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INTB.ODUCT ION 

The dawn of polarography is usually attributed to Kucera (12) 

who, in 1903, while employing a dropping mercury electrode (D.M,E,) to 

study the electrocapillary beh avior of mercury in various solvents, 

noticed peculiar inflections in curves obtained when reducible sub= 

stances were present. Acting on Kucera 1 s suggestion, Jarosla v Rey� 

rovsk:y (6) applied the D.M.E. to the study of reducible substances, 

and found that both qualitative and quantitative applications of the 

results obtained were possible. 

The work received impetus in 1925 from the invention, by Heyrov= 

sky and Shikata (10)� of an automatic recording instrument for the 

new analytical method. The instrument was called a polarograph and 

the waves obtained were referred to as polarograms. The work con

tinued, on an increasing scale, but still largely due to Heyrovsky 

and his co-workers, until 1935, when Heyrovsky and Ilkovic (9) ex

plained the significance of the half-wave potentials and wave 

heights, and placed polarography on a sound theoretical basis, 

Since that time, polarography has grown on a world=wide scale un= 

til today it ranks as a major instrumental method of analysis. 

The polarograph consists of a steady direct current source, the 

potential of which can 'be varied through a potentiometer. This po= 

tential is applied across an electrolysis cell, one electrode of 

which is very small and polarizabl e (the microelectrode), the other 

being larger and non-polariza'bleo A current=measuring device is�a.J:.so 

included in the ci rcuit (see Figure 2). 

The most widely used microelectrode consists of a small drop of 



mercury which is forme·d and released at the end of a capillary tube, 

such drops being renewed by maintaining a flow of mercury through the 

.capillary at a constant rate. The non=polarized electrode is either a 

pool of mercury or some suitable half-cell
9 

such as the saturated calo=

mel electrode. The current measuring device may be a galvanometer of 

long period, or a recording potentiometer operating across a known re-

sistance in the circuit. 

Many workers have used the oscillograph as a measuring instrument 

with the D.M.:m. This has proved useful in studying the reversibility of 

reactions (6 9 24,), the process of diffusion (5 9 19 9 20) and capacitance 

currents (3). Airer (1) claims no appreciable loss of accuracy with the 

2 

oscillograph. There is 9 
however, a great deal of experimental difficulty 

involved, chiefly in obtaining good saw-tooth voltage sources (4 9 17 » 18) 

and synchronization of voltage sweep with drop time (15)� Too
9 

the re=

sulting wave is not always simple. 

A ty-pical polarogram is shown in Figu.re l. As an increasing voltage 

is applied to the electrolysis cell
9 

a small current flows. This is the 

residual current. It may include
9 

for the D.M.E.
9 

a small electrocap-

illary effect produced by those ions which lower the interfacial ten-

sion between mercury and the solution. Another
9 

more important
9 con-

tributor to the residual current is the condensor current. This re-

sults from the capacitance of the mercury-solution double layer at 

the interface. In addition, since it is almost impossible to remove 

the last traces of oxygen and other impurities 9 
there will be a slight 

fara.daic current during the reduction of such impurities. 

Whe� the applied voltage reaches the decomposition potential of 

any electro-reducible substance present. reduction commences. As the 

voltage is increased. the solution around the microelectrode becomes 
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depleted in reducible ion, until it reaches the state (the limiting 

current) where reduction is dependent only on the rapidity with which 

ions can diffuse in to the electrode. This in turn is dependent on 

the concentration of the reducible substance present. Since the cur

rent at this time includes both this so-called diffusion current (Id)

and the residual current 9 the diffusion current itself is the limiting 

current minus the residual current. 

4 

If the reducible substance were alone in the solution 9 
the limit

ing current would also be dependent on the migration of these ions 9 
with 

subsequent variation due to depletion at the microelectra,de. In prac

tice, however, the migration current is made negligible by adding an 

electrolyte (variously called the indifferent electrolyte, the support

ing electrolyte, or the carrier) at a concentration of 50 to 100 times 

greater than that of the reducible substance. 

Another capillary action may take place if the concentration of 

the reducible ion, through adsorption, becomes greater around the 

microelectrode than in the rest of the solution. This results in a 

maximum in the limiting current which is not predictable or reproducible. 

This may be eliminated by addition of surface-active agents 9 such as 

gelatin, called maximum suppressors. Although it is concentration de

pendent, there is no simple relation between the height of the maximum 

and the concentration of the reducible substance (ll)o 

The D.M.E. continues as the basic microelectrode, not only be

cause of its historical position 9 but also because of its several 

advantages. Thus, for example, the surface area is reproducible 

and easily calculated from the weight of the drop. The surface 

itself is always smooth and is never completely contaminated by 



reduction product, for it is constantly being renewed by the falling 

away of old drops and their replacement by new ones. Finally
0 

not 

only will mercury amalgamate with most metals
0 

but also
9 

since the 

over-voltage of l"cy"drogen at mercury is high
0 

hydrogen evolution does 

not interfere with work even in fairly acid solutions. 

