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Abstract

The observed rapid changes in the Arctic are important to quantify not only for understand-

ing the region, but also for understanding how processes between the Arctic and lower lati-

tudes can interact to culminate in high-impact weather events. The tropopause polar vortex

(TPV) is an Arctic feature that can interact with mid-latitude atmospheric flow, in which the

maintenance and intensification of TPVs depends on diabatic processes. Improved knowl-

edge and a better representation of TPV-mid-latitude interactions in numerical prediction

models could extend forecast skill beyond the present-day barrier of 7-10 days.

This study investigates TPVs in the Arctic and their interactions with mid-latitude

atmospheric flow using a newly developed global modeling system. This modeling sys-

tem couples an ensemble Kalman filter (EnKF) data assimilation software (DART) with

the Model for Prediction Across Scales (MPAS) global model called MPAS-DART. This

system utilizes a newly developed non-hydrostatic global model that allows for smooth

transitions from coarse to fine mesh resolutions. The EnKF data assimilation technique

allows for flow-dependent background error covariances within MPAS-DART, which is

especially important in data sparse regions like the Arctic.

Evaluation of MPAS-DART over the Arctic shows reasonable consistency between

the model and observations, however, there are some notable points for improvement.

There is a cold bias in the upper-troposphere and lower-stratosphere levels where TPVs

are often found, which is a result of too much cooling from the model’s longwave radia-

tion scheme. This overactive longwave cooling is associated with a moisture bias found in

the same layer. Assimilating special dropsonde observations from a field campaign flight

mission through a TPV mitigates the moisture bias, especially in analyses. Implementing

an improved moisture initialization procedure is able to alleviate the moisture bias, even in

the absence of special observations. The moisture bias and associated longwave cooling in

MPAS-DART results in less intense TPVs later in their lifetimes compared to ERA-5.
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After quantifying the bias patterns in MPAS-DART, an interaction of TPVs with

mid-latitude flow is investigated through the hypothesis that TPVs can initiate Rossby wave

packets. Referred to as Rossby wave initiation (RWI), flow patterns relevant to RWI devel-

opment are more sensitive to TPV position relative to the jet stream than to TPV intensity.

The moisture field, a well-documented source of RWI, is not found to be sensitive to TPV

characteristics. A surface cyclone that develops downstream of the RWI is sensitive to the

position and magnitude of potential vorticity and windspeed in the upper levels. Lastly,

it is found that surface cyclone strength is sensitive to moisture with stronger cyclones

associated with increased moisture.

This study is one of the first to demonstrate the utility of a state-of-the-art global

modeling system in the Arctic for process studies. While room remains for improvement,

the tool enabled valuable scientific exploration of a recently documented Arctic feature,

TPVs. Using tools such as this one allow for improved understanding of complex at-

mospheric processes, their evolution, and the the potential feedbacks between processes,

which is particularly powerful in a remote and data-sparse region like the Arctic.
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Chapter 1

Introduction

In the last coupled decades, it has been observed that the Arctic is undergoing rapid changes

when compared to other locations on the globe (Richter-Menge and M. Jeffries 2019).

There are still uncertainties on how processes in the Arctic can influence the weather that is

occurring in the mid-latitudes (Barnes 2013). The knowledge gained on physical interac-

tions are critical to understanding climate change. In order to increase our knowledge, an

improved understanding of the processes in the Arctic are required along with how these

processes can influence mid-latitude weather (Jung et al. 2014). This requires an integra-

tion of knowledge on time-scales ranging from climate to synoptic time-scales. Due to the

sparse number of conventional observations in the Arctic, previous studies heavily rely on

NWP models to study Arctic processes. However, NWP errors are larger over the Arctic

(Fig. 1.3) so this implies some of the key processes are missing in the model’s physical

representation of the atmosphere (Jung et al. 2016). This study used a global NWP model

coupled with data assimilation to investigate the impacts an Arctic based feature can have

on mid-latitude weather.

1.1 The Arctic

The Arctic generally includes the region around the Earth’s North Pole, which is mostly

composed of the Arctic Ocean. Sea ice is a common feature in this region, and the surface

area and thickness of sea ice has a seasonal cycle (Parkinson and Cavalieri 1989). Different

land masses border the Arctic Ocean, adding to the surface complexity already present

in this region. The most common specific definition of the Arctic is the region north of

the Arctic circle, or the 66◦ degree north latitude band (Serreze and Barry 2014). The

Arctic Circle is the latitude above which the sun does not set on the summer solstice,
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and does not rise on the winter solstice (Little 1968). Beyond this common definition,

scientists have described the spatial coverage of the Arctic in various ways. Some studies

have used the area north of the Arctic tree line, while other studies have used a defined

temperature as the boundary for the Arctic (Armstrong et al. 1978; Smithson et al. 2013).

In this work the Arctic will be defined as the area north of the 60◦ degree latitude band.

This choice provides more spatial coverage of the region where important Arctic processes

are commonly observed for comparison and evaluation of our modeling system.

The Arctic cryosphere is an important component of the Earth-system climate which

has experienced unprecedented changes over the last couple of decades. These changes

have led the National Science Foundation (NSF) to promote the goal of Navigating the

New Arctic to one of the agency’s “10 Big Ideas for Future Investments.” The impacts these

unprecedented changes will have on the earth system remain poorly understood. September

sea ice extent has declined at a rate of 12.4% per decade since 1979 (Stroeve et al. 2011),

and the decreasing trend in sea ice extent has continued through fall of 2019. Along with

a decrease in ice extent, there has been a 40% decrease in winter sea ice thickness (Kwok

and Rothrock 2009) and around 80% loss in volume (Overland et al. 2014). While sea

ice has received the most attention from researchers, snow cover has also seen a decline in

recent years. Snow cover during the summer months has decreased at a rate double of the

decrease in sea ice extent during September (Derksen and Brown 2012). The decrease in

snow cover during the spring months has led to an increase in Northern Hemisphere surface

temperatures over landmasses and has contributed to the decrease in summer Arctic sea ice

(Matsumura et al. 2014). The combination of sea ice and snow cover loss in the spring and

summer months can help explain the increase in Arctic surface temperatures. Furthermore,

the increase in the land-sea temperature gradient has resulted in an increase Arctic cyclone

activity and intensity (Day and Hodges 2018). This increase in Arctic surface temperatures

has been referred to as ”Arctic amplification”.
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The Arctic is undergoing rapid changes in surface temperatures at more than double the

global rate (Blunden and Arndt 2013). The rapid warming found in the Arctic as compared

to lower latitudes is referred to as Arctic amplification (Serreze and Francis 2006). This

warming is most pronounced during the winter season (Screen et al. 2013) during the sea

ice re-freeze. Furthermore, observations are not only showing a consistent signal of Arctic

amplification, climate model simulations forced with increased greenhouse gas concentra-

tions also project increased surface temperatures in the Arctic (Holland and Bitz 2003).

There are several proposed theories that are hypothesized to contribute to Arctic amplifica-

tion, including local drivers from greenhouse gas forcing (Gillett et al. 2008), changes in

snow- and ice-albedo feedbacks due to the decrease in snow and sea ice coverage (Winton

2006; Screen et al. 2012), aerosol concentration changes (Shindell and Faluvegi 2009), and

changes in Arctic cloud cover and water vapor (Francis and Hunter 2006; Graversen and

Wang 2009). While the local drivers in the Arctic might be most impactful, one can not

rule out senstivities of Arctic temperature changes to the poleward transport of heat and

moisture from the mid-latitude weather systems into the high latitudes (Graversen et al.

2008).

A decrease in Arctic sea ice is concurrent with a rapid increase in Arctic atmospheric

surface temperatures temperatures (Screen and Simmonds 2010a). Arctic sea ice strongly

controls near-surface conditions in the Arctic, when thus can influence regional – and pos-

sibly remote – climates. Quite unlike sea ice, open ocean water has a low albedo leading to

much more absorption of incoming solar radiation in areas where sea ice has receded. Due

to more open ocean in that last decade, more energy has been absorbed leading to a ∼4◦ C

increase in sea surface temperature anomalies in regions presently free of ice (Wood et al.

2013). During the fall, air temperatures become cooler than the ocean surface. This excess

heat is then transferred from the ocean to the atmosphere via radiative and turbulent fluxes,

warming at least the lower portion of the Arctic atmosphere. Furthermore, the additional

heat absorbed by the ocean will slow the growth of sea ice in the winter, both in extent and
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thickness (Steele et al. 2008; Inoue and Hori 2011). Due to an increase of warmer open

ocean water during the winter, warmer, more moist air masses have been generated over

the Arctic ocean and over nearby landmasses which in turn will weaken the meridional

temperature gradient (Serreze and Barry 2011; Screen and Simmonds 2010b; Cohen et al.

2014b). These feedbacks imply that Arctic sea ice loss is both a response to and a driver of

Arctic amplification. Furthermore, this further shows how complex the Arctic environment

is and the importance of better understanding how these coupled Earth-system components

interact.

Over the past decade, there has been an increase in extreme heat and rainfall events re-

ported, especially over the northern mid-latitudes (Min et al. 2011; Coumou and Rahmstorf

2012; Westra et al. 2013). Cohen et al. (2014b) showed that several standard extreme tem-

perature and precipitation indices have rapidly increased in both frequency and intensity

over in the last couple of decades over mid-latitude land areas (20◦ - 50◦). For example,

Cohen et al. (2014b) showed the amount of precipitation on very wet days (exceeded the

95th percentile) increased from 160 to 185 mm and the percentage of warm days (exceeding

the 90th percentile) increased by 16%. Along with increased extremes in warm tempera-

ture and precipitation, should also include cold extremes in temperature. In general, winter

temperatures have had a warming trend since the 1960s and there has been a decrease

in frequency of anomalously cold winter days over both the mid- and high-latitudes, but

primarily north of 50◦ N (Cohen et al. 2014b). However, over the past decade, with the

lowest minimum September sea ice extents since satellite observations began, several win-

ters following low sea ice minima have been unusually cold across Northern mid-latitude

landmasses (Cohen et al. 2012; Liu et al. 2012). While global warming can be linked

with increased warm temperatures and precipitation, linkages to cold events are less direct.

Coupled climate models under greenhouse-gas forcing project winter temperature amplifi-

cation over the Northern Hemisphere landmasses would warm faster in winter as compared
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to other seasons (Holland and Bitz 2003). This might help illustrate that there is still un-

known processes attributing to the cold events during the winter that we do not understand

yet.

To further understand the impact Arctic amplification is having on mid-latitude weather,

we must determine how warming temperatures are impacting the high latitudes. Most

studies agree that the first order impact sea ice melting and warmer temperatures will be

to modify the atmospheric boundary layer over the Arctic (Screen and Simmonds 2010b;

Serreze and Barry 2011). How that energy travels out of the Arctic and into the mid-

latitudes is still not understood. Cohen et al. (2014b) offer up three dynamical pathway

frameworks on how Arctic amplification can effect the mid-latitudes (Fig. 1.1): 1) changing

storm tracks in the North Atlantic, 2) modified jet stream characteristics, and 3) anomalous

planetary wave configurations.

The first dynamical pathway that will be discussed is how Arctic amplification can

effect storms tracks (Cohen et al. 2014b). Large-scale variability in the extratropical atmo-

sphere is dominated by shifts in storm tracks, often expressed as changes in atmospheric

modes (Woollings and Blackburn 2012). Changes in storm tracks associated with the North

American oscillation (NAO) and Arctic oscillation (AO) have a strong influence on tem-

perature and precipitation variability over the North Atlantic sector (Bader et al. 2011).

When the NAO/AO is in a positive phase, winters over Northern Hemisphere extratropical

continents are mild and with cold temperatures in the Arctic while storm tracks shift to-

wards the pole. When the NAO/AO is in a negative phase, winters are more severe over

the Northern Hemisphere extratropical continents and are climatologically mild in Arctic

with the storm tracks shifted more towards the equator. Recent observations of wintertime

temperatures project strongly on the negative phase of the AO (warm Arctic–cold conti-

nents), which reflects the negative trend in the AO over the past couple decades (Cohen

et al. 2012). Furthermore, when climate models are forced with latitudinal and regionally

variations in heating they are accompanied by changes in NAO/AO (Wu et al. 2007; Bader
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et al. 2011). The link between Arctic amplification and the NAO/AO remain unclear and

requires more investigation into how much the changes in NAO/AO can be contributed to

Arctic amplification and not variability in sea ice and snow coverage. Lastly, there have

been some discrepancies between studies on how the NAO/AO will respond to Arctic am-

plification however there are two general outcomes: 1) there are studies that show a shift

to a negative NAO/AO than to a positive NAO/AO (Screen et al. 2013; Tanaka and Seki

2013) and 2) simulations show that the response of NAO/AO to sea ice loss is smaller than

natural variability (Magnusdottir et al. 2004; Liu et al. 2012; Cohen et al. 2014b).

