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Abstract 

Ensemble-based data assimilation (DA) estimates forecast error in a flow-

dependent fashion, in contrast to the traditional variational DA assuming static forecast 

error. Due to computational constraints, however, accuracy of the ensemble background 

error covariance estimate is compromised by sampling error. Direct increase of ensemble 

size contributes to reducing sampling error, but the increased computational cost can be 

prohibitive especially for operational numerical weather prediction (NWP) applications. 

On the other hand, the localization is commonly applied to reduce or eliminate distant 

spurious correlations caused by sampling error. But the localization can cause additional 

imbalance in the analysis and potentially eliminate some distant realistic signal. Therefore, 

efficient treatment of sampling error remains a challenge for the ensemble-based DA. This 

dissertation covers three topics of efficiently reducing sampling error and further 

improving background error covariance estimate in the ensemble-based DA.  

Firstly, a valid-time-shifting (VTS) ensemble method is introduced as cost-efficient 

means to increase ensemble size. The VTS method, either in form of full ensemble 

members (VTSM) or ensemble perturbations (VTSP), is implemented and examined in the 

National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 

hybrid four-dimensional ensemble-variational (4DEnVar) DA system. VTSM and VTSP 

applying a single shifting time interval (e.g., one, two or three hours) triple the baseline 

background ensemble size from 80 to 240 in the EnVar update, while the overall cost only 

increases by 23%-27% depending on the selected shifting time interval. Ten-week cycled 

DA experiments show that VTSP generally improves global temperature and wind 
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forecasts to 5 days over running the original 80-member ensemble. VTSM generally 

degrades global forecasts in the troposphere. Both VTSM and VTSP improve tropical 

storm track forecasts over running the original 80-member ensemble. In particular, three-

hour VTSM even shows more accurate tropical storm track forecasts than directly running 

a 240-member ensemble. Further diagnostics are conducted to understand the potential 

cause of their different performances.   

Secondly, two localization methods commonly applied in the ensemble Kalman 

filter (EnKF) are mathematically examined and compared, that is, the B-localization 

method that performs the localization on the background error covariances, and the R-

localization method that inflates the observation error variances. Mathematical 

demonstration suggests that the B-localized background error covariance matrix shows 

higher rank than the R-localization method. The B-localization method is further realized 

in the ensemble transform Kalman filter (ETKF) by modulating and extending the 

background ensemble perturbations. The B-localized ETKF is termed as the high-rank 

ETKF (HETKF) to distinguish from the classic R-localized ETKF. Cycled DA 

experiments using the Lorenz model II show that the HETKF outperforms the R-localized 

ETKF especially for a small ensemble, which is likely associated with the higher rank from 

the B-localization method. 

Lastly, the simultaneous multi-scale DA capability is developed in the GSI-based 

global hybrid 4DEnVar system by introducing scale-dependent localization (SDL) with 

and without considering cross-waveband covariances (i.e., SDL-Cross and SDL-NoCross, 

respectively). SDL applies a different amount of localization to different scales of 
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ensemble background error covariances, while performing a single-step simultaneous 

assimilation of all the available observations. One-month cycled DA experiments using the 

NCEP Finite-Volume Cubed-Sphere Dynamical Core (FV3)-based GFS model show that 

both SDL-NoCross and SDL-Cross improve general global forecasts to five days over 

applying fixed uniform localization once at all scales. By including the cross-waveband 

covariances, SDL-Cross tends to show more accurate global forecasts and tropical storm 

track forecasts than SDL-NoCross at longer forecast lead times. Compared to the two-

waveband SDL experiments, the three-waveband SDL experiment counterparts applying 

tighter horizontal localization at medium-scale waveband generally show improved 

(degraded) global forecasts below (above) 50 hPa, except the outperformance of the three-

waveband SDL-Cross experiment over the two-waveband SDL-Cross experiment below 

50 hPa only lasts for three days. In addition, the three-waveband SDL-Cross experiment 

even shows more accurate tropical storm track forecasts than the experiment applying the 

operational level-dependent localization at shorter forecast lead times. Diagnostics are 

further performed to understand their different performances.   
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Chapter 1: Introduction 

 Multiple portions of this dissertation are direct excerpts in Huang and Wang (2018; © 

American Meteorological Society) and Huang et al. (2019; © American Meteorological Society). 

These include parts of Chapters 2, 3 and 4. 

 

1.1 Background 

 Data assimilation (DA, Ghil and Malanotte-Rizzoli 1991) is an objective statistical 

process that “optimally” combines observations with short-range forecasts (i.e., the background) 

to provide the best estimate of the “true” state (i.e., the analysis). The resultant analysis is used to 

initialize model forecasts in the numerical weather prediction (NWP). By ingesting fresh 

observation information into model forecasts through a cycled DA mode, it avoids significant 

departure of the model forecasts from the “true” state that will finally occur in a free model run 

due to inherent model deficiencies (Tribbia and Baumhefner 2004). In addition to producing 

initial conditions for model forecasts in NWP, DA has other important applications. For example, 

it can provide reanalysis for climate studies (Dee et al. 2011; Laloyaux et al. 2016) and optimize 

observation network design (Bishop et al. 2001; Majumdar et al. 2002). Furthermore, it also 

contributes to improving the NWP models and enhancing the understanding of atmospheric 

dynamics and predictability (Kalnay 2003).   

 In theory, the well-known DA methods are generally derived from two different 

approaches. In the DA methods based on the least square approach, such as the optimal 

interpolation method (Lewis et al. 2006) and the Kalman filter (Kalman and Bucy 1961), its goal 

is to find optimal weights of the observations and the background that minimize the analysis 
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variances. In addition, the variational DA method (Lorenc et al. 2000) is derived from the 

Bayesian approach that attempts to find the analysis representing the maximum likelihood of the 

“true” state. The analysis in the variational DA method is obtained by minimizing a cost function 

that measures the weighted distances of the analysis from the observations and the background. 

Under the assumption of Gaussian error distribution, both the least square approach and 

Bayesian approach in fact solve the same problem and arrive at equivalent solutions (Lorenc 

1986).  

 In the DA methods derived from both the least square approach and Bayesian approach, 

it is essential to accurately estimate the background and observation error covariances. The 

background and observation error variances determine the magnitude of corrections made from 

the observations to the model state variables of interest (Lorenc et al. 2000; Kalnay 2003; Lewis 

et al. 2006). In addition, the background correlations determine how the observation information 

spreads to or influences the adjacent model state variables (Evensen 1994; Hamill 2006). For 

example, in the observation-sparse areas, the shape of the analysis increments (i.e., the analysis 

minus the background) is completely determined by the background correlation structure. The 

observation errors can be caused by instrument errors, representative errors and observation 

operator errors (Kalnay 2003). Systematic observation biases need to be removed before 

assimilating the observations (Kalnay 2003; Hamill 2006). To simplify the DA solution in the 

operational NWP applications, the error correlations between different observations are normally 

assumed to be zero, thus leading to a diagonal observation error covariance matrix (Kalnay 2003; 

Hamill 2006). The estimate or modeling of the background error covariances is especially 

difficult and challenging, since the “true” state is unknown and the background error covariance 
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matrix itself has an extreme large dimension (e.g., O(108)~O(1010)) in the operational NWP 

applications (Houtekamer and Zhang 2016). Active research has been conducted for accurate 

estimate or modeling of the background error covariances.  

 In the traditional three-dimensional variational (3DVar, Lorenc et al. 2000) DA method, 

the background error covariances are assumed to be static. It can be estimated in a statistical 

sense through differences of forecasts at the same valid time (Parrish and Derber 1992), 

differences between the forecasts and analyses (Fisher 2003), or comparison between the 

forecasts and observations (Hollingsworth and Lönnberg 1986). For instance, the static 

background error covariances in the global DA system at the National Centers for Environmental 

Prediction (NCEP) are calculated from differences of the 48- and 24-hour forecasts valid at the 

same time. It is also known as the “NMC” (which stands for the National Meteorological Center) 

method (Parrish and Derber 1992). As a temporal extension of the 3DVar, the four-dimensional 

variational (4DVar, Rawlins et al. 2007) DA method has the capability of implicitly evolving the 

background error covariances during the DA window through the linearized model and its 

adjoint. However, the development and maintenance of the linearized model and its adjoint in the 

4DVar is computationally very expensive and challenging especially for the operational large-

dimension NWP systems. Overall, utilization of the static background error covariances in the 

3DVar and 4DVar, due to lack of considering error spatial/temporal variation (e.g., the flow-

dependency), has limited the accuracy of resultant analysis.  

 To simulate flow-dependent background error, the ensemble Kalman filter (EnKF, 

Evensen 1994) was proposed by applying the Monte-Carlo approximation in the traditional 

Kalman filter (Kalman and Bucy 1961). In the EnKF, the background error covariances are 
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estimated from an ensemble of short-range forecasts. The EnKF is thus able to more realistically 

estimate spatial, temporal and multivariate error covariances in contrast to the traditional 

variational DA method assuming static background error covariances. To facilitate practical 

implementation, different EnKF variants have been developed and will be briefly introduced in 

Chapter 2. Improved analyses and forecasts from the EnKF have been demonstrated over the 

traditional variational DA in the regional or global operational DA systems with assimilating 

simulated or real observations (Houtekamer and Mitchell 1998, 2005; Buehner et al. 2010; Wang 

et al. 2013; Lorenc 2003a; Zhang et al. 2011). However, due to limited computational resources, 

the EnKF suffers from sampling error caused by running a small ensemble (more details will be 

discussed later in the introduction). A comprehensive review regarding the EnKF was presented 

in Houtekamer and Zhang (2016). 

 In the most recent, the hybrid DA method was developed by blending the static and 

ensemble background error covariances to supplement the flow-dependent information of 

forecast error within a variational framework. In theory, the hybridation of both components of 

background error covariances can be realized through a direct weighted summation (Hamill and 

Snyder 2000) or the extended control variable method (Lorenc 2003a). For instance, the hybrid 

3D and 4D ensemble variational (i.e., 3DEnVar and 4DEnVar, respectively) systems at NCEP 

were developed based on the extended control variable method ( Wang 2010, Wang et al. 2013; 

Wang and Lei 2014; Kleist and Ide 2015a,b). Wang (2007) demonstrated that both methods of 

combining the static and ensemble covariances were mathematically equivalent. In addition, 

another well-known hybrid DA system is the hybrid-4DVar DA system operationally at the 

European Center for Medium-range Weather Forecasts (ECMWF) (Bonavita et al. 2016). In the 
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hybrid-4DVar, the ensemble background covariances are combined with the static background 

error covariances at the beginning of the DA window. Both the static and ensemble background 

error covariances are then implicitly evolved through the linearized model and its adjoint in the 

hybrid-4DVar. This differs from the hybrid 4DEnVar that basically uses the 3DVar framework 

without requiring the linearized model and its ajdoint. The hybrid 4DEnVar is thus 

computationally much cheaper than the hybrid-4DVar. Potential advantages of the hybrid DA 

over the stand-alone variational method or the EnKF were discussed in Wang (2010). By 

incorporating the ensemble covariances into the variational framework, the hybrid DA is able to 

consider the flow-dependency of forecast error in contrast to the traditional variational DA 

method. On the other hand, compared to the EnKF, the hybrid DA is able to alleviate the rank-

deficiency issue by including the full-rank static background error covariances, and facilitate 

applying the dynamical and physical constraints on the analysis within a variational framework 

as well. The hybrid DA has been applied in several operational NWP centers, such as NCEP, 

ECMWF, the Canadian Meteorological Center (CMC) and the Japan Meteorological Agency 

(JMA). The superiority of the hybrid DA over the pure variational DA and the EnKF has been 

demonstrated with respect to the analyses and subsequent forecasts (Wang et al. 2007a, 2008a,b, 

2009, 2013; Wang 2011; Zhang and Zhang 2012; Buehner et al. 2013; Clayton et al. 2013; Kuhl 

et al. 2013; Gustafsson et al. 2014; Lorenc et al. 2015; Kleist and Ide 2015a; Buehner et al. 2015).  

 In the ensemble-based DA methods, such as the EnKF and hybrid DA, the ensemble 

background error covariances are generated by an ensemble of short-range forecasts. This further 

incurs significant cost increase in the ensemble-based DA method. As discussed earlier regarding 

the EnKF, the current computational resource is still far from adequate to run an ensemble of a 
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size comparable with the degrees of freedom of the operational NWP models (Houtekamer and 

Zhang 2016, Table 1). As a result, sampling error is inevitable in the ensemble-based 

background error covariances and further degrades the resultant analysis accuracy. The typical 

feature of sampling error is the spurious correlations at distant regions. If sampling error is not 

properly treated, it will cause noisy analysis increments and even filter divergence (Hamill 2006). 

Ideally, direct increase of ensemble size can efficiently reduce sampling error and improve the 

analyses and subsequent forecasts (Lei and Whitaker 2017; Huang and Wang 2018a). However, 

the increased computational cost can be prohibitive especially for the complicated operational 

NWP models. Alternatively, the covariance localization, as an ad-hoc means, is commonly 

applied to reduce sampling error (Houtekamer and Mitchell 1998, 2001). Its general idea is to 

gradually reduce or remove the correlations between two distant variables that are assumed to be 

physically small or spurious. However, the covariance localization can cause some additional 

issues. For example, it could potentially eliminate the distant but realistic correlations that would 

be simulated by a very large ensemble (Miyoshi et al. 2014). Meanwhile, it could exaggerate the 

imbalance issue in the resultant analysis especially when strong localization is applied (Greybush 

et al. 2011; Holland and Wang 2013). In addition, some localization methods applied on the 

observation space may not be appropriate for the assimilation of integral-type observations (e.g., 

satellite radiances and radar reflectivity) whose physical location cannot be explicitly defined 

(Campbell et al. 2010). Furthermore, seeking the optimal localization length is very important for 

the resultant analysis accuracy. But it is not trivial to find the optimal localization length, since it 

varies with model resolution, ensemble size, observation density, etc. (Ying et al. 2018; Huang et 

al. 2019). In the practical applications, extensive tuning tests are generally performed to find the 
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optimal localization length that, for example, minimizes analysis errors. In the recent, advanced 

localization methods have been developed to account for the spatial-, scale- and temporal-

dependency (Bishop and Hodyss 2009c; Anderson 2007; Buehner and Shlyaeva 2015; Buehner 

2012a). Some localization methods will be briefly reviewed in Chapter 2.  

	

1.2 Motivation and dissertation overview 

  Due to limited computational resources, sampling error will remain a major source of 

error in the ensemble-based DA. Extensive research is needed to properly deal with sampling 

error. Otherwise, the accuracy of the ensemble-estimated background error convariances will be 

inevitably compromised by sampling error, thus further degrading the performance of the 

ensemble-based DA system. Three research topics are covered within this dissertation to 

efficiently reduce sampling error and further improve the background error covariance estimate 

in the ensemble-based DA.  

 The first topic seeks to reduce sampling error by increasing ensemble size in a cost-

efficient fashion. A valid-time-shifting (VTS) ensemble method is introduced where the 

ensemble forecasts at the same initialization time but different valid times are used to populate 

the background ensemble. Compared to directly increasing ensemble size, VTS is 

computationally more efficient by taking advantage of the available ensemble forecasts. 

Specifically, two variants of VTS are designed by utilizing either full shifted ensemble members 

or shifted ensemble perturbations (referred to as VTSM and VTSP, respectively). Both VTSM 

and VTSP were implemented and examined in the gridpoint statistical interpolation (GSI)-based 

hybrid 4DEnVar system (Wang and Lei 2014; Kleist and Ide 2015a). The performance of VTSM 
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and VTSP is evaluated for the general global forecasts and tropical cyclone track forecasts in the 

GFS that houses different scales of weather phenomena. In-depth diagnostics are further 

discussed to understand their performance difference.  

 The second topic contributes to improving mathematical understanding of two 

localization methods that are commonly applied to reduce sampling error in the EnKF. One is the 

B-localization method through a Schur product between a localization matrix and the full 

background error covariance matrix (Houtekamer and Mitchell 2001). The other one is the R-

localization method that inflates the observation error variances farther away from the model 

grid point of interest (Hunt et al. 2007). The mathematical demonstration suggests that the B-

localized background error covariance matrix shows higher rank than that from the R-

localization method. Furthermore, it explores a means of realizing the B-localization method 

within the ensemble transform Kalman filter (ETKF, Bishop et al. 2001) by modulating and 

extending the raw ensemble perturbations. To distinguish from the classic R-localized ETKF, the 

B-localized ETKF is termed as the high-rank ETKF (HETKF) due to the higher-rank of the B-

localization method. This further motivates a performance comparison of the B- and R-

localization methods within the same ETKF algorithm by using the Lorenz model II (Lorenz 

2005). 

 The last topic aims to develop the simultaneous multi-scale DA capability in the GSI-

based global hybrid 4DEnVar system at the NCEP. As many operational NWP centers are 

dedicated to developing high-resolution models, the future global model will be able to resolve 

much wider ranges of scales. This motivates to develop the multi-scale DA capability in the 

operational GSI-based global hybrid 4DEnVar system at the NCEP. Two variants of scale-
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dependent localization (SDL) (Buehner 2012; Buehner and Shalyeva 2015), with and without 

considering cross-waveband covariances (referred to as SDL-Cross and SDL-NoCross), are 

introduced to more efficiently alleviate sampling error. In SDL, different amount of localization 

is applied to different scales of ensemble background covariances, while performing a single-

step simultaneous assimilation of all the available observations. This differs from the sequential 

or multi-step DA update in Zhang et al. (2009) and Miyoshi and Kondo (2013). The performance 

of SDL-NoCross and SDL-Cross is first compared with applying fixed uniform localization once 

at all scales for the general global forecasts and tropical cyclone track forecasts in the FV3-based 

GFS that became operational at the NCEP in the most recent. Furthermore, the performance of 

SDL-Cross and SDL-NoCross with adopting two and three wavebands is inter-compared to 

reveal how SDL performs in response to the number of decomposed wavebands. Additional 

diagnostics are discussed to understand their performance difference. 

 The dissertation is organized as follows. Chapter 2 first briefly introduces the ensemble-

based DA methods that include the generic EnKF and the GSI-based global hybrid 4DEnVar 

system at the NCEP, and then reviews several popular localization methods. Researches on the 

above three topics are presented in Chapters 3, 4 and 5, respectively. Chapter 6 summarizes the 

dissertation and discusses future plans.  
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Chapter 2: Ensemble-based Data Assimilation  

 

2.1 Ensemble Kalman filter (EnKF)  

 The ensemble Kalman filter (EnKF, Evensen 1994) was developed by applying the 

Monte-Carlo approximation within the traditional Kalman filter (KF, Kalman and Bucy 1961) 

concept. Originally, the Kalman filter is introduced for the linear model system. Specifically, a 

linear model is used to advance forward both the model state and background error covariances. 

The linear observation operator is applied in the calculation of the innovation and Kalman gain 

in the KF. In order to incorporate some degrees of nonlinearity, the extended KF (EKF, Julier 

and Uhlmann 1997) was developed with capability of evolving the model state using the 

nonlinear model and calculating the innovation through the nonlinear observation operator. In 

the EKF, however, the linearized model and its adjoint are required to evolve the background 

error covariacnes, and the linearized observation operator is applied in the calculation of the 

Kalman gain. Because the EKF requires developing the linearized version and its adjoint for the 

nonlinear model, it is computationally more expensive than the traditional KF. Therefore, the 

EKF is computationally prohibitive for the operational NWP applications. Furthermore, by 

introducing the Monte-Carlo approximation within the EKF, the EnKF estimates the background 

error covariances from an ensemble of nonlinear short-range forecasts without requiring the 

linearized model and its adjoint. The EnKF is thus computationally more efficient compared to 

the EKF, and becomes possible for the operational NWP applications.  

 The EnKF consists of two steps: the forecast step and the DA step. In the forecast step, it 

runs an ensemble of independent short-range forecasts (i.e. the background forecasts) which are 
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used to calculate the background error covariances in the DA update. The EnKF update 

equations in the DA step are described following the notations in Ide et al. (1997). The analysis 

 is obtained by correcting the background  with the 

observations  weighted by the Kalman gain , 

         (2.1) 

and 

         (2.2) 

where and  are the analysis and background vectors with a dimension of , respectively; 

 is the observation vector with a dimension of ; and  are the nonlinear and 

linearized observation operators, respectively; denotes the background error covariance 

matrix with a dimension of ; and  is the diagonal observation error covariance 

matrix with a dimension of . For simplicity, all the diagonal elements in  are set equal to 

. The Kalman gain matrix  has a dimension of  . The superscripts a, b and o denote the 

analysis, background and observations, respectively. In the EnKF, is estimated from a K-

member ensemble of background forecasts,  

       
(2.3) 

where K is the ensemble size; is the 

background ensemble perturbation matrix with a dimension of  and each column 
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represents the kth ensemble perturbation vector with a dimension of ; is 

the background ensemble mean vector with a dimension of ; and  is the 

background ensemble perturbation matrix normalized by a factor of . In the practical 

application, is not explicitly calculated due to its very large dimension (e.g., ). Instead, 

the terms associated with  in Eq. (2.2) are calculated as, 

      (2.4) 

and 

                (2.5) 

 There are two main types of EnKF algorithms: the stochastic EnKF and deterministic 

EnKF. In the stochastic EnKF, each member assimilates different set of perturbed observations 
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and Mitchell 1998, 2001). Statistically, assimilating perturbed observations in the stochastic 

EnKF ensures that the resultant analysis convariances are consistent with those in the traditional 

KF. A stochastic EnKF has become operational in the global DA system at the Canadian 

Meteorological Center (CMC). In contrast, the deterministic EnKF updates the ensemble mean 

and perturbations separately without requiring perturbing the observations. The deterministic 

EnKF avoids the sampling error associated with perturbed observations in the stochastic EnKF 

(Whitaker and Hamill 2002). Specifically, the ensemble mean in the deterministic EnKF is 

updated by directly assimilating the non-perturbed observations following Eqs. (2.1) and (2.2). 
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On the other hand, it updates the ensemble perturbations to be consistent analysis covariances as 

in the traditional KF. To facilitate efficient implementations, different deterministic EnKF 

variants have been developed, such as the ensemble adjustment Kalman filter (EAKF, Anderson 

2001), the ensemble square-root Kaman filer (EnSRF, Whitaker and Hamill 2002), the ensemble 

transform Kalman filter (ETKF, Bishop et al. 2001) and its local versison (LETKF, Hunt et al. 

2007). A recent review of the EnKF and related scientific questions is provided in Houtekamer 

and Zhang (2016). The operational global EnKF system at the NCEP currently adopts the EnSRF 

algorithm and plans to replace it with the LETKF algorithm in the near future. In this 

dissertation, the NCEP global EnKF systems with the EnSRF and LETKF algorithms are used 

for the research in Chapters 3 and 5, respectively. In addition, the ETKF is further examined for 

comparison of two localization methods in Chapter 4. 

	

2.2 GSI-based hybrid 4DEnVar system   

 The GSI-based hybrid 4DEnVar system became operational for the global model at 

NCEP since May 2016. It is used for the research in Chapters 3 and 5 in this dissertation. The 

EnVar formulation and implementation in the GSI is based on the extended control variable 

method to ingest the ensemble background covariances within the variational framework (Wang 

et al. 2013; Wang and Lei 2014; Kleist and Ide 2015a,b). Mathematically, the extended control 

variable method is equivalent to linearly combining the static and ensemble background 

covariances (Wang et al. 2007c).  

 Following the notations in Wang and Lei (2014), the general 4DEnVar formulation is 

briefly introduced. In the GSI-based 4DEnVar system, the analysis increment    ′x t  at time t in a 
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DA window is calculated as  

           (2.6) 

where    ′x1  is the analysis increment vector associated with the static background error covariances. 

The second term on the right-hand side of Eq. (2.6) gives the analysis increment associated with 

the ensemble background covariances. Specifically, is the extended control variable vector 

corresponding to the kth ensemble member. In the current GSI-based 4DEnVar configuration, the 

same set of  is applied at different time levels.    (x k
e )t  denotes the kth ensemble perturbation 

vector at time t normalized by (K-1)1/2 , where K is the ensemble size. The sign  “ ! ” performs a 

Schur product between two vectors or matrices with the same dimension.  

 The 4D analysis increments are calculated by minimizing the cost function, 

                        (2.7) 

 

 

On the right-hand side of Eq. (2.7), the first term is the background term associated with the 

traditional static background error covariances   B1 . In the second term,  a  is a vector that 

concatenates K vectors of   a k .  A  is a block-diagonal matrix that defines the localization for the 

ensemble background covariances, and it is further expressed as 
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Each of the K blocks in Eq. (2.8) contains the same predefined correlation matrix  L  with unit 

diagonal elements (Wang et al. 2008b). In the third term of Eq. (2.7),    yt
o′ ,   Ht  and   R t are the 

observation innovation vector, linearized observation operator matrix and observation covariance 

matrix at time t, respectively. L is the number of time levels spanning the DA window. In 

addition, parameters   β1 and   β2  determine the contributions of the static and ensemble 

background covariances where (1/  β1 )+(1/  β2 )=1 is required (Wang et al. 2008b).  

 

Figure 2.1. Flow chart of the GSI-based global hybrid EnVar system. 
 
 
 

 Figure 2.1 shows the general flow of a DA cycle in the GSI-based global hybrid EnVar 

system. It consists of two major components: the variational component and the EnKF 

component. Specifically, 1) one-member control background forecast in the variational 
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component and the 80-member ensemble background forecasts in the EnKF component are 

initialized from the previous DA cycle. The 80-member ensemble is selected in the NCEP GSI-

based 4DEnVar system to balance the quality of ensemble-estimated background error 

covariances and limited computational resources (Kleist and Ide 2015ab). 2) The 80-member 

ensemble background forecasts are ingested to supplement the flow-dependent ensemble 

background covariances in the EnVar update of the control background. 3) An EnKF is 

performed to update the 80-member background ensemble. 4) A re-centering procedure is 

applied by replacing the 80-member analysis ensemble mean with the control analysis from the 

EnVar update. 5) The control analysis and re-centered 80-member EnKF analysis are forecasted 

to next cycle. More details about the operational EnVar configurations and implementations are 

presented in Chapters 3 and 5 in the dissertation.   

 

2.3 Review of localization methods 

 As discussed in the introduction, successful application of the ensemble-based DA 

method relies on covariance localization to alleviate sampling error caused by running a small 

ensemble (Hamill 2006; Houtekamer and Zhang 2016). Its general idea is to gradually reduce or 

remove the correlations between two distant variables that are assumed to be physically small or 

spurious (Houtekamer and Mitchell 1998, 2001). Efficient design of the localization method has 

been an active topic in the ensemble-based DA research.  

 First, Houtekamer and Mitchell (1998) applied a cut-off radius to determine the 

observations to be assimilated at a particular grid point. For example, only the observations 

within the cut-off radius distance are assimilated to update the variables at that particular grid 
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point. However, this simple localization form can cause additional noises or imbalance in the 

resultant analysis due to utilizing an abrupt cut-off radius. Instead, a smoothed localization 

function was adopted in Houtekamer and Mitchell (2001) that the localization coefficients 

gradually approach zero at the cut-off radius distance. As a result, the distant observations have 

less influence in the update of the variables at a particular grid point. In the practical application, 

the smoothed localization function is commonly defined by the Gaspari-Cohn function that 

approximates a Gaussian function (Gaspari and Cohn 1999). Such type of distance-dependent 

localization method can be applied either on the background error covariances (Houtekamer and 

Mitchell 2005) or the observation error covariances (Hunt et al. 2007) to reduce or remove the 

correlations between the model variables and distant observations. In the distance-dependent 

localization that is applied on the observation error covariances, it is required to explicitly 

specify the physical location of the observations. This requirement makes it inappropriate for the 

assimilation of the integral-type observations (e.g., satellite radiances and radar reflectivity) 

whose physical location is difficult to define (Campbell et al. 2010). 

 To account for the spatial and temporal variations of the localization, some adaptive or 

dynamic localization methods were developed. In Anderson (2007), the localization function was 

calculated by minimizing the root-mean-square differences of the regression coefficients 

computed from multiple groups of ensemble filters. Compared to the fixed distance-dependent 

localization method, this adaptive localization method improves the accuracy of the observation 

impact especially at longer forecast lead times (Gasperoni and Wang 2015). In addition, Bishop 

and Hodyss (2009a,b) proposed calculating the localization function by raising the power of the 

ensemble correlations. It shows that this adaptive localization method is more advantageous over 
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the fixed distance-dependent localization method when significant spatial-temporal variation is 

present in the true correlations. In the recent, Anderson and Lei (2013) developed the empirical 

localization function (ELF) that minimizes the root-mean-square differences of the posterior 

ensemble mean and the true values in an Observing System Simulation Experiment (OSSE). In 

their study, the ELF method produces non-Gaussian localization function for the integral-type 

observation (e.g., satellite radiances), and outperforms the fixed distance-dependent localization 

method. Though these adaptive localization methods are more advantageous compared to the 

fixed distance-dependent localization, it can be very difficult and challenging for operational 

NWP applications due to significantly increased computational cost.  

