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Abstract 

With the US National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler 

(WSR-88D) radar network aging, a candidate for replacing it is phased array radar (PAR). The 

defining feature of PAR is an electronically steered beam, which allows for much faster 

volumetric updates than the mechanically steered beam from the WSR-88Ds. The higher 

temporal resolution afforded by PAR could be useful for initializing convective-scale numerical 

forecasts for purposes of issuing warnings based on forecasts of severe convective hazards, 

rather than on detection. The purpose of this work is to evaluate the performance of PAR versus 

the current operational WSR-88Ds in this context. Data collected during two supercell severe 

weather events in central Oklahoma are used in two sets of ensemble data assimilation (DA) and 

forecast experiments. 

The first case is the 22 May 2011 Ada, Oklahoma supercell. These experiments use 40 

ensemble members at 2 km grid spacing and a 4-dimensional ensemble square root filter (4D 

EnSRF). The Advanced Regional Prediction System (ARPS) is used for the forecast model. The 

WSR-88D elevations are grouped into 1-minute batches to compare to the 1-minute PAR 

volumes. For this case, after 30 minutes of DA, the experiment using PAR data outperformed the 

experiment with WSR-88D data in the placement and rough intensity of the mesocyclone track 

and using several objective performance metrics, such as equitable threat score (ETS) and area 

under the relative operator characteristic (ROC) curve (AUC). After 45 minutes of DA, the 

advantage of PAR over the WSR-88D is reduced, suggesting that PAR data are most beneficial 

when the DA period must be short, perhaps to quickly spin up a storm in the ensemble. This 

would afford a longer lead time for a severe weather warning. A supplemental experiment using 
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PAR data thinned in elevation angles to imitate the WSR-88D data batches confirms that the 

advantage is due to the extra data volumes provided by the PAR. 

The second case is the 31 May 2013 El Reno, Oklahoma supercell. The data processing for 

the WSR-88D and 1-minute PAR data is nearly identical to the 21 May 2011 case. For these 

experiments, the 4D EnSRF is used with the Weather Resesarch and Forecasting (WRF) forecast 

model. 36 members at 1 km grid spacing are used. In this case, the PAR experiment results in 

stronger mesocyclones because of a stronger mid-level temperature perturbation. Examination 

of the analysis increments by PAR volume reveals that in the default experiment, only the first 3 

PAR volumes provide significant changes to the ensemble state. This is because the reflectivity 

innovation is reduced by having updated previous volumes, and an experiment with additional 

covariance inflation between PAR volumes is run that confirms this. In order to alleviate this, 

experiments are conducted assimilating the radar volumes in different orders, such as reversed, 

starting from the analysis time and working towards the edges of the DA window (“inside out”) 

and the reverse of that (“outside in”). The results suggest that the different orders can improve 

track forecasts due to warmer temperatures in the analyzed cold pool near the mesocyclone. 

Additionally, colder forecast cold pools were found to be due to drier analyses in the near-storm 

inflow. The colder forecast cold pools also contributed to track displacement errors.
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Chapter 1: Introduction 

Numerical Weather Prediction (NWP) is an initial-condition problem: the outcome of a 

forecast is heavily dependent on the initial conditions. As such, the creation of an accurate 

forecast depends greatly on the accuracy of the initial conditions. Numerous methods have been 

used to create initial conditions for forecasts. Early numerical forecasts used several methods, 

including interpolation from raw observations (Richardson 1922), interpolation from manual 

analyses (Charney et al. 1950), and Cressman analysis (Cressman 1959), which uses the 

observations to make corrections to a first guess or “background” field. Variational methods 

(Sasaki 1970) attempt to minimize a cost function that includes a term for the difference between 

the analysis and the observations and a term for the estimated error in the background field, but 

may have more terms as needed.  

The major disadvantage of the above methods is that the notion of background error does 

not depend on meteorological context, meaning the increments provided by the data 

assimilation method do not depend on meteorological context. Additionally, it is difficult to 

prescribe climatological static background error covariance between different fields, such as 

temperature and vertical velocity, when such error covariance typically varies strongly in space 

and time. One method to address this is the Kalman filter (Kalman 1960), which in general is a 

method for estimating the value of a random process with only noisy observations of that 

process. This has many applications in engineering and geosciences, and it can be applied to an 

ensemble of NWP forecasts, which is used to estimate the background error covariance. 
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One common ensemble data assimilation method is the ensemble Kalman filter (EnKF; 

Evensen 2003) and its variants. The basic formulation common to most variants is  

 x! = x" + 𝐊[𝐲# − 𝐻(x")],  (1) 

where x! is the analysis ensemble state vector, x" is the background ensemble state vector, 𝐲$ 

is the observation vector, 𝐊 is the Kalman gain matrix, and 𝐻(∙) denotes the forward operator 

responsible for projecting the background state into observation space. An alternate formulation 

is 

 𝐱.! = 𝐱." + 𝐊[𝐲$ −𝐇𝐱."],  (2) 

 𝐱′! = 𝐱′" + 𝐊1[𝐲′$ −𝐇𝐱′"], (3) 

where 𝐱.! and 𝐱′! are the analysis ensemble mean and perturbation (i.e. the difference from the 

ensemble mean; 𝐱′ = 𝐱 − 𝐱.), 𝐱." and 𝐱′" are the background ensemble mean and perturbation, 

𝐇 is the linearized version of the forward operator, 𝐊1  is the Kalman gain matrix used for updating 

the perturbations (in the regular EnKF, 𝐊1 = 𝐊), and 𝐲′$ represents perturbations to observations 

(in the regular EnKF, 𝐲′$ = 𝟎). This formulation is useful because it gives a direct update equation 

for the ensemble mean, and ensemble DA methods are formulated such that the ensemble mean 

represents the most likely state of the atmosphere.  

The Kalman gain matrix is calculated by 

 𝐊 = 𝐏"𝐇%(𝐇𝐏"𝐇% + 𝐑)&', (4) 

where 𝐏" is the background error covariance matrix and 𝐑 is the observation error covariance 

matrix. In this formulation, 𝐇𝐏"𝐇% is the background error projected into observation space and 

is often implemented as the covariance matrix of observation priors. Additionally, 𝐏"𝐇% is related 

to the covariance between the observation priors at the observation locations and the model 
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grid points. Thus, at its core, the EnKF estimates the covariance between the observed quantity 

and the model state variables and uses that information to update the ensemble. The covariance 

estimates are dependent on the state of the ensemble (“flow-dependent”). 

Because the number of ensemble members is finite, there is some error in sampling the 

background error distribution and therefore in the estimates of covariance (this is known as 

“sampling error”; Gasperoni and Wang 2015). This sampling error can produce spurious 

covariances between a given observation and grid points that are far away, which can degrade 

the quality of the analysis (Houtekamer and Mitchell 1998, 2001). In the limit of infinite ensemble 

members, this error would go to zero, but having large numbers of ensemble members is 

impractical. A more practical workaround is to localize the covariance such that an observation 

can only affect grid points nearby. Houtekamer and Mitchell (2001) introduced formal notation 

for covariance localization: 

 𝐊 = 𝜌 ∘ (𝐏"𝐇%)[𝜌 ∘ (𝐇𝐏"𝐇%) + 𝐑]&',  (5) 

where r denotes a localization function whose output is between 0 and 1, and the ∘ operator 

denotes the Schur product, or elementwise multiplication of a matrix. Often, the function of 

Gaspari and Cohn (1999), which is a piecewise 5th order polynomial with local support, is used for 

the localization function. It has a single tunable parameter: the localization radius and can be 

applied to produce spherical or oblate spheroidal localization in three-dimensional models. This 

method is widely used because of its simplicity, however prescribing a fixed region that each 

observation can update slightly defeats the advantage of using flow-dependent background error 

covariance. For this reason, many adaptive localization methods have been proposed which 
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attempt to use the ensemble to define what the localization should be [see the review by 

Gasperoni and Wang (2015)]. 

Another problem with the EnKF is that by itself, it tends to result in a posterior distribution 

that is too narrow. This can result in a condition known as “filter divergence,” where subsequent 

applications of the DA algorithm ignore the observations, and the DA becomes ineffective. A few 

techniques have been used to increase the posterior spread. One potential technique is to 

perturb the observations by drawing from a distribution of observation errors (i.e. making 𝐲′$ ≠

𝟎 in Eqn. 𝐱′�𝑎� = 𝐱′" + 𝐊1[𝐲′$ −𝐇𝐱′"], (3); Burgers et al. 1998). This is often assumed to be a 

Gaussian distribution with mean 0 and standard deviation equal to the assumed observation 

error (Houtekamer and Mitchell 1998). However, this method exacerbates the error in sampling 

error described above and introduces noise into the DA process. Another potential technique is 

to reformulate the Kalman gain (Eqn. 𝐊 = 𝐏"𝐇%(𝐇𝐏"𝐇% + 𝐑)&', (4) to better match the 

expected spread in the posterior distribution (Whitaker and Hamill 2002). Whitaker and Hamill 

(2002) set 𝐲′$ = 𝟎 and define 𝐊1 = 𝛼𝐊, in Eqn. 𝐱′! = 𝐱′" + 𝐊1[𝐲′$ −𝐇𝐱′"], (3, where 

 𝛼 = :1 +	= 𝐑
𝐇𝐏!𝐇"+𝐑

>
&'

.  (6) 

Because the Kalman gain matrix contains a square root, their formulation is known as the 

“ensemble square root filter” (EnSRF). Additionally, assimilating multiple observations at the 

same time, which is possible in the original EnKF formulation, would require finding matrix square 

roots; for this reason, the EnSRF assimilates observations sequentially, which is much less 

computationally expensive. 
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Another way to combat the narrow posterior distribution is to artificially inflate its 

variance. This process is known as “covariance inflation,” and there are several methods to do it. 

One is a relaxation to the prior state of the ensemble, known as “relaxation to prior perturbation” 

[RTPP; introduced by Zhang et al. (2004) and named by Whitaker and Hamill (2012)], which works 

because the prior state generally has greater spread than the posterior state. Other methods are 

based on multiplying the ensemble perturbations by a value greater than 1 to increase the 

variance. One method (known simply as “multiplicative inflation”; Anderson 2001) multiplies the 

ensemble perturbations by a constant value everywhere in the domain. This method can be 

applied to either the prior ensemble or the posterior ensemble. Another method multiplies the 

posterior ensemble perturbations by a value that is proportional to the amount by which spread 

was decreased during the DA process. This known as “relaxation to prior spread” (RTPS; Whitaker 

and Hamill 2012). Yet another method is the adaptive inflation method (Anderson 2007, 2009), 

which multiplies the prior ensemble perturbations by a spatially-varying factor. This spatially 

varying factor is updated by the observations during the DA process and optionally evolved 

forward in time by the model during the forecast step. 

The above methods implicitly assume that all the observations considered in the DA are 

valid at the analysis time. In some problems, this may not be the case, or one may wish to analyze 

observations valid at multiple times. For this, four-dimensional (4D) EnKF-based methods were 

developed (Sakov et al. 2010; Hunt et al. 2007; Wang et al. 2013a). While 3D EnKF methods 

consider covariances only in space, 4D EnKF methods consider covariances in time as well as in 

space. The time period over which observations are used for a single analysis is usually referred 

to as the “DA window.” Using temporal covariances means the ensemble mean is the most likely 
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state of the atmosphere assuming the atmosphere evolves approximately linearly in time over 

the DA window. To illustrate, Wang et al. (2013a) developed a 4D EnSRF method and ran 

observing system simulation experiments (OSSEs) to test it. Their results indicated that the 4D 

EnSRF outperformed the 3D EnSRF, particularly for long DA windows. They also found that a 5- 

to 10-minute DA window and cycle length is optimal for their test. 

As described above, these methods readily provide initial conditions for ensemble 

forecasts. Ensemble forecasts are essential for convective scale prediction, such as that in the 

Warn-on-Forecast project (Stensrud et al. 2009). The goal of the Warn-on-Forecast project is to 

provide warnings for severe convective storms and their associated hazards based on forecasts 

of those hazards, rather than detection. To produce direct forecasts of convective scale weather, 

one must provide observation information on the convective scale. Radar is a common source of 

convective-scale observations. 

A complication with using radar observations is that the forward operator for radar 

reflectivity is non-trivial to formulate. In the language of data assimilation, the role of the forward 

operator is to project the model state into the observation space to obtain a background estimate 

of the observed quantity. Practically, this means the forward operator must compute reflectivity 

from the model state, which is a non-linear operation, and the exact formulation depends on 

how the forecast model represents hydrometeors (commonly called the “microphysics”). 

However, some methods have been developed. Tong and Xue (2005) provided forward operators 

for reflectivity for single-moment ice microphysics (for example, Lin et al. 1983), and Jung et al. 

(2008) introduced forward operators for reflectivity and polarimetric variables suitable for multi-

moment microphysics (Putnam et al. 2014). 
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Despite the difficulties assimilating radar data, many radar DA and forecast experiments 

have been performed with 3D EnKF-based methods. Early work on storm scale EnKF DA includes 

Snyder and Zhang (2003), who demonstrated assimilation of simulated Doppler velocity 

observations in an OSSE framework. Dowell et al. (2004) ran DA experiments using real 

reflectivity and radial velocity observations, though their forecast model used a warm-rain 

microphysics scheme, which simplified the reflectivity forward operator at the cost of being 

physically unrealistic. Because in a real-data experiment truth is unknown, Dowell et al. (2004) 

and Dowell and Wicker (2009) also introduced diagnostics such as the consistency ratio for 

evaluating the performance of the EnKF in real-data experiments. Dowell and Wicker (2009) also 

tested an additive noise method for maintaining spread in a storm-scale ensemble. Additionally, 

one study which focused on physical processes in supercells is Marquis et al. (2012), who created 

EnKF analyses of mobile Doppler radar data to investigate vorticity generation in supercell 

thunderstorms. Also, Dawson et al. (2012) used EnKF analyses of radar data to investigate the 

impact of the low-level wind field on forecasts of a supercell thunderstorm. Labriola et al. (2017, 

2019) used EnSRF analyses to investigate forecasts of hail from various microphysics schemes. 