The second dynamical pathway discussed is the effect of Arctic amplification on the po-

lar jet stream (Cohen et al. 2014b). The meridional temperature gradient between the Arctic

and the mid-latitudes is the fundamental driver for the polar jet stream (Wallace and Hobbs

2006), meaning a weakening in the gradient from Arctic amplification would result in a

weaker jet (Haarsma et al. 2013; Francis and Vavrus 2015). A weaker jet results in slower

eastward movement of planetary waves due to larger meanders and slower momentum in

the jet stream, which could lead to more persistent weather patterns (Francis and Vavrus

2012). Furthermore, an increase in temperature, as a result of Arctic amplification, would

result in increased thickness over the Arctic, which would allow ridge peaks to extend

farther into the Arctic, increasing north-south flow (Francis and Vavrus 2012). However, a

more recent study has shown there is not a positive tend in elongated meridionally planetary

waves as a result to Arctic amplification so further investigation is required (Barnes 2013).

Persistent weather, a result of the increased meridional flow, has been linked to the fre-

quency of extreme weather events over the Northern Hemisphere landmasses (Petoukhov

et al. 2013; Screen and Simmonds 2014). There are still challenges in linking Arctic am-

plification to a change in jet speed and location. Other factors need to be included such as

feedbacks from synoptic-scale weather systems and the upper-level north-south tempera-

ture gradient (Cohen et al. 2014b; Lee et al. 2019). Observational support for the impacts of

the theory related to a weakening zonal jet component is lacking, mainly in whether Arctic
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amplification leads to larger amplified waves along with slower moving weather patterns

(Allen and Sherwood 2008). The need for additional support is not surprising given that

Arctic amplification is a relatively new idea and the large natural variability.

The third proposed dynamical pathway linking Arctic amplification to mid-latitude

weather is modifications to large-scale Rossby waves from changes in sea ice and snow

cover (Cohen et al. 2014b). Extensive snow cover over Eurasia can lead to higher sea

level pressure, induced by radiative cooling, which may lead to larger Rossby wave (wave

numbers 1-3) that increase vertical propagation of energy into the stratosphere (Fletcher

et al. 2009; Allen and Zender 2011). Cohen et al. (2014a) proposed that the atmospheric

response lags the changes to Eurasia snow cover by a month due to the feedback timescales

associated with energy traveling from the surface to the stratosphsere then feedback into the

tropopshere. Other studies have linked the reduction of fall-winter sea ice, especially over

the Barent and Kara seas, to greater mid-tropopsheric geopotential heights over the Arctic

with a trough over Eurasia (Honda et al. 2009; Petoukhov and Semenov 2010). The mid-

tropospheric response to the snow cover and/or the reduction in sea ice provides a pathway

to transfer information on what is occurring at the surface to the upper-troposphere/lower-

stratosphere, which ultimately plays a role in mid-latitude weather through teleconnections.

However, like most studies, there are shortcomings to the proposed ideas above which in-

cludes disagreement between observations and climate model simulated wave responses to

snow cover (Cohen et al. 2014a; Hardiman et al. 2008) and reduced statistical significance

linking sea ice and atmospheric responses due to the short sea ice datasets (Cohen et al.

2013).

The complexity and remoteness of the Arctic makes it a challenging region to study.

Due to limited convectional observation coverage, studies have relied on using numerical

weather models when trying to understand Arctic processes and how theses Arctic pro-

cesses impact the mid-latitude weather. Due to the different types of surface characteristics

and connections between them means each Earth-system component’s processes needs to
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be represented correctly if progress is to be made. In order to make progress in model rep-

resentation of complex Arctic processes, each component of the Earth system (including

the atmosphere) and their respective interconnections needs to be represented in a model-

ing system. Furthermore, the rapid changes happening in the Arctic have been shown to

have an impact on the mid-latitude weather. Better understanding of the Arctic impact on

mid-latitude weather is still needed not only on the climate time-scale but also on synoptic

time-scale. The ideas discussed above further supports the idea of better understanding of

how the Arctic or Arctic base features can impact mid-latitude weather.

In this study, the ability of a newly developed global numerical weather model to predict

the Arctic is evaluate but on synoptic timescales compared to climate timescales mentioned

above. Better understanding of Arctic weather on these shorter time scales would help in

our prediction of the Arctic climate. One particular Arctic feature will be discussed in this

work is call the tropopause polar vortex or TPV.

1.2 Tropopause Polar Vortices (TPVs)

TPVs are a common dynamic feature in the Arctic and their role in Arctic-middle latitude

interactions remains relatively unaddressed. From a predictability standpoint, correctly

forecasting TPVs is important due their links to cyclogenesis in the mid-latitudes (Klein-

schmidt 1950; Bosart et al. 1996a) and to initiation of rossby waves when interacting with

the jet stream (Röthlisberger et al. 2016). TPVs are long-lived, coherent vortices that are

defined by material closed contours on the dynamic tropopause which is represented by po-

tential vorticity (PV) (Cavallo and Hakim 2009). In the absence of diabatic and frictional

effects, PV is conserved, which is convenient when tracking these features. TPVs on the

dynamic tropopause are associated with closed contours of potential temperature assuming

adiabatic conditions (Cavallo and Hakim 2009). When observing the dynamic tropopause,

cold-core TPVs are observed as cyclonic circulations with a lower tropopause and warm-

core TPVs are observed as anti-cyclonic circulations with a higher tropopause (Cavallo
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and Hakim 2009). Cold-core cyclonic TPVs are associated with anomalously warm (cold)

temperatures above (below) the tropopause, positive PV anomalies above the tropopause,

and anomalously low (high) moisture above (below) the tropopause (Cavallo and Hakim

2010). Characteristics of TPVs include radii of around 500 km and potential temperature

amplitudes of about 8 K (Hakim 2000). Furthermore, TPVs have preferred locations in the

Arctic and can have life spans that last up to a month or more (Hakim and Canavan 2005a).

Due to the fact that TPVs reside mainly in the Arctic away from the jet stream, it is be-

lieved that diabatic effects are important to TPV maintenance and intensification (Cavallo

and Hakim 2010).

To understand how the diabatic effects can modify TPVs, we first look at Ertel’s Poten-

tial Vorticity (Pedlosky 1992) as it describes TPV amplitude

Π =
1
ρ

ωa ·∇θ , (1.1)

where ρ is the density, ωa is the absolute vorticity, and U and θ are 3D fields of wind and

potential temperature. Applying the time rate of change derivative to Eq. 1.1 provides a

way to predict intensity change and neglecting the effects of frictional processes since they

are small at the tropopause, we arrive at an equation to quantify TPV intensity changes due

to diabatic effects:
DΠ

Dt
' ωa

ρ
·∇Dθ

Dt
. (1.2)

The diabatic effect is contained within the Dθ

Dt term which can be expanded to represent

each diabatic effect represented in the numerical model.

Dθ

Dt
= (θ̇radiation + θ̇latent heating + θ̇pbl + θ̇convective + θ̇mixing). (1.3)

The above diabatic tendency terms (θ̇radiation, θ̇latentheating, θ̇pbl, θ̇convective, θ̇mixing) come from

physics parameterization schemes that represent model tendencies from radiation, latent

heating, boundary layer processes, non-resolved convection, and numerical disspation.

Furthermore, the Arctic is characterized by low temperatures and widespread cloudiness,

which implies that diabatic effects from radiative processes and latent heating will be the
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largest in equation 1.3 (Curry et al. 1996). Ignoring the other small diabatic terms and only

considering the vertical component of vorticity, we arrive at

DΠ

Dt
' ζa

ρ

∂

∂ z
(θ̇longwave radiation + θ̇shortwave radiation + θ̇latent heating), (1.4)

where ζa is the vertical component of absolute vorticity. Equation 1.4 describes how EPV

will change in time due to diabatic processes represented in the NWP model.

Studies have found that intensity changes are likely due to local factors surrounding

the TPV, such as radiative cooling and latent heating Cavallo and Hakim (2009, 2010) .

Studies have shown that cloud-top radiative cooling had the most influence on increasing

EPV while latent heating acted to destroy EPV, but on a much smaller magnitude (Cav-

allo and Hakim 2009, 2010). In further investigation of the radiative effects, Cavallo and

Hakim (2013) found maximum TPV intensification was occurring when clouds contributed

to the longwave cooling. In the absence of clouds TPV intensification was primary due to

an enhanced vertical water vapor gradient near the tropopause. The representation of the

vertical gradient in moisture is important when trying to accurately forecast TPV charac-

teristics, especially during the cloudless times during the winter (Shupe 2011). Due to lack

of high-quality observations present over the Arctic, it can be hard to correctly represent

this gradient near the tropopause, perhaps degrading forecasts.

TPVs are most frequent in the Arctic regardless of the season (Fig. 1.4). There are

two preferred pathways where TPVs exit the Arctic and move into the mid-latitudes: 1)

North Pacific and 2) west of Greenland. These two pathways are more pronounced during

the wintertime while not as defined in the summertime (Fig. 1.4). Furthermore, jet streak

counts greater than 70 m s−1 are overall greater in the winter, implying TPVs could be

having a dynamical impact on the jet streaks that are located in this region.

For this study, evaluation of the representation of the vertical gradient in moisture within

the ensemble assimilation cycling system will be performed along with verification to ob-

servations. Since the ensemble contains multiple forecasts, investigation into TPV intensity

forecast sensitivities associated with the vertical gradient in moisture are also considered.

10



1.3 Rossby Waves and Downstream Predictability

Predictability is used here to quantify how well we are able to predict some atmospheric

feature. Predictability can be split into two categories: 1) practical predictability and 2)

intrinsic predictability (Sun and Zhang 2016). Practical predictability is described as the

ability to predict some feature based on current data assimilation techniques to obtain the

optimal initial state while using the best forecast model available (Lorenz 1982). Intrinsic

predictability is described as the extent to which prediction is possible if a nearly perfect

initial state is known while using a nearly perfect forecast model (Lorenz 1969). Practical

predictability can be limited by uncertainties found in the observations, data assimilation

techniques and the forecast model (Zhang et al. 2007). Intrinsic predictability suggests that

there will be a limit of predictability for atmospheric features even if the initial condition

and forecast model are nearly perfect (Melhauser and Zhang 2012). This study will fo-

cus on the practical predictability aspects since our initial states and forecast models are

not considered to be perfect. Furthermore, this study aims to investigate the downstream

predictability, or how differences in the initial state impact the forecasts.

Rossby waves, represented by undulations in zonal flow which are diagnosed by merid-

ional wind , v, are an atmospheric feature important to large-scale meteorological processes

(Rossby 1939). Rossby waves owe their existence to gradients in potential vorticity from

a poleward gradient in the Coriolis force (Hoskins et al. 1985). Rossby waves are able

to transfer energy, heat and moisture across large distances, which allows there to be co-

variability in atmospheric properties between remote places (Wallace and Gutzler 1981;

Branstator 2002). Usually Rossby waves predominately travel downstream in packs or

wave trains referred to as Rossby wave packets (RWPs) (Chang 2000). One can repre-

sent the speed of the RWPs using the dispersion relation computing phase speed and group

velocity (Holton 2004). The phase speed represents the speed of individual troughs and

ridges, while the group velocity describes the speed of propagation of the entire RWP
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(Wirth et al. 2018). In the most general case, the phase speed differs from that of group ve-

locity, which gives Rossby waves their dispersive nature (Rossby 1945; Hovmöller 1949).

Due to the positive change in planetary vorticity with increasing latitude, the group velocity

is greater than the phase velocity which means that Rossby wave envelope moves eastward

faster than the individual troughs and ridges. Since Rossby waves are dispersive and flow is

west to east, this implies that an initial wave packet, that is limited in zonal extent initially,

will gradually extend downstream over a larger region as time passes.