 Furthermore, rather than applying the covariance localization in the physical space, 

Buehner and Charron (2007) proposed performing the localization in the spectral space. In the 

spectral localization method, the magnitude of the correlations in the spectral space decreases as 

the difference between two wavenumbers increases. It is demonstrated that the spectral 

localization method is equivalent to applying a spatial smoothing of the covariances in the grid 

space. This feature may contribute to reducing sampling error especially for a small ensemble. 

This is consistent with the results in Buehner (2012) that the spectral localization method shows 

more advantages for a small ensemble compared to the spatial localization. In addition, Buehner 

(2012) proposed a scale-dependent-localization (SDL) method by applying different amount of 

localization to different ranges of scales of error covariances. In this SDL method, the cross-scale 

covariances are eliminated. In contrast, another SDL method was developed in Buehner and 

Shlyaeva (2015) that includes the cross-scale covariances. Compared to applying the fixed 

uniform localization once at all scales, both SDL methods are demonstrated to improve the 
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analyses and subsequent forecasts in the operational global and regional NWP applications 

(Buehner 2012a; Buehner and Shlyaeva 2015; Lorenc 2017a; Caron and Buehner 2018; Caron et 

al. 2019). Relative performance of these two SDL methods with and without cross-scale 

covariances can be affected by the accuracy of the ensemble-estimated cross-scale covariances 

that depends on the ensemble size (Caron et al. 2019). For example, Caron et al. (2019) using a 

regional 3DEnVar system found that the SDL method without cross-scale covariances tends to 

perform better than that with the cross-scale covariances for a small ensemble.  

 To ameliorate the imbalance issue by the localization, Kepert (2009) proposed the 

variable transformation method where the localization was performed on the streamfucntion-

velocity potential rather than the wind components. This method is demonstrated to preserve 

better balance and further improve the analyses. In Kang et al. (2011), the variable localization 

method was developed by zeroing out the correlations between two variables that are physically 

uncorrelated. Its advantage was demonstrated in a carbon cycle data assimilation system.  

 In this dissertation, two chapters aim to improve the ensemble background covariance 

estimate by further improving the localization method. In Chapter 4, two aforementioned 

distance-dependent localization methods are mathematically compared in the generic EnKF 

context. Chapter 5 describes the development and implementation of the SDL method within the 

GSI-based global hybrid 4DEnVar system at the NCEP.  
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Chapter 3: On the Use of Cost-Effective Valid-Time-Shifting (VTS) Method to 

Increase Ensemble Size in the GFS Hybrid 4DEnVar System  

 

3.1 Introduction 

 Instead of utilizing the static climatological background error covariances in the 

traditional variational (Var) systems, the ensemble-based data assimilation (DA) systems are able 

to simulate the background error covariances in a flow-dependent fashion by using an ensemble 

of short-range forecasts. One of the best-known forms is the ensemble Kalman filter (EnKF; 

Evensen 1994). Different variants of EnKF were developed in the last decades for the purpose of 

efficient implementations (Houtekamer and Mitchell 1998, 2005; Anderson 2001; Bishop et al. 

2001; Whitaker and Hamill 2002; Wang and Bishop 2003; Hunt et al. 2007). Recently, the 

hybrid DA method has shown increasing popularity and been adopted by many operational 

numerical weather prediction (NWP) centers. The hybrid DA method incorporates the ensemble 

background error covariances into the Var framework (Hamill and Snyder 2000; Lorenc 2003b; 

Buehner 2005; Wang et al. 2007c; Wang 2010a). Extensive studies have demonstrated that the 

hybrid DA method outperforms the stand-alone variational or pure ensemble method (e.g., Wang 

et al. 2007a, 2008a,b, 2009, 2013; Wang 2011; Zhang and Zhang 2012; Buehner et al. 2013; 

Clayton et al. 2013; Kuhl et al. 2013; Gustafsson et al. 2014; Wang and Lei 2014; Lorenc et al. 

2015; Kleist and Ide 2015a; Kutty and Wang 2015; Buehner et al. 2015).  

Within the Monte Carlo approximation, a large-sized ensemble is required to accurately 

sample the forecast errors in the ensemble-based DA methods. This requirement is especially 

stringent for high-dimensional NWP models. However, the affordable ensemble size is limited to 



 
21 

be O(100) in many operational centers (Houtekamer and Zhang 2016, Table1) due to the 

computational constraints. Use of a small-sized ensemble causes sampling errors typically 

characterized by the remote spurious covariances. If not properly treated, the sampling errors, for 

example, will incur noisy analysis increments and even cause filter divergence (Hamill 2006). 

Covariance localization is commonly applied in the ensemble-based DA systems to eliminate the 

spurious covariances (Houtekamer and Mitchell 2001; Bishop and Hodyss 2009c). However, 

covariance localization may incur imbalance in the analysis (Buehner and Charron 2007; Wang 

et al. 2009; Buehner 2012; Holland and Wang 2013) and probably remove the realistic signals in 

distant regions (Miyoshi et al. 2014). On the other hand, the benefits from directly increasing the 

ensemble size in the ensemble-based DA systems were demonstrated in the operational or near-

operational settings (Bonavita et al. 2012; Houtekamer et al. 2014; Bowler et al. 2017; Lei and 

Whitaker 2017). Unfortunately, the computational cost is significantly increased due to running a 

large-sized ensemble.  

Instead of directly increasing the ensemble size, early studies explored alternative ways 

to populate the background ensemble. One method was to include ensemble forecast members 

valid at the same time but initialized from different previous cycles (Van den Dool and 

Rukhovets 1994; Lu et al. 2007; Gustafsson et al. 2014). This approach is termed as the time-

lagged method hereafter. Such sets of ensemble forecast members with different forecast lengths 

may be able to sample part of the forecast errors (Van den Dool and Rukhovets 1994). However, 

previous studies have shown limited success of the time-lagged method to improve the analysis 

and the subsequent forecasts (e.g. Gustafsson et al. 2014). 
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In addition, Xu et al. (2008) in a convective-scale forecast context proposed a time-

expanded sampling method by taking advantage of the ensemble forecast members that were 

initialized in the same previous DA cycle but valid at different lead times. This method was 

inspired to sample the timing and/or phase errors often seen in the convective-scale background 

forecasts. In its implementation, the ensemble forecast members, valid around but not at the 

analysis time, were included to populate the background ensemble at the analysis time. Because 

this method requires shifting the ensemble forecast members valid at different lead times to the 

analysis time, this method is hereafter denoted as VTSM (Valid-Time-Shifting method for 

ensemble Members), adapted from the notation used by Gustafsson et al. (2014). The time 

difference between the analysis time and the valid time of the shifted ensemble forecasts is 

named as the shifting time interval for brevity. The VTSM method was shown useful for the 

regional mesoscale EnKF or hybrid-4DVar systems with the assimilation of either simulated or 

real observations (Xu et al. 2008; Lu et al. 2011; Gustafsson et al. 2014; Zhao et al. 2015).  

While the efficacy of the VTSM method has been demonstrated in previous studies for 

the meso- and convective-scale DA and forecasts in the regional models, its usefulness for a 

global modeling system featured with a variety of weather phenomena remains to be investigated. 

For example, the global model houses weather phenomena with different degrees of 

predictability and scales (e.g., mid-latitude trough and ridge versus tropical storm). The 

background errors associated with these phenomena can be diverse ranging from timing, phase, 

magnitude and structure errors and featured with various growth rates. For the weather systems 

with low predictability, the original background ensemble is likely not able to comprehensively 

sample the background errors from different sources. In such cases, the populated ensemble by 
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the VTSM method may have better chance to capture missing sources of background errors. 

However, as shown in section 3.2, for the more predictable cases, populating the background 

ensemble by utilizing the ensemble forecast members valid at different lead times may introduce 

some members that are irrelevant to the background errors. Therefore, the VTSM method is 

further investigated in a global ensemble-based DA system in this study. This will complement 

the previous VTSM studies in regional DA applications.   

In addition, to ameliorate the potential limitations of the VTSM method while taking 

advantage of the ensemble forecasts freely available at different lead times to enlarge the 

ensemble size, a method extended from the VTSM method is explored in this study. Different 

from the VTSM method, the ensemble members valid at different leading times are re-centered 

on the original ensemble mean valid at the analysis time. In other words, rather than shifting the 

ensemble members in the VTSM method, the ensemble perturbations calculated as the deviation 

from its own ensemble mean are shifted. Hereafter, this method is termed as VTSP (Valid-Time-

Shifting method for ensemble Perturbations). In the ECMWF global 4DVar DA system, 

Bonavita et al. (2016) formed the background covariances by blending the perturbations 

generated by the VTSP  method and those drawn from the climatology. It was found that this 

blending was beneficial for their global forecasts compared to either using the static 

climatological background error covariances or the background error covariances estimated from 

the ensemble perturbations with the same lead time but initialized most recently.  In the Met 

office’s global hybrid 4D ensemble-variational system, Lorenc (2017) combined the VTSP 

approach and the time-lagged approach to further increase the ensemble size. It was found that 
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the positive impact of the covariances from this populated ensemble was more apparent when 

proper localization method was implemented.   

In this study, the VTSM and VTSP methods were implemented and investigated in the 

National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) hybrid 

four-dimensional ensemble-variational (4DEnVar) DA system (Wang and Lei 2014; Kleist and 

Ide 2015b). As shown in section 3.2.1 and 3.2.2, the VTSM and VTSP methods produce 

different impacts in a tropical cyclone example and mid-latitude low example. It is motivated to 

evaluate and compare the impacts of both VTSM and VTSP methods on the general global 

forecasts and the tropical cyclone forecasts in a global modeling system. It is expected that the 

optimal parameters such as the shifting time interval may be dependent on the specific forecast 

application. Furthermore, various diagnostics are carried out and experiments are designed to 

reveal the causes of the impacts of the VTSM and VTSP methods. This chapter is organized as 

follows. Section 3.2 describes and illustrates the VTSM and VTSP methods. Section 3.3 

describes the experiment design. Sections 3.4 and 3.5 discuss the results and various diagnostics 

with respect to the general global forecasts and tropical cyclone track forecasts, respectively. The 

computational cost from the VTSM and VTSP methods is compared with the baseline GFS 

4DEnVar experiment in section 3.6. Section 3.7 presents summaries and discussions. 

 

3.2 VTSM and VTSP methods 

In the VTS methods, the ensemble forecasts, either in the form of full ensemble members 

or ensemble perturbations, which are initialized from the same analyses produced by the 

previous DA cycle but valid at different lead times, are used to populate the background 
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ensemble at the current analysis time. Figure 3.1 illustrates the original background ensembles 

and the VTS-populated background ensemble being ingested into the 4DEnVar variational 

update within a 6-hour DA window of 0300-0900 UTC. In the original GFS 4DEnVar system 

(Fig. 3.1a), an ensemble of 80-member forecasts out to the 9-hour lead time is initialized from 

the analyses produced in the previous DA cycle. Considering producing a 3-hourly temporal 

resolution of the ensemble within the 6-hour DA window, the analysis increments in the 

4DEnVar variational update are produced at three time levels: the beginning (t=0300UTC), 

middle (t=0600UTC) and end (t=0900UTC) of the DA window, respectively. When applying the 

VTS methods (Fig. 3.1b), a shifting time interval τ is first selected. Then the background 

forecasts initialized from the previous DA cycle are shifted both forward and backward for the 

time length equal to the shifting time interval τ.  Specifically, the ensemble forecasts valid at 

time t-τ and t+τ will be used to supplement the background ensemble at each analysis time t 

(enclosed by the blue dashed rectangles in Fig. 3.1b). Since these additional ensemble forecasts 

are not valid but shifted to the time t, they are termed as the shifted ensembles in contrast to the 

original ensemble valid at time t. As such, for the example given in Fig. 3.1b, the ensemble size 

is tripled at each time t. The ensemble size can be further enlarged by selecting multiple different 

shifting time intervals (Lorenc 2017a). For instance, by selecting τ =1, 2 and 3 hours, the 

populated ensemble size would be seven times as large as the original ensemble. However, these 

ensemble forecasts with smaller lead time differences can be strongly correlated and therefore 

not effectively add additional degrees of freedom or rank. Given the focus of this study is to 

reveal the impact differences of the VTSM and VTSP methods, only one single shifting time 

interval is selected as described in the next section. The following two subsections describe and 
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illustrate the VTSM and VTSP methods using both a tropical cyclone and a mid-latitude closed 

low as examples.  

 

Figure 3.1 Illustration of (a) the original background ensembles and (b) the VTS-
populated background ensembles with applying a shifting time interval τ (enclosed by the 
blue dashed rectangles) being ingested into the 4DEnVar variational update at the three 
analysis time levels: the beginning (0300UTC), middle (0600UTC) and end (0900UTC) 
of a 6-hour data assimilation window. 

 

3.2.1 VTSM method 

In the VTSM method, the ensemble at time t is populated by directly including the 

original ensemble forecast members valid at time t–τ and t+τ. The populated ensemble mean is 

the average of the original ensemble means valid at time t–τ, t, and t+τ. The populated ensemble 

perturbations are calculated as the deviation of each member from this populated ensemble mean 

and are used to compute the ensemble background error covariances. As shown in Eq. (A1) in 

the appendix A, the background ensemble covariances after applying the VTSM method are 

calculated by summing up two components. The first component approximately represents an 

03Z 06Z 09Z(03-τ)Z (03+τ)Z (06-τ)Z (06+τ)Z (09-τ)Z (09+τ)Z

03Z 06Z 09Z(03-τ)Z (03+τ)Z (06-τ)Z (06+τ)Z (09-τ)Z (09+τ)Z

03Z 06Z 09Z(03-τ)Z (03+τ)Z (06-τ)Z (06+τ)Z (09-τ)Z (09+τ)Z

03Z 06Z 09Z(03-τ)Z (03+τ)Z (06-τ)Z (06+τ)Z (09-τ)Z (09+τ)Z

(a) Original background ensembles 

(b) VTS-populated background ensembles with  
     applying a shifting time inverval τ 
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average of the ensemble covariances from the original and shifted ensembles. The second 

component is the contribution from the ensemble mean differences between the original and 

shifted ensembles. As to be discussed in the next subsection, the first component is 

approximately equivalent to the VTSP-populated ensemble covariances. In the forthcoming 

examples featuring systems of different scales and predictabilities, the role of the second 

component from the VTSM-populated ensemble covariances will be discussed.  

 Figure 3.2 first using typhoon Usage (2013) illustrates that the VTSM method, by 

directly utilizing the ensemble forecast members at different lead times, can better sample the 

timing or phase errors, consistent with the early study in Xu et al. (2008). As seen in Fig. 3.2a, a 

westward location error is observed from the original 6-hour background ensemble mean relative 

to the verifying ECMWF analysis. The original background ensemble has relatively large spread, 

indicating the large uncertainty of the forecasts. By shifting the background ensemble forecast 

members at the 3- and 9-hour lead times to the 6-hour lead time via the VTSM method (Fig. 

3.2b), the spread of the ensemble is increased. In the VTSM-populated ensemble, more members 

enclose the verifying ECMWF analysis especially due to the shifted 3-hour background 

ensemble members. This result suggests the VTSM-populated ensemble may better sample the 

location errors than the original 6-hour ensemble. As shown in this typhoon example, the 

ensemble means at the three different lead times still reside within the envelope of the original 6-

hour background ensemble (e.g., the blue curves in Fig. 3.2b), the contribution from the 

ensemble mean differences is less likely to dominate the VTSM-populated ensemble error 

covariances as shown in Eq. (A1) in the appendix A.  
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 On the other hand, as discussed in the introduction, the VTSM method may introduce 

irrelevant members. For example, Fig. 3.2g shows a mid-latitude closed low example where both 

the phase and structure are accurately predicted by the 6-hour background ensemble mean. The 

ensemble encloses the verifying ECMWF analysis and the spread of the ensemble is small. The 

VTSM-populated ensembles with the 3-hour shifting time interval in this example show three 

distinct clusters in the eastern section of the mid-latitude low (Fig. 3.2h). The added members 

fall completely outside the envelope of the original ensemble and the verifying ECMWF analysis, 

therefore producing irrelevant sampling of the background errors. Consistently, the histogram 

plot for the geopotential height variable sampled from the grid points within the areas of three 

distinct clusters (enclosed by black dashed rectangle in Fig. 3.2h) shows three peaks (Fig. 3.2k), 

significantly altering the background distribution of the original ensemble (Fig. 3.2j). As a 

consequence, the VTSM-populated ensemble violates the Gaussian assumption typically used in 

the ensemble-based DA methods. In contrast, for the typhoon example, in spite of the increased 

spread, the VTSM method does not significantly alter the distribution of the original background 

ensemble by comparing Figs. 3.2d,e. Furthermore, different from the typhoon example as 

discussed earlier, in the eastern section of the mid-latitude closed low, the ensemble means at the 

3- and 9-hour lead times are located totally outside the envelope of the original 6-hour ensemble. 

Considering the relatively small spread of the original ensembles, the contribution of the 

ensemble mean differences in the VTSM-populated ensemble covariances could possibly 

dominate the VTSM-populated ensemble covariances in this mid-latitude closed low example.   
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Figure 3.2 Spaghetti-contour plots of (a)-(c) the -120 gpm geopotential height 
perturbations at 1000 hPa in typhoon Usage (2013) and of (g)-(i) the 1400 gpm 
geopotential height at 850 hPa in a middle-latitude closed low from the (left) original 80-
member background ensemble and (middle) VTSM- and (right) VTSP-populated 240-

(a) ENS80 for TC (b) VTSM for TC (c) VTSP for TC

(d) ENS80 for TC (e) VTSM for TC (f) VTSP for TC

(j) ENS80 for mid-low (l) VTSP for mid-low

(g) ENS80 for mid-low

(k) VTSM for mid-low

(i) VTSP for mid-low(h) VTSM for mid-low
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member background ensemble with applying a shifting time interval τ  = 3 hours at the 6-
hour lead time. In (a)-(c) and (g)-(i), the thin blue contours represent the original 6-hour 
80-member background ensemble. The thin orange and magenta contours denote the 3- 
and 9-hour 80-member background ensemble produced by the VTSM and VTSP methods 
(see texts for the differences), respectively. The thick green contour represents the 
ECMWF analysis valid at the 6-hour lead time. The short-dashed, solid and long-dashed 
red contours denote the 80-member background ensemble mean valid at the 3-, 6- and 9-
hour lead times, respectively. Histogram plots for (d)-(f) the typhoon Usage (2013) 
example and (j)-(l) the mid-latitude closed low example by sampling for the geopotential 
height variable at the grid points enclosed by the corresponding black dashed rectangles 
in (a)-(c) and (g)-(i) and the averaged spread calculated for the geopotential variables 
within the corresponding black dashed rectangles is listed on the top left corner 
correspondingly. 

 

3.2.2 VTSP method 

In the VTSP method, the shifted ensemble members at time t are produced by re-

centering the original ensemble perturbations at time t–τ and t+τ on the original ensemble mean 

at time t. So the VTSP-populated background ensemble shares the same original background 

ensemble mean valid at time t. The VTSP method therefore reduces the possibility that the 

shifted members sample irrelevant background error space. For example, in the mid-latitude low 

example, different from the VTSM method, the VTSP method produces a populated ensemble 

without distinct clusters (Fig. 3.2i). Furthermore, the VTSP-populated ensemble (Fig. 3.2l) 

follows the Gaussian distribution more than the original ensemble (Fig. 3.2j). In the typhoon 

example, compared to the original ensemble, the VTSP method still increases the chance that the 

truth is sampled by adding more members enclosing the verifying ECMWF analysis (Fig. 3.2c), 

although the VTSP method does not increase the spread as much as the VTSM method. In the 

typhoon example, the VTSP method (Fig. 3.2f), like the VTSM method, does not show 

significant change of the distribution of the original background ensemble. 
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As shown in Eq. (A3) in the appendix A, the VTSP method by design functions as 

averaging the ensemble covariances at three different valid times. Therefore, the VTSP method 

produces a temporal smoothing effect on the ensemble covariances. In a chaotic system, 

temporal smoothing has similar effect as spatial smoothing (Raynaud et al. 2008).  Buehner and 

Charron (2007) proved that the spatial smoothing of the ensemble correlations in the grid space 

was equivalent to applying the localization in the spectral space. Raynaud et al. (2008, 2009) 

applied a spatial averaging technique on the ensemble background variances to reduce the 

sampling errors that often have smaller scales compared to the background errors. Therefore, it is 

expected that the built-in smoothing effect in the VTSP method can contribute to eliminating the 

spurious small covariances caused by sampling errors.  As discussed in the previous subsection, 

the VTSP-populated ensemble error covariances are approximately equal to the first component 

in the VTSM-populated ensemble error covariances. By comparing with the VTSP method, it 

assists in isolating and evaluating the impact of the ensemble mean differences in the VTSM-

populated ensemble error covariances. 

 

3.3 Experiment design 

 The hybrid 4DEnVar system for the GFS model was developed as an extension of the 

gridpoint statistical interpolation (GSI) 3DEnVar system (Wang 2010a; Wang et al. 2013; Wang 

and Lei 2014; Kleist and Ide 2015a,b). In contrast to 3DEnVar, 4DEnVar is able to account for 

the temporal evolution of the background error covariances by utilizing the 4D ensemble forecast 

errors, therefore enhancing the assimilation of 4D observations within a DA window. The GSI 

hybrid 4DEnVar system was operationally implemented at NCEP beginning May 2016.  



 
32 

The DA cycling experiments were carried out for a ten-week period from 0000 UTC 25 

July to 1800 UTC 30 September 2013. The conventional and satellite observations operationally 

used in NCEP Global Data Assimilation System (GDAS) were assimilated every 6 hours. The 

same observation quality control and bias correction for the satellite radiances were used as in 

the operational GDAS system (Zhu et al. 2014). 

Table 3.1 List of DA experiments 

Expts 

 
Four components in a single 4DEnvar DA cycle  

 

EnVar update EnKF 
update 

Control 
background  

forecasts 

Ensemble 
background  

forecasts 

ENS80 
Original 80-member 
ensemble for ensemble error 
covariances 

80  
members 

One-member 9-
hour forecast 

80-member 
9-hour 
forecasts 

ENS240 
Original 240-member 
ensemble for ensemble error 
covariances 

240  
members 

One-member 9-
hour forecast 

240-member 
9-hour 
forecasts 

VTSM240Hτ  

VTSM-populated 240-
member ensemble by 
applying a shifting time 
interval τ (τ = 1, 2 and 3 
hours) for ensemble error 
covariances 

80  
members 

One-member 9-
hour forecast 

80-member 
(9+τ)-hour 
forecasts 

VTSP240Hτ  

VTSP-populated 240-
member ensemble by 
applying a shifting time 
interval τ (τ = 1, 2 and 3 
hours) for ensemble error 
covariances 

80  
members 

One-member 9-
hour forecast 

80-member 
 (9+τ)-hour 
forecasts 

 

The baseline 4DEnVar experiment (ENS80 in Table 3.1) without applying the VTSM 

and VTSP methods is configured similarly as the operational system except that a reduced 

resolution is adopted due to the computational constraints. The dual-resolution configuration is 

applied with a control or deterministic member running at a relatively high resolution of T670 
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and an 80-member ensemble running at a relatively low resolution of T254. In the DA step, the 

control background is updated by adopting the 4DEnVar algorithm where the extended control 

variable method is used to ingest the 4D ensemble perturbations. Detailed mathematical formula 

and implementation of 4DEnVar in the GSI variational minimization can be found in Wang and 

Lei (2014). The ensemble members are updated using the EnKF (Whitaker and Hamill 2002; 

Whitaker et al. 2008).  Following the two-way coupling method (Fig. 1b in Wang et al. (2013)), 

the EnKF ensemble analyses are re-centered on the control 4DEnVar analyses.  

 In the 4DEnVar update, the weights of 12.5% and 87.5% are applied on the static 

climatological and ensemble background error covariances, respectively, as in the operational 

system. Different from utilizing the hourly ensemble perturbations as in the operational system, 

three-hourly ensemble perturbations are ingested in GSI 4DEnVar in the current experiments due 

to computational constraints. To treat the sampling errors associated with the ensemble-based 

covariances, the covariance localization is implemented by a spectral filter transform for the 

horizontal and the recursive filter for the vertical (see details in Wang et al. 2013). Following Lei 

and Whitaker (2017), the level-dependent localization length scales in Fig. 3.3 are applied in the 

horizontal direction, and a single value of 0.5 scale heights (i.e., the natural log of  the pressure) 

in the vertical direction. The horizontal and vertical localization length scales in the 4DEnVar 

variational update are the e-folding scales. To alleviate the imbalance issue in the control 

analysis, a tangent linear normal mode initialization constraint (TLNMC, Kleist et al. 2009) is 

applied to the analysis increments during the minimization of GSI 4DEnVar as in Wang et al. 

(2013), Wang and Lei (2014), and Kleist and Ide (2015a,b).  
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Figure 3.3 Horizontal localization length scales in kilometers as a function of model 
levels applied in the GSI-based GFS hybrid 4DEnVar system. Note that the horizontal 
localization length scales are e-folding scales.  

 

The 4D serial ensemble square root filter (EnSRF, Whitaker and Hamill 2002) is adopted 

for the EnKF component of the hybrid system as in the operational system. In the EnKF update, 

all the observation operators are calculated by GSI. The ensemble background mean at low 

resolution is used for data selection and quality control so that all the ensemble members are 

updated by the same set of observations. The same localization parameters used in the 4DEnVar 

variational update are applied for EnKF. A normalization factor of 0.388 is applied in EnKF to 

convert the e-folding scales to the distance at which the amplitude of Gaspari-Cohn localization 

function (Gaspari and Cohn 1999) approaches zero. To account for the spread deficiency of the 
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background ensemble produced by EnKF, the multiplicative inflation (Whitaker et al. 2012) is 

employed by relaxing the posterior ensemble spread to 85% of the prior ensemble spread. 

Stochastic parameterization schemes (Palmer et al. 2009; Lei and Whitaker 2016, 2017) are 

applied to further account for the model uncertainty in the ensemble forecasts.  

The GFS model (Environmental Modeling Center, 2020) is configured similarly as the 

operational system for the control and ensemble forecasts except for running at the reduced 

horizontal resolutions as discussed before. 64 vertical levels are used. In addition, the 4D 

incremental analysis update (4DIAU) is applied for both the control and ensemble forecasts 

instead of the digital filter (DFI; Lynch and Huang 1992) used in the operational GFS model, 

given the superiority of 4DIAU in suppressing the spurious high-frequency oscillations 

compared with DFI (Lorenc et al. 2015; Lei and Whitaker 2016, 2017). A 4DIAU 

implementation is planned for the operational GFS 4DEnVar system (Rahul Mahajan 2017, 

personal communication). 

In addition to the baseline experiment, two sets of experiments, named as VTSM240Hτ 

and VTSP240Hτ in Table 3.1, are designed where the VTSM and VTSP methods are applied to 

populate the background ensemble before ingested into the 4DEnVar variational update. 

VTSM240Hτ and VTSP240Hτ denote experiments where the VTSM and VTSP methods are 

applied to increase the background ensemble size from 80 to 240 for a given shifting time 

interval τ. Since the shifted ensembles defined in the VTS methods originate from the ensemble 

forecasts that are initialized from the same analyses produced in the previous DA cycle, three 

different shifting time intervals (τ = 1, 2, or 3 hours) are experimented within a 6-hour DA 

window of 0300Z-0900Z. Note that in these experiments, EnKF and ensemble forecasts still run 
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with 80 members as in the baseline ENS80 experiment. Only the number of ensemble members 

ingested to the 4DEnVar variational update is increased from 80 to 240 by using the VTS 

methods. Finally, the experiment ENS240 is conducted. ENS240 is the same as the baseline 

ENS80 experiment except that the ensemble size is directly increased from 80 to 240 for each 

component of the hybrid DA system. As discussed in section 3.6, although 240 members are 

used in the 4DEnVar variational update for both the ENS240 and VTS experiments, the VTS 

methods are computationally less costly. ENS240 is therefore used as a reference to reveal to 

what extent the inexpensive VTS methods can achieve the improvement of or even outperform 

ENS240. Within similar experiment configurations, Lei and Whitaker (2017) found that the 

performance of the GFS hybrid 4DEnVar system showed little sensitivity to the localization 

length scale changes by increasing the ensemble size from 80 to 320. Therefore, our experiments 

of ENS240, VTSM240Hτ and VTSP240Hτ apply the same localization length scales as the 

baseline ENS80 experiment. Detailed experiment descriptions are presented in Table 3.1.  

 

3.4 Evaluation of global forecasts 

In this section, the performance of the VTSM and VTSP methods on the general global 

forecasts is evaluated. Various diagnostics are performed to understand the causes of their 

impacts on the general global forecasts. In section 3.5, the VTSM and VTSP methods are further 

evaluated on the tropical cyclone track forecasts. 
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3.4.1 Verification against conventional observations 

 Root-mean-square-errors (RMSE) of the 6-hour temperature and wind forecasts against 

the rawinsonde observations were calculated at different pressure levels for all the experiments. 

