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Abstract 

Archive continuation through succeeding satellite missions is highly important in preserving and 

creating deep repositories of information for Earth observation. However, with varying spectral 

and spatial resolution, it can be a challenge to harmoniously continue archives through different 

platforms such as planned with MODIS and VIIRS. I first evaluate the consistency between two 

collections of the Moderate Resolution Imaging Spectroradiometer (MODIS) data to highlight 

discrepancies that can exist between dataset even when the data is collected from the same 

sensor. Three different MODIS products are investigated to determine the extent that 

improvements made to C6 influence the overall trend results for time series between 2001 and 

2017. I focus on these three products specifically, both to allow for a comparison of vegetation 

index products—NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced 

Vegetation Index) from MOD13C1, and NDVI and EVI calculated based on surface reflectance 

from MCD43C4—and also to gain an understanding of the improvements on an entirely 

different product from the same sensor, namely Land Surface Temperature (LST) from 

MOD11C2. Next, I evaluate the consistency of MODIS and the Visible Infrared Imaging 

Radiometer Suite (VIIRS) to contribute to the knowledge of how seamlessly VIIRS can be used 

in the continuation of the MODIS archive. The MYD09GA and MCD43A4 products from 

MODIS, as well as the VNP09GA and VNP43IA4 products from VIIRS are used to carry out the 

analysis. In addition to surface reflectance, I also evaluate NDVI and the tasseled cap 

transformations of brightness, greenness, and wetness. I have conducted this analysis on the 

north island of New Zealand because the multiple land covers and their fragmented tendencies 

are a very good representation of how well the sensors correlate in potentially complex land 

surface scenarios.  
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Chapter 1: Introduction 

Remotely sensed data is the only feasibly means to monitor regional to large scale change 

of the terrestrial land surface. Whether we seek to answer questions temporally about 

phenological processes or multi-decadal change, continued archives of data collected from 

satellites will be depended on by the scientific community. There are several remotely sensed 

data sources that are cost free for end users, each of which offer varying spatial, spectral, 

temporal, and radiometric resolutions. A source such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard the Terra and Aqua satellites provides data products at a 

high temporal (daily) resolution but comes at the cost of a relatively coarse spatial resolution, 

providing products at 250, 500, 1000, and 5600 meters. Similarly, the Visible Infrared Imaging 

Radiometer Suite (VIIRS) is a sensor that is equipped on the National Polar-orbiting Partnership 

(NPP) satellite. VIIRS shares a similar temporal/spatial resolution trade-off and offers MODIS-

like products in an effort to create archive continuity. Conversely, the Landsat missions provide a 

moderately high spatial resolution of 30 meters but only has a temporal revisit time of ~16 days. 

An alternative but complimentary source to Landsat is the Sentinel-2 MultiSpectral Instrument 

(MSI) that offers a revisit time of about five days and has a spatial resolution of 10 – 20 meters 

for bands in the visible and near infrared portion of the electromagnetic spectrum. 

Vegetation indices (VI) are widely used and one of the oldest tools used in remote 

sensing studies. There are several variations, but most are built around the ratio of reflected light 

in the red and near infrared (NIR) spectrum (Glenn et al., 2008). The most widely used is the 

Normalized Difference Vegetation Index (NDVI) (Tucker, 1979): 

NDVI = (NIR − Red)/(NIR + Red) 
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The NDVI normalizes values between -1 to 1 with dense vegetation having high positive values, 

while bare ground will be low positive values and water will display negative values because of 

the absorption in the NIR (Glenn et al., 2008). 

 The Enhanced Vegetation Index is also widely used and is calculated with the red, NIR, 

blue and corresponding coefficients. 

 EVI = 2.5(NIR − Red)/(1 + NIR	 + (	(6)	Red − (7.5)(Blue)) 

the coefficient of 1 accounts for canopy background scattering while the red and blue 

coefficients of 6 and 7.5, minimize aerosol variations (Glenn et al., 2008). The EVI in 

comparison to the NDVI is less prone to saturation in densely vegetated areas. 

AVHRR aboard NOAA’s Polar Orbiting Environmental Satellites (POES) established a 

coarse resolution archive of data about the terrestrial surface. The long-term record established 

by AVHRR has been continued by MODIS, primarily through the NDVI. In addition to the 

continued NDVI record, MODIS has contributed an extensive repository of 20+ years of data 

products that include VI, surface reflectance, albedo, and land surface temperature (LST). 

MODIS is collected by two MODIS sensors aboard the Terra and Aqua satellites that have been 

in service since 1999 and 2002, respectively.  

After 20 years of reliable service from MODIS, now comes a time where the scientific 

communities that have relied on the archives must become interested in the succeeding sensor to 

MODIS. VIIRS has been designed for continuity of MODIS through the creation of MODIS like 

products using similar collection methods and algorithms. Although VIIRS and MODIS have 

significant differences, the spatial, spectral, and temporal similarities potentially could allow for 

a continued archive. 

I will explore data continuity in this thesis. First, I evaluate VI and LST trends throughout 

a 16-year time series from MODIS collections 5 and 6. The MODIS collections are reprocessed 



 

 
 

3 

versions of the MODIS archive that have algorithm adjustments for improved accuracy and 

correction for the degradation of sensors. Although the data are from the same sensors and 

products, we see that the reprocessing of data provides significantly different results. Next, I 

expand this idea and investigate the comparability of data products from different sensors. I 

evaluate the correlation between MODIS, VIIRS and Landsat across four land cover types in 

New Zealand. I first explore the similarities of MODIS with VIIRS to evaluate how seamlessly 

the datasets compare by land cover type due to VIIRS being the designated successor.  

The continued archive of MODIS is characterized by the periodic roll out of new 

collections that apply improvements to the archive. These improvements are in the form of 

algorithm improvements or calibration adjustments that improve product accuracy or adjust for 

the negative impacts of sensor degradation. At the time of writing, the most current collection is 

collection 6, and in this study, I evaluate the significant differences between the most recent 

collection and the previous, collection 5. The significant differences are evaluated through the 

Seasonal Kendall trend test on the NDVI, EVI, and LST. Through evaluating the VI and LST, I 

demonstrate that there are significant differences between the two collections, primarily in the 

VI. These findings bring to light that studies which currently use or that have previously used 

MODIS data should reconsider results based on the collection of MODIS data that was applied 

to the analysis. Even within the same data stream, there can be significant differences based on 

algorithm changes and calibrations adjustments even when the spatial, temporal, spectral, and 

radiometric resolutions remained constant. Therefore, since we see that data can be significantly 

different by the same sensor, I search to evaluate how well MODIS and VIIRS correlate, as 

VIIRS is the designed successor of MODIS. 

The MODIS archive has even built on the previously established NDVI record of 

AVHRR, as the two data streams have proved to be comparable with minor adjustments. MODIS 
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has continued to be an important data source in many scientific communities, even now, 

operating well past its design life. The years of service for MODIS and the noticeable 

degradation to the Terra sensor (Lyapustin et al., 2014; Heck et al., 2019), should prompt users 

to start exploring data streams that can replace or extend the long-standing MODIS archive. 

VIIRS was designed with similar parameters, and the data products are processed to be similar to 

the ones provided by MODIS. However, there are differences between the two sensors that can 

have a negative impact on the correlation of the data. Although MODIS and VIIRS have varying 

specifications, the continued NDVI record established by AVHRR and continued through 

MODIS serves as a successful case study for multi-sensor continued archives. 

MODIS and AVHRR vary in red and NIR bandwidth and compositing techniques. 

Maximum value composites are typically used for AVHRR where the greatest NDVI value 

observed for each pixel is selected for each 16-day composite. MODIS data are typically 

processed using a constrained-view angle-maximum value composite where the two greatest 

observed values per pixel are selected and the composite is finalized using the nearest to nadir 

observation (Gallo et al., 2004). The NDVI averages from these two sensors across all land cover 

types were similar, the AVHRR average was 0.389 (standard deviation of 0.223) while the 

average MODIS NDVI was 0.423 (standard deviation of 0.247). In any comparison of different 

platforms, discordance should be expected from varying resolution, degradation, equatorial 

crossing time, or satellite drift. Although there is a slight variation in NDVI averages, the two 

sensors showed seasonal similarity and were quite similar when sampled over coinciding time 

intervals, spatial areas and land cover types (Gallo et al., 2004). AVHRR and MODIS are an 

example of multi-sensor archive continuation under similar conditions, while comparable quality 

assurance processing such as cloud identification and water vapor corrections are performed on 

AVHRR (Gallo et al., 2005). Others have shown that that the correlation between the MODIS 
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and AVHRR NDVI datasets was high but displayed systematic and unsystematic differences (Ji 

et al. 2008). However, the systematic difference can be remedied by the application of a 

regression function to either dataset (Ji et al., 2008). 

 Therefore, we know that it reasonable to transition between platforms given the results 

presented, and others discussed later that have evaluated the relationship between MODIS and 

VIIRS. However, I demonstrate in this thesis that land cover can affect the results of the 

correlation, particularly when comparing forests and grasslands. Forests yield lower R2 values in 

comparison to grasslands likely due to a more complex physical structure and a tendency to have 

cluster of data points rather than a linear relationship. Land cover type should be considered 

when pairing or transitioning between datasets and depending on application, adjustment may be 

required.  

My thesis aims to show that careful attention should be given to data sources when 

implementing or reviewing research. Once we are aware of data inconsistencies, such as those 

discussed in chapter two between MODIS collection 5 & 6, it might be necessary to re-evaluate 

results using the revised version depending on spatial location and land cover type. Further, I 

will contribute to the understanding and outlook of multi-sensor archive continuation. MODIS 

has been in service for 20+ years and it will be imperative for many disciplines to understand its 

correlation with VIIRS.  
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Chapter 2: Evaluation of the MODIS Collections 5 and 6 for Change Analysis of Vegetation 

and Land Surface Temperature Dynamics in North and South America 

 

This chapter was published with the following citation: 

Heck E, de Beurs KM, Owsley BC, Henebry GM, 2019. Evaluation of the MODIS collections 5 

and 6 for change analysis of vegetation and land surface temperature dynamics in North and South 

America. ISPRS Journal of Photogrammetry and Remote Sensing, 156 (121-134).  

This paper was reproduced in this thesis with permission from the journal 

https://www.elsevier.com/about/policies/copyright 

 

Abstract 

The latest collection (C6) of MODIS data provides several algorithmic improvements and 

calibration adjustments that correct for sensor degradation, theoretically making the C6 MODIS 

products more accurate compared to previous collections. C6 adjustments also introduce several 

improvements in the vegetation index (VI) retrieval algorithms. With these improvements, we 

expect only minor differences between data from Terra and Aqua, but significantly different 

results between C5 and C6. In this paper, we investigate three different MODIS products to 

determine the extent that improvements made to C6 influence the overall trend results for time 

series between 2001 and 2017. We focus on these three products specifically, both to allow for a 

comparison of vegetation index products—NDVI and EVI from MOD13C1, and NDVI and EVI 

calculated based on surface reflectance from MCD43C4—and also to gain an understanding of 

the improvements on an entirely different product from the same sensor, namely Land Surface 

Temperature (LST) from MOD11C2. For the MCD43C4 dataset, we find that 17.9% and 16.4% 

of EVI and NDVI pixels, respectively, display trend discordance between C5 and C6. For the 
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MOD13C1 vegetation indices, we found comparable rates of trend discordance between C5 and 

C6: 18.5% and 17.4% for the EVI and NDVI pixels, respectively. For both products the greatest 

changes between C5 and C6 are an overall increase in pixels exhibiting a significant greening 

trend and an overall decline in pixels exhibiting a significant browning trend. Moreover, the 

largest differences between C5 and C6 for the NDVI and EVI data appear in cropland areas and 

in regions with relatively little human influence. In the Land Surface Temperature product 

(MOD11C2), the discordance between C5 and C6 is much lower: only 3.2% of day and 5.0% of 

night LST trends exhibited discordance between C5 and C6. We analyze the complementary 

results of vegetation index and land surface temperature trends and demonstrate that combining 

the results from different products observed at different portions of the electromagnetic 

spectrum—but linked through the biogeophysical processes of surface energy balance—allows 

us to portray change with more confidence than when relying on vegetation index data alone. 