The generation of a Rossby wave would first start with a single occurrence of a ridge

or trough in a undisturbed zonal flow. Early work using idealized numerical modeling in-

vestigated the generation of Rossby waves or RWPs by applying perturbations to a initially

unperturbed jet (Simmons and Hoskins 1979; Schwierz et al. 2004a). In the real atmo-

sphere, there are a wide range of potential processes and dynamical features that can play

the role of the initial perturbation, including recurving tropical cyclones (Jones et al. 2003),

mesoscale convective systems (Rodwell et al. 2013), warm conveyor belt outflows associ-

ated with extratropical cyclones (Madonna et al. 2014), and TPVs (Röthlisberger et al.

2018), which are a focus in this work. Additionally, wave breaking, which usually marks

to the end of one RWP, can excite new Rossby wave or RWP growth (Martius et al. 2010).

Most of the early work on Rossby wave or RWP dynamics is based on dry balanced flow.

Most of the features discussed above have diabatic processes associated with them leaving

open questions about the role of diabiatic processes. It has been established that moist pro-

cesses amplify surface cyclones (Danard 1964; Sanders and Gyakum 1980; Bosart 1981;

Gyakum 1983; Thorpe and Emanuel 1985; Emanuel et al. 1987; Davis and Emanuel 1991;

Davis et al. 1993). Furthermore, latent heat release modifies the tropopause locally, which

in turn modifies the jet structure (Kleinschmidt 1950; Hoskins and Berrisford 1988; Davis

et al. 1993; Wernli and Davies 1997; Bosart 1999). More recent studies investigating the

impacts of latent heat release on RWP modifications include warm conveyor belts (Grams
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et al. 2011), organized convection (Rodwell et al. 2013), deep monsoon convection (Sten-

srud 2013), and tropical cyclones recurving into the mid-latitudes (Quinting and Jones

2016). The impacts of latent heat on RWPs can be thought of as both a direct and indirect

process (Wirth et al. 2018). The direct impact of diabatic processes is to generate a negative

PV anomaly in upper-troposphere, which than modifies the ridge and may induce down-

stream effects (Ahmadi-Givi et al. 2004; Chagnon et al. 2013; Chagnon and Gray 2015).

The indirect impact is from the upper-tropspheric divergent outflow associated with latent

heat release below, which can modify the ridge (Davis et al. 1996; Riemer and Jones 2010;

Teubler and Riemer 2016). It has been discussed that the indirect impact – from the diver-

gent outflow – can modifiy the propagation speed and characteristics of troughs (Riemer

and Jones 2014). Lastly, the influence of longwave radiation on Rossby waves or RWPs is

thought to occur by sharpening the tropopause due to the large vertical gradient in mois-

ture near the tropopause (Zierl and Wirth 1997). Furthermore, the longwave wave cooling

can substantially modifiy the PV disturbution near the tropopause within Rossby waves

(Chagnon et al. 2013; Teubler and Riemer 2016). Radiative processes can have an impact

on the propagation speed of the Rossby waves (Chagnon and Gray 2015; Harvey et al.

2016), however, fundamental questions still remain in fully understanding the impacts.

RWPs can be simulated in forecasts when the RWP is already within the initial analysis

(Glatt and Wirth 2014), however, there are documented issues within operational systems

at misrepresentation of the RWPs (Gray et al. 2014; Giannakaki and Martius 2016). Studies

have shown that information regarding differences in analyses, impact of observations, and

forecast errors propagate in the zonal direction at speeds faster than individual troughs and

ridges (Hollingsworth et al. 1985; Barwell and Lorenc 1985; Langland et al. 2002), usually

at group velocity speeds (Hakim 2005; Anwender et al. 2008; Zheng et al. 2013). The

predictability of Rossby wave initiation or RWPs is linked back to the representation of

upscale growth of errors associated with diabatic processes to synoptic-scales (Zhang et al.
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2003). Errors associated at convective-scales then grow upscale to those related to large-

scale balanced motions and displacement of PV gradients by divergent flow, while finally

the large-scale components of the errors grow with the background baroclinic instability

(Zhang et al. 2007; Hohenegger and Schar 2007; Bierdel et al. 2018; Baumgart et al. 2018).

Some studies have suggested that the diabatic process errors are not scale transfered but

instead it is coupling of errors from convective scale up to large-scale (Wernli et al. 2002;

Parsons et al. 2019). The error growth related to diabatic processes is illustrated in Figure

1.2 where the large PV errors are locally maximized near the mid-latitude jet stream at

forecast day 2 (Fig. 1.2a). At forecast day 6 (Fig. 1.2b), the location of the larger PV errors

are in the trough and ridges associated with Rossby waves. Lastly, there are other proposed

mechanisms for upscale growth in forecast errors that are not associated with baroclinic

instability (Snyder 1999; Davies and Didone 2013).

The predictability of the Arctic is important in this study since TPVs spend the majority

of their lifetimes in the Arctic. The average forecast skill over the Arctic region is compa-

rable to that over the mid-latitudes, however, there is more variability in the daily forecast

skill in the Arctic (Fig. 1.3). The large forecast skill variability could be related to large

analysis uncertainty and the sub-optimal use of the limited conventional observations that

are found over the Arctic region (Jung et al. 2016). Correct representation of the coupled

processes between sea ice and the atmosphere could be leading to forecast errors as well

(Jung and Matsueda 2016). When the Arctic region is nudged towards reanalyses, it is

shown to increase forecast skill in the mid-latitudes at long forecast leads, hinting there is

flow of information coming out of the Arctic (Jung et al. 2014). The reduction in forecast

error when nudging the Arctic further emphasizes the need to improve an understanding of

polar processes in order to extend the forecast barrier that is currently around a week.

As discussed above, the initiation of Rossby waves can either be from an initial pertur-

bation on the jet stream or through diabatic process associated with convection. Different

types of atmospheric features were discussed that could act as the driver to perturbation or
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the latent release (Fig. 1.5), including the TPV – a feature of interest in this work. Röthlis-

berger et al. (2016) identified a local maximum in Rossby wave initiation (RWI) over the

North Pacific, which is co-located with the highest probability of a TPV being in that area

(Fig. 1.4). Furthermore, pathways for information leaving the Arctic and influencing the

mid-latitudes have been shown through an increase in forecast skill while nudging Arctic

forecasts towards reanalyses (Semmler et al. 2018). Semmler et al. (2018) found the biggest

reduction in wintertime forecast errors over the North Pacific, which is co-located with the

maximum in RWIs and the highest probability of TPVs during the winter. The co-location

of highest frequency of RWIs and TPVs being over the North Pacific further motivates

the need to understand if TPVs can initiate Rossby waves that later in time develop into

RWPs. Lastly, this study will investigate the sensitivities in Rossby wave development and

the downstream growth to the TPV characteristics, which include position and intensity.
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Figure 1.1: Schematic of ways to influence Northern Hemisphere mid-latitude weather.

Three major dynamical features for changing Northern Hemisphere mid-latitude weather

— changes in the storm tracks, the position and structure of the jet stream, and planetary

wave activity — can be altered in several ways. The pathway on the left and highlighted

by double boxes is reviewed in this manuscript. Arctic amplification directly (by changing

the meridional temperature gradient) and/or indirectly (through feedbacks with changes in

the cryosphere) alters tropospheric wave activity and the jet stream in the mid- and high

latitudes. Two other causes of changes in the storm tracks, jet stream and wave activity

that do not involve Arctic amplification are also presented: (1) natural modes of variability

and (2) the direct influence of global climate change (that is, including influences outside

the Arctic) on the general circulation. The last two causes together present the current null

hypothesis in the state of the science against which the influence of Arctic amplification on

mid-latitude weather is tested in both observational and modelling studies. Bidirectional

arrows in the figure denote feedbacks (positive or negative) between adjacent elements.

Stratospheric polar vortex is represented by ‘L’ with anticlockwise flow. This figure is

from Cohen et al. (2014b)
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Figure 1.2: Illustration of the amplification and spatial growth of forecast errors in a

medium-range forecast from the European Centre for Medium-Range Weather Forecasts

(ECMWF, polar stereographic projection, forecast initialized at 0000 UTC 12 Nov 2013).

The error is depicted in terms of PV (color shading) on the 320-K isentrope intersecting the

mid-latitude tropopause. Errors are defined as the difference between the forecast and the

verifying analysis. The dynamical tropopause is depicted by the 2-PVU contour (solid for

the analysis, dashed for the forecast). Errors with distinct local extrema in amplitude at (a)

forecast day 2 develop into error patterns on the scale of RWPs by (b) forecast day 6. This

figure is from Wirth et al. (2018)
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Figure 1.3: Time series of ECMWF day-6 forecast anomaly correlation coefficient (ACC)

for the mid-latitudes and the Arctic. The calculation of ACC included cosine weighted by

latitude. ERA-iterim was used as the climatology for the ACC calculation. Other regions

have been compared to the Arctic and mid-latitudes.

Figure 1.4: Probability of TPV locations (colorfill, %) and location of TPVs associated

with RWI events (white contours, %). Red contours of jet streak counts of greater than 70

m s−1 windspeed. Yellow triangles denote locations of RWIs where a TPV is within 1000

km. TPV tracks were computed using the ERA-interim dataset and Szapiro and Cavallo

(2018) TPV tracking algorithm. The RWI events were from the Röthlisberger et al. (2016)

dataset.
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Figure 1.5: Schematic showing MCS (mesoscale convective system), XT (extratropical

cyclones), TC (tropical cyclone), and TPV (tropopause polar vortex) features that can act

to kick off a RWI event and the downstream propagation of the Rossby wave packet. Figure

provided by Sam Lillo and is based in part on Lillo and Parsons (2017) finding of causes

linked to dramatic decrease in forecast skill.
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Chapter 2

Observations, Numerical Modeling and Data Assimilation

This chapter describes the observations, data assimilation, and NWP model used in this

study. The modeling system is composed of two components: (1) a data assimilation sys-

tem and (2) a NWP model. These two components were developed at National Center

for Atmospheric Research (NCAR); the NWP model is the Model for Prediction Across

Scales (MPAS) and we use data assimilation software developed by the Data Assimilation

Reseach Test (DART) group. MPAS-DART’s setup and procedures follow closely to those

found in Cavallo et al. (2013), except this study will use a global rather than a regional

NWP model.

2.1 Observations

This section discusses the different global NWP models and reanalysis products that were

used for initializing and evaluating our modeling system produced analyses and forecasts.

Also, a brief explanation will be provided of the observations used in the data assimilation

step when producing analyses and when evaluating our model.

2.1.1 The Global Ensemble Forecast System , and ECMWF Re-Analysis Version 5

The Global Ensemble Forecast System (GEFS) is the National Centers for Environmental

Prediction (NCEP) global ensemble that is run 4 times daily. The GEFS data used in this

study have horizontal spacing of 1.0◦ x 1.0◦ and are used to initialize this ensemble. GEFS

has 21 ensemble members, however, more members are desirable to help reduce sampling

errors (Houtekamer and Zhang 2016), and allow for stronger statistical information to be

calculated from the ensemble. Since there are only 21 GEFS ensemble members, the lagged

forecast technique (Kumar and Hoerling 2000) is used to build up the number of ensemble
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members specified in this study. The initialization process starts by obtaining GEFS 48-,54-

,60-,66-,and 72-hour forecasts valid 12 hours prior to initialization time to get 96 ensemble

members. Spin-up of the perturbations is completed by running MPAS 12-hours prior to the

first cycling period. Using the lagged forecasts initialization technique reduces the amount

of time required to spin-up initial perturbations compared to the time required to spin-up

initial random perturbations. More documentation on GEFS model setup and forecast run

times can be found at the NCEP website (https://www.ncep.noaa.gov).

For comparisons against other modeling systems, the reanalysis product used in this

study is the European Center for Medium Range Weather Forecasting (ECMWF) ReAnal-

ysis 5 (ERA5) data set. This reanalysis product spans back to 1979 and utilizes newly

developed data assimilation and model physics at higher spatial resolution to produce a

more accurate analysis than older reanalysis products. The ECMWF integrated forecast

system (IFS) released in 2016 combines atmosphere, land and ocean wave models and is

used to create the ERA5 reanalyses (Hersbach et al. 2019). Furthermore, the ERA5 uses

all conventional and other observations that are available at that analysis time including

radiances from satellites. ERA5’s horizontal resolution of approximately 30-km is finer

resolution than that of the GEFS, which is approximately 50-km resolution. More informa-

tion regarding the ECMWF’s ERA5 data set can be found in Hersbach et al. (2019).

