)
K∑
k=1

ak

[
M−1∑
m1=0

h(m1)x(n−m)

]k
.

(21)

The Wiener-Hammerstein model is more general than the Wiener or Hammerstein

models themselves, but, as with the Wiener model, it nonlinear in the parameters.

Though, it can easily be seen that the Wiener-Hammerstein model is a much more
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realistic representation of both transmitters and receivers; for example, a receiver

will first include a filter (being represented by the first LTI block), followed by

an LNA (which can be modeled as a Hammerstein model, or the nonlinear block

followed by the second LTI block).

Furthermore, branches can be added in parallel, adding some flexibility and

generalization to the models – resulting in common models such as the parallel

Hammerstein (PH) model (Fig 7) [86], [98], [99], the parallel Wiener model [87],

[98], and the parallel Wiener-Hammerstein model [97].

2.1.5 Parallel Wiener Model

Figure 6: Parallel Wiener model block diagram

The parallel Wiener model, seen in Fig 6, is a generalization of the Wiener

model. If we let vi(n) be the output of the ith LTI filter, and let yi(n) be the output

of the ith nonlinearity, then we can define vi(n) as [40], [87], [98]

yi(n) = Hi(z)X(z)

= hi(n) ∗ xi(n)

=
M−1∑
m=0

hi,mx(n−m)

(22)
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and

yi(n) =
P∑
p=1

fi,pv
p
i (n)

=
P∑
p=1

fi,p

[
M−1∑
m=0

hi,mx(n−m)

]p (23)

and, finally

y(n) =
B∑
i=1

yi(n)

=
B∑
i=1

P∑
p=1

fi,p

[
M−1∑
m=0

hi,mx(n−m)

]p (24)

A parameter identification method for parallel Wiener systems was developed in

[40]. This was accomplished by representing the first branch of the system with a

memoryless model – thus h1(t) = δ(t) – and finding NL1 from single-tone mea-

surements. Then using the cross-correlation function between the input and the

error εi = yi(t) − ŷi(t) to find hi, (i = 2, . . . ,M). Finally, the static nonlinear co-

efficients of NLi, (i = 2, . . . ,M) were determined by minimizing the mean square

error (MSE), ε2i . New branches were added until the MSE was below a certain

threshold.

2.1.6 Parallel Hammerstein Model

The parallel Hammerstein (PH) model is given by [86]. Let yi(n) be the ith output

of the static nonlinearity and let yi(n) be the output of the ith LTI filter, then

yi(n) =
P∑
p=1

fi,px
p(n) (25)
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Figure 7: Parallel Hammerstein model block diagram

and

vi(n) = Hi(z)Vi(z)

= hi(n) ∗ vi(n)

=
M−1∑
m=0

hi,mvi(n−m)

=
M−1∑
m=0

hi,m

P∑
p=1

fi,px
p(n−m)

=
M−1∑
m=0

P∑
p=1

hi,mfi,px
p(n−m)

(26)

and, finally

y(n) =
B∑
i=1

yi(n)

=
B∑
i=1

M−1∑
m=0

P∑
p=1

hi,mfi,px
p(n−m)

(27)

Let each block in the be its own order. In that sense, the first block is just

an LTI filter, the second block (odd order only) is simply a x3 followed by an LTI.
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Further, the baseband expression for the model, given in [86] is

y(n) =
P∑
p=1

H2p−1(q)|u(n)|2(p−1)u(n)

=
P∑
p=1

M∑
m=0

bm,2p−1|u(n−m)|2(p−1)u(n−m)

(28)

which shows that there is one parameter for each power p and delay m, resulting in

a total of (M+1)×P terms. Typically, the second summation goes from 0 toM−1

and there are, thus, M terms. Further, the PH model, compared to the Hammerstein

model, better models nonlinear memory effects – since each memory term of each

power term has its own parameter. Though the PH model is a generalization of

the Hammerstein and, thus, can model a wider range of nonlinear systems, it can

contain many more parameters than the basic Hammerstein model. Additionally,

it will be shown that the PH model is identical, mathematically, to the commonly

used memory polynomial (MP) model.

2.1.7 Memory Polynomial

The difference between the standard Hammerstein model and the PH model is that

the different orders are filtered by different filters Hi(q). The PH model is also

often referred to as a memory polynomial (MP) model. The Hammerstein model is

actually a special case of the MP/HP model [98], and can be shown that for a matrix

of MP coefficients

A =


a11 a12 a13 . . . a1M

a21 a22 a23 . . . a2M

...
...

... . . . ...

aP1 aP2 aP3 . . . aPM


Then, for a Hammerstein, the coefficients can be represented as vectors
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c = [c1, c2, . . . , cP ]T (29)

h = [h(0), h(1), . . . , h(M)]T (30)

Therefore, it can be shown that a MP is a Hammerstein, with apm = cph(m);

thus A = c hT [87], [98]. Furthermore, it has been shown that the MP is a special

case of a parallel Wiener model [98], when

Hq(z) = z−q (31)

or

hq(n) = δ(n− q) (32)

The MP model is a commonly model for nonlinear behavioral modeling, DPD,

and NLEQ [41], [87], [98]. Simply, it is a truncated Volterra series, containing only

the diagonal terms.

The MP model was used in [41] to model a nonlinear system with memory and

its effectiveness was compared to that of a static memoryless model. The perfor-

mance of the MP model was determined by using ??, which was proposed in the

paper. Additionally, it was shown that the MP model was effective at modeling

the asymmetries in the IMD3 spurs. The authors in [98] used the MP model as

a method for DPD for systems modeled with a Wiener-Hammerstein model, an-

other MP model, a Wiener model, and a parallel Wiener model. It was further

shown in this paper that the MP was also a parallel Hammerstein model, and ulti-

mately offered a good compromise between generality and ease of parameter esti-

mation/complexity.

The MP is a reduction of the Volterra series, where only the diagonal terms are
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used [100]. Other variations of the MP model have been researched, such as the

orthogonal MP and the GMP, which includes cross-terms [100]. Furthermore, there

exists the envelope MP model, which only imparts the the magnitude information

from the memory terms, given by

y(n) =
M∑
j=0

N∑
i=0

ajix(n)|x(n− j)|i−1. (33)

This is similar to the cross-memory polynomial (CMP), which makes use of the

magnitude of the static term, which imparting the phase information of the memory

terms [101], given by

y(n) =
M−1∑
m=0

P∑
p=1

apmx(n−m)|x(n)|p−1 (34)

2.2 Generalized Memory Polynomial

yGMP (n) =
Ka−1∑
k=0

La−1∑
l=0

aklx(n− l)|x(n− l)|k

=

Kb∑
k=0

Lb−1∑
l=0

Mb∑
m=1

bklmx(n− l)|x(n− l −m)|k

=
Kc∑
k=0

Lc−1∑
l=0

Mc∑
m=1

cklmx(n− l)|x(n− l +m)|k

(35)

2.2.1 NARMAX Model

The nonlinear autoregressive moving average model with exogenous inputs (NAR-

MAX), described in [83], represents a wide class of nonlinear systems, given by
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y(k) =F [y(k − 1), y(k − 2), . . . , y(k − ny),

u(k − d), u(k − d− 1), . . . , y(k − d− nu),

e(k − 1), e(k − 2), . . . , e(k − ne)] + e(k)

(36)

where y(k), u(k), and e(k) are the output, input, and noise of the system, re-

spectively. Additionally, ny. nu, and ne are the number of lags for the output, input,

and noise of the system, respectively. The model can better be explained by com-

paring a linear finite impulse response (FIR) filter and an infinite impulse response

(IIR) filter. Let the FIR filter be described as

y(k) = b1u(k − 1) + b2u(k − 2) + · · ·+ bnu(k − n) (37)

and let the IIR filter be described by

y(k) + a1y(k − 1) + · · ·+ any(k − n) = b1u(k − 1) + · · ·+ bmu(k −m) (38)

The importance of these differences were described in [83] – an FIR filter may

often need 50 coefficients, while an IIR filter to describe the same system might

only need 4 coefficients (n = m = 2). Though the FIR filter is often much easier

to estimate, the IIR filter is much more concise – in this comparison, the FIR filter

is equivalent to the Volterra series and the IIR filter is equivalent to the NARMAX

model, which contains both delayed inputs and outputs.
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2.3 Neural-Network

2.3.1 Radial-Basis Function Neural Networks

Radial-basis function neural networks (RBFNN) concist of three layers: 1. an input

layer, 2. a hidden layer, and 3. an output layer. The RBFNN model structure

proposed in [102] consists of L+1 input nodes, x = [r(n), r(n−1), . . . , r(n−L)]T ,

where r(n) is the input envelope, and two output nodes, g(·) and f(·). The output

is given by

y(n) = g(r(n))ej(Φ(n)+f(r(n))) (39)

where Φ(n) is the input phase. Thus, the proposed RBFNN hasM×(L+3)+2

parameters, where M is the number of neurons. Measured results were then taken

in [102] using two different wideband CDMA (WCDMA) waveforms, one with

a bandwidth of 4 MHz and the other with a bandwidth of 20 MHz. The perfor-

mance of the proposed RBFNN model was compared to that of a PH model (refer-

enced to be the same model used in [41], which was an MP model) by comparing

their normalized mean-square error (NMSE) and adjacent channel error power ratio

(ACEPR), given by

ε̄ = 10 log10

(
ε∑

n |ymeas(n)|2

)
ε =

∑
n

|ymeas(n)− yRBFNN(n)|2
(40)

and

ACEPR =

∫
adj
|E(f)|2df∫

ch
|Y (f)|2

(41)

respectively [86], [102]. The results from [102] show that the RBFNN had better
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in-band performance (lower NMSE) than the PH model, while the PH model had

significantly greater performance for out-of-band performance (ADEPR). Though,

as the PH model is a commonly used model due to its effectiveness and efficiency

at modeling nonlinear systems with memory, it is promising to see that the RBFNN

model had similar performance. The same authors, in [86], extend the work done

in [102] by comparing the PH and RBFNN models also to Volterra, Wiener, Ham-

merstein, and static nonlinarity models. Additionally, two different amplifiers (one

for 2G and one for 3G) as well as two different waveforms and bandwidths. As in

the previous study, the RBFNN model proved the most effective model at minimiz-

ing the NMSE, while the PH was best at minimizing the ACEPR. Furthermore, the

models were cross-validated, where the PH had the lowest NMSE and ACEPR. It

should be noted, however, that their the review conducted in [86] was not extremely

rigorous and did not give a fair comparision of the performance of the different

models. For example, computational time was not included and, while the num-

ber of parameters of the tested models were mentioned, the number of parameters

of each of the models were not the same, giving an obvious advantage to the PH

and RBFNN models. Lastly, they did not effectively show how sensitive the mod-

els were to changing the number of parameters – for example, some models may

be more effective with few parameters, while others can better represent a system

when a large number of parameters are used.

Different behavioral models for RF (power amplifiers) PAs were analyzed in

[86]. The Wiener, Hammerstein, PH, radial basis-function neural network (RBFNN),

and Volterra models were first discussed and then used to model two different PAs to

determine the most effective model. Their results showed that the PH and RBFNN

models were the most effective at modeling the two PAs; the PH had the lowest

adjacent channel error power ratio (ACEPR), while the RBFNN had the lowest
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normalized mean-square-error (NMSE). Furthermore, during cross-validation (A-

B testing), the PH proved to be more robust, having a lower NMSE and ACEPR,

than the RBFNN or other models. Though these are important insights, it should

also be taken into account that the number of parameters in the models were not

equivalent.

2.3.2 Comparison of the Models

Finally, to conclude this Section, we show some of the most significant results in

the table below. These results are meant to help with the comparison of the models

– comparing the number of parameters, error, and computational time. From the

table we can see that the MP model had the best performance, in a sense of error,

but suffered from a large number of parameters and high computational time. The

Hammerstein-MP model as well as the parallel Hammerstein model make good

compromises between generality, complexity, and the minimization of error.