 

Keywords: change analysis, western hemisphere, NDVI, EVI, LST  
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1. Introduction  

Satellites provide the ability to observe large spatial areas over long periods, enabling 

researchers the opportunity to reveal both abrupt and subtle changes in the vegetated land surface 

(de Beurs et al., 2015, de Beurs et al., 2018, Fan and Liu, 2016). To allow such analysis, it is 

important to carefully analyze and compare image time series so that the behaviors of the sensors 

and the algorithms that generate products can be well understood. With a better understanding of 

our data sources, researchers can be more confident that no false changes or trends are being 

reported, for example, due to operational error or degradation of the sensors (Wang et al., 2012, 

Zhang &  Roy, 2016). There is now an abundance of freely available data from multiple remote 

sensing platforms, enabling comparative studies to analyze the consistency and accuracy of these 

data. It is important to assess the stability across sensor platforms to create long standing archives 

(Fan & Liu, 2016) but as operational life rises (Belward & Skoien, 2015) it will become 

increasingly essential to understand how degradation over time impacts results and how 

degradation can be separated from other observed changes. The Moderate Resolution Imaging 

Spectroradiometer (MODIS), launched first onboard the Terra spacecraft in December 1999 and 

later onboard Aqua in May 2002, forms the basis for several clearly documented and freely 

available products at various spatial and temporal resolutions. The periodically renewed product 

“collections”, which result from algorithmic adjustments and improvements, provide strong 

argument for using the MODIS products.  

Over the years several improvements have been made to the MODIS products from one 

collection to the next. After changes are approved for each new collection, the entire MODIS 

archive is reprocessed to ensure that users have access to the most consistent and accurate data 

possible. The latest MODIS collection (C6) provides several algorithm improvements and 

calibration adjustments that correct for sensor degradation, theoretically making the products more 
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accurate. For example, one important aspect that affects all products based on MODIS Terra data 

is the correction for sensor degradation.  There has been noticeable degradation in both the Terra 

and Aqua MODIS sensors, but previous research has shown there was substantially greater impact 

on the Terra sensor (Lyapustin et al., 2014). The sensors are launched with onboard equipment, 

such as a solar diffuser and a solar diffuser stability monitor to perform periodic calibration, but 

this equipment can also experience operational degradation (Wang et al., 2012, Xiong et al., 2001). 

Two documented events are reported to have had significant impact on Terra’s degradation. First, 

during a pre-launch thermal vacuum test, a portion of the door paint came off the nadir aperture 

door and coated parts of the optics and scanning mirror. The paint was cleaned but lasting residue 

or damage to protective coating appears to have impacted performance (Lyapustin et al., 2014). 

Second, in May 2003, the solar door was permanently opened, and the solar door screen closed. 

The fixed position of this equipment has caused the solar door plate to degrade at a quicker rate, 

decreasing the reflectivity (Lyapustin et al., 2014). The implication of decreasing reflectivity is a 

reduced capability to track sensor response over time (Lyapustin et al., 2014). These events lead 

us to expect significant differences between the data collected from the MODIS sensors aboard 

Terra and Aqua.  

The collection 6 adjustments were implemented not only to correct sensor degradation impacts, 

but also to introduce several improvements in the vegetation index (VI) retrieval algorithms (Didan 

et al. 2015). With these improvements, we expect only minor differences between the Terra and 

Aqua products, but significantly different results between C5 and C6 (Zhang et al., 2017). Other 

papers have explored the differences between trends in VI data based on collections 5 and 6. For 

example, Detsch et al (2016) applied the Seasonal Kendall trend test to compare Terra and Aqua 

MODIS VI data from C5 and C6 for the period 2003-2010 in a study area surrounding the 

Kilimanjaro region of Tanzania. They found that at a seasonal scale, products created from Terra 
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and Aqua in C5 and C6 compared well with each other. However, throughout the length of the 

time series, the negative impacts created by the degradation of MODIS Terra were noticeable; the 

NDVI collected from Terra in C5 displayed more browning and less intense greening in 

comparison to the NDVI product collected from Aqua. The NDVI collected from Terra in C6 now 

displays more greening compared to the Aqua product. The presence of more greening trends in 

collection 6 points to the calibration changes that were made to compensate for degradation in the 

Terra MODIS.  

A global comparison of collection 5 and 6 VIs focused only on trends in the annual maximum 

vegetation index (Zhang et al., 2017). They noted sensor degradation in both Terra and Aqua: 

during the time span of 2003-2015, Aqua experienced an increase in NDVI of 0.03% year-1 and an 

increase in EVI of 0.11% year-1 from C5 to C6, respectively. We also expect to find at least some 

minor differences in MODIS land surface temperature data (LST) between C5 and C6, but there 

are few comparative studies covering the LST products. 

In our analysis, we investigate four MODIS products (MOD13C1, MCD43C4, MCD43A4 

and MOD11C2) to determine the extent that changes made to C6 impact the overall trend results. 

We compare vegetation index products—the NDVI and EVI available from MOD13C1 with the 

NDVI and EVI calculated from MCD43C4 and MCD43A4. We also explore changes in LST from 

MOD11C2 to see if the changes in trends evident in the VIs are also apparent in a different product 

from the same sensor. Our study differs from previous studies (Detsch et al., 2016, Zhang et al., 

2017) in that we focus less on the difference between Terra and Aqua and more on the comparison 

between C5 and C6. We also apply a nonparametric trend analysis that is less sensitive than simple 

linear regression to outliers, seasonality, and autocorrelation (de Beurs &  Henebry, 2004). Unlike 

many related studies, we look beyond the regional scale and calculate the trend results for the 

entire Western Hemisphere (excluding Greenland because of its extensive ice cover). We have 



 

 
 

12 

previously demonstrated that the use of more than a single index time series can significantly 

improve trend interpretation and attribution, and we have advocated for the use of complementary 

suites of multiple indicators as the new standard approach for change analysis (de Beurs et al., 

2015). Here we will follow this approach and not only investigate the changes in the vegetation 

indices by themselves, but also link the vegetation changes with warming and cooling of the land 

surface as observed by the land surface temperature data. Combining the results from different 

products observed at different regions of the electromagnetic spectrum—but linked through the 

biogeophysical processes of surface energy balance—allows us to portray change with more 

confidence than when relying on vegetation index data alone.  

 

2. Data and Methods 

2.1 C5 and C6 data for comparison 

The focus of this study relies on trend results derived from vegetation index data (VI) and 

land surface temperature data (LST). VIs are spectral transformations of two or more bands 

designed to enhance the contribution of vegetation properties. Although many vegetation indices 

exist, two of the most widely used are the Normalized Difference Vegetation Index (NDVI) and 

the Enhanced Vegetation Index (EVI), and these are the primary datasets analyzed in this study.  

We use four different products provided by MODIS, some collected from the Terra sensor 

alone (product name beginning with MOD) and another derived from a combination of both the 

Terra and Aqua MODIS sensors (product name beginning with MCD). The products have reached 

a stage three validation (Didan et al., 2015, Schaaf, 2018), except for the LST product, which has 

achieved a stage two validation (Wan, 2014). 

Both the MOD13 and the MCD43 products rely on MOD09GA and MYD09GA data, 

which are clear sky, multi-angle, high quality, atmospherically corrected, surface reflectance 
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products (Wang et al., 2018). These two products use the M{O|Y}D09 data in slightly different 

ways. We outline in table S1 the salient improvements to collection 6 for the different data 

products.  

We first evaluated the products at the Climate Modeling Grid (CMG) resolution (0.05°) to 

focus the analysis on the larger climate-driven results as opposed to changes as a result of human 

impacts, which are more easily visible in higher resolution data (de Beurs et al., 2009). We then 

compared the trends in products at 500 m resolution for the VIs in four regions with substantial 

areas of trend disagreement between collections. All the data products were downloaded as global 

datasets for both C5 and C6. We applied the same processing methods to each dataset and present 

the results for North and South America, excluding Greenland. (Although the Amazon forest 

region is included in this study, extensive cloud cover generally limited data retrieval of sufficient 

quality to detect significant trends.) The NDVI and EVI were calculated from the MCD43 data, 

and all of the products were stacked to form time series. Quality assessment (QA) bands were used 

during this process to ensure that bad data (missing, clouds, snow/ice, etc.) did not corrupt the 

trend results, and that pixels with a high percentage of missing values (>70%) were filtered out in 

the final trend results. 

 

2.1.1 MCD43C4 and MCD43A4 NBAR (Nadir BRDF- [Bidirectional Reflectance 

Distribution Function] Adjusted Reflectance) Data  

 These products provide NBAR for MODIS bands 1-7, which span the visible, near infrared, 

and shortwave infrared regions. In C5, NBAR data are delivered every 8 days using 16 days of 

observations, but in C6 they are delivered daily, still using 16 days of observations. The ninth day 

of collection is the listed day of year for the composite. For C6, we selected an observation every 

8 days to correspond with the 8-day time series available for C5. The surface reflectance data are 
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corrected to a common nadir viewing geometry at the local solar noon zenith angle. The adjusted 

surface reflectance provides a good platform for vegetation index calculations and land cover 

classifications, and the product has achieved stage 3 validation.  

 

2.1.2 MOD13C1 Vegetation Indices 

 This product is a 16-day composite that provides both the NDVI and the EVI. These VIs 

have been aggregated from the MOD13A2 (1 km) product and were projected to the CMG with a 

spatial resolution of 0.05° (~5.6 km). This product achieved stage 3 validation (Didan et al., 2015). 

Notable improvements between C5 and C6 can be found in Table S1.  

 

2.1.3 MOD11C2 Land Surface Temperature 

This product is an 8-day composite of land surface temperature (LST) that provides 

daytime and nighttime LST in Kelvin at 0.05° spatial resolution. It has achieved stage 2 validation 

(Wan, 2008).  

 

2.2 Ancillary data 

We separate our trend results by land cover class, latitude, and anthropogenic influence.  

 

2.2.1 MCD12C1 Yearly Land Cover Type  

 We used the MODIS land cover data with a spatial resolution of 0.05° (Sulla-Menashe &  

Friedl, 2018) and selected the International Geosphere-Biosphere Programme (IGBP) 

classification scheme for the most recent year available (2016). We selected the five largest land 

cover classes along with Croplands and Urban/Built-up lands for analysis of trend patterns (Table 

1). 
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Table 1: Selected Land Cover Classes 
Class Description 
Grasslands Dominated by herbaceous annuals (<2m) 
Savannas Tree cover 10-30% (canopy >2m) 
Evergreen Broadleaf 
Forests 

Dominated by evergreen broadleaf and palmate trees (canopy >2m and tree 
cover > 60%),  

Woody Savannas Tree cover 30-60% (Canopy >2m) 
Open Shrublands Dominated by woody perennials (1-2m height and 10-60% cover) 
Croplands At least 60% of area is cultivated cropland 
Urban/Built-up Lands At least 30% impervious surface area including building materials, asphalt, 

and vehicles 
 

2.2.2 Global Human Influence Index 

 The Human Influence Index (HII) is provided by NASA’s Socioeconomic Data and 

Applications Center (SEDAC) and provides metric on human-environment interactions (Wildlife 

Conservation Society - WCS &  Center for International Earth Science Information Network - 

CIESIN - Columbia University, 2005). The HII is a dataset with 1 km spatial resolution derived 

from nine global data layers that include population density, built-up areas, nighttime lights, land 

use, land cover, coastlines, roads, railroads, and navigable rivers. The range of values in the HII is 

1-64, with 64 representing the greatest degree of human influence (Figure 1). We aggregated the 

most recent version of this dataset (2004) to match the trend results at 0.05° spatial resolution. 
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Figure 1: Human Influence Index (HII) throughout our study area. The HII has values that range 
from 1-64, with 64 representing the greatest human influence
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2.3 Trend detection 

We applied the Seasonal Kendall trend analysis to all C5 and C6 time series (MOD13C1, 

MCD43C4 and MOD11C2). The Seasonal Kendall trend test is completely rank based and robust 

against non-normality, missing values, seasonality, and corrected for first-order autocorrelation 

(de Beurs &  Henebry, 2004). The Seasonal Kendall test is a variation of the Mann–Kendall test, 

where a separate Mann–Kendall test is run on each season. It tests for monotonic trends over the 

time series, yielding three possible results: positive trend, negative trend, or no trend. For the VIs, 

a positive trend corresponds to “greening” and a negative trend corresponds to “browning”. For 

the LSTs, a positive trend corresponds to “warming” and a negative trend corresponding to 

“cooling”. Furthermore, to ensure that meaningful trends are detected over the time series and to 

minimize spurious results, we selected a very conservative p-value (p < 0.01). After calculating 

the trend, we classify each grid cell as “no trend”, “negative” (significantly decreasing trend), or 

“positive” (significantly increasing trend). Comparison of the maps of C5 and C6 trends create a 

difference map describing nine distinct outcomes (Table 2). These maps allow us to determine 

whether the trend patterns are consistent across both collections for the different products.  

Table 2: Nine potential trend comparison outcomes 
 

 
 
 

 

 

  C6 
 
 
C5 

 Negative trend No trend Positive trend 
Negative trend Concordance Discordance Extreme discordance 
No trend Discordance Concordance Discordance 
Positive trend Extreme discordance Discordance Concordance 
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3. Results 

An overview of all general trends for all products can be found in Table 3. We will discuss 

the differences in the individual products and the different collections below. 

Table 3: Overview of trend results (% of all pixels) for all products. 
 