In addition, the underlying theory governing the behavior of the 

dropping mercury electrode is well understood. 

5 

Despite the several advantages of the DoM.E", however 9 there are 

many ways in which other electrodes might be much better. The drop it

self
9 

with the current increasing as the drop grows, causes the current

voltage curve to contain oscillations. To minimize these. the meas

uring device must have a long period a:nd/or be damped. Since such 

oscillations must be averaged and yet meaningful changes in the curve 

be observable
9 

slow scanning rates must be employed. Currents are not 

large 9 but the consumption of high�grade mercury is. In addition
9 the 

oxidation pote ntial of mercury is low 9 which makes it unsuitable for 

most a:nodic work. 

Various schemes have been tried to overcome these disadva:ntages 9 

such schemes involving both alterations in the design of the mercury 

microelectrode and the use of materials other than mercury for micro

electrodes. 

The use of solid microelectrodes for electrolyses dates back as 

far as does the development of the dropping mercury electrode. Salomon 

(23) used stationary electrodes in 1897. but the results obtained were

very poor. 

In polarography. many stationary electrodes, made of various metals 

and of amalgamated metals, have been studied (1
9 2). Such electrodes 9 

employed without stirring. possess the serious disadvantage that the 
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time required for analysis is too great. The increase of applied poten

tial must be stepwise 9 with the potential held at ea�h step and time al

lowed for equilibrium to be established before readings are taken 9 and 

the curves then hand-plotted. Attempts to obtain such curves automati

cally result in the appearance of current maxima (21)
9 

although it is 

claimed that these so-called� maxima may be eliminated by operation 

at elevated temperatures (25). Any kind of stirring
j 

,even by convection 9 

must be carefully avoided. 

A great improvement on the stationary electrode is the rotating 

microelectrode. Nernst and Merriam (16) used a rotating platinum elec

trode as early as 1905 in studying silver ions 9 
permanganate ions

9 and 

halogens. Th,e most commonly used form is probably that of Laitinen and 

Kolthoff (13L who used a platinum wire 0.5 mm. in diameter 9 extending 

3.2mm. horizontally from the side of a revolving steel shaft (see Fig

ure 3). There has been some confusion in the literature concerning the 

rate of rotation of the microelectrode
9 

but it is now commonly accepted 

that speeds above 600 r.p.m. cause little change in the current from 

that obtained at 600 r.p.m. (22). 

The solid rotating mieroelectrode has certain featuxes not posses--

sed by the D.M.E. There is no drop formation9 consequently smooth 

waves can be obtained with a minimum of damping and the subsequent loss 

of sensitivity. Scanning rates can be faster and currents are much 

larger. With platinum 9 anodic work is possible at quite high voltages. 

Electrodes do not wear out and are simple to prepare. 

On the other hand » disadvantages of solid microelectrodes include 

the smallness of the hydrogen overvoltage
0 

which limits the usable 

range to voltages less negative than those obtainable with the D.M.E. 

In addition 9 plating of metals onto the electrode during runs changes 
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its characteristic completely
9 

which means that the past history of the 

microeledtrode is significant
» 

and treatments must be devised to restore 

the electrode to its original state. Fu.rthermore
9 

the theoretical treat

ment of results obtained with such electrodes is not satisfactory thus 

far. 

�ecause polarography is a practical analytical tool
9 

research in 

this field continues in many laboratories. Such work is designed to ex

tend the applications of polarography to new substances as well as to 

make existing techniques more convenient and accurate. Iri general
9 

there 

are four paths to these obj.actives. The first involves the electrode 

itself. Here investigation is aimed at the designing of radically new 

types of electrodes or the redes�gn.ing of exist�ng t;v:pes. The s�c9nd -

path involves investigations of.the supporting electrolytes most suit

able for given determinations. The third path involves the determination 

of what substances are capable of being analyzed by existing polarograph

ic methods. The fourth approach is that dealing with any phase of in

strumentation, including special techniques
9 

circuits, etc� 
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SCOPE OF RESEARCH 

I.t is obviously impossible for one investigator to make any kind

of exhaustive study along all of the possible paths indicated. In fact D 

the scope of the field of polarography is such that even one path of re

search can merely be started in the graduate school experience of one 

student. 