Snook et al. (2011, 2015) used EnSRF to show that the use of localized gap-filler X-band radars 

improved analyses and forecasts of a tornado-producing mesoscale convective system. The NSSL 

Experimental Warn-on-Forecast System for ensembles (NEWS-e; Wheatley et al. 2015; Jones et 

al. 2016), an on-demand 3 km ensemble forecast system used a flavor of EnKF called the 

ensemble adjustment Kalman filter (EAKF) to initialize forecasts, and its successor Warn-on-

Forecast System (WoFS; Yussouf and Knopfmeier 2019; Stratman et al. 2020) uses the EnSRF for 

the same purpose. 
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Most of the above work uses radar volume scans that are ~5 minutes apart, which is 

comparable to the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) network. 

However, the WSR-88D network is aging, and one candidate to replace the network is phased-

array radar (PAR). Instead of a mechanically steered beam in the WSR-88D radars, the PAR uses 

an electronically steered beam, which allows for volumetric update times of about 1 minute, 

compared to the ~5-minute update times for WSR-88D. This is very useful for forecasters to 

maintain awareness of rapidly evolving storms and to provide data for warning on short-lived 

tornadoes that might occur entirely between volume scans of the WSR-88Ds. Additionally, the 

shorter time between volumetric updates makes it an ideal candidate for use of 4D methods, as 

frequent starting and stopping of the model when using 3D EnKF methods has been shown to 

cause imbalances in the model and degrade the quality of the forecast (Wang et al. 2013a). In 

contrast, with 4D EnKF methods, multiple radar scans can be assimilated in a single step. 

Comparatively few radar DA and forecast experiments have been performed with 4D 

EnKF-based methods in real convective-storm cases. Stratman et al. (2020) included one 

experiment using the 4D EnSRF in a real-data DA and forecast experiment using the 31 May 2013 

El Reno tornadic supercell case. They found that, in contrast to Wang et al. (2013a), assimilating 

PAR volumes every 1 minute using a 3D EnKF produces a better forecast than assimilating 1-

minute volumes and producing analyses every 5 minutes using a 4D EnSRF. They attributed this 

to suboptimal covariance inflation in the 4D EnSRF. 

Because few studies have examined the performance of PAR, it is unknown whether and 

how much the PAR data provide a benefit over the current operational WSR-88D data when used 

for convective-scale DA. The goal of this work is to evaluate this benefit. This will be done using 
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DA and forecast experiments from two cases: The 21 May 2011 supercell near Ada, Oklahoma 

(OK), and the 31 May 2013 supercell near El Reno, OK. Chapter 2 will provide a meteorological 

overview of the two cases. Chapter 3 will discuss experiments with the 22 May 2011 case, and 

chapter 4 will discuss the 31 May 2013 case. Chapter 5 will provide a discussion and conclusions 

from both cases. 
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Chapter 2: Cases Studied 

Two cases are examined using the PAR data. The first is the 22 May 2011 Ada, Oklahoma, 

supercell. This was a weakly tornadic event with a tornado rating of EF0 of the Enhanced Fujita 

(EF) scale. The tornadoes started at ~0119 UTC and ended at ~0141 UTC (based on tornado 

reports, Table 1). Several operational WSR-88D radars and the NWRT PAR documented the life 

cycle of this supercell storm. During the late afternoon and evening of 21 May 2011, a dryline 

extended from the Big Bend area of Texas (southwest Texas) through central Oklahoma and into 

south-central Kansas where it intersected the Pacific front. A midlevel jet rotating through the 

base of upper low increased the effective shear. The bulk wind difference through 0-6 km AGL in 

the 0000 UTC 22 May 2011 Norman, Oklahoma, sounding was 43 kts (22.1 m s-1); values greater 

than 40 kts (20.6 m s-1) favor supercell storms.  

Table 1: Tornado reports associated with storm B on 22 May 2011 obtained from Storm 
Prediction Center (http://www.spc.noaa.gov/climo/reports/110521_rpts.html) 

Time (UTC) Location County in Oklahoma Lat Lon 
0119 3.22 km NW Vanoss Pontotoc 34.79° -96.89° 
0130 12.88 km W Ada Pontotoc 34.78° -96.80° 
0134 8.05 km W Ada Pontotoc 34.78° -96.75° 
0141 6.44 km WNW Ada Pontotoc 34.80° -96.73° 

Convection initiated along the dryline in south-central Oklahoma and by 0000 UTC on 22 

May, a storm (storm A) evolved into a supercell in south-central Oklahoma (Figure 1a).  Several 

smaller cells developed north of storm A (Figure 1a-c), and the one (storm B) closest to storm A 

matured into a supercell with a hook echo feature by 0045 UTC (Figure 1d). There was one 

tornado report associated with storm A at 00:40 UTC at Murray county, Oklahoma (SPC storm 

report database). During the next 30 min, storm B grew stronger and storm A quickly dissipated 
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when it encountered storm B (Figure 1e, f, g, h). There were four tornado reports (Table 1) 

associated with storm B, all of which were rated 0 on the EF scale.  The first tornado report was 

at 0119 UTC located 3.2 km northwest of Vanoss, Oklahoma. The supercell continued east 

towards Ada, Oklahoma. The last tornado report from storm B was at 0141 UTC located 6.44 km 

west-northwest of Ada, Oklahoma. There is no damage track available for this event. The storm 

starts to dissipate after 0200 UTC (Figure 1i, j, k). The storms were sampled both by WRD-88D 

0130 UTC

B

0145 UTC

B

0200 UTC

B

0215 UTC

B

0025 UTC

B A
0030 UTC

B A

0045 UTC

B

A
0100 UTC

B

A

0115 UTC

B

A

a) b) c)

d) e) f)

g) h) i)

j) k)

0000 UTC

0300 UTC

A

l) 

dBZ

Figure 1: Observed reflectivity (dBZ, from the NSSL National Mosaic and Multi-Sensor system) at 
2 km MSL from (a) 0000 UTC, (b) 0025 UTC, (c) 0030 UTC, (d) 0045 UTC, (e) 0100 UTC, (f) 0115 
UTC, (g) 0130 UTC, (h) 0145 UTC, (i) 0200 UTC, (j) 0215 UTC, and (k) 0215 UTC 22 May 2011 over 
the area of interest. The black circle indicates the location of Vanoss, Oklahoma and black star 
indicates the location of Ada, Oklahoma. The black triangles in (l) are the four tornado reports 
from storm B (Table 1). 
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radars and by the NWRT PAR. The observations from both radar platforms are assimilated 

separately into a storm-scale ensemble forecast system in order to compare the ability of the 

radars in forecasting the storm and its associated low-level mesocyclone. 

The second case is the 31 May 2013 El Reno, Oklahoma supercell. This event included 

several tornadoes, the strongest of which was rated EF3 and tracked near El Reno, Oklahoma. 

The synoptic situation included a broad upper-level low centered over the northern Great Plains. 

A stalled front was draped across northern and western Oklahoma, and a dryline extended across 

southwestern Oklahoma, intersecting the front ~75 km west of El Reno. The warm side of these 

boundaries was characterized by very moist and unstable air with 100-mb mixed-layer convective 

available potential energy (MLCAPE) values over 4000 J kg-1 and 2-m dewpoint temperatures at 

or above 72 °F (22.2 °C). The 0-6 km AGL bulk wind difference was 56 kts (28.8 m s-1) on the 00Z 

1 Jun sounding from Norman, Oklahoma, well above the threshold for supercells.  

The aforementioned boundaries provided a lifting mechanism to initiate convection 

between 2130 and 2230 UTC, with the cell on the southern end of the line developing supercell 

characteristics west of El Reno (Figure 2a-d). At 2255 UTC, the storm produced a brief EF0 

tornado, and at 2302 UTC, the large EF3 tornado developed west of El Reno (Bluestein et al. 

2019). This tornado ended at 2344 UTC, and this supercell went on to produce several more 

tornadoes over the next hour (Bluestein et al. 2015). One of the more notable tornadoes was an 

EF1 that occurred from 2351-0009 UTC in western Oklahoma City. During this time period, 

convection continued to develop to the west of the initial supercell, some of which briefly had 

supercell characteristics (Figure 2h-k). Eventually, after 0000 UTC 1 June, the convection grew 
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into a backbuilding mesoscale convective system, resulting in a major flash flooding event in the 

Oklahoma City metropolitan area. 

 

Figure 2: Observed base reflectivity from the KTLX radar, valid at 2210 (a), 2219 (b), 2228 (c), 
2237 (d), 2246 (e), 2256 (f), 2305 (g), 2314 (h), 2323 (i), 2332 (j), 2342 (k), and 2351 (l) UTC. The 
0.006 and 0.012 s-1 contours from MRMS azimuthal shear track from 2200 UTC to the valid 
time in each panel are given in black. 
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Chapter 3: Analysis of the 22 May 2011 Case1 

3.1. Data and Methods 

3.1.1. Data Used 

The WSR-88D radar used is the operational radar at Twin Lakes, Oklahoma (KTLX). The 

storm associated with the Ada tornado was ~80 km away from this radar. The WSR-88D radar 

sampled the storm at ~4.2-min intervals with a volume coverage pattern that consisted of 14 tilts 

(elevation angles) ranging from 0.46o to 19.45o (Table 2).  The level II reflectivity and radial 

velocity observations from the WSR-88D KTLX are quality controlled using an automatic 

procedure within the ARPS package to eliminate noise and ground clutter from the reflectivity 

observations and to unfold the aliased radial velocity observations (Brewster et al. 2005). The 

quality controlled reflectivity and radial velocity observations from both radars are interpolated 

to the model grid horizontally, but remain on the radar elevation levels vertically; this procedure 

is used in many real data studies with the ARPS EnKF DA system (e.g., Jung et al. 2012; Snook et 

al. 2012). 

The NWRT PAR sampled the evolution of the Ada supercell with a 90o sector at a rapid 

~50 sec volume updates. The volume coverage pattern spanned tilts from 0.5o to 60o with higher 

number of tilts at lower levels of the atmosphere. In this study, the lowest 14 elevation angles 

from 0.5° to 19.5° are assimilated (Table 2) into the model during the 45-min DA period. However, 

due to mechanical failures, several volume scans of NWRT PAR observations are missing between 

0045 and 0108 UTC (listed in Table 2) and therefore not assimilated in the experiments. The 

 
1 This chapter was published as sections 3, 4, and 5 of Supinie et al. (2017) 
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NWRT PAR observations are quality controlled using the same ARPS quality control package and 

interpolated in the same manner as the WSR-88D observations.   

Table 2: List of experiments conducted and the number of volume scans of radar observations 
assimilated during the 45-min data assimilation period from 0030 through 0115 UTC 22 May 
2011. 

Experiment Names WSR-88D 
 

PAR 
 

PAR-reducedtilts 
 

Tilts (elevation 
angles in degrees) 

in a complete 
volume scan 

0.46, 0.88, 11.25, 
1.75, 2.35, 3.08, 
3.98, 5.11, 6.35, 

7.97, 10.00, 12.46, 
15.57, 19.45 

0.50, 0.90, 1.30, 
1.80, 2.40, 3.10, 
4.00, 5.10, 6.40, 

8.00, 10.00, 12.50, 
15.60, 19.50 

0.50, 0.90, 1.30, 
1.80, 2.40, 3.10, 
4.00, 5.10, 6.40, 

8.00, 10.00, 12.50, 
15.60, 19.50 

Total number of 
volume scans in 15-

min assimilation 
period (valid  

0030—0045 UTC) 

5 17 
(0045—0047 UTC 

scans missing) 

4  
(0045—0047 UTC 

scans missing) 

Total number of 
volume scans in 30-

min assimilation 
period (valid  

0030—0100 UTC) 

8 26  
(0045—0051, 

0053—0055 UTC 
scans missing) 

6  
(0045—0051, 

0053—0055 UTC 
scans missing) 

Total number of 
volume scans in 45-

min assimilation 
period (valid  

0030—0115 UTC) 

12 38  
(0045—0051, 

0053—0055, 0103, 
0107, and 0108 UTC 

scans missing) 

10  
(0045—0051, 

0053—0055, 0103, 
0107, and 0108 UTC 

scans missing) 

There are a few caveats to using the PAR data. The first is that the scan sector is free to 

change between volume scans; this occurs twice for this case. The first and most substantial 

change occurs between the 0045 and 0050 UTC analyses, when the sector shifts approximately 

21 degrees counterclockwise. The second sector change is between the 0050 and 0055 UTC 

analyses; the scan sector shifts a further 2 degrees counterclockwise. The effect of a sector 

change is that storms that were outside of the radar coverage area are now observed by the 

radar, which affects the observation space statistics. This will be discussed in more detail in later 
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sections. In addition, because the PAR scans over a limited sector in azimuth, there is no way to 

suppress spurious convection outside the scan sector from the PAR. This can result in spurious 

convection interacting with the assimilated storms and degrading the quality of the forecast. To 

mitigate this, the zero-reflectivity observations from the most recent KTLX volume are used 

outside the PAR scan sector in the following manner: if the composite reflectivity from KTLX is 

less than or equal to 0 dBZ, the corresponding column of PAR observations is set to 0 dBZ. 

Otherwise, the entire column of PAR observations is set to “missing.” 

3.1.2. Experiment Design 

The storm-scale radar DA experiments are performed on a grid with 2 km grid spacing, 

nested within a mesoscale grid of 18 km grid spacing that covers the continental United States 

(CONUS, Figure 3a). The Advanced Regional Prediction System (ARPS; Xue et al. 2000, 2001, 2003) 

is used as the prediction model for the DA and forecast experiments while the EnSRF system 

developed for the ARPS system (Xue et al. 2006; Wang et al. 2013b; Jung et al. 2012; Snook et al. 

2012, 2015; Putnam et al. 2014) and extended to the 4DEnSRF algorithm (Wang et al. 2013a) is 

used for the ensemble DA.  