 Negative Positive No Trend Missing 
Vegetation Index C5 C6 C5 C6 C5 C6 C5 and C6 
MCD43C4 EVI 9.52 3.83 3.27 14.56 65.07 59.47 22.13 
MCD43C4 NDVI 7.76 4.35 3.95 15.38 66.14 58.12 22.14 
MOD13C1 EVI 13.53 2.39 4.33 10.19 70.18 75.48 11.95 
MOD13C1 NDVI 11.89 3.77 7.79 13.99 68.49 70.41 11.84 
Land Surface Temperature        
MOD11C2 Day 0.78 1.07 3.90 3.60 83.12 83.13 12.20 
MOD11C2 Night 0.02 0.04 6.02 4.51 76.85 78.34 17.11 

 

3.1 MCD43C4 

  In Table 4 and Figure 2, we see that the NBAR VI trend results are missing for 22% of the 

pixels. Missing trend results occur where there are not enough time series values to produce a 

reliable trend. These areas are mainly in the Amazon Basin and Canadian Tundra, most likely a 

result of persistent cloud cover.  Trend concordance (agreement between C5 and C6) occurs for 

60% and 62% of the pixels for the EVI and NDVI, respectively. However, 17.9% and 16.4% of 

the EVI and NDVI pixels, respectively, exhibit trend discordance (disagreement between C5 and 

C6). The most frequent type of discordance occurs when no trend is evident in C5 but a significant 

positive (greening) trend appears in C6 (green in Figure 2; ~11% of pixels). The rarest outcomes 

were those of complete reversal, where the trend discordance is either the shift from positive in C5 

to negative in C6 (blue in Figure 2) or the shift from negative in C5 to positive in C6 (red in Figure 

2). The occurrence of these extreme trend discordances in the Western Hemisphere never exceeded 

0.25%, and are all but invisible in Figure 2 except for the northern part of Chile, which is a hyper-

arid desert. This part of the world is extremely dry with very limited vegetation, except for the 

occasional blooms (Chavez et al. 2019). It might not be surprising that it is in this setting that the 
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datasets reveal significantly different results, considering that the tested vegetation indices are not 

developed to monitor hyper-arid environments. For both the EVI and NDVI, we see fewer pixels 

with negative trends, more pixels with “no trends”, and many more pixels with positive trends 

(Table 4).  EVI and NDVI reveal similar discrepancies across the two collections.  

  We also evaluated the percentage of pixels with a significant trend in each dataset by 

latitude (Figure 2). The latitude graph presents the total percentage of positive or negative trends 

for the available pixels in each 5° latitudinal band; missing pixels are excluded from the percentage 

calculation. In Figure 2, for example, the positive EVI trends for C6 reveal two peaks of significant 

trend values, around 15°S and 20°N (darker green). Similar peaks are visible for C5, but the total 

percentage of area with a positive trend is much lower for C5. We show higher peaks in the 

negative trends for C5 (light purple) than for C6 (dark purple). The percentage of negative trends 

in C6 is limited with only a small peak around 20% at 40°S.  

 
Table 4: MCD43C4 trend comparison results (% of all pixels) between C5 and C6 for both EVI 
and NDVI 
MCD43C4 EVI  C6   Missing data = 22.13 
C5 Negative No Trend Positive  Total 
Negative 3.28 5.99 0.25 9.52 
No Trend 0.55 53.46 11.06 65.07 
Positive <0.01 0.02 3.25 3.27 
Total 3.83 59.47 14.56 Concordance = 59.99 
     
MCD43C4 NDVI  C6   Missing data = 22.14 

C5 Negative No Trend Positive  Total 
Negative 3.64 4.04 0.08 7.76 
No Trend 0.71 54.01 11.42 66.14 
Positive <0.01 0.07 3.88 3.95 
Total 4.35 58.12 15.38 Concordance = 61.53 



 

 
 

20 

 

Figure 2: Comparison of MCD43C4 EVI C5 and C6. Nine different scenarios are presented. The 
greatest areas of discordance are no trends in C5 and positive in C6 (medium green), but there 
are also several areas that show no trends in C5 and negative trends in C6 (medium purple). Grey 
areas have insufficient data to support trend detection. NDVI results are very similar (not 
shown). The main discordant trends can be found in northern Chile where there are negative 
trends in C5 but positive trends in C6. The latitude graph reveals the total percentage of positive 
and negative trends in C5 (light purple and light green) and C6 (dark purple and dark green). 
Note that the trends in the latitude graph are not stacked.  
 

3.2 MOD13C1 

In Table 5 and corresponding Figure 3, we see that the concordances between collections in 

the EVI and NDVI are 69.6% and 70.8%, respectively. Compared to the MCD43C4 data, the 

percentage of missing values is lower and comparable at 11.95% for the EVI and 11.84% or the 

NDVI. It is important to realize that since we use an 8-day time series for the MCD43C4 data, and 

a 16-day time series for the MOD13C1 data, we have twice the probability of finding a missing 

value in the MCD43C4 dataset. The trend discordances between C5 and C6 are 18.5% and 17.4% 
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of the EVI and NDVI pixels, respectively, which is comparable to the MCD43C4 results. The 

percentages vary for each VI, but the overall patterns are consistent between the collections. For 

EVI, we find negative trends for 13.5% of the land area in C5, but just 2.4% in C6. While the total 

amount of negative trends decreases from C5 to C6, the positive EVI trends more than double 

between collections increasing from 4.3% in C5 to 10.1% in C6, and pixels with no significant 

trend (p>0.01) increases from 70.2% to 75.5%. There is relatively high trend concordance between 

NDVI and EVI for all but two outcomes (Table 5). We find that 11% of EVI pixels and 8% of 

NDVI pixels that display a negative trend in C5, exhibit no trend in C6. Similarly, there is a 

substantial shift of pixels from no trend in C5 to positive trend in C6 of 6.5% and 7.5% for the EVI 

and NDVI, respectively (Table 5). No pixels with positive trends in C5 appear with negative trends 

in C6.  

 The MOD13 data reveals similar peaks by latitude, but interestingly, the southern hemisphere 

positive peak appears around 20°S and, in the northern hemisphere, there is a positive peak around 

25°N and another around 50°N. Both datasets reveal much higher peaks of positive trends in C6 

than in C5. On the other hand, there are higher peaks of negative trends in C5 than in C6. The 

percentage of negative trends in C6 is limited with only a small peak around 20% at 40°S.  
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Table 5: MOD13C1 trend comparison results (% of all pixels) between C5 and C6 for both EVI 
and NDVI 

MOD13C1 EVI C6   Missing data = 11.95 
C5 Negative No Trend Positive  Total 
Negative 2.31 11.18 0.04 13.53 
No Trend 0.08 63.62 6.48 70.18 
Positive 0.00 0.66 3.67 4.33 
Total 2.39  75.46 10.19 Concordance = 69.60 
     
MOD13C1 NDVI C6   Missing data = 11.84 
C5 Negative No Trend Positive  Total 
Negative 3.57 8.19 0.13 11.89 
No Trend 0.20 60.83 7.46 68.49 
Positive 0.00 1.39 6.40 7.79 
Total 3.77 70.41 13.99 Concordance = 70.80 

 

 

Figure 3: Comparison of MOD13C1 EVI C5 and C6. Nine different scenarios are presented. 
The greatest areas of discordance are stable in C5 and positive in C6 (medium green), but there 
are also several areas that are stable in C5 and negative in C6 (medium purple). Grey areas have 
insufficient data to support trend detection. NDVI results are very similar (not shown). The 
latitude graph reveals the total percentage of positive and negative trends in C5 (light purple and 
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light green) and C6 (dark purple and dark green). Note that the trends in the latitude graph are 
not stacked.  
 

3.3 MOD11C2 

 In addition to trend analysis on the vegetation indices, we have also completed the same 

analysis for the MODIS Terra LST (Figures 4 and 5). The LST data do not reveal the pattern of 

discordances similar to the VI data, but instead show high concordance across both daytime and 

nighttime LST for the two collections. The trend analysis reveals 84.6% concordance for daytime 

LST and 77.8% for nighttime LST between C5 and C6, with 12% and 17% missing data, 

respectively (Table 6). Only 3.2% of daytime and 5% of nighttime LST trends exhibit discordance 

between collections. For these changed daytime trends, 7% goes from negative in C5 to no trend 

in C6, 16% goes from no trend to negative, 34% from no trend to positive, 42% from positive to 

no trend, and less than 1% goes from either positive to negative or the reverse. Thus, half the 

significant daytime LST trends in C5 exhibit no trend in C6.  For nighttime trends, the number is 

even larger: 65% of significant nighttime LST trends in C5 show no trend in C6, with the most 

common shift being from positive in C5 to no trend in C6. However, for both daytime and 

nighttime LST, more than one-third of the shift comes from no trend in C5 to positive trend in C6 

(Table 6). 

The high concordance between the two daytime LST collections is also visible in Figure 

5. There are two daytime warming peaks, one around 45°S and one around 10°S. More 

discrepancies appear between the nighttime LST collections. There are three nighttime warming 

peaks: 35°S, 5°S and 30°N. While the daytime warming is almost identical between the two 

collections, we find some difference in the nighttime warming peak around 5°S, where C5 revealed 

warming in a larger percentage of the pixels (20%) than C6 (12%). There are two very small 
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daytime cooling peaks, around 20°S and around 20°N, again both collections agree on the location 

of these peaks. Very few pixels with nighttime cooling trends appear in either collection.  

Table 6: MOD11C2 trend comparison results (% of all pixels) between trends C5 and C6 for 
both daytime and nighttime LST. 

MOD11C2 Day C6   Missing data = 12.20 
C5 Negative No Trend Positive  Total 
Negative 0.55 0.23 0.00 0.78 
No Trend 0.52 81.51 1.09 83.12 
Positive <0.01 1.39 2.51 3.90 
Total 1.07 83.13 3.60 Concordance = 84.57  
     
MOD11C2 Night C6   Missing data = 17.11 
C5 Negative No Trend Positive  Total 
Negative 0.01 0.01 <0.01 0.02 
No Trend 0.03 75.07 1.75 76.85 
Positive <0.01 3.26 2.76 6.02 
Total 0.04 78.34 4.51 Concordance = 77.84  
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Figure 4: MOD11C2 daytime LST C5 and C6 comparison reveals less discordance in 
temperature than in vegetation indices. The most prevalent discordant scenario is a positive trend 
in C5 and a no detected trend in C6 (bright red). Note that the trends in the latitude graph are not 
stacked.  
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Figure 5: MOD11C2 nighttime LST C5 and C6 comparison reveals less discordance in 
temperature than in vegetation indices. The most prevalent discordant scenario is a positive trend 
in C5 and a no detected trend in C6 (bright red). Note that the trends in the latitude graph are not 
stacked.  
 

3.4 Changes by Land Cover class 

When we evaluate the trend results by land cover class, we can see the percentage of 

significant positive trends are higher in C6 for all classes for both MCD43C4 and MOD13C1 

(Figure 6). In addition, the percentage of significant negative trends, based on data from C6, are 

lower for all land cover classes in both datasets. For the MCD43C4 data, we find that the 

percentage of negative trends is consistently lower than the percentage of positive trends across all 

classes, except for the Urban/Built-up areas that reveal approximately the same percentage of 

positive and negative trends. The MOD13C1 EVI trend results by land cover exhibit more 

variability between classes, with much higher percentages of positive trends in croplands, 



 

 
 

27 

compared to, for example, evergreen broadleaf forests. The MOD13C1 data also display major 

differences in the percentage of negative trends for the woody savannas between collections.   

When evaluating the MOD11C2 LST trends by land cover class, we find the most cooling 

trends in croplands (7.2% in C5 vs. 8.0% in C6) followed by grasslands (1.8% vs. 2.3%), savannas 

(1.4% vs. 2.0%), and urban areas (1.2% vs. 1.9%). The percentage of daytime cooling in the other 

three classes was less than 0.5% (Figure 7). The daytime warming trends were highest in urban 

areas (5.5% vs. 5.7%) followed by evergreen broadleaf forests (5.1% vs. 3.8%), savannas (4.9% 

vs. 4.7%), and croplands (4.8% vs. 3.4%). Only for urban areas and open shrublands did we find 

more daytime warming in C6 than in C5. We find no nighttime cooling in either collection, but 

there is a considerable amount of nighttime warming for all classes. For example, the urban, 

cropland, open shrubland, and grassland classes reveal nighttime warming for more than 10% of 

each class; however, the nighttime warming is more prevalent in C5 than in C6, except for the 

open shrubland class (Figure 7).  
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Figure 6: Percentage of significant trends by land cover class for EVI from MCD43C4 and 
MOD13C1. Land cover classes are ordered by percentage of positive trends in C006 for the 
MCD43C4 data. Croplands exhibit the largest percentage of significant positive trends in C006 
and Urban the smallest. Urban reveals the largest significant negative trends for both C005 and 
C006 in MCD43C4. However, for MOD13, wooded savanna, the most arid cover class 
considered, exhibits a larger percentage of significant negative trends in C005.  
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Figure 7: Percentage of significant trends by land cover class for the daytime and nighttime LST 
data from the MOD11C2 product. 
 