38



Model Order Memory no. params Error (dB) Time (s)

MP 7 3 12 -41.38 0.27

MP 7 4 16 -41.95 0.29

MP 9 5 25 -42.43 0.47

MP 17 9 81 -42.58 2.21

Hammerstein 7 4 8 -40.61 0.18

Hammerstein 9 5 10 -40.94 0.24

Hammerstein 17 9 18 -41.01 0.53

Wiener 7 4 8 -40.69 0.20

Wiener 9 5 10 -40.91 0.25

Hammerstein-MP 17, 13 3 30 -42.00 0.74

Hammerstein-MP 11, 15 6 38 -42.52 1.17

Hammerstein-MP 17, 17 9 90 -42.58 2.44

CMP 7 4 16 -40.69 0.21

CMP 9 5 25 -40.91 0.28

PH (B=40) 7 4 8 -41.90 2.71

PH (B=40) 9 6 11 -42.36 4.90

PH (B=40) 15 7 15 -42.44 11.72

PH (B=10) 7 4 8 -41.90 0.73

PH (B=10) 9 6 11 -42.31 1.31

PH (B=10) 13 8 15 -42.40 3.17

2.4 Nonlinear Distortion

Nonlinear devices produce intermodulation distortion (IMD), cross-modulation dis-

tortion (CMD – sometimes referred to as XMD), harmonic distortion, and compres-

sive (or gain) distortion. First, we will take a look at IMD, CMD, and harmonic

distortion. Assume that we have an input signal consisting of three sinusoids, given

by

yin = A1 cos (ω1t) + A2 cos (ω2t) + A3 cos (ω3t) (42)
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where Ai are the amplitudes and ωi are the frequencies of the three tones. Then the

signal is passed through a third-order nonlinear system, given by

h(x) = k1x+ k2x
2 + k3x

3 (43)
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where ki are the coefficients of the nonlinear system. The resulting output of pass-

ing the signal through the nonlinear system is [103]

yout = k1(A1 cos (ω1t) + A2 cos (ω2t) + A3 cos (ω3t))

+ k2(
1

2
A2

1(1 + cos (2ω1t)) +
1

2
A2

2(1 + cos (2ω2t)) +
1

2
A2

3(1 + cos (2ω3t))

+
1

2
A1A2(cos ((ω1 − ω2)t) + cos ((ω1 + ω2)t))

+
1

2
A1A3(cos ((ω1 − ω3)t) + cos ((ω1 + ω3)t))

+
1

2
A1A3(cos ((ω2 − ω3)t) + cos ((ω2 + ω3)t)))

+ k3(
3

4
A3

1 cos (ω1t) +
1

4
A3

1 cos (3ω1t)

+
3

4
A3

2 cos (ω2t) +
1

4
A3

2 cos (3ω2t)

+
3

4
A3

3 cos (ω3t) +
1

4
A3

3 cos (3ω3t)

+
1

4
A2

1A2(cos ((2ω1 − ω2)t) + cos ((2ω1 + ω2)t))

+
1

4
A2

1A3(cos ((2ω1 − ω3)t) + cos ((2ω1 + ω3)t))

+
1

4
A1A

2
2(cos ((ω1 − 2ω2)t) + cos ((ω1 + 2ω2)t))

+
1

4
A1A

2
3(cos ((ω1 − 2ω3)t) + cos ((ω1 + 2ω3)t))

+
1

4
A2

2A3(cos ((2ω2 − ω3)t) + cos ((2ω2 + ω3)t))

+
1

4
A2A

2
3(cos ((ω2 − 2ω3)t) + cos ((ω2 + 2ω3)t))

+
3

4
A1A2A3(cos (ω1 − ω2 − ω3)t+ cos (ω1 + ω2 − ω3)t

+ cos (ω1 − ω2 + ω3)t+ cos (ω1 + ω2 + ω3)t))

(44)

The simplest and most straight forward way to represent a nonlinear system is
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with a power-series, given by

h(x) =
N∑
i=0

kix
i. (45)

Here we take a look at a third-order case, such as

h(x) = k0 + k1x+ k2x
2 + k3x

3. (46)

Then, for simplicity we first show of a single sinusoid

x(t) = A(t) cos [ωct+ θ(t)] (47)

is affected by the nonlinear system, such that

y = h[x(t)]

= k0 + k1x(t) + k2x
2(t) + k3x

3(t)

= k0 + k1A(t) cos [ωct+ θ(t)− φ1]

+
1

2
k2A

2(t) +
1

2
k2A

2(t) cos2 [2ωct+ 2θ(t)− 2φ2]

+
3

4
k3A

3(t) cos [ωct+ θ(t)− φ3]

+
1

4
k3A

3(t) cos3 [3ωct+ 3θ(t)− 3φ3]

= k0 +
1

2
k2A

2(t)

+ k1A(t) cos [ωct+ θ(t)− φ1] +
3

4
k3A

3(t) cos [ωct+ θ(t)− φ3]

+
1

2
k2A

2(t) cos2 [2ωct+ 2θ(t)− 2φ2]

+
1

4
k3A

3(t) cos3 [3ωct+ 3θ(t)− 3φ3]

(48)

where the terms k0 and 1
2
k2A

2(t) fall at DC, 2ωc and 3ωc are the second and third
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harmonics, and 3
4
k3A

3(t) cos [ωct+ θ(t)− φ3] induces AM-AM and AM-PM dis-

tortion as well as gain compression on the fundamental. From the nonlinearities

produced by a signal tone two of the three main types of distortion have been

demonstrated: harmonic distortion and gain compression. Looking at the output

of two tones from the nonlinear system will yield examples of IMD and CMD as

well:

x(t) = A1(t) cos [ω1t+ θ1(t)] + A2(t) cos [ω2t+ θ2(t)] (49)
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Then,

y(t) = h[x(t)]

= k1A1(t) cos [ω1t+ θ1(t)− φ110]

+ k1A2(t) cos [ω2t+ θ2(t)− φ101]

+
1

2
k2A

2
1(t)

+
1

2
k2A

2
2(t)

+
1

2
k2A

2
1(t) cos [2ω1t+ 2θ1(t)− φ220]

+
1

2
k2A

2
2(t) cos [2ω2t+ 2θ2(t)− φ202]

+
1

2
k2A1A2(t) cos [(ω1 − ω2)t+ θ1(t)− θ2(t)− φ21−1]

+
1

2
k2A1A2(t) cos [(ω1 + ω2)t+ θ1(t) + θ2(t)− φ211]

+
6

4
k3A

2
1A2 cos [ω2t+ θ2(t)− φ301]

+
6

4
k3A1A

2
2 cos [ω1t+ θ1(t)− φ310]

+
1

4
k3A

3
1(t) cos [3ω1t+ 3θ1(t)− φ330]

+
1

4
k3A

3
2(t) cos [3ω2t+ 3θ2(t)− φ303]

+
3

4
k3A

2
1(t)A2(t) cos [(2ω1 − ω2)t+ 2θ1(t)− θ2(t)− φ32−1]

+
3

4
k3A1(t)A2

2(t) cos [(2ω2 − ω1)t− θ1(t) + 2θ2(t)− φ3−12]

+
3

4
k3A

2
1(t)A2(t) cos [(2ω1 + ω2)t+ 2θ1(t) + θ2(t)− φ321]

+
3

4
k3A1(t)A2

2(t) cos [(ω1 + 2ω2)t+ θ1(t) + 2θ2(t)− φ312]

(50)

The second-order IMD (IM2) terms are given by

1

2
k2A1A2(t) cos [(ω1 − ω2)t+ θ1(t)− θ2(t)− φ21−1]

1

2
k2A1A2(t) cos [(ω1 + ω2)t+ θ1(t) + θ2(t)− φ211]

(51)
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while the third-order IMD (IM3) terms are given by

3

4
k3A

2
1(t)A2(t) cos [(2ω1 − ω2)t+ 2θ1(t)− θ2(t)− φ32−1]

3

4
k3A1(t)A2

2(t) cos [(2ω2 − ω1)t− θ1(t) + 2θ2(t)− φ3−12]

3

4
k3A

2
1(t)A2(t) cos [(2ω1 + ω2)t+ 2θ1(t) + θ2(t)− φ321]

3

4
k3A1(t)A2

2(t) cos [(ω1 + 2ω2)t+ θ1(t) + 2θ2(t)− φ312]

(52)

Additionally, CMD (here, referred to as CM3) is given by

6

4
k3A1A

2
2 cos [ω1t+ θ1(t)− φ310]

6

4
k3A

2
1A2 cos [ω2t+ θ2(t)− φ301]

(53)

where there is some AM-AM induced from one signal onto the other, potentially

leading to the desensitization [103] of the system. CMD is of extreme concern,

especially for radar systems [104], however is often ignored since it doesn’t lead to

a very evident change in the spectrum.

2.5 Types of Nonlinear Distortion and Radar Considerations

The relationship between CMD and IMD were compared in [105], where it was

determined that the effects of CMD need to be taken into account through vectoral

addition. Assuming a desired signal

y1(t) = a|H1(jp)| cos (pt+ φp) (54)

where |H1(ip)| and φp are the modulus and phase at the frequency p, respectively,

of the first-order transform of frequency p of x(t) = a cos pt + b cos qt + c cos rt.

Then introducing two ‘unwanted’ signals at frequencies q, r, we get the CMD given
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by

|∆y| cos (pt+ ψ) =
1

4
ab2|Ap,2q| cos (pt+ φp,2q) +

1

4
ac2|Ap,2r| cos (pt+ φp,2r)

(55)

where

Ap,q = |Ap,2q|ejφp,2q

= H3(jp, jq,−jq) +H3(jp,−jq, jq) +H3(jq, jp,−jq)

+H3(−jq, jp, jq) +H3(jq,−jq, jp) +H3(−jq, jq, jp)

(56)

where H3 is the third-order transform for the frequencies p, q and q. The CMD is a

complex quantity introducing both AM-AM and AM-PM distortion to the system.

Then the increase in the output of frequency p can be written in complex form, as

∆y =
1

4
ab2Ap,2q +

1

4
ac2Ap,2r. (57)

What [105] points out is that unless q and r are nearly equal, then the CMD is not

simply Ap,2q + Ap,2r = 2Ap,2q due to their imaginary parts. Essentially, they are

added together as vectors, meaning that the CMD can both increase or decrease

when more unwanted signals are added or removed. On the other hand, the IMD

is given by the third-order transform H3 of the frequencies p, q, and q with their

relationship as (2q − p), such that

yp,2q =
1

4
ab2|Bp,2q| cos [(2q − p)t+ φ2q,p] (58)

where

Bp,2q = H3(−jp, jq, jq) +H3(jq,−jp, jq) +H3(jq, jq,−jp). (59)
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Finally, the CMD is related to the real part and the IMD is related to the modulus

of the given distortion vector with their relationship between each other deviating

at large frequency spacings between the modulation frequencies.

The effects of CMD on radar receiver dynamic range was investigated in [106].

In a radar, the effects of CMD are caused by the presence of a large interferering,

or unwanted, signal that mixes with the desired, or wanted, signal to create some

modulation [106]. These modulation effects are caused by the odd order nonlienar-

ities in the receiver [106]. The subclutter visibility (SCV) is the attainable dynamic

range of a radar is the ratio between the power of a spectral peak to the noise power

in a Doppler cell [106]. However, CMD can introduce additional sideband power

between range cells, desensitising the receiver. An equation was derived in [106],

which will be included here:

Radar sensitivity should not be limited by internal noise or nonlinearities; re-

ceiver noise can be suppressed with gain stages, for example. However, the odd-

order terms of receiver nonlinearities introduce IMD and CMD [107]. Some of

the IMD terms created by large unwanted signals can appear above the noise floor,

degrading the radar sensitivity [107]. On the other hand, in the case of CMD, the

unwanted signal modulated the radar’s signal-of-interest, essentially limiting the

achievable sensitivity of the radar [107].

Additionally, for the case of digital arrays, the IMD signal power will grow by

a factor of

N = 20 log10(n)dB (60)

where n is he number of receivers [107]. This is due to the coherent addition of the

IMD signals and incoherent addition of the uncorrelated noise. The IMD will grow

in voltage, by 20 log10(n) dB, while the noise will grow by 10 log10(n) dB; resulting

in the IMD growing by 10 log10(n) dB when compared to the noise, similar to the
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actual received signals [107].

Amplifiers are used to increase the level of the signal (the gain of the system)

prior to other receiver components, in order to prevent the noise from dominating

the signal-of-interest and increase the system sensitivity [108]. Additionally, ampli-

fier performance is typically specified with figures such as NF, gain, and IP3 [108].

