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ABSTRACT 

 

The applications of kinetic doping in silica sol-gel thin films are a mostly under-

developed area. Previously, our lab has demonstrated a high loading capacity for cationic 

dye and protein guest molecules in silica thin films coated on flat-surface coverslips. 

Expanding on this work, we hypothesized that doping of films internally on capillary 

tubes was possible, with the aim of developing protocols for loading enzymes on these 

substrates. Such devices could be very useful for biocatalysis in microfluidic devices. 

Additionally, we theorized that branched polyethylenimine (BPEI) could be loaded into a 

silica thin film with kinetic doping. An organic molecule with a cationic charge at neutral 

pH, BPEI was a good candidate for kinetic doping and could not be loaded via traditional 

methods. Loading of BPEI could produce films and coatings that are useful in heavy 

metal remediation or inhibition of biofilm formation. 

 

In chapter three, kinetic doping is applied to loading internally coated capillary tubes. 

Parameters for internally doping capillary tubes were developed with rhodamine 6G, 

producing internally coated thin films with approximately 90 nm thickness. Horseradish 

peroxidase (HRP) was loaded into the thin films, with a 47000X increase in concentration 

over the loading solution. Activity of the loaded HRP was determined to be 0.019 ± 0.003 

U/mg, and it was shown to have a stronger resistance to denaturation by methanol than 

surface-adsorbed HRP. 
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In chapter four, kinetic doping was utilized to functionalize silica thin films with 25000 

MW BPEI. To our knowledge, this is the first time that a highly basic guest such as BPEI 

has been doped into silica thin films. Parameters for the kinetic doping of 1800 and 

750000 MW BPEI into silica sol-gel thin films were developed in chapter 5. Solvent 

accessible amines were quantified: 25000 and 750000 MW BPEI doped films were found 

to have similar amounts of amines while 1800 MW BPEI doped films had significantly 

less. SEM images of the films revealed drastic morphology differences between the films. 

 

Two applications of these films were tested. The 25000 MW films were tested for copper 

(II) sequestration to assess their potential for heavy metal sequestration, and showed high 

loading capacity of 10 ± 6 mmol/g. They proved to be reusable, with only a 6% reduction 

in the amount of copper (II) ions sequestered by the third use. The films were also stable 

against leaching over the course of one week in solution, with less than 1% of the original 

BPEI lost under various storage conditions. The efficacy of the 1800, 25000, and 750000 

MW films against S. epidermis biofilms were tested with a crystal violet assay, and all 

films proved to be effective in inhibiting biofilm formation (p-value < 0.05). The best 

dopant, 25000 MW BPEI, caused an 89% reduction in biofilm growth and surpassed the 

performance of the clinical antibiotic gentamycin (p-value < 0.003). 

 

Most of the results in chapters three and five are pending publication at this time. Most of 

the results in chapter four have been previously published in 2019 in ACS Omega 

(Jensen, J. M.; Yip, W. T., Amine Functionalization of Silica Sol–Gel Thin Films via 

Kinetic Doping: A Novel, Green Approach. ACS Omega 2019, 4 (20), 18545-18554.). 
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CHAPTER 1 - Sol Gel Chemistry 
 
 

1.1 The Basics of Sol-Gel Chemistry 
 
 
The term ‘sol-gel’ comes from the solution-gelation polymerization process whereby the 

initial solution reacts when left in open air to form a gel.1 Silica sol-gel technology was 

discovered in the 19th century when it was observed that a silica alkoxide solution formed 

a gel when exposed to air.2 Since then, extensive research has been conducted on silica 

sol-gel technology for various applications with untold number of modifications in 

precursors, coating or deposition technique, and post-synthesis modification.3-12 One of 

the most popular types of materials made using sol-gel techniques is silica based, 

typically derived from tetralkyl orthosilicates like tetraethylorthosilicate (TEOS) or 

tetramethylorthosilicate (TMOS).8, 13-14 In this dissertation, sol-gel with TEOS as the 

precursor is the only type studied. 

 

The formation of silica sol-gels can be broken down into two separate steps: hydrolysis 

followed by condensation.15 A schematic of these steps with TEOS as the precursor are 

shown below in Figure 1.1-3.  
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Figure 1 Hydrolysis, the first step in silica sol gel chemistry  
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Figure 1.2 Condensation, the second step of silica sol gel chemistry. There 
are two reactions through which the sol can undergo condensation.  
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An acid or base is used to catalyze the hydrolysis step between a silicon alkoxide and 

water to produce silanols. Acids, such as phosphoric acid, are generally used to catalyze 

thin film or monolith formation,16 while bases are used to catalyze the growth of silica 

nanoparticles, commonly known as the Stöber process.17 The partially hydrolyzed 

precursors then undergo a condensation reaction where the individual silanols react, 

eliminating ethanol and water, to form a porous, solid, three-dimensional network of 
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Figure 1.3 Eventually, through repeat hydrolysis and condensation, a 3-dimensional 
network of silica begins to form, and continues to form Si-O-Si bonds even after the 
liquid sol mixture has turned into a gel. 
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silicon dioxide. These steps are most commonly performed at room temperature and 

pressure. 

 

The exact mechanism by which the reaction proceeds depends on whether an acid or base 

is used as a catalyst. When an acid is the catalyst, an alkoxide group of the TEOS is 

protonated and then attacked by water to form a pentacoordinate transition state. This 

complex then undergoes decay by releasing ethanol. During the condensation step, a 

silanol is protonated and becomes electrophilic, making it susceptible to nucleophilic 

attack by another neutral silanol. This forms a siloxane bond and displaces a protonated 

water as a by-product. When a base is used as the catalyst, the hydrolysis step proceeds 

through a rapid dissociation of water into a hydroxyl anion, a nucleophile, which attacks 

the silicon atom in TEOS to form a pentacoordinated intermediate. The intermediate then 

decays through the release of an ethoxide anion. The condensation step proceeds through 

the deprotonation of a silanol that will attack a neutral silanol, forming a penta- or 

hexacoordinate transition state that will decay by the displacement of an ethoxide anion 

or hydroxide. 

 

Additionally, pH affects the ratio of the rate of the hydrolysis step to the rate of the 

condensation step, influencing the resulting structure. Under low pH conditions, caused 

by using acid as the catalyst, the hydrolysis rate outstrips the rate of condensation, 

causing the final silica sol-gel to be a weakly branched polymer network. This favors 

linear polymers that easily form thin films and monoliths. With higher pH conditions, 

with a base catalyst, the rate of condensation is much faster than the rate of hydrolysis, 
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resulting in more uniform and closely networked particles. This favors the formation of 

uniform particles, which is why bases are used to catalyze nanoparticle formation. A 

neutral pH favors the formation of random aggregates.  

 

After sufficient time, the steps of hydrolysis and polycondensation form macromolecules 

in the liquid. When the macromolecules are suspended in the solution mixture, the sol-gel 

is in the ‘sol’ state, as sol is defined as a colloidal suspension of solid particles in a 

liquid.8 As they continue to react and join together to form aggregates, enough Si-O-Si 

linkages will eventually be formed causing the solution to lose its fluidity and become an 

elastic solid, hence the gel state. It is worth noting that the hydrolysis and condensation 

steps do not stop at this stage, continuing to form Si-O-Si bonds. The new bonds will 

strengthen the silica network, but can cause shrinkage and potential pore collapse.  

 

Silica sol-gels can be categorized in several ways, as alcogels or hydrogels and as 

xerogels or aerogels. Alcogels and hydrogels are categorized by the dispersion medium 

used during their formation reaction. Alcogels are the more traditional method of creating 

sol-gels by using alcohol to mix with the alkoxysilane precursors and water. Alcohol is 

needed as a homogenizing agent, as water and alkoxysilanes are generally immiscible.8 

Alcogels generally result in silica sol-gels with a dense internal structure.18 Sol-gels that 

only use water as the solvent, with no added alcohol to serve as a homogenizing agent, 

are known as hydrogels. Hydrogels were first proposed in 1987 when Avnir and 

Kaufman19 found the alcohol produced as a by-product of the hydrolysis step was enough 

to homogenize the system with the addition of a buffer solution or growth medium into 
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the sol after the initial hydrolysis step has proceeded long enough. The ratio of the sol to 

the buffer solution affects the gelation time and pore size of the final sol-gel. While 

hydrogels are more labor intensive to synthesize than alcogels, requiring more steps, they 

are popular for being a more biocompatible process.20-23 

 

The method used to dry the silica sol-gel also introduces another categorization: xerogels 

and aerogels. A xerogel is produced when a sol-gel is allowed to dry through natural 

evaporation. Producing an aerogel requires replacing the liquid phase of the gel with a 

gas, often through a supercritical drying process. While a xerogel is easier to produce, 

they show a much higher degree of shrinkage and a higher percentage of pore collapse as 

compared to aerogels.24 

 

Conditions can be controlled to affect the final state of the silica sol-gel no matter what 

classification it is. Conditions including the precursor, the molar ratio of the silica 

precursor to water, the catalyst, the solvent, the reaction conditions like temperature or 

pressure, the pH, the presence of other molecules in the sol, and the age of the gel, which 

will continue to change the gel’s properties because of the continuous formation of Si-O-

Si bonds.25-34 These factors can be used to control the pore size in the final gelled 

structure of the silica sol-gel, ranging from 1 nm in diameter up to 200 nm.25-28, 35 Pore 

size is especially important when attempting to incorporate a dopant or guest molecule 

into the silica sol-gel structure. Addition of other molecules to the sol is one method that 

can induce drastic structural changes. Various types of hybrid sol-gels have been 

synthesized to tune or add to the properties of silica sol-gels.36-45 Of particular relevance 
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to this dissertation is the use of enzymes46-54 and polymers55-59 as additives to silica sol-

gels. 

 

1.2 Guest-Molecules in a Sol-Gel Matrix 
 
 
Materials created through the silica sol-gel process are mechanically strong, thermally 

stable, chemically inert, and largely immune to photodegradation. They utilize mostly 

mild conditions, are synthesized at room temperature and pressure and can have many of 

their specific properties chemically tuned. This creates considerable interest in their many 

potential applications, especially when consideration is given to the functionalization that 

can be achieved by guest molecules. The ability to load guest molecules in a sol-gel 

matrix was first made viable in 1984 when Avnir et al. first loaded the organic dye 

rhodamine 6G into a silica sol-gel matrix.60 Since then, silica sol-gels that result in bulk 

materials,61-63 powders,64 and thin films65-69 have all been studied as solid matrices for a 

wide variety of doped guest molecules. 

 

One of the most popular uses of entrapped guest molecules is for biosensors or biological 

catalysts that utilize entrapped biological molecules in the silica sol-gel matrix. Many of 

the advantages of silica sol-gels can be exploited for these sensors, as long as the guest 

molecules continues to function once entrapped in the silica matrix. This was first 

achieved in 1984 by Venton et al. when they were able to entrap antiprogesterone 

antibodies within a monotlithic silica-poly(3-aminopropysiloxane) sol-gel.70 The 

antibodies were still able to display the recognition and binding functions of the free 

antibodies while entrapped in the matrix. Expansion to enzymes came in 1985 when Glad 
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et al. entrapped glucose oxidase, horseradish peroxidase, living yeast cells, trypsin, and 

alkaline phosphatase in monolithic and thick-film organic-inorganic sol-gel matrices of 

silica-poly[N,N-bis(2-hydroxyethyl)-3-aminopropylsiloxane].71 These entrapped 

enzymes were able to catalyze their respective substrates and release the products back 

into solution, but remain entrapped in the matrix.  

 

The generally accepted explanation for guest molecule entrapment is that they are held in 

the pore spaces inside the silicon dioxide network.72-74 The average size of the pores play 

a significant role in the local environment of the guest molecules, with the pore size 

having an effect on everything from guest molecule incorporation to behavior of the gel 

itself.75-77 Additionally, the solvent has a large effect on the entrapped molecule, with 

many studies showing the environment in pores that are sufficiently large, or with guest 

molecules that are sufficiently small, is the same as that of a free solution with the same 

solvent.78-82 In these cases, the properties of the solvent, notably the composition,83-84 

pH,85 polarity,68, 86 and viscosity,87-88 play the primary role in determining the guest 

molecule’s local environment. With smaller pores or larger molecules, some studies have 

shown that while enzymes retain enough mobility to remain active, they do exhibit 

restricted motion within the pores.14, 68, 78, 85, 89 

 

Some conditions do not merely trap the guest molecule physically in the sol-gel pores, 

but instead hydrogen-bonding90-92 or electrostatic interactions85, 93 between the wall of the 

pore and the guest molecule further limit the freedom of the entrapped guest molecule.94-

96 No matter the method of entrapment, there are benefits of immobilization in a sol-gel 
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matrix, namely high reusability and higher chemical and thermal stability are usually 

observed from the entrapped guest molecules.24, 46-47, 49-50, 53, 97-101 

 

1.3 Traditional Sol-Gel Doping Methods 
 
 
Two main methods of loading guest molecules into silica sol-gels that do not involve 

subsequent chemical modification have been well-documented: pre-doping and post-

doping.15, 102 Pre-doping was the first loading method developed, as it was the method 

used by Avnir et al. when initially loading rhodamine 6G into a silica sol-gel film.60 It is 

the most widely used technique for guest molecule loading, whereby the guest molecule 

is added directly to the precursor solution prior to gelation.  This does present challenges 

for loading guest molecules, especially proteins. Most conventional sol-gel processes 

result in alcogels, which require the use of alcohol with the precursor at low pH, both of 

which can easily denature proteins. To load proteins, variations on the hydrogel process 

have been investigated, replacing alcohol and adding buffers or developing even more 

elaborate multi-step aqueous processes to protect the proteins from denaturation.47, 49-51 

This can lead to costlier and more labor intensive loading processes, which still pose 

additional challenges. Regardless of the methods, the amount of guest in the liquid sol 

must be balanced so that the sol can still properly gel, which imposes a significant 

constraint to the maximum amount of the guest molecule incorporated.103-104 

 

Post-doping is an adsorption process, where the guest is allowed to adsorb onto the inner 

porous surfaces of an already formed sol-gel material.105-106 This can result in much lower 

loading or the need for special selection or modification of the precursor to enhance 
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adsorption.107-108 Post-doped films are also more prone to releasing the guest molecule 

back into solution.109 Techniques that chemically graft guest molecules to the sol may 

also be considered post-doping, but they are often labor intensive and relatively costly.110-

111  

1.4 Kinetic Doping – A New Doping Approach 
 
 
Recently, a third method for guest molecule loading was discovered in our laboratory, 

called Kinetic Doping. The kinetic doping technique introduces the guest molecule to the 

sol-gel matrix while it is still evolving, taking full advantage of the reaction kinetics of 

the sol-gel process to enhance guest loading. A nascent film is introduced to a solution of 

the desired guest molecule after deposition, when enough hydrolysis and condensation 

has occurred to support the film structure, but well before all of the sol-gel reactions have 

had time to complete. Loading at this stage of film formation, while the remainder of the 

film is still growing, means that most of the alcohol has already been driven off, leading 

to milder conditions for protein loading. These conditions are achieved without the 

modifications reported in a number of methods that involve stabilizers or extra steps to 

produce hybrid gels or hydrogels. 112 Additionally, molecules that may interfere with the 

sol-gel chemistry when added to the precursor solution, like basic polymers, could 

theoretically be loaded via kinetic doping, as the reaction has already proceeded 

sufficiently downstream such that thin film formation will continue unabated even upon 

contact with a base. 