3.5 Joint Trend Analysis: EVI and LST 

Table 7 provides an overview of the joint trend analysis for the EVI from the MCD43C4 product 

and the daytime temperature from the MOD11C2 product for C5 and C6. Note that in this joint 

analysis, trend alignment appears as areas with either browning and warming or greening and 
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cooling. Missing data is 25.55% in C5 and 25.56% in C6. Trend alignment between the datasets 

in 62.53% in C5 and 55.88% in C6. In other words, we find trend misalignment between the 

datasets in 11.92% of the C5 data and 18.53% of the C6 of the data. Most misalignments appear 

in areas with a changing vegetation index trend that reveal no trend in the LST data. For C5, we 

find that 10% of the pixels fall into this category, with 7.06% of the pixels revealing a negative 

vegetation trend and no trend in LST; whereas, 2.94% of the pixels revealing a positive vegetation 

trend but no trend in LST. For C6, the total percentage of pixels in this category increased to 

15.88% with 2.62% of the pixels exhibiting browning without LST change, and 13.26% of the 

pixels exhibiting greening without a temperature change. We find that 24.96% of the pixels with 

significant browning in C5 also show significant warming, compared to 30.53% in C6.  On the 

other hand, we find that 10% of the pixels in C5 exhibit with significant greening also exhibit 

significant cooling, but just 5.6% for C6.  In C5, only 0.78% of the Western Hemisphere is 

significantly cooling with 45% of this cooling area corresponding to areas with significant 

greening. On the other hand, analysis of C5 reveals that 3.84% of North and South America is 

significantly warming, with 61.3% of those pixels also exhibiting significant browning. 

Interestingly, for C6, we find that 1.06% of the study area is cooling, with 75% of those pixels also 

showing significant greening. Thus, we find more cooling in C6, and the cooling corresponds with 

more greening than in C5. However, C6 reveals that 3.54% of the study region has significant 

warming, but only 32.7% of the warming areas also exhibit browning. While we find slightly less 

area with significant warming, these warming patches in C6 appear to be less strongly linked to 

browning than in C5. Figure 8 displays the joint vegetation and temperature trends for C5 (Figure 

8 top) and C6 (Figure 8 bottom). The darker toned areas are the regions where the vegetation index 

and the LST both exhibit significant, aligned trends in the expected directions. It is interesting to 

note the increase in greening and decrease in browning between C5 and C6 are easily recognizable 
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in the figure, but that the regions where both the vegetation index and the LST show significant, 

concordant, trends appear relatively stable in C5 and C6. This pattern is most likely the result of 

the lack of major changes between C5 and C6 for the LST data. We find comparable responses for 

the nighttime temperatures (Table 7). 

Table 7: Combined EVI and LST daytime trends. Note that the shaded trends reveal areas of 
trend alignment, since increases in vegetation typically are related with cooling, and decreases in 
vegetation are often linked to warming. Final total percentages do not fully match total 
percentages from previous tables as a result of the slightly different combined missing data mask 
for EVI and LST.  

C5 MOD11C2 Daytime Missing data = 25.55 
MCD43C4 EVI Cooling No Trend Warming  Total 
Negative 0.02 7.06 2.35 9.43 
No Trend 0.41 59.83 1.45 61.69 
Positive 0.35 2.94 0.03 3.33 
Total 0.78  69.83 3.84 Alignment= 62.53 
     

C6 MOD11C2 Daytime Missing data = 25.56 
MCD43C4 EVI Cooling No Trend Warming  Total 
Negative 0.01 2.62 1.16 3.79 
No Trend 0.25 53.93 2.25 56.44 
Positive 0.79 13.26 0.13 14.18 
Total 1.06 69.81 3.54 Alignment = 55.88 

 
Table 8: Combined EVI and LST nighttime trends. Note that the shaded trends reveal areas of 
trend alignment, since increases in vegetation typically are related with cooling, and decreases in 
vegetation are often linked to warming. Note: there is virtually no nighttime cooling in either 
collection. 

C5 MOD11C2 Nighttime Missing data = 27.85 
MCD43C4 EVI Cooling No Trend Warming  Total 
Negative 0.00 8.06 1.35 9.41 
No Trend 0.01 55.30 4.45 59.46 
Positive 0.00 3.16 0.17 33.33 
Total 0.02 66.52 5.67 Alignment = 56.65 
     

C6 MOD11C2 Nighttime Missing data = 27.85 
MCD43C4 EVI Cooling No Trend Warming  Total 
Negative 0.00 3.32 0.45 3.77 
No Trend 0.02 51.37 3.09 54.48 
Positive 0.01 13.21 0.68 13.91 
Total 0.04 67.90 4.22 Alignment = 51.83 
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Figure 8 (top): C5 MCD43C4 EVI trends jointly with C5 MOD11C2 daytime LST trends. 
(bottom) C6 MCD43C4 EVI trends jointly with C6 MOD11C2 daytime LST trends. Conflicting 
trends indicate areas where increasing temperatures are found with increasing vegetation and 
vice versa. 
 

3.6 Trend results by human influence  

We analyzed the trend results by human influence class (1- 64) to investigate if areas with 

greater human influence revealed different trend results. We present these results in Figures 9, 10, 
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and 11, showing the percentages of trends found in C5 and C6, with the strength of the human 

influence index (1-64) divided into four different categories represented by different sized points. 

Figure 9 demonstrates that there is a greater percentage of negative trends in C5 and more positive 

trends in C6. It is also interesting to note that regions of low human influence (HII<7) have a 

greater relative percentage of negative trends indicated by the larger points. On the flip side, the 

percentages of positive trends in C6 are approximately 3-7 times higher than the percentages of 

positive trends in C5. The distribution of the different sized points for the positive trends indicate 

no clear pattern with respect to the different human influence categories.  

Figure 10 demonstrates that percentages of positive and negative trends in the daytime and 

nighttime LST data for C5 and C6 are very similar. The daytime LST data reveal both positive and 

negative trends, with both sets plotted close to the identity line. The nighttime LST data exhibit 

only significant positive (warming) trends in both C5 and C6, with most of the human influence 

categories plotting just below the identity line, indicating that the percentage of significant trends 

found is slightly higher in C5 than in C6. Interestingly, the negative trends appear greater for the 

areas with the lowest human influence (HII<7) and the difference between C5 and C6 is greatest 

for those areas. These areas can be found in central Brazil and northern Canada. 

Figure 11 shows the results for the selected four sinusoidal tiles—h09v05, h12v04, 

h13v02, and h13v10—of the MCD43A4 product, which cover portions of the southwestern US 

(table S2), eastern US/Canada Great Lakes region (table S3), northern Canada (table S4), and the 

Brazilian cerrado or savanna (table S5), respectively. We use these data to evaluate how results 

may differ between the spatial resolution of 0.05° and 500 m. We found the 500 m trend results 

from three of the four regions were relatively consistent with the trends from the coarser 

resolution data. However, the tile h13v02 covering the Canadian tundra exhibited different 
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results, perhaps because the extent of human influence is less than what we see, on average, 

across the western hemisphere and the other tiles. 

Similar to the 0.05° dataset, we found that a majority of points lie above the identity line 

indicating that C6 presented more positive trends, while C5 had more negative trends. Among 

the negative trends in the Great Lakes region (tile h12v04), the greatest disparity between the 

collections occurred in areas with the highest human influence (figure 11). Out of our four tiles 

analyzed, this region also had 3.5 times as many C6 positive trends as in C5, which was the 

greatest disparity between collections among the four regions (table S3). The Brazilian cerrado 

(tile h13v10) showed that areas with high human influence had the more differences in negative 

trends between collections (table S5). Interestingly, a majority of positive trends in areas with the 

highest human influence (HII>30) in the Great Lakes and in the cerrado regions exhibited the 

lowest disparities between collections.  
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Figure 9: Differences between C5 and C6 based on MCD43C4 NDVI positive and negative 
trend percentages for each degree of human influence (1-64; indicated by dot size and color). All 
the points are above the identity line, demonstrating a greater percentage of negative trends in C5 
and more positive trends in C6. Colors correspond with Figure 1. 
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Figure 10: Differences between C5 and C6 based on MOD11C2 daytime (left) and nighttime 
(right) LST positive and negative trends for each degree of human influence (1-64; indicated by 
dot size and color). Daytime trends are split between both cooling (negative) and warming 
(positive). Nighttime trends reveal only warming. Human influence affects these trends, with the 
most extensive areas of daytime warming generally have less human influence (larger 
dots/triangles). There is less nighttime warming for areas with high human influence (smaller 
triangles) in both collections. Colors correspond with Figure 1. 
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Figure 11: Differences between C5 and C6 based on MCD43A4 NDVI positive and negative trend 
percentages for each degree of human influence (1-64; indicated by dot size and color). Three of 
the sinusoidal tiles (h09v05, h12v04, and h13v10) are consistent with Figure 9, having all points 
above the identity line. This indicates that there is a greater percentage of negative trends in C5 
and more positive trends in C6. However, there is unique clustering for each region. For example, 
in tile h13v10, the points representing HII>30, on average, have the highest percentages of 
negative trends. 
 
4. Discussion 

4.1 Trends in MODIS Vegetation Indices in Collections 5 and 6  

As early as 2012, Wang et al. (2012) reported on the impact of sensor degradation on MODIS 

collection 5 NDVI time series from Terra. That paper demonstrated a nearly threefold difference 

in the percentage of negative trends derived from Terra compared to those derived from Aqua for 

the period 2002-2010 (17.4% vs. 6.7%). Here we have presented a thorough and careful analysis 

of the consistency between MODIS collections C5 and C6 for the western hemisphere for three 

different products: a combined product (MCD43C4), which uses data collected from Terra and 
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Aqua, and two products generated solely from Terra (MOD11C2 and MOD13C1). In addition, we 

extended the VI trend comparison to four diverse MODIS tiles at 500 m resolution (MCD43A4). 

There are known differences between the sensors on these two satellites due to the pre-launch 

event, the opening of the solar door and the closing of the solar door screen after launch, which 

caused degradation as summarized in Table S1 (Wang et al., 2018). It is important to keep in mind 

that the percentage of missing data was slightly different for all three products. The trend 

percentages we found for the vegetation indices appear comparable to the percentage of negative 

trends reported earlier (Wang et al., 2012). Detsch et al. (2016) found that with the improvements 

made for C6, data retrieved from the Terra satellite displayed more greening compared to data 

from Aqua. Along with a possible overcompensation that was meant to correct Terra degradation, 

the time of day the sensor collects data should also be considered as to why Terra records more 

greening trends: MODIS Terra benefits from a mid-morning time observation that results in fewer 

clouds compared to Aqua’s early afternoon overpass (Lyapustin et al., 2014).  

Zhang et al. (2017) suggested that previous studies of temporal vegetation trends based solely 

on Terra C5 data might need to be re-investigated. Over the past decade, several studies discussed 

the browning of Earth, presenting a variety of reasons for these browning trends. One study found 

large portions of land that revealed browning in Terra C5, for example in tropical regions, without 

showing these trends in Terra C6 (Zhang et al., 2017), although that paper investigated only the 

annual vegetation index maxima, when differences should be least apparent. One paper 

specifically compared the results of MOD13 C5 NDVI trends with trends observed in the AVHRR 

GIMMS NDVI data for the 11-year period from 2000-2010 (Fensholt &  Proud, 2012). For the 

Western Hemisphere (North and South America), they found positive NDVI trends for 4.73% of 

the study area in the MOD13 data compared to 6.52% for the GIMMS data. On the other hand, 

they found negative trends for 8.72% of the study region with MOD13 data and 4.33% with the 
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GIMMS data, indicating about twice the amount of negative trends in MOD13 compared to 

GIMMS and about 50% fewer positive trend pixels.  It is apparent that most of the differences 

between these two datasets were found in South America where the MOD13 data revealed a 

negative NDVI trend for almost 25% of the land surface, while the GIMMS data revealed a 

negative NDVI trend for just 6.4% of the land surface. The differences were much smaller in North 

America, where the GIMMS data actually revealed a greater percentage of negative trends (3.4%) 

than the MOD13 data (1.4%).  

Other papers also revealed that browning trends are not only found in the MODIS data, but 

also in the AVHRR dataset (de Jong et al., 2011, de Jong et al., 2012, Pan et al., 2018). For 

example, between 2001 and 2013, Pan et al. (2018) found browning trends in 54.8%, 33.2% and 

45.9% for the MODIS Terra C5, MODIS Terra C6 and GIMMS3g data respectively. Note that the 

global browning percentages found by Pan et al. (2018) are substantially higher (54.8% in C5 vs. 