In this study 9 rotating microelectrodes 0 standard in size and speed 

of rotation
9 were employed. Two objectives were in mind. First 9 dif

ferent electrode materials were to be studied in an effort to find a 

material which would give a wide cathodic range and reproducible results 

with a minimum of attention. Amalgams were of special interest since 

from their liquid surfaces any accumulation of metal or other water�in

soluble reduction product should be swept away by the stirring action of 

the electrode as it moves through the solution. Such action would 9 
to 

a great e:x:tent
8 

aid in preventing e_i ther electrode blocking or electrode 

area increase. In addition, the hydrogen overvoltage of any amalgam 0

and thus the cathodic range, would be expected to be larger than that 

of any metal except pure mercury itself. 

Secondly, the influence of scanning rate was to be studied. It was 

felt that not only could the time required for analyses be cut down by 

faster scanning rates
9 but also the amount of electrolysis product form

ed would be decreased and the electrode thus made to behave more like 

the D.M.E. with its constantly renewed surface. 

While the time for a run with the dropping mercury electrode i� 

limited by the nature of the drop to rather slow (five minutes or more) 

or very fast (one-twentieth second) rates
v 

and the stationary microelec= 
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trode is limited to slow rates by the time :involV'ed :in coming to equi

libriwn 9 there would seem to be no such limitation in the case of the 

rotating microelectrode. !ndeed 9 once the diffusion layer has been 

established
9 

the scanning rate should be limited only by the kinetics of 

the reaction and the response of the recording instrwnent. In the de

termination of metal cations
9 

the electrode reactions usually are fast 

enoug h. The oscillograph response is so nearly i nstantaneous as to be 

adequate in a:ny feasible range of scanning time. Actually
9 

the fastest 

speed used was three seconds 9 which is slow both kinetically and ele� 

troni cally. 
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EXPERIMENTAL DETAILS 

Two polarographs. both having, essentially. the circuit shown in 

Figure 2, were employed. Both may be operated with either upsweep or 

downsweep voltage scanning. Both have a range of zero to three volts
0 

with preset starting voltages that are either additive or opposed and 

are continuously variable. 

The first instrument, commonly called the experimental model. was 

designed by Dr. Paul Arthur and built in this laboratoryo It has a 

large selection of scanning speeds, ranging from 26 seconds to lO hours. 

Recording may be done phot ographically or on a Brown potentiometer or 

on an oscillographo The mechanical response of the Brown recorder 

makes it impractical for scanning rates of less than two minutes; the 

galvanometer used in photographic recording is somewhat more responsive. 

The second instrument, commonly called the high-speed model. was 

also designed by Dr. Arthur and built in this laboratory. This polaro= 

graph has two fixed scanning rates. one of three seconds and the other 

of four minutes 4o seconds, and is adapted for use only with an oscillo

graph. 

Pen- and chart-recording was done with a Brown Electronik Potentio

meter
0 

Model No. 153Xl2V-X...30. The oscillograph employed was a DuMont 

Cathode Ray Oscillograph0 Model 304H. Photographs of the oscillograph 

traces were made with an Ibsor D.R.P, camera. with the shutter set at 

f/9 and at a fixed focal length of 13 inches. The camera and oscillo

graph screen were enclosed in a light-tight box and shield. Eastman 

Kodak Panatomic X film was used
0 

with enlargements made on F-4 Koda= 

bromide paper. 
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The referen�e electrode was the saturated calomel electrode (S.C.J.)i 

consequently. all potentials listed are with reference to the S.O.E. 

Potential calibrations were made using a Wheatstone bridge, es-

sentials of which are a Leeds and Northrup galvanometer, Leeds and Nor-

thrup decade box and Gray instrument Co. No. 9244 potentiometer. The 

potentiometer was its elf calibrated against The Eppley Lab., Inc., 

standard cell No. 452498. 

The current axis of the Brown potentiometer was calibrated by us-

ing a known resistance in place of the electrolysis and reference cells. 

The ordinate of the DuMont oscillograph was calibrated in the same way, 

but the results were not as satisfactory owing to lack of stability in 

the behavior of the oscillograph. Although the amplification factor of 

the oscillograph is quite stable under ordinary conditions, it is dif-

ficult to detect the effect of a weak tube. On two occasions during 

this work it became necessary to replace tubes and rebalance the push� 

pull amplifiers. On one occasion, a number of circuit resistors and 

capacitors also required replacement. 