Samples were collected from the last eight weeks during the ten-week experiment period to 

remove the DA spin-up period. The paired t-test was performed to examine the significance of 

the RMSE difference between ENS80 and the other experiments. ENS240 consistently 

significantly improves the 6-hour temperature and wind forecasts over ENS80 at all pressure 

levels at or above the 95% confidence level (Figs. 3.4a,d), especially for the global wind 

forecasts.  

 

Figure 3.4 Globally and temporally averaged root-mean-square-error (RMSE) of the 6-
hour (a) temperature and (d) wind background forecasts in ENS80 (black) and ENS240 
(orange) to the rawinsonde observations as a function of pressure levels. Percentage 
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improvement (PI) relative to ENS240 of the 6-hour (b)(c) temperature and (e)(f) wind 
background forecasts in (middle) VTSM240Hτ (solid lines) and (right) VTSP240Hτ 
(dashed lines) experiments with applying a shifting time interval τ = 1 hour (red), 2 hours 
(green) and 3 hours (blue). The asterisk signs in the left, middle and right panels suggest 
the RMSE difference from ENS80 in ENS240, VTSM240H2 and VTSP240H3 is 
significant at or above the 95% confidence level by applying the paired t-test, 
respectively. The percentage number listed in the bottom-left corner of (b)(e) and (c)(f) 
are the averaged PI over all the pressure levels with the same color indexes applied 
corresponding to different shifting time intervals in VTSM240Hτ and VTSP240Hτ 
experiments. 

 

To quantify the RMSE difference of VTSM240Hτ or VTSP240Hτ relative to ENS80 and 

the extent to which the improvement of ENS240 can be recovered by VTSM240Hτ or 

VTSP240Hτ, the percentage improvement (PI) of VTSM240Hτ and VTSP240Hτ relative to 

ENS240 was defined as, 

  
PI =

RMSE(ENS80) - RMSE(exp)
RMSE(ENS80) - RMSE(ENS240)

×100%     (3.1) 

where “exp” denotes the experiments of VTSM240Hτ or VTSP240Hτ. Since ENS240 

consistently shows smaller RMSE than ENS80, positive PI indicates the improved forecasts of 

VTSM240Hτ and VTSP240Hτ over ENS80, and vice versa. The averaged PI over all pressure 

levels was also calculated. VTSP240Hτ with all shifting time intervals shows positive PI for the 

6-hour temperature and wind forecasts at almost all pressure levels (Figs. 3.4c,f). The VTSP 

experiments generally show larger PI with larger shifting time interval. For instance, in terms of 

averaged PI, compared to VTSP240H1 and VTSP240H2, VTSP240H3 achieves the largest 

averaged PI of 50.2% and 60.4% for the 6-hour temperature and wind forecasts, respectively. In 

particular, the improved 6-hour temperature and wind forecasts in VTSP240H3 over ENS80 are 

statistically significant at or above the 95% confidence level at all pressure levels. On the other 
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hand, VTSM240H3 shows nearly zero and even negative PI (Figs. 3.4b,e). With a smaller 

shifting time interval, VTSM240H1 and VTSM240H2 generally show more instances of positive 

PI. Specifically, in the VTSM experiments, VTSM240H2 (VTSM240H1) shows the best 

averaged PI of 36.1% (25.2%) for the 6-hour temperature (wind) forecasts. However, this 

percentage improvement is less than the best-performing VTSP experiment (VTSP240H3). In 

summary, VTSP240H3 shows the most consistent improvement and therefore recovers the 

improvement by ENS240 the most for the 6-hour temperature and wind forecasts in all VTS 

experiments. 

 

3.4.2 Verification against ECMWF analysis 

The global forecasts out to 5-day lead times were further verified against the ECMWF analysis 

with the resolution of 1° × 1° grid (European Centre for Medium-Range Weather Forecasts, 

2020). The root-mean-squared-errors (RMSE) between the global forecasts and the ECMWF 

analyses were calculated every 6 hours and averaged temporally and globally at each pressure 

level.  The paired t-test was performed to examine the statistical significance of the RMSE 

difference from ENS80.  Figures 3.5 and 3.6 show the RMSE difference of ENS240 and VTS 

experiments relative to ENS80 for the global temperature and wind forecasts as a function of 

forecast lead time and pressure level. ENS240 significantly improves over ENS80 for both the 

temperature and wind forecasts out to 5 days (Fig. 3.5), which is consistent with Lei and 

Whitaker (2017).  
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Figure 3.5 Globally and temporally averaged root-mean-square-error (RMSE) difference 
from ENS80 for the global (left) temperature and (right) wind forecasts in ENS240 
against ECMWF analysis as a function of forecast times to 5 days on the horizontal axis 
and pressure levels on the vertical axis. Blue (red) color indicates smaller (larger) RMSE 
from the other experiments relative to ENS80. The asterisk signs at the corresponding 
forecast times and pressure levels indicate that the RMSE difference from ENS80 is 
significant at or above 95% confidence level by applying the paired t-test. 

 

VTSP240Hτ significantly improves temperature and wind forecasts in the stratosphere 

above 200 hPa over the 5-day lead times. In the troposphere, VTSP240H2 overall is able to 

maintain the statistically significant improvement out to the 5-day lead time (Figs. 3.6e,k). 

VTSP240H1 and VTSP240H3 only show significant improvement within the first 3 days and the 

differences between these two experiments and ENS80 beyond the 3-day lead time is statistically 

insignificant. VTSM240Hτ consistently improves the global forecasts in the stratosphere above 

100 hPa over the 5-day lead times except for VTSM240H3 which shows neutral impacts on the 

temperature forecasts at early lead times. In the troposphere, however, the VTSM experiments 

show either nearly neutral or negative impacts. Stronger degradation is found with larger shifting 

time interval in the VTSM experiments. For example, VTSM240H3 degrades the forecasts 

below 100 hPa for the entire 5-day period (Figs. 3.6c,i).  
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Figure 3.6 As in Fig. 3.5 but for the global (a)-(f) temperature and (g)-(l) wind forecasts 
against ECMWF analysis in (a)-(c) and (g)-(i) VTSM240Hτ and (d-f) and (j)-(l) 
VTSP240Hτ experiments with applying a shifting time interval τ = (left) 1 hour, (middle) 
2 hours and (right) 3 hours. 
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In summary, among the experiments of VTSM240Hτ and VTSP240Hτ, VTSP240H2 

shows the most consistent improvement for the global temperature and wind forecasts verified 

against ECMWF analysis. The improvement of VTSP240H2 bears similar structure as that in 

ENS240 by comparing with Fig. 3.5, though the magnitude is generally smaller. To further 

understand the causes of the different impacts of the VTSM and VTSP methods on the general 

global forecasts, in the next several subsections, aspects including ensemble correlation and 

spread, the effective rank in the ensemble-based covariance matrices are further examined in a 

global context using ENS240 as a referencing truth. 

 

3.4.3 Accuracy of ensemble correlations 

 As discussed in the introduction, sampling errors due to the limited ensemble size 

manifests themselves with spurious correlations in the ensemble-based covariances. Figure 3.7 

shows the 2D temperature ensemble auto-correlations at the 6-hour lead time between the central 

grid point (marked by the black dot) and other grid points for a mid-latitude low case. The 

ensemble correlations in the referencing ENS240 experiment display flow-dependent structures 

stretching along the geopotential height contours (Fig. 3.7a).  Compared to ENS240, ENS80 

shows three spurious negative correlation areas away from the central grid point (Fig. 3.7b) that 

do not appear in ENS240. VTSP240H3 (Fig. 3.7d) is able to remove the spurious correlations 

shown in ENS80 and maintain a similar structure as ENS240. These results illustrate the 

effectiveness of the VTSP method in alleviating the sampling errors, possibly owing to its 

smoothing effect as discussed in section 3.2.2. On the other hand, VTSM240H3 shows a largely 

different correlation structure (Fig. 3.7c) compared to ENS240, characterized by the expanded 
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negative correlation areas away from the centered grid point. As discussed in section 3.2, by 

comparing with VTSP240H3, the deterioration of the estimated correlations in VTSM240H3 

could be caused by the inclusion of the ensemble mean differences that may fail to appropriately 

sample the forecast errors at the 6-hour lead time (as discussed in Figs. 3.2h,k).  

 

Figure 3.7 700 hPa temperature ensemble auto-correlations (color shaded) between the 
centered grid point (marked by the black dot) and other grid points calculated from the 
original 6-hour background ensemble in (a) ENS240 and  (b) ENS80, and the (c) VTSM-
and (d) VTSP-populated 6-hour background ensembles with applying a shifting time 
interval τ = 3 hours. The solid black contours represent the geopotential heights of the 6-
hour background ensemble mean at 700 hPa.  

 

(a) ENS240 (b) ENS80

(c) VTSM240H3 (d) VTSP240H3
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To quantify the accuracy of the background ensemble correlations, the ensemble 

correlation samples were collected after the spin-up period. Each correlation sample consists of a 

2D box covering an area of 40° × 40° as used in Fig. 3.7. The size of the box is slightly larger 

than doubling the localization length scale. In each cycle, 165 boxes, evenly distributed over the 

globe, are selected at 850 hPa, 500 hPa and 200 hPa. Within each box, the auto- and cross-

correlations for the temperature and zonal wind variables are calculated between the centered 

grid point and other grid points. The absolute value of the relative correlation error (ARCE) with 

ENS240 as the referencing truth is defined as, 

 
ARCE(exp) =

abs[Corr(exp) - Corr(ENS240)]
abs[Corr(ENS240)]

     (3.2) 

where, “exp” denotes the experiments of ENS80, VTSM240Hτ and VTSP240Hτ, “Corr” denotes 

the background ensemble correlations and “abs” is the absolute sign. Only samples of the 

absolute correlation values larger than 0.0001 in ENS240 were collected to calculate ARCE. 

This setting of the threshold intends to reduce the chance of contaminating the averaged ARCE 

statistics by a limited number of extremely large ARCE produced by a very tiny denominator in 

Eq. (3.2). To further quantify the error reduction or increase relative to the baseline ENS80 

experiment, another metric, ARCE difference (ARCED) is defined as, 

ARCED(exp) = ARCE(ENS80) -ARCE(exp)     (3.3) 

Positive ARCED suggests the improved correlation accuracy from VTSM240Hτ or VTSP240Hτ 

relative to ENS80, and vice versa. To evaluate the accuracy of ensemble correlations as a 

function of the value of the underlying correlations, ten bins with an increasing order of the 

absolute correlation values are first defined using the absolute correlations in ENS240. ARCE 
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and ARCED are then grouped and averaged for each bin.  

 Figure 3.8 shows the ARCE of ENS80 for the temperature variable at 500 hPa in the 

northern hemisphere (NH), tropical region (TR) and southern hemisphere (SH). Similar results 

are also found at other pressure levels and for the zonal wind variable (not shown here).  In all 

hemispheres, ARCE decreases as the underlying absolute correlations increase, especially for the 

small correlations (e.g., the first two bins show sharp decrease of ARCE). In addition, the cross-

correlations between the temperature and the zonal wind variables show larger errors than the 

temperature auto-correlations. The results are consistent with the expectation that for a given 

ensemble size, it is more difficult to estimate the small correlations and cross-variable 

correlations using the ensembles.  

 

Figure 3.8 Absolute value of relative correlation error (ARCE) of ENS80 at 500 hPa 
calculated from the 6-hour background ensemble as a function of bin numbers on the 
horizontal axis in (a) the northern hemisphere (NH), (b) the tropical region (TR) and (c) 
the southern hemisphere (SH) for the temperature auto-correlations (solid lines, denoted 
as “TT”) and the cross-correlations between the temperature and the zonal wind (dashed 
lines, denoted as “TU”). Larger bin number on the horizontal axis indicates larger 
absolute values of the underlying correlations.  
 

 Figure 3.9 shows the ARCED of VTSM240Hτ and VTSP240Hτ for the temperature 
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levels and for the zonal wind variable (not shown here). In all hemispheres, VTSP240Hτ 

consistently improves the correlation accuracy for all bins except for VTSP240H3 which shows 

slightly degraded cross-correlations in the last three bins in SH. In contrast, VTSM240Hτ 

degrades the accuracy especially for the small underlying correlations. With the increase of 

underlying correlations (increasing bin numbers), the improvement in VTSP240Hτ and the 

degradation in VTSM240Hτ is reduced. Larger improvement in VTSP240Hτ and larger 

degradation in VTSM240Hτ are generally found for the cross-variable correlations than same-

variable auto-correlations. With a larger shifting time interval, VTSP240Hτ generally shows 

larger improvement and VTSM240Hτ results in larger degradation, respectively. It is speculated 

that when applying larger shifting time interval in VTSP240Hτ, additional ensemble 

perturbations added by the VTSP method are more independent from the original background 

ensemble perturbations, which therefore can more effectively enrich the ensemble. Consistently, 

VTSP240H3 shows the best percentage improvement for the 6-hour global temperature and wind 

forecasts (Fig. 3.4c,f). On the other hand, by comparing with VTSP240Hτ, the more severely 

degraded correlation accuracy with larger shifting time interval in VTSM240Hτ could be 

attributed to the increased amount of the ensemble mean differences that dominate the VTSM-

populated ensemble correlations. It is also noted that VTSM240Hτ shows smallest degradation 

in TR and largest degradation in SH. Synoptic-scale weather systems typically controlled by the 

barotropic instability in TR may not evolve as rapidly as those typically controlled by the 

baroclinic instability in NH or SH (Straus and Paolino 2008). During the experiment period 

when SH experiences winter time, strong baroclinic instability is expected. As a result, 

VTSM240Hτ is likely to induce larger amount of ensemble mean differences in SH than that in 
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TR, thus possibly more severely degrading the VTSM-populated ensemble correlation accuracy 

in SH. 

 

Figure 3.9 Difference of the absolute value of relative correlation error (ARCED) from 
ENS80 in (top) VTSM and (bottom) VTSP experiments with applying a shifting time 
interval τ  = 1 hour (red), 2 hours (green) and 3 hours (blue) calculated from the 6-hour 
background ensemble at 500 hPa in (left) the northern hemisphere (NH), (middle) the 
tropical region (TR) and (right) the southern hemisphere (SH) for the temperature auto-
correlations (solid lines, denoted as “TT”) and the cross-correlations (dashed lines, 
denoted as “TU”) between the temperature and the zonal wind. The horizontal solid black 
line represents the ARCED with zero magnitude. 

3.4.4 Statistical evaluation of ensemble spread  

In this subsection, the relation of the 6-hour background forecast errors and the 6-hour 
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background ensemble spread are evaluated for all the experiments (Houtekamer and Mitchell 

2005; Whitaker et al. 2008; Wang et al. 2013). As shown in Fig. 3.10, in a globally-averaged 

context, the original background ensemble in ENS80 is under-dispersive for both the 6-hour 

temperature and wind forecasts in the stratosphere and lower troposphere, but over-dispersive 

especially for the wind forecasts in the middle troposphere. VTSP240Hτ and ENS240 show 

negligible spread change from ENS80 (Figs. 3.10c,d), while VTSM240Hτ increases the spread 

especially with a larger shifting time interval (e.g., VTSM240H3, Figs. 3.10a,b). The increased 

spread in VTSM240Hτ could be contributed by the ensemble mean differences by comparing 

with VTSP240Hτ. As a result, VTSM240Hτ is able to alleviate the under-dispersiveness of the 

original background ensemble in the stratosphere, but exacerbate the over-dispersiveness of the 

original background ensemble in the middle troposphere. These different effects may explain the 

improved global temperature and wind forecasts above 100 hPa but the degraded forecasts in the 

middle troposphere in the VTSM experiments as shown in Fig. 3.6.  

In different hemispheres, VTSP240Hτ and ENS240 do not show apparent spread change 

from ENS80, while the spread increase in VTSM240Hτ in TR is much smaller than that in NH 

and SH (not shown here). The less spread increase in TR in VTSM240Hτ could be associated 

with less amount of ensemble mean differences added to the total variance in TR than in NH and 

SH due to their different types of instabilities as discussed in section 3.4.3. 
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Figure 3.10 Vertical profiles for each experiment of the square root of the globally and 
temporally averaged innovation variance (solid lines), and the predictions of what it 
should be if the assimilation assumptions are correct (dashed lines). These predicted 
values are the square root of the observation error variance plus the variance from the 
original 6-hour background ensemble in ENS80 (black) and ENS240 (orange) and the 
(top) VTSM- and (bottom) VTSP-populated 6-hour background ensembles with applying 
a shifting time interval τ  = 1 hour (red), 2 hours (green) and 3 hours (blue) for the (left) 
temperature and (right) wind forecasts at the 6-hour lead time. Note that many of the 
curves in (c) and (d) are very similar and have been overplotted by the blue curves which 
were plotted last. 

 

3.4.5 Measure of effective rank in ensemble covariance matrices 

The sampling errors in the ensemble covariances are also manifested in the form of a 

small number of independent sub-spaces sampled, or sharp eigenvalue spectra of the ensemble 
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covariances (Wang and Bishop 2003). The E-dimension (Patil et al. 2001; Oczkowski et al. 2005; 

Kuhl et al. 2007) is therefore calculated to further evaluate the effectiveness of the VTSM and 

VTSP methods in increasing the effective rank of the ensemble covariance matrix. 

 

Figure 3.11 E-dimension calculated with using the temperature and zonal wind 
perturbations at 500 hPa from the original 6-hour background ensemble in ENS80 (black) 
and ENS240 (orange) and the VTSM- and VTSP-populated (filled with slash lines) 6-
hour background ensembles with applying a shifting time interval τ  = 1 hour (red), 2 
hours (green) and 3 hours (blue) in (a) the northern hemisphere (NH), (b) the tropical 
region (TR) and (c) the southern hemisphere (SH). 

 
Detailed procedures of calculating the E-dimension were documented in Oczkowski et al. 

(2005).  Specifically, the E-dimension was calculated by collecting the temperature and zonal 
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wind perturbations at the 6-hour lead time in each box as in section 4c. A total energy rescaling 

norm is employed following Eq. (26) in Wang and Bishop (2003). The temperature perturbations 

are multiplied by a factor of /p rC T C!/T!, where, Cp is the specific heat at constant pressure 

and Tr  is the reference temperature with 300K (Palmer et al. 1998). Figure 3.11 shows the E-

dimension at 500 hPa in different hemispheres. Although ensemble size is tripled in ENS240, the 

E-dimension in ENS240 is about 2.3 times as large as that of ENS80 in different hemispheres. 

VTSM240Hτ and VTSP240Hτ increase E-dimension compared to ENS80. Although having the 

same background ensemble size of 240, VTSM240Hτ and VTSP240Hτ have smaller E-

dimension than ENS240.  For a given shifting time interval, VTSP240Hτ shows larger E-

dimension than VTSM240Hτ, which suggests that the inclusion of ensemble mean differences in 

the VTSM-populated ensemble error covariances will reduce the effective rank relative to the 

VTSP method.   

On the other hand, larger shifting time interval results in larger E-dimension in 

VTSP240Hτ in different hemispheres. This result is consistent with the expectation that 

separated by larger lead time differences, the ensemble perturbations are more independent. 

However, with applying a larger shifting time interval in VTSM240Hτ, the E-dimension is 

decreased in SH while it is increased in TR. In NH, VTSM240H3 also shows slightly decreased 

E-dimension than VTSM240H1. These results of the VTSM experiments may be attributed to 

the different amounts of contribution from ensemble mean differences added to the total VTSM-

populated ensemble covariances in different hemispheres controlled by different types of 

instabilities as discussed in sections 4c,d. For example, when a larger shifting time interval is 

applied in VTSM240Hτ, the relatively larger ensemble mean differences in NH and SH, may 
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dominate the total VTSM-populated ensemble covariances to a higher degree and thus cause 

smaller E-dimension as a result. However, in TR, the ensemble mean differences in 

VTSM240Hτ contributes less to the total covariances and therefore the VTSM-populated 

ensemble covariances is mostly contributed by the original ensemble perturbations at the three 

different lead times (e.g., the first component in Eq. (A1)) which are expected to have more 

degrees of independence with larger time separation.  

 

3.5 Evaluation of tropical cyclone track forecasts 

3.5.1 Tropical cyclone track forecast verification  

As discussed in sections 3.1 and 3.2, a global forecast system houses diverse weather 

phenomena. The impacts of the VTSM and VTSP methods can be highly dependent on the scales 

and predictability of the weather systems of interest. Tropical cyclone (TC) is selected in this 

section, distinct from the general global forecasts in section 3.4, to further examine the impacts 

of the VTSM and VTSP methods.   

 During the experiment period, a total of 25 named storms occurred at the Atlantic and 

Pacific basins, 12 of which reached the hurricane or typhoon category (Fig. 3.12). NCEP tropical 

cyclone tracker (Marchok 2002) was used to track the storm locations in the forecasts. The same 

criteria described in section 4d of Wang and Lei (2014) were used to collect the forecast samples 

for the purpose of making a homogeneous comparison among different experiments.  
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Figure 3.12 Best track of the tropical cyclones during the experiment period in the (a) 
Atlantic, (b) east Pacific and (c) west Pacific basins. 

 
 Figure 3.13a shows the RMSE of the track forecasts verified against the best track data 

out to 5 days averaged over the 25 storms. Paired t-test was conducted to evaluate the 

significance of the track error difference between ENS80 and the other experiments. ENS240, 

VTSM240Hτ and VTSP240Hτ all statistically significantly improve the TC track forecasts 

compared to ENS80 at most lead times out to 5 days.  

 VTSM240Hτ produces smaller track errors with larger shifting time interval. The best-

performing VTSM experiment, VTSM240H3, is statistically significantly better than ENS80 
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beyond the 1-day lead time. VTSM240H3 performs the best among all VTS and ENS240 

experiments. The VTSM experiments show more improvement for the TC track forecasts when 

applying a larger shifting time interval. This may be expected that the VTSM method with a 

larger shifting time interval may potentially better sampling the TC timing/phase errors 

especially when the forecasted TC location at the analysis time experiences large location error. 

The VTSP experiments do not show strong sensitivity to the shifting time intervals. All VTSP 

experiments statistically significantly improve the TC track forecasts over ENS80 at most lead 

times with the 1-hour shifting interval performing slightly better. Although the VTSM and VTSP 

experiments are less costly than ENS240 (discussed in section 3.6), VTSP240H1 only performs 

slightly worse than ENS240 within the 4-day lead times and VTSM240H3 even outperforms 

ENS240 beyond the 2-day lead time.  

 

Figure 3.13 (a) Track forecast errors in ENS80 (solid black), ENS240 (solid orange), 
VTSM240Hτ (solid) and VTSP240Hτ (dashed) experiments with applying a shifting time 
interval τ = 1 hour (red), 2 hours (green) and 3 hours (blue). The circle (asterisk) signs 
right above the horizontal axis in (a) indicate that the track error difference from ENS80 
in VTSM240H3 (VTSP240H1) is significant at or above the 95% confidence level by 
applying the paired t-test at the corresponding forecast time. (b) Percentage of the track 
forecasts that are more accurate than that in ENS80 with the same line style and color 
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indexes applied in (a). The numbers right above the horizontal axis in (b) denote the 
sample size at the corresponding forecast time. 

 
Following Zapotocny et al. (2008) and Wang and Lei (2014), the percentage of the track 

forecasts that are more accurate than that in ENS80 was calculated (Fig. 3.13b). Beyond the 1-

day lead time, generally more than 50% of the forecasts in each of the experiments of ENS240, 

VTSM240Hτ and VTSP240Hτ provide more accurate TC track forecasts than that in ENS80 and 

the percentage is generally increased at longer lead times. Compared to ENS240, VTSP240H1 

shows larger percentage of the improved track forecasts at most lead times, especially beyond 

the 3-day lead time. Consistent with Fig. 13a, VTSM240H3 outperforms ENS240 even more. 

Specifically, 53.1-82.0% of the track forecasts in VTSM240H3 as opposed to 50.4-62.3% in 

ENS240 are improved over ENS80 beyond the 1-day lead time. The result that VTSM240H3 

even outperforms ENS240 is consistent with the previous studies where the VTSM method was 

found to improve the meso- and convective-scale weather forecasts where phase and timing 

errors contribute significantly.  

 

3.5.2 Background track forecast error and ensemble track spread  

Given the more accurate track forecasts of VTSM240H3 than ENS240, metrics of ARCE 

and ARCED with ENS240 as the referencing truth defined in section 3.4.3 are not appropriate to 

evaluate the ensemble correlation accuracy of VTSM240Hτ and VTSP240Hτ for the TC track 

forecasts. The E-dimension1 for the TC track forecasts (not shown here) is similar to the general 

global forecasts in the TR region (Fig. 3.11b). Briefly, both VTSM240Hτ and VTSP240Hτ 

																																																								
1	Following section 3.4.5, the samples for calculating the E-dimension for the TC track forecasts 
were taken by collecting the temperature and zonal wind ensemble perturbations at the 6-hour 
lead time in a box of 5° × 5° located around the TC center from all 25 tropical storms. 
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obtain larger E-dimension than ENS80, but smaller than ENS240. The E-dimension in 

VTSM240Hτ and VTSP240Hτ is further increased with larger shifting time intervals applied. 

For a given shifting time interval, VTSP240Hτ shows larger E-dimension than VTSM240Hτ.  

The improved TC track forecasts of VTSP240Hτ relative to ENS80 is therefore 

hypothesized to be related to the improved ensemble covariances such as the reduced spurious 

covariances and increased effective rank as discussed in the general global forecast diagnostics 

in sections 3.4.3 and 3.4.5. On the other hand, the most accurate TC track forecasts in 

VTSM240H3 are likely contributed by its capability of capturing background errors from 

sources that are missing in ENS80, ENS240 and VTSP240Hτ experiments (e.g., model timing or 

phase errors, as discussed in section 3.2 for such weather systems featured with relatively small 

scales and low predictability). This capability of the VTSM method in sampling background 

errors from missing sources is illustrated by the increased spread as discussed in Fig. 3.2b in 

section 3.2.1.   

To further demonstrate this capability of the VTSM method, the background ensemble 

track spread at the 6-hour lead time is evaluated against the background track error to reveal if 

the increased spread in VTSM240H3 is another contributor to its most improved TC track 

forecasts. In Figs. 3.14a-c, the scatterplots were created by collecting a total of 290 paired 

samples of the background ensemble track spread and absolute background track error from all 

25 storms in ENS80, ENS240 and VTSM240H3, respectively. Although the background track 

errors have similar ranges for all three experiments, VTSM240H3 overall displays a wider range 

of background ensemble track spread compared to ENS80 and ENS240. Following Wang and 

Bishop (2003), the spread-skill relationship for the 6-hour background forecast in each 
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experiment is further evaluated. Given the relatively small number of samples, instead of 

following Wang and Bishop (2003) which divided the samples into multiple equally-populated 

bins, two equally-populated bins representing the samples with small and large background 

ensemble track spread in each experiment (denoted by the blue and red circles in Figs. 3.14a-c, 

respectively) were formed. In each group, a rank histogram plot was further created. Given the 

“distance” is evaluated, the rank histogram is formed slightly differently from the traditional 

scalar rank histogram (Hamill 2001). Specifically, the ranks are formed by collecting the 

distances between the predicted background ensemble mean storm location and the storm 

locations predicted from the individual background ensemble members, which is positive 

definite. Then the number of samples for each rank is determined by throwing the corresponding 

samples of the distance between the predicted storm location from the background ensemble 

mean and the observed storm location. Different from the traditional rank histogram plot 

introduced for the scalar variable in Hamill (2001), a left (right) tail suggests the over-

dispersiveness (under-dispersiveness) of an ensemble. For the first group representing small 

background ensemble track spread, compared to the severe under-dispersiveness of the ensemble 

in ENS80 and ENS240 (e.g., the right-tailed distribution in Figs. 3.14d,e), the reliability of the 

ensemble in VTSM240H3 is improved evidenced by a relatively flat distribution (Fig. 3.14f).  

On the other hand, for the second group featuring with large background ensemble track spread, 

compared to ENS80 (Fig, 3.14g), the ensembles in ENS240 and especially VTSM240H3 show 

apparent over-dispersiveness (Figs. 3.14h,i). Therefore, we speculate that the improved 

reliability of the ensemble in VTSM240H3 for the cases with small background ensemble track 

spread may be another contributor to its overall outperformance over ENS80 and ENS240 in 
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terms of the TC track forecasts.  