2.1.2 Conventional Observations

In contrast to most operational systems where satellite radiances are the largest portion of

observations, conventional observations account for the majority of the observations types

that are assimilated in this study. Satellite radiances carry uncertainties associated with

their radiance derived products, which can be particularly impactful when satellite radi-

ances make up a large portion of the total assimilated observation dataset. Additionally,

assimilating millions of satellite radiances comes with a large computational cost. With

these limitations in mind, the present system assimilates mostly conventional observations.
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In particular PREPBUFR files, which contains the majority of processed conventional ob-

servations used to create various NCEP analysis, are obtained from NCEP and are the

same as those used in the NCEP’s NWP Global Data Assimilation System (GDAS) (NCEP

2020). The PREPBUFR files are stored on NCAR’s Computational and Informational Sys-

tems Laboratory data archive. The available conventional observations for our study were

radiosonde data, marine buoy data, METAR data, Aircraft Communications Addressing

and Reporting System data (ACARS), and Automatic Weather Stations (AWS) (Figure

2.1). Although Global Positioning System (GPS) data are included in Figure 2.1, they are

not a part of the PREFPBUFR files but are used and will be discussed later. The observa-

tion errors for all conventional observations are included in the PREPBUFR files and no

additional changes were employed. Note that observations are not perfect, and therefore

contain some degree of bias. For example, the ACARS root mean square error for temper-

ature is largest between the layer of 300-200 hPa but no explanation has been given for the

large error in this layer (Benjamin et al. 1999). Lastly, geostationary satellite wind obser-

vations and ACARS can be concentrated in spatial coverage leading to a breakdown in the

assumption that observation errors are uncorrelated. Thinning of the data, “super-obing,”

is performed by setting a specified radius inside which observations are combined into one

“super” observation. For example, the horizontal radius is 100 km and the vertical radius

is 25 hPa for geostationary satellite wind observations. More information on super-obing

can be found in Purser et al. (2000).

Some of the issues with conventional observations over the Arctic region are illus-

trated in Figure 2.1a. First, there is dense conventional observation coverage over the mid-

latitudes, comprising all conventional observation types. As latitude increases towards the

North pole, the conventional observational coverage rapidly decrease. North of 60◦ N, the

only observations that primarily remain are a few upper-air radiosonde sites, and mainly

surface observations (METAR, marine buoy and AWS sites). Around 360,000 observa-

tions are assimilated per cycle when only conventional observations are included. When
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confined to only over the Arctic, around 15,000 conventional observations are assimilated

per cycle, which is around 4% of the total conventional observations assimilated. (Fig. 2.2a

and Fig. 2.3). Unlike in the mid-latitudes, a lower percentage of conventional observations

are assimilated in the Arctic. Most operational global models are assimilating satellite ra-

diances increasing the total number of observations into the millions. Thus, global models

utilize special satellite observations that not only increase the number of overall observa-

tions assimilated but fill in regions that have infrequent observations.

GPS profiles (or radio occultation profiles) are included in the conventional observa-

tion group and are assimilated in this study. GPS soundings are created by measuring how

much a radio wave is bent, or refracted, while traveling through the atmosphere (Hardy

et al. 1992). Since atmospheric refractivity is a function of pressure, temperature, and wa-

ter vapor, profiles of atmospheric refractivity can provide potentially useful information

that can help NWP (Ware et al. 1996). Ware et al. (1996) shows that in portions of the

atmosphere where moisture is negligible, temperature can be estimated directly from the

refractivity profiles. The GPS observations account for one of the smallest number of ob-

servations assimilated, but their quasi-vertical profiles are well distributed spatially to help

in some observationally sparse areas (Figure 2.1a). Improvements in forecast were found in

the upper-atmosphere over polar regions when GPS observations were assimilated (Healy

et al. 2005; Cucurull et al. 2007; Healy 2008). Positive impacts of the GPS observations

discussed in the literature provide a basis for them to be included in this study.

2.1.3 Polar Orbiting Wind Observations

Polar orbiting satellite wind observations can be used to help fill in the observationally

sparse area over the Arctic region. The polar orbiting satellites used in this study are the

MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Res-

olution Radiometer (AVHRR) satellites. MODIS and AVHRR generate upper-level wind

observations by tracking, with multiple satellite passes, cloud and water vapor features in
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the inferred band and the water vapor windows (Key et al. 2003). Comparing Figure 2.1b

and Figure 2.1a, the MODIS and AVHRR wind observations help fill in the observation

gap towards higher latitudes. Furthermore, ∼18,000 additional observations per cycle are

available with the inclusion of the polar orbiting winds (Fig. 2.2b and Fig. 2.3). Polar or-

biting wind observations account for the largest percentage of observations assimilated in

the Arctic region. Lower level winds observed by polar orbiting satellites are often of poor

quality due to height assignment issues over complex topography and ice. Restrictions are

applied to different satellite channels and observation altitude based on the surface over

which the measurement is taken (Key et al. 2003). The filtering criteria Key et al. (2003)

applied is as follows: over land, both infrared (IR) and water vapor (WV) channel data

above 400 hPa are used, while IR data above 700 hPa and WV data above 550 hPa are used

over the ocean. Bormann and Thépaut (2004) found a positive impact on medium-range

forecasts over polar regions when assimilating MODIS winds. Additionally, Key et al.

(2003) discusses significant improvements in the geopotential height field over the Arctic

region when assimilating polar orbiting observations. The literature supports the positive

impact that polar orbiting wind observations can have on analyses and forecasts in over the

Arctic.

2.1.4 Atmospheric Infrared Sounder

The Atmospheric Infrared Sounder (AIRS) was launched in 2002 aboard the Aqua satellite.

The infrared instrument and two multi-channel microwave instruments aboard Aqua allow

AIRS to sample 2,378 wavelengths while prior satellites could only sample 15 wavelengths.

Each infrared wavelength is sensitive to a temperature or water vapor value over a range of

heights. This enables AIRS to use thousands of different wavelength channels to retrieve

an atmospheric profile. Aqua’s mirror rotates along the center axis of the satellite creating

“swaths” that are roughly 800 km wide. DART does not directly assimilate AIRS measured

radiance, rather AIRS derived temperature and moisture profiles are used instead. These

24



AIRS temperature profiles have a vertical resolution of 1 km, are accurate to 1 K for every

1 km in the troposphere, and are accurate to 1 K for every 4 km in the stratosphere (Olsen

et al. 2013). AIRS moisture profiles have an upper limit which coincides with the level

where atmospheric mixing ratio values fall to 10-15 ppmv; where sensitivities in measured

mixing ratio begins to degrade the profiles around 300 hPa. AIRS moisture profiles have a

vertical resolution of 2 km (Olsen et al. 2013). Figure 2.1b shows the spatial distribution of

the AIRS observations for one cycle period. The addition of the AIRS observations adds

∼9,000 observations per cycle that are assimilated and fills observationally sparse areas

(Fig. 2.2b and Fig. 2.3). The AIRS profiles are thinned by retaining every 4th profile in

the satellite swath. This method was used instead of super-obing due to the computation

time it would take to complete. Chou et al. (2009) found that including AIRS profiles pro-

duced an analysis closer to in-situ observations while improving forecast temperature and

geopotential height biases. Jones and Stensrud (2012) discuss the impacts of assimilating

AIRS profiles in convective-scale forecasts. They found AIRS mixing ratio profiles assim-

ilated over the contiguous United States (CONUS) to be valuable since they are providing

otherwise rare unique information during assimilation time. Furthermore, Jones and Sten-

srud (2012) found a reduction in ensemble spread and forecast uncertainty. Even though

the impact of assimilating AIRS profiles is still being investigated, they provide additional

coverage in sparse areas over the Antarctic region.

2.2 Data Assimilation

Two common types of data assimilation are the variational, which can be 3-dimensional

(3DVAR) or 4-dimensional (4DVAR), and the ensemble approach (Bannister 2017). Many

global modeling centers use the 4-dimensional variational data assimilation methods (Bonavita

et al. 2016) while some use a hybrid method that combines the variational approach with the

ensemble approach (Clayton et al. 2013; Kuhl et al. 2013; Wang et al. 2013b). Hamill and

Snyder (2000) showed that with a hybrid ensemble kalman Filter 3DVAR analysis scheme,
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applying more weight to the flow-dependent background error covariance produces more

accurate analyses and improves forecast lead time by one day as compared to a 3DVAR

system. Since the background error covariance is nearly constant when observations are

dense, the flow-dependent background error covariance is most important when observa-

tions are limited. The importance in the flow-dependent background error covariance in

data sparse areas has been shown in previous studies (Whitaker et al. 2004; Jung and Leut-

becher 2007; Whitaker et al. 2009). Since the Arctic is a data sparse region compared to

the mid-latitudes, the use of a flow-dependent background error covariance provided from

an ensemble approach will be used in this study.

Advancements in data assimilation in the past decades have helped provide a more

accurate representation of the atmospheric state, which in turn leads to better forecasts

(Carrassi et al. 2018). Section 2.1 discussed the aspect of weak observation coverage in

the absence of satellite observations around the Arctic region. Furthermore, an ensemble

of forecasts provides additional statistical information which can be used to test for signif-

icance or evaluate forecast sensitivities.

The data assimilation technique used in this study will be the ensemble Kalman fil-

ter (EnKF) technique, which is a modified version of the Kalman filter (Kalman 1960).

The Kalman filter equations use the following assumptions: (1) both the observations and

background field are unbiased, (2) errors from observations and the model are not tempo-

rally correlated with themselves and (3) the errors from the observations and model are not

correlated with each other. The basic equations for the Kalman filter are given by:

Xa =Xb+K(Xo−H(Xb)) (2.1)

K = P bHT (HP bHT +R)−1 (2.2)

P a = (I−KH)P b (2.3)

where Xa and Xb are the model atmospheric state vectors for the analysis and back-

ground, respectively, Xo is the observation vector, I is the identity matrix, and H is a
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linear forward operator that acts to interpolate the data to observation locations along with

transforming the model background state variables to match those of the observations. The

difference between Xo and H(Xb) found in equation 2.1 is the weighted adjustment that

is applied to the background field, the innovation. In equation 2.2, P b and R are error co-

variance matrices that represent the errors for the background model state and the observa-

tions, respectively. The observation errors are assumed to be known while the background

error covariances are the analysis error covariances from the previous time step projected

forward in time by a linear model. The error covaiances combine in equation 2.2 to make

the Kalman Gain, K. The Kalman Gain is an optimal weight matrix derived by minimiz-

ing the total analysis error variance. This optimal weight matrix determines how much of

an adjustment is applied to the background model state. For example, if the background

error covariance is large, there will be more weight on the observations. Likewise, if the

observation error is large, there will be less weight on the observations. Lastly, equation

2.3 represents the analysis error covariance or P a. If the assumptions listed above are

maintained, then from equation 2.3, the analysis error covariance should be less than that

of the background error covariance.

Modifications have since been made to the Kalman filter equations. The two most com-

mon modifications are the extended Kalman filter (EKF) and the ensemble Kalman filter

(EnKF). The extended Kalman filter applies the same equations but allows for a non-linear

model for advancing the analysis forward in time, and the forward operator. The EnKF

also uses a non-linear model for advancing the analysis forward in time and an ensemble of

forecasts to compute the background error covariances. There is a computational advantage

to using the EnKF over the EKF because there is no need for a model to project the analysis

error covariance forward in time. A version of the EnKF will be applied in this study. There

are two main types of EnKF approaches: deterministic and stochastic. The deterministic

approach requires that the updated analysis perturbations satisfy the Kalman filter analysis
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error covariance equation whereas the stochastic method adds random noise to observa-

tions so that the Kalman filter analysis error covariance equation is satisfied (Tippett et al.

2003). There are several different types of deterministic formulas including the ensem-

ble transform Kalman filter (Bishop et al. 2001), local ensemble transform Kalman filter

(Hunt et al. 2007), and serial ensemble square root Kalman filter (Whitaker and Hamill

2002). The version used in this study is the ensemble adjustment Kalman filter (EAKF)

provided within DART (Anderson et al. 2009; Anderson 2001). In the EAKF, the analysis

error covariance will converge to the Kalman filter optimal analysis error covariance that

is represented by equation 2.3. Tippett et al. (2003) showed that the EAKF is largely a

modification of the ensemble square root filter, and the equations are similar.