33.2% in C6) than the percentages reported here in table 3: 11.89% in C5 vs.  3.77% in C6. We 

believe this discrepancy likely arises from a variety of differences between the studies. First, we 

only investigate North and South America, as opposed to the entire globe. Second, we use 

consistent masking in our analysis, e.g., we applied the same missing data mask to the C5 and C6 

data for each product to ensure that we calculate our trend percentages based on the same number 

of pixels for both collections. Note, that while we apply the same missing data mask for the two 

collections, the missing data mask we apply to MOD13C1 is not the same for MCD43C4, because 

their product algorithms differ. Finally and perhaps most importantly, our trend detection method 

is much more conservative in estimating when a trend is significant (p<0.01) and is corrected for 

both seasonality and first-order serial autocorrelation, making the results yet more conservative. A 

comparison of time series trends from GIMMS3g, SeaWiFS, SPOT-VGT, and MODIS data 

revealed that for far northern latitudes these datasets agree in just 46% of the pixels, with 27.8% 
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of the land revealing greening in all datasets and 12.2% revealing browning in all datasets (Guay 

et al., 2014). Both the GIMMS3g and the MODIS NBAR data showed browning in an additional 

12.9% and 13.5% of the pixels, respectively, while the SPOT D10 data exhibited browning in only 

2.7% additional pixels, with greening in an additional 18.5% of the pixels (Guay et al., 2014).  

Global LAI trends have also been compared for MODIS C6, MERIS, and GEOV1 data, and the 

mean trends captured in these products agreed very well (Jiang et al., 2017). The study also 

revealed a decreasing LAI trend for the MODIS C5 LAI data and demonstrated that the GLASS 

and GLOBMAP LAI products, both based on MODIS C5 reflectance, also revealed negative 

trends during the overlapping time period (2003-2011).  

Large-scale climate oscillations are often considered as responsible drivers for global and 

regional vegetation trends (Bastos et al., 2017, de Beurs et al., 2018, Jiang et al., 2017). Vegetation 

browning—perhaps spuriously detected—has been explained by droughts (de Jong et al., 2012, 

Xu et al., 2012), wildfires (Potter, 2018), insect damage (Sulla-Menashe et al., 2018, Verbyla, 

2011), and extreme climate events (Bjerke et al., 2014). Drought, vapor pressure deficit, and 

growing season stress were reported as possible causes of browning in the boreal forests of Canada 

(de Jong et al., 2012). Browning trends in high northern latitudes were confirmed by tree ring 

analysis (Beck &  Goetz, 2011, Berner et al., 2011, Lloyd & Bunn, 2007). NDVI from GIMMS 

AVHRR data also revealed strong negative trends in Argentina, which has been explained by the 

expansion of agriculture in this region (Viglizzo et al., 2011).  

Some suggest that although the calibration changes improve the correlation between data from 

the two sensors, the presence of more greening trends in Terra collection 6 could hint that there 

was an overcompensation in the calibration efforts, considering that Aqua has proven to be the 

more stable sensor (Detsch et al., 2016, Zhang et al., 2017). Fan and Liu (2016) suggest that land 

cover differences may play a more important role when comparing NDVI differences from 
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different moderate resolution sensors than, for example, atmospheric variations. Others have 

suggested that it is good practice to use an ensemble of different datasets when investigating land 

surface changes to allow for the identification of errors in data, as they found significant errors in 

the GIMMS3.0g dataset for Australia’s drylands (Burrell et al. 2018; errors have been addressed 

in the GIMMS3.1g dataset).  

 

4.2 Trends in MODIS LST in Collections 5 and 6 

LST is a very important variable when modeling surface energy and water balance processes 

(Bindhu et al., 2013). In addition, satellite derived LST measurements can be especially important 

in areas with a limited number of meteorological stations, such as the far northern latitudes. 

MODIS LST data are also often used to understand urban heat islands (e.g., (Krehbiel &  Henebry, 

2016, Krehbiel et al., 2017, Walker et al., 2015, Fu and Weng, 2018), with some reporting on 

trends in urban LST (Benas et al., 2017). There have not been many studies focusing on 

consistency of the MODIS LST products across collections. One paper concludes that MODIS 

LST C6 data provides more stable data than previous collections (Wongsai et al., 2017). As 

summarized in Table S1, trend discordance between C5 and C6 LST predominantly occurs in LST 

retrieval over drylands. Interestingly, our land cover analysis reveals very little difference between 

collections for all land cover classes, except for the open shrubland class, the driest class 

considered. Open shrubland is also the only class where we now find a larger percentage of area 

with nighttime warming than in C5.  

As with the MODIS VI data, there are authors who do not specifically address which MODIS 

collection was used in their analysis (Benas et al., 2017, Williamson et al., 2017).  
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5. Conclusions 

There have been few papers discussing the discrepancy between C5 and C6 vegetation index 

data (Lyapustin et al., 2014, Zhang et al., 2017), and the major trend discordances between the 

two collections have received limited attention. As a result, even in 2018, there are still papers 

published based solely using C5 NDVI data (e.g., Fang et al., 2018), while others do not specify 

the collection of the data used (e.g., Browning et al., 2018, Murthy &  Bagchi, 2018).  

The aim of this study was to determine how the changes to the newly reprocessed MODIS 

collection (C6) would impact the VI and LST in comparison with the previous collection (C5). 

Our results revealed that while trend results from both the MOD13C1 and MCD43C4 data 

products, as well as results for NDVI and EVI exhibit broad concordance in significant trends, 

there were distinct differences between collections. We also demonstrated that the differences 

between C5 and C6 for the LST data are minor, allowing us to conclude that we do not expect 

major differences in the discussion around temperature trends as observed by MODIS sensors. 

Finally, we showed that the regions where both the vegetation index and the LST show significant, 

concordant trends are relatively stable in both C5 and C6, which demonstrates the advantage of 

jointly investigating land surface dynamics using more than one product. 
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Figure 12: Comparison of trend detections in MCD43C4 and MCD43A4. From Table S2, it can 
be seen that there is good consistency between products but, as expected, the 500 m data show 
more trends and finer spatial detail. 
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Figure 13: Comparison of trend detections in MCD43C4 and MCD43A4. From Table S3, it can 
be seen that there is good consistency between products but,  as expected, the 500m data show 
more trends and finer spatial detail. 
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Figure 14: Comparison of trend detections by MCD43C4 and MCD43A4. From Table S4, it can 
be seen that there is good consistency between products but, as expected, the 500 m data show 
more trends and finer spatial detail. 
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Figure 15: Comparison of trend detection in MCD43C4 and MCD43A4. From Table S5, it can 
be seen that there is good consistency between products but, as expected, the 500 m data show 
more trends and finer spatial detail. 
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Table S1: Product improvements from C5 to C6 for the selected products. 

Product Improvement 
M{O|Y}D09 Three main improvements: solar diffuser degradation correction, response vs. scan angle 

look up table updates, polarization correction.  
M{O|Y}D09 
-lite 

Improved aerosol retrieval and correction algorithms, refined snow, cloud, and cloud 
shadow detection algorithms.  

MOD13C1 Gap filling for low quality data (Didan et al. 2015). 
MOD13C1 Use of pre-composited surface reflectance data by combining two 8-day composites 

from MOD09A1 data. Since the compositing only retains high quality data, the VI 
algorithm is more likely to generate accurate results (Didan et al., 2015). 

MOD13C1 Modification of the constrained view angle maximum value composite (CV-MVC) to 
allow for a wider range of view angles. The product uses this larger set of observations 
and models the final result to nadir view, and the new maximum value composite 
approach compares the observations with the highest NDVI and selects the observation 
which is closest to nadir. This approach is taken to minimize the BRDF effects (Didan 
et al., 2015). 

MOD13C1 An updated and more robust 2-band EVI backup algorithm that enables the EVI to be 
calculated using the red and NIR bands only if it is not ideal to use the blue band. The 
blue band is sensitive to clouds/snow and ice cover, and these conditions cause the EVI 
to be extremely high and will produce erroneous values. The 2-band backup algorithm 
does not consider the blue band but maintains the advantages of using the EVI (Didan 
et al., 2015). 

MCD43C4 Switched input data to L2G-Lite surface reflectance data (Schaaf, 2018). 
MCD43C4 The final product is now generated daily based on 16 days of data. For this paper, we 

selected every eighth composite to match the 8-day temporal resolution of C5. 
MCD43C4 Improved quality and increased retrievals at high latitudes from use of all available 

observations, resulting in fewer missing data.  
Improved backup database for poorer quality retrievals (Wang et al., 2018). 

MCD43C4 Expanded the quality and uncertainty values. 
MOD11C2 Cloud contaminated pixels are removed (Wan, 2014). 
MOD11C2 The split-window algorithm that is used to derive land surface temperature values is 

improved for bare soil regions (Duan et al., 2017, Duan et al., 2018, Duan et al., 2019). 
MOD11C2 Day/night algorithm is improved to enhance the LST accuracy over deserts.  
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Table S2: MCD43A4 (top) and MCD43C4 (bottom) trend comparison results (% of all pixels) 
between C5 and C6 for NDVI. These results represent the percentage of trends within the 
sinusoidal tile for each product. 
Tile: h09v05  
MCD43A4 NDVI 

 
C6 

   

C5 Negative No Trend Positive Total 
Negative 4.95 5.67 0.01 10.63 
No Trend 0.06 73.06 9.94 83.06 
Positive 0.00 0.14 6.16 6.30 
Total 5.01 78.87 16.11 Concordance = 84.17 
     
MCD43C4 NDVI C6    
C5 Negative No Trend Positive Total 
Negative 2.36 2.88 0.00 5.24 
No Trend 0.20 80.88 10.63 91.71 
Positive 0.00 0.02 3.02 3.04 
Total 2.56 83.78 13.65 Concordance = 86.26 

 

Table S3: MCD43A4 (top) and MCD43C4 (bottom) trend comparison results (% of all pixels) 
between C5 and C6 for NDVI. These results represent the percentage of trends within the 
sinusoidal tile for each product. 
Tile: h12v04  
MCD43A4 NDVI 

 
C6 

   

C5 Negative No Trend Positive Total 
Negative 3.88 10.35 0.11 14.34 
No Trend 0.14 61.78 16.94 78.86 
Positive 0.00 0.02 6.79 6.81 
Total 4.02 72.15 23.84 Concordance = 72.45 
     
MCD43C4 NDVI C6    
C5 Negative No Trend Positive Total 
Negative 0.63 3.43 0.02 4.08 
No Trend 0.75 78.49 15.36 94.6 
Positive 0.00 0.03 1.30 1.33 
Total 1.38 81.95 16.68 Concordance = 80.42 
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Table S4: MCD43A4 (top) and MCD43C4 (bottom) trend comparison results (% of all pixels) 
between C5 and C6 for NDVI. These results represent the percentage of trends within the 
sinusoidal tile for each product. 
Tile: h13v02  
MCD43A4 NDVI 

 
C6 

   

C5 Negative No Trend Positive Total 
Negative 0.04 0.10 0.00 0.14 
No Trend 0.03 71.58 18.87 90.48 
Positive 0.00 0.35 9.04 9.39 
Total 0.07 72.03 27.91 Concordance = 80.66 
     
MCD43C4 NDVI C6    
C5 Negative No Trend Positive Total 
Negative 0.00 0.01 0.00 0.01 
No Trend 0.02 81.62 18.17 99.81 
Positive 0.00 0.00 0.18 0.18 
Total 0.02 81.63 18.35 Concordance = 81.80 

 

Table S5: MCD43A4 (top) and MCD43C4 (bottom) trend comparison results (% of all pixels) 
between C5 and C6 for NDVI. These results represent the percentage of trends within the 
sinusoidal tile for each product. 
Tile: h13v10  
MCD43A4 NDVI 

 
C6 

   

C5 Negative No Trend Positive Total 
Negative 16.07 7.26 0.01 23.34 
No Trend 0.60 55.77 8.24 64.61 
Positive 0.00 0.31 11.74 12.05 
Total 16.67 63.34 19.99 Concordance = 83.58 
     
MCD43C4 NDVI C6    
C5 Negative No Trend Positive Total 
Negative 10.21 3.69 0.01 13.91 
No Trend 3.38 63.28 8.06 74.72 
Positive 0.00 0.03 11.33 11.36 
Total 14.09 67.00 19.4 Concordance = 84.82 
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Chapter 3: An Evaluation of the Archive Continuation of MODIS with VIIRS and the Data 

Consistency with Landsat for Data Fusion Techniques 

 

Abstract 

The launch of Landsat in 1972 and MODIS in 1999 has provided the remote sensing community 

with two uninterrupted and relatively stable data archives that can be used to evaluate land 

surface change over time. Archive continuation through succeeding missions is highly important 

in preserving and creating deep repositories of information for Earth observation, which has been 

done with the Landsat data continuity mission. However, with varying spectral and spatial 

resolution, it can be a challenge to harmoniously continue archives through different platforms 

such as planned with MODIS and VIIRS. In this study, I evaluate the consistency of Landsat, 

MODIS, and VIIRS to evaluate how these data streams can be used in data fusion and in the 

continuation of the MODIS archive with VIIRS. The surface reflectance from Landsat, the 