Further, receivers must be able to tolerate large unwanted, interferering signals, of-

ten from users in adjacent channels [108]. Multiple strong interferering signals,

paired with receiver nonlinearities can create IMD products that appear close to the

desired signal; ultimately resulting in desensitization of the receiver – limiting it’s

ability to process very weak signals [108]. Additionally, a single strong interferer –

often referred to as a blocker – can also result in receiver desensitization [108].

A large blocker reduces receiver sensitivity through two phenomone; the first is

gain compression caused by the third-order nonlinearity [108]. The other, due to

the second-order nonlinearity, upconverts low-frequency noise to the desired signal

frequency [108].

In active array radars, IMD products experience an SNR gain, requiring higher

system linearity [109]. Further, since the analog front-end often has a wider band-

width than the instantaneous bandwidth of the radar system, signals that are out of

the digitized bandwidth may produce IMD that fall on the desired signal (in-band)

[109]. Additionally, interference can come from other transmitting systems, both

in-band and out-of-band, as well as rain, sea, or land clutter [109].

2.6 Transmit Nonlinearities

Transmitter nonlinearities and digital pre-distortion (DPD) methods (used to miti-

gate Tx nonlinearities) have been heavily studied for almost three decades. A simple

method to reduce system cost and power consumption is to operate the Tx power
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Figure 8: Nonlinear Tx channel, demonstrating IMD pollution of adjacent channels.

amplifier (PA) in the more efficient nonlinear region. Operating in the nonlinear

region of a PA creates spurious products caused by IMD; degrading the error vector

magnitude (EVM) of the in-band signal and polluting the already saturated wire-

less spectrum (OOB spectral regrowth is typically measured by the adjacent channel

power ratio (ACPR) [110]) shown in Fig. 8 in orange – negatively effecting users in

adjacent channels [17], [76], [111]–[113]. An efficient method for computing the

location (in frequency) and magnitudes of IMD in a transmit PA was presented in

[114]. Due to the efficiency benefits of operating in the nonlinear region, DPD has

been heavily studied to mitigate the spectral spreading, while retaining the other de-

sirable traits. DPD methods have also been proposed to mitigate Tx I/Q imbalances

and crosstalk/mutual coupling present in MIMO systems [17], [33]. This section

gives an overview of some of the different DPD techniques in published literature.
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A MP model was proposed in [80] to correct power and frequency dependence

in a wideband radar amplifier – specifically for use in a digital phased array. The au-

thors also propose a Bayesian method making use of Gibbs sampling, a form of the

Markov chain Monte-Carlo (MCMC) algorithm, which – compared to least-squares

optimization – is able to gracefully adapt to changes in the amplifier’s characteris-

tics, including temperature variations. [115] analyzed the nonlinear distortion in

MIMO transmitters caused by PAs. They simulated a 28 GHz, 64-element array

with a four-stage class AB GaN MMIC PA, modeled by a memoryless power se-

ries. They further show that as the beam is steered and the active impedance of

the array changes, then the PA load impedance also changes, degrading the effec-

tiveness of DPD, which was trained at 50 ohms. The authors of [116] developed

an impedance-dependent memory polynomial (IDMP) model for DPD of a wide-

band phased array radar. The IDMP takes into account the dependence on power,

frequency, and impedance, all of which are affected by the scan angle and mutual

coupling of the array. The IDMP was shown to be more effective than an MP at lin-

earizing the PA of the phased array radar, and was proposed as a potential solution

for MIMO communications DPD.

The authors in [117] presented an adaptive DPD method that can be imple-

mented in a field programmable gate array (FPGA) for real-time adaptation. The

DPD is made up of a predictive nonlinear auto-regressive moving average (NARMA)

that is implemented by means of look-up tables (LUTs). An adaptive least mean-

square (LMS) based correction called “nonlinear filtered-x LMS algorithm” with

a Volterra series basis was implemented in [118]. The difference for an iterative

pre-distortion and post-distortion solution is that the output of the pre-distortion

adaptive filter can suffer from instability due to the filter delays. Filtered-x LMS

provides an adaptive solutions without causing instability. Additionally, [119] pro-
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vides a detailed explanation of the LMS algorithm.

A weighted MP (WMP) was proposed in [120] as the basis for the modeling

and DPD of a PA. The WMP, given by

yWMP (n) =
Ns∑
i=0

αiws(| x(n) |)x(n) | x(n) |i

+

ND∑
i=1

M∑
j=1

βijwD(| x(n) |)x(n− j) | x(n− j) |i,
(61)

is shown to require half as many coefficients as the standard MP to achieve the

same performance and is used to better handle high PAPR waveforms which, for a

PA, exhibit mild nonlinear behavior and strong memory effects at low power levels,

and strong nonlinear behavior with mild memory effects at higher power levels. A

finite impulse response (FIR) MP DPD for wideband PAs was proposed in [121].

They showed that the derivation of a MP from the Volterra series is a consequence of

the narrowband approximation, which is not valid for wideband signals. Therefore

they precede the MP with an FIR filter to further reduce the frequency dependence

of the PA. They show that their proposed FIR-MP DPD method further linearizes

the PA with an 80 MHz waveform at 2 GHz by providing 11 dB more ACLR im-

provement. In [101], an FPGA-based DPD solution for PA linearization using a

CMP model was provided. They further compare the effectiveness of the CMP

model with a MP model with the same number of coefficients. The coefficients

are solved for using recursive least squares (RLS), and the CMP proves to perform

very similarly to the MP model, both of which greatly outperform the memoryless

static power series. They further suggest that their method be implemented in an

FPGA for cost-effective nonlinear circuit characterization and modeling. [112] pro-

posed two methods for reducing the complexity of Volterra series, while providing
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a more robust DPD basis than a simple MP. Methods of grouped Volterra series

and pruned Volterra series are discussed and demonstrated for OFDM signals for

massive MIMO systems, reducing the ACLR by 4 dB more than a memory-less

correction, but showing little improvement over a MP basis. Lastly, the author of

[112] states that there is less importance placed on the basis set used for DPD ACLR

minimization, as long as the bases themselves span enough effective delays.

The mitigation of PA and I/Q nonidealities was demonstrated in [33]. The au-

thors employed a PH based model, estimating the coefficients using a least squares

based technique, showing effective mitigation of IMD for a wideband OFDM sig-

nal. MIMO systems also suffer from crosstalk or mutual coupling – which can

be nonlinear (before the PA) or linear (at the antenna) [17], [35], [111]. Nonlin-

ear crosstalk can have a great effect on DPD, and the authors of [17] proposed a

crossover DPD (CO-DPD) model to mitigate the effects of crosstalk on PA lin-

earization. They showed that CO-DPD could mitigate IMD of the PA almost 30 dB

more than conventional DPD when the channel suffered from -20 dB of nonlinear

crosstalk. The authors of [111] expanded the crossover model to include the correc-

tion of I/Q imbalance. Their measured results showed that their proposed method

of the joint mitigation of nonlinearities, I/Q imbalance, and crosstalk resulted in a

further reduction of the ACLR by 9 dBc, compared to the crossover model. The

joint mitigation of nonlinearities, I/Q imbalance, and crosstalk was further explored

in [122], where the authors used a real-valued MIMO MP (RMP) model, which

considers the I/Q as separate input signals. This model showed good computational

efficiency and effective ACLR mitigation. Additionally, a neural network DPD so-

lution for crosstalk, I/Q imbalance, DC-offset, and PA nonlinearity was presented

in [35].

Additionally, DPD has recently been studied for MIMO hybrid beamforming
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cases, where each digital channel (and its’ DPD) should support multiple PAs [76],

[123]–[126]. That is, compared to single channel, element-level DPD, hybrid-

beamforming DPD requires a single DPD solution for multiple PAs. Furthermore,

the PAs in the analog beamformer can each receive different weights, leading to

the PAs possibly operating in different nonlinear regions. Beam-oriented DPD was

studied in [76], [123], [126] – focusing on the mitigation of IMD in the direction of

the main beam and reducing DPD complexity by using one precoder per subarray.

Finally, the nonlinear characteristics of each PA in an array differ from one-another

and affect using the same DPD for multiple PAs, which was studied in [76], [126],

[127].

The importance of DPD, especially for low-cost MIMO communication sys-

tems, cannot be overstated. DPD allows the PA to operate in the nonlinear region

on Tx, which is more power efficient and further lowers the cost of the system.

Additionally, DPD helps to lower the ACLR, contributing to a more efficient use of

the spectrum and preventing the transmission of energy into sensitive bands – such

as global positioning system (GPS) and aviation radar. Further, the most effective

DPD methods are ones than can easily adapt to different waveforms and to changes

in the nonlinear characteristics of the system due to temperature and/or frequency

variations. Lastly, it is worth noting that in 2017 the first RF transceiver with on-

chip DPD was released by Analog Devices – the AD9375 [128] – to be used in

pre-5G massive MIMO systems. This COTS DPD transceiver is just the beginning

of what will enable low-cost 5G systems.

Receive Nonlinearities There are two main differences between DPD and receive-

NLEQ. On receive, compared to transmit, there is no a priori knowledge of the

signals – especially in the case of wireless communications – and signals from

multiple sources can move through the channel [30]. Secondly, a receiver chain
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Figure 9: General nonlinear Rx channel of digital MIMO array with typical non-
linear components in red and the bandpass filter in blue, since it can be linear when
active components are used for tuning.

typically contains a bandpass filter to remove OOB interferers, inducing frequency

dependence on the received signals that is unnecessary on the transmit side [77].

Additionally, one of the major concerns of receiver nonlinearities for communica-

tions systems is that IMD can fall on top of weak desired signals, distorting the

signal and increasing the bit-error-rate (BER) [129]. Lastly, a comprehensive re-

view of analog techniques for linearization of RF receivers is given in [130], while

here we continue to focus on DSP-based solutions.

Fig 9 shows a general MIMO array Rx channel consisting of multiple nonlinear

components [131]. Perhaps the most studied culprit of Rx channel nonlinearities is

the low-noise amplifier (LNA), due to the low-cost nature of operating in the non-

linear region. This is typically the first component after the antenna, defining the

noise figure (NF) of the channel. The LNA is usually followed by a bandpass filter

(BPF), used to filter any OOB interferers and the even-order IMD products. The

BPF can be either a linear or nonlinear component depending on if it is passive or

active, respectively. In reconfigureable systems, which make use of tunable compo-

nents, the BPF tends to be nonlinear, further contributing to the RF nonlinearities of

the system [77]. Additionally, the filter (either passive or active) contributes heav-
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ily to the frequency dependence of the channel, requiring the use of memory terms

in the NLEQ solution. The in-phase (I) and quadrature (Q) mixers are inherently

nonlinear in nature, contributing baseband IMD to the system. Finally, the analog-

to-digital converters (ADCs) can also be nonlinear in nature. The nonlinearities

of each of these components compound to further increase the complexity of the

NLEQ solution. Additionally, it was shown in [36] that IMD spurs in array beams

are formed at predictable “apparent” directions, which has also been studied in [4]

and [67].

The effect of amplifier nonlinearities on SNR and capacity for wireless commu-

nication receivers was studied in [132], showing that the IMD limits the maximum

SNR and capacity. An analysis for system receiver nonlinearities in multi-band

OFDM (MB-OFDM) systems is proposed in [133], specifically for the first band

group of the Multi-Band OFDM Alliance (MBOA) standard [134], which contains

three bands of 528 MHz each, in the frequencies between 3.1 and 4.8 GHz. With

a maximum power spectral density (PSD) of -41.3 dBm/MHz, this band is par-

ticularly sensitive to strong interferers. The authors proposed a technique for the

characterization of ultra wide-band (UWB) nonlinear systems, showing that the

common two-tone text is only valid for narrow-band (NB) systems. Their proposed

technique consists of analyzing the two-tone performance of the entire band, pro-

viding simulations to show its effectiveness.