Like the equations for the Kalman filter, the EAKF has equations for both a forecast

and data assimilation step. Starting with the forecast step, the equations used are given by:

Xb
k (t) = M(t−1)(Xa

k (t−1)) (2.4)

P b(t) =
1

K−1

K

∑
k=1

(Xb
k(t)−X̄b(t))(Xb

k(t)−X̄b(t))T (2.5)

where M represents the non-linear model used to project the analysis forward in time, K

is the number of ensemble members, k is the kth ensemble member, and X̄b(t) is the en-

semble mean of the background field. Unlike in the Kalman filter and EKF formulas, the

background error covariance is calculated from a ensemble of forecasts produced by the

non-linear model. The calculation of P b in this manner allows for a flow-dependent back-

ground error covariance which is different than the static background error covariances

found in variational methods. At the end of each forecast cycle, a new analysis is calcu-

lated from a new background forecast and a new set of observations. Following the EnKF

equations found in Anderson (2001):

X̄a(t) = ∑u(∑
−1X̄b(t)+HTR−1Xo) (2.6)

Xa
k (t) = X̄a(t)+AT (Xb

k (t)−X̄b(t)) (2.7)
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where ∑ is the background error covariance, ∑u is the updated covariance, and AT is a

weight that dictates the adjustment made to X̄a. The formulation for the updated covari-

ance can be performed on an identity and diagonal matrix which helps to speed up com-

putational time. Equation 2.6 states that the mean of the analysis is updated by applying a

combination of updated error covariances (∑u), background error covariances, and obser-

vation error covariances on both the mean background field and observations. In equation

2.7, the final analysis is a combination of the mean background field adjusted through a

weighted difference between the background field and the mean background field. Equa-

tion 2.7 makes the adjustments necessary for the analysis error covariances to converge to

those calculated with Kalman filter equations.

Problems can arise when using the ensemble Kalman filter technique for a data assimi-

lation system. One of the most common problems is filter divergence, which can be caused

by sampling error or model error. The computational cost of integrating a numerical model

forward in time can impose restrictions on the ensemble sizes, which ultimately can cause

sampling error. The sampling error causes the background error covariances to be rank

deficient, and the correlation between distant grid points is overestimated (Poterjoy et al.

2014). Covariance localization is applied to mitigate sampling error. Covariance inflation

is the process of inflating ensemble background perturbation fields by some factor to in-

crease the model error. For this study, the covariance localization technique applied is the

Gaspari-Cohn 5th order polynomial (Gaspari and Cohn 1999). This localization technique

is applied to the ensemble created background covariance matrix where it is multiplied

point-by-point with a correlation function that is 1.0 at the observation location then de-

creases monotonically to zero after twice the cutoff radius. The equation is given by:

K = (ρ ◦P bHT )(HP bHT +R)−1 (2.8)

where ρ denotes the multiplication factor applied to P b and ◦ represents the Schur prod-

uct. The system here uses a cut off radius of 0.16, correlations between grid points stop

in the horizontal at 2,000 km and 2 km in the vertical (Fig. 2.4). The number of degrees
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of freedom in the background error covariance is also limited by the ensemble size, but

by applying the covariance localization, one can increase the number of degrees of free-

dom realized in the background error covariance. Another data assimilation issue that can

cause filter divergence is poor representation of model errors. Poor representation of model

errors can develop from inadequate specification of model grid spacing, errors in model’s

physics parameterizations, and inaccuracy in the initial and boundary conditions. There are

various treatments for model error issues, but most commonly, covariance inflation is used.

Unrealistic confidence in the background field estimates can lead to insufficient weighting

of the observations. When this occurs, the analysis produced is influenced only by the

background field. An equation applying inflation is given by:

Xb
k = γ(Xb

k−X̄b)+X̄b (2.9)

where γ is the inflation factor that is applied to the background ensemble perturbations. The

covariance inflation applied in this study is an adaptive technique, where the prior ensemble

estimate, the observation, and the observation error variance is used to estimate whether γ

is too big or small (Anderson 2007). Anderson (2007) shows that the only changes to the

distribution of γ are due to the observations. Applying our choice of EnKF technique along

with these treatments for filter divergence allows this study to have a more confident and

accurate ensemble system.

2.3 NWP Model

The second part of modeling system is the numerical model that is used to advance the en-

semble of analyses forward in time. Since the aim of this study is to examine in interactions

between the Arctic and mid-latitudes, a global NWP model is chosen. Historically, less at-

tention has been paid to identification of issues over the Arctic region in global models.

Jung (2005) found that during seasonal climate integrations, the ECMWF under predicted

synoptic activity in the high-latitudes. The under prediction was speculated to be connected
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to the model being too dissipative at small scales, which can degrade forecasts as low pres-

sure systems are smaller in scale over the poles as compared to mid-latitudes. Additionally,

increased forecast skill was found when an increase in horizontal resolution was applied

(Jung and Leutbecher 2007). The increase in forecast skill suggests there may be signifi-

cance in resolving finer scale features of the Arctic during forecasts. Furthermore, there are

large analysis uncertainties in the Arctic compared to mid-latitudes based on the different

analysis generation procedures used at varying global modeling centers, which can inhibit

forecast performance (Jung and Matsueda 2016). Lastly, accurate representation of the sta-

ble boundary layer, a common feature in the Arctic region, is limited due to boundary layer

parameterization used in operational global models often maintaining stronger mixing in

stable conditions (Sandu et al. 2013).

Many modeling studies focused over the Arctic use regional research NWP models such

as Weather Research and Forecasting (WRF; Skamarock et al. 2005) model. Arctic studies

using the WRF model highlight the struggles the model has at representing mixed-phase

clouds. Mixed-phase clouds are unique since supercooled liquid is present at cold tem-

peratures (Shupe et al. 2006). Processes involved in the formation of mixed-phase clouds

have been investigated but an improved knowledge is still needed (Curry 1983; Morrison

et al. 2012; Devasthale et al. 2020). The implications mixed-phase clouds have on radiative

processes makes the ability to correctly represent them in NWP models crucially important

(Shupe and Intrieri 2004; Curry et al. 1996; Hines et al. 2011; Porter et al. 2011; Hines

and Bromwich 2017). Furthermore, mixed-phase clouds can also impact how well the

boundary layer is represented in NWP models (Pinto 1998). Difficulties arise represent-

ing mixed-phase clouds because supercooled liquid water’s existence is unstable as liquid

water’s saturation vapor pressure is higher than that of ice leading to vapor deposition to

ice more readily than to liquid (Kalesse et al. 2016). The higher saturation vapor pressure

leads to liquid water evaporating since ice deposition is more favorable than liquid conden-

sation via the Wegener-–Bergeron-–Findeisen (WBF) process (Wegener 1911; Bergeron
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1935; Findeisen 1938). Single moment bulk microphysics schemes, which only predict

mixing ratios for different cloud/precipitation hydrometers, struggle to accurately repre-

sent mixed-phase cloud properties (Curry et al. 2000; Morrison et al. 2003). The ice crystal

concentration is important in mixed phase clouds since it determines the time scale of the

uptake of water vapor by deposition growth of ice (Morrison and Pinto 2005). High ice

concentrations lead to short water vapor up take time scales, which enhances the WBF pro-

cess. Double moment microphysics schemes, which in addition to predicting mixing ratios

of hydrometeor species in single-moment schemes, additionally predicts number concen-

tration, and, have shown improvement in representation of mixed phase clouds (Girard and

Curry 2001; Morrison et al. 2005). Systematic model biases found in surface radiative

properties were reduced due to modifications made to microphysics schemes to better rep-

resent mixed-phased clouds in polar regions (Hines and Bromwich 2017; Listowski and

Lachlan-Cope 2017).

The NWP model used in this study to integrate the ensemble of analyses forward in time

is MPAS, which is developed at NCAR (Skamarock et al. 2012). The atmospheric compo-

nent of MPAS is a global model that solves the fully compressible nonhydrostatic equations

using finite-volume numerics discretized on centroidal Voronoi (Du et al. 1999) meshes us-

ing C-grid staggering of the prognostic variables (Ringler et al. 2008; Thuburn et al. 2009).

The use of the unstructured Voronoi mesh, instead of a more commoon latitude-longitude

grid, eliminates the singularity that develops near the poles when using a latitude-longitude

grid. Since MPAS is a global model, this eliminates any dependence on boundary condi-

tions, which are needed in a regional model like WRF. MPAS offers variable mesh resolu-

tions which gradually smooth down to finer resolutions unlike nested domains within WRF.

Park et al. (2014) found smoother transitions and better representation of atmospheric fea-

tures from the coarser to finer resolutions in the MPAS variable mesh simulations as com-

pared to nested WRF simulations. The use of the variable mesh allows for finer resolutions
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in the particular region of interested while keeping computational costs lower than would

otherwise be incurred with a global model of the same resolution.

There have been few studies evaluating MPAS, especially concerning the Arctic. Judt

(2020) used MPAS to investigate the predictability of different regions at convective scales

and found that polar regions had shorter predictability than the tropics. Several studies that

used MPAS to investigate different tropical cyclone topics (Pilon et al. 2016; Davis et al.

2016; Huang et al. 2017; Judt 2018) along with extreme precipitation (Wong and Ska-

marock 2016; Zhao et al. 2019) found good performance by the model. There is one study

investigating MPAS coupled with DART, which found that the model cycled successfully

for an entire month (Ha et al. 2017). In this work, technical settings enabling DART to

work with MPAS follow those found most successful in Ha et al. (2017).

MPAS will be cycled using the EAKF approach, an initialization approach referred

to as “warm starting”, where the same model used for the data assimilation is used to

create forecasts. Six-hourly forecasts are then used in the data assimilation to create new

analyses. The 6-hourly cycling allows for the model’s climatology to be retained in the

MPAS-DART’s cycled data. During the first few days of forecasts, the model error can be

influenced by the differences between the analysis and model physics which is referred to

as the “initial shock” (Klocke and Rodwell 2014). By initializing the model with warm

starts, “initial shock” is reduced since the model has had time to adjust to its climatology.

Atmospheric features are inherently smaller in the polar regions due to the Earth’s ro-

tation decreasing the Rossby radius, which implies that higher resolution is needed over

the Arctic to represent a similar feature in low latitudes (Fig. 2.5). Furthermore, the non-

hydrostatic core within MPAS will allow for better representation of mesoscale processes

that would be associated with small features. Using MPAS will allow for the placement

of increased grid resolution over the Arctic while relaxing back to coarser resolution else

where on the globe. Additionally, increased resolution over the Arctic will resolve some of
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the smaller scale processes associated with TPVs (Fig. 2.6). Representation of the finer-

scale structures in the environment around the vicinity of a TPV is apparent in the spatial

representation (Fig. 2.6a) and in the vertical representation (Fig. 2.6b). Due to the reasons

above, this study uses a variable mesh with a 15 km mesh spacing over the Arctic, while

relaxing to 60 km over the rest of the globe (Fig. 2.7).

The model time step is 90 seconds to ensure numerical stability with the chosen mesh

specifications. The MPAS model top is set at 30 km with a gravity wave absorbing layer

starting at 22 km extending to the top (Klemp et al. 2008). MPAS uses a modified version

of the traditional terrain-following height coordinate, where at the lower levels the height

surfaces are terrain following and relax to a more constant surface at the upper bound-

ary (Klemp 2011). An example is provided in Fig. 2.8 showing how, in the hybrid height

coordinate, levels become smoother at larger heights. The hybrid height coordinate is espe-

cially beneficial since MPAS is a global NWP model which means there are a wide ranges

of terrain heights to represent. The model top height is set to 30 km to focus on the up-

per tropospheric and lower stratospheric processes that are expected to be important in this

study. MPAS is set to use 55 vertical height levels spanning the surface to the model top.

The vertical distribution of the height levels is depicted in Figure 2.9. The height levels are

spaced closer together in the atmospheric boundary layer, as recommended in numerous

previous studies in order to better represent boundary layer processes (McInnes and Curry

1995; Mirocha et al. 2014; Smith et al. 2018).

The physics package used in MPAS-DART is listed in Table 2.1. The Thompson micro-

physics scheme (Thompson et al. 2008) is a double moment scheme with the intent of more

accurately capturing ice phase processes and mixed phase clouds. Since MPAS-DART’s

resolution is not convective-resolving, the Tiedtke cumulus scheme (Zhang et al. 2011) is

applied to account for sub-grid effects from latent heating due to deep and shallow clouds.

The Rapid Radiative Transfer Model for global circulation models (RRTMG) (Iacono et al.