The mesoscale domain contains 243×163×51 grid points over the continental United 

States (Figure 3a). The vertical grids are stretched with a vertical spacing of 50 m near the surface 

and 900 m at the model top. The model top is at 25 km with a Rayleigh damping layer above 12 

km. A 40-member mesoscale ensemble is initialized from the 20-member National Centers for 

Environmental Prediction (NCEP) Short-Range Ensemble Forecasting (SREF; Du et al. 2006) 

analyses (at 40 km horizontal grid spacing) at 2100 UTC 21 May 2011, but using two sets of physics 

parameterizations (Table 3). The schemes used in the first set of 20 ensemble members are the 
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Betts-Miller-Janjic cumulus parameterization scheme (Betts 1973) and the Sun and Chang TKE-

based planetary boundary layer (PBL; Sun and Chang 1986; Xue et al. 1996) scheme. The 

Figure 3: (a) The mesoscale domain (d01) covering the CONUS, the nested storm-scale domain 
(d02), (b) the timeline of the mesoscale data-assimilation experiments, (c) The storm-scale 
domain with county borders (d02, enlarged), location of WSR-88D (KTLX, blue triangle) and PAR 
(blue triangle), location of Ada, Oklahoma (black square) and the (d) timeline of the storm-scale 
data-assimilation and forecast experiments. 
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remaining 20 ensemble members use the Kain-Fritsch cumulus parameterization scheme for 

(Kain and Fritsch 1990, 1993) and the Yonsei University (YSU) PBL scheme (Hong and Pan 1996). 

In addition, the single-moment Lin (Lin et al. 1983) microphysics scheme, stability-dependent 

surface-layer physics, a two-layer soil model initialized from NCEP’s Eta Model analysis, and the 

National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) 

(Chou 1990, 1992; Chou and Suarez 1994) longwave and short wave radiation schemes are used 

in all 40 ensemble members except for differences in the transmission functions used.  The 

transmission function in the radiation scheme is computed using k-distribution method for the 

first 20 members and using a look-up table for the remaining 20 ensemble members. The physics 

diversity in the mesoscale ensemble is used to represent model error in the ensemble system 

and to help account for ensemble under dispersion in the assimilation system (Snook et al. 2012; 

Yussouf and Stensrud 2012). This mesoscale ensemble is used to provide initial and boundary 

conditions for the one-way nested storm-scale ensemble system.  

Routinely available surface (i.e., horizontal u and v wind components, temperature T and 

dewpoint Td), wind profiler (u and v) and radiosondes (u, v, potential temperature θ and Td; only 

available at 0000 UTC 22 May 2011) observations are assimilated in the mesoscale domain every 

1 h starting at 2200 UTC 21 May 2011 out to 0000 UTC 22 May 2011 (Fig. 2b) using the ARPS 

EnSRF (Xue et al. 2006; Wang et al. 2013b) system. Radar data are not assimilated on the 

mesoscale grid. The covariance localization function is based on the 5th order correlation 

function from Gaspari and Cohn (1999) with a horizontal cutoff radius of 300 km and 800 km 

used for the surface and upper air (both wind profiler and radiosonde) observations, respectively. 

A 6 km cutoff radius in the vertical is used for all observations (Snook et al. 2015). To help 
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maintain the ensemble spread, multiplicative inflation (Anderson 2001) with a factor of 5% is 

applied everywhere in the model domain to all model state variables. The mesoscale ensemble 

analyses at 0000 UTC are used to create the initial conditions for the storm-scale ensemble. 

Meanwhile, 2-h ensemble forecasts are generated from the mesoscale ensemble analyses at 

0000 UTC 22 May 2011 out to 0200 UTC 22 May 2011 to provide ensemble boundary conditions 

for the storm-scale ensemble. 

Table 3: Physics options for the 40-member ARPS mesoscale and storm-scale ensemble system. 

Parameterization 
schemes 

Mesoscale Ensemble  
Members 1-20 

Mesoscale Ensemble  
Members 21-40 

Storm-scale 
Ensemble  
Members 1-40 
 

Cumulus Betts-Miller-Janjic Kain-Fritsch N/A 
Planetary 
Boundary Layer 

Sun and Chang Yonsei University Yonsei University 

Longwave and 
shortwave 
radiation 

NASA GSFC: 
transmission 
functions are 
computed using the 
k-distribution method 

NASA GSFC: 
transmission 
functions are 
computed using look-
up table 

NASA GSFC: 
transmission 
functions are 
computed using the 
k-distribution 
method 

Cloud 
microphysical 
scheme 

Lin scheme Lin scheme Milbrandt-Yau 2-
moment scheme 

The physics packages used by the ARPS on the 2-km nested grid are the same as the first 

20 members of the mesoscale ensemble, except that the double-moment Milbrandt and Yau 

(2006a,b; MY hereafter) microphysics scheme and the YSU PBL scheme are used, while the 

cumulus parameterization scheme is turned off (Table 3).  

A 40-member 2-km storm-scale ensemble is downscaled from the mesoscale ensemble 

analyses at 0000 UTC 22 May 2011 in a one-way nested configuration. The domain is centered 

on Ada, Oklahoma and covers most of Oklahoma and northern part of Texas with 203 × 163 × 51 
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grid points (Figure 3c). To introduce smaller scale perturbations into the convective-scale 

ensemble, samples from a Gaussian distribution with zero mean are drawn at each grid point in 

the domain. Then, a two-dimensional recursive filter (Jung et al. 2012) with a decorrelation length 

scale of 6 km is applied to these samples horizontally, and a homogeneous Gaussian filter with a 

decorrelation length scale of 4 km is applied vertically. This generates smoothed, spatially 

correlated perturbations, and these are added to the interpolated mesoscale ensemble at 0000 

UTC. The smoothed perturbations have zero mean and standard deviations of 2 m s-1 for the 

horizontal velocity components (u and v) and 1 K for potential temperature (θ) over the entire 

domain. The perturbation standard deviations of the mixing ratios for water vapor (qv), cloud 

water (qc), rain water (qr), ice (qi), snow (qs), hail (qh), and graupel (qg) are set to 10% of their 

values at each grid point where the observed reflectivity is larger than 10 dBZ. Only positive 

perturbations are retained for θ, qv, qc, qr, qi, qs, qh and qg. The effect of the recursive filter is 

similar to but computationally more efficient than that used in (Tong and Xue 2008).  

Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007) observations (i.e., 10-m u, 

v, 2-m temperature T and relative humidity rh) are assimilated every 5-min into the storm-scale 

ensemble starting from 0005 UTC and ending at 0020 UTC using 3D EnSRF (Figure 3d) DA. A cutoff 

radius of 50 km is used in the horizontal and 6 km in the vertical for covariance localization [as in 

Snook et al. (2015), similar to Sobash and Stensrud (2015)]. A 15% multiplicative inflation and 

relaxation-to-prior spread (RTPS; Whitaker and Hamill 2012) with a relaxation factor of 0.85 are 

applied over the whole domain to all model variables to help maintain ensemble spread during 

the period of Mesonet data assimilation. These values are selected based on several sensitivity 

studies (not shown). 
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The radar reflectivity and radial velocity observations from the WSR-88D or PAR are   

assimilated into the storm-scale ensemble starting at 0030 UTC using the 4DEnSRF (Figure 3d), 

and the assimilation continues until 0115 UTC with 5-min assimilation window. In order to show 

the effect of the radar data assimilation without the effect of other observation types, Oklahoma 

Mesonet data are not assimilated during this period. 

Both the PAR and WSR-88D radar observation times are reassigned into 1-min batches, 

as in a traditional EnSRF approach. For example, a ~50 sec complete volume scan of PAR 

observations are reassigned to the nearest minute and the ~4.2 min volume scan WSR-88D 

observations, which consist of 14 elevation angles, are separated into single elevation angles and 

re-grouped at 1 minute intervals based on the times of the tilts. Therefore these 1-min data 

batches contains ~2-3 tilts of for WSR-88D observations rather than full volume scans that are 

often treated as being collected simultaneously in 3D EnSRF (Wang et al. 2013a; Yussouf and 

Stensrud 2010). The 4DEnSRF scheme pre-calculates the observation prior, H(x) for all these 

observations every 1-min to perform an analysis every 5-minutes (Wang et al. 2013a). 

Specifically, to produce an analysis valid at time t, the 4DEnSRF uses 5 batches of data and their 

priors at t - 2 min, t - 1 min, t, t + 1 min and t + 2 min, with each batch consisting of observations 

within 30 seconds of the batch time.  

The standard deviations of the WSR-88D reflectivity and radial velocity observation errors 

are assumed to be 5 dBZ and 3 m s-1, respectively, following Putnam et al. (2014).  After several 

sensitivity experiments, the same observation error standard deviations as those for the WSR-

88D data are used for the PAR data as well. The cutoff radius used in covariance localization for 

the storm-scale ensemble is 6 km in both the horizontal and vertical, the same as those used in 
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Jung et al. (2012), while the time localization is assumed to be 5 minutes, following Wang et al. 

(2013a).  To help maintain ensemble spread, RTPS with a relaxation factor of 0.9 is applied over 

the entire region, and multiplicative inflation of 20% is applied to the prior ensemble in regions 

directly influenced by the radar data during the period of radar data assimilation. These values 

are selected based on several sensitivity studies and guidance of earlier studies.  

Table 4: An example of tilts of PAR observations that are assimilated in the PAR-reducedtilts 
experiment.  The table lists the tilts and corresponding times of observations used in WSR-88D, 
PAR, and PAR-reducedtilts experiments from 0028 UTC to 0031 UTC. 

UTC 
Forecast 
Time 

WSR-88D 
Tilts in Degrees  

(Valid Times) 

PAR 
Tilts in Degrees  

(Valid Times) 

PAR-reducedtilts  
Tilts in Degrees  

(Valid Times) 
0028 0.5-0.9 

(0027:34-0028:07) 
0.51-19.5  

(0027:37-0028:15) 
0.51-0.9 

(0027:37-0027:44) 
0029 1.4-3.0 

(0028:39-0029:23) 
0.51-19.5 

(0029:02-0029:40) 
1.3-3.1 

(0029:15-0029:29) 
0030 4.0-8.0 

(0029:38-0030:19) 
0.51-19.5 

(0029:45-0030:24) 
4.0-8.0 

(0030:15-0030:20) 
0031 10.2-19.7 

(0030:33-0031:14) 
0.51-19.5 

(0030:30-0031:21) 
10.0-19.5 

(0031:17-0031:21) 

Three DA and forecast experiments are conducted (Table 2) on the 2-km grid, forced by 

the same mesoscale ensemble at the lateral boundaries. The first experiment assimilates the 

KTLX WSR-88D radar observations only (referred to as WSR-88D experiment hereafter), while the 

second experiment assimilates the full-volume PAR observations (referred to as PAR experiment 

hereafter). The third experiment assimilates PAR observations but uses only those tilts that 

closely match the times of the tilts of WSR-88D observations (referred to as PAR-reducedtilts 

experiment hereafter). Four to five volume scans of PAR observations are needed to reproduce 

one volume scan of PAR-reducedtilts observations that has the same temporal frequency as in 

WSR-88D. An example radar observation dataset that is assimilated in the WSR-88D, PAR, and 
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PAR-reducedtilts experiments during a 5-min DA window is shown in Table 4. As mentioned 

earlier, while a volume scan of PAR observations has higher temporal resolution than the WSR-

88D volume scan, the PAR observations have a slightly coarser spatial resolution than the WSR-

88D observations. Therefore, while experiments WSR-88D and PAR-reducedtilts have similar 

temporal resolutions, the latter has coarser spatial resolutions. The differences between PAR and 

PAR-reducedtilts will reveal the impact of the higher temporal frequency of PAR observations. 

Additional information regarding the experiments is found in Table 3. Finally, 1-h deterministic 

forecasts are initialized from the ensemble mean analyses and three sets of 1-h ensemble 

forecasts are initialized from the ensemble analyses for all three experiments after 15-, 30- and 

45-min of ensemble radar DA (Figure 3d). The analyses and forecasts are used to investigate how 

quickly and accurately the rapid scan PAR observations initialize and forecast the storm. 

3.2. Results 

3.2.1. Innovation statistics during the DA period 

The three DA and forecast experiments assimilate radar observations from two different 

radar platforms, i.e., the WSR-88D and PAR. To evaluate the performance of the ensemble filter 

during the 45-min assimilation period, the root mean square innovation (RMSI), mean 

innovation, total ensemble spread (TES), and consistency ratio statistics are calculated in 

observation space against the observations that each experiment assimilated and are shown in 

Figure 4. The statistics are calculated at the time of the observations and only at locations where 

the observed or model reflectivity is greater than 15 dBZ. The RMSI is calculated using the 

following equation (Dowell and Wicker 2009),   

 RMSI = C〈(𝑑 − 〈𝑑〉),〉, (7) 
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where   

 𝑑 = 𝑦$ − 𝐻(𝑥-)........ or	𝑑 = 𝑦$ − 𝐻(𝑥!)........, (8) 

and the brackets indicate an average over all observations in a radar volume. yo is the 

observation, H is the observation operator, which maps the model state to the observation type 

and location, x represents the model state vector, superscript f indicates a prior estimate (i.e., 

before the observation is assimilated), superscript a indicates a posterior estimate (i.e., after the 

observation is assimilated). The TES is defined in terms of the observation prior as 

 TES = =𝜎, + 〈 '
.&'

∑ K𝐻(𝑥/) − 𝐻(𝑥).......L
,.

/0' 〉, (9) 

where N is the number of ensemble members (40 in our experiment), n is an index that identifies 

a particular ensemble member, and the observation error standard deviation σ is assumed 5.0 

dB for both WSR-88D and PAR reflectivity observations, as mentioned earlier. Finally, the 

consistency ratio is defined as in Dowell and Wicker (2009): 

 consistency	ratio = W TES
RMSI

X
,
=

7#+〈 $
%&$

∑ :;<='
(>&;?=(@AAAAAAAAAB

#%
')$ 〉

〈(E&〈E〉)#〉
.  (10) 

All three experiments start with an analysis RMSI of ~15 dBZ (Figure 4); by the end of the 

assimilation period the analysis RMSI is reduced to ~5-7 dBZ. The forecast and analysis RMSI from 

the PAR experiment is generally less than the other experiments. Additionally, the effect of the 

missing PAR volumes between 0045-0055 UTC (see Table 2) is apparent in the increased RMSI 

near 0055 UTC in both the analyses and forecasts in the PAR-reducedtilts experiment. However, 

by the 0115 UTC cycle, the RMSI is stabilized (Figure 4a), which suggests that the missing PAR 

observations have minimal effect by the end of the assimilation period. 
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Furthermore, the TES (Figure 4c and d) is similar for all experiments in either the forecasts 

or the analyses, suggesting the ensembles are fairly configured. The consistency ratios are also 

comparable in magnitude between experiments, with values between 0.1 and 0.4 (Figure 4g). 