 

Campbell et al. has shown that kinetic doping is capable of loading rhodamine 6G at a 

concentration many times higher than what was possible with either pre- or post-
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doping.113 Crosley demonstrated that kinetic doping could load enzymes into silica thin 

films at millimolar concentrations from very dilute loading solutions, resulting in 930X to 

2600X increase in concentration.53 Kinetic doping can also be used on both spin coated 

and dip coated films, expanding the potential shapes and sizes of substrates for wider 

applications.54  

 

1.5 Drain Coating 
 
 
There exist several methods to coat a sol-gel thin film on a substrate, with one of the most 

common being dip or drain coating.8 Dip or drain coating is a well-studied method used 

with a variety of coating substances, and patent for drain coating can be found as early as 

1910.114 With dip or drain coating, a substrate is held, generally vertically, in a liquid sol 

and then either the substrate or the sol solution is removed at a constant speed. This 

deposits the solution on the surface of the substrate and once coated, the liquid sol will 

gradually turn into a solid thin film after undergoing the necessary hydrolysis and 

condensation reactions. The film thickness is mainly determined by solution composition 

and withdrawal speed.115-116 Dip or drain coating allows the even coating of irregular 

surfaces. In this work, the sole method used to coat substrates is drain coating. 

 

Drain coating using a coating solution with comparatively low viscosities (such as the sol 

prepared in this work) and a withdrawal speed between 1-10 mm/sec can be described by 

the Landau Levich equation:117 
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ℎ! = 0.94 
(𝜂𝑈!)

!
!

𝛾!"
!
!(𝜌𝑔)! !

 

 

h0 is the film thickness, and 

η is the viscosity of the liquid coating, and 

U0 is the drain speed, and  

γLV is the ratio of viscous drag to liquid-vapor surface tension, and 

ρ is the density of the liquid, and 

g is gravitational acceleration. 

 

This is the regime where most dip and drain coating takes place.8 Using the same sol gel 

precursor materials as utilized in this work, Crosley found this model to estimate 

thickness of films within ±10 nm of their measured values.118 Thus, it is the model used 

to estimate the thickness of flat-surface coated films for the dye concentration 

comparison to the internally coated glass capillary tubes reported in Chapter 3. 

 

The same model cannot be directly applied to the results in Chapters 4 and 5, as they are 

coated at a much higher withdrawal speed. Instead, the general model for drain coating at 

this high speed can be described by: 

 

ℎ = 𝑐!
𝜂𝑈!
𝜌𝑔

!
!
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where c1 is a constant for the fluid being coated, about 0.8 for Newtonian liquids.119 

Unfortunately, films coated at high speed are often uneven,8 so SEM images were taken 

to examine the thickness of the films instead and no initial thickness calculation was 

performed using this equation. 

 

1.6 Internally Coated Glass Capillary Tubes: A Novel Substrate 
 
 
Using dip-coating and expanding on Crosley’s previous work, chapter 3 of this 

dissertation covers the internal doping of capillary tubes with horseradish peroxidase. 

Crosley focused on the development of flat-surface films, but there is also interest in 

devices based on glass capillary tubes or other tubing with internally coating enzymes or 

other biological materials.120-122 These types of devices can either rely on capillary action 

or have solutions of interest driven through them by an external pump and use the loaded 

biological material as a sensor or catalyst. However, the internal coating of capillary 

tubes does present additional challenges for creating even internal coatings123 and for 

loading, which may have led to less interest in internally coated capillary tubes despite 

their many desirable traits. To circumvent the challenges, a few research groups have 

inserted monoliths into capillaries or immobilized enzymes on capillary filters, instead of 

inside the capillaries themselves.124-125 Chemical modification of the surfaces for 

immobilization of enzymes in devices is also commonly required,126-129 increasing the 

difficulty and expense of such fabrications. 

 

Based on the flat-surface coating techniques developed by Crosley et al., chapter three of 

this dissertation concerns the development of internally doped glass capillary tubes. Their 
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loading and activity were quantified, and the performance of capillary films was 

compared to that of flat-surface films. Horseradish peroxidase was shown to retain 

activity, although much reduced from the free enzyme or even that loaded in flat-surface 

films. However, a large degree of protection was imparted to the films from denaturation 

by ethanol and methanol. 

 

Most of the results in chapter three are currently pending publication. 

 

1.7 Branched Polyethylenimine: A Polymer With Myriad Uses 
 
 
In addition to entrapping enzymes, surface functionalization of silica sol gel thin films 

provides great benefits and there is much interest about it in the literature. One of the 

biggest groups of interest for silica functionalization is amines, as surface 

functionalization of silica with various amine-containing compounds has shown anti-

fouling effects,130 increased heavy metal adsorption,131 chromatography applications,132 

catalytic applications,133 and more. One of the most interesting molecules for its potential 

in kinetic doping is branched polyethylenimine (BPEI), which is a polyamine that is 

commercially available in a wide-range of molecular weights. BPEI has shown great 

potential for environmental applications such as aqueous heavy metal removal59, 134 and 

carbon dioxide capture135 when attached to a solid substrate and has also shown 

antimicrobial activity both on its own136 and as antibiotic potentiators.137  

 

BPEI has been loaded into monoliths and nanoparticles, but it has never been 

successfully loaded into silica thin films, to the best of our knowledge. This is most likely 
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due to their very basic nature that may significantly impair thin film formation, as basic 

conditions typically favor nanoparticle formation.17 Using pre-doping methods would 

probably be impossible with such a basic polymer. Post-doping methods have employed 

multiple synthetic steps often with environmentally harmful organic precursors or 

solvents, resulting in a labor intensive and costly process.11, 138-139 

 

Using kinetic doping, we were able to load various molecular weights of BPEI into silica 

thin films and examine the effect of polymer size on kinetic doping. In chapter four, a 

25000 molecular weight (MW) polymer was successfully loaded, but 600 MW BPEI was 

not. The ability of 25000 MW loaded films to sequester copper was examined and shown 

to be higher than commercially available products. In chapter five, the loading of 1800 

and 750000 MW BPEI was achieved and the effect of molecular weight on the kinetic 

doping process was systematically examined. The ability of 1800, 25000, and 750000 

MW BPEI films to inhibit biofilm formation was examined and compared. These results 

show the promise of silica functionalized with BPEI and detail an inexpensive, facile 

method for doing so. 

 

Most of the results in chapter four have been published in 2019 in ACS Omega. (Jensen, 

J. M.; Yip, W. T., Amine Functionalization of Silica Sol–Gel Thin Films via Kinetic 

Doping: A Novel, Green Approach. ACS Omega 2019, 4 (20), 18545-18554.) 

 

Most of the results in chapter five are currently pending publication. 
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CHAPTER 2 - Techniques and Instrumentation 
	

2.1 Abstract 

 
 
The experimental techniques, procedures, and primary instrumentation used in the 

research section of this work are discussed in this chapter. A list of relevant materials is 

provided and any modification of materials as received is noted. The process for creating 

the sol precursor solution used in the sol-gel process and the preparation of the loading 

solutions used for kinetic doping are detailed. Variations in sol preparation and loading 

solution parameters for various guest molecules are included. Experimental rationale for 

the guest molecules chosen is discussed. The preparation of all assay solutions is also 

detailed. Data gathered by collaborators is noted. The experimental set-up for the primary 

method for data acquisition, UV-Vis spectroscopy, is discussed.  

 

2.2 Introduction 
 
 
Silica sol-gel technology was discovered in the 19th century when it was observed that a 

silica alkoxide solution formed a gel when exposed to air.1 Since then, extensive research 

has been conducting on silica sol-gel technology for various applications,2 including as a 

solid matrix for guest molecules. Silica sol-gels that result in bulk materials,3-5 powders,6 

and thin films7-11 have been studied, and guest molecules have been trapped with pre- and 
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post-doping techniques.12-15 Based on protocols the published by Higgins16 and Zink17 lab 

groups, a new doping technology was developed by the Yip lab group. Campbell18 and 

Crosley19-21 developed kinetic doping techniques in silica sol-gel for both spin- and dip-

coating, loading both dye and enzymes.  

 

Based on this work, kinetic doping of silica sol-gel was expanded for use in internally 

coated glass capillary tubes. Parameters were developed to load previously studied guest 

molecules into thin films coated internally on glass capillary tubes, which presents new 

challenges for both initial loading of dopants and characterization thereof. UV-Vis 

spectroscopy was used to quantify the loading of rhodamine 6G dye and the loading and 

activity of horseradish peroxidase (HRP) enzymes. Scanning electron microscopy (SEM) 

was used to characterize the films. 

 

Additionally, parameters to load a new dopant molecule, branched polyethylenimine 

(BPEI), were developed. Characterization techniques for quantifying loaded molecules, 

copper (II) sequestration capability of the loaded films, and solvent-accessible primary 

and secondary amines were developed using UV-Vis spectroscopy. UV-Vis spectroscopy 

was also used to quantify the film’s ability to inhibit biofilm formation. Scanning electron 

microscopy (SEM) was also used to characterize the films. 

 

2.3 Materials 
 
 
For capillary tube loading, tetraethylorthosilicate (TEOS), rhodamine 6G (R6G), and 

hydrochloric acid were purchased from Sigma-Aldrich. Phosphoric acid was purchased 
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from EMD Millipore. Horseradish peroxidase (HRP) was purchased from Gold 

Technology. Glass capillary tubes (25 µL Drummond Wiretrol Calibrated Micropipets). 

All chemicals and materials were used as received, with the exception of the glass 

capillary tubes, which were cleaned prior to use. 

 

For loading of flat surface films, tetraethylorthosilicate (TEOS); rhodamine 6G (R6G); 

sodium hydroxide; and 600, 1800, 25000, and 750000 MW branched polyethylenimine 

(BPEI) were purchased from Sigma-Aldrich. 85% phosphoric acid was purchased from 

EMD Millipore. Premium grade glass coverslips (25 mm × 25 mm × 170 µm and 22 mm 

× 22 mm × 170 µm) were purchased from Fisher Scientific. All chemicals and materials 

were used as received, with the exception of the glass coverslips, which were cleaned 

prior to use. 

 

For film assays, 95% ethanol, 99% methanol, crystal violet dye and bacterial growth 

media were purchased from Sigma-Aldrich. Hydrogen peroxide (30% solution) were 

purchased from EMD Millipore. Guaiacol was purchased from Cayman Chemical 

Company. Methicillin-resistant Staphylococcus epidermidis (MRSE) bacteria were 

purchased from the American Type Culture Collection (ATCC 35984). All chemicals and 

materials were used as received. 

 

2.4 Preparation of Glass Coverslips for Coating Purposes 
 
 
A procedure developed by Campbell and Lei was used to clean the glass coverslips for 

flat surface film coating.22 To remove any organic contaminants on the glass coverslip 
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surface, the coverslips were sonicated in an acetone bath for 30 minutes and rinsed with 

Millipore water three times to remove all residual acetone. The coverslips were then 

sonicated in 10% w/v NaOH for another 30 minutes and rinsed with Millipore water five 

times to remove all residual NaOH. The coverslips went through a final sonication in 

Millipore water for 30 minutes. The coverslips were then stored in Millipore water until 

use. 

 

2.5 Preparation of Glass Capillary Tubes for Coating Purposes 
 
 
The procedure for cleaning glass coverslips was modified for preparation of the glass 

capillary tubes. To remove any organic contaminants on the capillary tube inner-surface, 

95% ethanol was pumped through each capillary for 5 minutes. Ethanol was chosen over 

acetone to avoid degradation of the tubing and pump mechanism after both solvents 

showed comparable abilities to remove organic contaminants. Deionized (DI) water was 

then pumped through each capillary for 5 minutes. To remove aqueous contaminants, 

10% HCl was subsequently pumped through each tube for 5 minutes. HCl was chosen 

over NaOH to avoid contamination from any base during coating, which would catalyze 

aggregate, not thin film, formation. Finally, deionized water was then pumped through 

each capillary for 5 minutes. The capillaries were stored in deionized water until use. 

 

2.6 Preparation of Silica Sol-Gel Precursor 
 
 
Silica sol was prepared by mixing a 1:8:7 molar ratio of TEOS:ethanol:water with 

phosphoric acid acting as a catalyst. A mixture of 28 mL of TEOS, 55.9 mL of ethanol, 
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15.9 mL of deionized water and 0.31 mL of 1% v/v phosphoric acid at room temperature 

were prepared for capillary tube coatings. A mixture of 55.9 mL of TEOS, 111.8 mL of 

ethanol, 31.7 mL of deionized water and 0.62 mL of 1% v/v phosphoric acid at room 

temperature were prepared for flat surface coatings. For both types of substrate, the sol 

was then allowed to age for 20 hours at room temperature before use. 

 

TEOS, whose molecular structure can be seen in Figure 2.1, was chosen as the silicon 

alkoxide precursor because it has been extensively studied with kinetic doping by Adam 

Campbell and Matthew Crosley. They initially chose it for its well documented 

reactions23 and ability to load guest molecules with no extra reactants or post-reaction 

modifications. 
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2.7 Preparation of Loading Solutions 
 
 
Stock 100 mM pH 7.4 phosphate buffer solution was prepared by dissolving sodium 

phosphate monobasic in DI water, and the final pH was adjusted with concentrated 

phosphoric acid. This solution was refrigerated and stored in an airtight container. When 

needed, 10 mM pH 7.4 phosphate buffer was prepared by diluting this stock solution with 

DI water. For unloaded films, 10 mM pH 7.4 phosphate buffer was used in the same 

volume and for the same loading time as the loading solutions for the loaded samples in 

question. 

 

The solution used to load Rhodamine 6G was prepared by dissolving R6G in 10 mM pH 

7.4 phosphate buffer to a final concentration of 1 mM R6G. This solution was 

refrigerated and stored in an airtight container for a period of no more than six months. 3 

Si
O

O
O

O

Figure 2.1 Tetraethylorthosilicate (TEOS) chemical structure 
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mL of this solution was transferred to a small test tube when capillary tubes were loaded, 

and 10 mL was transferred to 50 mL beakers when flat surface films were loaded.  

 

Rhodamine 6G, the molecular structure of which can be seen in Figure 2.2, was chosen 

because of Crosley’s characterization of it in flat-surface dip-coated films. It was initially 

chosen as a model dye for its positive charge at the loading pH of 7.4,24 which is ideal for 

kinetic doping,22 and high molar extinction coefficient in ethanol,25-27 making its loading 

easily quantifiable. 

 

 

A 0.1 mg/mL solution of horseradish peroxidase for enzyme loading in capillary tubes 

was prepared by adding the solid enzyme powder to 10 mM pH 7.4 phosphate buffer 

solution. The solutions were prepared at the time of loading from the enzyme, stored at -

O

+
H
N

H
N

O

O

Cl-

Figure 2.2 Chemical structure of Rhodamine 6G (R6G) at pH 7 or above. 
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20 ˚C as recommended by the manufacturer, and a stock solution of 100 mM pH 7.4 

phosphate buffer solution diluted with DI water. 3 mL of this solution was transferred to 

a small test tube when capillary tubes were loaded. 