The effect of LNA nonlinearities with memory for wideband spectrum sensing

was studied in [135], where the spectral regrowth caused by a low-cost LNA can fall

in unused channels, making them appear to have a user. Furthermore, the impact

of receiver nonlinearities on spectrum sensing is studied in [131]. They consider

the nonlinearities caused by the LNA and mixer, concluding that while the nonlin-

ear distortion of both devices degrade the system performance, the LNA typically
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dominates the system nonlinearities. LNA and mixer-induced receiver nonlineari-

ties was further studied in [30], where the authors demonstrated the modeling and

mitigation of RF and BB nonlinearities in direct conversion receivers, such as the

receiver in Fig 9. This is accomplished with the use of three adaptive filters (AFs):

one for I/Q balance, one for RF nonlinearities, and one for BB nonlinearities – fur-

ther split into one for each I and Q. Normalized LMS (NLMS), which provides

a more stable convergence than standard LMS, was employed along with a mem-

oryless basis. The AFs proved effective at mitigating RF and BB nonlinearities,

first for a two-tone input and then with a binary phase-shift keyed (BPSK) input to

demonstrate its effectiveness at correcting high-PAPR signals. Lastly, they state that

with the use of NLEQ allows for low-cost, low-complexity receiver architectures,

specifically in the case of software defined radio (SDR) and cognitive radio (CR).

The same authors, in [129], studied the improvement of the BER in Global System

for Mobile Communications (GSM) by applying NLEQ. A similar technique was

implemented in [136] to mitigate the spectral spreading of a strong BPSK signal

that fell on a weak GSM signal. LMS was implemented, along with a real mem-

oryless basis, on an FPGA in an SDR receiver, demonstrating an algorithm and

implementation for real-world scenarios. Furthermore, the FPGA implementation

proved to make a very efficient use of the computational resources with little pro-

cessing delay. NLMS was again applied in [27] to implement a blind correction of

nonlinearities in a wideband receiver.

An NLEQ method for assisting a tunable channel select filter (CSF) realized in

65 nm CMOS was implemented in [137]. A low-resolution, oversampling auxiliary

ADC was used to capture in-band and OOB interferers and IMD, and then applied

LMS to mitigate the nonlinearities. The LMS NLEQ did not update continuously

to save power, but updated periodically to account for process, voltage, and tem-
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perature (PVT) variations. An auxiliary ADC in CMOS was also used in [79] to

mitigate nonlinearities and extend the SFDR, specifically for phased array radars.

Furthermore, the sampling speed of the auxiliary ADC was reduced to further save

power and continual background calibration was used to account for PVT varia-

tions, specifically temperature. Lastly, the effectiveness of background calibration

compared to single temperature calibration was shown for 10◦ C to 80◦ C.

RF NLEQ for direct conversion receivers was further studied in [4], showing

that the IMD spurs in a digital array radar (DAR) – in this case consisting of a

direct conversion 4x4 digital array and low-cost commercial off-the-shelf (COTS)

components – tend to correlate spatially. The RF spurs were mitigated with the

use of NLEQ and LO out-phasing. LO out-phasing suppresses the even-order spurs

through decorrelation – all even order products will have a random phase applied to

them so that when DBF is performed, they add in power instead of voltage, giving a

10 log10(N) mitigation whereN is the number of elements in the array. A weighted

least-squares (WLS) version of NLEQ was used to deal with the odd order spurs,

which tend to correlate spatially as explained in [36].

Similarly, IMD effects on phased arrays due to interferers was studied in [67].

The authors show the results of the impact of three interferers on a 32-element 28

GHz array for 5G applications by showing how system-level IIP3 changes with

scan angle due to the spatial IMD caused by the interferers. This further shows the

need for receiver side NLEQ in interferer-filled 5G environments, as well as more

effective linearity metrics.

All the previously mentioned methods of NLEQ are applied after the received

signal has passed through the RF front-end, meaning that if the incoming signals

are too strong they can push the LNA too far into compression for NLEQ to effec-

tively model; at this point the linear signal cannot be completely recovered. Another
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possibility is for the ADC to saturate, clipping the high-power portions of the sig-

nal, which again leads to information loss. This leads to the DR being defined not

by the linearity of the RF front-end (when effective NLEQ techniques are imple-

mented), but by its ability to handle strong interferers. To this end, extending the

DR of MIMO receivers further requires analog interferer mitigation. Specifically,

mitigating strong spatial interferers will suppress the in-band interferers that the RF

filter cannot, and will allow the LNA to safely be placed directly after the antenna

(before the filter) to minimize the system’s NF.

Receiver NLEQ provides a very effective method of mitigating IMD, extend-

ing the DR and linearity of low-cost MIMO systems. With the very saturated

spectral environment and the lack of inherent spatial filtering in fully-digital ar-

rays and MIMO systems, mitigating nonlinearities caused by strong blocker signals

is necessary for operating at the data rates demanded by 5G. Furthermore, adaptive

NLEQ solutions that can adjust to different combinations of received signals and to

changes in the nonlinear characteristics of the receiver are the most promising for

extending the DR and capacity of real 5G MIMO systems.

2.6.1 Summary of NLEQ Techniques

In general, a system-specific NLEQ basis such as the pruned Volterra series pre-

sented in [112] provides the best combination of computational efficiency (number

of computed terms) while remaining a mathematically robust model. Furthermore,

it has been shown that an adaptive solution, such as LMS, provides the most dy-

namic method for mitigation of spectral pollution for Tx and spectral regrowth due

to strong interferers for Rx. Lastly, it should be noted that IMD correlate in space

(during beamforming), meaning that a two-fold solution is required in mitigating

IMD in the individual channels, while also decorrelating the IMD at the array-
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level. This is of particular importance for the receivers, where IMD, both spatial

and spectral, can distort the SoI – especially in the case of strong spatial interferers.
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3 Digital Array Modeling and Dynamic Range

When designing a modern digital array, whether it be for radar or wireless com-

munications, one of the initial steps is to attempt to model and simulate the system

[138]. Of course, there are many tools and simulators, but, in general, many lack

the ability to simulate an entire digital array with nonlinearities and other impair-

ments. One such tool is the MATLAB Phased Array System Toolbox, which was

demonstrated in [138]. One of the advantages of the MATLAB Phased Array Sys-

tem Toolbox is its ability to simulate the entire array, from the element pattern,

to the geometry to an entire radar system. Additionally, the user can add imper-

fections in the array, which need to then be calibrated. However, one capability

missing from the toolbox is the ability to simulate component-level impairments.

A phased array system simulator, which included the modeling and simulation of

component-level impairments was discussed in [139]. This simulator, also written

in MATLAB, was called the Nonlinear Array System Modeler (NASM) and was

further used to simulate a nonlinear receive array in [23]. Modeling and simulating

a digital array system can help to make the design process more straightforward and

cost-effective [138]. Additionally, it is important to be able to effectively model all

potential nonidealities in the array system. This Chapter, then, discusses different

ways to model and simulate digital array systems. Further, the DR concerns for

digital arrays are reviewed, as well as decorrelation methods to extend the DR of a

digital array system.

3.1 Modeling and Simulation

This Section will go over a number of different factors to take into account when

attempting to model and simulate an array system, whether it be fully-digital, sub-

array digital, or analog. First, the most common transceiver architectures will be
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Figure 10: An example of a superheterodyne receiver.

reviewed – the architecture chosen will ultimately determine which and how many

components need to be modeled. Next, methods for modeling specific components,

such as amplifiers and mixers, will be discussed. Lastly, a general procedure for

setting up an array simulation will be shown.

3.1.1 Transceiver Architectures

Other than the array geometry, the transceiver architecture is one of the more gen-

eral topics of system design that will greatly impact how the system performs and

what kinds of impairments can/will occur. The three types of transceiver archi-

tectures that will be breifly discussed here are the super heterodyne, the direct-

conversion (also referred to as homodyne), and direct sampling. Here these archi-

tectures are discussed in terms of the receivers, however the architectures are nearly

identical for transmitters.

The superheterodyne receiver, Fig. 10, has been, historically, a very popular re-

ceiver. First, the RF is mixed down to some intermdeiate frequency (IF), allowing

the IF to be a lower frequency than the RF. However, this first mixer adds more

complexity to the receiver, not only in the mixer and LO required for the IF, but

also in the requirement of the proceeding image-reject filter – filters are often the

largest component in modern integrated circuit (IC)-based systems. Additionally, a

superheterodyne receiver can have multiple IF stages, each requiring additional im-

age reject filters. However, over the past decade or two, with the increased demand
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Figure 11: An example of a direct conversion (homodyne) receiver.

Figure 12: An example of a direct sampling receiver

for wireless communication devices, which require minimal form factor, the direct

conversion receiver (DCR) have become the architecture of choice [81], shown in

Fig. 11. One of the main advantages has to do with the removal of the additional

mixer(s), each of which would requires an image reject filter [29], [140]. However,

DCRs can also suffer from an increase in phase noise for the LO compared to the

superheterodyne receiver. This is becasue the LO of the DCR is at a higher fre-

quency than the LO of the superheterodyne receiver and phase noise scales with

frequency. Additionally, there is a possibility that the has more baseband (post-

mixer) gain stages, which can produce additional baseband nonlinearities and in-

creased I/Q-imbalance, which can be corrected with DSP [28], [29].. Lastly, there

are direct sampling systems, an example is shown in Fig. 12. The direct sampling

receiver does not include a mixer; the ADC samples the RF signal directly. Some of

the advantages of a direct sampling architecture is the removal of LO phase noise,

removal of I/Q-imbalance, and mitigation of a DC-offset.
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3.1.2 Amplifier

Amplifiers are typically described by their gain, NF, and nonlineaity (e.g. input

third-order intercept (IIP3)/output third-order intercept (OIP3) and P1dB). Addi-

tionally, digital arrays generally make use of solid-state amplifiers – semiconductor

technologies suffer from process-voltage-temperature variation (PVT), which in-

troduce channel variations in the array. The focus of these variations has often

been on the gain of the amplifier; gain variations in phased array channels leads

to poor beamforming, changing the beamwidth and sidelobe levels. However, the

variations in nonlinearity has began to receive more attention [23], [77]. Finally,

amplifiers’ gain and nonlinearity also change with frequency, therefore some fre-

quency response needs to be further modeled [77]. Chapter 2 went over different

models for nonlinear systems; for simplicity we will take a look at modeling the

amplifier as a Wiener, Hammerstein, and Wiener-Hammerstein system.

As we want to be able to effectively model an amplifier, it is important to look

at these different models to show how the order of the frequency response affects

the amount of nonlinearity, or spectral regrowth, that shows up in the output of

the system. For example, if the filter is first, then there could be a reduced signal

into the nonlinearity and if the signal is knocked down 1 dB then the nonlinearity

is changed 3 dB and hence is the same nonlinearity. Otherwise if the nonlinearity

is first then the IM3 and main tones are changed the same amount. This is the

difference between Wiener and Hammerstein. Additionally a Wiener-Hammerstein

system will include some combination of this and therefore, is the most accurate in

adding gain and nonlinearity variations throughout the bandwidth.

Recall from Section 2 that the Wiener and Hammerstein models are inverses of

each other; each being made up of a static nonlinearity (power series) and an LTI

system (in this case we use an FIR filter). First, before we can compare how the
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order of the nonlinearity and the filter effects the spectral output, we must design

each block. The nonlinearity is selected to be fifth order (odd-order only), with

coefficients of

c = [1 − 0.03 0.02]. (62)

Then, the frequency response of the system is chosen to also consist of three terms

for simplicity; the FIR coefficients are

a = [0.9 − 0.1 0.05]. (63)

Figure 13 shows the input-output power of the nonlinearity as well as the frequency

response of the LTI system.

A two-tone comparison was made between the two models; two tones of fre-

quencies -1 MHz and 15 MHz inside a bandwidth of 100 MHz (-50 MHz to 50

MHz) at an input power of 3 dB. Figure 14 shows the output of each stage of

both the Hammerstein and Wiener models. From this, we can see that, at least for

this case, the nonlinear spurs are directly affected by the frequency response for the

Hammerstein model – this is an obvious conclusion given that the output of the non-

linear block then passes through the LTI system. However, the consequence of this

is that the Hammerstein model as a larger effective bandwidth when the frequency

response of the system is applied. On the other hand, the input of the Wiener model

is the only section of spectrum that is directly affected by the frequency response

– for a fifth order system this means twenty-percent of the bandwidth that is af-

fected in a Hammerstein system. Generally, larger bandwidths suffer more greatly

from memory effects (frequency dependence); therefore, a reasonable conclusion

can be that since Hammerstein systems have a greater effective bandwidth when

affected by the system’s frequency response, Hammerstein systems add more fre-
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quency dependence to the output. Finally, the dynamism of the frequency response

will ultimately determine which model imparts more frequency dependence on the

system.