 

Figure 3.14 (a)-(c) Scatterplots of the 6-hour background track errors on the vertical axis 
against the 6-hour background ensemble track spread on the horizontal axis for (left) 
ENS80, (middle) ENS240 and (right) VTSM240H3. Blue (red) circles in (a)-(c) denote 
the equally populated samples representing small (large) background ensemble track 
spread in each experiment. The black dashed line is the diagonal line. (d)-(i) Rank 
histogram plots of (left) ENS80, (middle) ENS240 and (right) VTSM240H3 created from 
the samples representing (d)-(f) small background ensemble track spread and (g)-(i) large 
background ensemble track spread which correspond to the blue and red circles in (a)-(c), 
respectively, (see detailed descriptions of the rank histogram plots in the texts).  
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3.6 Cost comparison with ENS80 

As shown in Table 3.1, compared to ENS80, the increased computational cost in 

VTSM240Hτ or VTSP240Hτ is only incurred by ingesting 240 members instead of 80 members 

during the 4DEnVar variational update and extending the 80-member background ensemble 

forecasts with additional τ hours. Table 3.2 shows the cost for each of the four components in a 

single 4DEnVar DA cycle in each experiment. The cost in each of the four components in each 

experiment was estimated by the wall clock time from running the same number of cores on the 

same type of node on the National Oceanic and Atmospheric Administration (NOAA) High 

Performance Computing System Jet machine. Compared to ENS80, the cost of ENS240 almost 

doubles in the 4DEnVar update and triples in the EnKF update and the ensemble background 

forecasts. In addition to the similar cost increase in 4DEnVar update as ENS240, VTSM240Hτ 

and VTSP240Hτ only increase the cost in the ensemble background forecasts by 9%, 14% and 

20% for 1-, 2- and 3-hour shifting time interval, respectively. Overall, as shown in the last 

column in Table 3.2, in contrast to ENS80, the total cost in ENS240 is increased by 160%, while 

VTSM240Hτ and VTSP240Hτ only increase the cost by 23%, 25% and 27% for 1-, 2- and 3hour 

shifting time interval, respectively. Sections 3.4 and 3.5 show that VTSP240H3 improves the 6-

hour temperature and wind forecasts by more than 50% and 60%, respectively, relative to the 

improvement in ENS240, and produces TC track forecasts with comparable or only slightly 

reduced skills compared to ENS240. VTSM240H3 even shows more accurate TC track forecasts 

than ENS240. These performance and cost results suggest that the VTS methods provide a cost-

effective means to treat the sampling errors in the ensemble-based data assimilation system.  
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Table 3.2 Wall clock time in minutes for each of the four components in a single 4DEnVar 
DA cycle. The wall clock time is estimated from running on the same xJet node on the 

National Oceanic and Atmospheric Administration (NOAA) High Performance Computing 
System Jet machine. The same number of 480 cores was used in each component for 

different experiments 

Expts 

Wall clock time in minutes in each of the four 
components in a single 4DEnvar DA cycle Total wall 

clock time in 
minutes 

Total cost 
ratio 

relative to 
ENS80 EnVar  

update 
EnKF  
update 

Control 
background  
Forecasts 

Ensemble  
background   

forecasts 

ENS80 25 35 5 35 100 1.0 
ENS240 45 110 5 100 260 2.6 

VTSM240H1 
or 

VTSP240H1 
45 35 5 38 123 1.23 

VTSM240H2 
or 

VTSP240H2 
45 35 5 40 

 
125 1.25 

VTSM240H3 
or 

VTSP240H3 
45 35 5 42 127 1.27 

 

3.7 Conclusion and discussion 

Instead of directly increasing the ensemble size, the VTSM and VTSP methods are 

implemented and explored as inexpensive means to populate the background ensemble in the 

NCEP GFS hybrid 4DEnVar system. The VTSM method directly takes advantage of the 

ensemble members at different valid times to populate the background ensemble at the analysis 

time. It may have the advantage of better sampling timing/phase error. By the design of shifting 

the ensemble perturbations at different valid times to the analysis time, the VTSP method 

performs temporal smoothing on the ensemble covariances, therefore eliminating the spurious 

covariances caused by sampling errors.  To study the impacts of the VTSM and VTSP methods 
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in a global modeling system featured with different scales and predictabilities, both are evaluated 

for the general global forecasts and for the tropical cyclone forecasts in the GFS hybrid 4DEnVar 

system. By applying one single shifting time interval (τ=1, 2 or 3 hours), VTSM240Hτ and 

VTSP240Hτ triple the background ensemble size from 80 (ESN80) to 240 in the 4DEnVar 

variational update. ENS240 with directly running 240 members is designed as the reference to 

evaluate the effectiveness of the inexpensive VTSM240Hτ and VTSP240Hτ experiments. 

VTSP240Hτ generally improves the global temperature and wind forecasts to 5 days. 

Verified against rawinsonde observations, more than 50% and 60% of the improvement from 

ENS240 is recovered by the best-performing VTSP experiment (VTSP240H3) for the 6-hour 

temperature and wind forecasts, respectively. Verified against the ECMWF analysis, 

VTSP240H2 produces the most consistent improvement for the temperature and wind forecasts 

to 5 days. Detailed diagnostics reveal that the improved global forecasts in VTSP240Hτ can be 

attributed to the populated background ensemble being closer to Gaussian distribution, improved 

accuracy of ensemble-estimated background error correlations and increased effective rank (see 

summary in Table 3.3). VTSP240H3 overall shows better performance than VTSP240H2 in 

improving the ensemble correlation accuracy and increasing the effective rank, this is consistent 

with the more accurate 6-hour global forecasts in VTSP240H3 (verified against both the 

rawinsonde observations and ECMWF analysis). On the other hand, in the global forecast 

verification against ECMWF analysis, the reduced forecast skills of VTSP240H3 relative to 

VTSP240H2 at longer lead times suggest that a tradeoff in the VTSP method needs to be taken 

into account. This tradeoff is between the loss of the flow-dependent features (e.g., eliminating 

the small-scale signals) and the gain of alleviating the sampling errors (e.g., removing the small-
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scale noises), owing to the smoothing impact of the VTSP method. VTSP240H2 may achieve a 

better balance between these two factors. In VTSP240H3, however, the benefits of alleviating 

the sampling errors may dominate in the short lead times and contribute to its most improved 6-

hour global forecasts, while the loss of the flow-dependency or the small-scale signals may 

explain its neutral impacts on the global forecasts at longer lead times. 

Table 3.3 Summary of impacts of the VTSM and VTSP methods  
on different aspects in a global context 

Impacts of VTSM and VTSP in a global context compared to ENS80 

     VTSM VTSP 

Gaussianity of background 

ensemble distribution 
ê é 

Ensemble correlation accuracy ê é 

Ensemble spread é ¢ 

Effective rank é é 

Global forecasts 
ê 

(in the troposphere) 
é 

é: improved or increased; ê: degraded or decreased; ¢: neutral effect. 

 

In contrast to VTSP240Hτ, VTSM240Hτ shows degraded global forecasts in the 

troposphere especially with a larger shifting time interval, VTSM240H3. This degradation may 

be attributed to degraded ensemble correlation accuracy, increased spread at such levels and 

deviation from Gaussianity in the VTSM-populated ensemble (see summary in Table 3.3). The 
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improved global forecasts in VTSM240Hτ above 100 hPa may be caused by the increased spread 

that alleviates the under-dispersiveness of the original 80-member background ensemble at such 

levels (see summary in Table 3.3). By comparing the components of the VTSM- and VTSP-

populated background ensemble error covariances shown in Eqs. (A1) and (A3) in the appendix 

A, the different impacts of the VTSM and VTSP methods on those aspects in Table 3 are caused 

by the inclusion of the ensemble mean differences between the original and shifted ensembles in 

the VTSM-populated ensemble error covariances. This also suggests that the ensemble mean 

differences between the original and shifted ensembles fail to appropriately sample the 

background errors in a global forecast context.  

For the TC track forecasts, experiments of ENS240, VTSM240Hτ and VTSP240Hτ are 

all able to improve over ENS80. The performance of VTSP240Hτ does not show strong 

sensitivity to the shifting time intervals. Although much less costly, VTSP240Hτ produces 

comparable or slightly less accurate TC track forecasts than ENS240 within the 4-day lead times 

and even outperforms ENS240 beyond the 4-day lead time. Like ENS240, the improved TC 

track forecasts in VTSP240Hτ may be originated from the improved accuracy of the estimated 

ensemble covariances. Larger shifting time interval in VTSM240Hτ shows enhanced 

improvement for the TC track forecasts. Especially, though much less costly, VTSM240H3 even 

shows more accurate track forecasts than ENS240. Further diagnostics suggest that the best 

performance of VTSM240H3 among all the experiments may be caused by its superior 

capability of capturing the errors from the missing sources, which is featured with the increased 

spread and therefore improves the reliability of the ensemble for the cases with small ensemble 

track spread.  
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Compared to ENS80, ENS240 increases the cost by 260%, while the cost in 

VTSM240Hτ and VTSP240Hτ is only increased by 23%, 25% and 27% for τ=1, 2, and 3 hours, 

respectively. Therefore, these results suggest VTSM240Hτ and VTSP240Hτ provide cost-

effective ways to improve sampling errors in ensemble-based data assimilation.  

As discussed in section 3.3, Lei and Whitaker (2017) found little sensitivity of forecast 

performance with further tuned localization scales in a similar 4DEnVar setting.  Therefore, our 

experiments of ENS240, VTSM240Hτ and VTSP240Hτ apply the same localization length 

scales as in ENS80. Lorenc (2017), on the other hand, shows that increasing horizontal and 

vertical localization length scales are beneficial for direct increase of ensemble size and for using 

the time-lagged and time-shifted perturbation method to increase ensemble size in the Met 

Office’s hybrid 4DEnVar system. The different response to the localization length scales for 

these two hybrid 4DEnVar systems when increasing the ensemble size is likely due to the 

different EnKF methods and different baseline ensemble sizes used to generate the ensembles. 

EnSRF with sequential assimilation and running 80 members is implemented in the GFS hybrid 

4DEnVar system while the Met Office’ hybrid 4DEnVar system adopts the ensemble transform 

Kalman filer (ETKF, Bishop et al. 2001, Wang and Bishop 2003, Wang et al. 2004 and Wang et 

al. 2007a) and runs 44 members.  

Overall, VTSP240H2 shows the most consistent improvement for both the global 

forecasts and storm track forecasts in the current experiment settings. VTSM240H3 shows the 

best hurricane track forecasts among all the experiments whereas it generally degrades global 

forecasts in the troposphere. The impacts of further increasing the shifting time interval more 

than 3 hours in VTSM on the hurricane track forecasts remains to be investigated in the future 
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work by adapting the time-lagged and time-shifted perturbation method to use the form of full 

ensemble members in Lorenc (2017). These results also illustrate a challenge of optimizing DA 

algorithm in a multi-scale data assimilation system. Additional experiment is warranted when 

experimenting the methods in operational GFS hybrid 4DEnVar system where a wider range of 

scales are resolved with a higher resolution (T1534/T574).  

Another set of experiments were also attempted to inexpensively increase the ensemble 

size within the GFS hybrid 4DEnVar system by collecting the perturbations of the ensemble 

forecasts that are valid at the same analysis time but initialized from previous different cycles, 

i.e., the time-lagged approach with using the ensemble perturbations (not shown here). 

Compared to the baseline experiment ENS80 as discussed in this study, this approach showed 

minimum or even negative impact on the global forecasts in the troposphere and the hurricane 

track forecasts. The only significant improvement from this approach was found for the global 

forecasts in the stratosphere above 100 hPa as seen in the VTSM experiments. The improved 

global forecasts in the stratosphere could be attributed to the increased spread by utilizing the 

ensemble perturbations at longer lead times which alleviates the under-dispersiveness of the 

original 80-member ensemble in the stratosphere as shown in Fig. 3.10. Given the inferior 

performance of this time-lagged approach, only the time-shifted approach is discussed in the 

study. 

 In this chapter, the paired t-test was applied to examine statistical significance. However, 

the samples do not satisfy the normal distribution and are lack of independency that are assumed 

in the paired t-test. The significance results also suffer from the multiplicity test issue (Wilks 

2006). As a result, the number of current significance findings from the paired t-test in Figs. 3.4, 
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3.5, 3.6 and 3.13 in this chapter	is likely reduced. Following Chapter 5, a more rigorous 

permutation test (Manly 2006) combined with false discovery rate method (Wilks 2006) is 

planned in the future to further examine the statistical significance in this chapter. 	
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Chapter 4: The High-rank Ensemble Transform Kalman Filter 

 

4.1 Introduction 

The ensemble Kalman filter (EnKF; Evensen et al. 1994) has been widely used in the 

atmospheric applications, since it was introduced as a Monte Carlo realization of the traditional 

Kalman filter (Kalman and Bucy 1961). In the EnKF, the background error covariances are 

estimated and evolved by cycling an ensemble of short-range forecasts and analyses. Compared 

to the three-dimensional variational (3DVar) method generally employing the static background 

error covariances, the EnKF embraces the advantage of accounting for the flow-dependency of 

the forecast errors. The EnKF is therefore able to estimate the spatial, temporal and multivariate 

error covariances in a more realistic fashion. Different variants of the EnKF have been developed 

for efficient implementation purposes (Houtekamer and Mitchell 1998; Anderson 2001; Bishop 

et al. 2001, 2015, 2017; Whitaker and Hamill 2002; Wang and Bishop 2003; Wang et al. 2004; 

Hunt et al. 2007).  

In the EnKF, the ensemble background error covariances, along with the observation 

error covariances, determine the pattern and magnitude of the corrections made on the model 

state variables by assimilating observations. Due to the computational constraints, the current 

operational EnKF systems generally run an ensemble with a size much smaller than the 

dimension of the numerical models (Houtekamer and Zhang 2016, Table 1). This limited 

ensemble size causes sampling errors and rank deficiency in the estimated background error 

covariance matrix. If not properly treated, these issues will incur noisy analysis increments and 

even filter divergence (Hamill 2006). Directly increasing the ensemble size is able to improve 
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the estimate of the background error covariances and thus the accuracy of the analyses and 

subsequent forecasts (Miyoshi et al. 2014; Lei and Whitaker 2017; Huang and Wang 2018). But 

the cost is very expensive. On the other hand, increasing the ensemble size in a cost-effective 

fashion in the ensemble-based data assimilaton system is explored and demonstrated to improve 

the analyses and forecasts for the storm and global scales (e.g. Xu et al. 2008; Lorenc 2017; 

Huang and Wang 2018).  

Alternatively, the covariance localization is commonly applied in the EnKF to deal with 

the aforementioned issues from running a small ensemble. Its general idea is to reduce or remove 

the correlations between two distant variables that are assumed to be physically small or spurious. 

On this basis, the distance-dependent localization is applied either on the background error 

covariance matrix (hereafter referred to as the B-localization method) or on the observation error 

covariance matrix (hereafter referred to as the R-localization method). The notations of the B-

localization and R-localization methods are adapted from Greybush et al. (2011) and Holland 

and Wang (2013). The B-localization method is typically realized through a Schur product 

between the raw background error covariance matrix and a predefined distance-dependent 

localization matrix (Houtekamer and Mitchell 2001, 2005). The R-localization method is applied 

through inflating the observation error variances (Hunt et al. 2007). As a result, the corrections 

made by the distant observations are reduced or even removed after applying the localization. In 

general, the distance-dependent localization function is defined to be spatially homogeneous and 

temporally constant. Advanced localization methods were developed in the recent studies to 

account for the scale, spatial or temporal dependency (Anderson 2007; Bishop and Hodyss 2007; 

Buehner and Charron 2007; Anderson and Lei 2013; Gasperoni and Wang 2015).  



 
69 

Miyoshi and Yamane (2007) and Greybush et al. (2011) found that in the assimilation of 

a single observation, the effective localization length scale in the R-localized Kalman gain was 

wider than that in the B-localized Kalman gain by applying the same localization function. It was 

also mentioned in these studies that the mathematical differences between the B-localization and 

R-localization methods were not straightforward to conclude in the assimilation of multiple 

observations. Sakov and Bertino (2011) compared the structures of the B-localized and R-

localized Kalman gains at a single grid point, and suggested that both localization methods were 

expected to yield similar results in the practical applications.  

 While theoretical demonstrations of the mathematical differences between these two 

localization methods are limited, in the early studies, the performances of the B-localization and 

R-localization methods were usually empirically evaluated and compared in terms of the analysis 

accuracy by running cycled data assimilation experiments. Janjić et al. (2011) and Nerger et al. 

(2012) using the Lorenz-96 model (Lorenz 1996) found that the B-localization method 

outperformed the R-localization method especially when the observation errors were much 

smaller compared to the background errors. Cycled data assimilation experiments in a simplified 

dynamical model in Greybush et al. (2011) showed that the B-localization and R-localization 

methods performed comparably, if both were optimally tuned. In these studies, the B-localization 

method was typically applied for the variants of the serial square-root filter, and the R-

localization method for the variants of the parallel implementation of the local ensemble filter. 

An exception was Janjić et al. (2011) which compared the B-localization and R-localization 

methods by performing a local analysis update using the same singular evolutive interpolated 

Kalman (SEIK) filter. Holland and Wang (2013) using a two-layer primitive-equation model 
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compared the B-localization and R-localization methods in both the same serial and same 

simultaneous square root filters. They found that the B-localization and R-localization methods 

resulted in different amounts of imbalance, which in turn affected the analysis accuracy.  

This study contributes to the theoretical understanding of the differences between the B-

localization and R-localization methods. A mathematical derivation is first provided with a focus 

on demonstrating the effective ranks of the background error covariance matrices by applying 

these two localization methods. The derivation does not rely on the assimilation of a single 

observation. Briefly, it is mathematically demonstrated in section 4.3 that for the same effective 

localization function, the B-localization method achieves a higher rank than the R-localization 

method in the localized background error covariance matrix. Meanwhile, the mathematical 

demonstration also shows that the B-localization method can be realized through extending and 

Modulating the raw background ensemble Perturbations (hereafter referred to as the MP-

localization method). To reduce the computational cost, truncation of the eigenvectors from the 

B-localization matrix is applied to generate the modulation functions in the MP-localization 

method following Bishop et al. (2017). The MP-localized background error covariance matrix is 

thus consistent with that applying the traditional B-localization method.  

The R-localization method is commonly applied in the ensemble transform Kalman filter 

(ETKF; Bishop et al. 2001; Wang and Bishop 2003; Wang et al. 2004) by increasing the 

observation error variances with an increasing distance from the model state variable (Hunt et al. 

2007).  In this study, the mathematical demonstration also shows that the R-localization method 

can be expressed in the form of the modulated background ensemble perturbations as in the B-

/MP-localization method. This inspires the comparison of these two localization methods within 
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the same ETKF algorithm through cycled data assimilation experiments. In contrast to most of 

the early studies that compared these two localization methods using different filters, such a 

comparison of the B-localization and R-localization methods within the same ETKF algorithm 

makes it more straightforward to link the resulting analysis performances with the localization 

differences.  

To emphasize the mathematically derived higher rank feature from the B-/MP-

localization method, the B-/MP-localized ETKF in this study is interchangeably referred to as the 

high-rank ETKF (hereafter referred to as the HETKF), to distinguish it from the classic R-

localized ETKF. In addition, two analysis ensemble perturbation sub-selection methods in 

Bishop et al. (2017) were implemented in the HETKF to investigate if such perturbation sub-

selection methods affect the performances of the HETKF and R-localized ETKF.  

The chapter is organized as follows. Section 4.2 briefly introduces the B-localization and 

R-localization methods in the context of the generic EnKF update equations. Section 4.3 

provides a mathematical derivation to demonstrate the rank differences of the B-localized and R-

localized Kalman gains in the generic EnKF context. The ETKF algorithm and its R-localized 

form are briefly described in section 4.4. Section 4.5 describes the implementation of the B-/MP-

localization method in the HETKF. The performances of the HETKF and R-localized ETKF are 

evaluated and compared using the Lorenz model II in section 4. 6. Conclusion and discussion are 

presented in section 4.7.   
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4.2 B-localization and R-localization methods in the generic EnKF 

In this section, the notations in Ide et al. (1997) are used to illustrate the generic EnKF 

equations (Evensen et al. 1994). The analysis  is obtained by correcting the 

background  with the observations  weighted by the 

Kalman gain , 

         (4.1) 

and 

         (4.2) 

where and  are the analysis and background vectors with a dimension of , respectively; 

 is the observation vector with a dimension of ; and  are the nonlinear and 

linearized observation operators, respectively; denotes the background error covariance 

matrix with a dimension of ; and  is the diagonal observation error covariance 

matrix with a dimension of . For simplicity, all the diagonal elements in  are set equal to 

. The Kalman gain matrix  has a dimension of  . The superscripts a, b and o denote the 

analysis, background and observations, respectively. In the EnKF, is estimated from a K-

member ensemble of background forecasts,  

       
(4.3) 

where K is the ensemble size; is the 

background ensemble perturbation matrix with a dimension of  and each column 
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represents the kth ensemble perturbation vector with a dimension of ; is 

the background ensemble mean vector with a dimension of ; and  is the 

background ensemble perturbation matrix normalized by a factor of . 

 As discussed in the introduction, the B-localization method is generally realized through 

a Schur product (denoted by “ ”) between the raw background error covariance matrix and a B-

localization matrix  with the same dimension of ,  

          (4.4) 

In practice,  is commonly defined by the Gaussian functions with its diagonal elements equal 

to 1.0 (see details in next section). The B-localized  is only calculated once and used to 

update the variables at all model grid points. For example, at the ith grid point, the B-localized 

Kalman gain calculated from  is given by,  

        (4.5) 

To be consistent, in the rest of section 4, the subscript i outside the parentheses denotes the ith 

row of a matrix or the ith element of a vector. In Eq. (4.5), it denotes the ith row of the matrices. 

In the R-localization method, to update the variables at the ith grid point, the diagonal 

elements in the original observation error covariance matrix  are inflated. A larger inflation 

coefficient is applied with an increasing distance away from the ith grid point, 

															 ( ) ( )1 1
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i i
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In Eq. (4.6), the superscript i in  denotes that the variables to be updated are at the ith grid 

point. The vector  with a dimension of  is a distance-dependent monotonically-

decreasing function. It has the maximum value of 1.0 at the location of the ith grid point. The 

vector  is commonly defined by a Gaussian function (see details in next section).  “diag” is an 

operator that converts a vector to a diagonal matrix by aligning the elements of the vector along 

the diagonal. The R-localized Kalman gain at the ith grid point is given by,  

 ( ) ( ) ( ) 1T T
Rloc Rloc

b b i
i i

−
= +K P H HP H R 		 (4.7)	

where the subscript i outside the parentheses, as defined earlier, denotes the ith row in the 

matrices. 

 

4.3 Mathematical demonstration of the higher rank of the B-localization method over the 

R-localization method 

In this section, the B-localized and R-localized Kalman gains at the ith grid point shown 

in section 4.2 are reformulated to examine their differences. To make the derivations in both 

localization methods straightforward and consistent, two assumptions are made: (i) all the model 

grid points are observed (i.e. n=p), and (ii) the periodic boundary condition is applied.  

First, the Gaussian function at the ith grid point is defined. It determines the 

correlations between the ith grid point and the other grid points. The following describes the 

formation of the B-localization matrix  that is used to localize the full background error 

covariance matrix. Since the full background error covariance matrix is associated with all the 

model grid points, a Gaussian matrix  with a dimension of n×n is first 

RRloc
i

 gi 	  p×1

 gi

 gi

L

     G = [g1,g2 ,g3,...,gn]
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formed, where the ith column is defined by the vector  with a dimension of n×1. Further 

following Eqs. (23) and (27) in Bishop et al. (2015), the Gaussian matrix  is explicitly 

calculated as  

           (4.8)  

where  is an orthonormal matrix with a dimension of   ( ,  is the identity 

matrix)  with each column representing an eigenvector of , and  is a positive semi-definite 

diagonal matrix with a dimension of  with the diagonal elements representing the 

eigenvalues of .  is defined by a discrete Fourier basis of sine and cosine functions following 

Bishop et al. (2015). The ith element in the diagonal matrix  is calculated by,  

        (4.9) 

where  is the wavenumber of the ith sinusoidal eigenfunction corresponding to at the ith 

grid point, and the parameter d determines the width of the distribution of the Gaussian vector 

. Specifically, a larger d results in a tighter Gaussian distribution. In Eq. (4.9),  is equal to the 

sum of all the eigenvalues  in the diagonal matrix  or the sum of all the diagonal elements 

in the Gaussian matrix . These two parameters are chosen to be  and  

throughout this study. Figure 1 shows an example of the distribution of the Gaussian function  

defined at every 20 grid points by selecting d=3 in Eq. (4.9). The magnitude of  peaks at the ith 

grid point (e.g.,  where, as defined earlier, the subscript i outside the parentheses 
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denotes the ith element in ) and asymptotically decreases away from the ith grid point. Here, the 

assumption (ii) is applied to make the Gaussian functions periodically distributed. 

 
Figure 4.1 Distribution of the Gaussian functions defined at every twenty grid points. 

 

The B-localization matrix  is then formed by  

           (4.10) 

and  

    (4.11) 

where the matrix  has a dimension of  and the operator “DIAG” functions as only 

retaining the diagonal elements in a square matrix and setting the off-diagonal elements equal to 

zero. The purpose of the left- and right-multiplication of  in Eq. (4.11) is to 

normalize the diagonal elements in the B-localization matrix  equal to 1.0. It can be further 

simplified by the periodic nature of the defined Gaussian functions,  
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where .  is independent of the index i because of the isotropic and 

periodic nature of the Gaussian functions. 
 

By introducing Eqs. (4.3) and (4.11), the B-localized  in Eq. (4.4) is rewritten as, 

 (4.13)  

To simplify Eq. (4.13), we further define 

         (4.14) 

Eq. (13) then becomes, 

    

(4.15) 

In Eq. (4.14), the matrix  with a dimension of  can be interpreted as modulating the raw 

background ensemble perturbation matrix by the Gaussian function  defined at the jth grid 

point. In particular, each column of the matrix  corresponds to a Schur product between a raw 

ensemble perturbation vector and the Gaussian vector defined at the jth grid point. Equations 

(4.13)-(4.15) suggest that the B-localization method can be realized by an outer-product of the 

expanded modulated ensemble perturbation matrix  with a dimension of 
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the raw ensemble Perturbation matrix, it is interchangeably termed as the MP-localization 

method.  

Correspondingly, the Kalman gain at the ith grid point with the B-localized in Eq. 

(4.5) is reformulated by introducing Eq. (4.15),

  

     (4.16)

 

For a more straightforward comparison with the R-localized Kalman gain form as will be 

introduced soon, Eq. (4.16) is further right-multiplied by an identity matrix with a dimension of 

 that is expressed as  by referring to Eq. (4.12),  

  

(4.17) 

In the R-localization method, given the assumption (i) that all the model grid points are 

observed (i.e. n=p), the Gaussian function at the ith grid point is applied in Eq. (4.6) to 

calculate the localized . The R-localized Kalman gain at the ith grid point is then obtained 

by introducing Eqs. (4.3) and (4.6) to Eq. (4.7),  
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 By introducing the modulated background ensemble perturbation matrix in Eq. (14), Eq. (18) is 

simplified as,  

	

	 	 	 	 (4.19) 

where ,  given	 .  

To facilitate the comparison with the B-localized Kalman gain form in Eq. (4.17), Eq. 

(4.19) is further reformulated by introducing     [(gi )i]
2 =1,    diag(gi ) = [diag(gi )]

2 [(gi )i]
2 and 

the Kronecker delta function  in Eq. (4.21) below,  

 

(4.20) 

where, 

         
(4.21) 

 Equations (4.18)-(4.20) suggest that at the ith grid point, the localization effect by 

inflating the observation error variances in the R-localization method can be equivalently 

achieved by modulating the raw ensemble perturbation matrix with the Gaussian function  

defined in Eq. (4.14). Such a reformulation assists in a direct mathematical comparison between 

the B-localization and R-localization methods.  
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 By comparing Eqs. (4.17) and (4.20), it can be seen that the R-localization method can be 

regarded as a special case of the B-localization method when expressed using the Kronecker 

delta function in Eq. (4.21). The number of terms in the summations over the modulated 

ensemble perturbation matrix index j in the B-localization method in Eq. (4.17) is reduced to one 

in the R-localization method in Eq. (4.20). Specifically, in the B-localization method, a total of n 

modulated background ensemble perturbation matrices are involved in the calculation of the B-

localized Kalman gain at the ith grid point. However, the R-localization method only includes the 

contribution from a single modulated ensemble perturbation matrix associated with the Gaussian 

function defined at the ith grid point. As a result, the rank of the B-localized Kalman gain is 

higher than that of the R-localization method. The above conclusion can also be drawn from a 

simple linear algebra analysis. Given n>p>K in general, the rank of the original Kalman gain in 

Eq. (4.2) is K-1. It is determined by the minimum of the ranks of H, Pb and R in Eq. (4.2) that 

are p, K-1 and p, respectively. Inflating the observation error variances of the original R as in Eq. 

(4.6) will not change its rank. The R-localized Kalman gain in Eq. (4.7) is thus of the same rank 

as the original Kalman gain. However, after applying the B-localization method, the maximum 

rank of in Eq. (4.4) can reach n due to its resultant blocked diagonal structure. The B-

localized Kalman gain in Eq. (4.5) thus has an increased rank of p. Therefore, the linear algebra 

analysis also suggests a higher rank of the B-localized Kalman gain in contrast to the original 

and R-localized Kalman gains. This is consistent with the mathematical demonstration in this 

section. 
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Figure 4.2 Illustration of (a) the matrix   for the B-localization method in Eq. 