These values are well below 1, suggesting underdisperson in the ensemble, which is commonly 

seen in storm-scale real data ensemble DA studies (e.g., Jung et al. 2012; Yussouf et al. 2013 and 

references therein). Despite the spread deficiency, the filter shows no sign of divergence during 

the 1-hr assimilation period, indicating reasonable robustness of the DA system.  

The mean innovation (Figure 4e and f) is largely positive indicating that model reflectivity 

is lower than the observed reflectivity. The underprediction of reflectivity in the model during 

the assimilation period is also seen in other studies (Dawson et. al 2012; Yussouf et al. 2015). As 

expected, the forecast and analysis mean innovation generally decrease with time as more data 

are assimilated.  There are some apparent oscillations in the forecast mean innovation in the 

early part of the assimilation period that are the result of overprediction of spurious echoes and 

underprediction of the geographical extent of storms before the forecast is sufficiently improved. 

The intensity of the storms is underpredicted at 0035 UTC, while the spatial coverage of 

reflectivity is overpredicted, leading to a small mean innovation. Radar DA at this time is too 

aggressive at removing reflectivity, resulting in a large positive mean innovation and large RMSI 

at 0040 UTC. Both spurious echoes and the underprediction of storm intensity are improved at 

0045 UTC as more data are assimilated at 0040 UTC, leading to a smaller mean innovation. The 

main reason for the large positive mean innovation at 0050 UTC is different. As mentioned 

earlier, the PAR scan sector shifts approximately 21 degrees counterclockwise at 0050 UTC, 
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meaning the PAR is observing storms that were previously not in the PAR coverage area. Those 

storms have yet to spin up in the model, leading to underprediction and a large positive mean 

innovation (Figure 4e and f) at the 0050 UTC assimilation. After 0055 UTC, both mean innovation 

and RMSI continue to decrease, indicating that the filter is stable. 

3.2.2. Analyzed near surface cold pool and vertical vorticity  

Studies such as Dawson et al. (2010) and Putnam et al. (2014) have shown the importance 

of the analyzed and predicted cold pool in convective storms on their dynamics and evolution. 

To evaluate the analyzed cold pools and associated low-level mesocyclones, the ensemble mean 

analyses of equivalent potential temperature (θe), horizontal winds and vertical vorticity at the 

Figure 4: Observation-space diagnostic statistics: forecast and analysis root mean square 
innovation (RMSI; a and b, respectively) forecast and analysis total ensemble spread (TES; c and 
d, respectively), forecast and analysis mean innovation (e and f, respectively; positive values 
denote that the observations are larger than the ensemble mean), and forecast consistency ratio 
(g), for reflectivity (dBZ) from the three data assimilation and forecast experiments. Calculations 
are limited to locations where observed and/or ensemble mean reflectivity exceeds 15 dBZ. 
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first model level or about 25 m above ground from the three experiments after 15 (valid 0045 

UTC), 30 (valid 0100 UTC), 45 min (valid 0115 UTC) of DA cycles are shown in Figure 5.  

After 15 minutes of DA, the cold pool in storm B in the PAR experiment is the coldest out 

of all three experiments (minimum θe of 319 K in Figure 5d). Assimilating more reflectivity 

observations in the PAR experiment leads to a stronger cold pool, likely due to the negative 

correlation between reflectivity and temperature in the cold pool (Dowell et al. 2011). The low-

level mesocyclones are also relatively weak in all experiments, though the WSR-88D experiment 

has the strongest (1.9×10-3 s-1), followed by the PAR experiment (1.7×10-3 s-1) and then by the 

PAR-reducedtilts experiment (1.4×10-3 s-1). As 4DEnSRF uses 5-min assimilation window, the 

missing PAR observations at the last assimilation cycle from the initial 15 minutes of DA period 

(Table 2) directly impact the analysis and may be partly responsible for weaker low-level 

mesocyclone PAR-reducedtilts. 

After 30 minutes of DA, the PAR (Figure 5e) experiment has stronger cold pools than the 

other two experiments in general in storm A and storm B. Additionally, the PAR experiment has 

the strongest low-level mesocyclone for both storm A and storm B. The peak of 5.4×10-3 s-1 is in 

storm A. By this time, 8, 26, and 6 volume scans of observations are assimilated in WSR-88D, PAR, 

and PAR-reducedtilts experiments, respectively (Table 2), leading to the weakest mesocyclone in 

the PAR-reducedtilts experiment.  

After an additional 15-min of DA (valid 0115 UTC), the PAR experiment continues to have 

the strongest vorticity values associated with storm B, with the maximum vertical vorticity 

reaching 6.6×10-3 s-1 (Figure 5f) while the other two experiments produce much smaller maximum 

values (Figure 5c and i). In addition, the minimum θe for both the WSR-88D and PAR experiments 
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are in the cold pool for storm A; the minimum θe is similar between these two experiments. For 

storm B, the cold pool has approximately the same minimum θe in all three experiments.  

However, approximating the outline of the cold pool as the 336 K contour, the PAR experiment 

has a slightly more widespread cold pool. 

Figure 5: The ensemble mean analyses of vertical vorticity (black contours at intervals of 100×10-

5 s-1, max vorticity is shown on each panel with unit ×10-5 s-1), horizontal wind vectors and 
equivalent potential temperature (colored; at 4 K increments; min is shown on each panel) after 
15 (valid 0045 UTC), 30 (valid 0100 UTC) and 45 (valid 0115 UTC) minutes of data assimilation 
from (a, b and c) WSR-88D, (d, e and f) PAR and (g, h, and i) PAR-reducedtilts experiments at the 
first model grid level (~25 m) above ground. Green contours represent 35 dBZ reflectivity 
analyses.   
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3.2.3. Analyses and forecasts of reflectivity 

To evaluate the impacts of DA on the forecasts, the observed National Mosaic and Multi-

Sensor QPE (NMQ) 3D radar reflectivity mosaic product (Zhang et al. 2011) reflectivity is 

compared to the analyses and 15-minute forecasts from the ensemble member closest to the 

mean (Figure 6 and Figure 7). This member is chosen in a similar way to Yussouf et al. (2013). It 

is defined as the member with the smallest normalized root mean square difference from the 

mean in potential temperature and u and v wind components. The reflectivity analyses at 2 km 

MSL valid at 0045 UTC (after 15 minutes of DA, or three assimilation cycles) are able to capture 

both storms A and B in all three experiments, though storm A in particular has lower reflectivity 

in the analyses than the observations (Figure 6a, d, g, and j). Because the PAR does not observe 

the cells to the north of storm B until 0050 UTC, they are not well-represented at this time in the 

PAR and PAR-reducedtilts experiments (Figure 6g and j). Particularly, both experiments have one 

intense storm instead of two weaker storms. 

As PAR observations of the two cells to the north of storm B start when the scan sector 

changes at 0050 UTC, the reduction in intensity of these cells induced by the PAR observations is 

apparent in the PAR experiment 0100 UTC (Figure 6h). While 7 full volumes are assimilated in the 

PAR experiment, only two partial volumes are assimilated in the PAR-reducedtilts experiment 

due to the missing data discussed earlier. As a result, those storms are still poorly resolved at 

0100 UTC (Figure 6k). Otherwise, only minor structural differences are evident between 

experiments. By the 0115 UTC analyses, all three experiments show similar storm structure, 

suggesting sufficient observations are assimilated by this time (Figure 6f, i and l). 
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The 15-minute forecast from the member closest to the ensemble mean is examined in 

Figure 7. In the forecasts initialized at 0045 UTC, the intensity and structure of storm A in the PAR 

Figure 6: The NMQ reflectivity observations (first row, colors at 5-dBZ increment) and analyses 
from the member closest to the mean at 0045 UTC (first column), 0100 UTC (second column), 
and 0115 UTC (third column) from the WSR-88D (second row), PAR (third row) and PAR-
reducedtilts (fourth row) experiments. Reflectivity at 2 km AGL is color filled. The 0.004 s-1 vertical 
vorticity contours are given in solid black. The verification domain for the skill scores in Figs. 8 
and 9 are shown by the black box. The portion of the domain shown here is over southeast 
Oklahoma. 
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experiment matches better with observations (Figure 7a, d, g, and j). However, storm B, which is 

located near the boundary of the PAR coverage area, is merging with a spurious supercell outside 

of the PAR coverage area. In the forecasts initialized 0100 UTC, the overall structure of storm B 

in the WSR-88D and PAR-reduced tilts experiments is more realistic than the corresponding 

initialization (see Figure 6e and k). Additionally, the ensemble member closest to the mean 

happens to develop much less spurious cells to the east of storms A and B in the PAR and PAR-

reducedtilts experiments compared to the WSR-88D experiment. All other ensemble members 

(not shown) show similar results, and this is consistent with our observation that northern storms 

outside of the PAR coverage area are underpredicted in the PAR and PAR-reducedtilts 

experiments, producing less convection.  

Additionally, the reflectivity in storm A is much more intense in all three experiments than 

in the observations, and the simulated storms continue to display hook echoes, whereas the 

observed storm does not. In fact, storm A does not dissipate through the end of the 1-hr forecast 

in any of the experiments (not shown). Thus, the reflectivity forecasts from 15 minutes through 

the end of the run are considered poor. Furthermore, the 15-minute forecasts initialized at 0115 

UTC (Figure 7f, i, and l) are largely similar, except that the PAR experiment and, to a lesser extent, 

the PAR-reducedtilts experiment develop a spurious vorticity maximum in the northeastern 

quadrant of storm B. Also, storm A in the 0115 UTC forecasts is still much stronger than the 

observed, though it does begin to dissipate near the end of the run. 

One problem seen in all three experiments is the faster propagation of supercells to the 

north and east compared to the observations. Similar problems have been seen in many prior 

storm-scale radar DA studies (e.g. Dawson et al. 2012, 2015; Xue et al. 2014; Yussouf et al. 2015, 
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2016; Stensrud and Gao 2010, to name a few). Stensrud and Gao (2010) suggest that this may be 

because the model is unable to develop mid-level pressure perturbations that lead to deviant 

motion in supercells. Xue et al. (2014) speculate that this may be due to errors in analyzing the 

storm environment, which leads to incorrect steering winds in the model. Fiori et al. (2011) found 

Figure 7: As in Figure 6, but for 15-minute deterministic forecasts initialized from the ensemble 
member closest to the mean. Note that the verification domain for the skill scores is omitted 
from this figure. 
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that the storm motion depends on the turbulence closure model and grid spacing. Reducing 

errors associated with supercell motion in storm-scale NWP is worthy of further investigation, 

however addressing it is beyond the scope of this paper. 

3.2.4. Forecast probability of low-level vorticity 

The 2-km model horizontal grid spacing used in this study is far too coarse to explicitly 

resolve any tornado circulation and is barely capable of resolving mesocyclone scale features of 

the tornadic storm. To infer the amount of low-level rotation from the three experiments, the 

ensemble forecast probability of low level vorticity is compared with the Warning Decision 

Support System-Integrated Information (WDSS-II; Lakshmanan et al. 2007) generated surface to 

2 km MSL mesocyclone circulations (Miller et al. 2013) from KTLX radar observations (Dawson et 

al. 2012; Stensrud and Gao 2010; Yussouf et al. 2013, 2015; Xu et al. 2015). The vorticity 

probabilities are calculated at first model level above ground (~25 m AGL) during the 0-1 h 

forecast period. The forecast output (which is written out at 5-min intervals) from each ensemble 

member initialized from a certain analyses time is checked to see whether the vorticity exceeds 

a threshold value within a radius of 4 km in the horizontal direction around each horizontal grid 

point at any output time during the 1-h forecast period, and the vorticity probabilities are 

calculated from the number of members exceeding the threshold values. A threshold of 0.0015 

s-1 is used for vertical vorticity. The 1-h forecast probability of vorticity are examined every 15 

min from after 15, 30 and 45 min (valid 0045, 0100 and 0115 UTC initialization times) of radar DA 

and is compared with the WDSS-II rotation track (Figure 8).  

The 1-hr forecast probability of low-level vorticity exceeding 0.0015 s-1 initialized at 0045 

UTC shows largely low (<40%) probabilities of vorticity (Figure 8a, d and g). The PAR experiment 



34 
 

(Figure 8d) has the largest overlap between the forecast vorticity swath and the WDSS-II rotation 

track. The WSR-88D experiment (Figure 8a) shows the highest probability values (~50%) displaced 

well to the north and west of the WDSS-II track, and the PAR-reducedtilts experiment shows only 

weak probabilities overlapping the WDSS-II track.  

The forecast probabilities of strong low-level rotation increase with an additional 15 

minutes of DA (Figure 8b, e, and h), and the forecast vorticity swaths are aligned better with the 

observed WDSS-II track compared to the 0045 UTC forecasts. The WSR-88D experiment (Figure 

8b) has very low probability over the beginning part of the observed strong rotation track but 

increases to high probabilities over the later part of the track. The PAR-reducedtilts experiment 

(Figure 8h) has coverage of mid-range probabilities (40-60%) over the first part of the track, but 

the probabilities never increase above ~60%. On the other hand, the PAR experiment (Figure 8e) 

has coverage of high probabilities over the first part of the observed rotation track and at least 

mid-range probabilities over the rest of the track. Thus, the assimilation of the higher temporal 

frequency PAR observations clearly produces more reasonable probabilistic forecasts of vorticity 

with only 30 minutes of DA compared to the assimilation of WSR-88D data. 