 

HRP, whose protein structure is shown in Figure 2.3 below,28 was also chosen as the 

model enzyme guest molecule because of Crosley’s characterization of it in flat-surface 

dip-coated films. This allowed a comparison of the loading and activity of the enzyme 

when coated on different surfaces. Crosley initially chose it for its robust nature and the 

volume of research available concerning its reactions.28-33 

 

1 mM solutions of 600 and 1800 MW branched polyethylenimine were prepared by 

adding the pure reagents to 10 mM pH 7.4 phosphate buffer solution and adjusting their 

Figure 2.3 Crystal structure of ferrous horseradish peroxidase C1A. (PDB ID: 
1h58) 
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pH back to 7.4 with concentrated phosphoric acid. A 1 mM solution of 25,000 MW BPEI 

was prepared by adding the pure reagent to DI water and adjusting the pH to 7.4. A 0.01 

mM 750,000 MW solution was prepared by diluting the stock 50% w/v reagent with DI 

water and adjusting the pH to 7.4. Phosphate buffer was not used for the 25,000 and 

750,000 MW solutions due to the salting out effect observed with higher molecular 

weight BPEI polymers. 

 

BPEI was chosen as a possible guest molecule due to its organic nature, positive charge 

at the optimal loading pH of 7.4,34 and myriad uses including  environmental applications 

such as aqueous heavy metal removal,35-36 carbon dioxide capture37 when attached to a 

solid substrate, and antimicrobial activity both on their own38 and as antibiotic 

potentiators.39 The polymer’s structure is shown in Figure 2.4 below.  

 

 

 

Figure 2.4 Structure of branched polyethylenimine, with repeating units shown. 
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2.8 Dip-Coating Process for Flat-Surface Films 
 
 
Flat surface thin films were prepared by drain coating with a sol solution inside a beaker, 

based on the drain coated film preparation method of Crosley et al.21 After aging for 20 

hours, the silica sol solution was transferred to a 250 mL beaker, elevated by a jack stand. 

A clean coverslip was dried with compressed air and immersed in the aged silica sol-gel 

coating solution while suspended from above. The sol solution was then drained at a rate 

of 1.36 cm/sec for BPEI films and 0.09 cm/sec for R6G films. Immediately after the 

silica sol solution was drained, the jack stand was lowered until the newly coated 

coverslip was completely exposed to ambient air. The thin film was allowed to age in 

ambient air (the delay time) before it was transferred to a loading solution, where the 

guest molecule was allowed to load into the film via kinetic doping for a specific time 

period (loading time). Delay and loading times vary for each guest molecule. After 

loading, films were rinsed with DI water, dried with house air, then immediately used or 

stored dry for future use. 

 

2.9 Dip-Coating Process for Capillary Tubes 
 
 
The process for dip-coating capillary tubes is based on the same procedure. After aging 

for 20 hours, the silica sol solution was transferred to a 50 mL round-bottom glass 

centrifuge tube, elevated by a jack stand. A clean capillary tube was purge dried with 

compressed air and immersed in the aged silica sol-gel coating solution while suspended 

from above. The capillary was positioned so that sol was pulled up into the tube by 

capillary action to the 25 µL mark. The sol solution in the centrifuge tube was then 
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drained at a rate of 0.09 cm/sec. The capillary was allowed to age on the drain coating 

set-up in ambient air for 5 minutes. It was then transferred to a hose with house air 

running through it at 3 LPM for a defined period of time (the drying time). The outside of 

the capillary was then wiped to remove any externally coated thin film. It was then placed 

in a test tube with loading solution, where the loading solution was drawn into the tube 

through capillary action, again to the 25 µL mark. R6G was allowed to load into the film 

via kinetic doping for one hour, and HRP was allowed to load into the film for one week. 

 

2.10 Preparation of Bradford Assay Solutions 
 
 
Attempts were originally made to quantify the mass of HRP loaded in capillary tubes 

using a modified Bradford assay developed by Crosley et al.20 based on the original 

Bradford assay.40 100 mg of Coomassie Brilliant Blue Dye G-250 was dissolved in 50 

mL ethanol, which was then added to 100 mL concentrated phosphoric acid, then diluted 

to 1 L with DI water. The assay solution was refrigerated and stored for in an airtight 

container for no longer than 2 months. 

 

Coomassie Brilliant Blue, whose chemical structure is shown in Figure 2.5, has two 

forms; the absorption of the blue form (maximum at approximately 495 nm) increases in 

the presence of proteins, while the unbound form (maximum at approximately 465 nm) 

decreases. The spectrum of the dye, showing its two peaks of bound and unbound dye, is 

shown in Figure 2.6. 
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Figure 2.5 Coomassie Brilliant Blue G-250 structure 

Figure 2.6 Spectrum of Coomassie Brilliant Blue 
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2.11 Preparation of Ninhydrin Assay Solutions 
 
 
The mass of HRP loaded in capillary tubes was quantified via the ninhydrin method of 

protein quantification, based on the procedure developed by Troll et al.41 Solutions of 500 

mg of ninhydrin in 10 mL of absolute ethanol and 80 mg of phenol in 20 mL absolute 

ethanol were made by dissolving the solid powder in absolute ethanol. 2 mL of 0.01 M 

KCN in 100 mL pyridine was prepared by dissolving the KCN solid in absolute ethanol, 

then diluting it with pyridine. These solutions were stored in airtight containers at room 

temperature for no more than a month. 2 mL of the phenol, 2 mL of the KCN, and 0.4 

mL of the ninhydrin solutions were used to test 1 mL of the protein solution. 

 

Solvent accessible primary and secondary amines were quantified via the ninhydrin 

method of amine quantification, based on the procedure developed by Kaiser et al.42 

Solutions of 500 mg of ninhydrin in 10 mL of absolute ethanol and 80 mg of phenol in 20 

mL absolute ethanol were made by dissolving the solid powder in absolute ethanol. 2 mL 

of 0.001 M KCN in 100 mL pyridine was prepared by dissolving the KCN solid in 

absolute ethanol, then diluting it with pyridine. These solutions were stored in airtight 

containers at room temperature for no more than a month. 750 µL each of the phenol, 

KCN, and ninhydrin solutions were used to test one 22 x 22 mm BPEI loaded coverslip. 

 

Ninhydrin (2,2-dihydroxyindane- 1,3-dione), whose chemical structure is shown in 

Figure 2.7, is a compound that reacts with primary and secondary amines to produce 

Ruhemann’s purple, which can be detected colormetrically.43-45 It is commonly used to in 

amino acid analysis of proteins. Because of its reaction with amines, Ruhemann’s purple 
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is used for detecting the solvent-accessible primary and secondary amines in loaded 

BPEI. It was also used for quantifying the amino acids produced when the capillary thin 

films were dissolved with sodium hydroxide to release degraded HRP into solution. A 

spectrum showing the Ruhemann’s purple product is included as Figure 2.8.  

 

O

O

O

Figure 2.7 Chemical structure of ninhydrin (2,2-dihydroxyindane- 1,3-dione) 
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2.12 Preparation of Guaiacol Assay 
 
 
Activity of the entrapped HRP was assessed through an HRP/guaiacol assay. A 100 mL 

solution of 3.3 µL liquid guaiacol and 1.4 µL 30% hydrogen peroxide in pH 7.4 10 mM 

phosphate buffer was prepared. This results in a 140 µM hydrogen peroxide and 300 µM 

guaiacol solution. The assay solution was prepared immediately before use. Hydrogen 

peroxide was stored at -20 ˚C and guaiacol was stored at room temperature, as 

recommended by the manufacturers.  

 

Figure 2.8 Spectrum of ninhydrin product after reaction with HRP 
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Guaiacol, whose chemical structure is shown in Figure 2.9, was chosen to measure the 

activity of horseradish peroxidase due to its well-studied and easily detectable product.46-

49 The spectrum of the quinone product is shown in Figure 2.10. 

 

O

OH

Figure 2.9 Chemical structure of guaiacol 

Figure 2.10 Spectrum of the product of HRP and guaiacol after 1 minute of 
reaction 
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2.13 UV-Vis Absorption Spectroscopy 
 
 
Absorption spectra were taken with a Shimadzu UV-2101PC UV-Vis scanning 

spectrophotometer in a parallel two-beam configuration. Quantification of Rhodamine 6G 

loading in both capillary and flat surface films was performed spectroscopically via 

ethanol extraction. 25,000 MW BPEI loading was done with a spectroscopic copper (II) 

assay. Copper (II) sequestration by 25,000 MW BPEI thin films was quantified with a 

similar assay. Quantification of horseradish peroxidase in capillary tubes was initially 

attempted with a modified Bradford, which showed poor correlation and was deemed 

unreliable. Instead ninhydrin assays, through spectroscopic measurement of Ruhemann’s 

purple, was used to quantify both loaded horseradish peroxidase in capillary tubes and 

solvent-accessible primary and secondary amines in 1800, 25,000, and 750000 MW thin 

films. Horseradish peroxidase activity in capillary tubes was quantified with a 

guaiacol/hydrogen peroxide assay. All assays used solution measurements, requiring no 

modification of the spectrophotometer or special protocols. 

 

2.14 Antibiofilm Assays 
 
 
Crystal violet assays were performed by Anh K. Lam in the Rice laboratory using their 

materials and UV-Vis spectrophotometer. Lam grew the biofilms on loaded films 

provided by us, dyed the biofilms, re-dissolved the crystal violet, and measured the 

results herself. 
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2.15 Scanning Electron Microscope (SEM) 
 
 
A JEOL JSM-880 scanning electron microscope with a 5 nm Au-Pd sputter-coated layer 

was used to obtain images of thin films. All images were collected by Dr. Preston Larson 

at the University of Oklahoma. Cross-sectional images of internally-coated capillary 

tubes and flat surface thin films were collected in magnifications ranging from 2,500-

100,000X to determine film thickness and examine film properties. Top-down images of 

BPEI loaded films were collected at 25,000X magnification to examine surface 

properties.  
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CHAPTER 3 - Enzyme Loading in Internally Coated Capillary 
Tubes Via Kinetic Doping 

	

3.1 Abstract  

	
Development of capillary tubes internally doped with enzymes is of great interest for 

microfluidic reactions, and kinetic doping could provide a facile, inexpensive method for 

their manufacture. Kinetic doping has previously been demonstrated to have a high 

loading capacity with thin films coated on flat-surface coverslips. Dip coating of these 

surfaces was developed with the eventual intention to coat different shapes and sizes of 

substrates. In this study, we expand the use of kinetic doping to internally coated 

capillary tubes. Parameters for internally doping capillary tubes were developed with 

rhodamine 6G which produced internally coated thin films with a 90 nm thickness. 

Horseradish peroxidase was then loaded into the thin films, with a 47000X increase in 

concentration over the loading solution. Activity of the loaded HRP was determined to be 

0.019 ± 0.003 U/mg, and shown to have a stronger resistance to denaturation by 

methanol. 
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3.2 Introduction 
 
 
Many researchers have investigated the encapsulation of enzymes in silica in order to 

gain the benefits of immobilization, namely high reusability and higher chemical and 

thermal stability.1-11 Sol-gel based technologies are especially promising, with their ease 

of synthesis and high loading capacity.9, 12 Devices containing sol-gel immobilized 

enzymes in silica could be inexpensively and easily fabricated for biosensing or catalysis 

purposes. Additionally, immobilized enzymes have shown resistant to, and even catalytic 

activity in, organic solvents.13-14 This potential for microfluidic applications and catalysis 

in different solvents means immobilization of enzymes in silica has great potential.  

 

Microfluidic and flow-through reactions catalyzed by immobilized enzymes have begun 

to receive increased attention from researchers in recent years,15-18 despite the loss of 

activity that generally comes from immobilization.19-21 Flow-through reactions mainly 

rely on enzymes immobilized on beads,22-23 and much of the research in microfluidic 

devices is focused on ‘lab on a chip’ technologies, where a ‘chip’ or very small device is 

developed for specific microfluidic reactions.24-27 However, there is also interest in 

devices based on glass capillary tubes28-29 or other tubing that allows flow through 

reactions.30 These types of devices can either rely on capillary action, like many ‘lab on a 

chip’ technologies or have substrate driven through them by an external pump, providing 

a level of versatility in design. Of special interest, some of these devices are 

reconfigurable, allowing for multiple types of reactions to be performed with a single 

device, making them even more versatile.31 
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The internal coating of capillary tubes does present certain challenges, however, leading 

to some authors using very involved methods to obtain a continuous film, like the 

manufacture of specialized equipment for the elevation-evacuation of sol within the 

capillary without vibrational distrubances,32 which may have led to less interest in 

internally coated capillary tubes despite their many desirable traits. Chemical 

modification of the surfaces for immobilization of enzymes in devices is also commonly 

required,15-18 increasing the difficulty and expense of production. Overcoming these 

barriers to enable inexpensive and facile manufacturing of glass capillary tubes with high 

concentrations of immobilized enzymes could be of great benefit.   

 

To that aim, we have extended the kinetic doping technique developed by our group to 

internally coat capillary tubes with silica thin films with entrapped horseradish 

peroxidase (HRP). Kinetic doping is a doping method that utilizes a window of 

opportunity in the gelation process of silica thin films where the ethanol has been mostly 

driven off, but cross-linking has not significantly proceeded, where proteins can be 

entrapped by the film without being denatured by the ethanol solvent often used in silica 

sol-gel chemistry. Kinetic doping has been shown to exhibit a high dopant capacity, 

produce films with a good retention of enzyme activity, and nearly instantaneous 

response time.33 This could lead to an inexpensive manufacturing process for enzyme 

coated glass capillary tubes that is low on both material and labor cost, which is 

significant for potential commercialization. Additionally, this method could be extended 

to smaller diameter capillaries, leading to inexpensive microfluidic devices. 
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Here, we report a facile, inexpensive method for entrapping horseradish peroxidase 

internally in silica thin films on glass capillary tubes using kinetic doping. The method 

was developed using a dye, rhodamine 6G (R6G), then applied to the enzyme horseradish 

peroxidase. The activity of the entrapped horseradish peroxidase in the capillary tubes 

was measured, and a method for measuring the quantity of entrapped enzyme was 

developed. Additionally, observations were made on the resistance of entrapped enzymes 

to normally denaturing ethanol and methanol. To our knowledge, this is the first time that 

an entrapped enzyme has been internally coated onto a capillary tube using the sol-gel 

method. 

 

3.3 Methods 

3.3.1 Materials and General Methods 
 
 
Tetraethylorthosilicate (TEOS), Rhodamine 6G (R6G), 95% ethanol, and 99% methanol 

were purchased from Sigma-Aldrich. Phosphoric acid and hydrogen peroxide (30% 

solution) were purchased from EMD Millipore. Horseradish peroxidase (HRP) was 

purchased from Gold Technology. Guaiacol was purchased from Cayman Chemical 

Company. Glass capillary tubes (25 µL Drummond Wiretrol Calibrated Micropipets) 

were purchased from Fisher Scientific. All chemicals and materials were used as 

received, with the exception of the glass capillary tubes and coverslips, which were 

cleaned prior to use. All UV−vis spectra were obtained via a Shimadzu UV-2101PC 

UV−vis spectrometer. Scanning electron microscopy (SEM) images were obtained via a 

JEOL JSM-880 instrument with a 5 nm Au−Pd sputter-coated layer to examine the 

morphology of the thin film and measure the film thickness. 
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3.3.2 Preparation of Glass Capillary Tubes 
 
 
To remove any organic contaminants on the capillary tube inner-surface, 95% ethanol 

was pumped through each capillary for 5 minutes. Deionized water was then pumped 

through each capillary for 5 minutes. To remove aqueous contaminants, 10% HCl was 

subsequently pumped through each tube for 5 minutes. Finally, deionized water was then 

pumped through each capillary for 5 minutes. The capillaries were stored in deionized 

water until use. 