MYD09GA and MCD43A4 products from MODIS, as well as the VNP09GA and VNP43IA4 

products from VIIRS, are used to carry out the analysis. In addition to surface reflectance, the 

products are also evaluated through NDVI. I conduct this analysis on the north island of New 

Zealand, the multiple land covers and their fragmented tendencies will best represent how well 

the sensors correlate in a potentially complex land surface scenario. 
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 1. Introduction 

Understanding global and regional land use and land cover change has become 

increasingly relevant due to climate change and expanding urban environments. Specifically, 

examining the disturbances of biomes such as forests and grasslands may become a vital step in 

managing and understanding our changing climate because of their key involvement in the 

carbon cycle. Forests and grasslands are significant terrestrial carbon stocks, as well as 

contributors to climate change mitigation, through carbon sequestration (O’Mara 2012; Hansen 

et al. 2013). Land-use change related contributions of carbon to the atmosphere has accounted 

for a cumulative quarter of emissions since industrialization (Song et al., 2018).  Providing 

information about forest disturbance can be key in policy and management strategy for 

conservation of environments and their biodiversity but often has been poorly quantified (Hansen 

et al. 2013; Masek et al. 2008). However, the global forest cover loss continues to be significant: 

from 2001 – 2015 there was a 3.14 million km2 of loss globally with the greatest drivers of loss, 

in order from greatest to least, being forestry (31%), deforestation (25%), wildfire (22%), 

shifting agriculture (22%), and urbanization (<1%) (Curtis et al., 2018). However, between 1982 

and 2016 there has also been a 2.24 million km2 increase in tree cover. This gain can be 

explained by a net loss in the tropics with an overwhelming net gain in the subtropical, temperate 

and boreal climate zones (Song et al., 2018). Likewise, grasslands have experienced degradation 

but have received significantly less attention in comparison to other production systems 

(Bengtsson et al., 2019). Globally about 3.2 billion people live in degrading areas, which include 

croplands, forests, shrubland, and grassland. With 33% of grasslands experiencing a human 

induced decline of biomass productivity, many people could be affected directly or indirectly 

through the disturbance of ecosystem goods and services (Nkonya et al., 2016). 
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 The ideal strategy for monitoring change in forests and grasslands is a time series of 

satellite images. Time series data from satellite observations give researchers the ability to learn 

from past occurrences, monitor current conditions, and potentially prepare for future events. 

Analyzing historical data will contribute to our forecasting ability and making inferences about 

changing climate conditions (van Leeuwen et al. 2006). However, to perform this type of 

analysis, consistent long-standing archives need to be available. Fortunately, the research 

community has sensors such as Landsat and MODIS (MODerate Imaging Spectroradiometer) 

that have been collecting data since 1972 and 2000, respectively. Landsat data have been 

available semi-continuous since 1972 with the launch of eight missions. Landsat 9 is slated to be 

launched in 2021. The MODIS sensors are aboard the two satellites Terra and Aqua launched in 

1999 and 2002, they provide individual and combined products.  

 

1.1 Importance of continuous archives  

Using remotely sensed data is the only feasible way of monitoring change on a relatively 

large scale. Landsat has often been the source for providing regional analysis because of its 

spatial scale and continuous observations (Healey et al. 2005). However, Landsat can be 

challenging to use for change analysis because of its low temporal resolution and the visual 

obstruction from clouds. Landsat collects an image over a single area once about every sixteen 

days but there is no guarantee this image will be of good quality, potentially making it difficult to 

put together a consistent time series. However, sensors with coarser spatial resolution, such as 

MODIS, have a much higher temporal resolution of one day. Additionally, there are MODIS 

derived products that are formed through compositing that provide cloud free images. This 

temporal strength, unfortunately, comes at the cost of spatial resolution, as MODIS products are 

offered at resolutions of 250, 500, 1000, and 5600 meters, while Landsat is 30 meters. Each 
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sensor provides its own distinct advantage that researchers must consider when designing their 

research plan. 

 The existence and use of continuous data archives in time series analysis will continue to 

be extremely relevant for monitoring our changing landscapes. Unfortunately, sensors, like 

everything else, degrade and can start to produce erroneous results. While the sensor’s sensitivity 

can degrade overtime, on board calibration equipment for sensors such as MODIS and VIIRS 

can also degrade. In addition to gradual decline, specific events can initiate or accelerate 

degradation. This was the case with MODIS Terra where a pre-launch event caused significant 

degradation (Lyapustin et al. 2014). The Landsat archive has been successful in uninterrupted 

observations because of the periodic launch of new satellites. The MODIS sensors aboard Terra 

and Aqua, like Landsat, have been extremely relevant in Earth science studies. However, the 

MODIS sensor aboard Terra has already begun to experience degradation (Skakun et al. 2018; 

Heck et al. 2019). As the MODIS sensors continue to operate past their design life, it is 

important to establish the successor and its consistency with the current archives. The data 

continuity of MODIS will be obtained through using VIIRS (Visible Infrared Imaging 

Radiometer Suite) flying on the converged National Polar-Orbiting Environmental Satellite 

System (NPOESS) and on the NPOESS Preparatory Project (Murphy et al. 2001). Skakun et al. 

(2018), evaluated the performance of MODIS and VIIRS by quantifying uncertainty at near nadir 

observations through agricultural monitoring using NDVI. They found that the uncertainty was 

low for same day and close to nadir observations for daily and composited product.  

  

1.2 Similarities and differences between MODIS and VIIRS equipment and collection  

The moderate resolution data archive produced by the MODIS sensors aboard the Terra 

and Aqua platforms since their launch in the early 2000’s has resulted in many widely applicable 
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products that serve a range of disciplines in biology, atmospheric science, climatology, and land 

change. The development and launch of VIIRS will continue the legacy of regional and 

continental scale studies for which MODIS has provided a platform for nearly twenty years. As 

the planned successor, VIIRS is comparable to MODIS in all major interests such as spatial, 

spectral, temporal, and radiometric resolution. Differences do exist between the two platforms 

resolutions but the varying specifics between the instruments have been intentionally designed 

for data product continuity. In addition to the similarities between data collection, the on-board 

calibration equipment is also nearly identical, with both sensors using a single black body source, 

a solar diffuser, and solar diffuser stability monitor (Murphy et al., 2001). However, it has been 

documented that the equipment aboard MODIS Terra has experienced significant degradation 

due to a pre-launch event (Lyapustin et al., 2014). This degradation highlights the importance of 

understanding of how the scientific community will transition between data sources, therefore, 

we must better understand the consistency among the MODIS and VIIRS sensors (Skakun et al., 

2018; Villaescusa-Nadal et al., 2019). 

 Although VIIRS is designed to be the successor to MODIS, the sensor design has several 

differences that impact archive continuity. The Aqua MODIS sensor is more similar to VIIRS 

than Terra because of close acquisition times. However, the MODIS MCD products are 

generated by combining Terra and Aqua data, potentially negatively impacting the correlation of 

VIIRS and MODIS data collected at the same time. While the algorithms to calculate surface 

reflectance between VIIRS and MODIS are similar, the fundamental spectral, angular, and 

spatial differences between the instruments are expected to cause differences between the data 

streams (Liu et al., 2017). The solar and viewing geometries of VIIRS and MODIS are similar, 

but not identical. MODIS has a swath width of 2330km while VIIRS has a larger swath of 

3040km. The MODIS gridded product footprint is ~500m at nadir, but as the degree off nadir 
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increases the pixel footprints also increase, once the sensor is 55° off nadir the footprint is 

>3000m. As mentioned before, VIIRS collects its I (375m) and M (750m) bands at different 

resolutions and the data are later aggregated to 500 and 1000 meters to be consistent with current 

MODIS products. The gridded product for VIIRS is collected at its two resolutions at nadir and 

similarly grow as the degree off nadir increases. However, VIIRS utilizes on-board processing 

that limits pixel growth through aggregation of sub-pixels (Liu et al., 2017). These differences 

between the underlying footprints in VIIRS and MODIS cause the effective spatial resolution to 

differ significantly. The MODIS effective resolution at mid latitudes for the 500m NBAR 

product is approximately 833x618m while VIIRS is approximated at 565x595m (Liu et al., 

2017). Therefore, while the delivered products are aggregated to coinciding MODIS products for 

continuity, it is collection differences such as this that should be considered in partnering these 

data sources. 

However, there have been several works assessing the bias and consistency between 

MODIS and VIIRS (Skakun et al., 2018; Uprety et al., 2013). A greater quantified understanding 

of how the spectral resolution, spatial resolution, and calibration differences effect coinciding 

results from MODIS and VIIRS will allow for the integration of VIIRS into current MODIS 

applications (Skakun et al., 2018). Liu et al. (2017) found that when comparing the NBAR 

values across multiple land covers at various latitudes, that VIIRS demonstrated a small positive 

bias but overall only had an absolute bias <0.013. The results yielded accuracy requirements 

needed by climate modelers and therefore, it was concluded that VIIRS provides a continuous, 

high-quality product that can be used by global and regional modelers. Skakun et al. (2018) also 

evaluated the uncertainty between MODIS and VIIRS red and NIR reflectance and NDVI in the 

daily and 8-day composite surface reflectance. They observed that the uncertainties were 0.014, 

0.029, 0.056 for red, NIR, and NDVI, respectively, for the same-day daily reflectance product. 
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However, when comparing the 8-day composite data, the observation is constructed by ‘best-

pixels’ within the 8-day window. The greater temporal range in observations caused there to be a 

14% increase in uncertainties.  

 The aforementioned works contribute to the understanding of MODIS and VIIRS archive 

continuity in heterogeneous landscapes. It is pertinent to evaluate how the sensor platforms 

correlate beyond studies of calibration points. Additionally, the consistency between composited 

products need to be evaluated along with daily surface reflectance. In the case of Skakun et al. 

(2018), as expected, the uncertainties increase when comparing composited products in 

comparison to daily products. However, these studies do not explain the performance across land 

cover type. Depending on the application, it is imperative to understand correlation in grassland 

vs correlation in forests, for example. Challenges to collecting consistent measurements from 

multiple platforms may be particularly increased when routine disturbances are introduced to the 

landscape.  

 

1.3 Landsat and data fusion 

The continued Landsat archive and extended NDVI record through AVHRR and MODIS 

have set a model of consistency for the VIIRS program. In addition to consistent archives, there 

is also interest in fusing satellite datasets to leverage the advantageous characteristics of different 

platforms. However, combining different sensors, especially those that have vastly different 

spatial resolutions, pose several conceptual and technical challenges such as the orbital, spectral, 

and spatial configurations. The measured physical values are affected as a consequence 

(Mandanici and Bitelli, 2016). Although sensors may have contrasting spatial and spectral 

resolutions, it has been demonstrated these different data streams can be used for data fusion 
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(Gao et al., 2010), and can give greater access to unobstructed scenes, or multiple options for 

archive continuity (Mandanici and Bitelli, 2016). 

There are several techniques for fusing data products so that the stronger temporal and 

spatial resolution of each product can be used to create more frequent observations of high-

resolution data. The spatial and temporal adaptive reflectance fusion model (STARFM) was 

established to predict daily surface reflectance at Landsat spatial resolution using the daily revisit 

time of MODIS (Gao et al., 2006). Building on STARFM, the enhanced STARFM (ESTARFM) 

was created to overcome the limitations of the STARFM in heterogeneous landscapes. It 

improves on the original algorithm by using the observed reflectance trend between two points in 

time and spectral unmixing theory (Zhu et al., 2010). The ability of the algorithms to predict 

surface reflectance by using two data sources helps overcome limitations created by visual 

obstruction or infrequent observations. This can be applied, for example, in phenological studies 

where the spatial and temporal resolution of a single sensor is insufficient. In an effort to track 

phenological changes in dryland forests Walker et al. (2012), found that the synthetic high-

resolution imagery that the STARFM algorithm produces can be valuable asset in analyzing 

dryland vegetation.  

Therefore, going forward it will be important to continue data fusion application beyond 

the operational life of MODIS. The correlation between MODIS and Landsat allows for the 

successful fusion between the two sensors. Consequentially, I explore the relationship between 

Landsat and VIIRS to generate a greater understanding if the two platforms could be candidates 

for fusion. The relationship between VIIRS and Landsat will determine if it is feasible to assume 

there could be future fusion approaches developed to accommodate the pairing of VIIRS and 

Landsat.  