2008) are used to resolve both longwave and shortwave radiative processes that need to
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Parameterization Scheme

Longwave (radiative processes in the long-

wave)

RRTMG (Iacono et al. 2008)

Shortwave (radiative processes in the short-

wave)

RRTMG (Iacono et al. 2008)

Boundary Layer (subgrid boundary layer pro-

cesses including eddies)

Yonsei University (YSU) (Hong et al.

2006)

Surface Layer (connects land surface to the

boundary layer parameterization in the shallow

surface layer)

Monin-Obukhov (Janjic Eta) (Janjić

2002)

Land Surface (land use, sub-surface proper-

ties, and surface fluxes)

Unified Noah LSM (Chen and Dudhia

2001)

Microphysics (cloud and moisture processes) Thompson (non-aerosol aware) (Thomp-

son et al. 2008)

Cumulus (subgrid cloud processes) Tiedtke (Zhang et al. 2011)

Table 2.1: Physics schemes chosen for MPAS-DART and a general description of their

purposes.
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parameterized. For the representation of boundary layer and surface processes, the Yonsei

Unviersity (YSU) (Hong and Lim 2006) and Monin-Obukhov (Janjic eta) surface (Janjić

2002) schemes are employed. The Noah land surface model (Chen and Dudhia 2001) pro-

vides fluxes to the boundary layer scheme thereby acting as a lower boundary condition for

vertical transport in the boundary layer. Lastly, sea ice and sea surface temperatures are

updated every cycling period with daily data. Depending on the experiment, sea ice data

is from either NCEP global forecasting system (GFS) analysis files or from the National

Snow and Ice Data Center (NSICD; Nolin et al. 1998). Both datasets enable fractional

sea ice to be used in the land surface model to help represent over sea ice. Sea surface

temperature (SST) data are obtained from the National Centers for Environmental Predic-

tion/Marine Modeling and Analysis Branch (NCEP / MMAB) 1/12th degree resolution

archive dataset (Gemmill et al. 2007). The high resolution SST data ensures the modeling

system represents gradients in SST gradients properly during model integration.

2.4 Experiment Details

Two different cycling experiments were successfully run using MPAS-DART. Both exper-

iments use the same observation types during the data assimilation step with small differ-

ences in the amount of observations assimilated per cycle between the two experiments.

Additionally, both experiments use the same MPAS mesh and physics parameterization

schemes that were described in section 2.3. There are some differences between the exper-

iments which will be discussed below. Unlike a traditionally designed set of experiments,

where one experiment acts as a control or baseline, differences between experiments 1 and

2 were implemented in response to identified issues in experiment 1. Experiment 2 includes

solutions to those issues in an effort to obtain the best possible results. While comparison

of the two experiments was not the main goal of this study, there is useful information on

the impacts of the changes between the experiments.
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Experiment 1 (which is the ’control’ experiment for comparison purposes) cycled for

∼17 days starting on 00 UTC 28 September 2016 and finishing on 12 UTC 15 October

2016. This cycling time period is chosen for experiment 1 so special dropsonde obser-

vations that were collected during the North Atlantic Waveguide and Downstream Impact

Experiment (NAWDEX) could be assimiated in MPAS-DART (Schäfler et al. 2018). Sea

ice dataset employed in experiment 1 was from NCEP GFS analyses. Furthermore, initial-

ization of the ensemble from GEFS forecast used default settings in the WRF preprocessing

system (WPS) software when correcting relative humidity values.

Experiment 2 was cycled for 31 days, which is longer than experiment 1. The cycling

period for experiment 2 is run from 00 UTC 1 December 2011 - 00 UTC 1 January 2012.

Experiment 2 cycled for all of December whereas experiment 1 was cycled during the end

of September into October. The sea ice dataset employed in experiment 2 is from NSICD,

which had to be interpolated to the MPAS mesh. Furthermore, initialization of the ensemble

from GEFS forecasts used a modified version of the WPS software that allowed a relative

humidity fix to be applied to the moisture profiles. The flag was set to work with GEFS data

for experiment 2 whereas the flag was not modified to work for experiment 2. Lastly due

to numerical instabilities, the time step had to be reduced from 90 seconds to 60 seconds in

experiment 2 after a couple days of cycling.

As mentioned above, comparison of experiments was not the main goal of this study,

and thus experimental design does not reflect that. However, useful information can still be

gained by comparing the two experiments. Even though the cycling length and time peri-

ods are different, comparisons and evaluations between experiments will still be completed.

The different time periods will allow this study to determine if biases found are systematic

or related to the period that MPAS-DART was cycled over. Furthermore, differences be-

tween experiments will be investigated to determine the impacts of the different sea ice

datasets used and the impacts the different moisture initialization had on model results.
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Experiment Cycling Period Sea Ice

Concentration

Dataset

WPS Relative

Humidity Fix

Flag

Model Time

Step

1 (Control) 28 September

2016 - 15

October 2016

NCEP GFS

analyses

Off 90s

2 1 December 2011

- 1 January 2012

Passive

microwave

satellite dataset

(NSICD)

On 90s switched to

60s several days

into cycling

Table 2.2: Differences between experiment 1 and 2.
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Figure 2.1: Observation locations for valid on 00 UTC 28 September 2016 for (a) convec-

tional observations and (b) convectional observations plus polar orbiting satellite observa-

tions. Observations shown are radiosonde (Radiosonde), marine buoy (Marine), geosta-

tionary satellite winds (SAT), Meteorological Terminal Aviation Routine Weather Report

(METAR), global positioning system (GPSRO), aircraft communications addressing and

reporting system (ACARS), automatic weather stations (LAND), AIRS satellite derived

profiles (AIRS), and polar orbiting satellite wind observations (MODIS and AVHRR).
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Figure 2.2: Average observations assimilated per cycle for (a) only conventional observa-

tions and (b) convectional observations plus polar orbiting satellite observations for exper-

iment one. (c) Differences in averaged observations assimilated per cycle between includ-

ing polar orbiting satellite observations versus when polar orbiting satellite observations

are excluded.
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Figure 2.3: Time series showing the percentage of conventional (red), AIRS (blue), and

MODIS/AVHRR (cyan) observations assimilated within MPAS-DART for (a) the Arctic

region and (b) the mid-latitudes.
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Figure 2.4: Specified (a) horizontal and (b) vertical localization factor that is applied within

MPAS-DART. The black dashed lines represent the half-width of the localization radius.
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Figure 2.5: Climatological Rossby radius of Deformation (in km) computed using ERA5

data.
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Figure 2.6: Three day MPAS simulation of a TPV starting on 00 UTC 15 August 2006

showing the (a) spatial representation and (b) vertical representation with varying horizon-

tal resolutions.
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Figure 2.7: Position of the 60-15 km mesh used in MPAS-DART.

Figure 2.8: Vertical model levels represented using (a) traditional terrain-following coordi-

nate and (b) hybrid terrain-following coordinate. Figure provided from the MPAS website

(https://mpas-dev.github.io)
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Figure 2.9: Spacing between MPAS model levels used in this study.
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Chapter 3

Evaluation of MPAS-DART

This chapter evaluates the performance of MPAS-DART using several different statistical

approaches. The first three statistics that are applied to evaluate the performance of MPAS-

DART are (1) bias, (2) root mean square error (RMSE), and (3) total spread. The bias is

given by:

Bias =
1
n

n

∑
i=1

Mi−Oi (3.1)

where M is model data, O is observational data and i is the index of data over all obser-

vations. Since observations are considered the best representation of the true atmospheric

state, bias can be used to diagnose deficiencies in the model. Confidence intervals (95%)

are computed for vertical profiles of model bias after bootstrapping the bias 10,000 times.

Next, the RMSE is given by:

RMSE =

√
1
n

n

∑
i=1

(Mi−Oi)2 (3.2)

where the notation is the same as in (3.1). The RMSE is a reasonable measure of model

error when examining a particular variable but can be highly sensitive to outliers in the

dataset (Pontius et al. 2008). Lastly, the total spread is given by:

Total Spread =

√
n

∑
i=1

(σ2 model
i +σ2 observation errors

i ) (3.3)

where σ2 model
i is the ensemble model variance, σ2 observation error

i is the error variance as-

sociated with the observations and n is the total number of observations. Note that the total

spread includes the error variance of the observations in addition to model forecast vari-

ance. This formulation provides the expected value of the difference between the model

ensemble mean and the observed value (Raeder et al. 2012). When there is large uncertainty

in the forecast, the spread should be large enough to capture the uncertainty. Likewise, if
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there is small uncertainty in the forecast the spread should be small. Comparing RMSE to

total spread is one method to determine whether the ensemble system is calibrated. Thus,

if a specific event has large uncertainty the spread will be higher, and since the event is less

predictable the RMSE should also be higher. This relation is often called the “spread-skill

relation” and is discussed in detail by Fortin et al. (2014).

Rank histograms are another diagnostic approach utilized to evaluate MPAS-DART

against surface observations. The concept of utilizing rank histograms was first presented

by Anderson (1996). The theory states: for a probability to be reliable, as desired from

an ensemble, the set of ensemble member forecast values at a given point and the true

state should be considered random samples from the same probability distribution (Hamill

2001). Hamill (2001) shows that if an n-member ensemble and the true state are brought

together and sorted from lowest to highest then there is equally likely chance that the ver-

ification will occur in each of the n+1 possible ranks. A rank histogram is created by

repeatedly counting how often the true state or the observation falls in a certain bin for our

sorted ensemble members.

The reliability of an ensemble can be determined by the shapes of the rank histograms.

Figure 3.1 displays some of the more common shapes that can be found when using rank

histograms. For a well-calibrated ensemble, there would be a uniform distribution of counts

across all bins in the rank histogram (Fig. 3.1 A). However, care must be taken to determine

if the flat rank histogram is indeed indicative of the reliability in the ensemble (Hamill

2001). One issue that can develop in an ensemble is the spread being too large or too small.

If the spread is too large, the observation will always fall in the middle bins of the sorted

ensemble. This leads to the upside down U-shape (Fig. 3.1 B). If the spread is too small,

the observation will always fall in the outside bins of the sorted ensemble. This leads to

upright U-shape seen in Fig. 3.1 C. Furthermore, model bias can be diagnosed with rank

histograms since the ensemble members are sorted from lowest to highest. If the ensemble

members are continually biased in a consistent way compared to the observations, then
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peaks will skewed to one side, representing that the observation keeps falling in outside

bins on one side of the distribution. Such peaks displayed in Fig 3.1 panels D and E, where

D represents a warm model bias and E represents a cold model bias.

Knowledge of how the observations affect the analysis can provide useful information

about the ensemble system. Analysis increment is the difference between the new analysis

after data assimilation (posterior state) and the background state (prior state):

INC = Xa−Xb = K(Xo−H(Xb)) (3.4)

where INC represents the adjustment made by the observations. A diagram depicting the

data assimilation process is given in Figure 3.2. In this example a temperature forecast is

initialized from an analysis (noted as AN0), and runs until the next cycling period (noted

as T0(n)). During this period, the forecast temperature (T0(n)) is drifting away fron the

observed temperature (Tobs(t)). At T0(n), data assimilation is performed to create a new

analysis AN1. The new temperature analysis at each point where data assimilation occurs

falls somewhere between the forecasted and observed temperature at that time. The incre-

ment (INC) quantifies how much the temperature observation has adjusted the forecasted

temperature towards it’s own value. The analysis increment can tell us the degree to which

observations are pushing or pulling our forecasted field. If the analysis increment, or the

left-hand side of (3.4), is equal to zero, then the observation and the forecasts are equal

and no adjustment is needed. If the right-hand side of (3.4) is not equal to zero, than the

observation is adjusting the forecast. If observations are unbiased, then, with a perfect

model, the mean analysis increment (averaged over many data assimilation cycles) should

be zero (Rodwell and Palmer 2007a). While analysis increment will be one method used to

evaluate the cycling system, there are some assumptions made that need to be addressed.

First, the density of the observations over the region you are evaluate can have an effect

on the analysis increment. Over the mid-latitudes, where there is dense and diverse obser-

vations, the analysis increment provides a reliable estimate of how different observations
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are impacting the background forecast. Over the Arctic, where observations are more lim-

ited to satellite observations, the analysis increment may only provide an estimate of how

only one type of observation is impacting your background forecast which could lead to

an incorrect evaluation. The second assumption is the observations are the truth and have

no inherent biases themselves. This assumption can be invalid if some observations are

you assimilating have inherent biases that are impacting your analyses. Due to this coupled

assumptions, care must be taken when using analysis increment to determine if there are

biases within your cycling system.