Figure 15 compares the output of the Hammerstein and Wiener models. The re-

sulting magnitudes of the input tones are approximately identical for the two mod-

els, while there are noticeable differences between the nonlinear spurs. From the

magnitudes of the third-order and fifth-order spurs, we can see that the magnitudes

of the upper and lower spurs vary more greatly for the Hammerstein model. Again,

it at the point the reader should be reminded that these results are for the specific

nonlinear and LTI blocks that were selected.

Additionally, Figure 16 shows the output from each of the different stages of the

Wiener-Hammerstein model. The resulting output for this case is nearly identical to

the output of the Hammerstein model – again, this is due to the more narrow-band

affect of the two-tones through the pre-nonlinearity LTI block. From this, we can

determine an effective way to model an RF amplifier and its nonlinearities.

A Wiener-Hammerstein model is the most promising due to its ability to add

both narrow and wideband frequency dynamics. The first filter should be used to

throttle the level of nonlinearity (i.e. the P1dB) of the system, while the second

filter will add the frequency dependence of the whole system – the second filter

should also have greater ripple (higher order filter), with a much higher derivative

of its frequency response.

3.1.3 Mixer

A mixer can contribute many different types of distortion, which all need to be

modeled to effectively simulate a phased array system. Firstly, the phase noise

from the LO will contribute to the overall noise in the system; however this noise
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will combine directly with the received signal and will be spectrally on top of the

received signals. Additionally, if many elements in an array share the same LO or

reference, the correlation of the phase noise needs to be modeled. Generally, the

phase noise can improve at a rate of 10 log10(N) dB where N is the number of

independent LOs in an array [141]. Additionally, mixers introduce a DC-offset (or

LO leakage), which can dominate weaker signals, especially ones that are centered

in the band. Further, mixers in an I/Q receiver can be unbalances – having some

differences in phase and amplitude between the inphase and quadrature channels.

Even though I/Q-imbalance can be digitally corrected for, it is important to be able

to effectivenly modeling it when designing a system. Not only as a method of

testing the I/Q-balancing algorthim, but also to determine the limitations of the

selected components for the system, or the requirements of the components based

on system requirements.

3.2 Digital Array Dynamic Range

Dynamic range is an important metric for all types of systems, but is especially

important when it comes to radar systems. Taking a look at the radar range equation,

given by [142]

Rmax =

[
PtGtGrλ

2σ

(4π)3Smin

]1/4

(64)

shows that the radar return signal suffers R4 losses. On the other hand, interfering

signals only suffer the standard R2 propagation losses. Therefore, a radar receiver

needs to be able to detect the smallest possible radar return, while also being able to

handing the higher power interfering signals. How great this ability is, is essentially

defined as the DR of the system. However, as was discussed in [143], [144], there

are many definitions for DR and the task of choosing the correct definition can be
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daunting. Further, in general, for a digital array, the DR improves on the order

of 10 log10(N) dB, where N is the number of transceivers [8], [23], [24], [144].

However, this increase in DR is typically limited by the correlation of spurious

products.

An example of one type of the correlated spurs is shown in Fig. 17, where

two CW tones at two different angles push a receiver into its nonlinear region.

This generates two IM3 that correlated during beamforming to predictable angles,

discusses in detail in [36]. However, with the addition of NLEQ, the spurs can

be mitigated, essentially decorrelated, improving the system SFDR. Additionally,

the main components that are going to generate correlated spurs, generally, will be

the two components discussed earlier in this Chapter: the amplifier and the mixer.

Further, the previous Chapter discussed NLEQ techniques for mitigating amplifier

nonlinearities, which is the technique that was used to extend the DR of Fig. 17.

On the other hand, current techniques for the mitigation, or decorrelation, of spurs

were discussed in detail in [144].
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(a)

(b)

Figure 13: The two fundamental blocks of nonlinear systems; (a) the input-output
power plot describing the static nonlinearity block, and (b) the frequency response
of the LTI system block.
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(a)

(b)

Figure 14: Step by step plots of a signal of two CW tones passing through (a) a
Hammerstein model system and (b) a Wiener model system. These plots show how
the placement of the LTI system and the nonlinearity affect the magnitude of the
resulting signals.
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Figure 15: Comparison between the output of a Hammerstein model and a Wiener
model when two CW tones are input into their nonlinear region. It is evident that the
location of the nonlinearity and frequency dependence can impact the magnitude of
the resulting nonlinear spurs, as well as the main input signals.
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Figure 16: An step-by-step example of two CW tones passing through the nonlinear
region of a Wiener-Hammerstein Model.
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Figure 17: Digital beamforming results from [23], [144], showing two received
signals and their nonlinear IM3 spurs. (A) the SFDR of the array, limited by the
IM3, (B) the SFDR of the array with NLEQ, and (C) the DR improvement with
NLEQ.
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4 Waveforms for Nonlinear Calibration

The calibration waveform plays a large role in the effectiveness and accuracy of

the training, both for NLEQ and DPD [23]. Similarly so, the waveform used for

nonlinear behavioral modeling has been shown to determine the accuracy and speed

at which a nonlinear system can be modeled [40], [41], [84], [89], [145], [146].

Further, the calibration waveform, in addition to the nonlinear model from Section

2, is one of the most crucial aspects in linearization.

Simply, the complexity required for the calibration of a nonlinear system is, in

general, based on three things:

1. System bandwidth: is the system operating in a narrowband or wideband

sense? In this case, and throughout the paper, narrowband refers to a situ-

ation in which the frequency response of the system is flat [145], while the

wideband sense must take into account the changing frequency response of

the system.

2. The dynamism of the signals going through the system: for Tx DPD this may

be more straightforward as the user, and often times the system engineers,

have a priori knowledge and control of the waveforms going through the

system. On the other hand, for Rx NLEQ more caution needs to be taken

toward the surrounding spectral environment; especially in this increasingly

crowded spectral environment, many more signals other than the signal-of-

interest (SoI) will likely go through the Rx chain.

3. Calibration time and nonlinear model complexity, e.g. the number of coeffi-

cients required, the length of waveform, etc.

Therefore, an ideal calibration waveform (and model) would integrate/train over

the system bandwidth, while being generalized enough to handle all types of signals
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that will go through the system. Further, obviously a quick calibration time is highly

desired, especially for in situ calibration of a fielded system. One factor that affects

the calibration waveoform’s time is how long (how many samples) the waveform

spends at the nonlinear region – the high power region – without pushing the system

too far into saturation. This, in general, is determined by the waveform’s crest factor

and, thus, the peak-to-average power ratio (PAPR).

A waveform’s crest factor is given by

C =
|xpeak|
xrms

(65)

while the PAPR of a waveform is given by

PAPR =
|xpeak|2

x2
rms

= C2 (66)

where xrms is given by

xrms =

√
1

N

N∑
x2
i . (67)

It is well known, and easily seen, that a single sinusoid has an of 1√
2

and, thus, a

PAPR of about 3 dB. Further, as the number of sinusoids increases by N , the also

increases by a factor of
√
N , leading to a PAPR of 10 log10(2N) dB. It is also well

known that has an infinite PAPR – however, the PAPR is finite for a bandlimited

case.

A waveform with a lower PAPR will spend more time at the higher power levels

of the signal compared to a signal with a large PAPR. Further, the maximum power

of a signal will determine how far into saturation the nonlinear system is being

probed and, ultimately, will determine power of the waveform allowed for nonlinear

calibration. In other words, the peak power allowed into the nonlinear system will
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be set based on the nonlinear characteristics such as P1dB and IP3. Then, based

on the PAPR of the waveform, the waveform power can be determined. Therefore,

waveforms with a lower PAPR can have a larger total power to probe the nonlinear

system, and will be able to probe the higher power, nonlinear regions of the system

– without driving the system too far into saturation – for a larger percentage of the

total signal length.

Another important thing to take into account when determining the calibration

waveform for a nonlinear system is the nonlinear terms that will be created from

the waveform. For example, the classic two-tones given by x1(t) = A1e
jω1t and

x2(t) = A2e
jω2t when passed through the third-order nonlinear system

yout = k1yin + k2yin|yin|2, (68)

with linear coefficient k1 and third-order nonlinear coefficient k3, will result in

yout =(k1A1 +
3

4
k2A

3
1 +

3

2
k2A1A

2
2)ejω1t

+ (k1A2 +
3

4
k2A

3
2 +

3

2
k2A

2
1A2)ejω2t

+
3

4
k2A

2
1A2e

j((2ω1−ω2)t)

+
3

4
k2A1A

2
2e
j((2ω2−ω1)t)

(69)

with the out-of-band terms being ignored. Thus, the input contained frequencies ω1

and ω2 with the output of the nonlinear system only adding two more frequencies:

2ω1 − ω2 and 2ω2 − ω1. Further, a three-tone waveform with input frequencies

of ω1, ω2, and ω3 will result in nine additional frequencies: 2ω1 − ω2, 2ω1 − ω3,

2ω2−ω1, 2ω2−ω3, 2ω3−ω1, 2ω3−ω2, ω1 +ω2−ω3, ω1−ω2 +ω3,−ω1 +ω2 +ω3.

In the case where the number of input frequencies are greater than two, there is a

change that some of the IMD products will call at the same frequency as the input
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(a) (b)

Figure 18: (a) the typical tradeoffs made when evaluating and choosing the best cal-
ibration waveform and (b) an example of the dynamic spectral situations to which
the calibration waveform must properly train the NLEQ algorithm to respond (from
[81])

siganl or as another IMD. This leads to a loss of orthogonality for the calibration

model, making it less effective at generalizing the linearization to any input signal.

Therefore, it is ideal to have a calibration waveform where the nonlinear products

fall at independent frequencies so that the complex coefficient for that nonlinearity

can be simply extracted. This Chapter proposes a general calibration waveform

for systems with a large variety of input waveforms, making use of all possible

combinations of power and frequency throughout the system.

4.1 Literature Review

Early work on nonlinear system identification – much before the concept of leverag-

ing DSP for lineariztaion – focused on the use of white noise waveforms; however

with the increased digitization new waveforms and techniques have been used [89].

One of the first and most important publications on this topic, by Boyd and Chua

[89], proposed a multitone (harmonic probing) method. Simply, they proposed a

way of constructing a multitone waveform, making use of two relatively prime fre-
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quencies, in which no second-order IMD products fall into the same frequency bin

or at one of the input tone frequencies. This leads to a waveform that can quickly

probe a large bandwidth, while producing IMD products (or tones) that are still eas-

ily extracted. Then, Pedro and Carvalho [84] proposed a multisine waveform for

behavioral modeling/testing of nonlinear systems. Further, in [23] a bandlimited

waveform was proposed for NLEQ calibration in order to train on a wide swath

of powers and frequencies. However, the high PAPR of and the fact that IMD at

certain frequency are produced from multiple pairs of input frequencies reduce its

effectiveness as a generalized calibration waveform.

In the more narrowband sense, two-tones are frequently used for simple nonlin-

ear modeling of systems [145]. Two input tones will then produce two third-order

IMD (IM3), two fifth-order IMD (IM5), etc., which makes the waveform good for

visualization and quantification (see Figure ??) of the nonlinearity in a system. Ku

and Kenney in [40], [41], [146] used two tones to evaluate many aspects of non-

linear systems. In [146] the authors used two-tone IMD measurements to calculate

the error vector magnitude (EVM) of a power amplifier (PA). In [40] the authors,

in an well received paper, used two-tones to quantify the memory effects in a PA

through changes in the IM3/IM5 magnitudes with respect to the spacing between

the two tones. Lastly, in [41] the authors additionally showed that asymmetries be-

tween the two IM3 in a two-tone excitation map to the amount of memory effects

that are present in the nonlinear system. Pedro and Carvalho, in [145], then showed

that, for narrowband memoryless cases, two tones can provide valuable information

about a nonlinear system. Two-tones were additionally compared to three tones and

bandlimited WGN in [145]. Further, two tones were also used in [77] for NLEQ,

evaluating the residual magnitude of the IM3 to determine the optimal number of

memory terms in a memory polynomial-based NLEQ.
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Linear frequency modulated (LFM) signals (also referred to as chirps), which

are typically used for pulse compression in radar systems, have also received some

attention for nonlinear system identification. A DPD calibration waveform based

on a triangular chirp was proposed in [147]. Their waveform consisted of two

segments: the first segment applied the highest spectral power to the middle fre-

quencies, while the second segment amplified the higher frequency components.