 

3.3.3 Preparation of Silica Sol 
 
 
Silica sol was prepared by mixing a 1:8:7 molar ratio of TEOS:ethanol:water with 

phosphoric acid acting as a catalyst. A mixture of 55.9 mL of TEOS, 111.8 mL of 

ethanol, 31.7 mL of deionized water and 0.62 mL of 1% v/v phosphoric acid at room 

temperature were prepared for most coatings. The sol was then allowed to age for 20 

hours at room temperature before use. 

 

3.3.4 Preparation of Internally-Doped Silica Sol-Gel Thin Films in Capillary 
Tubes 

 
 
Thin films were prepared by drain coating with a sol solution inside a centrifuge tube, 

based on the drain coated film preparation method of Crosley et al.33 After aging for 20 

hours, the silica sol solution was transferred to a 50 mL round-bottom glass centrifuge 

tube, elevated by a jack stand. A clean capillary tube was purge dried with compressed 

air and immersed in the aged silica sol-gel coating solution while suspended from above. 
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The capillary was positioned so that sol was pulled up into the tube by capillary action to 

the 25 µL mark. The sol solution in the centrifuge tube was then drained at a rate of 0.09 

cm/sec. The capillary was allowed to age on the drain coating set-up in ambient air for 5 

minutes, subsequently referred to as the delay time. It was then transferred to a hose with 

house air running through it at 3 LPM for 1 minute, subsequently referred to as the drying 

time. The outside of the capillary was then wiped to remove any externally coated thin 

film. It was then placed in a test tube with loading solution, where the loading solution 

was drawn into the tube through capillary action, again to the 25 µL mark.  

 

R6G was allowed to load into the film via kinetic doping for one hour, and HRP was 

allowed to load into the film for one week. The loading solution consisted of 1 mM R6G 

in 10 mM phosphate buffer, adjusted to pH 7.4 with phosphoric acid or 0.1 mg/mL HRP 

in 10 mM phosphate buffer, adjusted to pH 7.4 with phosphoric acid. After loading, 

capillaries were removed from solution, rinsed with DI water to remove all of the 

adsorbed R6G or most of the adsorbed HRP, dried with house air, and tested or stored for 

future use. Post-doped controls, where HRP is immobilized via simple surface 

adsorption, were made by extending the delay time to 15 minutes and the dry time to 10 

minutes, then submerging the tubes in 10 mM phosphate buffer, pH 7.4, for one hour. 

The capillaries were then removed, rinsed, and dried, and placed in the same loading 

solution for the same amount of time as the kinetically doped samples for comparison. 
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3.3.5 Quantitative Determination of R6G Loading 
 
 
R6G loading was determined by alcohol extraction of R6G. Capillary tubes loaded with 

R6G were submerged in 95% ethanol for 24 hours, to allow all trapped dye to escape into 

solution. For comparison, flat surface films were submerged in 95% ethanol for multiple 

days, with sonication and addition of fresh solvent three times, in an attempt to extract all 

solvent accessible dye from the silica film. The absorbance of these solutions was then 

measured at 532 nm. Thickness of the flat surface films was calculated using the Landau-

Levich equation34 to determine the original R6G concentration in the films. 

 

3.3.6 Quantitative Determination of HRP Loading 
 
 
HRP loading in capillary tubes was quantified via the ninhydrin method of protein 

quantification, based on the procedure developed by Troll et al.35 Briefly, solutions of 

500 mg of ninhydrin dissolved in 10 mL of absolute ethanol, 80 mg of phenol dissolved 

in 20 mL absolute ethanol, and 2 mL of 0.01 M KCN in 100 mL pyridine were prepared. 

Capillary tubes that had been loaded with HRP were allowed to sit in 2 mL of 2 M NaOH 

for two weeks to dissolve the thin film and release the encapsulated HRP, then the 

solution was brought to approximately pH 7 with concentrated HCl. 1 mL of this solution 

was then combined with 2 mL of the phenol and 2 mL of the KCN solutions in a test 

tube. The test tube was then stoppered and placed into a boiling water bath and allowed 

to equilibrate. 0.4 mL of the ninhydrin solution was then added and the reaction was 

allowed to proceed for 5 minutes. The absorbance of this solution was then measured at 

571 nm. A standard curve was constructed by dissolving known quantities of HRP in 2 M 
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NaOH and following the same procedure (see Figure 3.1). The samples were compared to 

the standard curve to determine the amount of HRP in solution, and the original amount 

of HRP in the capillary tubes was then calculated. The absorbance of the sample 

solutions did not increase when the capillary tubes were allowed to sit in NaOH more 

than two weeks, so all HRP was assumed to be released into solution in two weeks. 

 

3.3.7 Quantitative Determination of HRP Activity 
	
Activity of the entrapped HRP was assessed through an HRP/guaiacol assay. The 

formation of the quinone product was monitored through UV-vis absorption at 436 nm. A 

100 mL solution of 3.3 µL liquid guaiacol and 1.4 µL 30% hydrogen peroxide in pH 7.4 

Figure 3.1 Calibration curve constructed with horseradish peroxidase in solution, 
which had been denatured with sodium hydroxide. A ninhydrin assay was then 
performed on the samples to determine the linear response portion. 
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10 mM phosphate buffer was pumped into capillary tubes for differing time periods, then 

pumped back into a cuvette for absorption measurement. Due to adsorbed HRP washing 

off of the tubes and continuing to react in the cuvettes, the formation of the quinone was 

monitored for several minutes and the concentration at the time the solution was pumped 

out of the capillaries was obtained by extrapolation (see Figure 3.2 for an example of this 

data). The enzyme activity could then be calculated using the initial rate method, as all 

measured time points fell into the initial linear rate portion of the reaction (see Figure 

3.3).  

Figure 3.2 Example of one of the samples used to determine HRP activity. Adsorbed 
HRP came off into solution when measuring activity, causing the reaction to 
continue outside of the capillary tube. In order to extrapolate what the initial 
absorbance measurement was, the time it took to transfer the solution from the 
capillary to the cuvette was recorded and the reaction was allowed to continue for 5 
minutes while being recorded. A linear fit was then applied and the absorbance of 
the product at the time of transfer was calculated. 
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3.4 Results and Discussion 

3.4.1 Parameter Optimization with Rhodamine 6G 
 

 
Internally coating a capillary tube with a silica thin film using the sol-gel method presents 

unique challenges as compared to flat surface coating. The sol gel process works through 

two main reactions: hydrolysis and polycondensation. These reactions release ethanol and 

water into the surrounding air as the film gels. The formation of the films requires the 

evaporation of these by-products. The enclosure inherent in capillary tubes impedes this 

evaporation, slowing the formation of the films. Additionally, exposure to the sol vapors 

is known to negatively affect flat surface films, damaging the structural integrity of the 

Figure 3.3 Micromole of the quinone product of guaiacol (as measured with 
absorbance readings at 436 nm) plotted versus time of the guaiacol in contact with 
the HRP loaded capillaries to determine activity of the enzyme. 
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film.33 Instead of a continuous film, exposure to vapors results in sparse aggregates. This 

can be seen by the loading of R6G, which only loads into the coated silica aggregates (as 

shown by the faint, mottled loading in Figure 3.4A) and does not adhere to the glass 

substrate after washing. 

 

To prevent this, house air was forced through the capillary tubes after drain coating. 

Initially, capillary tubes were drained of sol, and then put immediately onto a hose with 

an attached air regulator. This resulted in films that were, to the eye, evenly coated with 

R6G (see Figure 3.5A). However, as SEM images reveal, the sol had formed aggregates, 

instead of films, on the inside of the capillary tubes (see Figure 3.5B). This is likely due 

to vibrations introduced when moving the capillary from the drain coating set-up to the 

purge drying set-up. The vibrations disrupt the film development and compromise its 

structural integrity before there is sufficient polycondensation to set the film, thereby 

breaking the nascent film into aggregates. 

Figure 3.4 A) Photograph of film that was exposed to the vapors from the sol while 
aging. Sparse aggregates loaded with R6G can be seen on the film. B) Photograph of 
film that was not exposed to vapors while aging. The continuous film loaded with 
R6G, excepting the corner that is not dipped into the sol during coating, can be seen. 
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Drying time is also necessary, however, as films that had a 5 minute delay time but were 

Figure 3.5 A) Photograph of capillary tube with no delay time and 1 minute drying 
time at 3 LPM air flow, loaded with R6G. B) SEM of a capillary tube made using 
the same parameters, showing aggregates instead of a thin film. 

Figure 3.6 Capillary tubes loaded with R6G with a delay time of 5 minutes, dried at 3 
LPM for A) 0 minutes, B) 1 minute, C) 2 minutes, D) 5 minutes, E) 10 minutes. 
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not purge dried showed no loading (see Figure 3.6). One minute of purge drying at 3 

LPM was enough to enable loading, so several delay times from 5 minutes to 15 minutes 

were tested with a 1 minute drying time at 3 LPM after all delay times. While the 

capillary tubes looked visually similar to the capillaries without a delay time, the SEM 

images showed a thin film, instead of aggregates (see Figure 3.7). While these films were 

not even, and some aggregates could still be seen attached to the film surface, they were 

consistent for all delay times with an average thickness of 90 nm. Thus, a delay time of 5 

minutes was chosen for further coating. With parameters for an intact film determined, 

Figure 3.7 SEM images of capillary tubes loaded with R6G, with a dry time of 1 
minute and a delay time of A&B) 5 minutes and C&D) 15 minutes. Both films are 
approximately 90 nm thick, although thickness of film is highly variable for both 
delay times. 
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subsequent loading was done with horseradish peroxidase. 

 

3.4.2 Quantitative Determination of Horseradish Peroxidase Loading 
 
 
Using the parameters determined from R6G loading, horseradish peroxidase (HRP) was 

loaded into the capillary tubes. After loading, the same guaiacol assay that was used for 

flat-surface films was used to check for enzyme activity, but an assay had to be 

developed to quantify the amount of protein loaded into the capillaries first.  

The internally-coated thin films were dissolved by incubating the tubes with 2 M sodium 

hydroxide for two weeks. A ninhydrin assay was then performed on the dissolved films, 

which was compared to a standard curve made from free HRP denatured in 2 M sodium 

hydroxide. Using this curve, the films were determined to have an average of 0.051 ± 

0.007 mg of the protein loaded. Using the 90 nm average thickness, a concentration of 

approximately 0.11 M or 4700 mg/mL, a 47000X increase from the loading solution, is 

calculated. The capillary tubes also had a large amount of adsorbed HRP on the internal 

surface, which could not be easily washed off. Post-doped controls, which should have 

very little kinetic doping and instead have predominantly surface adsorbed HRP, showed 

loading of 3700 mg/mL, which is 79% of the total loading. Kinetic doping would thus 

account for 985 mg/mL of HRP loaded into the film; a 9850X increase over the initial 

loading solution. 

 

This is an even larger increase over the initial loading solution than seen with flat surface 

loading, which has an increase of 2400X; it is worth noting, however, the modified 

Bradford assay used on flat surface loading was only able to quantify the solvent 



	 76	

accessible HRP and was thought to underestimate the amount of total HRP loaded, due to 

the size of the Coomassie blue dye limiting its diffusion into the thin film.33 The modified 

Bradford assay developed by Crosley et al.8 to quantify the amount of HRP loaded onto 

flat-surface coverslips could not be used for capillary tubes. The results obtained from 

such measurements in the capillary tube exhibited poor correlation for both the decrease 

of the unbound form or the increase of the bound form of the Coomassie blue dye and 

thus deemed unreliable for this work. The ninhydrin assay here works with the dissolved 

thin film, so all loaded protein, not just the solvent-accessible protein, is quantified. 

 

The HRP that was kinetically doped did differ from the post-doped HRP as demonstrated 

by denaturation of the protein with ethanol and methanol. Both kinetically doped and 

post-doped capillaries showed activity after soaking in a 30% ethanol for one week or 

after pumping 95% ethanol through the capillaries for 48 hours. This exposure to ethanol 

would denature free HRP in solution. Additionally, kinetically doped capillaries kept 

activity when 99% methanol was pumped through the tubes for 15 seconds, but the 

methanol stopped the activity of the post-doped controls. Pumping 99% methanol 

through either the kinetically doped or post-doped capillaries for longer than 15 seconds 

deactivated all HRP. Images of these tubes, with kinetically doped tubes that were and 

were not exposed to methanol and a post-doped control that has been exposed to 

methanol, are seen in Figure 3.8. This resistance seems to mean that both types of doping 

provide a large degree of protection from ethanol which is not uncommon for enzymes 

trapped in solid state.36 However, the kinetically doped HRP was afforded additional 

protection from even methanol. The additional protection provided by kinetic doping 
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over post-doped controls means kinetically doped internally coated capillary tubes have 

the potential to utilize enzymes to catalyze reactions in non-aqueous solutions or to be 

sterilized for possible medical applications more so than a more traditional method of 

entrapping proteins on a flat surface as they are more resistant to denaturing solvents. 

 

 

Figure 3.8 A) Capillary tube kinetically doped with HRP exposed to the 
guaiacol/hydrogen peroxide assay, showing the dark brown quinone product. This 
product indicates the enzymes are still active after loading. B) Capillary tube 
kinetically doped with HRP exposed to the guaiacol/hydrogen peroxide assay after 
being exposed to methanol for 15 seconds, still showing the dark brown quinone 
product. This product indicates the enzymes are still active after methanol exposure.  
C) Capillary tube post-doped with HRP exposed to the guaiacol/hydrogen peroxide 
assay after being exposed to methanol for 15 seconds, with the dark brown quinone 
product no longer being produced. The lack of this product indicates the enzymes 
are no longer active. 
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3.4.3 Activity Determination of Horseradish Peroxidase 
 
 
After determination of the amount of HRP loaded into the thin films, activity of the 

enzyme had to be determined to assess the application potential of the internally coated 

capillary tubes. The ability of the enzyme to catalyze guaiacol was quantified through 

monitoring the appearance of the quinone product by UV-vis spectroscopy in a series of 

time points. Using the activity and the amount of HRP loaded into the film, the activity 

per milligram of protein was calculated to be 0.019 ± 0.003 U/mg. This is a marked 

decrease from the activity of free HRP, 35.4 ± 0.8 U/mg, or HRP loaded onto a flat-

surface substrate, 3.7 ± 0.2 U/mg.33  

 

The low activity may be partially explained by the method of protein quantification used 

here, versus the modified Bradford assay used to quantify the loading in flat surface 

samples. In this work, all protein, even that which is not accessible to solution, is 

quantified by dissolving the film. Only solvent accessible HRP was quantified by the 

Bradford assay, which is the only HRP that could interact with the substrate. Any HRP 

that is not solvent accessible would artificially deflate the activity of the capillary tubes. 

The increase in concentration over the loading solution is 490% higher in the capillary 

tubes than on a flat surface, but it seems unlikely such a similar doping protocol would 

yield such different results. More likely, much of the protein quantified in the capillary 

thin films is not solvent accessible, increasing the amount quantified but not the amount 

available to interact with the substrate. Moreover, the surface area of a capillary tube is 

approximately 95% less than that of the flat surface samples. If more HRP is loaded into 

the film in capillary tubes, then it would by necessity be solvent-inaccessible due to the 
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decreased surface area. Given the decrease in surface area, and the marked increase in 

concentration in the film, the decrease in activity is likely not due to any additional 

denaturing or restriction of the enzyme in the capillaries versus the coverslips, but due to 

the solvent-inaccessibility of the majority of the enzymes. This could be remedied by 

using a different silica alkoxide precursor with larger alkoxide groups, which should 

increase pore size and thus accessibility of the enzymes. 