1.4 Study Contributions 
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 In this thesis, I am to provide a better understanding of the consistency of MODIS and 

VIIRS across four land cover types in a heterogeneous and fragmented landscape in the North 

Island of New Zealand. Additionally, I evaluate the consistency of Landsat 8 OLI measurements 

with coinciding MODIS and VIIRS data in the interest of data fusion that is currently performed 

with MODIS and Landsat and in the future may rely on VIIRS for continued application. I 

evaluate the consistency of theses sensors through red, NIR, NDVI, and tasseled cap 

transformation measurements. It is common to evaluate sensor consistency through red and NIR 

reflectance, NDVI, and albedo. In this work, I also incorporate the use of the Tasseled Cap 

Transformations (Crist, 1985; Kauth and Thomas, 1976) (TCT) of brightness, greenness, and 

wetness. The TCT performs a data reduction of seven (MODIS) or six (Landsat) surface 

reflectance bands into the three aforementioned physical characteristics. The TCT enables the 

evaluation of sensor performance from information derived through multiple bands, covering a 

broader range of the electromagnetic spectrum. Since the TCT provides information about 

physical characteristics about the terrestrial surface, we gain a greater understanding of how 

surface dynamics can play a role in sensor performance. Also, this study frames these 

relationships in practical terms, using a heterogenous landscape and not quasi-stable calibration 

sites. 

 

2. Study Area 

The study region is located centrally on the North Island of New Zealand (Figure 16), 

extending west beyond Lake Taupo and the eastern boundary being in Hawke Bay. The two 

primary landcover types in the North Island of New Zealand are forests and grasslands. As of 

2012, 32% of New Zealand’s land cover was indigenous forest, and 12% was considered 

plantation forests. Grasslands covered almost 50% of the North Island, with 3.5% classified as 
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low-producing grasslands, and 46% of the land area converted to high-producing grasslands, 

which are heavily grazed and often irrigated (de Beurs et al. 2016). Exotic forests include types 

of pine, Douglass fir, or evergreen broadleaf species. Indigenous forest is a less specific class of 

forest demarcated by vegetation dominated by tall forest canopy species. The lumber harvesting 

in the exotic class can have large section of cleared forest, adding to the variability of 

observations. High producing grasslands are typically exotic species of grasses that are 

intensively managed with irrigation and fertilizer for the purposes of intense grazing. Low 

producing grassland can be comprised of exotic and indigenous species and are indicated by 

having low plant vigor and biomass in comparison to the high producing class. 

 

 

Figure 16. The location of the study area is displayed with the Landsat image that was used in 
the analysis. It is accompanied by the land cover classes evaluated and shows the cloud and 
water masked in white areas.   
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3. Data 

To evaluate the consistency between the MODIS and VIIRS sensors, the surface 

reflectance and the NBAR products were compared for four major landcover types: indigenous 

forest, exotic evergreen forest, low producing grassland, and low producing grassland. Random 

samples from each class were derived from the New Zealand Land Cover Database (LCDB). The 

LCDB is a dataset produced by the Ministry for the Environment, Ministry of Agriculture and 

Forestry, and the Department of Conservation in New Zealand. The surface reflectance from 

Landsat 8 OLI was also compared against the MODIS and VIIRS surface reflectance to assess 

the feasibility of partnering VIIRS and Landsat data. The MODIS NBAR product is a combined 

product that utilizes observations from both Terra and Aqua satellites. However, I have elected to 

use surface reflectance from Aqua to compare with VIIRS because it has more similar orbital 

parameters with VIIRS, having an afternoon equatorial crossing time of about 1:30pm. 

Additionally, Terra has experienced significant degradation.   

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a near polar, sun-

synchronous sensor aboard the two satellite platforms of Terra and Aqua of which were launched 

in 1999 and 2002, respectively. MODIS has a swath width of 2330km and spatial resolutions of 

250m (bands 1-2), 500m (bands 3-7), and 1000m (bands 8-36). Having two platforms, Terra with 

a morning equatorial crossing time and Aqua crossing locally in the afternoon, the chances of 

having quality unobstructed images that benefit land, ocean, and atmospheric studies are 

increased. Using both platforms combined, a composited data product can be created that 

exploits the full range of the systems advantages. Additionally, this also allows for cross-

calibration, which has revealed advanced degradation in the Terra sensor in comparison to Aqua. 

MODIS is used in many scientific communities because of its strong temporal capabilities, long 

standing archive, and wide spectral range. 
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The Visible Infrared Imaging Radiometer Suite (VIIRS) is also a near polar, sun-

synchronous sensor. VIIRS is aboard the Suomi National Polar-orbiting Partnership (S-NPP) 

satellite that is the first in a series of five VIIRS instruments to be deployed in a collaborative 

effort between NOAA and NASA. VIIRS is a whisk broom sensor like MODIS but has a 

~700km wider swath. This larger swath ensures that there are no data gaps near the equator. 

VIIRS is the designed successor that is expected to continue the moderate resolution surface 

observations currently established by originally by AVHRR and since 2000 by the MODIS 

sensor. VIIRS collects its observations at a resolution of 375m (I Bands 1-5) and 750m (M bands 

1-16) but in the interest of archive continuation, the data is resampled to 500m, 1km, and 0.05 

degrees in order to be cohesive with the existing data products of MODIS. 

 To compare the three platforms, I use coinciding daily surface reflectance and a 

composited NBAR product. From those data products the red, NIR, and NDVI are used to 

explore the relationship between sensors. Daily surface reflectance is used because theoretically, 

it is a physical measurement that is corrected for atmospheric effects and not affected by sensor 

calibration issues (Gao et al., 2010). It is advantageous to assess the consistency of the NBAR 

products because of their widespread application in interests such as vegetation phenology, land 

surface patterns, and photosynthetic activity but also because they are unaffected by the effects 

of satellite view angle (Liu et al., 2017). The NBAR is a nadir BRDF adjusted reflectance 

product that creates a nadir image formed by a composite of observations. The BRDF corrects 

the effects caused by viewing and illumination geometry. The quality information provided with 

the MODIS, VIIRS, and Landsat was used to filter out cloud shadows and low quality 

observations.  

 For MODIS and VIIRS I compared the daily surface reflectance and a composited NBAR 

product. The MODIS version 6 Nadir Bidirectional Reflectance Distribution Function (BRDF)-
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Adjusted reflectance (NBAR) product (MCD43A4) is produced daily, using 16 days of 

observations at 500m spatial resolution. This product creates a nadir reflectance for bands 1-7, 

removing the sensor view angle effects and is temporally weighted to the ninth day. The MODIS 

daily reflectance product (MYD09GA) is derived from MODIS Aqua and is an estimate of 

surface reflectance delivered daily at 500m spatial resolution. The surface reflectance algorithm 

corrects for atmospheric conditions for bands 1-7. The VIIRS NBAR product (VNP43IA4) is 

delivered at 500m resolution and is produced to promote the continuity of the MODIS NBAR 

product. Similarly to MODIS, this product is produced daily using 16 days of observations and is 

weighted temporally to the ninth day. The product provides a nadir observation for bands I1 (600 

– 680nm), I2 (850 – 880nm), and I3 (1580 – 1640nm). VIIRS daily estimate of surface 

reflectance (VNP09GA) is delivered at 500m for bands I1-I3 and 1 kilometer for bands M1-M5, 

M7, M8, M10, M11. The 500m data used in this study is resampled from the native 375m 

resolution of VIIRS. The Landsat 8 OLI is corrected to surface reflectance and is acquired at 

30m spatial resolution. There is a temporal repeat cycle about every 16 days.  

Table 9: The table shows the datasets used and their collection dates. 

Sensor Product Name Location Date 

MODIS MCD43A4 h31v12 01/23/2016  
(center of composite) 

MODIS MYD09GA h31v12 01/23/2016 

VIIRS VNP43IA4 h31v12 01/23/2016 
(center of composite) 

VIIRS VNP09GA h31v12 01/23/2016 

Landsat 8 OLI Surface Reflectance Path: 72 Row:87 01/23/2016 

 

4. Methods 

To evaluate the consistency between VIIRS, MODIS, and Landsat, the red and NIR surface 

reflectance, as well as the NDVI was used to evaluate the correlation between data streams in 
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high producing grasslands, low producing grasslands, exotic evergreen forest, and indigenous 

forest. The data products were first filtered for clouds, cloud shadows and low-quality 

observation with quality bit or band information. The Landsat surface reflectance was aggregated 

to ~463 meters, the same size as the MODIS and VIIRS products. The Landsat data is resized to 

make comparison with the lower spatial resolution products of MODIS and VIIRS more 

reasonable. After aggregation, a one cell buffer was filtered out of the Landsat data to prevent 

cloud adjacent cells values from negatively impacting the aggregated data. The datasets were 

compared through random samples drawn from the land cover classification. The land cover 

classifications were determined by the New Zealand NLCD homogeneous pixels, where mixed 

pixels were not eligible to be drawn from for the sample of pixels compared for each class.  For 

each of the land covers, except low producing grasslands, a random sample of 500 pixels was 

drawn. The number of pixels used in analysis varied across land cover type based on varying 

level of cloud obstruction and pixel quality. The sample drawn from the low producing 

grasslands were originally 300 pixels and then similarly filtered down due to cloud cover and 

quality issues. A smaller sample was drawn from low producing grasslands because the 

percentage of area occupied by low producing grasslands within the study area is only 0.63%. 

The same random sample was used to retrieve the red, NIR, NDVI, and TCT. The R2 value, 

mean and standard deviation was calculated for each measurement to evaluate the linear 

relationship, variance, and how values from each sensor compared against one another. 

5. Results 

To evaluate the relationship between sensors, the red, NIR and NDVI were compared 

across four land cover types using the coefficient of determination, standard deviation, and mean 

values for each band. The measures of consistency and variation were calculated for the daily 

surface reflectance of MODIS, Landsat 8, and VIIRS. The composited NBAR products for 
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MODIS and VIIRS were compared against each other as well as the Landsat 8 daily surface 

reflectance. 

 Overall, by looking at figures 17 and 18 the coefficient of determination describing the 

linear relationships between the three sensors for the daily surface reflectance (figure 17) and 

modeled NBAR product (figure 18), it can be observed that the relationships vary by land cover 

and sensor combination. In figure 17, it can be seen that the grasslands consistently produce 

more quality relationships in comparison to the forests, especially for NDVI. While the NBAR 

product displays significant linear relationships among all three sensor combinations, the 

MODIS/Landsat relationships interestingly show the most R 2 values over 0.6. Among both data 

products the indigenous forest class performs the worst in R2. However, greater variance in some 

of the forest samples and clustering of like observations negatively impact the linear 

relationships in forest classes. Figures 19 and 20 display the mean and standard deviation for the 

red, NIR, and NDVI. The means of each band separated by land cover show that, generally, the 

sensors compare well across land cover type. 
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Figure 17. Daily Surface Reflectance grid of R2 values between sensor relationships. Each row 
is representative of a land cover type of Exotic Evergreen Forest (EEF), Indigenous Forest (IF), 
High Producing Grassland (HPG), and Low Producing Grassland (LPG). 
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5.1 NDVI 

The R2 values for the daily surface reflectance for NDVI (figure 17) in the grasslands are greater 

than ~0.7, indicating a strong linear relationship. In contrast, the exotic forest ranges from ~0.3 – 

0.5 and the indigenous forest never eclipses 0.1.  All three of the sensor relationship 

combinations post similar results. Figure 19, showing the mean and standard deviation reveals 

that the exotic forest has the greatest standard deviations and the indigenous forest has the 

smallest. The mean for each sensor in the four different land covers are similar; however, 

consistently, the VIIRS mean is marginally highest while MODIS is the lowest. The NBAR 

NDVI (figure 18), similarly to the daily reflectance, performs well in the low producing 

grasslands but has a poorer performance in high producing grassland between VIIRS/MODIS 

(0.37) and VIIRS/LS8 (0.36). The VIIRS indigenous forest sample has the greatest standard 

deviation in the NBAR NDVI dataset. This is a vast difference in comparison to the coinciding 

Landsat and MODIS values, which have the smallest standard deviations. 
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Figure 18. The figure represents a grid of R2 values between sensor relationships for the 
Composited Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted 
Reflectance (NBAR) for MODIS and VIIRS compared against the daily Landsat image. Each 
row is representative of a land cover type of Exotic Evergreen Forest (EEF), Indigenous Forest 
(IF), High Producing Grassland (HPG), and Low Producing Grassland (LPG). 
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5.2 Red Reflectance 

In figure 17, it can be seen that the two best R2 values from the daily reflectance are in the 

MODIS/LS8 comparison in the low (0.64) and high (0.53) producing grasslands. The remaining 

grassland R2 values range from 0.2 – 0.42. The indigenous forest performs poorest, not having an 

R2 value exceed 0.04. Similarly, the exotic forest class does not produce a well performing linear 

relationship. Because the land cover types chosen in this study are vegetated areas, the red 

reflectance remains very low in all land cover types. The MODIS mean values for daily surface 

reflectance (figure 19) are consistently and marginally greater than Landsat and VIIRS 

observations. Similar to the NDVI, the greatest standard deviations are in the exotic forest 

samples, while the smallest are in the indigenous forest. Figure 18 similarly shows that there are 

few quality linear relationships in the composited NBAR red reflectance. However, three linear 

relationships exist between MODIS/LS8 in the exotic forest, high producing grassland, and low 

producing grassland are greater than 0.65. There are no relationships between VIIRS/MODIS 

and VIIRS/Landsat in the NBAR red reflectance that eclipse 0.31. Though the MODIS values in 

the daily reflectance (figure 19) were consistently highest, the VIIRS observations means are the 

highest in the NBAR product (figure 20). The standard deviations of the VIIRS observations are 

also greatest in all land cover types, especially in the indigenous forest. 
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Figure 19. The three plots show the daily reflectance mean (points) and standard deviation (error 
bars) of NDVI, red, and NIR.  
 