(4.22), (b) the matrix  (i=120) for the R-localization method in Eq. (4.23) calculated 
with d=3 and n=240 in Eqs. (4.8) and (4.9), and (c) the localization coefficients from the 
120th row of the localization matrix for the B-localization method (solid line) in (a) and 
the R-localization method (dashed line) in (b), respectively. The effective localization 
distance is defined as half of the interval where the correlation coefficients taper to 0.01. 
Illustration of the observation-space ensemble background error covariance matrix 
estimated from 6 members with (f) no localization, (d) the B-localization method and (e) 
the R-localization method, and the size of the black solid and dashed squares in (d) and 
(e), respectively, doubles the effective localization distances as shown in (c). First five 
leading eigenvectors (colored solid lines) decomposed from (g) the B-localized and (h) 
the R-localized observation-space ensemble background error covariance matrices in (d) 
and (e), respectively. (i) Kalman gains of updating the 120th grid point from the B-
localization method (solid line) and the R-localization method (dashed line).  

(a) B−localization matrix

 

 

40 80 120 160 200

40

80

120

160

200
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) R−localization matrix at middle grid point
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 The localization effects of the B-localization and R-localization methods are further 

isolated and compared by reformulating their localized observation-space background error 

covariance matrices in Eqs. (4.17) and (4.20). For the B-localization method in Eq. (4.17), 

  (4.22) 

For the R-localization method in Eq. (4.20), 

   (4.23) 

Equations (4.22) and (4.23) suggest that the effects of the localization applied on the 

observation-space background error covariance matrices are determined by the matrix 

 for the B-localization method and by the matrix  for the R-localization method, 

respectively. Figure 2 shows an example of the structures of these two matrices calculated at the 

120th grid point (e.g., i=120). The Gaussian matrix  in Eq. (8) is calculated by selecting d=3 

and n=240 as in Fig. 4.1. The matrix  in Eq. (4.22) for the B-localization method (Fig. 

4.2a) shows a symmetric structure with the magnitude equal to 1.0 on the diagonal and 

monotonically decreasing away from the diagonal. In contrast, the matrix  in Eq. (4.23) for 

the R-localization method (Fig. 4.2b) shows a localized circular structure centered at the element 
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of (120, 120). For illustration purposes, the 120th column of these two matrices (e.g., the solid 

black line and the dashed black line in Figs. 4.2a,b) is used to determine the effective localization 

distance for the B-localization and R-localization methods in this study. Here the effective 

localization distance is defined as half of the interval where the localization coefficients taper to 

0.01. As can be seen in Fig. 4.2c, the same localization parameter d=3 in Eq. (4.9) results in a 

broader effective localization distance in the B-localization method than that in the R-

localization method. This result seems inconsistent with the expectation that the tighter effective 

localization distance generally results in a higher rank of the localized background error 

covariance matrix. However, Eqs. (4.17) and (4.20) suggest that the mathematically derived 

higher rank from the B-localization method is independent of the effective localization distance. 

Meanwhile, the effective localization distances in these two localization methods in Fig. 4.2c are 

caused by and consistent with the constructions of their localization matrices. Therefore, cautions 

need to be taken to relate the effective localization distance with the rank of the localized 

background error covariance matrix especially when different forms of localization are utilized.  

To further verify the mathematical demonstration, the effective ranks resulted from both 

localization methods are calculated and compared in an example using  H = I . In Fig. 4.2f, the 

raw observation-space background error covariance matrix is estimated from six members. 

Through a Schur product with the B-localization matrix (Fig. 4.2a), the B-localized observation-

space background error covariance matrix retains the covariances near the diagonal and reduces 

or even removes the covariances away from the diagonal (Fig. 4.2d). On the other hand, due to 

the “local” nature of the R-localization matrix (Fig. 4.2b), the R-localized observation-space 

background error covariance matrix (Fig. 4.2e) have more zero values on the diagonal in contrast 
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to that applying the B-localization method. The E dimension (Patil et al. 2001; Oczkowski et al. 

2005; Kuhl et al. 2007;  Huang and Wang 2018) is used to evaluate the effective rank of the 

background error covariance matrix. The E dimension was calculated within a square as shown 

in Figs. 4.2d,e. The size of the square is defined as twice of the effective localization distance. 

The B-localization method increases the E dimension from 4.21 to 10.33. This is consistent with 

the expansion of the dimension of the modulated ensemble perturbation matrix after applying the 

B-localization method in Eq. (4.15). In contrast, the R-localization method results in a reduced E 

dimension of 2.81 from 3.72. This is likely due to the occurrence of more zero values on the 

diagonal of the R-localized background error covariance matrix. Therefore, the mathematically 

derived higher rank in the B-localized observation-space background error covariance matrix is 

consistently demonstrated by comparing their resulting effective ranks.   

The different structures of the B-localized and R-localized observation-space background 

error covariance matrices further motivate to investigate how many observations would literally 

influence their resulting analyses. The Kalman gains at the 120th grid point are thus calculated 

for these two localization methods. In general, the matrix inversion in Eq. (4.2) for the Kalman 

gain calculation can be solved by using the eigenvectors decomposed from the observation-space 

background error covariance matrix (Bishop et al. 2017). Figures 4.2g,h show the first five 

leading eigenvectors decomposed from the B-localized and R-localized observation-space 

background error covariance matrices in Figs. 4.2d,e, respectively. The eigenvectors from the B-

localized observation-space background error covariance matrix cover the whole domain (Fig. 

4.2g). However, all the five leading eigenvectors from the R-localized observation-space 

background error covariance matrix are confined in a local area centered at the 120th grid point. 
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Their Kalman gains are then calculated using  as shown in Fig. 4.2i. The B-localized 

Kalman gain at the 120th grid point extends over the whole domain with larger values at the grid 

points close to the 120th grid point. However, the R-localized Kalman gain is confined in a local 

area between the 60th and 180th grid points. This local nature of the R-localized Kalman gain is 

also shown in the curves representing the R-localization method in Figs. 4.2c,h. As a result, all 

the observations would contribute to updating a single grid point in the B-localization method, 

although the distant observations make less contribution. This also suggests that the optimal 

effective localization distance defined in this study does not explicitly suggest the number of the 

observations that influence the analysis in the B-localization method. In contrast, the analysis at a 

particular grid point in the R-localization method is influenced by limited observations that are 

close.  

  

4.4 Implementation of the R-localization method in the ETKF  

 The mathematical demonstration in section 4.3 suggests that the traditional B-localization 

method in Eq. (4.4) can be realized by expanding and modulating the background ensemble 

perturbations through Eq. (4.15). This allows the implementation of the B-/MP-localization 

method in the ETKF that generally employs the R-localization method. This section first briefly 

describes the classic R-localized ETKF. The HETKF applying the MP-localization method will 

be discussed in section 4.5.  

 In the ensemble transform Kalman filter (ETKF; Bishop et al. 2001; Wang and Bishop 

2003; Wang et al. 2004) and its local form (LETKF; Hunt et al. 2007), the background ensemble 

  R = I
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perturbations are transformed to the analysis ensemble perturbations on the ensemble 

perturbation subspace by a transform matrix ,  

	 	 	 	 	 	 	 	 	 	 (4.24)  

where  is the analysis ensemble perturbation matrix  with a dimension of 

 normalized by a factor of . As discussed in Bishop et al. (2001), Wang and Bishop 

(2003) and Wang et al. (2004), the transform matrix 	is calculated to make sure that the 

analysis error covariances  are updated by satisfying the optimal data assimilation 

theory ,  

	 	 	 	 	 	 	 	 	 (4.25)  

and 

	 	 	 	 	 	 	 (4.26) 

where each column of the matrix  represents an eigenvector of the matrix 	and the diagonal 

matrix  contains the corresponding eigenvalues. 

 The background ensemble mean is updated by,  

     (4.27) 

where the overbar denotes the ensemble mean.  

 The R-localization method in the ETKF is realized by following its implementation in the 

LETKF of Hunt et al. (2007). The update of the model state variables is performed 

independently at different model grid points. At the ith grid point, instead of using the original , 

the localized observation error covariance matrix  defined in Eq. (6) is applied in Eqs. 

 T
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(4.24)-(4.27). Different from the LETKF that selects a subset of observations, the whole set of 

observations are selected here to update the variables at the ith grid point in the R-localized 

ETKF. This “global” analysis update is designed to assure a homogeneous comparison with the 

HETKF detailed in section 4.5. 

 

4.5 Implementation of the high-rank ETKF (HETKF) by applying the MP-localization 

method 

 As shown in Eq. (4.15), the B-localized  can be achieved by an outer-product of an 

expanded modulated background ensemble perturbation matrix  with a 

dimension of . This expression makes it possible to implement the B-localization 

method in the ETKF. However, the computational cost is very expensive, because it requires an 

eigen-decomposition of a matrix with a dimension of  in Eq. (4.26). To reduce the 

computational cost, following Bishop et al. (2017), the method of selecting the leading 

eigenvalues and eigenvectors of the original B-localization matrix is implemented to reduce the 

number of the modulation functions and thus the size of the extended modulated background 

ensemble.   

 

4.5.1 Specific implementation of the MP-localization method in the ETKF (HETKF) 

 Instead of directly using the columns of the Gaussian matrix  that forms the B-

localization matrix  as the modulation functions in Eq. (4.14), the modulation functions in 

Bishop et al. (2017) are calculated from the leading eigenvalues and eigenvectors of the B-
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localization matrix  . As a result, the size of the modulated background ensemble perturbation 

matrix is significantly reduced compared to the matrix  in Eq. (4.15). The 

procedures are detailed as follows.  

 (i) Calculate the eigenvalues and eigenvectors of the original B-localization matrix  

and order them correspondingly from the largest to the smallest eigenvalue. In Eq. (4.28), the 

diagonal matrix  contains the eigenvalues of the B-localization matrix in a descending order 

and the columns of the matrix  represent the corresponding eigenvectors.  

        (4.28)

 (ii) Calculate the modulation matrix 	by selecting and normalizing the first M leading 

eigenvalues and eigenvectors to form the localization matrix . In this study, the first M 

leading eigenvalues and eigenvectors are selected to account for more than 99% of the sum of all 

the eigenvalues following Bishop et al. (2017). Mathematically,	 

        (4.29) 

	 	 	 	 	 (4.30) 

and 

               (4.31) 

 (iii) Generate an expanded modulated background ensemble perturbation matrix  with 

a dimension of  by a Schur product between each raw ensemble perturbation vector 

and each column of the modulation matrix . Mathematically, 

 L
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w
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(4.32) 

and 

         (4.33) 

The expanded modulated background ensemble can be obtained by adding the modulated 

ensemble perturbations in Eq. (4.32) to the original background ensemble mean. As such, the 

modulated background ensemble shares the same background ensemble mean as the original 

ensemble. The factor  in Eq. (4.32) is to ensure that the localized ensemble 

background error covariance matrices with and without the modulated perturbation form are 

equivalent, e.g., 

		      (4.34)  

 For the computational concern, only M modulation functions are selected and used in the 

implementation of the MP-localization method, in contrast to using n modulation functions as in 

Eq. (4.15). In general, M is expected to be much smaller than n. But the M modulation functions 

are constructed to account for more than 99% of the variances of the original B-localization 

matrix. As suggested in Bishop et al. (2017), it is expected to cause minimum effects on the 

resulting effective rank of the localized background error covariance matrix and the cycled data 

assimilation experiment results in section 4.6. More importantly, the use of fewer modulation 

functions in the MP-localization method can significantly improve the computational efficiency. 
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Ẑb =

ˆ ′X b

MK−1
.

   MK−1 K−1

     

ˆ ′X b( ˆ ′X b )T

MK−1
=
′X b( ′X b )T

K−1
!LMP ≅

′X b( ′X b )T

K−1
!L.



 
90 

 
Figure 4.3 Illustration of  (a) the eight modulation functions (colored solid lines) in  
and (b) the associated localization matrix  calculated from the B-localization matrix 
in Fig. 4.2a. 
 

 Figure 4.3 shows an example of the modulation functions in the matrix  and the 

associated localization matrix  calculated from the original B-localization matrix  in Fig. 

4.2a. In this example, the first eight leading eigenvalues and corresponding eigenvectors are 

selected to account for more than 99% of the sum of all the eigenvalues of the original B-

localization matrix . The resulting localization matrix  (Fig. 4.3b) almost recovers the 

original B-localization matrix  (Fig. 4.2a). In particular, the size of the modulated background 

ensemble perturbation matrix is only increased by a factor of 8 using Eq. (4.32) instead of a 

factor of 240 using Eq. (4.15) in this example. This significantly improves the computational 
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efficiency in the HETKF. For an isotropic B-localization matrix as in Fig. 4.2a, the associated 

modulation function used in the MP-localization method has a larger wave number with an 

increasing eigenvalue (Fig. 4.3a).   

 

4.5.2 Ensemble mean and perturbation update in the HETKF 

 Following section 4.4, Eqs. (4.24)-(4.27) are used for the HETKF ensemble mean and 

perturbation update. Instead of using  with a dimension of ,  with a dimension of 

 is applied in these equations. 

During the ensemble perturbation update, directly applying  with a dimension of 

 in Eq. (4.24) would produce MK analysis perturbations in the HETKF. In the practical 

applications, the K analysis perturbations need to be selected to initialize a K-member ensemble 

of background forecasts before advancing to the next DA cycle. To have a robust comparison of 

the B-/MP-localization and R-localization methods, following Bishop et al. (2017), two methods 

of sub-selecting the analysis perturbations during the ensemble perturbation update in the 

HETKF were implemented and examined.  

The first perturbation sub-selection method is defined as deterministic to distinguish it 

from the second, stochastic method. In the deterministic perturbation sub-selection method, the 

first K columns of  are selected. To remove the modulation effect, a demodulation procedure 

in Eq. (4.35) is applied by left-multiplying each column with a diagonal matrix  

associated with the first modulation function, 

    (4.35) 

  Zb   n×K    Ẑb

   n×( MK )

   Ẑb

   n×( MK )

   Ẑa

   [diag(ĝ1)]−1

      ẐMP−D
a = {[diag(ĝ1)]−1 ẑ1

a ,[diag(ĝ1)]−1 ẑ2
a ,...,[diag(ĝ1)]−1 ẑK

a }.
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where the letter “D” in the subscript “MP-D” stands for “deterministic”. Finally, the K-member 

analysis ensemble perturbation matrix  is recovered by referring to the relation between 

 and in Eqs. (4.32) and (4.33), 

        (4.36) 

In Bishop et al. (2017), this deterministic perturbation sub-selection method was 

compared with a more robustly derived selection approach termed as the gain-form ETKF. Our 

further examination using the Lorenz model II (see next section for details) showed that for the 

isotropic B-localization matrix , the performances of these two perturbation selection methods 

were statistically indistinguishable (not shown here). So in this study we use this deterministic 

perturbation sub-selection method described in Eq. (4.35) for the cycled data assimilation 

experiments. A similar sub-selection procedure was adopted in Kretschmer et al. (2015) to select 

the K analysis ensemble perturbations updated from a background ensemble formed by a mixture 

of the flow-dependent and climatological perturbations. This HETKF implementation and the 

classic R-localized ETKF described in section 4.4 are hereafter referred to as “MP-D” and “R-D”. 

The second perturbation sub-selection method, defined as stochastic, is based on the idea 

of updating each member with different sets of perturbed observations (Houtekamer and Mitchell 

1998). Specifically, the K sets of perturbed observations are generated and assimilated to update 

the raw ensemble members in the HETKF. This HETKF implementation is denoted as “MP-S” 

in this study, where the letter “S” stands for stochastic. To have a homogeneous comparison of 

the B-/MP-localization and R-localization methods, the same perturbed observation approach is 

also applied for the R-localized ETKF, which is denoted as “R-S” hereafter. This stochastic 

approach avoids the analysis perturbation sub-selection issue in the HETKF. However, it 

   ′XMP−D
a

    ˆ ′X b    Ẑb

     ′XMP−D
a = K−1ẐMP−D

a .

 L
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deviates from the idea of updating the perturbations through the transform. Nevertheless, it 

provides an additional avenue to further reveal if the differences between the B-localization and 

R-localization methods for the analysis update will be dependent upon the perturbation sub-

selection methods.   

 

4.6 Experiments with the Lorenz model II 

4.6.1 Lorenz model II 

In this section, the Lorenz model II (Lorenz 2005; Rainwater and Hunt 2013; Fairbairn et 

al. 2014; Bishop et al. 2015) was used for the cycled data assimilation experiments to compare 

the performances of the HETKF and R-localized ETKF. Compared to the Lorenz Model I (also 

known as the Lorenz-96 model; Lorenz 1996), the Lorenz Model II produces spatially smoothed 

model trajectory. The equation for the Lorenz Model II is given by, 

	 	 	 	 	 	 	 	 (4.37)
	

where 

   
(4.38) 

To be noted first, the usage of the symbols and letters defined in Eqs. (4.37) and (4.38) is 

restricted within this subsection for illustration purposes. They are not associated with the 

previous sections. A total of N variables are evenly distributed on a latitude cycle. Each variable 

 is indexed by n (n=0, 1, 2, …, N-1). The periodic boundary condition is applied. F is the 

forcing term. The smoothing parameter K, chosen much smaller than N, is used to define J=(K-

1)/2 if K is odd and J=K/2 if K is even. The modified summation sign  functions similarly as 
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the regular summation sign  except that the first and last terms are multiplied by a factor of 

0.5. In Eq. (4.38), is used if K is even, otherwise, is replaced by  if K is odd. Following 

the suggestions in Lorenz (2005), the parameters of the Lorenz Model II are set as N=240, F=15 

and K=8 in our experiments. The model is integrated using the fourth-order Runge-Kutta 

scheme. A non-dimensional time step is chosen to be 0.025 (which is equivalent to about 18 

minutes in the real atmosphere).  

 

4.6.2 Experiment design 

 First, the Lorenz model II was continuously integrated for a total of 80,000 time steps by 

selecting 240 random numbers as the initial condition. The model trajectories between the time 

steps of 15,001 and 30,000 serve as the simulated model climatology. The model trajectories 

over the last 50,000 steps are treated as the “truth” for verification. The initial ensemble is 

randomly drawn from the simulated model climatology. The observations are assimilated every 

five time steps. There are 10,000 data assimilation cycles in total. At each analysis time, the 

integral observations mimicking the satellite radiances are generated by averaging the “true” 

state variables  over its adjacent twenty-one grid points and adding a random 

noise  drawn from a Gaussian distribution N(0,r2=1.32). The observation standard deviation r is 

20% that of the simulated model climatology (Wang et al. 2007a). For example, the simulated 

integral observation  at the ith grid point is calculated by,  

	 	 	 	 	 	 	 	 	
(4.39) 
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In the experiments with the stochastic perturbation sub-selection method (“MP-S” and “R-S”), 

the K sets of perturbed observations are further generated by adding random noises drawn from 

the same Gaussian distribution N(0,r2=1.32) to the simulated observations. Figure 4.4 shows an 

example of the “true” state, non-perturbed observations and background ensemble in the first 

data assimilation cycle. 

 
Figure 4.4 An example of the 6-member ensemble (black), the ensemble mean (blue), the 
simulated unperturbed observations (red) and the “true” state (green) in the first data 
assimilation cycle. 

 

 Furthermore, two sets of experiments were designed to more thoroughly evaluate their 

performances.  The first set, termed as K6PX (X=30, 60, 120 and 240), runs a 6-member 

ensemble (K=6) but assimilates an increasing number of observations (p=30, 60, 120 and 240 

correspondingly). The other set, termed as KYP240 (Y=3, 6 and 9), assimilates a total of 240 

observations (p=240) but runs ensembles with an increasing size (K=3, 6 and 9). In both sets of 

experiments, a range of localization and inflation factors are tuned for the cycled DA 

experiments. Specifically, the degree of localization is determined by the parameter d in Eq. 

(4.9). A larger d results in stronger localization. The inflation is realized by multiplying the 

analysis perturbations with a factor larger than 1.0 before continuing to the next DA cycle. The 
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root mean square error (RMSE) between the analysis and the “truth” is calculated and averaged 

from the last 8,000 cycles to quantify the analysis accuracy. The percentage of the RMSE 

reduction (PRR) of the MP-localization method over the R-localization method is further defined 

as, 

  
	 	 	 	 	

(4.40)
	

To eliminate the random seed effects, all the experiments were repeated with eight trials by 

selecting different sets of random seeds (Bishop et al. 2015; Janjić et al. 2011).  

 

4.6.3 Experiment results 

1) Sensitivity of the four filters to localization and inflation factors 

 To obtain the minimum analysis error, extensive tuning tests were performed for each of 

the eight trials in each filter by combining different sets of localization and inflation factors. 

Figure 4.5 shows the analysis RMSE of “R-D”, “MP-D”, “R-S” and “MP-S” in K6P240 as a 

function of the localization and inflation factors. RMSE in each filter in Fig. 4.5 is averaged from 

all the eight trials. With the optimal localization and inflation factors (denoted by the red 

asterisk), the MP-localization method outperforms the R-localization method in both the 

deterministic and stochastic perturbation sub-selection methods. In addition, compared to the R-

localization method, the MP-localization method shows less sensitivity to the localization and 

inflation factors. This feature is characterized by the broader blue areas in the MP-localization 

method in Figs. 4.5b,d. For a given localization method, compared to the stochastic perturbation 

sub-selection method, the deterministic perturbation sub-selection method achieves smaller 

minimum analysis error with less localization and inflation. The less accurate analysis in the 

   
PRR =

RMSE(R - loc) - RMSE(MP - loc)
RMSE(R - loc)

×100%.
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stochastic perturbation sub-selection method could owe to the additional sampling errors from 

perturbed observations (Whitaker and Hamill 2002). Overall, the MP-localization method using 

the deterministic perturbation sub-selection method (“MP-D”) shows the most accurate analysis 

in K6P240. 

 
Figure 4.5 Analysis RMSE averaged over all the eight trials in the experiment of K6P240 
as a function of the localization factors on the vertical axis and the inflation factors on the 
horizontal axis for (a) “R-D”, (b) “MP-D”, (c) “R-S” and (d) “MP-S”. Note different 
color scales are applied in (a)(b) and (c)(d). Red asterisk indicates the optimal 
combination of the localization and inflation factors that gives the minimum analysis 
RMSE in each filter. 

 
 
2) Filter performance as a function of the observation number 
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 In this subsection, the K6PX (X=30, 60, 120 and 240) experiments are examined. The top 

panel in Fig. 4.6 shows the minimum analysis RMSE calculated from the optimal combination of 

the localization and inflation factors for each of the eight trials of “R-D”, “MP-D”, “R-S” and 

“MP-S”. For both the deterministic and stochastic perturbation sub-selection methods, the MP-

localization method significantly outperforms the R-localization method in all the four 

experiments. In general, the percentage of the RMSE reduction of the MP-localization method 

over the R-localization method tends to be slightly reduced with an increasing number of the 

observations (Fig. 4.8a). This is likely due to the overall improved analysis through the cycled 

assimilation of a larger number of observations. In the non-cycled experiments, the percentage of 

the RMSE reduction of the MP-localization method over the R-localization method increases 

with an increasing number of the observations (not shown). The latter result is more consistent 

with the expectation that the superiority associated with the higher rank in the estimated 

background error covariances becomes more pronounced in the assimilation of a larger number 

of the observations. For a given localization method, the deterministic perturbation sub-selection 

method shows smaller minimum analysis error compared to the stochastic perturbation sub-

selection method. 

 Following section 3, the matrix  in Eq. (4.22) for “MP-D” and “MP-S”, and 

the matrix  in Eq. (4.23) for “R-D” and “R-S” are calculated at the 120th grid point to reveal 

their effective localization distances (shown in the bottom panel of Fig. 4.6). Here, these two 

matrices are calculated by applying the optimal localization factors. In both the deterministic and 

stochastic perturbation sub-selection methods, the optimal effective localization distance in the 
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MP-localization method is tighter than that in the R-localization method. But this does not mean 

fewer observations will influence the analysis in the B-/MP-localization method than that in the 

R-localization method as discussed in section 4.3. For a given localization method, the stochastic 

perturbation sub-selection method requires stronger localization than the deterministic 

perturbation sub-selection method to obtain the minimum analysis error. As discussed in the last 

subsection, this could be caused by the additional sampling errors from the perturbed 

observations in the stochastic perturbation sub-selection method (Whitaker and Hamill 2002). 

The bottom panel of Fig. 4.6 shows that the optimal effective localization distance in each of “R-

D”, “MP-D”, “R-S” and “MP-S” is not very sensitive to an increasing number of the 

observations. This result may be associated with the assimilation of the integral observations in 

our cycled data assimilation experiments. As shown in Eq. (4.39), the integral observations that 

are close could contain highly correlated information. Increasing the observation densities may 

not efficiently add additional degrees of freedom of the information provided by the integral 

observations. The effective localization distance is therefore likely less sensitive to an increasing 

number of the integral observations as designed in our cycled data assimilation experiments.   
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Figure 4.6 (a)-(d) Minimum analysis RMSE with the optimal combination of localization 
and inflation factors for “R-D” (blue dashed), “MP-D”   (blue solid), “R-S”  (red dashed) 
and “MP-S”  (red solid), over the eight trials labeled on the horizontal axis in the 
experiments of (a) K6P30, (b) K6P60, (c) K6P120 and (d) K6P240. (e)-(h) Localization 

coefficients corresponding to the 120th column of the matrix  as shown in Eq. 

(4.22) for “MP-D” (blue solid) and “MP-S” (red solid) and of the matrix  for as 
shown in Eq. (4.23) for “R-D” (blue dashed) and “R-S” (red dashed) by applying the 
optimal tuned localization factor d defined in Eq. (9) and listed at the top of the figures of 
(e) K6P30, (f) K6P60, (g) K6P120 and (h) K6P240.  
 

3) Filter performance as a function of the ensemble size 

 Figure 4.7 shows the results for the KYP240 (Y=3 and 9) experiments. When the 

ensemble size is reduced from 6 to 3, the relative performance of the MP-localization and R-

localization methods (Fig. 4.7a) is similar to that of K6P240. Specifically, in both the 

deterministic and stochastic perturbation sub-selection methods, the MP-localization method 

significantly outperforms the R-localization method. For a given localization method, the 

deterministic perturbation sub-selection method shows smaller minimum analysis error than the 

stochastic perturbation sub-selection method. In addition, in K3P240, the MP-localization 

method using the stochastic perturbation sub-selection method (“MP-S”) even shows more 

accurate analysis than the R-localization method using the deterministic perturbation sub-

selection method  (“R-D”).  
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Figure 4.7 Same as Figure 4.6 except for the experiments of (a)(c) K3P240 and (b)(d) 
K9P240.  

 

By increasing the ensemble size to 9 (K9P240), for both perturbation sub-selection 

methods, the MP-localization and R-localization methods perform comparably and their 

difference is statistically insignificant in most of the eight trials. Consistently, the percentage of 

the RMSE reduction of the MP-localization method over the R-localization method is reduced 

with an increasing ensemble size in both perturbation sub-selection methods (Fig. 4.8b). This is 

within the expectation that the higher rank from the B-/MP-localization method would contribute 

more positively to alleviating the rank deficiency issue and thus improving the analysis for a 

small ensemble. This may further suggest that the improved analysis in the B-/MP-localization 

method is likely associated with its higher rank as demonstrated in section 4.3. 

 The effective localization distances calculated from the optimal localization factors are 

shown for the KYP240 experiments in the bottom panel of Fig. 4.7. For a given perturbation sub-
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selection method, the optimal effective localization distance in the MP-localization method is 

tighter than that of the R-localization method. For both localization methods, the optimal 

effective localization distance from the stochastic perturbation sub-selection method is tighter 

than the deterministic perturbation sub-selection method except for the K3P240 experiment with 

the R-localization method. Figure 4.7 also demonstrates as expected that the effective 

localization distances in each of “R-D”, “MP-D”, “R-S” and “MP-S” becomes wider with a 

larger ensemble size.   

 

 
Figure 4.8 Percentage of the RMSE reduction of the MP-localization method over the R-
localization method in the deterministic (blue) and stochastic (red) perturbation sub-
selection methods in the experiments of (a) K6PX and (b) KYP240. 

 

4.7 Conclusion and discussion 

A mathematical demonstration is first provided to compare the B-localization and R-

localization methods. It is shown that when the same effective localization function is applied, 

the B-localization method achieves a higher rank than the R-localization method in the localized 

background error covariance matrix. The mathematical demonstration is further illustrated and 

validated using a simple example. Further examination suggests that all the observations will 
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contribute to updating a single gird point in the B-localization method. However, the analysis at 

a particular grid point in the R-localization method is influenced by limited observations that are 

close. Meanwhile, the mathematical demonstration also shows that the B-localization method 

can be realized through extending and modulating the raw background ensemble perturbations or 

the MP-localization method. Specifically, in the MP-localization method, each raw ensemble 

perturbation vector is modulated through an element-wise multiplication with each of the 

modulation functions. To improve the computational efficiency, the modulation functions are 

calculated from the leading eigenvalues and eigenvectors of the original B-localization matrix. 