 

This is further supported by a comparison of the solvent accessible dye between the 

capillary tubes and flat surface films. Internally coated films have a solvent-accessible 

R6G concentration of 0.58 ± 0.04 M, while flat surface films, with the same loading 

parameters and using the same quantification method, have a concentration of 1.0 ± 0.2 

M, almost double the amount in the capillaries. The higher loading of dye in the flat 

surface films over the internally coated capillary tubes suggests the amount of HRP 

loaded should also be higher in the flat surface films if the same quantification method 

could be used. 

 

Additionally, the measured activity of the HRP in the capillary tubes, even with the likely 

underestimation, is still comparable to that achieved in covalently bonded HRP in packed 

bed columns.23 This means that flow-through reactions can be carried out with 

approximately the same efficiency in the internally coated capillaries, but with much 

smaller amounts of substrate and solvent. 
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3.5 Conclusions 
 

 
In this study, we demonstrate the ability to kinetically dope internally coated capillary 

tubes with silica thin films by the sol-gel method. This method is less complex than 

previous methods used to internally coat capillary tubes by the sol-gel method and has a 

high enzyme loading capacity, resulting in a 47000X increase in HRP concentration in 

the thin film over the loading solution. While the activity of the enzyme is markedly 

decreased by entrapment, its resistance to denaturing methanol is increased compared to 

post-doped controls. This is the first time, to our knowledge, that enzymes have been 

loaded into internally coated thin films using the sol-gel method. The method to load 

these internally coated capillary tubes developed here represents a step toward the facile 

and inexpensive development of reconfigurable devices that could be used to enable 

complex reaction schemes in microfluidic devices.  
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CHAPTER 4 - Amine-Functionalization of Silica Sol-Gel Thin 
Films via Kinetic Doping 

 

4.1 Abstract  

 
Amine-fuctionalized thin films are highly desirable technologies for analytical, materials, 

and biochemistry applications. Current functionalization procedures can be costly, 

environmentally unfriendly, and require many synthetic steps. Here, we present an 

inexpensive and facile way to functionalize a silica thin film with 25000 MW branched 

polyethylenimine (BPEI), consistent with green chemistry principles. Using UV-vis 

spectroscopy and scanning electron microscopy, BPEI was determined to be loaded into 

the film at approximately 0.5 M concentration, which is a 500X increase from the loading 

solution used. The films were also tested for copper (II) sequestration to assess their 

potential for heavy metal sequestration, and showed high loading capacity of 10 ± 6 

mmol/g. Films proved to be reusable, using EDTA to chelate copper and regenerate the 

films, with only a 6% reduction in the amount of copper (II) ions sequestered by the third 

use. The films also proved stable against leaching over the course of one week in 

solution, with less than 1% of the original BPEI lost under various storage conditions (i.e. 

storage in DI water, storage in dilute BPEI solution, storage in DI water after annealing). 

These films show promise for multiple applications, from heavy metal sequestration to 

anti-fouling applications, while being inexpensive, facile, and environmentally friendly to 
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synthesize. To our knowledge, this is the first time that BPEI has been doped into silica 

thin films. 

 

4.2 Introduction 
 
 
Surface functionalization of silica is of great interest in many different fields, with the 

ability to change the surface chemistry of silica particles, monoliths, and thin films a 

highly desirable technology. Functionalization can drastically change the behavior of the 

silane groups that are typically found on the surface of silica gels.1-5 Surface 

functionalization of silica with various amine-containing compounds has shown 

increased adsorption of proteins,6 anti-fouling effects,7 increased heavy metal 

adsorption,8 chromatography applications,9 catalytic applications,10 and more.  

 

One polyamine of great interest for functionalization of silica solid substrates is branched 

polyethylenimine (BPEI). BPEIs are polymers of variable molecular weights, rich in 

primary, secondary, and tertiary amine groups. They have shown great potential for 

environmental applications such as aqueous heavy metal removal11-12 and carbon dioxide 

capture13 when attached to a solid substrate. They have also shown antimicrobial activity 

both on their own14 and as antibiotic potentiators.15  

 

While BPEI has been loaded into monoliths and nanoparticles, to the best of our 

knowledge, they have never been successfully loaded into silica thin films, most likely 

due to their very basic nature that may significantly impair thin film formation, as basic 

conditions tend to favor nanoparticle formation.16 Thus, there is a distinct possibility that 
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the incorporation of BPEI may adversely influence the structural integrity of a sol-gel 

thin film. Amine-functionalized thin films present expanded application possibilities, 

such as anti-bio-fouling coatings or coatings for heavy metal remediation.  

 

To this end, many authors have employed multiple synthetic steps often with 

environmentally harmful organic precursors or solvents,17-19 and there is much interest in 

developing more generic, robust, and ‘green’ technologies where the reduction in usage 

of harmful solvents is strongly encouraged.20,21 Kinetic doping utilizes aqueous solutions 

for loading the BPEI guest molecules into the silica thin films, eliminating the need for 

any organic solvents relative to other competing surface functionalization technologies.17-

19 Using aqueous solutions with low concentrations of BPEI to functionalize silica thin 

films, the need for environmentally hazardous solvents to generate precursors or perform 

post-coating surface modification can be effectively eliminated, resulting in a much more 

‘green’ technique.  

 

Silica thin films with amine functionalization can be made with organosilane precursors 

that contain an amino functional group,22 but this limits the size of the amine groups that 

can be introduced into the film. Additionally, every new amine compound requires the 

synthesis of a new organosilane precursor, adding another layer of complexity to the 

functionalization process. Amine containing polymers alone can be used to create thin 

films, but they lack the benefits of silica, like high surface areas, and many exhibit poor 

stability in water.23 Plasma polymerization can be used to graft amine groups onto 

existing thin films,24 but the high cost of plasma polymerization is prohibitive to wide 
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spread commercial applications. It is possible to functionalize silica thin films with 

polyethylenimine, as certain synthetic pathways have been demonstrated to functionalize 

the surface of silica gels, but they require multiple steps and environmentally hazardous 

chemicals.25-26 Here we present a facile, inexpensive synthesis of silica sol gel thin films 

with doped BPEI that provides amine functionalization with high loading efficiency 

using relatively green chemistry principles.  

 

Doping of BPEI into a silica sol-gel thin film, instead of synthetic functionalization of the 

surface, would allow for a facile, green synthesis with very few synthetic steps involved. 

However, polymers with high molecular mass present a challenge for both the traditional 

pre- and post-doping approaches to thin film loading, as too much polymer included in 

pre-doping, which is a technique that introduces dopants to the sol before depositing the 

film on a substrate,27 will likely degrade the structural integrity of the resulting silica 

film. Whereas due to poor diffusion, a high molecular weight polymer is never an ideal 

candidate for post-doping, which involves adsorbing the dopant to porous surfaces,28 due 

to poor diffusion. Kinetic doping is a technique for loading guest molecules into sol-gel 

thin films that involves introducing guest molecules into a still-evolving film, allowing 

them to be entrapped by the growing silica network.29 This technique is well suited to 

overcome the challenges posed by BPEI to the more widely used doping techniques. 

Additionally, kinetic doping has previously been studied with positively charged organic 

dyes29 and enzymes30 as the dopant molecule, making BPEI, with its organic nature and 

high positive charge density at neutral pH, an ideal candidate for kinetic doping.  
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Here, we attempt to dope silica sol gel thin films with 600 and 25,000 MW BPEI. Using 

scanning electron microscopy (SEM) and UV-vis spectroscopy, the quality of the thin 

films and amount of doped BPEI was quantified. The resultant films are structurally 

sound with BPEI concentrations in the millimolar range with minimal leaching of the 

BPEI observed. Preliminary results indicate that these films are able to sequester 10 

mmol of copper (II) ions per gram of film from solution, an approximately five-fold or 

more increase over most available amine-functionalized gel technologies.12, 25, 31-33 

Soaking in ethylenediaminetetraacetic acid (EDTA) solution in a subsequent step can 

remove these ions, regenerating the film which can be reused, with only a 6% decrease in 

copper (II) ion sequestration efficacy after 3 uses. This lends preliminary support for the 

use of these films in heavy metal removal with good reusability. It is also, to our 

knowledge, the first time that BPEI has been loaded as a guest molecule in silica sol gel 

thin films. 

 

4.3 Methods 

4.3.1 Materials and General Methods 
 

Tetraethylorthosilicate (TEOS) and 600 and 2500 MW branched polyethylenimine 

(BPEI) were purchased from Sigma-Aldrich. The 600 MW BPEI has a 

primary:secondary:tertiary amine ratio of 1:2:1, respectively, and 25000 MW BPEI has a 

ratio of 1:1.2:0.76. Phosphoric acid was purchased from EMD Millipore. Premium grade 

glass coverslips (25 mm × 25 mm × 170 µm) were purchased from Fisher Scientific. All 

chemicals and materials were used as received, with the exception of the glass coverslips, 
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which were cleaned prior to use. All UV−vis spectra were obtained via a Shimadzu UV-

2101PC UV−vis spectrometer. 

 

4.3.2 Preparation of Glass Coverslips 
 
 
To remove any organic contaminants on the glass coverslip surface, the coverslips were 

sonicated in an acetone bath for 30 minutes and rinsed with Millipore water three times to 

remove all residual acetone. The coverslips were then sonicated in 10% w/v NaOH for 

another 30 minutes and rinsed with Millipore water five times to remove all residual 

NaOH. The coverslips then went through a final sonication in Millipore water for 30 

minutes. The coverslips were then stored in Millipore water until use. 

 

4.3.3 Preparation of Silica Sol 
 
 
Silica sol was prepared by mixing a 1:8:7 molar ratio of TEOS:ethanol:water with 

phosphoric acid acting as a catalyst. A mixture of 55.9 mL of TEOS, 111.8 mL of 

ethanol, 31.7 mL of deionized water and 0.62 mL of 1% v/v phosphoric acid at room 

temperature were prepared for most coatings. The sol was then allowed to age for 20 

hours undisturbed at room temperature before use. 

 

4.3.4 Preparation of BPEI-Doped Silica Sol-Gel Thin Films 
 
 
Thin films were prepared by drain coating with a sol solution inside a beaker, based on 

the drain coated film preparation method of Crosley et al.34 After aging for 20 hours, the 
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silica sol solution was transferred to a 250 mL beaker, elevated by a jack stand. A clean 

coverslip was dried with compressed air and immersed in the aged silica sol-gel coating 

solution while suspended from above. The sol solution was then drained at a rate of 1.36 

cm/sec; the entire drain coating is complete in less than 2 seconds. Immediately after the 

silica sol solution was drained, the jack stand was lowered until the newly coated 

coverslip was completely exposed to ambient air. The thin film was allowed to age in 

ambient air for 7.5 minutes before it was transferred to a loading solution, where BPEI 

was allowed to load into the film via kinetic doping for one week. The loading solution 

consisted of 1 mM 25000 MW BPEI in 10 mM phosphate buffer, adjusted to pH 7.4 with 

phosphoric acid. 

 

4.3.5 Quantitative Determination of BPEI Loading 
 
 
Detection of BPEI in the film was done qualitatively with a procedure based on the 

method for copper detection with BPEI by Wen et al.35 using the sequestration of copper 

(II) by BPEI. This produced a dark blue color that could be seen on the film with the 

naked eye. Quantification of BPEI loading was measured separately, based on the same 

interaction with copper (II) ions.  

 

The basic amine functional groups in BPEI reacted visibly with the sol-gel film as the 

film was lowered into the BPEI loading solution, often resulting in a slightly opaque film. 

The effect is especially prominent around the corner and edges of the films. Due to the 

degradation in film transparency, the depletion of BPEI from the loading solution was 



	 93	

used to quantify the amount of BPEI loaded. Films were removed from the loading 

solution after one week of loading time, and the loading solution was saved for testing. 

Excess loading solution, stored under the same conditions without exposure to any film, 

was also saved as a reference for testing.  

 

Concentration of BPEI in the dopant solution, both with and without exposure to thin 

films, was then determined spectroscopically by complex formation with a known 

quantity of copper (II); the resulting complex exhibited two peaks, one intense peak in 

the UV region (276 nm) and one weaker peak in the visible region (638 nm). The UV 

peak was chosen for determination of BPEI loading, as the peak at 638 nm was too weak 

to quantify the small depletion of BPEI in the loading solution. The solutions could be 

minimally diluted such that the absorbance would fall in the linear range of the peak at 

276 nm. The difference in copper (II) concentration for the solutions that had been used 

to load films and the solution that had not was used to calculate the number of moles of 

BPEI loaded into the film. A control experiment was performed by placing a clean glass 

coverslip into the dopant solution for one week, and the same difference method was 

used to show that BPEI was depleted noticeably from the loading solution only in the 

presence of a silica sol-gel thin film. 

 

4.3.6 Quantitative Determination of Copper (II) Sequestration and Reusability 
 
 
Sequestration of copper (II) ions was also measured based on the method of Wen et al.35 

A concentration curve was made with varying amounts of copper (II) chloride and 

constant 1 mM BPEI at 638 nm. The peak at 638 nm proved more suitable than the 276 
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nm peak in this measurement due to the relatively high concentration of copper ions, as it 

showed linearity in the concentration range being tested. Five identically prepared BPEI 

loaded films were placed into a solution of 20 mM copper (II) chloride and allowed to 

equilibrate for 30 minutes. The 5 BPEI loaded silica films were then removed from the 

copper (II) solution and the concentration of copper (II) remaining in solution was 

measured at 638 nm after the addition of 1 mM BPEI. This was compared to the original 

20 mM copper (II) chloride solution, and the decrease in copper (II) ion concentration 

was calculated. An average mass for the films, obtained from 15 samples, was then used 

to calculate the amount of copper (II) sequestered per gram of film. 

 

To examine the reusability, the five films that had been tested for copper (II) 

sequestration were then put into a 10 mM EDTA solution for 30 minutes. The films were 

rinsed, dried, and put back into a fresh 20 mM copper (II) chloride solution. The films 

were again allowed to equilibrate for 30 minutes, the concentration of copper (II) 

remaining in the solution was measured again to assess the copper (II) sequestration 

efficiency of the films. This cycle was repeated until a significant decrease in copper (II) 

sequestration was observed. 

 

4.4 Results and Discussion 

4.4.1 Optimal Loading Parameters for Branched Polyethylenimine (BPEI) 
 
 
As shown in previous studies, there are several loading parameters that need to be 

examined for optimal kinetic doping. Film thickness and delay time (time between the 

end of drain coating and introduction of the film to the loading solution) are important 
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factors that influence optimal loading. Dopants that do not disrupt film structure have 

been shown to have an optimal delay time of 5 minutes for drain coating.34 This may be 

different for BPEI, as the extent of polycondensation of the silica network increases with 

the delay time. Due to its basic nature, BPEI may load better into a thin film that has 

different levels of condensation than dopants that are relatively neutral. Drain speed can 

change the thickness of the film and possibly the absolute amount of BPEI loaded into 

the film. The film must be thick enough to quantify the amount of BPEI loaded, as 

thicker films are expected to host more BPEI molecules. Too thick films will lead to 

increasing thickness variations across the film, due to the forces that dominate drain 

coating in the high speed regime.36   

 

Two molecular weights of BPEI, a lighter 600 MW and a heavier 25000 MW, were 

tested, to determine if identical loading parameters would work for BPEI with different 

molecular weights. They were tested, as BPEI of different sizes are known to react 

differently with many different chemicals, including silica.37-39 

 

4.4.1.1 Molecular Weight 
 
 
BPEI is a polymer that comes in many molecular weights. Different molecular weights 

have different properties; for example, the cytotoxicity of BPEI increases with increasing 

molecular weight.40 Thus, it is desirable to explore the possibilities to produce silica films 

with BPEI of different molecular weights, hence with different cytotoxicity. 