The forecast of low-level vorticity initialized after 45 minutes of DA generates relatively 

large areas with probability >90% in all three experiments (Figure 8c, f, and i). These are displaced 

slightly south of the WDSS-II track in all experiments. As in the forecasts initialized at 0115 UTC, 

the PAR experiment (Figure 8f) has better coverage in the early part of the track as compared to 

the WSR-88D and PAR-reducedtilts experiments (Figure 8c and i). Additionally, the spurious 

vorticity maximum seen in the 2 km MSL vorticity from the PAR and PAR-reduced tilts 
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experiments (see Figure 7i and l) does not extend down to the surface. However, aside from the 

coverage in the early part of the rotation track, few differences are apparent between 

experiments in the forecasts initialized at 0115 UTC. 

Figure 8: 1-hr forecast neighborhood ensemble probability of vertical vorticity exceeding a 
threshold of 0.0015 s-1 at the first model level above ground from WSR-88D (top row), PAR 
(middle row) and PAR-reducedtilts (bottom row) experiments initialized after 15 min (valid 0045 
UTC, left column), 30 min (valid 0100 UTC, middle column) and 45 min (valid 0115 UTC, right 
column) of data assimilation. The black contours overlaid are the WDSS-II generated KTLX low-
level mesocyclone rotation exceeding 0.01 s-1 vorticity during the 0-1 hr forecast periods. 
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Though the above analysis has primarily focused on storm B, the forecasts for storm A 

show similar results. Particularly, in the forecasts initialized at 0100 UTC, the PAR experiment 

shows higher probabilities of vorticity for storm A than the WSR-88D and PAR-reducedtilts in the 

early part of the swath, where there is observed rotation from the WDSS-II track. Additionally, 

Figure 9: The maximum azimuthal shear for storm B (red line). The maximum vorticity at 2 km 
AGL within 15 km of the observed location of the mesocyclone of storm B is given in the black 
and gray lines. The ensemble mean is given in the black line, and the ensemble 10th and 90th 
percentiles are given in the gray lines. The forecasts for the WSR-88D, PAR, and PAR-reducedtilts 
experiments are given in the top, middle, and bottom rows, respectively. The 0045, 0100, and 
0015 UTC forecasts are given in the left, middle, and right columns, respectively. 
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the probabilities of vorticity for storm A increase with eastward extent in the WSR-88D and PAR-

reducedtilts experiments, which is not reflected in the WDSS-II rotation track. In contrast, the 

vorticity probabilities in the PAR experiment remain approximately the same with a slight 

reduction in value with eastward extent. This is consistent with storm A being underpredicted 

during early DA cycles in the WSR-88D and PAR-reducedtilts experiments and dissipating much 

later than observations. However, the PAR experiment was able to retrieve the intensity and the 

spatial coverage much better at early cycles although dissipation was delayed as in other two 

experiments. 

The probabilities are indirectly related to mesocyclone intensity, but to get a direct 

measure of intensity, the magnitudes of the vorticity in the forecasts and the azimuthal shear in 

the rotation track are compared for storm B (Figure 9). While it is difficult to directly compare 

these values, the trends can be compared to perhaps extract useful information. For the 0045 

UTC forecast, the trend in the ensemble in the WSR-88D and PAR-reduced tilts experiments are 

slightly downward, which contrasts with the observed strengthening of the mesocyclone 

throughout this set of forecasts. The intensity in the PAR experiment is approximately steady, 

with no net change over the forecast. For the 0100 UTC forecast, all experiments depict an 

approximately steady mesocyclone intensity, which is the same trend as observed. The 0115 UTC 

forecast shows the mesocyclone maintaining approximately steady in the PAR experiment with 

maybe a slight decrease and approximately steady with maybe a slight increase in the WSR-88D 

and PAR-reducedtilts experiment. None of the ensemble intensity changes are particularly 

strong, so it is difficult to draw definitive conclusions from this figure about which experiment is 
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better. However, the WSR-88D and PAR-reducedtilts experiments again perform most similar to 

each other. 

The same analysis can be performed for storm A (Figure 10). All experiments miss the 

spike in intensity in the 0045 UTC forecast, which may be because both storms are poorly 

initialized in the ensemble after only 15 minutes of DA. The WSR-88D and PAR-reducedtilts 

experiments keep the intensity steady or slightly increase during the 0100 UTC experiment, 

Figure 10: As Figure 9, but for storm A. 
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coincident with a weakening of the observed mesocyclone. The 0100 UTC forecast for the PAR 

experiment does decrease the intensity of the mesocyclone. All three forecasts are 

approximately steady or slightly increasing during the 0115 UTC forecast, during which the 

mesocyclone intensity decreased until it could no longer be distinguished at 0200 UTC. The 

correctness of the PAR experiment at the 0100 UTC forecast may illustrate some skill with 

capturing the intensity of the mesocyclone, but it is again very difficult to draw definitive 

conclusions from this analysis. 

3.2.5. Skill scores of ensemble reflectivity forecasts 

To quantify the accuracy of reflectivity forecasts from the 40-member ensembles during 

the 1-h forecast period, the equitable threat scores (ETS; Wilks 2006) are calculated from the 

three experiments for reflectivity exceeding the thresholds of 25 and 40 dBZ (Figure 11) using the 

NMQ reflectivity observations. These thresholds are chosen to focus on light precipitation areas 

and heavy convective cores, respectively. Ensemble members are aggregated by summing the 

number of hits, misses, and false alarms from each ensemble member in the ETS calculation. That 

is, 

 ETS = GH&G*
GH+IH+-̅&G*

; 				ℎK =	
(GH+IH)(GH+-̅)

/A
, (11) 

where ℎ. = ∑ ℎLL , and hi is the number of hits in ensemble member i. The quantities 𝑚̂, 𝑓,̅ and 𝑛. 

are misses, false alarms, and the total number of grid points, respectively, and are defined in a 

similar manner to the hits. This is similar, though not equivalent, to taking the mean of the ETS 

from the members. An ETS of 0 indicates no skill, while an ETS of 1 indicates a perfect forecast by 

all ensemble members. In order to eliminate areas that were not observed by the PAR, which 

would unfairly penalize that experiment, verification regions were created at the 0045, 0100, and 
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0115 UTC analysis times (see Figure 6). Each region is entirely contained within the PAR scan 

sector at that time. The verification regions were translated during the respective forecasts along 

with the storms to keep the entirety of the observed and forecast storms in the region. 

Additionally, ETS is computed over the entire depth of the storm. 

The ETSs are found largely to increase with decreasing forecast lead time as expected in 

all three experiments, reducing to near or below 0 by the end of the forecast periods.  In general, 

the PAR experiment has a higher ETS for both the 25 and 40 dBZ thresholds than the WSR-88D 

experiment for the forecasts (Fig. 8) despite the missing observations and lower spatial 

Figure 11: The equitable threat scores (ETS) versus forecast times (UTC) for reflectivity threshold 
of 25 (first row) and 40 (second row) dBZ from the three experiments. Forecasts are initialized 
after 15 (valid 0045 UTC; a, d), 30 (valid 0100 UTC; b, e) and 45 min (valid 0115 UTC; c, f) of data 
assimilation. Calculations are performed over a small subdomain (see text for details). 
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resolution. We suspect that those limitations are responsible for a similar or slightly higher ETS 

in the WSR-88D experiment in general compared to the PAR-reducedtilts experiment. The 

differences between the WSR-88D and PAR experiments are evident only for the first 30 minutes 

of the forecasts initialized at 0045 UTC (Figure 11a and b), while differences are noticeable almost 

to the end of the 1-hr forecast period for forecasts initialized at 0100 and 0115 UTC (Figure 11b, 
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c, e, and f). The ETS of the PAR-reducedtilts experiment remains lower than that of the PAR 

experiment for the duration of all 1-hr forecasts, indicating the benefit of high temporal 

frequency observations. 

The area under the relative operating characteristic (ROC; Mason 1982) curve (AUC) is 

calculated for a range of reflectivity thresholds (10 to 50 dBZ) are shown in Figure 12 for the 

Figure 12: The area under the relative operating characteristic (ROC) curve (AUC) from the 
analyses after 15, 30 and 45 min of data assimilation (first column), 30-min forecasts (second 
column) and 1-hr forecasts (third column) for reflectivity thresholds ranging from 10-50 dBZ. 
Calculations are performed over a small subdomain (see text for details). 

Figure 13: The 10-minute forecast from the 0100 UTC initialization of the number of hits (first 
row), misses (second row), and false alarms (third row) at the 25 dBZ threshold at each grid point, 
summed over all ensemble members, at 2 km MSL. 
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analyses and forecasts. As discussed in Snook et al. (2012), ROC measures hit and false alarm 

rates at varying probability thresholds (Mason and Graham 1999); it therefore provides 

information on the ability of a probabilistic forecast system to correctly discriminate between 

events and non-events (no resolution).  A forecast with perfect skill has an AUC of 1.0 and 0.5 

means zero skill.  

All three experiments have high AUCs in the analyses (Figure 12a, d and g) and the value 

decreases as the forecast lead times increases (Figure 12b, e, h, c, f, and i). The 30-minute 

forecasts after 15 minutes of DA are just below the skillful range (AUC > 0.7), and the 60-minute 

forecasts have very small AUCs, indicating no ability to discriminate (AUC < 0.5). The 30-minute 

forecasts after 30 and 45 min of DA increases the AUCs to above 0.7 for most thresholds for the 

PAR experiment, suggesting that at least 8 radar volume scans (~30-min of DA) are needed to 

produce operationally useful forecasts.  

The reason for the improved ETS scores and AUCs can be seen in Figure 13, which shows 

the 10-minute forecast from the 0100 UTC initialization of the number of hits, misses, and false 

alarms at the 25 dBZ threshold at each grid point, summed over all members of the ensemble. 

All three experiments have large numbers of hits where the observed storms overlap with the 

storms in the ensemble. The majority of the misses in all three experiments occur to the south 

and west of storms A and B (Figure 13d, e, f), and the majority of false alarms occur to the 

northeast of storms A and B (Figure 13g, h, i), likely a result of the faster propagation of storms 

in the model, noted earlier. The three experiments are largely similar, except the PAR experiment 

better captures the southern extent of both storms A and B, resulting in fewer misses and more 
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hits in those regions. This directly increases the ETS score and results in larger AUCs because of a 

higher probability of detection, which is used in computing the ROC curve. 

 Overall, the PAR experiment generates the highest AUCs and the PAR-reducedtilts 

experiment the lowest AUCs during the 1-h forecast period. In the analyses, these differences are 

largest after 15 minutes of DA and decrease as more data are assimilated. However, the largest 

differences in the 30-minute forecasts are after 30 minutes of DA, and in the 60-minute forecasts, 

the AUCs are largely the same between experiments. These results suggest that the PAR data are 

most useful in DA windows that are ~30 minutes long. 

3.3. Summary 

To evaluate the impact of high-temporal-resolution PAR observations compared to the 

current operational WSR-88D observations on convective storm prediction, three DA and 

forecast experiments are conducted for the 22 May 2011 Ada, Oklahoma tornadic supercell event 

using radial velocity and reflectivity observations from both rapid-scan NWRT PAR and WSR-88D 

KTLX.  The experiments are conducted with the ARPS model and its 4DEnSRF DA system using a 

heterogeneous mesoscale environment. The first experiment assimilates traditional WSR-88D 

radar observations, the second experiment assimilates observations from the NWRT PAR and the 

third experiment assimilates PAR observations with WSR-88D-like temporal frequency (PAR-

reducedtilts experiment). The WSR-88D and PAR experiments are designed to compare the 

accuracy of the forecasts due to two different temporal resolutions from the different radar 

platforms. The PAR-reducedtilts experiment picks a subset of elevations from the rapid-scan PAR 

observations from the observation data set to mimic the WSR-88D-like coarser temporal 

resolution observations (even though spatial resolution differences exist between PAR and WSR-
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88D observations) and is designed to examine the differences in the analyses and forecasts due 

to high-temporal-resolution PAR observations. All three experiments assimilate radar 

observations for a continuous 45 min DA period at every 5-min assimilation frequency. There are 

some missing PAR volume scans during this period. Finally, 1-hr forecasts are launched at the end 

of the 15-, 30- and 45-min assimilation periods, respectively. The goal is to evaluate how quickly 

and accurately the rapid-scan PAR observations can initialize and forecast the tornadic supercell 

storm.  

The observation-space diagnostic statistics compared against the assimilated 

observations reveal that the filter shows no sign of forecast divergence during the 45-minutes 

assimilation period. All three experiments are able to analyze reflectivity structures that are 

similar to the observations even after a short 15-min DA period. The 15-minute forecasts from 

the member closest to the ensemble mean largely captured the storm evolution, though storm 

A was too strong in the 0100 and 0115 UTC initializations. The 1-h forecast probability of low-

level vorticity after 15, 30 and 45 min of DA from all three experiments indicate that the 

placement and alignment of the swath of high probabilities from the PAR experiment more 

closely match the WDSS-II derived rotation track, particularly from the forecast initialized after 

only 30 min of DA. For this forecast, the low-level rotation from the WSR-88D does not cover the 

initial part of the WDSS-II rotation track, and the probability values from the PAR-reducedtilts 

experiment are comparatively low. The ETS score and the area under the ROC curve (AUC) also 

indicate that PAR experiment forecasts improved skill compared to the WSR-88D and PAR-

reducedtilts experiments, particularly over 15- and 30-min long assimilation periods. The 
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improved skill in the PAR experiment is the result of better capturing the southern extent of 

reflectivity coverage in both storms A and B. 