The basic microelectrode employed was a rotating platinum wire 

electrode. The platinum wire was imbedded in a hole in the side of a 

steel shaft and secured with Wood 0 s metal (Figure 3). The shaft was 

electrically insulated by coating with ©eresin wax. A glass bead on the 

platinum wire insured a reproducible length. The shaft was rotated at 

a speed of 600 r;p.�m .. by a 0.050 hopo Dayton Electric Mfg. Co. motor\ the 

motor speed of 1500 r.p$m. being reduced to the desired speed by ap= 

propriate pulleys. 

Eight different microelectrodes were used. In addition to the 

basic platinum ele©trode 0 electrodes of copper 0 gold and silver were 
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prepared. All four metal electrodes were also used in an amalgamated 

form. The copper
0 

gold and silver electrodes were made by electroplat

ing the platinum wire electrode with the desired metal. Electroplating 

was also used
9 

in preference to dipping
9 for amalgamation

9 
in an attempt 

to insure reproducibility of surface and uniform thickness of coatings. 

Electroplating details are found in Table le 

The microelectrode platings were renewed as necessary. All plat

ings except the gold
&
which was never renewed,,were removed with 5o% 

nitric acid in preparation for replating. This was done more often 

than otherwise would have been necessary 9 for it was desired to estab

lish the reproducibility of the electrode preparations. 

All reagents used conformed to American Chemical S�ciety Reagent 

Grade specifications. All solutions were made with distilled water. 

All solutions were degassed with nitrogen for at least 15 minutes 

prior to running polarograms. The nitrogen was first run through al-

kaline pyrogallol solution
9 followed by concentrated sulfuric acid 9 in 

gas saturation bottles. The solutions were also kept under a nitrogen 

atmosphere during runs. 

The reference cell and electrolysis cell were joined by a ground 

glass ball-and-socket joint
9 each sidearm being 4o cm. long. The side

arms were packed with glass wool. 

The constant-temperature control was provided by a large central 

reservoir containing water held at 25.0 '±' 0.1° 0. 9 with each individual 

cell bath connected into the closed circulating system. The constant= 

temperature water thus provided circulated through a copper tube coiled 

in a water-filled battery jar which served as a ©ell bath. A tightly

fitted plywood lid
9 

with holes for the reference cell 9 electrolysis cell 0
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Table I 

Microelectrode Preparations and Statistics 

Electrode Platinum Copper Gold Silver Amalgam 

Plating Ool M Ool M 0.1 M 0.1 M 
solution CuS04 Auc13 AgN03 Hg012 

Plating 5 min. 5 min. 5 min. 90 sec, 
time 

Plating 
current 0.3 L2 Oo8 Oo2 
in ma. 

Length 3°185 3° 576 3°279 2,606 
in mmo 

Diameter Oo5ll Oo483 00526 0°775 
in mm. 

Area in 5°313 5.610 5.641 6.3Hi 
sq. mmo 

Thickness 
of plating 0.001 00002 0.041 

in mm. 
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stirrer, and thermometer
9 

covered the cell bath. The thermometer was 

calibrated against a Eureau of Standards thermometer
9 

and the constant

temperature work was done at 25 ± 0.1°

0. 
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RESULTS AND DISCUSSION 

ELECTRODES 

17 

All eight microelectrodes enumerated in the previous section (see 

p.14) were investigated with respect to usable cathodic range by nm.=

ning polarograms on solutions containing only O.l M KOL 9 
the support= 

ing electrolyte. Figure 4 shows the shapes of the curves obtained and 

the relative magnitudes of the residual currents. The decomposition 

potentials (hydrogen
9 

or carrier electrolyte) agree with those found 

by Maness (14) for the platinum
9 

copper
9 

gold, copper amalgam and 

gold amalgam electrodes he investigated
9 

and by Airey (l) for the sil= 

ver amalgam. From this it can be seen that the amalgamated electrodes 

all allow operation at a significantly more negative potential than 8I!.Y 

of the corresponding metal electrodes. 

In making these
9 

and other runs with the oscillograph
9 

quantitat·ive 

results were hard to obtain owing to the instability of the oscillo

graph. Figure 5 shows two consecutive runs with the O.l M KOL supporting 

electrolyte using the platinum amalgam electrode. This illustrates 

quite clearly the extent of the drift on the vertical deflection of 

the oscillograph. Only by making a number of duplicate runs and com= 

paring wave forms obtained on the Brown potentiometer with curves ob= 

tained on the oscillograph was it possible to select the photographs 

uninfluenced by instrument instability. This point will be illustrated 

again in subsequent sections, 

All eight electrodes were used with three polarographically=com= 

mon cations in a study of the wave forms obtainable. 

with 0.1 M KOL carrier� the waves were as shown in Figure 6. Typical 
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of the waves of Pb(No
3
)

2 
in O.l M KOL is Figure 7.