Additionally, a memory polynomial was used for the DPD model for the nonlinear

system, a PA, showing good correction on an orthogonal frequency-division multi-

plexing (OFDM) waveform using the chrip-based calibration waveform. The same

authors, in [148], proposed multiple windowed chirp-based calibration waveforms

for DPD of an Long Term Evolution (LTE) transmitter. In this case, the Bartlett-

Chirp calibration waveform lead to the best linearization of the PA. Lastly, the initial

phase of a chirp for nonlinear identification of a Hammerstein model system was

discussed in [149].

4.2 Generalized Calibration Waveform

(a) (b)

Figure 19: A simple example of an LFM waveform.

The LFM waveform, shown in Figure 19, has classically been used for pulse-

Doppler radars in order to minimize the radar range resolution with a large band-

78



with, while maintaining a long pulse for maximum transmit power, and is given by

[150] as

x(t) = A rect(r/T ) cos (2πf0t+ παt2) (70)

with

α =
β

τ
, (71)

where τ is the pulsewidth, β is the waveform bandwidth, and f0 is the starting

frequency (e.g. for the 40 MHz waveform shown in Figure 19 at complex baseband,

f0 = −20 MHz and β = 40 MHz). Further, the time-bandwidth product is defined

as βτ > 1. Simplifying to look only at the chirp section of the waveform, given by

[142] as

x(t) = cos(π
β

τ
t2) 0 ≤ t ≤ τ (72)

and in complex baseband notation

x(t) = exp jπβt2/τ = exp jθ(t) 0 ≤ t ≤ τ (73)

where

θ(t) = π
β

τ
t2 = παt2 (74)

from [142], [150]. Lastly, the instantaneous frequency of the LFM is given by

[142], [150]

Fi(t) =
1

2π

dθ(t)

dt
=
β

τ
t Hz, (75)

which shows that at any point in time the LFM is made up of a single frequency,

shown in Figure 20, defined by αt Hz. In that sense, in the frequency domain, it is

simply probing the environment, or system, similar to a network analyzer, making

it a great waveform for wideband calibration. Additionally, another quality that

makes the LFM a very suitable waveform for NLEQ and DPD calibration is its low
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Figure 20: An example of the frequency-step through time for an LFM waveform.

PAPR, which allows it to probe the nonlinearity more often. The PAPR of an LFM

can be shown to be approximately 9 dB – the of the waveform is 1
2
√

2
.

Further, we can see that in a memory-less nonlinear system, a single LFM does

suffer from spectral regrowth – this is shown in Figure 21 (b). This is, again, be-

cause the LFM is simply a sweep in frequency. However, spectral regrowth will

begin to occur once the waveform is introduced into a nonlinear system with mem-

ory. This is intuitive as the previous sample, or frequency in the case of an LFM,

will affect the proceeding sample/frequency, leading to IMD.

The proposed waveform is the superposition of two LFMs that are offset in fre-

quency; this leads to a waveform that is spectrally similar to sweeping two tones.

This takes advantage of the two-tone waveform for linearization since all of the
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(a) (b)

Figure 21: Results from two different waveforms being passed through a memory-
less nonlinear system, with (a) a two-tone waveform, with very low SFDR from the
large IM3, and (b) a LFM waveform that is deep into compression, but maintains a
high SFDR since none of the frequencies mixed.

frequencies (fundamentals, harmonics, IMD) fall into their own frequency bins.

However, the proposed offset-LFM waveform can also occupy a large bandwidth.

Additionally, compared to other wideband waveforms, there is minimal spectral re-

growth, allowing the waveform to extend closer to the edges of the bandwidth of the

system. The frequency offset between the two LFMs – in addition to the nonlinear

frequency dependence – will ultimately determine the excess bandwidth beyond the

input waveform that makes up spectral regrowth. This is a huge advantage of the

offset-LFMs compared to other wideband calibration waveforms as it allows the

calibration waveform to probe much closer to the band-edge of the system, shown

as a comparison between the two waveforms in Figure 22. From Figure 22 we can

see that the offset-LFMs do not suffer from the usual amount of spectral regrowth,

which is typically given as 3× the bandwidth for third-order nonlinearities, 5× the

bandwidth for fifth-order, etc.

The reader should note that caution needs to be taken when using wideband

waveforms and probing close to the band-edge of a nonlinear system if the system

suffers from baseband nonlinearities. Baseband nonlinearities from such a, rela-
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(a)

(b)

Figure 22: Comparison of bandwidth efficiency for NLEQ/DPD calibration with
(a) the proposed offset LFMs being able to place probing tones near the band-edge,
limited by the frequency delta between the two waveforms, while (b) an example
of a generic wideband waveform with third-order spectral regrowth of 3BW .

tively, wideband waveform can create IMD products and harmonics that alias when

the are digitized by the ADC. This would obviously lead to a breakdown in the non-

linear modeling abilities. Further, in the case of baseband nonlinearities it could be

effective to superpose additional LFMs in order to obtain information about more

of the nonlinear Volterra kernels (e.g. ω1 + ω2 + ω3).
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4.3 Results

Simulations were run in MATLAB to evaluate the performance of the proposed

offset-LFM waveform for NLEQ calibration – NLEQ was chosen over DPD since

the receiver observes a more dynamic signal environment and, thus, the NLEQ

calibration needs to be robust. The nonlinear model used to generate the system

nonlinearities was based on a MP from [23], which had five (odd-order) power

terms and six delay terms, for a total of thirty coefficients. A bandwidth of 100 MHz

was chosen, which is close to the bandwidth of the Analog Devices AD9371 that

was used in [23], and 8,192 (213) samples were used for each waveform. Further,

the NLEQ model was also a MP with four power terms (up to seventh order) and

eight memory terms. The proposed waveform was constructed of two offset LFMs,

one swept from -35 MHz to 32 MHz, while the other went from -32 MHz to 35 MHz

– the two LFMs were offset by 3 MHz. Similaryly, fifteen sets of two-tones were

taken throughout the bandwidth, to be used for calibration performance testing,

(also taking up the bandwidth of -35 MHz to 35 MHz), each set also having a

spacing of 3 MHz. Additionally, the two-tone set that was used as a comparison for

the proposed waveform was made up of a single tone at -1 MHz and another at 2

MHz. Further, the two calibration waveforms were at the same power.

Initial simulations show very promising results, with the proposed waveform

greatly outperforming two-tone training over the bandwidth of the system. Figure

23 shows the two calibration waveforms, with their linear, nonlinear, and NLEQ

training spectrum being show. It is evident that the offset-LFMs can probe nearly

the entire bandwidth of the system with only a tiny sliver of spectral regrowth, while

the two-tone waveform suffers from a greater amount of spectral regrowth since all

of the waveform’s power is concentrated at two frequencies. The comparison of the

calibration performance is then shown in Figure 24. Figure 24 (a) shows when the
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(a) (b)

Figure 23: Two-tone results from AB testing of the (a) two-tone calibration wave-
form and (b) the proposed two-tone-LFM generalized calibration waveform.

calibration and testing waveforms are at the same power; the two-tone calibration

waveform is then identical to the testing waveform, which is why the two-tone

calibration outperforms at one point in the center of the band. However, it is quite

evident that the calibration performance quickly degrades to a point at the edges

of the band where NLEQ begins to “fail”, meaning that NLEQ actually begins

to lead to a increase in nonlinear spurs. On the other hand, while the proposed

waveform’s performnance does begin to degrade towards the far edges of the band,

it does remain reasonably effective, and at a similar level of effectiveness at that,

throughout the majority of the bandwidth of the system. Figure 24 (b) and (c)

are similar plots with the testing waveforms being 1 dB and 2 dB lower than the

calibration waveforms, respectively. What we can see is that the proposed offset-

LFM calibration continues to maintain a high level of NLEQ performance, while

the two-tone calibration waveform quickly degrades.

4.4 Conclusion

From these illistrative results, we can see that these initial simulations of the pro-

posed offset-LFM calibration waveform proves very promising at producing a more
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(a) (b)

(c)

Figure 24: Comparison between a single two-tone training and the proposed offset-
LFMs waveform. The dashed lines at the bottom are the fifth-order IMD, while
the solid lines at the bottom are the third-order IMD: (a) the results for when the
two-tone testing waveforms are at the same power of the training waverforms, (b)
the testing waveforms are 1 dB lower in power than the training waveforms, and (c)
the testing waveforms are 2 dB lower in power than the training waveforms.

robust calibration waveform for NLEQ and, thus, DPD as well. It is increasinly

necessary to have a robust calibration waveform for NLEQ (and DPD) in the in-

creasing spectrally rich environoment, paired with the growing demand for untra-

wideband, reconfigureable systems. Future work will include further analysis on

the performance of the proposed calibration waveform, along with measurements

on a modern digital phased array.
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5 Mutual Coupling Calibration of Digital Array Systems

All RF systems, especially phased arrays, need to be calibrated. For phased arrays,

the amplitude and phase of each element need to be aligned to effectively form a

beam in the desired direction, as well as maintain the desired sidelobes and be able

to effectively place a null in the direction of an unwanted signal/interferer [11], [12],

[151]–[154]. Further, LO offset as well as I/Q-imbalance need to receive some form

of calibration to properly modulate and demodulate transmitted and received sig-

nals, respectively [12]. The NLEQ and DPD coefficients also need to be calibrated

to effectively linearize the system [22]. As previously discussed, the phase, ampli-

tude, LO-offset, I/Q-imbalance, and nonlinearities change over a system’s lifetime,

as well as with temperature, frequency, etc. [81]. Additionally, the precise ele-

ment location needs to be accounted for [11]; many modern systems make use of

tileable, modular designs that can suffer from unknown gaps between panels – this

issue is obviously exacerbated for higher frequencies, such as mmWave, in terms

of wavelength – leading to possible inaccuracies in the element locations.

Phased array calibration can be broken down into two general categories: initial

calibration and in situ calibration. Additionally, in those categories there are two

general types of calibration: internal and external [12]. Internal calibration refers

to an array self -calibrating by using internal calibration mechanisms. On the other

hand, external calibration refers to the use of equipment that is not a part of the

operational array system. One type of these internal mechanisms use RF coupling

networks between different Tx and Rx pairs; however, these coupling networks

can add large amounts of complexity as well as introduce further unintended errors

[153]. Another type of internal calibration mechanism makes use of an additional

probe, which can either transmit or receive, or both [155]. Further, a calibration

probe can either be embedded into the array panel, attached in front of the array, or
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placed on the edges of the array. Some advantages of a calibration probe is that it

adds very little complexity, compared to the coupling network, and the probe can

calibrate multiple elements, potentially the entire array simultaneously. Further,

probe-based calibration can potentially occur during system operation in the case

of in situ calibration. On the other hand, the calibration probe increases the phys-

ical format of the system when extended out in front, while changing the active

impedance of the near elements in the array when embedded in the panel. An ad-

ditional complication is that not every array element will receive the same amount

of calibration accuracy since the element distance from the probe will vary across

the array panel. A final internal calibration mechanism is to leverage the inherent

mutual coupling present in the array. The mutual coupling method requires that

the system be an element-level digital transmit-receive system that has individual

control of the elements to operate at full-duplex – simultaneous transmit and re-

ceive (STAR) [12], [153]. However, if the system meets those requirements, no

additional complexity is required for the system. One potential downside of the

mutual coupling calibration is the DR requirements. This is especially of concern

for phased array radars, which transmit high amounts of power, while receiving

very small signals. One solution can be to add a gainless path around the Tx PA or

Rx LNA, or to add a switchable attenuator on the Tx/Rx chain.