The overall results indicate that the WSR-88D and PAR-reducedtilts experiments perform 

most similarly to each other, and the PAR experiment performs better than those two 

experiments. From this, we conclude that the assimilation of high-frequency PAR observations 

results in improved accuracy over traditional WSR-88D observations. Furthermore, we conclude 

that this improvement in accuracy is the result of the increased data volume from the PAR.  The 

improved accuracy is more pronounced with a short or moderately long (15-30 min) assimilation 

period. The positive impact of higher temporal resolution of the PAR observations decreases for 

a longer assimilation period (45 min in this study). This is similar to the findings of the OSSE 

studies of Xue et al. (2006) and Yussouf and Stensrud (2010).  
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Chapter 4: Analysis of the 31 May 2013 Case 

4.1. Experiment Design and Observations 

4.1.1. Observations assimilated 

The observations assimilated in these experiments fall into two categories: surface data 

and radar data. For surface data, we use u, v, potential temperature (θ), and water vapor mixing 

ratio (qv) observations from the Oklahoma Mesonet (Brock et al. 1995; McPherson et al. 2007). 

Radar data come from two sources: the NWRT PAR and the operational WSR-88D (KTLX). 

The NWRT PAR contains a single panel creating an electronically steered beam, which 

provides continuous ~70 s volumetric updates over a 90° sector for the duration of the 

assimilation period. The limited sector poses a potential problem: the lack of observations 

outside the scan sector means that the EnSRF does not have observations to suppress convection 

outside the scan sector. This could lead to growth of that convection, which could interfere with 

the assimilated storms during forecast period. Supinie et al. (2017) mitigated this by transplanting 

zero-reflectivity observations from the KTLX scan wherever the composite reflectivity from KTLX 

is zero. We do the same here, but add the additional step that, in columns where the KTLX 

composite reflectivity is non-zero, the following algorithm is applied: 

1) Linearly interpolate the column of KTLX observations to the heights of the PAR observations. 

2) Set PAR observations to 0 where the interpolated column of KTLX observations is 0, set the 

PAR observations to “missing” where the interpolated column of KTLX observations is greater 

than 0. 
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3) If the lowest level of PAR observations is below the lowest level of KTLX observations and the 

lowest level of KTLX observations is 0, set the lowest level of PAR observations to 0. 

Otherwise, set the lowest level of PAR observations to “missing” 

This additional step is designed to provide zero-reflectivity observations below the expansive 

anvil coverage of the storms. 

In addition to the difference in scanning coverage, the NWRT PAR beam width varies with 

azimuth from 1.6° for beams normal to the panel to 2.3° at ±45° away from normal. Conversely, 

the WSR-88D has a constant 0.95° beam width over the full 360° scan. Thus, at worst case, the 

PAR has half the spatial resolution of the WSR-88D. 

Quality control procedures are applied to both sets of data. Automated processing, 

consisting of automated velocity unfolding and clutter removal is applied to the KTLX data. Details 

on the velocity unfolding procedure can be found in Brewster et al. (2005). The automated clutter 

removal procedure is to remove gates classified as ground clutter, biological scatterers, or three-

body scatter spikes by a polarimetric hydrometeor classification algorithm (Park et al. 2009; 

Mahale et al. 2014). Manual clutter removal and velocity unfolding are performed on the PAR 

data. Data from both radars are bilinearly interpolated to the model grid points in the horizontal 

direction and left on the radar tilts in the vertical. 

4.1.2. Model Configuration and Experiment Design 

4.1.2.1. Mesoscale Domain 

The mesoscale DA system used for these experiments is identical to that used by Stratman 

et al. (2020). Briefly, the mesoscale DA system consists two domains, one with a grid spacing of 

15 km covering CONUS and one with a grid spacing of 3 km covering the south-central US. The 
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first 18 members of the National Centers for Environmental Prediction’s Global Ensemble 

Forecast System (GEFS) provides the atmospheric initial and boundary conditions for the 15 km 

domain, while the North American Mesoscale Forecast System (NAM) provides the soil state. 

Physics diversity is used to provide spread in the mesoscale ensembles. Both ensembles are 

initialized at 0000 UTC 31 May 2013 and cycled hourly until 0000 UTC 1 June 2013.  Surface, 

radiosonde, and aircraft observations are assimilated on both domains.  More detail can be found 

in Stratman et al. (2020). 

4.1.2.2. Storm Scale Domain 

Figure 14: Experiment domains and timeline. The red and blue lines in (a) and (b) give the 
boundaries of the 15 km and 3 km mesoscale domains. The green line gives the boundary storm-
scale domain at 1 km grid spacing. The times in (c) are in UTC. 
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All experiments are performed using 36 ensemble members on a 282 × 240 × 51 grid with 

1 km grid spacing. The storm-scale domain is centered on El Reno, OK (Figure 14). Ensemble 

members from the mesoscale domain are downscaled at 2200 UTC to initialize the storm-scale 

domain.  The storm-scale ensemble is then integrated until 2220 UTC, assimilating Oklahoma 

Mesonet data every 5 minutes. Next, radar and Oklahoma Mesonet data are assimilated until 

2310 UTC, with analyses produced every 5 minutes. This gives a total of 4 analyses with only 

Oklahoma Mesonet data and 10 analyses with both Oklahoma Mesonet data and radar data. 

The Weather Research and Forecasting (WRF) model version 3.8.1 is used as the 

prediction model for each experiment. Thompson microphysics (Thompson et al. 2004, 2008) is 

used for all members, as are the Rapid Radiative Transfer Model (RRTM) longwave (Mlawer et al. 

1997), Dudhia shortwave (Dudhia 1989) radiation parameterizations and Noah land surface 

model (Tewari et al. 2004). Of the 36 members, 12 use the Mellor-Yamada-Janjić (MYJ; Janjić 

1994), 12 use the Yonsei University (YSU; Hong and Pan 1996), and 12 use the Mellor-Yamada-

Nakanishi-Niino (MYNN; Nakanishi and Niino 2009) planetary boundary layer parameterizations. 

No cumulus parameterization is used. 

The Advanced Regional Prediction System (ARPS) version 5.4.2 4DEnSRF (Wang et al. 

2013a) is used as the data assimilation algorithm. Spread in the ensemble is maintained using a 

combination of multiplicative covariance inflation applied to the prior ensemble and relaxation 

to prior spread (RTPS; Whitaker and Hamill 2012). A multiplicative inflation factor of 20% is used, 

and multiplicative inflation is only applied to regions directly influenced by radar data. A 

relaxation factor of 0.98 is used for the RTPS inflation. Assumed observation errors for radar data 

are 7 dBZ for reflectivity, 3 m s-1 for radial velocity; for Mesonet data, they are 2 m s-1 for u and 
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v, 2 K for θ, and 1 g kg-1 for qv. Observation localization radii are 6 km in the horizontal and vertical 

for radar data, and 50 km in the horizontal and 6 km in the vertical for Mesonet observations. 

The temporal localization half-width for all observations is 2.5 min, corresponding to a 5-min DA 

window. The 5th-order polynomial function of Gaspari and Cohn (1999) is used for both spatial 

and temporal covariance localization. 

4.1.3. Experiments Run 

Several ensemble DA and forecast experiments are conducted. One experiment uses only 

data from KTLX, and another uses only data from the PAR. Both experiments apply RTPS inflation 

once at the end of the assimilation window. To determine the optimal use of PAR observations 

in the EnSRF, four additional experiments are run. The first is identical to the PAR experiment, 

except for the order that the radar observations are assimilated. In the PAR experiment, radar 

observations are assimilated in order by volume, then by elevation angle. The first additional 

experiment assimilates these in reverse order, meaning later volumes and higher elevation 

angles are assimilated first. Thus, this first additional experiment is called “PAR_reversed.” 

Another experiment assimilates volumes starting at the analysis time and working outwards, 

prioritizing the latest volume. For example, at the 2310 UTC analysis, the PAR volume valid at 

2310 UTC is assimilated first, followed by 2311, 2309, 2312, and then 2308 UTC. This experiment 

is called “PAR_inout.” A third additional experiment assimilates volumes starting at the edges of 

the DA window and working inward towards the analysis time, again prioritizing the later 

volumes. For example, at the 2310 UTC analysis, the 2312 UTC volume is assimilated first, 

followed by the 2308, 2311, 2309, and then the 2310 UTC volume. 
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The final additional experiment is also based on the PAR experiment but deals with the 

covariance inflation. The PAR experiment applies RTPS inflation once at the end of the 

assimilation procedure. In order to determine the effect of the large number of PAR observations 

on the ensemble spread, we created this second additional experiment which applies RTPS 

inflation after assimilating each volume of PAR data. We call this technique “Inter-Volume 

Covariance Inflation” (IVCI), and thus this experiment is named “PAR+IVCI.” 

While IVCI is straightforward conceptually, in practice, the IVCI technique is complicated 

by the parallelization algorithm used in the ARPS EnSRF implementation (Wang et al. 2013b). As 

part of this algorithm, each parallel subdomain is subdivided into four patches, and assimilation 

occurs on each patch in sequence. However, the complicating factor is that the algorithm 

assimilates data for all volumes on patch 1, then for all volumes on patch 2, and so on. Data on 

the boundaries of the parallel subdomains are exchanged after assimilating all volumes on each 

patch. To handle this, we apply covariance inflation after every volume on every patch. This 

means that instead of applying RTPS inflation 5 times for 5 volumes of PAR data, it is applied 20 

(= 5 volumes × 4 patches per parallel subdomain) times. For the patches on which radar data are 

not assimilated, the formulation of RTPS means that the covariance inflation has no effect. 

4.2. Results 

4.2.1. Observation Space Statistics 

First, we examine various statistics computed in observation space (Figure 15) as a sanity 

check on the performance of the EnSRF. The statistics computed here are root mean square 

innovation (RMSI), mean innovation (also known as bias), total ensemble spread (TES), and 

consistency ratio. Statistics are computed for observations at all times considered in the analysis 
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and wherever reflectivity ≥ 15 dBZ in either the ensemble mean or the observations, except 

where the observations are missing. 

The forecast RMSI (Figure 15a) for each analysis decreases from ~21 dBZ to ~10 dBZ over 

the course of the DA period. The RMSI in the KTLX experiment is always 2-4 dB less than in the 

PAR-based experiments. This is partially a result of the zero-reflectivity observations added to 

the PAR volumes outside the PAR scan area and where KTLX composite reflectivity is non-zero. 

In this case, the PAR analyses are removing hydrometeors from the low levels of the atmosphere, 

but not the anvil region aloft, where no zero-reflectivity observations have been added. This 

results in the remaining hydrometeors falling into the area where the zero-reflectivity 

observations have been added, which appears in the RMSI statistics. This can also be seen in the 

forecast bias statistics (Figure 15e), in which the KTLX experiment always has a lower bias than 

Figure 15: The forecast and analysis root-mean-square innovation in observation space (a) and 
(b), the forecast and analysis mean innovation in observation space (e) and (f), the forecast and 
analysis total spread in observation space (c) and (d), and the consistency ratio (g). 
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the PAR and PAR+IVCI experiments. The PAR_reversed, PAR_inout, and PAR_outin experiments 

display nearly the same behavior as the PAR experiment and are left out of Figure 15 for clarity. 

The effect of the additional covariance inflation is apparent in the analysis TES (Figure 

15d); the PAR+IVCI experiment generally has higher analysis TES than the other three 

experiments. However, the enhanced TES for reflectivity does not feed back into the ensemble, 

as the forecast TES (Figure 15c) does not differ greatly between the PAR and PAR+IVCI 

experiments. In the ARPS implementation of the 4DEnSRF, the reflectivity priors are updated 

during the DA period independently of the model state, and the analysis statistics are computed 

on these updated priors. In general, if the observed variable is a linear function of the model 

state, the updated priors and the priors recomputed from the updated model state should be 

the same. For radar reflectivity, this is not true, so we do not expect that the updated priors will 

be reflected in the model state. 

The consistency ratio (Figure 15g) is designed to show how large model errors are in 

relation to the model spread. Values near 1 indicate that the ensemble spread is about the same 

magnitude as the forecast error, and this is considered ideal. Values over (under) 1 mean that 

the ensemble has too much (not enough) spread compared to the magnitude of the forecast 

errors, and the ensemble is considered over- (under-) dispersive. Here, the KTLX experiment is 

generally around 1.5 (indicating over-dispersion) and the three PAR experiments are generally 

around 1, decreasing with more DA cycles (indicating correct dispersion, becoming under-

dispersed with more DA cycles). As in Supinie et al. (2017), the assumed observation error 

standard deviation for reflectivity (7 dBZ) used here is larger than in other storm-scale DA and 

forecast experiments (usually 3-5 dBZ, as in Snook et al. 2015; Wheatley et al. 2015; Yussouf et 
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al. 2016). Therefore, it follows that our consistency ratios are larger than other DA and forecast 

experiments, which generally report under-dispersion. Overall, the observation-space statistics 

do not reveal any systemic problems with any of the experiments, so we feel comfortable 

continuing with the analysis. 

4.2.2. Forecast Behavior 

To examine the behavior of the forecasts, we will first examine the reflectivity 

presentation in the 2310 UTC forecast (Figure 16). Both the KTLX and PAR experiments maintain 

large areas of reflectivity > 40 dBZ which are overall coincident with the observed areas of 40 

dBZ. In both experiments, the storms appear to move slightly too fast, which is a well-known 

Figure 16: Forecast probability of reflectivity > 40 dBZ at the lowest model level at 2330 UTC for 
the KTLX (a) and PAR (b) experiments. The forecast was initialized at 2310 UTC. The observed 40 
dBZ contour of 0.5° reflectivity from KTLX is given in black. 
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feature of storm-scale forecasts, as mentioned in Chapter 3:. The hook reflectivity shape appears 

to be at roughly the same longitude in both experiments (collocated with the inflow notch in the 

observed reflectivity), and implying the updrafts are at roughly the same longitude at this 

forecast time. However, there are a couple differences between the two experiments. The PAR 

experiment has much higher reflectivity extending downstream from the storm, perhaps 

indicating stronger upper-level westerly winds. In addition, the western flank of the storm has a 

much sharper probability gradient in the PAR experiment than the KTLX experiment. This same 

behavior is present in the 15-minute forecast from the 2255 UTC initialization. However, in the 

2310 UTC forecast, the PAR experiment does capture the development to the northeast of the El 

Reno supercell better than the KTLX experiment. 