Behavior of the ferric ion was not as uniform for the various elec-

trodes tried. The platinum, copper, gold
9 

silver, �opper amalgam and

gold amalgam microelectrodes gave a wave typifie d by Figure 8, while 

the silver amalgam and platinum amalgam waves show the two-step a ppear

ance of Figure 9. 

The first step in any reduction of ferric ion should be to the 

ferrous ion. The second wave, then, should be observed only when the 

decomposition potential of the car rier electrolyte is negative enough 

to permit the reduction of the ferrous ion. Figure 10 shows the polaro= 

gram of FeS04 in O.l M x
2
o

2
o4 with the platinum amalgam microelectrode. 

The half=wave potential agrees with that of the second wave of the fer

ric ion. 

Figure 5 would seem to indicate that the copper amalgam electrode 

should also show a second wave. Howeve r, the half-wave potential (E-i) 

of the ferric ion with the copper amalgam electrode is appreciably more 

negative than the corresponding Ei for platinum amalgam and silver amal

gam� and so would be the Et for the reduction of ferrous ion with the

copper amalgam microelectrode. 

Freshly-amalgamated electrodes quite often gave waves with anoma

lous variations on the first run. Merely removing the solution, wash

ing off the electrode with distilled water
9 

and starting again with a 

new electrolysis solution eliminated this trouble. This phenomenon was 

also noted by Cooke ( 2) in his work with silver amalgam electrodes
9 

and 

was attributed by him to the presence of cadmium and lead impurities 

in the mercury. Since the amalgams used in this research were produced 

by electroplating, it seems more probable· that the variations observed 
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here were caused by other factors. Thus
9 

any mercuric ion not washed 

25 

off the electrode
0 

mercurous ion present as a result of incomplete re

duction
0 

or electrode metal ions (e.g.
9 

cupric ions from the copper 

microelectrode) resulting from a direct oxidation of the metal by mer

curic ions, would be expected to give the same type of anomalous waves. 

This trouble was especially acute with the copp�r amalgam electrode. 
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SUPPORTING ELECTROLYTES 

In starting work on the rotating microelectrode
0 

one of the first 

problems was that of finding a suitable supporting electrolyte. .There 

seemed to be no reason for believing that O.l M KOL would be unsatis-

factory
0 

but O.l M LiCl (7) and O.l M (cH
3
)
4

NCL (9) have been used in 

an attempt to extend the useful range of the dropping mercury electrode 

to more negative potentials. All three carriers were used with the 

platinum and platinum amalgam electrodes 9 and Figures 11 and 12 show 

the waves in forms easily comparable. Results with the copper elec

trode were similar to those shown for platinum. 

Despite their advantages with the D.M.E.
0 

results of this study 

did not justify using the hydrated LiCl or the very hy'groscopic 

(cH
3

)4NOl when KOl would serve at least as well. The study was dropped

at this point since this app roach did not seem to yield profitable re

sults. 
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SCANNING RATES 

All four amalgamated microelectrodes were studied 9 each with 

cadmium 9 lead9 and ferric ions 9 in an at tempt to evaluate the effect 

of widely different scanning rates on the wave forms 9 half-wave poten-

tials and linearity of the diffusion current with concentration. 

It was hoped at the start of this work that polarograms at all 

scanning rates could be recorded photographically from the oscillograph. 

Unfortunately, however 9 the instability of the oscillograph made it 

quite unsuitable for slower scanning rates. Figures 13
9 

14 and 15 

-4
show the results of that attempt for 10 x 10 M Od(No

3
)
2 

in

O.l M KCl with the copper amalgam microelectrodeo Figure 13 is at

three seconds 9 Figure 14 at 30 seconds 9 and Figure 15 is at the two 

minutes 9 45 seconds scanning speed. The instability of the oscillo

graph is readily seen �Y comparing Figure 15 with Figure 6
9 

the latter 

being for the same solution recorded on the Erown potentiometer at the 

same speed. 

It is obvious that the differences noted above were a matter of 

instrumentation, not of ele�t:rode response. On the other hand, Figure 

16 shows the same ion under the same conditions using a nine minute 30 

seconds scanning rate, the Erown pot,entiometer being used for recording. 

ln this case 9 the difference (Figures 6 and 16) is more likely a result 

of the decrease in scanning rat e 9 and the effect of that decrease on 

the microelectrode • .  Since this is more pronounced in the case of the 

lead analysis, it will be discussed at greater length later o

Since the platinum amalgam electrode was studied most extensively 9

results of that work will be treated first. 



+> 
A 
Q) 
H 
H 
;j 

0 

. .. 