5.3 Near Infrared Reflectance 

In the NIR daily reflectance, figure 17 displays a clear performance difference between forest 

and grasslands. Although both grassland classes do perform better than forests, the low 
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producing grasslands R2 values are greater than 0.6. The forest R2 values do not exceed 0.18 

while the high producing grassland values range from 0.25 – 0.34. The mean values for the 

sensors in the four land cover types are similar but produce no consistent trend of one sensor 

producing greater means across all land cover types. The difference between R2 performance in 

forest and grasslands are not as clear in the composited NBAR NIR reflectance in comparison to 

the daily reflectance. In the NBAR NIR reflectance, the low producing grasslands have the 

highest performance in the R2 similarly to the daily reflectance with values ranging from 0.7 – 

0.88. The high producing grasslands class has two moderately strong linear relationships 

between VIIRS/MODIS and MODIS/Landsat with values of 0.6 and 0.58, respectively. 

The VIIRS observation means are the highest in all land cover types in the NBAR NIR 

reflectance while the Landsat means are the lowest. The standard deviations are similar across 

land cover types and the daily reflectance values. 
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Figure 20. The three plots show the mean (points) and standard deviation (error bars) of NDVI, 
red, and NIR. The values for MODIS and VIIRS are derived from their respective NBAR 
products, while the Landsat data is from the daily image used throughout the analysis. 
 

6. Discussion 

 The objective of this study can be looked at as two-fold. First, I was interested in 

assessing the continuity between the sensor platforms of MODIS and VIIRS. The NDVI record 
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established by AVHRR and continued with MODIS, in addition to MODIS products themselves, 

have generated multiple data products that have enabled researchers to evaluate 20+ years of 

change. As the MODIS sensors aboard Terra and Aqua age and degrade, especially in light of 

Terra’s deteriorating performance, it will be paramount to transition to data provided by VIIRS. 

Due to VIIRS being the designated successor of the MODIS archive, thoughtful design and the 

creation of MODIS-like products will aid in combined use and transition. However, even though 

the VIIRS sensor was designed for MODIS continuity, the differences in sensor band width and 

viewing illumination geometries could make the two data streams correlate poorly (Gao et al., 

2010). Therefore, to limit atmospheric and illumination differences, the observations are centered 

on or from the same day to minimize the differences in radiometry (Mandanici and Bitelli, 

2016). Second, I evaluate the consistency of Landsat 8 surface reflectance with MODIS and 

VIIRS daily reflectance products and modeled composite NBAR products. The comparison of 

Landsat 8 and MODIS serves as a bench mark of performance because both platforms have been 

extensively validated. When MODIS data is no longer available it will become necessary to 

develop a similar partnership with VIIRS and Landsat. 

To evaluate the agreement between the three sensors, the red and NIR surface reflectance 

as well as the NDVI was evaluated through the coefficient of determination, mean, and standard 

deviation. Overall, the best cross-sensor performance was found in the NDVI in grasslands. I 

also investigated the tasseled cap relationships (results not shown). The NDVI results were 

similar to the TCT of brightness greenness, and wetness between Landsat and MODIS. The low 

producing grasslands yielded R2 values between 0.52 – 0.87 while the indigenous forest never 

had values greater than 0.13. It would be advantageous to evaluate the VIIRS data with the TCT 

because it would give greater insight to how VIIRS compares across multiple bands. However, 

the coefficients to calculate the TCT for VIIRS has not yet been established. 
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When evaluating sensor consistency by land cover, as done in this study, the data 

collected from a homogenous land cover type can create a cluster of data points rather than a 

linear relationship. The clustering of data points results in a poor coefficient of determination. 

The grasslands performed better than forest land cover types likely due the more simplified 

dynamics of collecting remotely sensed data from grasslands in comparison to forests. Similarly, 

(Liu et al., 2017) found that the homogeneity of grassland pixels produced relatively consistent 

phenological transition dates across spatial scales while mixed oak/grass savanna areas were less 

comparable. Forests have varying canopy height and more back ground interference. These 

findings are in accordance with (Gallo et al., 2005), who reported that forest classes returned low 

R2 values when comparing MODIS and AVHRR. The indigenous forest class had the lowest 

performance in R2 across both data products in red, NIR, and NDVI. In figures 19 and 20 it can 

be seen that indigenous forest has the smallest standard deviations outside of the VIIRS red band 

in the NBAR product. The greater standard deviation of VIIRS is in contrast to what is expected. 

The MODIS NBAR uses observations from both Terra and Aqua while the VIIRS NBAR only 

collects one observation per day. Therefore, a greater variability should be expected from the 

MODIS product. The large standard deviation in the VIIRS red band contributes to the large 

standard deviation in the NBAR NDVI as expected. The indigenous forest class has the smallest 

standard deviation because it is a relatively dense tree canopy that experiences few disturbances. 

In contrast to the exotic forest, which experiences significant disturbance from lumber 

harvesting. This type of disturbance changes the land cover type from forest to bare ground, 

grassland, or recovering forest growth depending on the temporal distance from the disturbance 

date and the observation. Disturbance and the stages of growth that follow will cause a greater 

range of values than the undisturbed forest, which can consequentially cause a better performing 

linear relationship. (Liu et al., 2017) found through evaluating the NBAR and narrow band 
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albedo of MODIS and VIIRS that the source provided comparable results and the accuracy 

requirement desired by climate modelers. We find that the differences in design and parameters 

can negatively impact the comparison of MODIS and VIIRS. Although they are comparable in 

some scenarios, land cover type should be considered in addition to adjustment. These findings 

are in accordance with (Brown et al., 2006), which found that there were land cover dependent 

differences when comparing a long term NDVI record between AVHRR and MODIS in tropical 

forests and high northern latitude Tundra.  

 To detect phenological changes or disturbance, it is necessary to have data with a high 

temporal resolution or spatial resolution, respectively.  There have been successful applications 

of data fusion such as STARFM, proposed by (Gao et al., 2006) that have successfully paired the 

spatial advantages of Landsat and the temporal advantages of MODIS. An additional approach to 

data fusion can be the use of multiple sensors that are similar in spectral and spatial resolution. 

Since Landsat has a low temporal resolution, the difficulty to obtain an unobstructed image is 

compounded by the presence of clouds. However, if Landsat is paired with a source such as 

Sentinel, that is similar in spatial and spectral characteristics, the data can be used together. This 

technique of fusing data streams to obtain more consistent observations between Landsat and 

Sentinel can reduce the revisit time of 16 days to 5 days (Arekhi et al., 2019). If the degradation 

of MODIS Terra continues and advances the condition of the sensor to an unusable state, the 

VIIRS sensors could be used in conjunction with MODIS Aqua.  

Although there are several systematic inconsistencies that limit ideal correlation without 

adjustment, the relationship with both MODIS/Landsat and VIIRS/Landsat has been evaluated. 

Landsat and MODIS have been extensively validated, it is important to consider their agreement 

as a reference for the performance between VIIRS/Landsat. In our R2 results of red, NIR, and 

NDVI the comparative relationship between MODIS/Landsat performed best, even 
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outperforming the relationship between MODIS/VIIRS of which are designed for continuity and 

share more similar spatial characteristics. 

Although sensors may vary in their intrinsic band width and viewing geometries, studies 

such as (Flood, 2017) show that comparable yet different platforms like Sentinel and Landsat 7 

& 8 can compare well depending on the band in question. However, with spectral adjustment, the 

systematic difference between all bands can be less than one percent. There are three primary 

ways to perform spectral adjustment: band averaging, radiative transfer, and statistical regression 

(Villaescusa-Nadal et al., 2019). Through the use of ordinary least squares regression and four 

years of observations, Skakun et al. (2018) established coefficients to correct for the spectral bias 

between MODIS and VIIRS red and NIR bands. Using the coefficients, the uncertainty for the 

NDVI from MODIS/Aqua and VIIRS was <0.056 for near nadir and same day observations. Our 

results indicate that situationally, MODIS, VIIRS and Landsat can correlate well in grassland 

land covers, particularly when using NDVI. If these data sources are used together in forested 

regions, it is recommended that adjustment be applied. Identifying what causes differences 

between data streams can become complex due to varying calibration equipment, collection 

techniques, and product algorithms but discrepancies can be overcome by using error reducing 

techniques such as data smoothing and normalization (van Leeuwen et al. 2006). 

This study makes valuable contributions to data continuity in respect to the continuation 

of the moderate resolution archive by comparing MODIS and VIIRS as well as evaluating the 

consistency of Landsat 8 and VIIRS in the case of future data fusion use. However, there are 

limitations to the findings of the work due to project scope and the nature of evaluating varying 

spatial, spectral, and temporal resolution datasets. First, the scope of this project only allowed 

analysis of four land cover types in the bounding area of one Landsat tile. Ideally, several tiles 

would have been evaluated in different environments. Additionally, a time series could be 
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evaluated so that the consistency between sensors could be temporally assessed as well as 

spatially. Even with these limitations in scope, our evaluation of sensor consistency between 

MODIS, VIIRS, and Landsat 8 across multiple land covers gives insight to how these datasets 

correlate in a fragmented and complex landscape in contrast to studies performed in quasi-stable 

calibration sites.  

 

7. Conclusion 

As mentioned earlier in the manuscript, the MODIS and VIIRS datasets, by design, are 

delivered in the same spatial resolution to enable product continuation. However, the collection 

and processing of the dataset have significant differences that will negatively impact their 

agreement. The native resolution and pixel growth as the off-nadir viewing angle increases (Liu 

et al., 2017) will fundamentally change the results of the remotely sensed terrestrial surface by 

the surface reflectance product. The modeled NBAR product consistency is negatively impacted 

by the previous factors as well as the nearly twice as many observations collected by MODIS on 

Terra and Aqua. 

 Additionally, the results indicate that the correlation of the sensors does depend on land 

cover type. The more simplified structure of grasslands leads to stronger relationships between 

sensors. The results suggest that if the datasets discussed here are used in conjunction, then 

adjustment should be applied, particularly in forested landscapes. Going forward, continued 

work should be done on cross-sensor performance in complex land surface scenarios rather that 

stable calibration points.     
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Chapter 4: Conclusion 

The two preceding chapters highlight that creating reliable and consistent data archives 

from remotely sensed data can be a challenge due to sensor degradation, drift, equipment failure, 

and marginally different specifications to new sensors. It is vital to many research communities 

to have long standing consistent archives of satellite data because remotely sensed observations 

are the most feasible way to observe large spatial areas over a long period. These archives of 

satellite data have been and will continue to be an essential resource for those evaluating the 

changing climate and land use/cover change. Due to the importance of this topic, there are 

continuing research efforts to provide greater context to how the widely used data streams 

perform. 

 In Chapter 2, I described that there is a known difference between the Terra and Aqua 

MODIS sensors. A pre-launch event has caused more rapid degradation to the Terra sensor in 

comparison to its counterpart aboard Aqua. However, the new collection 6 calibration and 

algorithm improvements sought to remedy this issue by making the Terra sensor correlate better 

with the more stable Aqua sensor. In doing so, it is possible there was an overcompensation that 

lead to the presence of more greening in our results based on the EVI and NDVI. In contrast to 

the VI results, the LST remained stable through collection 5 and 6. Although we found 

significant differences between the collections, there was still broad concordance. Dependent 

upon spatial location, the results indicate that users should be aware of these findings when 

reviewing or using MODIS data. 

 In the second chapter, I showed that significant differences can exist between MODIS 

collections. Therefore, in chapter 3, I evaluate the difference between MODIS and VIIRS, two 

separate but related sensors, as well as Landsat. I evaluate the consistency between MODIS and 

VIIRS because VIIRS is the designated successor to MODIS. It is pertinent to understand the 
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relationship between MODIS and VIIRS due to the degradation experienced by MODIS Terra. I 

find that there are prominent differences between the two, especially in forests. The correlation is 

stronger between datasets in grasslands, possibly due to the simplified structure of grasslands in 

comparison to forests. 

 Overall, this document suggests that the research community cannot naively assume the 

consistency of data sources. Although there is a great effort in creating consistent and accurate 

data products, the datasets should continue to be critically examined if sensors are used in 

conjunction or, in the case of MODIS, if a new collection has been rolled out. Additionally, in 

both chapters two and three, I show that land cover greatly impacts sensor agreement. Therefore, 

continued work needs be done on assessing how datasets perform across land covers, in complex 

landscapes. Only evaluating performance in quasi-stable calibration sites gives a limited 

perspective to how users can expect the data to perform. 

 