 

Figure 17: Probability swaths of 2-5 km updraft helicity > 100 m2 s-2 for forecasts initialized 
at 2255 UTC (left column) and 2310 UTC (right column) for the KTLX (a,b) and PAR (c,d) 
experiments. Swaths begin at forecast initialization and end at 0000 UTC. The MRMS mid-level 
azimuthal shear track is contoured in black. The thin and thick lines are the 0.006 and 0.012 s-1 
contours, respectively. 
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In order to diagnose the behavior of the mesocyclone, we use the probability of 2-5 km 

updraft helicity (UH) exceeding 100 m2 s-2 (Figure 17). UH is defined as 

 𝑈𝐻 = ∫ 𝑤𝜁𝑑𝑧M+
M,

, (12) 

where w is vertical velocity, ζ is vertical vorticity, and zu and zl are the heights of the bottom and 

top of the layer over which UH is considered (2 and 5 km here, respectively). This is a popular 

metric in storm-scale forecasting intended to show the presence of a rotating updraft. The UH 

swath from the 2255 UTC initialization shows UH probability coinciding with the MRMS mid-level 

rotation tracks for the main supercell in both the KTLX and PAR experiments (Figure 17a and c). 

The PAR experiment shows a higher UH probability than the KTLX experiment over the early 

portion of the track of the El Reno supercell. The westernmost portion of the MRMS rotation 

track is associated with a secondary supercell that develops to the west of the El Reno supercell, 

and none of the 2255 UTC forecasts capture this development. Furthermore, the 2310 UTC 

experiment is similar, with the PAR experiment having a higher probability of UH from the main 

supercell than the KTLX experiment. However, one difference from the 2255 UTC initializations 

is the mesocyclone from secondary supercell that develops west of the El Reno supercell is better 

captured with higher probabilities in the PAR experiment than in the KTLX experiment. 

4.2.3. Mesocyclone Intensity Differences 

To diagnose the reasons for differences in mesocyclone intensity, we look at 2-5 km mean 

vertical vorticity and vertical velocity (Figure 18) to determine the contributions from each 

variable to the UH. Both PAR and KTLX experiments display a single vertical velocity swath (Figure 

18a and c) that covers the eastern portion of the observed rotation track. The probabilities in the 

PAR experiment are stronger than the KTLX experiment, implying larger vertical velocities in the 
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updraft in the PAR experiment. The same is largely true for the vertical vorticity swaths (Figure 

18b and d). The probabilities in the PAR experiment is higher than the KTLX experiment, implying 

stronger vertical vorticity in the PAR experiment. For both variables, there are differences at the 

initial time (the far western end of the forecast swath), but the largest differences appear to be 

during the forecast. This implies that not only does the PAR DA directly produce stronger 

mesocyclones, but it also produces conditions that keep the mesocyclone stronger into the 

forecast. 

One mechanism by which this might happen is by strengthening the mid-level 

temperature perturbation associated with the updraft (Figure 19). At 2310 UTC, the 2-5 km mean 

potential temperature increment in all experiments shows a positive-negative dipole on the 

southern flank of the storm, implying a relocation of the updraft to the southwest. The 

increments to all fields are generally stronger in the PAR-based experiments than in the KTLX 

Figure 18: As Figure 17, but with probability of 2-5 km mean vertical velocity > 10 m s-1 (left 
column) and probability of 2-5 km mean vertical vorticity > 0.006 s-1 (right column) for the 2255 
UTC initialization only. 
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experiment, which implies that the PAR experiment does indeed create a stronger mid-level 

temperature perturbation associated with the updraft. Also, all experiments display a cyclonic 

pattern to the 2-5 km mean wind increments, implying a strengthening of the mid-level 

mesocyclone. However, the cyclonic pattern in the KTLX experiment is much weaker, and there 

is a weak anti-cyclonic pattern, implying a weakening of vorticity, just to the north of the cyclonic 

increments. Furthermore, the positive increments in vertical velocity are generally better co-

located with the positive increments in potential temperature and vertical vorticity in the PAR-

Figure 19: Ensemble mean increment of 2-5 km mean potential temperature at the 2310 UTC 
analysis from the KTLX (a) and PAR (b) experiments. The ensemble mean 2-5 km horizontal wind 
increment is given in vectors, the vertical wind increment is given in green contours, and 
ensemble mean forecast reflectivity is contoured in gray. 
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based experiments, implying that the PAR experiments develop more physically intuitive 

covariance structures than the KTLX experiment. 

Additionally, we can look at the contributions to the increments from each PAR volume 

to determine which volumes affect the model state the most (Figure 20). For the PAR experiment, 

each of the first three volumes assimilated (the 2308, 2309, and 2310 UTC volumes) contributes 

approximately the same amount to the total increment, whereas the last two (the 2311 and 2312 

UTC volumes) contribute very little. Some of this can be explained by the temporal localization 

weight, which increases from 0.38 at the first volume to 1 at the third volume and then decreases 

back to 0.38 at the fifth volume. However, this cannot explain why the 2308 UTC volume has 

much more of an impact on the analysis state than the 2312 UTC volume (compare Figure 20b to 

Figure 20f), even though they both receive the same temporal weight in the 2310 UTC analysis. 

Ideally, each analysis would have roughly equal contributions from all radar volumes, as 

this means the DA is using all the information available to it. Thus, it is helpful to look at the 

reasons that some volumes contribute very little to the analysis. To this end, we can look at how 

the prior reflectivity changes as more volumes of radar observations are assimilated (Figure 21). 

Figure 20: Lowest-model-level potential temperature increments at the 2310 UTC 
analysis. The full increments from the KTLX experiment are given in (a), and the increments for 
the PAR experiment by radar volume are given in (b-f). Note that none of these include 
increments from the Oklahoma Mesonet DA. 
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For the 2310 UTC analysis for the PAR experiment, the prior mean reflectivity is too high outside 

of the observed storm and too low inside the observed storm (Figure 21a-e). After the first 

volume (the one valid at 2308 UTC) is assimilated (Figure 21f-j), the magnitude of the mean 

reflectivity innovation is much smaller, indicating that the priors have been updated as expected. 

Because of the time localization, the weight applied to the observations decreases towards the 

2310 UTC volume and goes to 0 at the 2311 UTC volume. However, the weight on the 2309 UTC 

volume from assimilating the 2308 UTC volume is quite high, so the magnitude of the innovations 

from the 2309 UTC volume are decreased a large amount just by assimilating the 2308 UTC 

Figure 21: Progression of innovation in the reflectivity priors at the lowest elevation angle during 
the 2310 UTC analysis for the PAR experiment. The first row is the background, the second row 
is after assimilating the first volume of radar data, the third row is after assimilating the second 
volume, etc. 
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volume. This means that when assimilating the second volume, valid at 2309 UTC (Figure 21k-o), 

the innovation magnitude has already been decreased by the assimilation of the first volume, 

which decreases the analysis increments from the second volume. This process of the 

assimilation of one volume decreasing the innovation, and therefore the increment for the next 

volume, continues for the rest of the assimilation procedure. The same is essentially true for the 

prior reflectivity spread (not shown). 

This motivates further experiments in order to determine the contribution of various 

factors to the distribution of increments among radar volumes (Figure 22). The fourth and fifth 

volumes in the PAR+IVCI experiment (Figure 22d,e) do not contribute significantly more to the 

potential temperature increments than the same volumes from the PAR experiment. The 

PAR+IVCI experiment applies RTPS inflation after every volume of radar assimilated in order to 

Figure 22: As Figure 20, but for the PAR+IVCI (a-e), PAR_reversed (f-j),  PAR_inout (k-o), and 
PAR_outin (p-t) experiments. 
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bring back the spread inherently lost during the DA process. Thus, the spread reduction by itself 

is not a significant cause of the uneven distribution of increments.  

Another option is to assimilate the radar volumes in non-chronological order. Assimilating 

the volumes in reverse order (PAR_reversed; Figure 22f-j) still retains the behavior where 

assimilating one volume reduces the prior innovation in temporally adjacent volumes. However, 

assimilating more recent observations first might be desirable, as it puts a higher weight on the 

more recent observations. Additionally, the initial spread in the prior reflectivity is greater at the 

end of the DA window, which might allow for larger ensemble mean increments. Furthermore, 

assimilating the volumes in inside-out order (PAR_inout; Figure 22p-t) results in much of the 

increments coming from the volume valid at the analysis time; closer to a 3D EnKF 

implementation. Finally, assimilating volumes in outside-in order (PAR_outin; Figure 22k-o) 

spreads the increments out the most evenly out of any experiment among the five volumes used 

in the analysis. The disadvantage of the PAR_outin experiment is that the volume valid at the 

analysis time is assimilated last, so it contributes the least to the analysis. 

Next, we can examine how the alternate assimilation orders affect the forecasts of 

updraft helicity (Figure 23). As in the PAR experiment, (cf. Figure 17c and d) all experiments 

display a large probability of UH > 100 m2 s-2 early in the forecast, tapering off as the forecast 

progresses.  However, all experiments using the alternate assimilation orders appear to have 

improved track forecasts over the original PAR experiment. In particular, the overprediction on 

the southern periphery of the UH swath is reduced in the 2310 UTC forecasts from the 

experiments that prioritize later volumes over earlier volumes (PAR_reversed, PAR_inout, and 

PAR_outin). This suggests there is some utility to assimilating later volumes first. 
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One other noteworthy aspect to these experiments is that the sign of the increments is 

generally consistent across the volumes (note, for example, the consistent placement of the 

positive and negative increments in Figure 22a-d). This implies that further observations do not 

typically reverse the underlying correlations in the ensemble, meaning that additional 

Figure 23: As Figure 17, but for the PAR+IVCI (a,b), PAR_reversed (c,d), PAR_inout (e,f), and 
PAR_outin (g,h) experiments. 
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observations simply make the total increments larger. Thus, to some extent, the larger magnitude 

increments in the PAR experiment are simply because there are more observations to assimilate. 

4.2.4. Cold Pool Differences 

In order to explain some of the differences noted above, we examine the cold pool 

analyses (Figure 24). As in Supinie et al. (2017), the coldest analyzed cold pools are generally in 

the PAR-assimilating experiments, though this is not universally the case. The PAR+IVCI 

Figure 24: Analysis ensemble mean potential temperature (color fills) and horizontal wind 
(vectors) at the lowest model level for the KTLX (a), PAR (b), PAR+IVCI (c), PAR_reversed (d), 
PAR_inout (e), and PAR_outin (f) experiments, valid 2310 UTC. The 10 and 20 m s-1 contours of 
column-max vertical velocity are given in black, and the 20 and 40 dBZ contours of ensemble 
mean reflectivity are given in gray. Additionally, Oklahoma Mesonet observations are plotted in 
colored circles for potential temperature and barbs for winds. 



66 
 

experiment (Figure 24c) as a cold pool strength comparable to the KTLX experiment (Figure 24a), 

while the other experiments are much colder. All experiments are close to the observed potential 

temperatures at the Oklahoma Mesonet sites; most of the differences between experiments lie 

between the sites. One major difference that impacts the forecasts is the temperature in the 

rear-flank cold pool in the PAR experiment (Figure 24b) is much colder than any of the other 

experiments. This difference in the PAR experiment persists into the early part of the forecast 

(not shown), and the enhanced forcing for ascent from the strong cold pool may be responsible 

for the larger updraft helicity probably in the PAR experiment south of the observed MRMS 

Figure 25: As Figure 24, but for a 30-minute forecast, valid 2340 UTC. 
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rotation track (see Figure 17d). Thus, the reason the alternate assimilation orders improve the 

track forecast for the mesocyclone is because of differences in analyzing the rear-flank cold pool. 

Next, we examine the surface cold pool strength in the 30-minute forecast from the 2310 

UTC analysis (Figure 25). Again, the PAR-based experiments have a colder cold pool for the El 

Reno supercell. It is difficult to tell which is closer to the Oklahoma Mesonet observations, as 

none of the experiments capture the training convection that occurred over the region. This 

convection reinforced the real-world surface cold pool, leading to much colder temperatures 

observed at the El Reno Mesonet site (labeled “ELRE”) than captured in any of the forecasts. For 

the cell to the north of the main supercell (the northern edge of Figure 25), the PAR DA also 

results in a colder cold pool, more in line with the Guthrie Mesonet site (labeled “GUTH”). This is 

also likely related to the PAR experiment better capturing the reflectivity northeast of the El Reno 

supercell as in Figure 16b. 

The explanation that Supinie et al. (2017) gave for the colder cold pool in their PAR 

experiment is that in the low levels, one would expect a negative correlation between 

temperature and reflectivity. Thus, if the data assimilation systematically increases reflectivity, 

as one would expect when the forecast mean reflectivity is smoother and lower in magnitude 

than the observed storm, it should also systematically decrease low-level temperature. Thus, 

more PAR observations than KTLX observations results in more decreases to low-level 

temperature in the PAR experiment. This explanation was originally proposed by Dowell et al. 

(2011), who found this to be occurring in their real-data DA and forecast experiments. This 

explanation is also consistent with the finding here that additional observations tend to increase 

the magnitude of increments previously applied to the ensemble state.  
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This DA-based mechanism for colder cold pools is occurring in these experiments, though 

to a much lesser degree (Figure 26). Most potential temperature increments at the surface in 

both experiments are positive, particularly in the cold pool and in the final location of the rear-

flank downdraft. The PAR experiment (Figure 26b) does have some areas of overall negative 

potential temperature increments south of the rear flank of the storm and near the rear-flank 

gust front which do not appear in the KTLX experiment (Figure 26a). However, overall magnitudes 

of these negative increments are low. While Figure 26 shows the sum of the increments applied 

Figure 26: Increments to ensemble mean potential temperature (color fills) and wind (vectors) 
at the lowest model level, summed over the entire DA period, for the KTLX (a), PAR (b), PAR+IVCI 
(c), and PAR_reversed (d) experiments. The 20 and 40 dBZ contours of ensemble mean 
reflectivity at 2310 UTC are given in light gray. 
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throughout the DA period, the increments applied in individual analyses (not shown) are 

generally consistent with the sum in showing large areas of positive increments in the cold pool 

and very few negative increments. Thus, the DA by itself is not consistent with the PAR 

experiment’s much colder cold pool. 