The resulting MP-localized background error covariance matrix is thus consistent with that 

applying the traditional B-localization method. In the mathematical demonstration, it proves that 

the R-localization method can also be expressed in the form of the modulated ensemble 

perturbations as in the B-localization method. The B-/MP-localization method is then 

implemented in the ETKF and further compared with the R-localization method using the same 

ETKF algorithm. Due to the higher rank from the B-localization method as derived in the 

mathematical demonstration, the B-/MP-localized ETKF is termed as the high-rank ETKF 

(HETKF) to distinguish it from the classic R-localized ETKF. 

Extensive cycled data assimilation experiments were conducted to compare the 

performances of the HETKF and R-localized ETKF using the Lorenz model II. Using the same 

ETKF algorithm warrants a homogeneous comparison between these two localization methods, 

so that it is more straightforward to relate their resulting analysis performances with the 

localization differences. The results show that the HETKF significantly and consistently 

improves the analysis over the R-localized ETKF especially for a small ensemble. Since the 



 
104 

higher rank from the HETKF is expected to contribute more positively to mitigating the rank 

deficiency issue for a small ensemble, the improved analysis of the HETKF over the R-localized 

ETKF is likely associated with the higher rank from the B-/MP-localization method. In addition, 

the advantage of the HETKF over the R-localized ETKF tends to be slightly reduced with the 

increasing number of the observations. This result could be attributed to the improved accuracy 

of the system through the cycled assimilation of a larger number of observations. Furthermore, 

the HETKF is less sensitive to the localization length scales and inflation factors than the R-

localized ETKF. In all the experiments, the HETKF shows tighter optimal effective localization 

distance than the R-localized ETKF. The above conclusion of comparing the HETKF and R-

localized ETKF does not rely on the perturbation sub-selection methods in the HETKF.  

It is also found that in both the HETKF and R-localized ETKF, the stochastic 

perturbation sub-selection method shows larger analysis error than the deterministic perturbation 

sub-selection method. In addition, in both filters, the stochastic perturbation sub-selection 

method generally requires stronger localization and larger inflation than the deterministic 

perturbation sub-selection method to obtain the minimum analysis error except for the 

experiment with the R-localized ETKF and a very small ensemble (e.g., K3P240). This can be 

attributed to the sampling errors by perturbing the observations in the stochastic perturbation 

sub-selection method (Whitaker and Hamill 2002).  

In this study, the improved analysis from the B-/MP-localization method over the R-

localization method is demonstrated using the same ETKF algorithm in the Lorenz model II. 

This is consistent with the results in Janjić et al. (2011) and Nerger et al. (2012) that adopted 

different EnKF variants for comparison. To implement the HETKF in the operational modeling 
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systems, additional treatments are likely needed for the computational concerns. For example, a 

parallel, patch-based implementation like the LETKF can be adopted to improve the 

computational scalability. Further diagnostics (not shown) showing the analysis errors calculated 

from the full 10,000 cycles (i.e., including those cycles before the errors get stabilized) indicate 

that the HETKF requires less time to converge compared to the R-localized ETKF. This feature 

and the less sensitivity of the HETKF to the localization length scales and inflation factors are 

attractive for the operational model applications.   
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Chapter 5: A Simultaneous Multi-scale Data Assimilation using Scale 

Dependent Localization in GSI-based Hybrid 4DEnVar for NCEP FV3-based 

GFS 

	

5.1. Introduction 

 Ensemble-based data assimilation (DA) approach, such as ensemble Kalman filter (EnKF; 

Evensen 1994) and hybrid ensemble-variational  (EnVar) DA (Hamill et al. 2000; Lorenc 2003; 

Buehner 2005; Wang et al. 2007; Wang 2010),  has been widely adopted in many operational 

numerical weather prediction (NWP) centers to produce initial conditions for medium-range 

forecasts.  In the ensemble-based DA approach, an ensemble of short-range forecasts estimate 

flow-dependent background error covariances. This contrasts to the traditional variational DA 

approach that assumes static background error covariances. The advantage of the ensemble-

based DA approach over the pure variational DA approach has been demonstrated in the global 

and regional applications (Wang et al. 2007a, 2008ab, 2013; Wang 2011; Buehner et al. 2013; 

Clayton et al. 2013; Gustafsson et al. 2014; Wang and Lei 2014; Lorenc et al. 2015; Kleist and 

Ide 2015a,b; Kutty and Wang 2015; Buehner et al. 2015).  

 Limited computational resources constrain the affordable ensemble size to be much 

smaller than degrees of freedom of the model itself (Houtekamer and Zhang 2016). This results 

in sampling error in the ensemble-based DA approach. Its typical features are distant spurious 

correlations. Successful application of ensemble-based DA approach relies on efficient treatment 

of sampling error. Directly increasing ensemble size will reduce sampling error  (Miyoshi et al. 

2014; Lei and Whitaker 2017; Huang and Wang 2018). But it can be computationally prohibitive 
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especially for operational NWP applications. Alternatively, covariance localization is commonly 

applied in the ensemble-based DA approach to gradually attenuate and even eliminate distant 

spurious correlations caused by sampling error (Houtekamer and Mitchell 2001, 2005; Huang et 

al. 2019). Applying covariance localization contributes to improved analyses and subsequent 

forecasts (Houtekamer and Mitchell 1998, 2001; Bishop and Hodyss 2009; Buehner 2012; 

Anderson and Lei 2013; Gasperoni and Wang 2015).  

 Rapid advancement of high-performance computing allows future global NWP model to 

resolve much wider range of scales. DA that appropriately updates a wide range of scales will be 

required. Zhang et al. (2009) performed a multi-step sequential DA update by separately 

assimilating different groups of observations with applying different localization length scales. 

But this multi-step sequential DA update could potentially lose some useful information that may 

exist in a simultaneous assimilation of all available observations (Caron and Buehner 2018). 

Miyoshi and Kondo (2013) combined two sets of independent analysis increments from 

assimilating the same set of observations.  Each set applied different amount of localization.  

Both methods showed improved analyses and subsequent forecasts in the EnKF systems 

compared to applying fixed uniform localization once at all scales.  

 While the aforementioned methods took multiple-steps or adopted sequential-update, a 

single-step simultaneous multi-scale update was proposed recently by introducing scale-

dependent localization (SDL) in the EnVar framework (Buehner 2012; Buehner and Shlyaeva 

2015). This simultaneous SDL can be classified into two variants. The first variant completely 

eliminates the cross-waveband covariances (Buehner 2012) (hereafter, referred to as SDL-

NoCross). Mathematically, SDL-NoCross equivalently applies a local spatial averaging of 
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ensemble covariances which may alleviate sampling error and improve the accuracy of ensemble 

covariances especially for a small ensemble (Buehner and Charron 2007). Compared to applying 

fixed uniform localization once at all scales, SDL-NoCross improved the general global forecast 

skills in a global 3DEnVar (Buehner 2012) and 4DEnVar (Lorenc 2017) system. 

 The second simultaneous SDL variant takes into account cross-waveband covariances 

(hereafter, referred to as SDL-Cross) (Buehner and Shlyaeva 2015). Compared to SDL-NoCross, 

SDL-Cross may retain more heterogeneity of error covariances (Caron and Buehner 2018). SDL-

Cross was demonstrated in a regional 3DEnVar sea-ice DA system to perform better than fixed 

unfiorm localization at all scales (Buehner and Shlyaeva 2015). Caron and Buehner (2018) 

implemented SDL-Cross in a global 3DEnVar system, and found improved global forecasts over 

scale-invariant localization. Furthermore, Caron et al. (2019) comparing SDL-NoCross and 

SDL-Cross in a regional 3DEnVar system showed that SDL-NoCross produced more accurate 

forecasts than SDL-Cross using a 25-member ensemble, while both performed comparably when 

using a 75-member ensemble populated by time-lagged method (Lorenc 2017; Huang and Wang 

2019). Caron et al. (2019) further hypothesized that the relative performances between SDL-

NoCross and SDL-Cross could be associated with the accuracy of the estimated cross-waveband 

covariances in SDL-Cross that depended on ensemble size.   

 This study addresses several additional questions on simultaneous SDL using the US 

NWS GSI-based hybrid 4DEnVar system (Wang and Lei 2014; Kleist and Ide 2015a) . The GSI-

based 4DEnVar system was recently integrated with the US next generation non-hydrostatic 

Finite-Volume Cubed-sphere dynamical core (FV3)-based GFS model (Chen et al. 2019; Zhou et 

al. 2019). To achieve the goal of exploring new scientific questions associated with simultaneous 
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SDL, we first demonstrated both SDL methods mathematically in a full B-preconditioned EnVar 

framework, and implemented both in the GSI-based hybrid 4DEnVar system. SDL formulations 

within an EnVar framework preconditioned on the full B and square-root of B were also 

discussed in Caron et al. (2019). Given SDL-NoCross and SDL-Cross were only compared for 

regional applications previously, this study first evaluates and compares both approaches for the 

general global forecasts. Second, in previous studies, SDL was implemented with no explicit 

level-dependence and compared with level- and scale-invariant horizontal localization. In our 

study,  the baseline operational GSI-based hybrid 4DEnVar system for the FV3-based GFS 

applies scale-invariant, but level-dependent horizontal localization. Therefore, how does SDL 

perform relative to the more strict baseline which adopts scale-invariant, but level-dependent 

horizontal localization? Third, tropical storm track forecasts were compared between the GSI-

based 3DEnVar and 4DEnVar that adopted the level-dependent scale-invariant horizontal 

localization (Wang and Lei 2014). The tropical storm track is influenced by the general large-

scale environmental flow (Zong and Wu 2015). Given our cycled experiment configuration in 

section 5.3 that uses an ensemble resolution about 50 km, it is interesting to investigate how 

SDL-NoCross and SDL-Cross would influence the tropical storm track forecasts compared to the 

scale-invariant localization in the current GSI-based 4DEnVar system. Fourth, efficient scale 

separation in SDL is essential and remains to be investigated. How does the performance of SDL 

vary with different numbers of decomposed wavebands (e.g., two versus three)? Finally, 

diagnostics were performed to understand different performances between scale-invariant 

localization, SDL-NoCross and SDL-Cross.  

 This chapter is organized as follows. Section 5.2 describes the SDL formulation and 
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implementation in the GSI-based hybrid 4DEnVar system. Experiment design is described in 

section 5.3. Sections 5.4 and 5.5 discuss the experiment results. In section 5.6, some diagnostics 

are presented to understand the results in sections 5.4 and 5.5. The computational cost is 

compared in section 5.7. Section 5.8 presents conclusion and discussion.   

  

5.2 SDL formulation and implementation in the GSI-based 4DEnVar system 

5.2.1 General SDL formulation in the GSI-based 4DEnVar system 

 The GSI-based 4DEnVar system is formulated and implemented based on extended 

control variable method, to incorporate the ensemble background covariances within the 

traditional variational framework (Wang 2010b; Wang et al. 2013; Wang and Lei 2014). 

Mathematically, it is equivalent to linearly combining the static and ensemble background 

covariances (Wang et al. 2007b, 2008a). In this study, SDL was implemented in the GSI-based 

hybrid 4DEnVar system by further extending control variables. In this section, the general SDL 

formulation in the 4DEnVar system is first illustrated following the notations in Wang et al. 

(2013) and Wang and Lei (2014). Specific implementations of SDL-NoCross and SDL-Cross are 

then detailed. To highlight the variables of further extended dimension due to applying SDL, a 

“hat” sign is labeled above the letter or symbol. 

 Following Buehner and Shlyaeva (2015), the normalized ensemble perturbations are 

decomposed into a set of J overlapping wavebands or scales which are indexed by j=1, …, J, 

            (5.1) 

where  denotes the kth ensemble perturbation vector normalized by (K-1)1/2 , K is the 

ensemble size,  is the spectral filter function that extracts the jth waveband, and is the kth 
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normalized ensemble perturbation vector that only contains the jth waveband.  

 In the 4DEnVar with applying SDL, the analysis increment  at time t in a DA window 

is calculated as  

         (5.2) 

where 

 
 ,         (5.3) 

and  

 , and .       (5.4) 

The first term on the right-hand side of Eq. (5.2) is the analysis increment associated with the 

static background error covariances. 
 
contains J identity matrices aligned in a row.  is a 

vector that concatenates J vectors of decomposed (j=1, …, J) for the kth member. is a 

three dimensional vector that corresponds to the control variable vector at the jth waveband for 

the kth member, and is further extended control variable vector that concatenates J vectors of 

 for the kth member. The sign “ο” denotes the Schur product. Compared to Wang and Lei 

(2014) without applying SDL, the control variable vector  in Eq. (5.4) for the kth member 

varies with the waveband index j. Its dimension is increased by J. As in Wang and Lei (2014), 

   ′x t

x x a xˆ ˆ ( ˆ ) ,t k k
e
t

k

K

1
1

I F∑′ = ′+
=
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the same set of  is applied for all control variables that include surface pressure, virtual 

temperature, wind, relative humidity, cloud water mixing ratio and ozone mixing ratio at 

different time levels. 

 The analysis increment in Eq. (5.2) is obtained by minimizing the following cost function: 

      (5.5) 

On the right-hand side of Eq. (5.5), the first term is associated with the static background 

covariances . In the second term,  is the extended control variable vector that concatenates 

K vectors of in Eq. (5.4). is a block-diagonal matrix that defines the localization matrix for 

within- and cross-waveband ensemble covariances (see more details later). In the third term, , 

 and are the observation innovation vector, linearized observation operator matrix and 

observation covariance matrix at time t, respectively. L is the number of time levels spanning the 

DA window (e.g., 6 hours). In addition, parameters and  control the weights of the static 

and ensemble background covariances and (1/ )+(1/ ) =1 is required as in Wang et al. (2007b, 

2008a).  
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Figure 5.1 Illustration of the scale-dependent spatial localization matrix between Scale 1 
and Scale 2 that represent large and small scales, respectively, using a one-dimensional 
periodic domain of 100 grid points.  
 

 In the global GSI-based 4DEnVar system, the localization defined in  is realized 

through spectral filter transformation on the horizontal direction and recursive filter 

transformation on the vertical direction. More details of implementing the horizontal and vertical 

localization were described in Wang (2010) and Wang et al. (2013). In this study, SDL is only 

applied for horizontal localization. Specifically, the explicit formula of  can be written as   

         (5.6) 

Each of the K blocks in  contains the same predefined localization matrix  with unit 

diagonal elements following Buehner and Shlyaeva (2015),  
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    (5.7) 

where  (j1=1, …, J and j2=1, …, J) defines the localization matrix for the 

ensemble covariances between the j1th and j2th wavebands. Eq. (5.7) ensures the complete 

localization matrix is positive semi-definite (Buehner and Shalyeva 2015). Given the design in 

Eq. (5.7), the within-waveband localization matrices have unit diagonal elements, while the 

cross-waveband localization matrices display less-than-one diagonal elements (Fig. 5.1). 

 

5.2.2 Specific implementation of SDL-NoCross and SDL-Cross in the GSI-based 4DEnVar 

system 

 In this subsection, implementations of SDL-NoCross and SDL-Cross in the GSI-based 

4DEnVar system are further described. Two major implementation differences are involved. One 

is the definition of the spectral filter function  in Eq. (5.1). The other is whether or not to zero 

out the cross-waveband localization matrix ( j1≠j2 ) in Eq. (5.7).  

 In SDL-Cross, it requires that the spectral filter functions over J wavebands sum to 

one to recover the original raw ensemble perturbations from their decomposed components 

(Buehner and Shlyeva 2015) , and that the cross-waveband localization matrix ( j1≠j2 ) is 

retained to partially include cross-waveband covariances. In a particular scenario of applying the 

same amount of localization at different wavebands, SDL-Cross is equivalent to applying fixed 
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uniform localization once at all scales (Buehner and Shlyaeva 2015).  

 In contrast, to implement SDL-NoCross, it requires that the squared spectral filter 

functions  over J wavebands sum to one to maintain the total raw ensemble variances 

(Buehner 2012), and that the cross-waveband localization matrix  ( j1≠j2 ) is set to be zero 

to completely remove cross-waveband covariances.  

 

5.3 Experiment design  

The GSI-based 4DEnVar DA system and the FV3-based GFS model were used for one-

month cycled DA experiments from 0000 UTC 25 August to 1800 UTC 24 September 2017. 

More details about the GSI-based EnVar system can be found in Wang et al. (2013) and Wang 

and Lei (2014). The assimilated observations over a six-hour DA window include all the 

conventional and satellite observations in the operational NCEP global DA system. Satellite 

radiance data assimilation applied the same observation quality control and bias correction in the 

operational global DA system (Zhu et al. 2014). 

 The baseline 4DEnVar experiment (W1-Ope in Table 5.1) was set up similarly as the 

operational system using a dual-resolution configuration. One-member control background is at a 

resolution of C384 (~ 25 km), while 80-member ensemble background is at a reduced resolution 

of C192 (~ 50 km) (Lin 2004; Harris and Lin 2013). In the DA update, the one-member control 

background was updated using the 4DEnVar algorithm (Wang and Lei 2014; Kleist and Ide 

2015a). Specifically, 12.5% static and 87.5% ensemble background covariances were combined 

to construct its hybrid form as in the operational system. Both percentage numbers correspond to 

(1/ ) and (1/ ) in section 5.2.1, respectively. Three-hourly ensemble perturbations were 
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ingested in the 4DEnVar update to account for the temporal evolution. To deal with sampling 

error, localization was applied on both horizontal and vertical directions. As in the operational 

system, the horizontal localization length scale varies with model level (e.g., black dotted curve 

in Fig. 5.2), and a fixed uniform vertical localization length scale is applied at all model levels 

(Table 5.1). In addition, a tangent linear normal mode initialization constraint (TLNMC, Kleist et 

al. 2009) was applied to alleviate the imbalance in the control analysis as in the operational 

system.  

Table 5.1 List of DA experiments 

Exps Number of 
wavebands 

Horizontal localization length scale  
(e-folding distance) 

Vertical localization 
length scale 

(scale height, e-
folding distance) 

W1-Ope 1 
Level-dependent length scale for full-
scale ensemble perturbations (black 

curve in Fig. 5.2) 

 
0.5 

 

W1-1000 1 1000 km for full-scale ensemble 
perturbations 

W1-300 1 300 km for full-scale ensemble 
perturbations 

W2-NoCross 2 1000 km and 300 km for large- and 
small-scale ensemble perturbations, 

respectively W2-Cross 2 

W3-NoCross 3 1000 km, 650 km and 300 km for 
large-, medium- and small-scale 

ensemble perturbations, respectively W3-Cross 3 
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Figure 5.2 Level-dependent horizontal localization length scales (black) for W1-Ope and 
level-invariant horizontal localization length scales at large- (red), medium- (green) and 
small- (blue) scale wavebands in the two- and three-waveband SDL experiments in Table 
5.1. Note that the horizontal localization length scale is e-folding distance.  

 

The 4D local ensemble transform Kalman filter (LETKF, Hunt et al. 2007) was adopted 

to update the 80-member background ensemble. In the LETKF, the observation operators were 

calculated through the GSI. To remedy sampling error, the localization was applied in the 

LETKF and defined by the Gaspari-Cohn function (Gaspari and Cohn 1999). The exact cut-off 

distance in the Gaspari-Cohn function is equivalent to multiplying the e-folding localization 

length scales in the 4DEnVar update by a factor of 2.577 (Pan et al. 2014). To remedy the 

background ensemble spread deficiency, multiplicative inflation (Whitaker et al. 2012; Lei and 

Whitaker 2016, 2017) was employed to relax the posterior ensemble spread back to 85% of the 

prior ensemble spread. Stochastic parameterization schemes (Palmer et al. 2009; Lei and 

Whitaker 2016, 2017; Huang and Wang 2018) were further applied to account for model 
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uncertainty.  

The GFS model using the non-hydrostatic Finite-Volume Cubed-sphere dynamical core 

(FV3, Lin 2004; Harris and Lin 2013) was used to provide the control and ensemble background 

forecasts. The FV3-based GFS was configured similarly as in the pre-operational tests in Phase 

II of the Next-Generation Global Prediction System (NGGPS) project (National Weather Service, 

2020). The model configurations were detailed in Chen et al. (2019) and Zhou et al. (2019). Due 

to computational constraints, the experiments in this study were performed at a reduced 

horizontal resolution compared to the pre-operational tests. There are a total of 64 model levels 

in the current FV3-based GFS model. The 4D incremental analysis update (4DIAU) was further 

applied for both control and ensemble forecasts to improve the balance during the model 

integration (Lorenc et al. 2015; Lei and Whitaker 2016, 2017; Huang and Wang 2018).  

In SDL, the optimal way of performing scale separation remains to be investigated. A 

hurricane example (Fig. 5.3a) was used to assist in scale separation in our SDL experiments. As 

our initial examination, the first set of SDL experiments adopted two wavebands, referred to as 

W2-NoCross and W2-Cross in Table 5.1 that apply SDL-NoCross and SDL-Cross, respectively.  

For the scale separation in the two-waveband SDL experiments, the hurricane at relatively small 

scale (Fig. 5.3c) was isolated from the general large-scale environmental flow (Fig. 5.3b) using 

the example in Fig. 5.3a. The resultant spectral filter functions (Fig. 5.4a,b) at the large- and 

small-scale wavebands cross each other roughly at wavelength 2500 km or at total wavenumber 

16. The spectral filter functions in SDL-NoCross were defined as the square root of those in 

SDL-Cross following Caron et al. (2019). It is meant to satisfy that the spectral filer functions 

sum to one in SDL-Cross, while the squared spectral filter functions sum to one in SDL-NoCross 
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as discussed in section 5.2.2. To define the horizontal localization length scale in the two-

waveband SDL experiments, several tuning tests were performed by referring to the horizontal 

localization length scales applied in Caron and Buehner (2018) and the operational level-

dependent horizontal localization length scales in W1-Ope. Finally, the 1000 km and 300 km e-

folding distances were selected as the horizontal localization length scales at all model levels for 

the large- and small-scale ensemble perturbations in the two-waveband SDL experiments, 

respectively. To provide a more homogeneous comparison with the two-waveband SDL 

experiments applying level-invariant horizontal localization, another two experiments of W1-

1000 and W1-300 in Table 5.1 were further designed. Different from W1-Ope applying the 

level-dependent horizontal localization, however, W1-1000 and W1-300 apply the level-

invariant horizontal localization length scales, that is, 1000 km and 300 km e-folding distances, 

respectively.  

To explore how the SDL performance varies with the number of decomposed wavebands, 

three-waveband SDL experiments were further designed such as W3-NoCross and W3-Cross in 

Table 5.1 that apply SDL-NoCross and SDL-Cross, respectively.  For the scale separation in the 

three-waveband SDL experiments, the large-scale background in the two-waveband SDL 

experiments was further decomposed to two wavebands, that is, the large- and medium-scale 

wavebands in the three-waveband SDL experiments. As a result, the mid-latitude high pressure 

(Fig. 5.3e) that appears in the large-scale waveband in the two-waveband SDL experiments is 

further isolated from the global large-scale environmental flow (Fig. 5.3d). The background at 

small-scale waveband in the three-waveband SDL experiments (Fig. 5.3f) was retained similarly 

as in the two-waveband SDL experiments (Fig. 5.3c) typically featured by the hurricane. Figures 
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5.4c,d show the resultant spectral filter functions at large-, medium- and small-scale wavebands 

in the three-waveband SDL experiments. Additional tuning tests were performed to determine 

the horizontal localization length scales in the three-waveband SDL experiments. But it did not 

provide additional benefits by further increasing the horizontal localization length scale beyond 

1000 km e-folding distance for the large-scale waveband in the three-waveband SDL 

experiments. The same set of 1000 km and 300 km e-folding distances were thus applied at the 

large- and small-scale wavebands in the three-waveband SDL experiments. Additionally, the 650 

km e-folding distance was selected at the medium-scale waveband in the three-waveband SDL 

experiments. Therefore, the main difference in the two- and three-waveband SDL experiment 

designs is tighter horizontal localization applied at medium-scale waveband in the three-

waveband SDL experiments. This would facilitate to interpret performance differences between 

the two- and three-waveband SDL experiments. 
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Figure 5.3 Two-dimensional wind vectors at 850 hPa in a hurricane example at (a) full-
scale, and at (b) large- and (c) small-scale wavebands in the two-waveband SDL 
experiments, and at (d) large-, (e) medium- and (f) small-scale wavebands in the three-
waveband SDL experiments. The grey contours beneath the wind vectors denote the 
geopotential height at 850 hPa.  

	

Experiment descriptions are detailed in Table 5.1. For all the experiments in Table 5.1, 

they applied the 0.5 scale-height e-folding distance at all model levels for the vertical 

localization. On the other hand, in the LETKF update, all the experiments applied the same 

horizontal and vertical localization length scales as in W1-Ope.  
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Figure 5.4 Spectral filter functions for SDL-NoCross (dashed) and SDL-Cross (solid) in 
the two- (top) and three- (bottom) waveband SDL experiments at large- (L, red), 
medium- (M, green) and small- (S, blue) scale wavebands as a function of the (a)(c) 
wavelength and (b)(d) total wavenumber. Note that the two-waveband SDL experiments 
in (a)(b) only contain the large- and small-scale wavebands.  
 

To provide a robust comparison among different experiments, a paired permutation test 

was applied at 95% confidence level with 1000 replicates (Manly 2006). Procedures in Wang 

and Bishop (2005) were followed to collect independent samples for the significance test (see 

more details in Appendix B). For the global forecast comparison in sections 5.4.3, 5.4.4 and 

5.5.1, the time series were first averaged in each of the independent subdomains distributed over 

the globe. This produced spatially independent time series. For the TC track forecast comparison 
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in sections 5.4.5 and 5.5.2, each storm was treated as an independent case. For the power spectral 

evaluation in section 5.6.3, each model level was treated as spatially independent. Then for each 

set of spatially independent time series, lag correlations were computed to further determine the 

length of a temporal block so that the temporal block series were weakly correlated in time.  The 

objective of the aforementioned procedures is to determine effective degrees of freedom during 

the significance test.  All sets of resultant temporally and spatially independent sample time 

series were pooled together to perform the paired permutation test. A false discovery rate (FDF) 

method (Wilks 2006) at 95% confidence level was further applied to ameliorate the simultaneous 

multiple hypothesis test issue.  

 
 

5.4 Comparison of two-waveband SDL and scale-invariant localization experiments  

5.4.1 Single observation experiment 

  To demonstrate the impacts of SDL, a single observation experiment was first performed 

for W1-1000, W1-300, W2-NoCross and W2-Cross (Fig. 5.5).  A case featured with an 

interaction between a large-scale subtropical high and mesoscale typhoon was selected to more 

clearly reveal the differences between SDL-Cross and SDL-NoCross. W1-1000 applying much 

wider horizontal localization length scale produces two analysis increment maxima that are 

located at the observation location and to the north of the typhoon eye (Fig. 5.5a), respectively.  

The distant analysis increment maximum to the north of the typhoon eye suggests the raw 

ensemble covariances estimate an interaction between the subtropical high and typhoon. In 

addition, by applying the same horizontal localization length scale 1000 km e-folding distance 

for both large- and small-scale wavebands in W2-Cross, it reproduces the same analysis 
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increment pattern as W1-1000 (not shown here). This is consistent with the theory that applying 

the same amount of localization at different wavebands in SDL-Cross is equivalent to applying 

fixed uniform localization once at all scales (Buehner and Shlyaeva 2015). This further suggests 

that SDL was correctly implemented in the GSI-based 4DEnVar system. W1-300 applying much 

tighter horizontal localization length scale shows the most localized analysis increment pattern 

(Fig. 5.5b). Due to applying wider horizontal localization length scale for large-scale ensemble 

perturbations, W2-NoCross and W2-Cross show broader analysis increment patterns than W1-

300. Compared to W1-1000, W2-NoCross and W2-Cross show overall more restricted analysis 

increment patterns due to much tighter horizontal localization applied for small-scale ensemble 

perturbations. W2-NoCross only shows one analysis increment maximum at the observation 

location, while W2-Cross that partially includes cross-waveband covariances maintains two 

analysis increment maxima as in W1-1000. This result suggests that the distant analysis 

increment maximum to the north of the typhoon eye in W1-1000 and W2-Cross is contributed by 

the cross-waveband covariances between the subtropical high and typhoon. The reduced 

magnitude of the analysis increment maxima in W2-Cross relative to W1-1000 can be attributed 

to the less-than-one peak in the cross-waveband localization matrix applied in SDL as shown in 

Fig. 5.1.  
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Figure 5.5 500 hPa zonal wind full-scale analysis increments in a hurricane example from 
assimilating a single zonal wind observation at the green dot that is 5 m s-1 higher than 
the background in (a) W1-1000, (b) W1-300, (c) W2-NoCross and (d) W2-Cross. The 
full-scale analysis increments in W2-NoCross and W2-Cross are combined analysis 
increments associated with decomposed large- and small-scale ensemble perturbations. 
The underneath grey contours denote the full-scale geopotential height at 500 hPa. 
 