Initial calibration is required once the phased array system has been built, before

the system is fielded [152]. Initial calibration will typically use an external calibra-

tion method, often in a spectrally quiet environment, such as an anechoic chamber

[12], [153]. Process variations and fabrication flaws lead to unknown phases and

amplitudes for each element of a phased array. Without knowing these inherent

errors, it is impossible to operate the system properly. Further, internal calibration

methods are more difficult and do not function well as the phase and amplitude

87



of the components required for internal calibration are also unknown. Therefore,

external calibration is generally required to determine the phase and amplitude of

each newly fabricated array element and align the system. Additionally, sometimes

it is desired for a system to not require further calibration after the array has been

fielded. This requires a large amount of calibration – often manifesting itself in a

lookup table (LUT) – over all operational frequencies, temperatures, angles, and

more. A great example of initial calibration was done for the Theater High Altitude

Area Defense (THAAD) [152], [155], consisting of 25, 344 T/R modules (from

72 subarrays), each with a 6-bit phase shifter and 6-bit attenuator. Additionally,

the THAAD employed six reference horns for in situ calibration purposes. Initial

calibration, described in [152], was accomplished with a planar nearfield scanner,

where only eight of the 64 phase shifter states were calibrated. Only calibrating

eight of the 64 states was a tradeoff between time and accuracy, incurring an ad-

ditional error of 0.6 degrees. Further, the distribution of the receiver gains were

shown, having a Gaussian-like distribution. Further, after the system was initially

calibrated by the nearfield scanner, the six reference horns measured couplings be-

tween each horn and each array element, these coupling values are then stored as

the “golden standard” calibration [155].

After a system has been fielded, calibration is often required to update the phase

and amplitude of each array element [12], [153]. How often these updates occur

greatly depend on the operational environment and tolerances of the system. For

the in situ calibration of a fielded system, it is highly desired to make use of one

of the internal calibration methods previously discussed, allowing the system to

operate without further intervention [153]. However, one growing area of research

for in situ calibration is based on the external use of a drone – allowing for the

far field calibration of a fielded system. Drone-based calibration is also extremely
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useful in updating and re-calibrating legacy systems that may not have many of the

aforementioned internal calibration mechanisms.

5.1 In-Situ Calibration Techniques

As mentioned, the THAAD employed six coupling horns used to calibrate the sys-

tem in teh field. The procedure, described in [155], is to compare the newly mea-

sured couplings between the horns and an array element with the golden standard

coupling measurements from the initial calibration, and then set the amplitude and

phase based on the difference. This ensures that the each element maintains the

correct amplitude and phase. Further, this method allows for the replacement of

subarray panels without the need for factory calibration. The calibration horns can

simply measure the couplings of the elements in the replaced panel and adjust the

phase and amplitude accordingly. However, one flaw in the calibration method for

the THAAD is that only one single element of the 25,344 elements is calibrated at

a time.

An on-chip calibration method was proposed in [156] and was refered to by

the authors as built-in-self-test (BIST). The BIST made use of a coupling network

which was coupled to all of the antenna ports. They propose that the BIST be

calibrated, before being connected to the antennas, with low cost DC and low-

frequency probes. Then, after the chip is connected to the antenna, the BIST can

update the calibration of the, now, fielded system. Further, they point out that the

impedance seen by the BIST will be different for those two situations and needs

to be accounted for. Lastly, results were shown for both an X-band and a W-band

phased array.

Fulton and Chappell [12] demonstrated the use of mutual coupling calibration

for a element-level digital array radar. They used the mutual coupling to calibrate
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not only the phase and amplitude of each transmitter and receiver, but also to correct

for DC offset and I/Q imbalance. Further, the effectiveness and importance of this

in situ calibration was demonstrated by increasing the temperature of part of the

array. As the temperature increased, the phase and amplitude of the elements began

to drift; after an increase of 14◦ C, one of the transmit elements had drifted in

phase by almost 180◦. The array was able to re-align the elements by using their

proposed mutual coupling calibration. The concept used by Fulton and Chappell

is what much of the proposed calibration method in this dissertation is based on.

Similarly, another mutual coupling based calibration was proposed in [153]. In their

proposed method, first they identify the pairs of elements in the array that should

have similar coupling between them (based on geometry, polarization, etc.). Next,

equations based on relating the element coupling pairs to each other in each set of

similar couplings were formed. Lastly, these equations are put into the complex

logarithmic domain in order to form an over-determined matrix equation, which

can be solved in the least-square sense. Most recently, Peccarelli and Fulton [22]

used mutual coupling to calibrate the NLEQ and DPD coefficients for a digital array.

However, the work only presented results for a narrowband, memoryless case, using

two tones, with an array of identical elements. The work in [22] is then extended

here to a wideband case, training the NLEQ and DPD coefficients across the entire

band for a digital array with non-identical elements and frequency dependence.

5.1.1 Mutual Coupling

Mutual coupling (MC) has been used to calibrate the amplitude and phase errors in

phased arrays, for both Tx and Rx channels [12]. To the authors’ knowledge, the

only research that has been conducted in mutual coupling based NLEQ and DPD

calibration was demonstrated in [22]. The proposed method is to initially use the
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low-power mutual coupling calibration method proposed in [12] to calibrate the

phase and gain errors for each element and the mutual coupling between elements.

Second, the Rx nonlinearities will be calibrated, ultimately to be used for NLEQ.

Lastly, Tx nonlinearities will be calibrated, to be used for DPD.

From [20], [21], we have the TR matrix, used to represent the effects of cou-

pling, gain, and leakage of the signals between Tx and Rx elements. The matrix is

given by

TR = GR(I + LR)C(I + LT )GT (76)

where GT and GR are diagonal matrices of the gain of the Tx and Rx channels,

respectively, I is the identity matrix, LT and LR are the leakage between Tx and Rx,

but can be ignored for fully digital arrays with independent channel circuitry, and C

is the coupling matrix. Here it was assumed that the channels were operating in their

linear regions by using two separate measurements. In the first state, transmitters

were operated at low power and receivers were operated in their normal state, in

the second state, transmitters were operated in their normal state and receivers were

attenuated. These operational modes were used to measure Rx errors, ignoring the

low power Tx errors, and to measure Tx errors, ignoring the attenuated Rx errors.

Lastly, the symmetry of the coupling matrix can be used to further estimate the Rx

and Tx errors, and the coupling values [12].

5.2 Mutual Coupling for DPD/NLEQ Calibration

Mutual coupling provides a great opportunity for in-situ DPD/NLEQ calibration

without any need for additional internal or external equipment – however, in the

results presented here, a switched RF attenuator is placed in the Rx chain, prior

to the nonlinear active components. In this Section we investigate the ability of
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Figure 25: The general proposed mutual coupling calibration procedure.

a system to to leverage the inherent mutual coupling in an array to calibrate both

the Rx NLEQ and Tx DPD parameters – essentially to extend the overall SFDR

of the entire system and/or improve the system’s efficiency. First, linear mutual

coupling, as described in Sec. 5.1.1, is used to estimate the couplings between the

different Tx and Rx elements, in addition to estimating the Tx and Rx gains, as

well as the Tx frequency dependence. Leveraging these estimates, the system can

then calibrate the Tx and Rx nonlinearities. First, the method for MC-DPD/NLEQ

will be described (conceptually shown in Figure 25 and Figure 26) and then results

from MATLAB simulations will be shown. Lastly, an extension of the current

simulations will be described.

After linear mutual coupling calibration is used to estimate the gains, couplings,

and frequency dependence, the Rx NLEQ coefficients are calibrated, followed by

the Tx DPD coefficients. The NLEQ parameters are calibrated before DPD since

it is possible to operate the Tx in the low-power linear region, while still coupling

over enough power to nearby receivers to drive the Rx LNAs into the nonlinear

region. Additionally, since the Tx is operating in the linear region, it is easy to

apply the linear Tx frequency dependence that was computed during linear mutual

coupling calibration. Digitally removing the Tx frequency dependence allows us to

assume that any nonlineary and frequency dependence seen on the receive is from

the receiver itself. Now, with the recevied waveform, the estimated Tx and Rx gains,

and the estimated coupling values between the different elements, we can estimate

a linear version of the received waveform. This estimated linear waveform can be
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 26: Mutual coupling DPD/NLEQ calibration method, NLEQ calibration:
(a) the low-power Tx signals in blue, (b) the Rx signals coupled from the Tx output
in orange with their IMD in green, and (c) the Rx signals after NLEQ has been
effectively calibrated and applied, removing the spurs. DPD calibration: (d) the
high-power Tx signals in blue with their IMD in yellow, (e) the Rx signals coupled
from the Tx output in orange with their IMD in green and the Tx IMD shown again
in yellow, (f) the Rx signals after NLEQ has been applied, removing the Rx induced
spurs, effectively showing the remaining Tx spurs, and (g) the Tx output after DPD
has been calibrated from the NLEQ Rx signals. DPD/NLEQ validation: (h) the
high-power Tx signals in blue with their DPD IMD in purple, (i) the Tx output,
showing an effectively linear spur free signal, (j) the Rx signals coupled from the
Tx output in orange with their IMD in green, and (k) the Rx signals after NLEQ has
been applied, removing the Rx induced spurs, showing a linear spur free signal.
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used along with the received waveform to calibrate the NLEQ coefficients – here

this is accomplished using least squares (LS). Next, now that we have calibrated the

Rx NLEQ coefficients, we can calibrate the remaining Tx DPD coefficients.

First, the switchable RF attenuator is switched on, helping to attenuate the

high-power Tx waveform, preventing the recevier from being completely saturated.

Then, the transmitter is operated in its efficient, high-power nonlinear region – note

that the Tx frequency dependence correction is not applied here. In order to more

accurately estimate only the Tx nonlinearities and frequency dependence, the pre-

viously calibrated NLEQ coefficients are used to remove any Rx nonlinearities and

frequency dependence. Then, after NLEQ has been applied, we can say that the

remaining signal represents the transmitted signal. Similarly to the NLEQ cali-

bration, the estimated Tx and Rx gains and coupling values are used to estimate

a linear received signal. The estimated linear signal is then, again, used with the

NLEQ corrected signal to estimate the DPD parameters. Now that the NLEQ and

DPD coefficients have been calibrated, the corrections can be applied to the Tx

and Rx, respectively, to mitigate the nonlinearities of the entire array, extending the

effective SFDR of the system.

5.3 Simulations

Simulations of the proposed MC-DPD/NLEQ method were conducted in MAT-

LAB, similarly to those from [22], using a 9× 9 digital array of horizontally polar-

ized dipoles, shown in Figure 27. The magnitude of the mutual coupling between

the elements is shown in Figure 28, also from [22]; the diagonal with the strongest

coupling represents the self-coupling between an element’s transmitter and receiver.

Further, the array was simulated at a center frequency of 3 GHz, with an element

spacing of half-lambda. Additionally, the system had a bandwidth of 100 MHz,
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Figure 27: The geometry used for the simulated 9× 9 array.

similar to the Analog Devices AD9371, or about a 3.34% fractional bandwidth.

An offset-LFM waveform, discussed in the previous Chapter, was used to calibrate

both NLEQ and DPD – the length of the waveform in the simulation was 214 sam-

ples, or 164µs. The remainder of this Section describes the full simulation setup, as

well as the results. First, the frequency dependence of the system, one of the differ-

ences from [22], is discussed. Then, the models of the Tx and Rx nonlinearities are

defined, similarly to [22]. Lastly, the simulated results are shown and discussed.

5.3.1 Frequency Dependence

Firstly, one of the main differences between this work and the work from [22] is that

the simulated array in this Chapter had frequency dependence in the channels, as
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Figure 28: The mutual coupling values between the 81 elements. The diagonal
shows self-coupling, which is by far the strongest.

well as performance variations between the elements. This required linear mutual

coupling calibration prior to NLEQ/DPD calibration, in order to account for the el-

ement variations, as well as frequency dependence. From Chapter 2, we know that

the nonlinear models for NLEQ and DPD can account for frequency dependence.

However, first we need to be able to separate the frequency dependence of the trans-

mitter from that of the receiver, since the signal during mutual coupling calibration

will be affected by both the transmitter and receiver frequency dependencies.

The frequency dependence for both the transmitters and receivers were a simple
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Figure 29: The frequency response of all 81 Tx channels, with the mean response
shown in black. The other responses are Normally distributed.

three tap FIR filter, given by

h = [0.9 + j0.5, −(0.1 + j0.1), 0.05]. (77)

Further, every element was given a slightly different filter in order to represent the

inherent performance variation typically present between elements. Both the trans-

mitters and receivers had the same frequency dependence with a Gaussian distribu-

tion with a standard deviation of σ = 0.1. The resulting frequency responses for all

81 transmitters is given by Figure 29, where the black line represents the nominal,

mean response.