..... ... . . . ' ....... ··1· ... 
............. � ...... ," ... �.� .. " .. ...:.\ ..... ._
• . ' f 

/ 

,., .. i,/''"' 

. I 
• . 

... � .,.,.�,,., ........ ,.,,, ... .-1.'.) •
r 

Potential of microelectrode in volts, vs. S.C.E. 

Figure 13 Polarogram of 10 x 10-4 M Cd(No
3

)2 with the
Copper Amalgam Microelectrode 

Carrier - O.l M KCl 
Scanning rate - 3 seconds 

. , 
;• 

... 

J 

, ............... ....._._. __ ... 
-2.0

I\) 
"° 

1' ., 

.I 
ii! , 

..... 



.p 
Q 
(I) 
S-t 

8 
0 

./' ... _ _,,.,.
-'=

--..._.....__ 
.,,,,, 

_ __,,,,,. 

"., ..... ..,.,. .... � 
/

/, 
�' 

/' 

··,�.::as�-----===-----.: .. --,;=,=.,.;.__._ _______ ...__ ______ zJ -- --
� .:r:o- -1.5 -2.0

Potential of microelectrode in volts, vs. S.C.E. 

Figure 14 Polarogram of 10 x 10-
4 M Cd(N03)2 with the

Copper Amalgam Microelectroae 

Carrier - 0.1 M KCl 
Scanning rate - 30 seconds 

\.>.I 
0 

, 

--

-- .. 



+> 

g 
H 

� 
,, 

,... • .........._ I n I . '-' - -1.0 ,;,#' -1.5 - u --2.� .... 
Potential of microelectrode in volts, vs. S.C.E. 

Figure 15 

Carrier - 0.1 M KCl 

Polarogram of 10 x 10-4 M Cd(No
3

)
2 

with the
Copper Amalgam Microelectroae 

Scanning rate - two minutes, 45 seconds 

\..N 

I-' 

-
• y-· .... _ ... _.. .... --



fl) 

(I) 

S-1 
(I) 

i 
0 

S-1 
0 

•r-1 

s

A
•r-1 

+:> 

A 
Cl) 

S-1 

0 

4o 

30 

200 

100 

ok==============����__j_����-L����__L� 
0 -1.0 -1.5 

Potential .. of microelectrode in volts, vs. �.C.E. 

Figure 16 Polarogram of 10 x 10-4 M. Cd(N03)
2 

with the
Copper Amalgam Microelectrode 

Carrier = 0.1 M KCl 
Scanning rate - �ine minutes, 30 seconds 

-2.0

- vJ

I\) 

H 
::I 



33 

In these studies
0 

three basic speeds of scanning were used� three 

seconds; two minutes
p
45 seconds; and nine minutes

9 
30 seconds. With 

the platinum amalgam microelectrode 9 an intermediate speed of 30 seconds 

was investigated
0 

but since there was no change in wave form or other 

properties
0 

this speed was omitted,i� .. s�'b;tJequeri.t:i/Wo-rk. 

A.t the two faster rates mentioned
0 Pb(No

3)2 in O.l M KOl gave 9 at

the platinum amalgam electrode 0 waves of the form shown in Figure 7. 

The maximum noted in Figure 7 is less pronounced at lower lead ion con-

centrations. This increase of maximwn with increasing concentration 

of lead ion is characteristic of all electrodes at all speeds. 

Figure 17 shows the two extremes of Pb(No
3
)
2 

concentration used 

in this study for the runs at two minutes
0 

45 seconds. The two polaro

-4 
grams (curves 2 and 3) for the 10 x 10 M Pb(No

3
)
2 

were made in sue� 

cession without cleaning the electrode after curve 2 was made. :By com=-· 

paring curves land 2 9 it is readily seen that not only is the diffusion 

current less regu,lar
0 

but also a slight shift occurs in the half-wave 

potential as the concentration is increased. 

The influence of increased scanning rate upon the diffusion cur-

rent is illustrated by comparing Figure 17 0 curve 2 9 with Figure l8e 

-4
:Both are for lead at a concentration of 10 x 10 M

0 
.but the scanning

rate for Figure 17 was two minutes
0 

45 seconds 0 while that for Figure 

lS was three seconds. It will be seen from these that the diffusion 

current at the higher speedis much more well-defined than it is at the 
. -4

lower speed. �he second run (curve 3) of the 10 x 10 M Pb(N0
3
)

2 
in figure 17 0 which was made immediately after curve 2 9 gives a clue 

to the probable reason for these results. It would appear from these 

studies that at high concentrations and/or slow scanning rates 0 the 
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electrode becomes completely coated with lead. There is visual evi-

dence for this 9 for at slower rates the microelectrode becomes appre-

ciably larger
9 even to the naked eye

9 
and becomes dull black in color. 