Consequently, loading of a low and a high molecular weight, 600 and 25000 MW, BPEI 

were both attempted. However, none of the parameters that were tested, including drain 
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speed, delay time, and pH of loading solution, could be optimized to allow kinetic doping 

of the 600 MW BPEI. Any attempt to load within the kinetic doping window led to 

complete film destruction and visible silica particle aggregates formed in the solution. It 

was possible to load the higher molecular weight, 25000, and loading parameters for that 

weight were further refined. 

 

BPEI and TEOS are known to form nanoparticles41, which may act as an undesirable 

competing process with kinetic doping of BPEI into silica thin films, the speed of which 

seems to vary with varying molecular weight. Kinetic doping is thought to work because 

the poly-condensation of the liquid sol is still progressing during the doping stage and the 

dopant can still be entrapped by the evolving and growing silica network.29 The only 

films that stayed intact upon contact with the 600 MW BPEI loading solution appeared to 

have passed this window of doping opportunity and did not allow much loading of the 

600 MW BPEI, despite the smaller molecular weight. Different molecular weights of 

branched or linear polyethylenimines are known to react with silicon sources 

differently,37 so this difference in behavior is not entirely unprecedented. We postulate 

that this is due to the chemical reaction between BPEI and the TEOS molecules that have 

not undergone polycondensation. Based on experimental evidence, 600 MW BPEI is 

likely to react more quickly than 25000 MW BPEI, so quickly that it outcompetes the 

polycondensation reaction so that kinetic doping is effectively inhibited.  

 

The observation that different molecular weights of BPEI react with the film differently 

may prove to be a useful way to control film properties once BPEI of other molecular 
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weights are thoroughly examined. A thorough investigation of the effect of different 

BPEI molecular weights on kinetic doping is contained in chapter 5. 

 

4.4.1.2 Drain Speed 
 
 
Film thickness was qualitatively examined for its affect on mechanical stability of the 

film and the amount of BPEI that remained solvent accessible. Thicker films, created 

with faster drain speeds, take longer to complete the evaporation process that is 

responsible for the growth of a 3D network through the polycondensation reaction to 

produce a mature thin film. Although a thicker film allows more entrapment of BPEI, the 

slower evaporation process means more uncondensed TEOS molecules remain to 

undergo undesirable side reactions with BPEI. Films that are too thick will additionally 

drain coat in a different regime, leading to increasing thickness variations on the surface 

of the film itself.36  
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Figure 4.1 shows a series of films that were loaded with a delay time of 5 minutes. To 

vary film thickness, films were prepared with drain speeds from 0.67 to 1.50 cm/sec; all 

film coatings were completed in less than 4 seconds, regardless of drain speed. Thinner 

films (those coated at a lower drain speed) showed relatively poor loading of BPEI. As 

drain speed increased, loading became more apparent as indicated by the more intense 

blue color on the thin film due to complex formation with copper (II) ions. It is also 

apparent that the highly loaded films exhibited a more significant mechanical 

Figure 4.1 Films loaded with 1 mM BPEI loading solution, a delay time of 5 
minutes, at various drain speeds. A) Films drained at each different setting on the 
pump from 2 to 10. This corresponds to speeds of 0.67, 0.78, 0.87, 0.99, 1.10, 
1.17, 1.25, 1.36, 1.41, and 1.50 cm/sec, respectively. Mechanical disruption can 
be seen most clearly on the corner that is first in contact with the BPEI loading 
solution (see Figure 1.7) and on the edges of the films nearest that corner. B) 
Close-up of slowest drain speed film, showing very faint visible blue color and 
very little mechanical disruption. C) Close up of the final chosen drain speed 
(1.36 cm/sec), showing more intense visible blue color, but at the expense of 
more mechanical disruption at the corner and edges. 
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deformation at the corner and edges of the film. A drain speed of 1.36 cm/sec was chosen 

for further testing as it resulted in a very visible amount of loading with the least amount 

of mechanical disruption at the edge.  

 

4.4.1.3 Delay Time 
 
 
Delay times in drain coating affect the extent of polycondensation in the thin film when it 

is introduced to the dopant.36 A less evolved silica network can entrap guest molecules 

more effectively as more uncondensed TEOS is available to grow around the dopant. 

However, that same uncondensed TEOS can also react with BPEI and prevent the growth 

of the silica network into a stable thin film. Indeed, testing of delay times showed that 

longer delay times produced more mechanically sound films with noticeably less 

pronounced corner and edge deformation, supporting the notion that BPEI reacts with 

TEOS in the films that has not completed condensation.  

 

Figure 4.2A shows the results of loading BPEI with a variety of delay times from 5:00 to 

7:30 minutes and a 1 mM BPEI loading solution. Figure 4.2B shows a film with a 5:00 

minute delay time. There are notable structural defects in the film, mostly around the 

corner and edges of the film and especially on the lower right corner, where a portion of 

the film was clearly detached from the glass coverslip and was subsequently washed 

away. Figure 4.2C shows a film with a delay time of 7:30 minutes. Structural defects in 

the film are less notable at this longer delay time. Delay times beyond those illustrated in 

Figure 4.2 were also tested (8:00, 8:30, and 9:00 minutes, as seen in Figure 4.3), but they 

progressively produced less loading, despite showing improved mechanical stability over 
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the 7:30 minutes delay film. This seems to indicate the kinetic doping window is closing, 

as very little uncondensed TEOS remains to effectively entrap the BPEI. On the other 

hand, the more condensed silica network in the longer delay time films seems to better 

resist the mechanical disruption caused by BPEI, due to the very same lack of 

uncondensed TEOS. 

 

Figure 4.2 Films loaded with 1 mM BPEI loading solution, at 1.36 cm/sec drain 
speed, with varying delay time, in triplicate. A) Delay times ranging from 5 
minutes (top row) to 7 minutes and 30 seconds (bottom row), in 30 second 
increments. B) Close-up of one of the 5 minutes delay time films, showing the 
large mechanical defects caused by the early introduction of BPEI, especially on 
the lower right corner. Part of the film at the lower right hand corner was 
obviously removed during the washing step, as it had detached from the substrate. 
C) Close-up of one of the 7 minutes 30 seconds films, showing much less 
mechanical disruption than the shorter delay time periods but with a slightly lower 
loading capacity as indicated by the fainter blue color. 
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Thicker films and shorter delay times seem to favor the competing process of 

nanoparticle formation with TEOS molecules that have not completed condensation, 

resulting in more severe mechanical defects. This is further supported by the results with 

the 600 MW BPEI, where silica particle formation out-competed kinetic doping at all 

delay times we examined. Thinner films and longer delay times allow the film to reach a 

higher level of condensation and develop sufficient mechanical strength whereupon, 

when it is introduced to the basic BPEI, it has built sufficient scaffolding to stay 

structurally sound on the macroscopic level, unfortunately at the expense of BPEI 

loading. 

Figure 4.3 Delay times from 7:30 minutes to 9:00 minutes, with a 1 mM BPEI 
loading solution and drain speed of 1.36 cm/sec. 
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4.4.2 Quantification of Doped BPEI in Thin Films 
 
 
The molarity of the doped BPEI was examined using a method based on Wen et al.35 A 

standard curve was constructed by using a varying amount of BPEI to complex with a 

constant 1 mM copper (II) solution. This standard curve showed high linearity and an 

extinction coefficient of 429 mM-1 cm-1, as shown in Figure 4.4.  

 

The dopant solution for the thin films, diluted to the linear range of the 276 nm standard 

curve, was then combined with copper (II) chloride to quantify the concentration of the 

remaining BPEI. The difference between the concentration of the solution prior to 

loading (pre-loading) and after loading was taken as the amount of BPEI loaded. Figure 

4.5 shows the absorption spectra of six replicates and the pre-loading solution. The 

Figure 4.4 Concentration curve using 1 mM copper (II) chloride solution and 
varying concentrations of 25000 MW BPEI at a wavelength of 276 nm. 
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average number of moles of BPEI loaded for films with a 7:30 minutes delay time, 1.36 

cm/sec drain speed, and 1 mM dopant solution was 0.7 ± 0.2 µmoles. To then calculate 

the concentration of BPEI in the films, the thickness of the film was measured via SEM. 

 

Scanning electron microscopy (SEM) images were obtained via a JEOL JSM-880 

instrument with a 5 nm Au−Pd sputter-coated layer to examine the morphology of the 

dip-coated thin film and measure the film thickness. Thirteen separate films were 

examined, 6 with 1 mM dopant solutions and 7 without any loaded BPEI. It was observed 

that the thickness of the film was highly variable over a single film. Films with BPEI had 

a wider range of thickness from as low as 53 nm up to 1.93 µm on one film, as can be 

Figure 4.5 Absorption spectra of BPEI loading solutions with 1 mM copper (II) 
chloride. The labeled “Pre-Loading” is an aliquot of the 1 mM BPEI loading 
solution that was set aside without interaction with films. Films 1-6 are loading 
solutions from individual films, where the film was removed after 1 week of 
loading and the solution left was tested for BPEI concentration. 
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seen in Figure 4.6. This seems to partly be a result of the drain-coating set-up, as a 

slightly lower variance was seen in the unloaded films, with thicknesses ranging from 1 

µm to 1.79 µm in a single film. The angle of loading in drain and dip coating is known to 

affect the thickness and shape of the resultant film, which is not a perfect 90˚ in our drain 

coating apparatus. An angle other than a perfect 90˚ between the substrate and the surface 

of the liquid sol results in a film with a wedge shaped, linearly changing thickness across 

the direction of coating 42 and could explain some of the variance seen.  

 

Additionally, drain coating at high drain speeds, like those used for our films, can result 

in varying thickness across a single film,36 also contributing to the shape seen in the SEM 

images. A diagram of the drain coating set-up is depicted in Figure 4.7, with the loading 

angle of the film labeled. The variance across the film in both the loaded and unloaded 

films suggests that both the angle and drain speed contributes to the thickness variation. 

While a commercial dip-coating set-up may enable a perfect 90˚ angle of loading, the 

drain speed would have to be lowered drastically to enter the coating regime that might 

Figure 4.6 SEM images taken from a single thin film loaded with BPEI. A) Image 
from the edge of the film. The film is only ~50 nm thick. Inset is an enlarged 
portion of the interface between the glass substrate and film. B) Image from the 
same film. This is the middle of the cross-section, where the film is ~1.9 µm thick. 
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produce a film with even thickness. The resultant film would be too thin for our desired 

high capacity BPEI loading. 

 

 

Figure 4.7 Diagram of the laboratory drain coating set-up with a magnified side view 
inset. The glass substrate is suspended above the sol using a wire with two alligator clips 
at either end. This can lead to an angle of loading (the angle labeled in the side view 
inset) deviated from a perfect 90˚. While this change may not drastically affect the 
thickness of extremely thin films, it does have a large effect on the micrometer thickness 
films presented here. This diagram also demonstrates which edge of the film comes into 
contact with BPEI first, where most of the mechanical disruption to the film can be seen. 

 

However, it is important to note that the variance across films loaded with BPEI was 

consistently much greater. This is most likely due to the interaction of BPEI with the 

film. The SEM images seem to suggest that the interaction with BPEI causes the edges of 

the film to thin, but most of the middle portion stays intact. The edges of the film are 
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where BPEI first comes into contact with it (see Figure 4.7). PEI is known to etch silica 

nanoparticles,43 so this may be a similar phenomenon at the edges. This potential etching 

doesn’t extend to the majority of the film, which remains at the same thickness as the 

unloaded films. However, given this variance in thickness, only an approximation of the 

final molarity of the film can be made. If we use an average thickness of 1 µm across the 

film, the average molarity of the loaded BPEI would be ~ 0.5 M, an approximately 500X 

increase over the loading solution.  

 

0.5 M is in line with concentrations previously reported with kinetic doping, but is a 

lower percent increase over the loading solution than achieved with proteins or 

rhodamine 6G (R6G) dye.29-30 This is most likely due to the competing reactions of 

silica/BPEI particle formation and kinetic doping. The dyes and proteins do not have any 

competing reactions, meaning all molecules that enter the film should stay there, in their 

original state, unlike BPEI. In addition, R6G is capable of hydrogen bonding with small 

pores inside the silica network to further enhance its loading relative to that of BPEI. 

Nevertheless, the increase in molarity of the film over the loading solution still means 

that the very dilute solutions of BPEI can be used to make more concentrated films, 

reducing the need for larger amounts of BPEI, the most expensive chemical used for 

producing these films.  

 

Additionally, the SEM images were compared to identify any morphology differences 

between the BPEI loaded and unloaded films. Figure 4.8 shows a cross-sectional and top-

down image of a loaded film, while Figure 4.9 shows the same for an unloaded film. The 
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morphology does not seem to change drastically in the cross-sectional images between 

loaded and unloaded films, but the grain size seems to be slightly larger in the loaded 

films versus the unloaded. The top-down view does show noticeable differences: the film 

surface in Figure 4.8C appears to be much smoother and devoid of major dents relative to 

that shown in Figure 4.9C, suggesting that BPEI does alter the surface morphology of the 

films to a certain degree. The surface of the film in 4.9C, the unloaded film, has both 

small and large ‘dimples,’ with an orange peel effect texture on the surface. Figure 4.8C, 

the loaded film, does not show this texture, and the bright spots are only glass fragments. 

The samples must be cut down to fit in the SEM instrument, causing some glass 

fragments to appear in sample images due to the glass coverslip the films are coated on.  
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Figure 4.8 SEM images of BPEI loaded films. A) A cross-sectional image of a 
loaded film at 25X magnification. B) An inset of the same image with 100X 
magnification. C) A top-down image of a loaded film at 25X magnification. The 
bright white spots seen are glass fragments caused by sample preparation for use 
with the SEM instrument. 
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Figure 4.9 SEM images of unloaded films. A) A cross-sectional image of an 
unloaded film at 25X magnification. B) An inset of the same image with 100X 
magnification. C) A top-down image of an unloaded film at 25X magnification. 
The texture seen on the film includes both the large and smaller ‘dimples’ and the 
more general orange peel texture of the film. 
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Figure 4.10 also compares an unloaded film to a loaded film, showing dark patches or a 

‘mottled’ effect on the SEM image of the loaded film that is most likely due to the 

presence of BPEI. This ‘mottled’ effect occurs on all BPEI loaded samples, but none of 

the unloaded samples, suggesting that it is due to the interaction of BPEI with the 

electron beam. It is unlikely to be simply organic contamination, as it does not show the 

characteristic dark square that is the hallmark of hydrocarbon contamination.44 If these 

darker patches on the SEM images are indeed caused by BPEI, this suggests that the 

BPEI is distributed fairly evenly throughout the entire thin film, not just localized on the 

surface. Elemental analysis through energy-dispersive X-ray spectroscopy (EDS) was 

attempted to confirm this, but the signal from the glass coverslip substrate was so 

dominant that no discernible signal was observed for the thin films for a meaningful 

determination of elemental composition. 