5.4.2 Analysis increment power 

 To investigate how the localization influences the analysis increments at different scales, 
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Fig. 5.6 shows the analysis increment power spectra as a function of total wavenumber for the 

temperature and wind variables at 500 hPa. By applying much wider horizontal localization 

length scale at 500 hPa (roughly at the 0.5 sigma level in Fig. 5.2), W1-1000 shows larger 

analysis increment power at all total wavenumbers compared to W1-300 and W1-Ope. W1-300 

that applies slightly tighter horizontal localization at 500 hPa than W1-Ope shows slightly 

reduced analysis increment power. These results suggest that overall less tight horizontal 

localization generally produces larger analysis increment power in our cycled DA experiments. 

Furthermore, the analysis increment power in W2-NoCross and W2-Cross is at a magnitude 

closer to W1-1000 (W1-300) at small (large) total wavenumbers. This shall be expected because 

the two-waveband SDL experiments apply the same horizontal localization length scale as W1-

1000 (W1-300) at small (large) total wavenumbers. The analysis increment power differences 

between W2-NoCross and W2-Cross are slightly more noticeable at small total wavenumbers.  

  

 

Figure 5.6 Analysis increment power spectrum as a function of total wavenumber for the 
(a) temperature (unit: K2) and (b) wind (unit: m2 s-2) variables at 500 hPa in W1-Ope 
(black), W1-1000 (magenta), W1-300 (cyan), W2-NoCross (red) and W2-Cross (blue).  
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5.4.3 Forecast verification against rawinsonde observations  

 Root-mean-square-errors (RMSEs) were calculated by comparing the 6-hour background 

forecasts against the rawinsonde observations. In both sections 5.4.3 and 5.4.4, W1-Ope is used 

as a reference for comparison. As discussed in section 5.3, W1-Ope adopts the operationally-

tuned, level-dependent, scale-invariant localization, and therefore provides a strict reference. By 

applying much wider horizontal localization length scale for the full-scale ensemble 

perturbations, W1-1000 shows the worst 6-hour temperature and wind forecasts at most model 

levels. Compared to W1-Ope, W1-300 shows comparable or slightly improved 6-hour 

background forecasts at several model levels below 100 hPa especially for the wind forecasts. It 

suggests that slightly reducing horizontal localization length scale below 100 hPa in W1-Ope 

may further benefit the forecasts at such model levels in the operational hybrid 4DEnVar system. 

However, W1-300 produces larger temperature forecast error than W1-Ope above 100 hPa. It is 

also noticed that W1-1000 has the least degradation relative to W1-Ope above 100 hPa compared 

to lower model levels. These results together suggest that a wider horizontal localization length 

scale for the full-scale ensemble perturbations is generally beneficial at upper model levels. This 

is consistent with the current operational level-dependent horizontal localization settings in W1-

Ope, and may explain the degradation in W1-300 above 100 hPa that applies much tighter 

horizontal localization.	
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Figure 5.7 Difference of the Root-mean-square-error (RMSE) of the 6-hour (a) 
temperature (Unit: K) and (b) wind background (Unit: m s-1) forecasts against the 
rawinsondes as a function of pressure level in W1-1000 (magenta), W1-300 (cyan), W2-
NoCross (red) and W2-Cross (blue) relative to W1-Ope. Negative (positive) values mean 
improved (degraded) 6-hour background forecasts relative to W1-Ope. The bold dot sign 
indicates the RMSE in a particular experiment is significantly different from W1-Ope at 
or above 95% confidence level by applying a paired permutation test with 1000 replicates 
combined with the FDR method at 95% confidence level. The dashed black line denotes 
zero values.  
 

 On the other hand, W2-NoCross and W2-Cross generally improve the 6-hour global 

forecasts over W1-Ope, W1-1000 and W1-300 at most model levels, suggesting the benefits of 

SDL. In particular, W2-NoCross and W2-Cross that apply tighter horizontal localization for the 

small-scale ensemble perturbations show the largest improvement for 6-hour temperature and 

wind forecasts over W1-Ope above 200 hPa. This can be further related to that W1-Ope starts to 

increase horizontal localization length scale above 200 hPa. Therefore, wider horizontal 

localization length scale for the large-scale ensemble perturbations in the two-waveband SDL 

experiments may contribute more above 200 hPa. This is also consistent with our earlier 

discussion that wider horizontal localization length scale is beneficial at upper model levels. 

Relative performances between W2-NoCross and W2-Cross are a bit mixed for the 6-hour 
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background forecasts below 300 hPa. However, W2-NoCross slightly improves the 6-hour 

background forecasts more than W2-Cross above 300 hPa, suggesting the cross-waveband 

covariances estimated by the ensemble may not be reliable above 300 hPa. This is consistent 

with Caron et al. (2019) that relative performances between SDL-NoCross and SDL-Cross 

depend on the accuracy of estimated cross-waveband covariances.  

 

5.4.4 Global forecast verification against ECMWF reanalysis 

To evaluate medium-range global forecasts, root-mean-square-errors (RMSEs) between 

the five-day global forecasts and ECMWF reanalyses were calculated at selected model levels 

every 6 hours. Figure 5.8 shows the RMSE difference relative to W1-Ope as a function of 

forecast lead time and model pressure level. W1-1000 in general shows the worse five-day 

global temperature and wind forecasts than W1-Ope. This further suggests negative impacts of 

applying much wider horizontal localization length scale at these selected model levels in W1-

1000 than W1-Ope. Different from the consistently degraded global wind forecasts, W1-1000 

shows slightly better temperature forecasts than W1-Ope at several lower model levels within 

two days and at 10 hPa beyond two days. This may suggest the necessity of considering variable-

dependency of the localization. Compared to W1-Ope, W1-300 degrades global temperature 

forecasts above 150 hPa. This is hypothesized to result from the negative impacts of applying too 

tight horizontal localization at such levels in W1-300 relative to W1-Ope. Compared to the 

global wind forecasts, the more degraded global temperature forecasts above 150 hPa in W1-300 

may also suggest that the optimal horizontal localization length scale is variable-dependent. 

Below 150 hPa, W1-300 produces slightly more accurate or comparable temperature forecasts 
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relative to W1-Ope. However, W1-300 shows more accurate global wind forecasts up to 50 hPa 

at shorter forecast lead times. This is consistent with the 6-hour background forecast verification 

(Fig. 5.7). It again suggests the potential additional benefits of slightly reducing horizontal 

localization length scale at lower model levels in the operational hybrid 4DEnVar system for the 

global wind forecasts. Different from W1-1000 and W1-300, W2-NoCross and W2-Cross that 

apply SDL consistently improve the global forecasts over W1-Ope at most model levels and 

forecast lead times. It is noticed that W2-NoCross shows slightly degraded temperature forecasts 

relative to W1-Ope below 850 hPa between three and four days. This may suggest that the 

current scale separation based on the wind variable may not be optimal for the temperature 

variable especially when applying SDL-NoCross.  

Figures 5.9a,b further compare the five-day global forecasts between W2-NoCross and 

W2-Cross. W2-NoCross tends to show slightly better global forecasts than W2-Cross within 

one-day forecast lead times. Beyond one day, however, W2-Cross improves the global forecasts 

over W2-NoCross. The advantage of W2-Cross at shorter forecast lead times may be associated 

with the local spatial averaging of ensemble covariances in SDL-NoCross, due to its complete 

removal of cross-waveband covariances. While the local spatial averaging in SDL-NoCross may 

help alleviate sampling error and improve fitting of the analysis to the observations, it would 

likely retain less heterogeneity of ensemble covariances (Caron et al. 2019). In contrast, SDL-

Cross partially includes the cross-waveband covariances and retains more heterogeneity of 

ensemble covariances. The retained more heterogeneity of ensemble covariances in W2-Cross, 

together with its more balanced analysis (in Fig. 5.16 in section 5.6.2) may explain its more 

accurate global forecasts at longer forecast times than W2-NoCross. 
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Figure 5.8 Globally and temporally averaged root-mean-square-error (RMSE) difference 
from W1-Ope for the (left) temperature (unit: K) and (right) wind (unit: m s-1)  forecasts 
in (a)(b) W1-1000, (c)(d) W1-300, (e)(f) W2-NoCross and (g)(h) W2-Cross that were 
verified against ECMWF reanalyses as a function of forecast time to 5 days on the 
horizontal axis and pressure level on the vertical axis. Blue (red) color indicates the 
improved (degraded) forecasts relative to W1-Ope. The asterisk signs at the 
corresponding forecast times and pressure levels indicate that the RMSE difference from 
W1-Ope is statistically significant at or above 95% confidence level by applying the 
paired permutation test with 1000 replicates combined with the FDR method at 95% 
confidence level. 
 
 

 

Figure 5.9 As in Fig. 5.8 but for the global (left) temperature and (right) wind forecast 
RMSE difference between the experiments applying SDL-Cross and SDL-NoCross in the 
(a)(b) two- and (c)(d) three-waveband SDL experiments. Blue (red) color indicates SDL-
Cross shows improved (degraded) forecasts compared to SDL-NoCross. 
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5.4.5 TC track forecast verification 

 As discussed in the introduction, the prediction of the tropical cyclone (TC) track requires 

the TC, its embedded large-scale environment and their interaction to be analyzed properly.  

Therefore, in this study, we investigate how SDL influences the TC track forecasts.  

 

 

Figure 5.10 Best track of the tropical cyclones during the experiment period in the (a) 
Atlantic, (b) Western Pacific and (c) Eastern Pacific basins. 

 

 In the cycled DA experiment period, there were fifteen named TCs in the Northern 

Atlantic basin and Northern Pacific basin. Ten TCs reached the typhoon or hurricane category 

(Fig. 5.10). The NCEP TC tracker (Marchok 2002) was used to calculate the forecasted TC 

location. Following Wang and Lei (2014) and Huang and Wang (2018), the TC track error was 

calculated against the best track data	 (National Hurricane Center and Central pacific Hurricane 
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Center 2020; Naval Oceanography Portal 2020), and averaged over all fifteen TCs. Figure 5.11a 

shows the TC track error difference relative to W2-Cross as a function of forecast lead time. W1-

Ope improves the TC track forecasts over W1-1000 almost out to five days, and over W1-300 

beyond three days. On the other hand, W2-Cross and W2-NoCross show significantly improved 

TC track forecasts over W1-1000 out to four days, and over W1-300 beyond three days. These 

results suggest improved analyses in W2-Cross and W2-NoCross relative to scale-invariant 

localization experiments lead to improved subsequent TC track forecasts. Furthermore, W2-

Cross improves the TC track forecasts over W2-NoCross beyond three days. This is consistent 

with better global forecasts in W2-Cross relative to W2-NoCross at longer forecast lead times in 

Figs. 5.9a,b. However, the TC track forecasts between W1-Ope and W2-Cross are statistically 

indistinguishable. This is not the case in their global forecast comparison in Figs. 5.8g,h.  It is 

hypothesized that the current scale separation in the two-waveband SDL experiments may not be 

sufficient to improve the TC track forecasts. Impact of SDL on TC track forecasts will be further 

examined in the three-waveband SDL experiments in section 5.5.2. Percentages of the track 

forecasts that are more accurate than W2-Cross (Wang and Lei 2014) in Fig. 5.11b are consistent 

with the TC track error differences in Fig. 5.11a. For instance, at the forecast lead times beyond 

two and a half days, more than 50% of the track forecasts in W2-Cross are more accurate than 

W1-1000, W1-300 and W2-NoCross. 
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Figure 5.11 Figure 11 (a) Track forecast error difference in W1-Ope (black), W1-1000 
(magenta), W1-300 (cyan), W2-NoCross (red) relative to W2-Cross. The bold dots on the 
curves in (a) indicate that the track error difference from W2-Cross is statistically 
significant at or above 95% confidence level by applying the paired permutation test with 
1000 replicates combined with the FDR method at 95% confidence level at the 
corresponding forecast lead time. (b) Percentage of the track forecasts that are more 
accurate than W2-Cross with the same line styles and color indexes in (a). The numbers 
right above the horizontal axis in (b) denote the sample size at the corresponding forecast 
lead time. 

	

5.5 Comparison of two- and three-waveband SDL experiments 

	 To investigate how SDL performs in response to the number of decomposed wavebands, 

the two- and three-waveband SDL experiments were further compared in this subsection. As 

discussed in the introduction, the major difference in the two- and three-waveband SDL 

experiment designs is tighter horizontal localization applied at medium-scale waveband. 

Consistent with the two-waveband SDL experiments, the three-waveband SDL experiments 

improve the global temperature and wind forecasts over W1-Ope  at most model levels and 

forecast lead times (not shown here). This section will focus on the comparison among the two- 

and three-waveband SDL experiments.	
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5.5.1 Global forecast verification against ECMWF reanalysis  

 Figure 5.12 shows the RMSE difference of the global temperature and wind forecasts 

against the ECMWF analyses between the two- and three-waveband SDL experiment 

counterparts. Above 50 hPa, the three-waveband SDL experiments in general produce less 

accurate global forecasts over five days than their two-waveband SDL experiment counterparts. 

As discussed earlier, wider overall horizontal localization length scale is beneficial at upper 

model levels. Reduced overall horizontal localization length scale in the three-waveband SDL 

experiments, due to tighter horizontal localization applied at medium-scale waveband, may be 

the reason for their degraded global forecasts at upper model levels. On the other hand, overall 

tighter horizontal localization length scale is beneficial at lower model levels. So reduced overall  

horizontal localization length scale in the three-waveband SDL experiments may explain their 

better global temperature and wind forecasts below 100 hPa at least out to 3 days compared to 

the two-waveband SDL experiment counterparts. In particular, the advantage of W3-NoCrsoss 

relative to W2-NoCross below 100 hPa almost lasts for the entire five days, while that of W3-

Crsoss relative to W2-Cross only lasts out to three days. As shown later in Fig. 5.16, the analysis 

in the three-waveband SDL experiments is more imbalanced than the two-waveband SDL 

experiment counterparts. At longer forecast lead times, the negative impacts from less balanced 

analysis may overrule the positive benefits of more accurate analysis resultant from overall 

tighter horizontal localization. Furthermore, the amount of imbalance increased going from two 

wavebands to three wavebands is larger in the experiments applying SDL-Cross than those 

applying SDL-NoCross. This likely explains why the benefit of W3-Cross versus W2-Cross  

below 100 hPa only lasts up to 3 days.     
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Figure 5.12 As in Fig. 5.8 but for the global (left) temperature and (right) wind forecast 
RMSE difference between the two- and three-waveband SDL experiment counterparts 
that apply (a)(b) SDL-NoCross and (c)(d) SDL-Cross. Blue (red) color indicates the 
three-waveband SDL experiment shows improved (degraded) forecasts compared to its 
two-waveband experiment counterpart. 
 

 

Figures 5.9c,d show the forecast RMSE difference between W3-NoCross and W3-Cross. 

As in the two-waveband SDL experiments, W3-NoCross produces slightly more accurate global 

wind forecasts within twelve hours than W3-Cross. As the forecast lead time increases, the 
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global wind forecasts in W3-Cross becomes more accurate than W3-NoCross. This variation of 

the wind forecast performances of W3-NoCross relative to W3-Cross as the forecast lead time 

increases also happens to the global temperature forecasts at model levels between 400 hPa and 

150 hPa, and at about 10 hPa. As discussed in the two-waveband SDL experiments in section 

5.4.4, the better global forecasts of W3-Cross over W3-NoCross at longer forecast lead times 

may be associated with its retained more heterogeneity of ensemble covariances and more 

balanced analysis (Fig. 5.16). However, it is also noted that the outperformance of W3-Cross 

over W3-NoCross lasts for a shorter period of time than that of W2-Cross over W2-NoCross. 

This may be related to less amount of imbalance reduction between SDL-Cross and SDL-

NoCross when increasing from two wavebands to three wavebands. Between 100 hPa and 50 

hPa, W3-Cross shows worse global temperature forecasts than W3-NoCross over five days. 

However, this is neither the case between W2-NoCross and W2-Cross, nor the case for the wind 

forecasts. These results suggest that relative performances between SDL-NoCross and SDL-

Cross, owing to the partial cross-waveband covariances in SDL-Cross, could vary with the 

number of decomposed wavebands in SDL, model level, and model variable.  

 

5.5.2 TC track forecast verification 

 Figure 5.13 shows the TC track forecast error difference in the two- and three-waveband 

SDL experiments relative to W2-Cross, and the percentages of the TC track forecasts that are 

better than W2-Cross. W1-Ope is included in Fig. 5.13 for further comparison with the three-

waveband SDL experiments for the TC track forecasts. W3-Cross significantly improves the TC 

track forecasts over W1-Ope and W2-Cross within two-day forecast lead times. W3-NoCross in 
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general shows more accurate TC track forecasts than W2-NoCross between one-and-half and 

three days. Improved TC track forecasts in the three-waveband SDL experiments over their two-

waveband SDL counterparts may benefit from the three-waveband scale separation and tighter 

horizontal localization length scale applied at medium-scale waveband. For example, the 

decomposed wind background displays more representative and distinguished features in the 

three-waveband SDL experiments (Fig. 5.3). However, W3-Cross shows statistically less 

accurate TC track forecast than W2-Cross between three and four days. This is consistent with its 

general less accurate global forecasts in W3-Cross than W2-Cross at such forecast time periods. 

Furthermore, the percentage differences in Fig. 5.13b are generally consistent with the TC track 

error differences in Fig. 5.13a. For instance, more than 50% percent of track forecasts in W3-

Cross are more accurate than W2-Cross between twelve hours and two and half days.  

  

Figure 5.13 As in Fig. 5.11 but for (a) the track forecast error difference and (b) 
percentage of more accurate track forecasts in W1-Ope (black), W2-NoCross (red), W3-
NoCross (orange), W3-Cross (green) in contrast to W2-Cross. 
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5.6 Additional diagnostics to understand performance differences 

5.6.1 Localized correlation pattern comparison 

 To have a systematic evaluation of localized correlation patterns from all the localization 

methods, a total of 200 localized zonal wind correlation samples at 500 hPa were collected over 

the globe for all the seven experiments. Figure 5.14 shows 45 localized correlation samples. 

Given slightly broader horizontal localization length scale applied in W1-Ope at 500 hPa relative 

to W1-300 (Fig. 5.2), its localized correlation patterns are only slightly broader than those in 

W1-300 and are thus not included in Fig. 5.14. In general, the localized correlation patterns vary 

with latitudes, geographical locations and weather systems (Buehner 2012b). W1-1000 applying 

much wider horizontal localization length scale shows the most broad localized correlation 

patterns, and retains the largest amount of noises from sampling error and largest amount of 

heterogeneity. As expected, W1-300 shows the tightest localized correlation patterns. Due to 

tighter horizontal localization length scale applied at small- and/or medium-scale waveband, the 

localized correlation patterns in the SDL experiments are tighter, smoother and retain less 

heterogeneity of ensemble correlations compared to W1-1000. On the other hand, the SDL 

experiments show broader localized correlation patterns than W1-300 due to their wider 

horizontal localization length scale applied at large- and/or medium-scale waveband. Owing to 

the local spatial averaging of ensemble covariances, the localized correlation patterns from SDL-

NoCross tend to be less heterogenetic than those from SDL-Cross. By applying tighter horizontal 

localization length scale at medium-scale waveband, the three-waveband SDL experiments 

produce more localized correlation patterns than their two-waveband SDL counterparts.    
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Figure 5.14 45 localized zonal wind correlation samples at 500 hPa distributed over the 
globe in (a) W1-1000, (b) W1-300, (c) W2-NoCross, (d) W2-Cross, (e) W3-NoCross and 
(f) W3-Cross. The thin grey contours give the geopotential height at 500 hPa. The 
colored contours display the correlation magnitude from 0.15 to 0.95 with an interval of 
0.2.  

 

 To further quantify and compare the spatial variability of localized ensemble correlations, 

the standard deviation of 200 correlation samples was calculated as a function of distance (Fig. 
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5.15). In the experiments applying scale-invariant localization, W1-1000 (W1-300) shows the 

largest (least) standard deviation. It suggests that tighter localization retains less spatial variation 

of raw ensemble correlations. By applying tighter horizontal localization at small- and/or 

medium-scale waveband, all the SDL experiments have smaller standard deviation than W1-

1000. Due to applying broader horizontal localization length scale at large- and/or medium-scale 

waveband, the SDL experiments show larger standard deviation than W1-300 beyond 300 km. 

However, within 300 km, W2-Cross and W3-Cross show comparable standard deviation as W1-

300, while W2-NoCross and W3-NoCross have smaller standard deviation than W1-300. More 

noticeably, the experiments applying SDL-Cross that partially includes cross-waveband 

correlations consistently show larger standard deviation than those applying SDL-NoCross. 

Finally, the three-waveband SDL experiments show less standard deviation or variability than 

their two-waveband SDL experiment counterparts at distance between 300 km and 1,700 km. 	

  

 

Figure 5.15 Standard deviation of 200 samples of localized zonal wind correlations as a 
function of distance on the horizontal axis that were collected from W1-Ope (black), W1-
1000 (magenta), W1-300 (cyan), W2-NoCross (red), W2-Cross (blue), W3-NoCross 
(orange) and W3-Cross (green).  
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5.6.2 Impact of dynamical balance 

  Covariance localization causes imbalance in the resultant analysis in the ensemble-based 

DA system (Wang et al. 2007; Holland and Wang 2013; Wang et al. 2013; Lei and Whitaker 

2016; Caron et al. 2019).  Direct impact from the imbalance on the subsequent forecasts is 

expected to decrease as the forecast time increases. However, the errors caused by the imbalance 

can grow with time and indirectly influence the forecast accuracy at longer forecast lead times 

(Wang et al. 2013; Wang and Lei 2014; Lei and Whitaker 2016). To measure the imbalance, the 

absolute hourly pressure tendency (Lynch and Huang 1992) was calculated for all the seven 

experiments (Fig. 5.16). W1-Ope applying the operationally-tuned, level-dependent, scale-

invariant horizontal localization is the most balanced among all the seven experiments. W1-300 

applying tighter horizontal localization length scale is less balanced than W1-Ope. This is within 

the general expectation that stronger localization introduces more imbalance. However, W1-1000 

is less balanced than W1-Ope and W1-300. This seemingly out-of-expectation result is 

consistent with Greybush et al. (2011) who hypothesized that larger analysis increments that are 

required to correct inaccurate background have the potential of producing more imbalance 

through the DA update. As shown in Figs. 5.6 and 5.7, W1-1000 generally shows the worst 

background forecasts, but the largest analysis increments compared to W1-Ope and W1-300.  

 The analyses in the SDL experiments are less balanced than W1-Ope, which could be 

because the overall effective horizontal localization length scale in the SDL experiments is 

smaller especially at upper model levels. Interestingly, the analysis in SDL-Cross is more 

balanced than SDL-NoCross, likely due to the partial maintenance of the cross-waveband 

covariances in SDL-Cross. The more balanced analysis in SDL-Cross may contribute to its 
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general better forecasts at longer forecast lead times than SDL-NoCross in section 5.5.  

Furthermore, the three-waveband SDL experiments are less balanced than their two-waveband 

SDL experiment counterparts. It may result from the reduced overall effective horizontal 

localization length scale in the three-waveband SDL experiments.  

 

Figure 5.16 Globally averaged absolute hourly surface pressure tendency (hPa 1h-1) in 
W1-Ope (black), W1-1000 (magenta), W1-300 (cyan), W2-NoCross (red), W2-Cross 
(blue), W3-NoCross (orange) and W3-Cross (green).  

 

5.6.3 Forecast error comparison as a function of total wavenumber  

 To investigate how SDL affects forecast error at different scales, the errors of the global 

forecasts against the ECMWF reanalyses in Fig. 5.8 were decomposed in spectral space and 

displayed as a function of total wavenumber. A representative total energy norm was performed 

on decomposed errors (Wang and Bishop 2003), and averaged over all selected model levels in 

Fig. 5.8. Figure 5.17 shows the error total energy difference relative to W1-Ope as a function of 

forecast lead time and total wavenumber. By applying wider horizontal localization length scale 

below 100 hPa, W1-1000 (Fig. 5.17a) shows larger error total energy than W1-Ope at most total 
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wavenumbers and forecast lead times. The smaller error total energy of W1-1000 versus W1-

Ope at total wavenumbers below ten within two days may be because wider horizontal 

localization length scale contributes positively to the large-scale component of ensemble 

covariances and resultant analysis. In comparison, since tighter localization is beneficial for the 

small-scale component of ensemble covariances and resultant analysis, W1-300 (Fig. 5.17b) 

generally shows smaller error total energy than W1-Ope at total wavenumbers above ten. At total 

wavenumbers below ten, W1-300 shows comparable or slightly larger error total energy than 

W1-Ope. 

 In addition, the two- and three-waveband SDL experiments show smaller error total 

energy than W1-Ope at most total wavenumbers and forecast lead times especially for the 

experiments applying SDL-Cross. Their largest error total energy reduction relative to W1-Ope 

appears at total wavenumbers between five and twenty beyond three days where W1-Ope shows 

the maximum error total energy (not shown here). Without considering cross-waveband 

covariances, the experiments applying SDL-NoCross tend to have slightly larger error total 

energy than those applying SDL-Cross at longer forecast lead times. For example, the 

experiments applying SDL-NoCross even show slightly larger error total energy than W1-Ope at 

total wavenumbers of three and four beyond two days. But this is not the case for the 

experiments applying SDL-Cross, suggesting additional benefits of partially including cross-

waveband covariances. By applying tighter horizontal localization at medium-scale waveband, 

the three-waveband SDL experiments generally show slightly larger error total energy than their 

two-waveband SDL counterparts especially at total wavenumbers between five and twenty that 

correspond to the error total energy maximum in W1-Ope. Overall, the SDL experiments 
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especially applying SDL-Cross show the potential to improve the global forecasts over W1-Ope 

almost at all total wavenumbers in contrast to a subset of total wavenumbers in W1-1000 and 

W1-300. 

 
Figure 5.17 Power spectra of error total energy difference relative to W1-Ope in (a) W1-
1000, (b) W1-300, (c) W2-NoCross, (d) W2-Cross, (e) W3-NoCross and (f) W3-Cross, 
as a function of forecast time to five days on the horizontal axis and total wavenumber on 
the vertical axis. See the texts for details of error total energy calculation. Blue (red) color 
indicates smaller (larger) error total energy relative to W1-Ope. The asterisk signs at the 
corresponding forecast times and total wavenumbers indicate that the difference from 
W1-Ope is statistically significant at or above 95% confidence level by applying the 
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paired permutation test with 1000 replicates combined with the FDR method at 95% 
confidence level. 

 

5.7 Computational cost comparison 

 Table 5.2 summarizes the computational cost in wall clock time in each of the four 

components in a single 4DEnVar DA cycle. Further extending control variables in SDL increases 

the amount of computation in the 4DEnVar update and total computational cost, especially when 

a larger number of wavebands are adopted in SDL. In general, the ensemble forecasts are the 

most expensive component in an EnVar DA cycle. Therefore, the two-waveband and three-

waveband SDL experiments only increase the total computational cost by 14% and 28%, 

respectively. Given that the two- and three-waveband SDL experiments significantly improve the 

global forecasts almost to five days over the strict reference W1-Ope and that W3-Cross even 

shows more accurate TC track forecasts than W1-Ope at shorter forecast lead times, SDL shows 

promises to be implemented operationally. 

Table 5.2 Wall clock time in minutes for each of the four components in a single 4DEnVar 
DA cycle. The same number of 1260 cores were run in each component for different 

experiments 

Expts 

Wall clock time in minutes in each of the four 
components in a single 4DEnvar DA cycle Total wall 

clock time in 
minutes 

Total cost 
ratio 

relative to 
W1 EnVar  

update 
EnKF  
update 

Control 
background  
Forecasts 

Ensemble  
background   

forecasts 

W1 15  
7 
 

 
3 
 

 
45 
 

70 1.0 
W2 25 80 1.14 
W3 35 90 1.28 
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5.8 Conclusion and discussion  

 Two SDL variants, with (SDL-Cross) and without (SDL-NoCross) considering cross-

waveband covariances were formulated based on the full B-preconditioned EnVar, and 

implemented in the GSI-based 4DEnVar system by further extending control variables. SDL 

performs a single-step simultaneous assimilation of all available observations, while applying 

different amount of localization to different scales of ensemble covariances.  Complete removal 

of cross-waveband covariances in SDL-NoCross results in a local spatial averaging of ensemble 

covariances (Buehner and Charron 2007) and retains less heterogeneity of ensemble covariances 

(Caron et al. 2019). SDL-Cross that partially includes cross-waveband covariances retains more 

heterogeneity of ensemble covariances than SDL-NoCross. Performances of SDL-NoCross and 

SDL-Cross were evaluated for general global forecasts and TC track forecasts in the FV3-based 

GFS though one-month cycled DA experiments.  