One of the expected advantages of the atnalgamated electrode - i.e., the 

ability to prevent coating by the reduced metal - obviously is not re-

alized in this case. Apparently the lead is not sufficiently soluble 9 

or dissolves too slowly in the mercury of the electrode
9 

to be complete-

ly amalgamated. Equally obviously the undissolved metal is held too 

firmly to be washed off by the stirring action around the electrode
9 

with the result that lead coats the electrode. When this happens
» 

both 

the effective area and the hydrogen overvoltage of the electrode are 

changed. Larger currents 9 and
9 ultimately evolution of hydrogen at 

lower potentials than usual thus are only to be expected. With lead 

ion at the nine minutes
9 

30 seconds scanning rate
9 

no normal polarogram 

was ever obtained. This was not surprising since the microelectrode 

was completely converted to a lead electrode before the diffusion cur-

rent was reached. This proved to be true even at the lowest lead ion 

-4
concentration used - i.e.

9 
l x 10 M.

Feo1
3 

in O.l M Na
2
o

2
04 with the platinum amalgam microelectrode 

is shown in Figure 9. Figure 10 shows the ferrous ion reduction. 

The reduction of cadmium ion at the copper amalgam microelectrode 

has been covered rather thoroughly in Figures 6
9 

13 9 14
9 

15 and 16. 

Lead develops a much sharper maximum at high concent�ations with the 

copper amalgam electrode than it does with the platinum amalgam (Fig

ure 19). Figure S gives the shape of the ferric ion wave. 

The gold amalgam microelectrode is a duplicate of the copper 

amalgam electrode in wave forms and behavior. 

36 
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The silver amalgam microelectrode gave the orthodox cadmium waves, 

with the lead ion and ferric ion waves being of the same shape as those 

obtained with the platinum amalgam electrode. 
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DIFFUSION CURRENTS 

Use of polarography in quantitative analysis depends on the rela= 

tion of the diffusion currents obtained to the concentration of reduc= 

ible substance involved. This relationship has been determined for the 

three ions (cadmium, lead and ferric) used throughout this work with the 

four amalgamated microelectrodes. 

A plot of diffusion current vs. ion concentration for the platinum 

amalgam electrode is shown in Figure 20. All three are linear over at 

least a portion of .:the concentration range used. Although the ferric

ion analysis consistently gives a two-step wave, and the half=wave po= 

tentials are reproducible, the diffusion current vs. concentration curve 

is not linear for either wave. The sum of the two wave heights is bet= 

ter, however, and it is this sum which is plotted in Figure 20. 

Figure 21 shows the diffusion current vs. concentration curves for 

the copper amalgam microelectrode. Although the ferric ion gives a one= 

step wave, the diffusion current is not linear over the concentration 

range studied. 

The concentration range of ferric ion used with the gold amalgam 

microelectrode was not large enough to give significant results. The 

cadmium and lead curves are much better (see Figures 22 and 24). al= 

though the relationship between Id and concentration for lead is not

quite a straight line function. 

Figure 23 shows the diffusion current vs. concentration curves for 

the silver amalgam microelectrode. The ferric ion curve was obtained in 

the same manner as the curve for the platinum amalgam electrode. 
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RALF-WAVE POTENTIALS 

There should be two factors controlling the half-wave potentials in 

these studies. In working with the silver amalgam microeleetrode, Cooke 

(2) found no shift of E1.. with change in concentration of the cobaltic
2 

ion. With the cadmium ion, he found a pronounced shift, the E1 becoming 
2 

more negative as the concentration was increased. This shift he attri-

buted to the increasing concentration of cadmium metal on the electrode 

surface. This observation was confirmed by our results for cadmium (see 

Table 2), 

Such results could be expected; for cobalt, being reduced only to 

the cobaltous ion, does not plate onto the electrode and therefore could 

not influence the properties of the electrode, Similarly, ferric ion, 

when reduced only from ferric ion to ferrous ion, would be expected to 

behave like cobalt. If the wave obtained for iron (the first wave in 

the case of platinum amalgam and silverramalgam electrodes) involves 

only the reducti.on of ferric to ,ferrous ion, its E1.. should be constant, 
. 

2 

This proved to be the case, �ere the!re is a second wave, it should re-

present a reduction of ferrous ion to �ron metal, and should behave like 
I 

cadmium. This is also the case, as is shown in Table 2. 

The reduction of lead is not so ea:sily interpreted. Although the 

product is the metal, the half=wave potential does not change 'Wltil, ap-

parently, the mercury layer is saturat�d, at which po,int the current in

creases without reaching a plateau (see Figure 17), The cadmium and 

iron metal layers seem to produce no significant change in the micro-

electrode area, in marked contrast with the behavior of lead discussed 

previously (page 33). 