These different verification approaches will be used to help evaluate the reliability of

MPAS-DART. Comparisons between different experiments will allow for the evaluation

of changes that were applied between the experiments and determine their impacts on the

cycling system. Additionally, comparisons between the Arctic and the mid-latitudes will

help determine if any issues within the MPAS-DART are regional or more widespread.

3.1 Ensemble Inflation

The covariance inflation approach is used to mitigate errors associated with imperfect fore-

cast models by inflating the background state to apply more weight to the observations.

A damping coefficient of 0.9 is chosen for the adaptive covariance inflation algorithm to

maintain model stability (This is the recommended value for the DART software). In pre-

vious work, setting the damping coefficient to 0.9 was shown to produce good results in

a regional cycling modeling system developed for the Southern Hemisphere (Riedel et al.

2019). During the cycling, if the model is being pulled closer to observations, then the

maximum inflation for all variables should reduce over time (Figs. 3.3 and 3.4). For ex-

periment 1 over the Arctic, the mean of the maximum value of inflation for all model state

variables is highest at the first cycling time which, eventually reduces and settles in at value

around 2 (Fig. 3.3a). There is a similar evolution of the mean in the maximum inflation in

the mid-latitudes as in the Arctic in experiment 1 (Figure 3.3b). For experiment 2, the mean
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of the maximum inflation does eventually reduce down to a smaller value for both regions,

but not before a slight increase around cycling time 18 (Figures 3.4). The increase in the

mean of the maximum inflation is most pronounced in the Arctic region (Compare Fig.

3.4a to Fig. 3.4b). The slight increase in the mean of the maximum inflation occurs in near

temporal proximity to when the time step had to be decreased from 90 to 60 seconds for

numerical stability relating to the very high lower-stratospheric windspeeds. The numerical

stability could explain the slight increase in inflation during this time period. Regardless,

the mean of the maximum inflation values for all state model variables eventually settles in

on values comparable to experiment 1. For both experiments and regions, the mean in the

maximum inflation values for model state variables asymptote around 2, however, there can

be slight increases in the covariance inflation depending different factors (weather regime,

availability of observations, cycling time period, etc).

To gain a better understanding of how the adaptive inflation is evolving with different

state variables, time series of the maximum inflation associated with potential temperature,

zonal- and meridional wind is compared for different regions and experiments (Figs. 3.5,

3.6, and 3.7). For potential temperature, cycling period maximum inflation values are sim-

ilar for both regions and experiments (Fig. 3.5). There is a slight increase in the potential

temperature maximum inflation around 5 December 2011 in experiment 2 over the Arctic

which is consistent with the adjustment of the time step (Fig. 3.5c). For the zonal wind,

the maximum inflation time series is different for the mid-latitudes in experiment 1 com-

pared to the rest of the regions and experiments (Fig. 3.6b to Fig. 3.6a,c,d). Experiment 1

maximum inflation values occur at varying pressure levels relative to experiment 2, where

the maximum value starts at lower levels then transitions to upper levels towards the end

of cycling (Fig. 3.6a,b compared to Fig. 3.6c,d). Furthermore, the slight increase in the

maximum inflation just after 5 days of cycling shows up in the zonal wind, similar to the

potential temperature inflation values (Fig. 3.6c compared to Fig. 3.5c). Lastly, maximum

inflation associated with the meridional wind is similar to those found for the zonal wind
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(Fig. 3.7 compared with Fig. 3.6). Most maximum inflation values asymptote to around

a value of 2 towards the end of the cycling period (Fig. 3.7). The slight increase in the

maximum inflation around day 5 is the largest for the zonal wind and potential temperature

(Fig. 3.7c compared to Fig. 3.6c and Fig. 3.5c). Regardless of the slight increase in max-

imum inflation early in cycling, the values eventually decrease to those commonly found

in geophysical numerical models (Anderson 2009; Anderson et al. 2009). The decrease in

maximum inflation over time indicates that the cycling system is working properly and is

stable during the cycling period.

To gain a better understanding of the increase in inflation during experiment 2, a spatial

visualization of inflation is examined. The time series of maximum inflation (Fig. 3.5,

3.6, and 3.7) shows the increase in the maximum inflation is occurring is around the 250

hPa level. Thus, mean inflation values at 250 hPa will be analyzed during experiment 2’s

cycling period (Fig. 3.8). There are minimal differences in mean inflation across different

variables. The zone of maximum inflation (value near 1.5) is located over the North Pacific

for potential temperature, zonal- and meridional-wind. Over the Arctic, the mean inflation

is less than that over the mid-latitudes for all variables, and has an average value of around

1.2. Since there is a more consistent, dense network of observations over the mid-latitudes

as compared to the Arctic (Fig. 2.2), it is not surprising to see higher inflation values over

the mid-latitudes. On average, inflation values stay relatively low for all areas around the

globe over the cycling period in experiment 2. However, where there are dense observation

networks is co-located with larger values of ensemble inflation. Lastly, weather patterns

that are difficult for NWP models to predict would lead to higher ensemble inflation values

because both errors and spread issues.

To investigate the period of a slight increase in inflation, 5-day mean inflation is shown

centered on the period of interest (Fig. 3.9). For potential temperature, zonal- and meridional-

wind, there are larger values of inflation during this time period as compared to mean in-

flation values for the entire experiment 2 cycling period (compare Fig. 3.9 to Fig. 3.8).
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There is a slight increase in inflation over the North Pacific compared to other locations in

the mid-latitudes. Over the Arctic, there is a maximum of large inflation values centered

over the pole for both potential temperature and meridional-wind, while the zonal-wind

inflation is slightly lower (compare Fig. 3.9a,c to Fig. 3.9b). There are small pockets of

increased inflation in both the Arctic and the mid-latitudes, which are most likely related to

weather features occurring at that time. The increase in ensemble inflation over the Arctic

may be related to the model representation of the polar vortex while increased inflation

values over the mid-latitudes may be linked back to model representation of weather sys-

tems. One would expect to see these when averaging only over several days compared to

over a month. Higher values of mean potential temperature ensemble inflation centered

over the Arctic could indicate a disagreement in the representation of the tropospheric po-

lar vortex between the model and the observations. Furthermore, the large magnitude,

blotchy patterns over the mid-latitudes may be related to misrepresentation (displacement

and magnitude errors) of weather systems such as troughs, ridges, surface cyclones, and

similar features. Overall, the cycling period mean ensemble inflation values are relatively

low over both experiments cycling periods which indicates that our cycling system is stable.

3.2 Bias, RMSE, and Total Spread Profiles and Rank Histograms

Comparison of MPAS-DART to various observations that are assimilated into the cycling

system allows for the identification of potential issues. This evaluation is limited to the

prognostic state variables within MPAS: temperature, water vapor and wind components.

The 6-hour forecast bias will be used to diagnose whether the model is drifting away from

the observations. Furthermore, comparison of the spread and skill (RMSE) will help to

identify calibration issues within the cycling ensemble system.

MPAS-DART compared to radiosonde temperatures show similar 6-hour forecast bias

profiles for both the Arctic and the mid-latitudes for both experiments (Fig. 3.10). There

is a cold temperature bias in the middle troposphere for both experiments in the Arctic and
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mid-latitudes. The bias is stronger in the Arctic compared to the mid-latitudes. There are

disagreements between MPAS-DART and observations in the upper levels (300 hPa and

above), which is present in both regions and experiments. The spread and skill profiles

for MPAS-DART compared to radiosonde temperature are close to each other for both

experiments and regions, except near the surface and above 300 hPa (Fig. 3.10). There

are far fewer radiosonde observations over the central Arctic, so to investigate MPAS-

DART’s performance over the Arctic in more detail, AIRS observations will be examined

for comparison (Fig. 3.11). Over both the Arctic and mid-latitudes, the bias values are

relatively small at most levels. The surface has larger values in bias, but there are fewer

AIRs observations at the surface (spread in the bias is large).

There are larger differences between the experiments when MPAS-DART is compared

to AIRS observations than when compared to radiosondes. Over the Arctic, the bias in the

upper levels is quite small in the first experiment versus the second experiment (compare

Fig. 3.11a to Fig. 3.11c). There are similar biases when examining upper level bias over

the mid-latitudes (compare Fig. 3.11b to Fig. 3.11d). Since these experiments are valid for

different time periods, early October versus December, this could be representing different

bias patterns that may occur during different seasons (Rodwell and Jung 2008). Since

AIRS satellite temperature observations are retrievals and radiosonde observations are in-

situ observations, comparing their bias profiles could provide helpful insight on how these

observations are effecting MPAS-DART. There are lower bias values for both experiments

over the Arctic when comparing MPAS-DART to AIRS versus radiosonde observations

(compare Fig. 3.11a,c to Fig. 3.10a,c). Additionally, upper-level bias values over the

mid-latitudes are larger when compared to radiosonde versus AIRS observations (compare

Fig. 3.11b,d to Fig. 3.10b,d). There are far more AIRS observations assimilated versus

radiosonde observations for both regions, thus this could mean the MPAS-DART system

is over fitting to the AIRS observations. The process of thinning the AIRS observations
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(super-obing) might need to be increased, which needs to be investigated more in future

studies.

AIRS and radiosonde specific humidity observations are the only two moisture obser-

vations that are assimilated above the surface. Comparing MPAS-DART to radiosonde

specific humidity observations shows a low moisture bias in the lower troposphere over

the Arctic for both experiments (compare Fig. 3.12a,c). Over the mid-latitudes, the bias is

reduced, but has reversed signs to mainly positive in the lower troposphere (compare Fig.

3.12b,d). Additionally, there is large separation between ensemble spread and RMSE for

both regions and experiments indicating there could be calibration issues with regard to

moisture within MPAS-DART.

Since AIRS specific humidity observations account for the bulk of the moisture obser-

vations assimilated in the Arctic, comparisons of MPAS-DART to these observations can

provide important information on whether there are systematic issues over the Arctic re-

garding moisture (Fig. 3.13). There is a positive moisture bias over the Arctic throughout

the troposphere in experiment 1, but is the bias is reduced in experiment 2 (compare Fig.

3.13a to Fig. 3.13c). The bias over the mid-latitudes is nearly zero throughout the profile

except near the surface, where there is a positive bias (compare Fig. 3.13b to Fig. 3.13d). In

agreement with radiosonde specific humidity observations, there is an increase in the sepa-

ration between the ensemble spread and RMSE for both regions and experiments (compare

Fig. 3.12 to Fig. 3.13). Comparing the profiles between radiosonde and AIRS specific

humidity, radiosondes show a negative bias where the AIRS profiles show a positive bias

(compare Fig. 3.12a,c to Fig. 3.13a,c). The bias profiles are similar in magnitude and sign

between observation types over the mid-latitudes (compare Fig. 3.12b,d to Fig. 3.13d,d).

Due to the radiosonde locations being located around the outer portion of the Arctic, this

could suggest that the AIRS observations are sampling more of the inner-portion of the

Arctic. This could be an explanation for the differences in bias profiles over the Arctic and

similarities over the mid-latitudes.
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There are three different types of wind observations that are assimilated in MPAS-

DART: radiosonde winds, polar orbiting winds (MODIS) and geostationary satellite winds.

Comparing MPAS-DART to radiosonde zonal winds shows bias profiles near zero for both

regions and experiments, except near the surface (Fig. 3.14). The bias profiles are similar

when MPAS-DART is compared to radiosonde meridional winds, except near the surface

and over the Arctic in experiment 2 where there is a slight negative bias (Fig. 3.15). Near

surface wind biases will be examined later with rank histograms. Geostationary satellite

wind observations are mainly located in mid-latitudes, so they can provide information on

MPAS-DART wind performance in that location. For experiment 1, the bias profiles are

very close to zero for both zonal and meridional winds, except the the zonal wind bias

near 700 hPa (Fig. 3.16a,b). For experiment 2, there is a positive bias present in the zonal

winds throughout the profiles whereas there is a slight negative meridional wind bias above

300 hPa were there are few observations (Fig. 3.16c,d). Since the peak in the zonal wind

bias near 700 hPa is present in both experiments, this could indicate that MPAS-DART has

systematic errors in representing the zonal wind at this level. This differing in zonal wind

bias between experiments could be related to the different time periods represented, late

fall in experiment 1 versus December in experiment 2.