 The two-waveband SDL experiments improve the global forecasts almost to five days 

over W1-1000 and W1-300 applying scale-invariant, level-invariant localization, and even over 

W1-Ope applying operationally-tuned, scale-invariant, level-dependent localization. By applying 

much wider horizontal localization length scale, W1-1000 generally degrades global forecasts 

below 50 hPa relative to W1-Ope. W1-300 applying tighter horizontal localization length scale 

shows worse global forecasts than W1-Ope at upper model levels especially for temperature 

forecasts. As for the TC track forecasts, the two-waveband SDL experiments outperform W1-

1000 out to four days, and over W1-300 beyond three days. W1-Ope in general produces more 

accurate TC track forecasts than W1-1000 and W1-300.     
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 To examine how SDL performs with respect to the number of decomposed wavebands, 

the three-waveband SDL experiments were compared with the two-waveband SDL experiments. 

In our design, the three-waveband SDL experiments apply tighter horizontal localization at 

medium-scale waveband than the two-waveband SDL experiments. This would lead to overall 

tighter effective horizontal localization compared to the two-waveband SDL experiments. As 

suggested in our cycled experiment results and the operationally-tuned, level-dependent, scale-

invariant horizontal localization settings, wider (tighter) horizontal localization length scale is 

beneficial at upper (lower) model levels. Therefore, reduced overall effective horizontal 

localization length scale in the three-waveband SDL experiments may explain their general 

degraded (better) global forecasts above 50 hPa (below 100 hPa) than their two-waveband SDL 

counterparts. On the other hand, the degraded global forecasts of W3-Cross versus W2-Cross 

below 50 hPa at longer forecast lead times may be because the advantage of reduced overall 

effective horizontal localization length scale is overwhelmed by its more imbalance in the 

analysis. Compared to statistically indistinguishable TC track forecasts between W2-Cross and 

W1-Ope, W3-Cross shows significantly improved TC track forecasts than W1-Ope and W2-

Cross within two days. This suggests the important role of scale separation in the SDL 

implementation especially for the TC track forecasts. 

 Due to the local spatial averaging of ensemble covariances, SDL-NoCross tends to show 

slightly better global forecasts than SDL-Cross at shorter forecast lead times. At longer forecast 

lead times, SDL-Cross outperforms SDL-NoCross for the global forecasts, especially in the two-

waveband SDL experiments. However, comparable performances between SDL-NoCross and 

SDL-Cross were found in Caron et al. (2019) that run a 75-member ensemble populated by time-
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lagged method (Van den Dool and Rukhovets 1994) in a regional 3DEnVar system. The better 

forecast performance of SDL-Cross than SDL-NoCross at longer forecast lead times in this study 

may benefit from more accurate estimate of cross-waveband covariances by directly running and 

updating an 80-member ensemble, retained more heterogeneity of ensemble covariances and 

more balanced analysis in SDL-Cross. The TC track forecasts between SDL-Cross and SDL-

NoCross are generally consistent with their global wind forecasts at lower model levels. For 

example, W2-Cross shows significantly better TC track forecasts than W2-NoCross at longer 

forecast lead times.  

 Due to further extending control variables, the two- and three-waveband SDL 

experiments increase total computational cost by 14% and 28%, respectively, compared to the 

scale-invariant localization experiments. But SDL shows statistically significantly improved 

global forecasts and the potential of improving TC track forecasts over scale-invariant 

localization. Moreover, SDL without requiring additional ensemble forecasts is computationally 

much cheaper than directly increasing ensemble size. So SDL shows the potential to be 

implemented operationally.  

 In the current SDL experiments, the localization length scale is level-invariant. But the 

two-waveband SDL experiments showed increasing effective ensemble correlation length scales 

at large- and small-scale wavebands as model level increases (not shown here). Two-waveband 

level-dependent SDL experiments were motivated by increasing the horizontal localization 

length scales beyond 1000 km and 300 km e-folding distances for the large- and small-scale 

waveband, respectively, above 0.3 sigma model level following the increasing trend in W1-Ope 

(not shown here). However, these two-waveband level-dependent SDL experiments showed 



 
151 

degraded (comparable) global forecasts above (below) 200 hPa than the two-waveband level-

invariant SDL experiments. The horizontal localization length scales in the two-waveband level-

dependent SDL experiments need more tuning. Following Caron and Buehner (2018), the 

objective method proposed by Ménétrier et al. (2015) was attempted to determine optimal 

horizontal localization length scale at each waveband in our SDL experiments. But it showed 

worse global forecasts than our current SDL experiments. This may be related to the assumption 

of independent members in this objective method which may be not true in the operational NWP 

applications (Caron and Buehner 2018). Research on seeking the optimal effective localization 

length scale in SDL would be further explored in the future. In addition to applying SDL on the 

horizontal direction, further development of SDL on the vertical direction is ongoing in the GSI-

based global 4DEnVar system. 
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Chapter 6: Summary and discussion 

 
6.1 Summary 

 The ensemble-based DA, such as the EnKF and EnVar, has become popular in many 

operational NWP centers. Compared to the traditional variational DA that employs static 

background error covariances, the ensemble-based DA is able to provide flow-dependent 

background error information from running an ensemble of short-range forecasts. The ensemble-

based DA is thus able to more realistically estimate the spatial, temporal and multivariate 

covariances, and further positively contribute to the analyses and subsequent forsecasts (Wang et 

al. 2007a, 2008a,b, 2009, 2013; Wang 2011; Lorenc et al. 2015; Kleist and Ide 2015a; Buehner 

et al. 2015). However, the computational cost in the ensemble-based DA is very expensive due to 

running an ensemble of forecasts, especially for the operational NWP applications. Constrained 

by the computational resources, the affordable ensemble size in the operational ensemble-based 

DA systems is much smaller than the degrees of freedom of the NWP models (Houtekamer and 

Zhang 2016). As a result, it will cause sampling error and rank-deficiency issue in the ensemble 

background covariances (Hamill 2006). This will further compromise the analysis accuracy. 

Direct increase of ensemble size is an ideal means to reduce sampling error, but the increased 

computational cost can be prohibitive. On the other hand, the covariance localization is a 

common strategy to ameliorate sampling error by reducing or removing the correlations with 

distant observations. Several popular localization methods are briefly reviewed in Chapter 2.    

 As sampling error will remain a major source of error in the ensemble-based DA, the 

dissertation covers three topics of efficient means to reduce sampling error and improve the 

ensemble background covariance estimate in the ensemble-based DA, by seeking cost-efficient 
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means to increase ensemble size as in Chapter 3 and improving the localization methods as in 

Chapters 4 and 5. Key results are summarized as follows.  

 Firstly, a valid-time-shifting (VTS) ensemble method is developed in Chapter 3 to 

inexpensively enlarge the background ensemble size in the GSI-based global hybrid 4DEnVar 

system operational at the NCEP. In VTS, the background ensembles initialized from the same 

previous cycle but valid at different lead times are used to populate the background ensemble at 

the analysis time. By utilizing the available ensemble forecasts, VTS is computationally much 

cheaper compared to directly increasing ensemble size. Two variants of VTS are further 

designed by directly shifting ensemble members (VTSM), or shifting ensemble perturbations 

(VTSP). Mathematically, VTSP is equivalent to applying a temporal smoothing of the ensemble 

background covariances, thus likely contributing to reducing sampling error. On the other hand, 

compared to the original background ensemble, VTSM increases total variances contributed by 

the original ensemble mean differences. In our cycled DA experiments using the GFS model at 

the NCEP, the background ensemble size is increased from 80 to 240 by applying VTSM or 

VTSP using different shifting time intervals (e.g., one, two and three hours). Overall, the cost in 

the VTSM and VTSP experiments only increases by 23%-27%. It is much cheaper compared to 

directly increasing ensemble size to 240 that almost triples the cost. Cycled DA experiment 

results show that VTSP is more efficient to improve global temperature and wind forecasts, 

especially in the two-hour VTSP experiment. Further diagnostics suggest that the improved 

global forecasts in VTSP could be associated with improved Gaussian distribution and 

correlation accuracy, and increased effective rank in the VTSP-populated background ensemble. 

Compared to using the original 80-member ensemble, VTSP and VTSM improve the tropical 
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storm track forecasts. Especially, the three-hour VTSM experiment even shows more accurate 

tropical storm track forecasts than directly increasing ensemble size to 240, likely owing to its 

better sampling of timing or phase errors in VTSM. These encouraging results further warrant 

potential application of VTSM and VTSP in the operational GSI-based global hybrid 4DEnVar 

system at the NCEP. In this Chapter, the significance test results in Figs. 3.4, 3.5, 3.6 and 3.13 

adopting the paired t-test (which account for 35% of significance tests in this dissertation) are 

suboptimal due to the violation of distributional and independency assumptions that are required 

in the paired t-test. A more rigorous approach, such as the paired permutation test (Manly 2007) 

combined with the false discovery rate method (Wilks 2006) as in Chapter 5, is planned to 

investigate the significance of the results in Chapter 3 in the future. 	

 Secondly, two distance-dependent localization methods, that is, the B-localization and R-

localization methods, are mathematically compared in the generic EnKF context in Chapter 4. 

This contributes to understanding the fundamental difference of both localization methods. First, 

mathematical demonstration suggests that the B-localized background error covariances show 

higher rank than that applying the R-localization method. In addition, the mathematical 

demonstration also suggests a means of realizing the B-localization method through modulating 

and extending raw ensemble perturbations. This further motivates to implement the B-

localization method in the ensemble transform Kalman filter (ETKF) that generally applies the 

R-localization method. The B-localized ETKF is referred to as the high-rank ETKF (HETKF) to 

distinguish the classic R-localized ETKF. Cycled DA experiments using the Lorenz Model II are 

further performed to evaluate and compare the performance of the HETKF and R-localized 

ETKF. The HETKF significantly and consistently improves the analysis accuracy compared to 
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the R-localized ETKF, especially for a small ensemble. Since the higher rank in the HETKF is 

expected to contribute more for a small ensemble, the improved analysis in the HETKF is likely 

associated with the high-rank in the B-localization method. In addition, the HETKF is less 

sensitive to the localization and inflation factors in contrast to the R-localized ETKF. This 

feature is especially attractive for the operational NWP applications.  

 Lastly, the simultaneous multi-scale DA capability is developed in the GSI-based global 

hybrid 4DEnVar system operational at the NCEP, by introducing scale-dependent-localization 

(SDL) with and without considering cross-waveband covariances (e.g., SDL-Cross and SDL-

NoCross, respectively). SDL applies different amount of localization to different ranges of scales 

of background error covariances, while performing the single-step simultaneous assimilation of 

all the available observations. For example, stronger localization is generally applied to the 

small-scale background covariances. In this research, it first formulates SDL within the full-B 

preconditioned EnVar approach. SDL is then implemented in the GSI-based global hybrid 

4DEnVar DA system, and evaluated for the general global forecasts and tropical storm track 

forecasts in the FV3-based GFS operational at the NCEP. Cycled DA experiments show that 

both SDL-NoCross and SDL-Cross improve the general global forecasts and tropical storm track 

forecasts compared to applying fixed uniform localization once at all scales and all model levels. 

An inter-comparison is further performed to evaluate the performance of SDL-NoCross and 

SDL-Cross that apply two and three wavebands. SDL-NoCross tends to outperform SDL-Cross 

at shorter forecast lead times. This may be owing to its better treatment of sampling errors that 

may result from the local spatial averaging of ensemble covariances by removing the cross-

waveband covarainces in SDL-NoCross. However, SDL-Cross shows more accurate general 



 
156 

global forecasts and tropical storm track forecasts at longer forecast lead times. This is likely 

associated with its retained higher degrees of heterogeneity of the ensemble covariances and 

more balanced analysis by including the cross-waveband covariances in SDL-Cross.  In addition, 

the three-waveband SDL experiments that apply tighter horizontal localization at medium-scale 

waveband shows improved (degraded) global forecasts below (above) 50 hPa than their two-

waveband SDL experiment counterparts, except that the better performance of the three-

waveband SDL-Cross experiment over the two-waveband SDL-Cross experiment only lasts for 

three days. Finally, compared to the operational level-dependent fixed uniform localization at all 

scales, the two- and three-waveband SDL experiments improve the global forecasts to five days, 

and the three-waveband SDL-Cross experiment even shows more tropical storm track forecasts 

at shorter forecast lead times. These results show promises to implement SDL in the operational 

GSI-based global hybrid 4DEnVar system for the FV3-based GFS at the NCEP. 

 
6.2 Discussion 

 It will remain difficult and challenging to run a very large ensemble especially for large-

dimension operational NWP models in the near future. VTS with minimum cost increase could 

serve as an efficient alternative to reduce sampling error and improve background error 

covariance estimate in the ensemble-based DA. In contrast to utilizing the ensemble forecasts 

with the same initialization time but different valid times in VTS, the time-lagged ensemble 

method (Hoffman and Kalnay 1983) was also explored to populate the background ensemble by 

using the ensemble forecasts that are initialized from different previous analysis times but valid 

at the same analysis time. However, this time-lagged ensemble method only shows minimal or 

even negative impacts on the general global forecasts and tropical storm track forecasts in our 
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cycled DA experiments using the GSI-based global hybrid 4DEnVar system and the GFS model. 

This may be caused by less accurate representativeness of the true error in the ensemble forecasts 

at longer forecast times used in the time-lagged ensemble method. In addition, Lorenc (2017) 

further combined the VTS method and time-lagged ensemble method to populate the background 

ensemble, and found improved global forecasts over the stand-alone VTS or time-lagged 

ensemble method in a global hybrid 4DEnVar system. Given different performance of the 

individual VTS method and time-lagged ensemble method in our current study, it would be 

interesting to investigate the impacts of combining both methods in the GSI-based global hybrid 

4DEnVar system. Furthermore, different performance of VTSM and VTSP for the global 

forecasts and tropical storm track forecasts in a global modeling system in our current study 

inspires to evaluate their impacts in a regional model system in the future.  

 The current computational constraint makes covariance localization required for 

successful application of the ensemble-based DA especially for operational NWP applications. 

The current implementation of the HETKF, as discussed in Chapter 4, has the issue with regard 

to more robustly sub-selecting analysis perturbations for next cycle. This issue is resolved in the 

gain form of the ETKF (GETKF) in Bishop et al. (2017). In the GETKF, the analysis 

perturbations are selected to be mathematically more consistent with the modulated background 

ensembles. Our further examination shows that the HETKF with the deterministic perturbation 

sub-selection approach performs comparably as the GETKF when the full model-space 

localization matrix is isotropic. For a non-isotropic model-space localization matrix, however, 

the GETKF produces more accurate analysis (Bishop et al. 2017). In addition, the HETKF and 

GETKF apply the model-space localization through modulating raw ensemble perturbations, in 
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contrast to the popular operational EnSRF and LETKF that perform the localization on the 

observation space. For the assimilation of integral-type observations (e.g., satellite radiances and 

radar reflectivity) whose physical location is difficult to be explicitly defined, it is expected that 

the HETKF and GETKF with the model-space localization would be more advantageous 

compared to the EnSRF and LETKF. Therefore, future implementation of the HETKF or 

GETKF is very appealing for operational NWP applications.  

 The future global model will be able to resolve wider ranges of scales due to increasing 

computing power. The multi-scale DA capability will become necessary and play an essential 

role. In our current study, SDL is applied on the horizontal localization. In the future, it will be 

interesting to examine the impacts of further extending SDL on the vertical localization. In 

addition, a multi-resolution ensemble capability was developed in the most recent in the GSI-

based global hybrid 4DEnVar system (Kay and Wang 2020) by mixing the background 

ensembles of different resolutions. Impacts of further combining the SDL capability and the 

multi-resolution ensemble capability will be investigated in the GSI-based global hybrid 

4DEnVar system. Furthermore, the implementation of SDL by further extending the control 

variables inspires to develop and implement the localization method that varies with the model 

variable, time and location.  

 Finally, the above three research topics could be further extended to other applications 

and combined to provide complementary benefits of reducing sampling error and improving 

background covariance estimate in the ensemble-based DA. With minimum modifications, for 

example, VTS can be easily implemented in the popular operational EnKF systems that adopt the 

EnSRF and LETKF algorithm. In addition, the VTS and time-lagged ensemble methods take 
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advantage of ensemble forecasts of different forecast lengths to populate the background 

ensemble. These ensemble forecasts of different forecast lengths may contain richer information 

of forecast error at different scales. Further combining SDL with the VTS or time-lagged 

ensemble method shall be straightforward and expected to provide additional benefits. In the 

HETKF and GETKF, the modes-space B-localization is realized by modulating raw ensemble 

perturbations. This inspires to develop SDL in the EnKF approach by modulating the raw 

ensemble perturbations at different scales with different modulation functions that represent 

different amount of localization. This SDL capability in the EnKF approach could also be further 

combined with the VTS and time-lagged methods. 
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Appendix A: Components of the VTSM- and VTSP-populated Background 

Ensemble Error Covariances  

 

In the VTSM method, the background ensemble members valid at time t–τ and t+τ, 

treated as the shifted background ensembles, are directly shifted to be valid at time t to 

supplement the original background ensemble at time t. If the original ensemble size is K, the 

VTSM method produces a populated background ensemble with size 3K. The covariances from 

the VTSM-populated background ensemble   PVTSM  at time t can be derived as, 

      

PVTSM =
1

3K−1
[Xt−τ−diag(xVTSM )1n×k    Xt−diag(xVTSM )1n×k    Xt+τ−diag(xVTSM )1n×k ]{

                          [Xt−τ−diag(xVTSM )1n×k    Xt−diag(xVTSM )1n×k    Xt+τ−diag(xVTSM )1n×k ]T}
         =

1
3K−1

[Xt−τ−diag(xVTSM )1n×k ][Xt−τ−diag(xVTSM )1n×k ]T{
                           +[Xt−diag(xVTSM )1n×k ][Xt−diag(xVTSM )1n×k ]T

                           + [Xt+τ−diag(xVTSM )1n×k ][Xt+τ−diag(xVTSM )1n×k ]T}

         =
K−1

3K−1
1

K−1
[Xt−τ−diag(xt−τ )1n×k ][Xt−τ−diag(xt−τ )1n×k ]T⎧

⎨
⎪⎪
⎩⎪⎪

                           +
1

K−1
[Xt−diag(xt )1n×k ][Xt−diag(xt )1n×k ]T

                           +
1

K−1
[Xt+τ−diag(xt+τ )1n×k ][Xt+τ−diag(xt+τ )1n×k ]T⎫⎬

⎪⎪
⎭⎪⎪

            +
K

3K−1
[xt−τ−xVTSM ][xt−τ−xVTSM ]T{

                             +[xt−xVTSM ][xt−xVTSM ]T

                             +[xt+τ−xVTSM ][xt+τ−xVTSM ]T},

                                  (A1)

 

where, n is the dimension of the model state variables.     Xt−τ ,   Xt  and     Xt+τ  are the background 
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ensemble matrices of   n×K  dimension at time t–τ,  t  and t+τ, respectively, and their 

corresponding background ensemble mean vector of    n×1 dimension are denoted by     xt−τ ,   xt  

and     xt+τ  .    1n×k  is a matrix with all the elements equal to 1 and its dimension denoted by the 

subscript (e.g.,   n×K  dimension for the matrix    1n×k ). 
     
xVTSM =

1
3

(xt−τ + xt + xt+τ )  is the VTSM-

populated background ensemble mean equal to the average of the original background ensemble 

mean at the three different times. diag functions as converting a vector to a square diagonal 

matrix with the elements aligned on the diagonal. T is the matrix transpose sign. In Eq. (A1), the 

last step is derived by re-formulating each matrix-multiplication term in the second row of Eq. 

(A1). For example, the term corresponding to the time  t  is reformulated by, 

     

[Xt−diag(xVTSM )1n×k ][Xt−diag(xVTSM )1n×k ]T

    = XtXt
T−Xt1k×ndiag(xVTSM )−diag(xVTSM )1n×k Xt

T + diag(xVTSM )1n×k1k×ndiag(xVTSM )

    = XtXt
T−Xt1k×ndiag(xt )−diag(xt )1n×k Xt

T + diag(xt )1n×k1k×ndiag(xt )

         + Xt1k×ndiag(xt )+ diag(xt )1n×k Xt
T−diag(xt )1n×k1k×ndiag(xt )

         −Xt1k×ndiag(xVTSM )−diag(xVTSM )1n×k Xt
T + diag(xVTSM )1n×k1k×ndiag(xVTSM )

    = [Xt−diag(xt )1n×k ][Xt−diag(xt )1n×k ]T

          +  K  diag(xt )1n×ndiag(xt )+ K  diag(xt )1n×ndiag(xt )−K  diag(xt )1n×ndiag(xt )
          −K  diag(xt )1n×ndiag(xVTSM )−K  diag(xVTSM )1n×ndiag(xt )+ K  diag(xVTSM )1n×ndiag(xVTSM )

   = [Xt−diag(xt )1n×k ][Xt−diag(xt )1n×k ]T

          + K  diag(xt )1n×ndiag(xt−xVTSM )+ K  diag(xVTSM )1n×ndiag(xVTSM−xt )

   = [Xt−diag(xt )1n×k ][Xt−diag(xt )1n×k ]T + K  diag(xt−xVTSM )1n×ndiag(xt−xVTSM )

   = [Xt−diag(xt )1n×k ][Xt−diag(xt )1n×k ]T + K  [xt−xVTSM ][xt−xVTSM ]T

 

 

(A2) 

Eq. (A1) shows that if the original ensemble size is large enough, the VTSM-populated 

background ensemble covariances can be obtained by summing up two components. One is an 
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approximate average of the original background ensemble covariances at time t–τ,  t  and t+τ (the 

terms within the first braces in the last row of Eq. (A1)). The second component is approximately 

equal to averaging three matrices, respectively, obtained by an outer product of the vector 

representing the difference between the VTSM-populated ensemble mean and the original 

ensemble mean at the three different times. Since the VTSM-populated background ensemble 

mean is calculated as the average of the original background ensemble means at three different 

times, the second component can also be interpreted as the contribution from the background 

ensemble mean differences between the original and shifted background ensembles (the terms 

within the second braces in the last row of Eq. (A1)). 

In the VTSP method, the populated background ensemble perturbations at time t are 

constructed by shifting the original background ensemble perturbations valid at time t–τ and t+τ 

to the time t. Correspondingly, the covariances from the VTSP-populated background ensembles 

with size of 3K at time t can be expressed as2,  

																																																								
2 In the calculations of the VTSP-populated background ensemble covariances of Eq. (A3),  a 
factor of (3K-3) is supposed to be used as the denominator in Eq. (A3) as explained in the texts. 
In the practical implementation of the VTSP method, a factor of (3K-1) was used as the 
denominator in Eq. (A3). But the misuse of the factor of (3K-1) only causes a very tiny error by a 
factor less than 1%.   
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PVTSP =
1

3K−3
[Xt−τ−diag(xt−τ )1n×k    Xt−diag(xt )1n×k    Xt+τ−diag(xt+τ )1n×k ]{

                          [Xt−τ−diag(xt−τ )1n×k    Xt−diag(xt )1n×k    Xt+τ−diag(xt+τ )1n×k ]T}

         =
1
3

1
K−1

[Xt−τ−diag(xt−τ )1n×k ][Xt−τ−diag(xt−τ )1n×k ]T⎧
⎨
⎪⎪
⎩⎪⎪

                  +
1

K−1
[Xt−diag(xt )1n×k ][Xt−diag(xt )1n×k ]T

                  +
1

K−1
[Xt+τ−diag(xt+τ )1n×k ][Xt+τ−diag(xt+τ )1n×k ]T⎫⎬

⎪⎪
⎭⎪⎪

.

  

        (A3) 

In Eq. (A3), because the three groups of the original background ensemble perturbations 

are calculated from its own background ensemble means, 3 degrees of freedom are removed 

from the VTSP-populated background ensemble. So    (3K−3)  instead of    (3K−1)  is supposed to 

be used as the denominator in Eq. (A3) to obtain the best unbiased covariances of the population 

from VTSP-populated background ensemble sample. It shows the VTSP-populated background 

ensemble error covariances are equal to the average of the original background ensemble 

covariances at the three different times. 

As noted, the calculations of the VTSM- and VTSP-populated background ensemble 

covariances in Eqs (A1) and (A3) can be also applied to the scenarios of more than three time 

levels. 
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Appendix B: Illustration of collecting nearly independent samples for paired 

permutation test 

In the global forecast verification in sections 5.4.3, 5.4.4 and 5.5.1, at a particular forecast 

lead time and model pressure level, the nearly independent forecast error difference samples 

were collected to perform the paired permutation test following Wang and Bishop (2005).  

(1) The forecast error time series over a total of 96 data assimilation cycles in a particular 

experiment were first obtained by verifying against the rawinsonde observations or ECMWF 

reanalyses over the full global domain.  

(2) The full global domain was divided into m subdomains. The forecast error time series 

were averaged over each of m subdomains to obtain m sets of forecast error time series in a 

particular experiment. m sets of forecast error difference time series were collected by comparing 

two experiments such as W1-1000 and W1-Ope.  

(5) Correlations among m sets of forecast error difference time series were calculated to 

determine the number of m so that they had a weak correlation (e.g., <=0.3). As a result, it 

produced m sets of spatially nearly independent forecast error difference time series.   

(6) The lagged autocorrelations were calculated for each of m sets of spatially nearly 

independent forecast error difference time series. A lag length was further determined using a 

weak autocorrelation (e.g., <=0.3). Then m sets of spatially and temporally nearly independent 

forecast error difference time series were collected from each of m sets of spatially nearly 

independent forecast error difference time series by skipping the samples by a number equal to 

the lag length.  

(7) Finally, m sets of spatially and temporally nearly independent forecast error 
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difference time series were pooled together to perform the paired permutation tests.  

 In the six-hour forecast verification against the rawinsodnes in section 5.4.3, a large 

number of m=595 was selected to compensate the reduction of effective sample size due to the 

non-uniform rawinsonde observation coverage over the globe and at different model pressure 

levels. Figure B.1a shows an example of correlations among m=595 sets of six-hour temperature 

forecast error difference time series at 500 hPa between the W1-1000 and W1-Ope. They 

generally show relatively weak correlations. Similar results were also found at other model 

pressure levels and for wind forecasts. Figure B.1b shows the lagged autocorrelation of m=595 

sets of six-hour temperature forecast error difference time series as in Fig. B.1a. Their obtained 

lag length varies for each set of samples. In the 0-5-day global forecast verification against the 

ECMWF reanalyses in sections 5.4.3 and 5.5.1, m=162 was selected. Figure B.2a,b shows an 

example of correlations and lagged autocorrelations, respectively, among m=161 sets of one-day 

temperature forecast error difference time series at 500 hPa between the W1-1000 and W1-Ope. 

They generally show relatively weak correlations. The obtained lag length varies for each set of 

samples. Similar results were also found at other pressure levels and wind forecasts.  
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        (a) Correlations                           (b) Lagged autocorrelations 

  
Figure B.1 (a) Correlations and (b) lagged autocorrelations among m=595 sets of six-hour 
temperature forecast error difference time series at 500 hPa between the W1-1000 and 
W1-Ope. Each set of samples were collected from the corresponding subdomain. The lag 
number in (b) is denoted on the Y-axis.  

 

                 (a) Correlations                           (b) Lagged autocorrelations 

  

Figure B.2 (a) Correlations and (b) lagged autocorrelations among m=162 sets of one-day 
temperature forecast error difference time series at 500 hPa between the W1-1000 and 
W1-Ope. Each set of samples were collected from the corresponding subdomain. The lag 
number in (b) is denoted on the Y-axis.  

 

 In the tropical storm track forecasts, each storm was treated as an independent case. The 

lagged autocorrelations were further calculated to determine a lag length in each set of track 

error difference time series between two experiments. Since there were a limited number of 

tropical storms and they did not last over the full one-month cycling period, the original tropical 
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storm sample size is much smaller than those in the global forecast evaluation. To remedy this 

limitation and collect more samples, a correlation of 0.7 was used to determine the lag length 

here. Because the tropical storms lasted for different period, it resulted in track error difference 

time series with different length. This makes it less feasible to plot correlations as in the global 

forecast verification. So plots of correlations and lagged autocorrelations in the tropical storm 

evaluation are not shown here.   

In the power spectral evaluation in section 5.6.3, it produced error total energy difference time 

series between two experiments at a particular model level, total wavenumber and forecast lead 

time. In this evaluation, each model level was treated as spatially independent. Figures B.3e,f 

show the correlations and lagged autocorrelations of m=16 (i.e., the number of model levels) sets 

of error total energy difference time series at total wavenumber ten and at one-day forecast lead 

time. They show relatively small correlations. The obtained lag length also varies for each set of 

samples.  Similar results were also found at other total wavenumbers and forecast lead times. 

       (a) Correlations                           (b) Lagged autocorrelations 

   

Figure B.3 (a) Correlations and lagged autocorrelations of m=16 sets of error total energy 
difference time series between W1-1000 and W1-Ope at total wavenumber ten and at 
one-day forecast lead time. Each set of samples were collected from the corresponding 
model level. The lag number in (b) is denoted on the Y-axis.  
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