 

Figure 4.10. Cross-sectional images of an unloaded (A) and loaded (B) film, both at 25X 
magnification. There is a distinct mottling pattern that can be seen in loaded films, but 
was never observed in the unloaded films. It does not have the characteristic square 
pattern of hydrocarbon contamination. It is most likely due to the BPEI itself, which 
seems to be distributed throughout the film. 
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4.4.3 Stability of BPEI in Doped Films 
 

BPEI doped films were tested for leaking over the course of one week. Films can be 

stored dry with no degradation and show no leaking when tested in a copper (II) solution 

for up to two hours, but more advanced applications, like heavy metal remediation or 

anti-bio-fouling coatings, may require films to be submerged or stored wet for an 

extended period of time. To test the leaking of BPEI, films were (i) untreated and stored 

in DI water, (ii) annealed at 100 ˚C for approximately 18 hours and stored in DI water, or 

(iii) untreated and stored in 0.01 mM BPEI solution. Untreated films in DI water were 

expected to release the most BPEI, while untreated films in a dilute BPEI solution were 

expected to release less BPEI due to the reduced concentration difference between the 

film and the storage solution. Annealed films were also expected to release less BPEI due 

to morphological changes induced by the annealing process. Annealing is expected to 

cause silica pore collapse, making it more difficult for BPEI to leave or leach from the 

film. The results of this study are summarized in Table 4.1. Over the course of 1 week, 

the untreated films stored in DI water show the most loss, with a 0.6% loss of BPEI. 

Storing the films in a 0.01 mM BPEI solution, even without treatment, decreases this loss 

to 0.4%. Annealing the film further reduces this loss, even when stored in DI water, to 

0.1%. Collectively speaking, these results suggest that BPEI doped films could be used 

for an extended period of time in solution. 
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Untreated in DI 

Water 
Heat Annealed in DI 

Water 
Untreated in 0.1 

mM Storage Sol'n 

BPEI Lost (nmoles) 4.5 ± 0.7 0.8 ± 0.3 2.69 ± 0.03 

Percent of Original 
BPEI Lost 0.6% 0.1% 0.4% 

Table 4.1. Comparison of BPEI lost after being stored in DI water/solution for one week. 

 

4.4.4 Copper (II) Uptake and Reusability 
 
Copper (II) ion uptake by the films was tested, to obtain preliminary data on the 

suitability of this technology for heavy metal remediation. On average, films were able to 

sequester 10 (± 6) mmol of copper ions per gram of film. In comparison, the best 

commercial resin documented so far for copper (II) uptake is 2.06 mmol/g.31 Our thin 

film also outperforms newer, more expensive ion imprinting technology, made with an 

amino-functionalized silane precursor, with our copper (II) loading capacity an order of 

magnitude higher than that reported (39.82 mg/g or ~0.6 mmol/g) and with comparable 

regeneration capabilities.12, 45 The film also outperforms several other technologies that 

use (B)PEI; a PEI/silk fibroin hydrogel has a copper (II) uptake of 163.9 mg/g (~2.6 

mmol/g),46 silica bound BPEI has a copper (II) capacity of less than 5 mmol/g,32 and even 

a PEI-functionalized ion imprinted hydrogel had a similar uptake to the other hydrogel 

cited (40.00 mg/g or ~0.6 mmol/g).12  

 

This enhanced uptake per mass makes sense, as the resin or bulk materials are likely only 

able to sequester ions on the surface, whereas most of its bulk remains inaccessible to 

metal ions. According to our SEM data, BPEI is likely loaded throughout the film and 
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much of it is expected to be accessible to the copper (II) ions, due to the highly porous 

nature of silica versus the other polymers that have been used, making it highly efficient 

at sequestering metal ions from solution. Additionally, the concentration of BPEI loaded 

into the film is approximately 0.5 M, which is a higher concentration than other methods 

are able to achieve, which means that there are more amine groups present in our film to 

interact with the copper (II) ions. The only material with a similar loading capacity 

reported in the literature is the copper (II) adsorption capacity of silica shell microspheres 

with magnetic cores, a material that is much more expensive and produced via a much 

more involved synthesis.47 

 

Reusability of the films was also examined, as regeneration of the metal adsorption 

capacity is highly desirable in heavy metal remediation technology. By the third use of 

the film, adsorption capacity of the films had only decreased by 6%. However, it was 

observed that copper (II) sequestration efficiency of the film reduced non-linearly and by 

the fourth use, adsorption capacity had decreased by 20%, to 8 (± 5) mmol/g. Despite the 

dramatic decrease, this is still a much higher capacity for copper (II) sequestration than 

most amine-functionalized gels. 

 

4.5 Conclusions 
 
 
Using kinetic doping, we were able to produce an amine rich thin film by loading BPEI 

into silica thin films at approximately 0.5 M concentration, a 500X increase from the 

loading solution, without any need for pre-doping precursor synthetic chemistry or post-

doping surface modification reactions. This is a facile, green, and inexpensive procedure 
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for introducing amines to silica thin films. To our knowledge, this is the first time BPEI 

has been doped into silica thin films.  

 

Additionally, these films were preliminarily shown to sequester copper (II) ions at 10 

mmol/g, a much higher capacity than most technology found in the literature. They also 

proved to be fairly reusable, with only a 6% decrease in efficacy after three uses, and 

were stable in solution over the course of a week with less than 1% loss of BPEI from the 

film. BPEI loaded films are a promising technology that could sequester heavy metal ions 

from solution, accomplished by more efficient, less expensive, and ‘greener’ practices. 

 

Thin films loaded with BPEI present untapped possibilities for a wide range of 

applications. This is made possible via kinetic doping to load guest molecules into silica 

thin films, which has been considered one of the major challenges for more advanced thin 

film technology. SEM images suggest that loaded BPEI is distributed throughout the 

entire 3D silica network inside a film. Due to its ability to sequester copper (II) ions, this 

presents an intriguing possibility of the construction of transparent and conductive films 

if the copper (II) can be reduced to metallic copper. Additionally, BPEI in solution has 

shown antibacterial properties,40 making BPEI-doped silica thin films a potential 

platform to develop surface coatings for medical implants to suppress bacterial infection, 

as seen in Chapter 5. 
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CHAPTER 5 - Effects of Branched Polyethylenimine 
Molecular Weight on Kinetic Doping and Antibiofilm 

Efficacy 
 

5.1 Abstract 
 

Bacterial biofilms are associated with up to 80% of human bacterial infections and pose a 

significant threat to public health. Medical devices and implants can be especially 

susceptible to biofilm infection, with S. epidermis being the most common clinical isolate 

from these devices. Implant coatings have gained attention in recent literature for their 

ability to combat biofilm infections. Here, parameters for the kinetic doping of 1800 and 

750000 MW branched polyethylenimine (BPEI) into silica sol-gel thin films are 

developed based on previous successful loading of 25000 MW BPEI. Using a ninhydrin 

assay, the solvent accessible amines of 25000 and 750000 MW BPEI doped films are 

found to be similar (a Ruhemann’s purple absorbance of 1.8 and 1.6, respectively) while 

1800 MW BPEI doped films have less (an absorbance of 1.1). SEM images of the films 

reveal drastic morphology differences between the films loaded with different molecular 

weights. The films’ efficacy against S. epidermis biofilms are tested with a crystal violet 

assay, and all films proved to be effective in inhibiting biofilm formation (p-value < 

0.05). The best dopant, 25000 MW BPEI, caused an 89% reduction in biofilm growth and 

surpassed the performance of the clinical antibiotic gentamycin (p-value < 0.003). 
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5.2 Introduction 
 

Biofilms are a protected mode of bacterial growth that are still not fully understood,1 yet 

they are associated with up to 80% of human bacterial infections.2 In addition, over 65% 

of human infections are associated with bacterial biofilms that are often resistant to 

antibiotics and host immunity.3 Medical device and implant infections are a major health 

concern and are mainly caused by staphylococci, aided in their infectious capacity by 

their ability to form biofilms.4 S. epidermis is the most common clinical isolate from 

medical devices,5-6 a normally benign bacterium that has gained recent attention due to 

the rise of nosocomial infections associated with it, resulting in an economic burden of 

approximately $2 billion per year.7 

 

To combat these types of infections, localized treatment with antibiotics has become a 

common practice, especially for biofilm forming bacteria,8-9 as bacteria in biofilms 

generally show enhanced resistance to antibiotics. The biofilms sometimes have a 

minimum inhibitory concentration of 100-1000 times that of the same planktonic 

bacteria,10 making it extremely difficult to eradicate them completely with systemic 

antibiotics and causing reoccurring infection.11-12 The interest in local antibiotic 

treatments has led to the development of beads13 or coatings14 that can be used with 

implantable medical devices. Due to silica’s biodegradability and biocompatibility many 

researchers are interested in coatings made from silica sol-gel,15-18 including thin film 

orthopedic implant coatings for controlled release of antibiotics to combat staphylococcus 

bacteria.19 While this local release of antibiotics can help, other strategies are also needed 
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as the prevalence of antibiotic resistance continues to increase, and antibiotics becoming 

increasingly ineffective.20 

 

Branched polyethylenimine (BPEI) in solution is known to inhibit the growth of 

methicillin-resistant staphylococcus epidermis (MRSE) biofilms, especially in synergy 

with β-lactams.21 Different weights of BPEI are known to have different antibiotic 

activity and cytotoxicity toward mammalian cells, with higher molecular weights 

generally showing better antibiotic activity, but higher cytotoxicity.22-23 This cytotoxicity 

prohibits the more effective higher molecular weight BPEI from being administered 

systemically. However, a previous study of kinetically-doped BPEI silica thin films has 

shown no evidence of BPEI release from the films and a significant retention of amine 

activity.24 This could make it a promising coating for preventing biofilm formation on 

medical implants with limited cytotoxicity, as BPEI would be localized to the implant 

and not present a systemic danger. Additionally, BPEI has been shown to disrupt the 

extracellular polymeric substances (EPS) that allow biofilms to establish, instead of 

targeting specific proteins,21 making resistance possibly harder to develop.  

 

Using kinetic doping to load BPEI into silica sol gel thin films is a fast, inexpensive, and 

efficient way to produce surface coatings. Kinetic doping takes advantage of a stage of 

sol-gel film development where poly-condensation has progressed enough to produce a 

stable thin film, but not so much that molecules are unable to diffuse into the nascent 

film. This allows the introduction of a dopant molecule to the still-developing film by 

emerging it in a loading solution and allowing the dopant molecules to diffuse into the 
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film as it fully sets. This generally results in very high loading efficiency, with improved 

loading over the traditional methods of pre- and post-doping.25-26 However, a previous 

study on the kinetic doping of BPEI has shown that molecular weight has a major impact 

on kinetic doping, with 600 g/mol or MW BPEI disrupting film formation completely.24 

To study different molecular weights of BPEI and their efficacy against biofilms, 

parameter optimization was needed. In this work, silica sol-gel thin films loaded with 

BPEI of three different molecular weights were produced via kinetic doping and the 

effect of molecular weight on loading parameters was observed. The films were then 

tested for anti-biofilm activity.  

 

5.3 Methods 

5.3.1 Materials and General Methods 
 

Tetraethylorthosilicate (TEOS); 1800, 25000, and 750000 MW Branched 

Polyethylenimine (BPEI); crystal violet dye; gentamycin; and bacterial growth media 

were purchased from Sigma-Aldrich. Methicillin-resistant Staphylococcus epidermidis 

(MRSE) bacteria were purchased from the American Type Culture Collection (ATCC 

35984). Phosphoric acid was purchased from EMD Millipore. Premium grade glass 

coverslips (22 mm × 22 mm × 170 µm) were purchased from Fisher Scientific. All 

chemicals and materials were used as received, with the exception of the glass coverslips, 

which were cleaned prior to use. All UV−vis spectra were obtained via a Shimadzu UV-

2101PC UV−vis spectrometer. Scanning electron microscopy (SEM) images were 

obtained via a JEOL JSM-880 instrument with a 5 nm Au−Pd sputter-coated layer to 

examine the morphology of the thin film and measure the film thickness. 
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5.3.2 Preparation of Glass Coverslips 
 

To remove any organic contaminants on the glass coverslip surface, the coverslips were 

sonicated in an acetone bath for 30 minutes and rinsed with Millipore water three times to 

remove all residual acetone. The coverslips were then sonicated in 10% w/v NaOH for 

another 30 minutes and rinsed with Millipore water five times to remove all residual 

NaOH. The coverslips then went through a final sonication in Millipore water for 30 

minutes. The coverslips were then stored in Millipore water until use. 

 

5.3.3 Preparation of Silica Sol 
 

Silica sol was prepared by mixing a 1:8:7 molar ratio of TEOS:ethanol:water with 

phosphoric acid acting as a catalyst. A mixture of 55.9 mL of TEOS, 111.8 mL of 

ethanol, 31.7 mL of deionized water and 0.62 mL of 1% v/v phosphoric acid at room 

temperature were prepared for most coatings. The sol was then allowed to age for 20 

hours at room temperature before use. 

 

5.3.4 Preparation of BPEI-Doped Silica Sol-Gel Thin Films 
 

Thin films were prepared by drain coating with a sol solution in accordance with our 

previous work.24 After aging for 20 hours, the silica sol solution was transferred to a 250 

mL beaker, elevated by a jack stand. A clean coverslip was dried with compressed air 

before it was immersed in the aged silica sol-gel coating solution while suspended from 

above. The sol solution was then drained at a rate of 1.36 cm/sec; the entire drain coating 
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is complete in less than 2 seconds. Immediately after the silica sol solution was drained, 

the jack stand was lowered until the newly coated coverslip was completely exposed to 

ambient air. The nascent thin film was allowed to age in ambient air for 7, 7.5, and 9.5 

minutes for 750000, 25000, and 1800 MW BPEI, respectively, before it was transferred 

to a loading solution, where BPEI was allowed to load into the film via kinetic doping. 

The loading time was five days for 1800 MW BPEI, seven days for 25000 MW BPEI, 

and fourteen days for 750000 MW BPEI. The loading solution consisted of 1 mM 1800 

or 25000 MW BPEI in 10 mM phosphate buffer, adjusted to pH 7.4 with phosphoric acid 

or 0.01 mM 750000 MW BPEI, adjusted to pH 7.4 with phosphoric acid. A lower 

concentration of 750000 MW without a buffer was used due to solubility issues with the 

larger molecular weight. Unloaded films were made by using a loading solution of 10 

mM phosphate buffer adjusted to pH 7.4 with phosphoric acid.  

 

5.3.5 Determination of BPEI Uptake Into Films 
 

Detection of BPEI in the film was done qualitatively with a procedure based on the 

method for copper detection with BPEI by Wen et al.27 using the sequestration of copper 

(II) by BPEI. This produced a dark blue color that could be seen on the film with the 

naked eye. Quantification of BPEI was performed by measuring BPEI depletion in the 

loading solution. BPEI uptake was determined by measuring the difference in absorbance 

of the loading solutions at 638 nm before and after kinetic doping.  
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5.3.6 Determination of Solvent Accessible Amines 
 

Solvent accessible primary and secondary amines were quantified via the ninhydrin 

method of amine quantification, based on the procedure developed by Kaiser et al.28 

Briefly, solutions of 500 mg of ninhydrin dissolved in 10 mL of absolute ethanol, 80 mg 

of phenol dissolved in 20 mL absolute ethanol, and 2 mL of 0.001 M KCN in 100 mL 

pyridine were prepared. The loaded films together with the coverslips were broken into 

shards to reduce the solvent needed to cover the surface area and quantitavely transferred 

to a test tube. 750 µL of each of the three test solutions were added to the test tube and it 

was then stoppered and placed into a boiling water bath where the reaction was allowed 

to proceed for 5 minutes. The absorbance of this solution was then measured at 571 nm 

and compared across the different BPEI molecular weights. 