If not the DA, another reason for the PAR experiment cold pool being colder than the KTLX 

experiment is if the PAR DA changes the model state in such a way as to promote greater latent 

cooling via different microphysical processes than in the KTLX experiment (Figure 27).  The mean 

thermal energy change due to evaporative cooling by rain in the downdraft for the PAR 

experiment is larger in magnitude than the KTLX experiment. Here, the downdraft is defined as 

areas below 4 km AGL where vertical velocity is less than -0.5 m s-1 (Dawson et al. 2010). At many 

Figure 27: 5-minute thermal energy change (in petajoules) by evaporation of rain in the low-level 
downdraft during the 2310 UTC forecast. The low-level downdraft is defined as regions below 4 
km AGL where vertical velocity is less than -0.5 m s-1. The solid line is the ensemble mean and the 
shading is the 5th-95th percentiles. 
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times, particularly early in the forecast, the mean for the KTLX experiment is outside the 5th-95th 

percentile range for the ensemble members from the PAR experiment and vice versa. This 

indicates that the ensembles have significantly different evaporative cooling rates. The other 

PAR+IVCI, PAR_reversed, PAR_inout, and PAR_outin experiments do not differ significantly from 

the PAR experiment and are therefore not shown for clarity. Other microphysical processes than 

evaporative cooling by rain were examined, but none had nearly as big an effect. Given that 

evaporative cooling is the dominant process, there are two ways larger evaporative cooling in 

the PAR experiments could occur: 1) the rain drop-size distribution (DSD) in the PAR experiment 

Figure 28: Ensemble mean mean-mass diameter for rain at the first model level above the surface 
at the 2310 UTC analysis for the KTLX (a), PAR (b) experiments. Analyzed reflectivity is given in 
gray contours, and horizontal wind is given in vectors. 
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may have more small drops, or 2) the ambient environment may be drier. We will examine both 

hypotheses here. 

To evaluate differences in the rain DSD, we examine the mass-weighted mean diameter 

of the DSD (Figure 28). Both KTLX and PAR experiments show a region of slightly larger mean-

mass diameter along the forward flank of the main supercell, indicative of larger drops. This is a 

common feature of storms in strongly sheared environments and is an indicator of size sorting 

and commonly manifests in differential reflectivity (ZDR) as a ZDR arc (Kumjian and Ryzhkov 

2008). This signature is weaker than one might expect; the reason for this is that low-level ZDR 

signatures are much more sensitive to graupel size sorting than rain size sorting (Dawson et al. 

2014; Putnam et al. 2017). Thompson microphysics is single-moment in graupel and therefore 

cannot reproduce size-sorting behavior with graupel. In some places, the PAR experiment (Figure 

28b) has a slightly lower mean-mass diameter than the KTLX experiment (Figure 28a). However, 

these differences are not that large, and many areas of the storm have the same or slightly higher 

mean-mass diameter, indicating more large drops in the PAR experiment. The supplemental PAR 

experiments do not show significant differences from either the PAR or the KTLX experiment. 

Overall, this does not provide strong evidence in support of hypothesis (1) above. 

With respect to the ambient environment around the supercell, there are major 

differences in the ensemble mean relative humidity increments over the lowest ~1 km AGL 

(Figure 29). The DA in the PAR experiment results in much larger decreases in water vapor mixing 

ratio in the inflow region (Figure 29b), whereas increments in the same location in the KTLX 

experiment (Figure 29a) are much closer to neutral. This difference is likely the result of more 

aggressive clear-air suppression in the PAR-assimilating experiments. Additionally, drier inflow 
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has previously been associated with colder cold pools via evaporative cooling (Parker 2014), 

which is consistent with Figure 27. This supports hypothesis (2) above. 

The choice of microphysics scheme has a large influence on the cold pool strength, 

primarily driven by cooling from evaporating rain and cloud water (Dawson et al. 2010). The 

experiments run by Supinie et al. (2017) used Milbrandt and Yau 2-moment microphysics, which 

had the smallest evaporative cooling out of the experiments by Dawson et al. (2010), and 

therefore had the weakest cold pools. Thus, it is possible that this evaporative cooling mechanism 

was much weaker in experiments by Supinie et al. (2017) because of their choice of microphysics 

scheme for their experiments. Additionally, the different process might explain why the cold pool 

differences affected the mesocyclone tracks in these experiments and did not affect the 

Figure 29: As Figure 26, but for 0-1 km mean water vapor mixing ratio. 
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mesocyclones in experiments by Supinie et al. (2017). The DA covariance process produces a 

change to the initial conditions which can be quickly removed by the microphysics scheme. 

However, the evaporative cooling process can modify the forecast throughout the forecast, 

producing a greater effect. 

4.3. Summary 

This chapter presents results from storm-scale DA and forecast experiments, one using 5-

min volumes from the operational WSR-88D (KTLX), and another using 70-sec volumes from the 

NWRT PAR. Data were taken from the 31 May 2013 central Oklahoma tornado and flash flood 

event. The 4DEnSRF algorithm is used to assimilate reflectivity and radial velocity observations 

from both radars into a heterogeneous environment initialized from an outer mesoscale 

ensemble that ultimately gets its diversity from the NCEP GEFS ensemble. All experiments 

assimilate data for 50 min, producing analyses every 5 min starting at 2225 UTC. DA windows are 

also 5 min in length and centered on the analysis time. Forecasts are launched at 2255 and 2310 

UTC after 35 and 50 minutes of radar DA. The objective is to examine the benefit of assimilating 

PAR observations over the current WSR-88D observations on a different case to Supinie et al. 

(2017) and to provide insight how differences between the two experiments arise in the 

4DEnSRF. To do this, four experiments have been completed: one assimilating KTLX data, one 

assimilating PAR data, one assimilating PAR data, but with the observation order reversed, and 

one assimilating PAR data with RTPS covariance inflation applied between each volume of PAR 

data. 

The probability of updraft helicity is generally greater in experiments that assimilate PAR 

data than the KTLX experiment, which is primarily driven by a stronger updraft in the PAR-based 
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experiments. This in turn is driven by a combination of the DA directly creating a stronger updraft 

and the DA also creating a stronger mid-level temperature perturbation associated with the 

updraft. The stronger mid-level temperature perturbation implies more physically realistic 

covariances between temperature and reflectivity. The stronger temperature perturbation 

allows the updraft strength to be maintained throughout the forecast. 

Additionally, the way in which the 4DEnSRF uses the large number of PAR observations is 

examined.  In the PAR and PAR_reversed experiments, most of the changes to the ensemble state 

come from the first three volumes of data that are assimilated. In the PAR_inout experiment, 

most of the increments come from the first volume assimilated. This is because of the changes 

in the prior reflectivity field as more observations are assimilated. Assimilation of one volume 

decreases the prior innovation and spread for temporally adjacent volumes, so assimilating the 

next volume has proportionally less impact. However, in the PAR_outin experiment, increments 

are distributed approximately evenly over the volumes considered in the analysis. This is because 

the assimilation order minimizes the updates to one volume because of assimilating previous 

volumes. The volumes contributing to the increments in the PAR+IVCI experiment are more 

similar to the PAR and PAR_reversed experiments than the others, indicating that spread 

reduction in the analysis is not the primary reason for the uneven distribution of increments 

among volumes. 

Some effects of this are apparent in the analyses and forecasts of the cold pool. The PAR 

experiment has a much stronger rear-flank cold pool which results in a UH swath that is too far 

south compared to the observed. The alternate assimilation orders result in a warmer analysis in 

the rear-flank cold pool, which results in a better forecast of the mesocyclone track. While the 
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rear-flank cold pool specifically is colder in the PAR experiment, all the PAR-assimilating 

experiments develop a stronger cold pool in the free forecasts. The stronger cold pool in the 

forecast is driven mostly by additional evaporative cooling of rain in the PAR experiments. This in 

turn is due primarily to the drier environment created by the PAR DA to the south of the storm, 

which drives the evaporative cooling. Changes in rain drop-size distributions are probably not 

responsible for the differences in the behavior between the KTLX and PAR experiments. Broadly 

speaking, these results are consistent with previous studies, such as Supinie et al. (2017) and 

Yussouf and Stensrud (2010), which show more rapid spin-up of convection using 1-min PAR data 

as compared to ~5-min WSR-88D data. However, some key differences are apparent. In these 

experiments, the track forecast for the mesocyclone was not as good, which was traced to the 

microphysics handling of evaporative cooling. The different microphysics scheme used here 

(Thompson) vs. Supinie et al. (2017) (Milbrandt-Yau 2-moment) could explain some of the 

differences in the track forecasts created by experiments in the respective papers. 
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Chapter 5: Conclusions2 

5.1. Summary 

This work looked at data assimilation and forecast experiments for two cases using a 4D 

ensemble square root filter (EnSRF) and high-temporal resolution data from an experimental 

phased array radar. The control experiment for both cases uses an operational WSR-88D radar. 

The primary goal is to examine whether the PAR data improve storm-scale forecasts for severe 

convective storms and examine the reasons for those improvements. The findings are that 

generally, PAR data improve forecasts of mesocyclone tracks and, as far as can be inferred from 

the ensemble probabilities, generally increases the intensity of the mesocyclones. Additionally, 

the PAR data improve the reflectivity forecasts, as measured by several skill scores. The higher 

intensity of the mesocyclones in the PAR forecasts is tied to better capturing the mid-level 

temperature perturbation associated with the updraft. The track forecasts related to the cold-

pool behavior, with warmer cold pools generally improving the track forecasts. The cold pool 

forecasts are then related to the mixing ratio in the inflow. Experiments with lower mixing ratio 

in the inflow tended to have colder cold pools because of enhanced evaporative cooling by rain, 

which is consistent with past work. 

Other experiments revealed some previously unseen behavior with the assimilation of 

several volumes of data during one analysis. Chiefly, the default behavior in the ARPS 4D EnSRF 

is to assimilate volumes in chronological order, which results in the earliest volumes assimilated 

in each DA cycle having the most effect on the analysis, while the latest volumes assimilated in 

 
2 Parts of this chapter were published in section 5 of Supinie et al. (2017) 
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each DA cycle having little effect on the analysis. The primary reason for this is that updating the 

priors for one time updates the priors for adjacent times, as well. This lessens the innovation for 

subsequent volumes, which therefore lessens the increments. Assimilating volumes in an 

alternate order can change this. Assimilating volumes in reverse order results in the most weight 

being placed on the most recent volumes. Assimilating volumes from the outside of the DA 

window inward to the valid time results in the most even usage of information from all radar 

volumes in the analysis. Assimilating volumes starting with the one valid at the analysis time and 

working outwards towards the edge of the DA window results in most of the weight being placed 

on the volume valid at the analysis time. All three of these methods produce better results than 

naively assimilating volumes in chronological order. 

The overall results from these two cases shows promise for the PAR data in initializing 

storm-scale forecasts of severe convective storms. The ultimate goal of these forecasts is to 

extend severe weather warning lead times (Stensrud et al. 2009). A hypothetical real-time 

prediction system would require at least 12 volume scans, or about 45 minutes of operational 

WSR-88D data to produce a reasonably good forecast. In contrast, the length of the NWRT PAR 

data assimilation period could be reduced to as short as 15 minutes, potentially increasing severe 

weather forecast lead times. These rapid-scan observations would be particularly beneficial in a 

rapidly evolving severe weather situation. Additionally, the impact of the unique flexible adaptive 

scanning capability from NWRT PAR [e.g., dense vertical scanning and elevation prioritized 

scanning strategies (Heinselman and Torres 2011)], particularly when the storm is close to or far 

away from the radar, on the model analyses and forecasts also needs to be investigated. 

Moreover, errors in storm motion in storm-scale modeling warrant further investigation. 
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Accurate forecasts of storm position are necessary for skillful prediction of storm-associated 

hazards, a primary research goal of WoF. 

5.2. Future Research 

The results from Chapter 3: are consistent with the findings from the OSSE study in 

Yussouf and Stensrud (2010). However, the case we used for this study involves only two 

supercell storms. To lay a foundation for the value of the next generation PAR technology beyond 

the current WSR-88D network in storm-scale modeling, more rigorous testing on how to best 

assimilate PAR observations in a variety of severe weather systems (e.g., quasi-linear convective 

systems, microbursts, hailstorms, nontornadic as well as tornadic supercell storms, etc.) is still 

needed.   

Furthermore, the results of Chapter 4: motivate the question of the most effective way 

to use very large numbers of observations in an ensemble DA system, which would be a good 

topic for future research. Other potential topics include examination of the flash flooding aspect 

the 31 May 2013 case, which was not a priority here. These questions will be useful to address 

under Warn-on-Forecast to make the best possible use of the observations. Additionally, with 

the latest series of GOES satellites (GOES-16 and 17) having the capability to send images every 

30 seconds over a mesoscale window, the assimilation of rapid-scan satellite imagery would be 

another good topic for future research. 

Another potential avenue for future research is to examine alternate ensemble DA 

methods that remove some of the assumptions built into the EnKF and related methods. One 

such method is the particle filter (Poterjoy 2016; Poterjoy et al. 2017, 2019). The particle filter 

updates the ensemble using weighted sums of the prior members, where the weights are derived 
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from Bayes’ theorem. The advantage of using a particle filter is that it makes no assumptions 

about the prior distribution of ensemble members. This contrasts with Kalman-filter-based 

methods, which assume a Gaussian form for the prior distribution. Radar reflectivity from a 

storm-scale model is frequently non-Gaussian (Poterjoy et al. 2017), so particle filters in theory 

have an advantage in this application. However, the formulation of particle filters results in the 

ensemble members collapsing onto a single value if the ensemble size is too small. For many NWP 

applications, the size of the ensemble considered “too small” is so large as to be computationally 

infeasible without some means of reducing the dimensionality. The local particle filter (Poterjoy 

2016; Poterjoy et al. 2017, 2019) is one means to overcome this high dimensionality. As the name 

implies, it accomplishes this by restricting the region over which it computes the update weights 

to the region surrounding a given observation. This method is promising, and future work may 

focus on comparing performance of EnKF-based methods to particle-filter-based methods. 
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