Now, after the frequency responses of the transmitters and receivers have been
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Figure 30: Showing the effectiveness of linear, frequency dependence calibration.
Orange shows the digitally compensated waveform, while the ideal linear response
is shown in blue. After the calibration waveform passes through the transmitter,
the response, in yellow, matches the intended linear signal. Additionally, the purple
response is the received waveform prior to calibration. Finally, the green wave-
form shows that the receiver calibration is also effective at removing the frequency
dependence.

constructed, the linear mutual coupling values are determined in a similar fashion

to that described in [12]. In this case, a LFM with the bandwidth of the entire

system was used to gather the frequency response across the channel, as well as the

magnitude response due to the coupling. Figure 30 shows the results of using the

calibrated system frequency response (simply the inverse of the frequency response)

in order to linearize the system across frequency, allowing the elements to be of

equal phase an magnitude across the entire bandwidth. Further, Figure 31 shows
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Figure 31: The resulting coupling values from the first transmitter to the 81 re-
ceivers, obtained from linear calibration.

the resulting coupling values gathered during this golden standard process, a similar

concept to that which was discussed in detail in [12], [155].

5.3.2 Nonlinearities

Similarly to the methods used in [22], the nonlinear models for the transmitter and

receiver were static nonlinearities. This, paired with the preceding frequency de-

pendence yields a Wiener system, as was discussed in Chapter 2. The transmitters

were made up of a seventh-order static nonlinearity with a gain of 30 dB and a 1-dB

compression point of 30 dBm. This was put into an in-house MATLAB function

and an odd-order polynomial was output, representing the memoryless nonlineari-
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(a) (b)

Figure 32: (a) the input-power vs output-power plot for the transmitters and (b) an
example of the nonlinearities produced by the transmitter’s nonlinear model.

(a) (b)

Figure 33: (a) the input-power vs output-power plot for the receivers and (b) an
example of the nonlinearities produced by the receiver’s nonlinear model.

ties of the Tx channel. The input-output power curve of the Tx channel’s nonlinear

response is shown in Figure 32a. Additionally, an example of the nonlinear response

from a two-tone stimulus is given in Figure 32b.

On the other hand, the receivers were modeled with a gain of 30 dB and a 1-dB

compression point of 0 dBm. The static nonlinearity was produced by the same

in-house MATLAB function, producing an odd-order nonlinear system represented

by Figure 33a. Additionally, Figure 33b gives an example of the output of the

nonlinear system with a two-tone stimulus.
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Figure 34: Offset-LFM output from the first transmitter, operating in its linear low-
power region, showing an output that well matches the expedted linear output.

5.3.3 Receiver NLEQ Calibration

Now that the digital array’s transmitters and receivers have been defined, the cal-

ibration simulation can be conducted. First, NLEQ for the receivers is calibrated.

The reason why the receivers are calibrated prior to the transmitters is because

we know that we can operate the transmitters in a low-power linear region, which

will still drive the sensitive receivers into compression. Additionally, given the

frequency response calibration that was previously conducted, we can transmit a

signal without frequency dependence by applying the inverse of the frequency re-

sponse digitally, prior to sending the waveform through the system. The waveform

that was used was the offset-LFM waveform proposed in Chapter 4 in order to ef-
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Figure 35: The received offset-LFM coupled over from the adjacent transmitter.
There is noticeable effect from frequency dependence in the main band of the wave-
form. Additionally, third- and fifth-order spurs are showing some spectral regrowth
at the edges of the waveform.

fectively calibrate the entire bandwidth and correct for the frequency dependence.

The goal will be to encapsulate the nonlinearities as well as the memory effects into

the NLEQ (and DPD) coefficients to minimize the equalization steps required in

signal processing.

The first transmitter transmited an offset-LFM with a power of −24 dBm with

a bandwidth of 74 MHz, with an offset of 3 MHz between the two LFMs. For

simplicity, here we use the adjacent transmitter to calibrate the receiver. Figure 34

shows that the waveform that is being transmitted is at −24 dBm and operating

linearity, as expected. Then, Figure 35 shows that the receiver is beginning to oper-
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Figure 36: The NLEQ training results, in yellow, show a good reduction in the
nonlinear spectral regrowth, in addition to a mitigation of the strong frequency de-
pendence.

ate nonlinearly with IM3 more than 30 dB above the noise floor. Additionally, we

can see effects from the frequency dependence with the wave/lump in the nonlinear

plot.

Then, since we have the received nonlinear signal, and we know which signal

we transmitted along with the coupling between the transmitter and receiver, we

can train NLEQ. The NLEQ model was a memory polynomial – it is expected that

this will generalize well to the system’s Wiener nonlinearity. In this case, NLEQ

required an order of eleven (six power terms) and a delay of fifteen. The bandwidth

generalization as well as the dynamic range requirements required a large model in

order to meet the performance requirements. Figure 36 shows the results, mitigating
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(a) (b)

(c)

Figure 37: (a) the Tx output for NLEQ validation; shows the transmitter is oper-
ating linearly, (b) the Rx output, showing a significant amount of nonlinear spec-
tral regrowth in addition to the strong frequency dependence evident in the main
bandwidth of the waveform, and (c) the NLEQ corrected waveform (in yellow)
has effectively mitigated the spectral regrowth and frequency dependence with the
previously calibrated NLEQ coefficients.

the IM3 by more than 20 dB, as well as removing the strong frequency dependence.

Then, in order to confirm that the NLEQ coefficients are well generalized and

functioning properly, we validate using a different waveform bandwidth, power,

and frequency spacing. The power was reduced to −30 dBm and the bandwidth

reduced to 54 MHz. Additionally, the LFM offset was increased to 7 MHz. Fig-

ure 37a shows that the transmitter, as expected, is operating linearly. Figure 37b

shows that the receiver is operating in the nonlinear region, and suffering greatly

from frequency dependence, with IM3 about 20 dB above the noise floor and a few
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Figure 38: The Tx output for the DPD calibration. The output waveform shows a
significant amount of spectral regrowth with the system being operated deep into
its nonlinear region.

dB of frequency effects in the main bandwidth of the waveform. Lastly, Figure 37c

shows the results from using the previously calibrated NLEQ coefficients on this

new received waveform. The nonlinearities have been completely removed, both

the power nonlinearities as well as the frequency dependence. This demonstrates

good results for the overall generality and effectiveness of the mutual coupling cal-

ibrated NLEQ coefficients using the offset-LFM waveform.

5.3.4 Transmitter DPD Calibration

After the receivers have all be calibrated with NLEQ, the transmitters can then be

calibrated with DPD. In a similar fashion to [22], a 70 dB attenuator on the Rx
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Figure 39: The received waveform, after being attenuated with the switched RF
attenuator. There is further a further addition of nonlinearities by the Rx chain.

channels, placed before any active components, is switched into the RF signal path

in order to not completely saturate the receivers while operating the transmitters in

their high power, nonlinear region. Additionally, it should be noted that a weaker

attenuator, or no attenuator at all, could be used if using receivers far away from the

transmitting element; however, here we use the adjacent element. One of the rea-

sons for doing this is to guarantee that the transmitter is not saturating any elements

in the array. This is something important to note as driving active components deep

into their nonlinear region (saturation) can change the input impedance, and thus,

the input impedance of the antenna element and its coupling with other elements in

the array. This situation could lead to an inaccurate or less effective calibration.
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Figure 40: NLEQ, in yellow, having mitigated the Rx nonlinearities and frequency
dependence, leaving only the nonlinearities and frequency dependence induced by
the Tx chain.

The receivers have been calibrated for NLEQ, including their memory effects;

therefore, we also want to calibrate the transmitters with DPD that includes the Tx

memory effects. During the Tx DPD calibration the frequency dependence cali-

bration is not applied – recall that it was applied during the Rx NLEQ calibration.

Using the same offset-LFM waveform from the NLEQ calibration with a power of

30 dBm, the Tx elements can be calibrated. The DPD coefficients used a memory

polynomial model, similar to NLEQ, with an order of 15 (eight power terms) and a

delay of 13 in order to effectively capture the high-power nonlinearities. Figure 38

shows that the transmitter is operating deep into its nonlinear region.

Then, Figure 39 shows the received signal from the adjacent element, adding
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Figure 41: The DPD trained waveform, in yellow, showing good mitigation of the
Tx nonlinearities.

some additional nonlinear impairments. Applying the previously calibrated NLEQ

coefficients helps to remove the receiver-induced nonlinearities, leaving only the Tx

nonlinearities, shown in Figure 40, that need to be removed with the DPD calibra-

tion. Recall, this ability is the reason that NLEQ is calibrated prior to DPD. Now

what remains is the approximated transmitted signal, and given the linear signal

that we expected to receive, we can calibrate the DPD coefficients. Lastly, Figure

41 shows the resulting receiver-side DPD calibration, mitigating the IM3 by more

than 10 dB and removing the Tx frequency dependence. Note that even though the

10 dB of mitigation does not seem very effective, the Tx training waveform was op-

erated far into compression, much further than is typically done during operation.
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Figure 42: The Tx beamforming results from an input of two CW tones and their
IM3 products. The calibrated DPD coefficients were also applied, mitigating the
IM3 beams by more than 40 dB.

This was done in order to grantee that the entire dynamic range of the transmitter

was calibrated.

5.3.5 Tx Beamforming with DPD

After the entire array has been calibrated for NLEQ and DPD, it is useful to look

at the effect at the array-level. This is easily done through beamforming two CW

signals from different directions; in this case a 5 MHz (baseband) tone coming from

−5◦ in azimuth and a 8 MHz tone coming from 12◦ in azimuth. Recall that, from

Hemmi [36], it is straightforward to determine the direction of the IM3; in this case

at −22◦ and 31◦. Without DPD this results in IM3 that are less than 20 dB below
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the main signals. On the other hand, with DPD the IM3 mitigated by more than 40

dB, resulting in a much cleaner spatio-spectral output. Lastly, since the wideband,

offset-LFM was used, these results are valid across the system bandwidth.

5.4 Conclusion

This Chapter demonstrated an effective wideband, in situ calibration technique for

NLEQ and DPD for a digital array. The calibration provided one set of coefficients,

for each Tx and Rx, to correct the inherent phase and amplitude errors across the

array, across frequency, as well as correct the nonlinearities of the array. Simulated

results showed that the proposed calibration method provides an elegant solution to

maintaining a calibrated and linear digital array system while in the field. Addition-

ally, the beamformed results showed a large increase in the spatio-spectral dynamic

range of the system.
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6 Conclusion and Future Work

In conclusion, digital array dynamic range, ultimately defining the system’s perfor-

mance, is typically limited by the correlation of unwanted spurious products. These

spurs were shown to have come the nonlinearities in the system; such as amplifier or

mixer nonlinearities. Additionally, methods for mitigating and decorrelating these

spurs were shown. LO decorrelation techniques were shown to be effective for

eliminating mixer nonlinearities as well as baseband even-order spurs and harmon-

ics. Then, to remove the odd-order spurs, NLEQ for receive and DPD for transmit

were shown to be very effective at linearizing a nonlinear system. However, one

common issue is the difficulty with calibrating these linearization techniques.

The main contributions of this dissertation are the proposed offset-LFM for

NLEQ and DPD calibration. The proposed waveform was shown to generalize

across the entire bandwidth of the system as well as at multiple different power lev-

els. This calibration waveform helps nonlinear systems to effectively extend their

SFDR in modern spectrally-dynamic environments. The other main contribution of

this dissertation lies in the mutual coupling-based calibration for NLEQ and DPD.

This calibration technique, here leveraging the proposed calibration waveform, was

shown to effectively calibrate the NLEQ and DPD coefficients for a fielded system;

additionally taking into account the frequency dependence of the system as well

as the variations between elements. Lastly, the combined mutual coupling method

with the proposed calibration waveform effectively mitigated spurious beams in the

array on transmit, helping the system perform in a more efficient and linear fashion.

Future work will consist of taking the measurements, using the proposed cali-

bration waveform, in a real digital array to test the accuracy of the training wave-

form. Further, to test the proposed calibration waveform’s resistance to changes

in temperature/voltage compared to other potential calibration waveforms. Addi-

111



tionally, to test the proposed mutual coupling calibration for NLEQ and DPD on a

modern fully-digital array. These measurements will then help to adjust for differ-

ent dynamic range considerations, as well as the reality of a superfluous number of

potential coupling signals to account for.
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