 

5.3.7 Biofilm Inhibition of BPEI Films Assay 
 

Biofilm inhibition was measured based on previous protocols,10, 29-30 especially the 

protocol by Lam et al.21 A subculture of MRSE 35984 was grown from the cryogenic 

stock on an agar plate overnight at 35 °C. Coverslips with BPEI loaded films were 

sterilized in 95% ethanol and placed in pre-sterilized 6-well plates with 1 film per well. 

Each well was then inoculated with 2.0 mL Cation-adjusted Mueller Hinton broth, plus 

20 µL of a stock MRSE 35984 culture (~5×105 CFU/mL). Unloaded films and 

gentamycin (10µg/mL) were used as negative and positive controls, respectively. The 

plates were incubated at 35 °C for 24 h to form biofilms. Media and planktonic bacteria 

were removed by washing the thin films five times with water. Crystal violet solution 
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(0.1%) was used to stain the biofilm by adding 2.0 mL of the solution to each well for 15 

min. The stained films were washed with water and 10% ethanol to get rid of excess 

crystal violet. The biofilms on each thin film were redissolved in 5.0 mL of 95% ethanol 

and absorbance at 550 nm was measured. Each assay was done in triplicate. 

 

5.4 Results and Discussion 

5.4.1 Loading of Different Molecular Weight BPEI 
 

Different molecular weights of BPEI behave differently when kinetic doping is 

attempted. 25000 MW BPEI, but not 600 MW, has previously been successfully 

kinetically doped.24 600 MW BPEI proved disruptive to film formation at all delay times 

studied, leading us to postulate that molecular weight governed the rate of an unknown 

side-reaction while the nascent film is forming. This side reaction caused silica particle 

formation and destroyed the nascent film. To examine this phenomenon further, kinetic 

doping of 1800 and 750000 MW BPEI was tested. Parameters were optimized in order to 

produce films with a similar visual quality to 25000 MW films. Keeping the structural 

stability of the films similar sheds light on the extent of poly-condensation needed before 

the nascent film is allowed to come into contact with different BPEI dopants.  

 

To keep the thickness of the films the same, the same drain speed was used for all three 

molecular weights. The delay time, defined at the time between coating of the substrate 

with the sol gel and introduction of the sample to the loading solution, is the major 

parameter under investigation. Delay time controls the extent of hydrolysis and 

condensation in the nascent film before the BPEI dopant comes into contact with it. With 
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a very short delay, BPEI can interact with the unreacted precursors in the film, forming 

particles in solution instead of allowing the film to continue growing. On the other hand, 

at long delay times, the cross-linking of the film is too extensive to allow dopant 

molecules to diffuse in, leading to little to no doping.  

 

We postulated that the side reaction of BPEI with the sol gel precursors that had 

remaining alkoxide side-groups increased with decreasing molecular weight, which is 

why the loading of 600 MW BPEI was always unsuccessful. If true, 1800 MW would 

need longer delay times than 25000 MW, whereas 750000 MW would need shorter delay 

time to produce films of similar visual quality. This proved to be true, with 1800 MW 

BPEI needing an optimal delay time of 9.5 minutes, 25000 MW needing 7.5 minutes, and 

750000 MW needing 7.0 minutes to produce films of similar visual quality. Figure 5.1 

shows the similarity in visual quality of the films with these different delay times.  

 

 

 

Figure 5.4 Thin films loaded with various molecular weights of BPEI using 
different delay and loading times. Parameters were chosen to generate films with a 
similar structural quality. Films have been loaded with copper (II) ions to help 
visualize them. 
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5.4.2 Molecular Weight and Solvent Accessible Amines 
 

A previous study has shown kinetic doping likely traps some of the BPEI inside of the 

thin film, rendering amines from deeply trapped BPEI solvent inaccessible.24 

Consequently, a modified ninhydrin test was used to compare the solvent accessible 

primary and secondary amines at each molecular weight by comparing the resulting 

absorbance measurements at 571 nm. If all the molecular weights are loaded at 

approximately the same molar concentration, more amines should be found on the 

highest molecular weight (750000) as compared to the medium molecular weight (25000) 

or the lowest molecular weight (1800). However, 25000 MW BPEI films have the 

highest amount of solvent accessible primary and secondary amines, with an absorbance 

measurement of 1.8 ± 0.3. 750000 MW BPEI films have a similar amount of amines, 

with an absorbance of 1.6 ± 0.6. 1800 MW BPEI films have the lowest amount, as 

predicted, with an absorbance of 1.1 ± 0.2. 

 

The lower than expected loading for 750000 MW is likely due to a difference in BPEI 

loading concentration. Neither the 750000 MW nor the 1800 MW films had depleted 

enough of the polymer from the loading solution to have their concentration quantified by 

a copper test, as had been previously performed on 25000 MW.24 This suggests 

concentrations of 750000 MW and 1800 MW BPEI in the films are lower than that of 

25000 MW, most likely due to the dilution of the 750000 MW loading solution due to its 

high viscosity and the longer delay time needed for the 1800 MW BPEI to avoid 

complete thin film degradation. However, it is expected that the amount of solvent 

accessible amines should determine the efficacy of the films in biofilm inhibition. We 
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predicted that 25000 MW and 750000 MW films would behave similarly, with a 

negligible difference in the amount of solvent accessible amines between the two types of 

films. The 1800 MW films, with a much lower quantity of solvent accessible amines, 

should still inhibit biofilm formation, but to a lower extent than either of the higher 

molecular weights. 

 

5.4.3 Molecular Weight and Effect on Film Structure 
 

Loading conditions were chosen to produce visually similar films, with approximately the 

same minimal amount of damage to the film from interaction with the BPEI loading 

solution. SEM images were then taken to determine the thickness of the films and 

examine their morphology on a microscopic scale. The SEM images revealed drastic 

differences in thickness and morphology between the different molecular weights of 

BPEI and unloaded silica films. 

 

In previous work, small morphology differences in unloaded films and 25000 MW BPEI 

loaded films were observed. Additionally, 25000 MW BPEI was shown to cause 

additional etching on the edge of the films, leading to very thin edges.24 Examining cross-

sectional SEM images, 1800 MW BPEI exhibits the same sort of etching on the edges, 

with the thinnest portion of the film measuring approximately 46 nm. However, the 

morphology of the film is very different than an unloaded film, being much smoother and 

showing less distinct colloidal formations, as can be seen in Figure 5.2. This is possibly 

due to a chemical reaction between the 1800 MW BPEI and any unreacted alkoxide side-

groups in the nascent film. As lower molecular weights seem to react more quickly than 
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higher molecular weights with the nascent film, even a delay time that seemed to protect 

the film visually may not have eliminated enough unreacted alkoxide side-groups to 

prevent a reaction. 

As reported in previous work, there are very small morphology differences between the 

unloaded films and the films loaded with 25000 MW BPEI, which can be seen in Figure 

5.3. While there is some difference in the appearance of the colloidal particles that make 

up the thin films, they are still distinct in the 25000 MW film. The only difference seems 

to be slightly larger particles in the loaded film. 

 

 

Figure 5.2 SEM images of A) unloaded silica thin film at 25000X magnification 
and B) silica thin film loaded with 1800 MW BPEI at 30000X magnification. The 
texture of the loaded film is much smoother, with less distinct colloidal particles 
than in the unloaded film. 

Figure 5.3 SEM images at 25000X magnification of A) unloaded silica thin film 
and B) silica thin film loaded with 25000 MW BPEI. The texture of the loaded 
film shows small changes in the colloidal particles as compared to the unloaded 
film, with slightly bigger particles in the loaded film. 
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Finally, 750000 MW BPEI loaded films also demonstrated small morphology differences 

with the unloaded film. These differences can be seen in Figure 5.4. Distinct particles can 

be seen in the loaded film, but they seem to be fairly similar to the unloaded film. 

However, the 750000 MW films did not show etching at the edges to the same extent as 

the 1800 or 250000 MW films, with a measured thickness at the edge of the film of 409 

nm. The unloaded films have an edge thickness of approximately 1 µm, which indicates 

that 750000 MW BPEI does etch the film, but much less vigorously than the other 

molecular weights. The films did, however, show an increased brittleness. Large portions 

of the films seem to have peeled back or broken off from the substrate in the middle, 

where it is thickest, during sample preparation. This either leaves no film behind to 

measure, shattered pieces of the film that are unattached or barely attached to the 

substrate, or film that seems to have been damaged but is still attached. This can be seen 

in Figure 5.5.  

 

The damage to the 750000 MW loaded films seems to be limited to that molecular 

weight, as no unloaded films or other molecular weights exhibited the same extensive 

Figure 5.4  SEM images of A) unloaded silica thin film at 25000X magnification and 
B) silica thin film loaded with 750000 MW BPEI at 50000X magnification. The 
texture of the loaded film is very similar to that of the unloaded film, with distinct 
colloidal particles. 
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damage from sample preparation. Additionally, no other films broke apart from sample 

preparation. (B)PEI is known to effect mechanical properties of complexes and gels, 

including increasing the brittleness depending on the concentration.31-33 This may be a 

molecular weight dependent phenomenon, with 750000 MW BPEI creating much more 

brittle films.  

 

Top-down images of the films were also taken to examine the surface morphology. These 

can be seen in Figure 5.6. The surface texture of the 25000 MW BPEI loaded film is 

closest to that of the unloaded film, in line with the cross-sectional morphology, with 

only a slight smoothing of the surface. Both 1800 MW and 750000 MW loaded films 

show a drastic change in surface texture. The colloidal particles are less distinct in the 

1800 MW film, with what looks like connected groups of the particles and smooth groups 

interspersed with holes and divots. The 750000 MW film seems to be more textured, with 

a lot of the colloidal particles on the surface spaced apart. This may be the effect of 

etching on the surface, as 750000 MW BPEI is introduced to the film much earlier in its 

reaction process than the other molecular weights. It does not etch as much of the film, as 

Figure 5.5 SEM images of A) fragments of silica thin film loaded with 750000 
MW BPEI at 2500X magnification and B) damaged silica thin film loaded with 
750000 MW BPEI at 30000X magnification. The damage occurred when samples 
were cut with a diamond tip knife in preparation for collecting SEM images. 
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evidenced by the edge thickness, but it does still cause a decrease in film thickness. This 

could be the cause of the surface morphology, with scattered colloidal particles remaining 

after contact with BPEI. 

 

 

 

5.4.4 Molecular Weight and Biofilm Inhibition 
 

The ability of the loaded films to inhibit the formation of MRSE 35984 biofilms was 

studied in vitro. MRSE was inoculated into wells containing films loaded with different 

Figure 5.6 Top-down SEM images taken at 50000X magnification of films that 
are A) unloaded, B) loaded with 1800 MW BPEI, C) loaded with 250000 MW 
BPEI, and D) loaded with 750000 MW BPEI.  The morphology of the 25000 MW 
BPEI film most closely resembles that of the unloaded film, with the other 
molecular weights exhibiting drastic deviations. 
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molecular weights (with unloaded films to serve as controls). The results of a Student’s t 

test indicate all molecular weights of BPEI inhibit biofilm formation (n=3 and p-value < 

0.01 for all molecular weights), as expected. 25000 MW BPEI shows the most biofilm 

inhibitory activity, a Student’s t test indicating that it out-performs even gentamycin, the 

negative control (ngentamycin = 8, n25000 =3, p-value < 0.003). Images of biofilms grown on 

different molecular weight thin films with crystal violet staining and the OD 550 of the 

dissolved films are shown below in Figure 5.7.  

 

The percent decrease in biofilm formation compared to the unloaded positive controls is 

highest for the 25000 MW film at 89%. The 750000 MW films perform equally with the 

antibiotic gentamycin, both resulting in a percent decrease of 76%. The 1800 MW films 

show the lowest biofilm inhibition with a 71% decrease. The ability of the films to inhibit 

biofilm growth follow the same trend as the available amines, with 25000 MW having 

the most solvent accessible amines and the greatest biofilm inhibition. The difference in 

efficacy between 25000 MW and 750000 MW is 57%, but this does not prove to be 

statistically significant in a Student’s t test (n = 3, p-value > 0.05). The cause of the 

biofilm inhibition seems to be closely related to the number of solvent accessible amines, 

with statistically insignificant effect from molecular weight.  
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The standard deviation of the 1800 MW BPEI films is the highest in the biofilm 

inhibition assay, but the lowest in the ninhydrin assay for solvent accessible amines. 

Conversely, 25000 and 750000 MW BPEI films exhibit higher standard deviation in the 

ninhydrin assay than in the biofilm assays. This may be caused by low surface saturation 

of 1800 MW BPEI. Because the 1800 MW BPEI seems to cause the most change in 

Figure 5.7 A) Films incubated with MRSE for 24 hours, then stained with crystal 
violet to visualize biofilm formation. B) The mean OD 550 of the dissolved 
biofilms formed on loaded thin films (n ≥ 3), error bars denote standard deviation.  
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surface morphology, some of the amine groups could be reacting with the remaining 

TEOS precursor or unreacted alkoxide side-groups. The colloidal particles thought to 

create pores that entrap molecules could become fused, reacting with the amines on the 

1800 MW BPEI so they can no longer serve as antibacterial cations and decreasing 

accessibility to amines that are already trapped. This would create portions of the film 

that have less solvent accessible amines than others, allowing biofilms to form more 

easily. The longer delay time is also expected to cause lower overall loading, which 

would also explain the decreased amount of amines. The higher molecular weights seem 

to react less with the silica itself, which may leave more unreacted amines on the surface 

to interact with the bacteria. However, the shorter delay time could create a more varied 

film environment during loading, which would explain the higher standard deviation in 

the amine amount. Nevertheless, the loading would be concentrated and even enough to 

consistently inhibit biofilm formation, explaining their high efficacy and lower standard 

deviation in the crystal violet assay. 

 

Previous solution studies have shown molecular weight effects the antibiotic or anti-

biofilm efficacy of BPEI,22-23, 34 with higher molecular weights generally being more 

effective. This is likely due to the hydrophobicity difference between molecular weights 

of BPEI, with higher molecular weights having hydrophobic interiors that lead to 

membrane penetration and damage to both bacterial and human cells.22 With the BPEI 

loaded into a solid substrate, this penetration would be limited, if it could occur at all. 

Instead, the antibacterial mechanism would likely be the amine covered, cationic surface. 

The measured solvent accessible amines predict the antibiofilm efficacy of the films, 
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regardless of the molecular size of the polymer. This indicates that the surface accessible 

amines are the major cause of the biofilm inhibition in the films.   

 

5.5 Conclusions 
 

Biofilms pose a large threat to human health, with antibiotic resistance on the rise.2, 11-12, 

30 Utilizing kinetic doping, BPEI, a polymer known to disrupt biofilms, can be loaded 

into silica sol-gel thin films. The larger molecular weight BPEIs examined exhibit better 

biofilm inhibition, but require a longer loading time. The different molecular weight 

loaded films also exhibit much different cross-sectional and surface morphology, giving 

some insight into how they may interact with the silica sol gel. The anti-biofilm efficacy 

of the BPEI loaded films appears to be a function of the solvent accessible amines on the 

silica thin films. The 25000 MW films showed greater anti-biofilm efficacy than the 

antibiotic gentamycin, showing a reduction in biofilm formation of 89%, but showed no 

statistical difference with the 750000 MW films. The 1800 MW films showed the worst 

performance, but still reduced biofilm formation by 71%. Kinetic doping allows fast, 

inexpensive, and facile functionalization of BPEI loaded silica sol-gel thin films that are 

proven to be effective in the fight against biofilm formation.  
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