Table II 

Half-wave,, Potentials of Microelectrodes, vs. S.C.E. 

Reducible 
· Ion

Cadmiwn 

l x 10-4 M

4 
-4

x 10 M 

. . =4 
7 x 10 M 

10 x 10-4 M

Lead 

Ferric 

Ferrous 

1 x 10
=4 M 

4 x 10-4 M

-4
7 x 10 M 

10 x 10
=4 M

Scanning rate - two minutes, 45 seconds 

Platinum 
Amalgam 

-0. 76

-0.80

-0.83

-0.87

-0.60

-0.39.

-0.91

-1.04

-1.06

-1.11

Microelectrode 

Copper 
Amalgam 

=0,82 

-o.s4

=0.85 

,..Q. 71 

-0.54

Gold 
Amalgam 

-0.69

-0.70

-0.71

-0.72

=0.61 

-0.33

Silver 
Am�lgam 

-0.82

=0.86 

-0.90

-0.96

-0.71

=0.32 

-0.81

-0.91

-1.05

=1.06 

'-------
1 

-

I 
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Cooke goes on to make a prediction that is of great interest to 

this stud.yo He postulates that with higher rates of scanning the total 

amount of metal deposited during a single run will be less and, conse= 

quently, since the concentration of the amalgam formed will be very low, 

the E1 should approach that of the D.M.E. 
2 

This would apply to the cad=

mium. That such is not the case is shown by the experimentally deter= 

mined values in Table III and by the curves in Figure 24. At the three 

second scanning rate the shift in E1 with scanning rate is slight, al= 
2 

Table III 

Half-wave Potentials of Cadmium Ion with Various 
Scanning Rates, vs. S,O.E, 

Concentration of 
cadmium ion 

Scanning rate 

3 sec, 

30 sec. 

2 min., 45 sec, 

9 min., 30 sec, 

Platinum 
Amalgam 

-0°79

-0.$0

-0,81

Micro electrode 
Copper 

Amalgam 

-0.82

-Oo83

=0.85 

-0.85

Gold 
Amalgam 

-0.70

=0.69 

though noticeable, for cadmium with the gold amalgam microelectrode, 

On the other hand, the E1 values at three seconds are identical with 
2 

those shown in Tabl e II for the two minutes, 45 seconds scanning rate, 

Table III shows more clearly what happens when the scanning rate 

is changed drastically, There is a slight change, but not the kind of 

change necessary to substantiate the opinion that the half=wave poten= 

tial will approach that of the DoM,.E, The half-wave potential for the 

cadmium ion in 0,1 M KOl with, the D.�.E. is -0.599 volts, vs. SoO,E. 
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CONCLUSION 

In comparing the performance of the D.M.E. and the rota.ting micro = 

electrode, there would seem to be little practical justification for 

using the latter in general cathodic analysis, except for the elements 

of time and convenience. However, a microelectrode like the platinum 

a.Illalgam may be cleaned, plated and the polarogram obtained in about four 

minutes. A permanent record is easily made, but for routine work may 

not be needed at all. The photographs may be enlarged as desired, and 

since the oscillograph grid lines are visible, measurements may be esti= 

mated to 0.01 inches (about 1%, for ordinary situations). The instanta

neous response and lack of damping with the oscillograph will produce 

less beautiful, but more· accurate, polarograms. 

The use of amalgamated microelectrodes practically eliminates a 

major previous disadvantage of the solid electrode = i.e., that of the 

low hydrogen overvoltage compared with mercury. 

There seems no reason to belie ve that the amalgamated microelectrode 

will give half-wave potentials approaching those of the D.M.E. as the 

scanning speed is increased. In his postulation, Cooke overlooked the 

fact that although higher scanning rates and/or lower concentrations 

yield less metal product to dissolve in the mercury, the rate of disso

lution and of diffusion of the deposited metal into the mercury may not 

keep up with the electrode process. Under the most ideal conditions, 

therefore, it is probable that the surface amalgam is far more concen

tr�ted than would hav,e been expect_�d. With the D.M.E., new surface is 

constantly forming, during the growth of the drop as well as by means of 

its replacement by fresh drops of mercury. That some such occurrence 
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took place is obvious from the results obtained in this research. 

It would seem from this study, therefore, that new sets of values 

for half-wave potentials must be determined for use with these rotating 

amalga.IJl electrodes. Once this is done, however, the greater speed with 

which determinations can be made employing such electrodes should make 

this a very useful technique in polarographic analysis. 
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