The last wind observations dataset assimilated is polar orbiting satellite or MODIS

winds (Fig. 3.17). These observations are only assimilated in the polar regions, so they can

provide information on MPAS-DART performance over the Arctic. Similar to radiosonde

wind observations, the bias is nearly zero throughout the column for experiment 1 (Fig.

3.17a,b). For experiment 2, there is a negative bias for both zonal and meridional wind

components around 250 hPa over the Arctic (Fig. 3.17c,d). This is similar to the results

found when comparing MPAS-DART to geostationary satellite observations that are over

the mid-latitudes (compare Fig. 3.16 to Fig. 3.17). Since large biases are found over

the Arctic in upper-levels for both polar orbiting and radiosonde wind observations in ex-

periment 2, this could point to poor representation of the jet stream or the tropospheric
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polar vortex in experiment 2. Lastly, the ensemble spread and RMSE is relatively close

to each for all wind observation types, meaning MPAS-DART seems to be relatively well-

calibrated in terms of wind.

To examine and evaluate MPAS-DART performance at the surface, rank histograms are

analyzed for AWS and marine buoy surface observations. These temperature comparisons

share a common theme: too much spread, represented by the inverted “U” shape (Fig.

3.18 and Fig. 3.19). AWS rank histograms have a peak in counts on the left side for

both experiments and regions meaning MPAS-DART has a warm bias compared to the

observations (Fig. 3.18). When comparing MPAS-DART to marine buoy temperature

observations, there are peaks in counts on both the right (cold bias) and left (warm bias) side

in the experiment 1 over the Arctic and a peak on the right side (cold bias) for experiment

2 over the Arctic (Fig. 3.19a,c). Once again there is too much ensemble spread when

comparing MPAS-DART to AWS and marine buoy specific humidity observations (Fig.

3.20 and Fig. 3.21). There is evidence of a positive moisture bias when evaluating against

AWS observations, indicated by the peak on the left side, in experiment two over both the

Arctic and the mid-latitudes which is not present in experiment 1 (Fig. 3.20). However,

there does not appear to be a bias in moisture when compared to marine buoy specific

humidity observations (Fig. 3.21). With regard to the different wind components in MPAS-

DART, there does not appear to be a ensemble spread issue when compared to AWS wind

observations versus marine buoy observations (compare Figs. 3.23 and 3.25 to Figs. 3.22

and 3.24). The disagree in spread issues for surface wind components could be highlighting

difficulties in model representation of wind near the surface over land as compared to over

the ocean, where in most cases flow is relatively uniform. In terms of biases, there is a slight

bias associated with the zonal wind component in experiment 2 over both regions (Fig.

3.22c,d) and a slight bias over the Arctic associated with the meridional wind component

when compared to AWS observations (Fig. 3.24c). MPAS-DART appears to have both

low and high wind speed biases for both wind components when compared to marine buoy
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wind observations (Figs. 3.23 and 3.25). Overall, there tends to be too much ensemble

spread within MPAS-DART at the surface for most variables. As mentioned above, this

suggests the model has difficulty representing the surface over both regions. Lastly, the

rejection rate is higher for the AWS observations in the mid-latitudes but greater for marine

buoy observations over the Arctic (compare Figs. 3.18, 3.20, 3.22, and 3.24 to Figs. 3.19,

3.21, 3.23 and 3.25). The higher rejection rate could be a result of greater density of AWS

observations over the mid-latitudes, which provides more opportunity to reject observations

for multiple reasons. Similarly, there are more marine buoy observations over the Arctic

which provides more opportunities for observations to be rejected.

3.3 Analysis Increment

To this point, MPAS-DART has been evaluated with average profiles of different metrics

and rank histograms for near surface observations. These evaluation techniques provide

a temporally and spatially averaged view of the different metrics, but offer little informa-

tion about regional variability in performance. A bias-blind data assimilation system, only

designed to correct random errors, will have a biased analysis if biases are present in the

background fields or in the observations (Dee 2005). If the NWP model is being cycled

with a data assimilation system, evaluation of analysis increment (AI; analysis minus back-

ground forecast) can determine systematic model biases (negative of AI is model bias). AI

was introduced at the beginning of Ch. 3. Recall, non-zero values indicate that observa-

tions are adjusting the background fields. AIs can provide spatial information about the

evaluation of MPAS-DART. Since this study focuses on the performance of MPAS-DART

over the Arctic, evaluation of AI will accordingly focus over this region.

There are differences in spatially averaged potential temperature AI over the Arctic

between experiments (Fig. 3.26). There are significant positive AIs located in the layers

between 150 hPa and 50 hPa in experiment 1, meaning MPAS-DART is colder compared

to observations (Fig. 3.26a). Comparing AI in experiment 1 to experiment 2 in the early
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cycling times, there are positive significant AIs (cold bias) in the layers spanning 200 hPa

to 100 hPa and negative significant AIs (warm bias) in the layers between 100 hPa and 50

hPa (Fig. 3.26b). Later in experiment cycling time, there is a transition to mainly negative

significant AIs (warm bias) spanning the layer from 200 hPa up to 50 hPa (Fig. 3.26b).

In the middle troposphere, there are significant AIs early in the cycling period, but after

a few days of cycling, they disappear and AIs appear more random (Fig. 3.26). For both

experiments, there are positive AIs confined close to the 1000 hPa (Fig. 3.26).

The magnitude of water vapor AIs are largest in the middle troposphere, where profiles

of moisture observations are found from AIRS or radiosondes (Fig. 3.27). There are more

periods of significant negative AI in experiment 1 versus in experiment 2 (compare Fig.

3.27a to Fig. 3.27b). This reduction in AIs could be due to the different initialization

process that was used for experiment 2, as discussed in Section 2.4. Furthermore, there are

positive AI values near 1000 hPa in both experiments, which is different from the negative

AI values found in the middle troposphere (Fig. 3.27). There are very small, but significant

negative AIs located above 200 hPa in both experiments (Fig. 3.27). However, water

vapor decreases exponentially with height, so smaller AIs can still have significant physical

implications. Since increment values are very small in this layer, time-height water vapor

analysis increment figure are examined spanning 300 hPa up to 50 hPa for both experiments

(Fig. 3.28). For both experiments, there are significant negative AIs located in this layer

with experiment 1 having much lower AIs compared to experiment 2 (compare Fig. 3.28a

to Fig. 3.28b). Once again, this could be due to the different moisture initialization process

used.

Lastly, the AIs associated with MPAS-DART wind components have fewer periods

of significant values and values are more random over the cycling period (Fig. 3.29 and

Fig. 3.30). For the zonal wind component, there is a short period in experiment 1 where

there are significant negative AIs (high zonal wind bias) around 300 hPa (Fig. 3.29a),

but in experiment 2 above 100 hPa there are significant positive AIs over the last half of
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the cycling period (Fig. 3.29b). For both experiments, the meridional wind AIs are low,

random and have few periods where significant increments appear (Fig. 3.30). Overall,

the spatially averaged AIs over the Arctic are relatively small for the different variables.

Further investigation is needed for the significant AIs found in the upper levels for potential

temperature, and the zonal wind component, and near the surface for water vapor.

In order to further evaluate the spatial distribution of AIs, mean AIs over the cycling

period are computed for both experiments. Furthermore, cycling period AI standard devia-

tions are computed, which provides a quantification of the spread of the increments. Areas

that are below the 20th percentile value of a distribution of the standard deviation values

are hatched to show regions where AI values are not temporally varying. To further inves-

tigate the significant potential temperature increments found in the upper levels, cycling

period averaged 100 hPa potential temperature AIs are computed for the different exper-

iments (Fig. 3.31). For experiment 1, positive AIs are found throughout most the Arctic

region with some areas having low standard deviations values (Fig. 3.31a). For experiment

2, there are strong negative AIs situated over Alaska and Northern Canada (Fig. 3.31b).

However, the standard deviation values in this region are relatively large (no stippling),

meaning the strong AIs are not continually present throughout the cycling period. Further-

more, there are strong positive AI values over Northern Russia with some areas having low

standard deviations (Fig. 3.31b). The 100 hPa level marks the transition from the tropo-

spheric polar vortex to the stratospheric polar vortex (Waugh et al. 2017). Since 100 hPa

potential temperature analysis increments are within that transition level, these increments

could represent a location error in the lower levels of the stratospheric vortex or errors

associated with the coupling of the two large-scale vortices.

An increase in significant zonal AIs at 75 hPa is found in experiment 2 when averaged

over the entire cycling period. To investigate these significant increments further, cycling

period averaged 75 hPa zonal wind AIs are compared for the two experiments (Fig. 3.32).

There is an enhanced area of positive AIs over Alaska and extending into the North Pacific
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in the mean zonal AIs for experiment 2 (Fig. 3.32b). Since there is no hatching over this

area, which could mean there are very high AI values for only a short period during cycling,

while the rest of the period had very small AI values. Furthermore, the negative AIs over

Resolute and Eureka could be related to the two radiosondes sites in this area. Comparing

to experiment 1, the AI patterns are more random and at a lower magnitude, especially over

Alaska (Fig. 3.32b). The area of increased zonal wind, denoted by the positive AIs, over

Alaska is co-located with the region where there is an increase in the 100 hPa potential

temperature gradient from temperature observations (compare Fig. 3.32b to Fig. 3.31b).

Even though the zonal wind and potential temperature AIs are at different levels, this could

be a balance response to observations lowering potential temperature over the Beaufort

sea and Canadian Archipelago, thus increasing the zonal wind around 60◦ N. This further

supports the idea that the wind speeds associated with lower levels of the stratospheric

vortex are being misrepresented.

There is a pattern of positive AIs near the surface in both potential temperature and

water vapor when averaged over the Arctic (Figs. 3.26 and 3.27). Rank histograms are

generally consistent with the AIs for potential temperature and water vapor near the sur-

face (Figs. 3.18, 3.19, 3.20, 3.21). Two-meter temperature AIs for experiment 1 reveal two

areas where there are higher values, one over sea ice and the other over land (Fig. 3.33a).

Conversely, there are large AI values over sea ice in experiment 2, while over land there are

similar magnitudes but opposing signs compared to experiment 1 (compare Fig. 3.33a to

Fig. 3.33b). The positive AIs are co-located with surface observations for both experiments

(Fig. 3.33). Even though there are varying signs associated with the AIs over land, they

are located in the same areas for both experiments. Since they are located in the same area

could mean that the various mountain ranges with large magnitudes of AI located in the

Arctic are not well-represented. Jung and Matsueda (2016) found high analysis uncertain-

ties near the surface in the Arctic compared to the mid-latitudes near the surface, especially
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over snow-covered and ice-covered surfaces. This highlights the difficulties weather mod-

els have representing near-surface variables over the Arctic. For two-meter water vapor,

there are similar areas with a large magnitude in AI values as found for to two-meter tem-

perature (compare Fig. 3.33 to Fig. 3.34). Over sea ice for both experiments, there are

larger water vapor AI values that are co-located with surface observations (Fig. 3.34). One

area that is different across the experiments is Northern Russia, where there are smaller

magnitude AI values in experiment 2 than in experiment 1 (compare Fig. 3.34b to Fig.

3.34a).

Overall, MPAS-DART has successfully cycled two different experiments with varying

time spans. Maximum ensemble prior inflation decreased with time for both experiments

and in all regions, which indicated our cycling system was stable. There were similar

magnitudes and signs for biases associated with MPAS-DART for both the Arctic and mid-

latitudes. The use of AI averaged over the Arctic identified some potential issues for both

experiments. These issues included: 1) significant positive potential temperature AIs in the

upper levels for experiment 1, (2) significant positive zonal wind AIs in upper levels for

experiment 2, and (3) positive temperature and water vapor AIs near the surface for both

experiments. These potential issues will be further investigated in subsequent chapters by

applying a novel evaluation technique within MPAS-DART. The novel evaluation technique

will aid in a better understanding of the physical processes connect to the issues that were

identified in this chapter.
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Figure 3.1: These are examples of rank histogram types when evaluating temperature: (A)

well-calibrated ensemble spread, (B) ensemble spread is to large, (C) ensemble spread is

small, (D) ensemble has a warm bias, and (E) ensemble has a cold bias.
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Figure 3.2: This schematic diagram shows the data assimilation and forecast integration

aspects of numerical weather prediction. Tobs(t) represents an observed time series (e.g. of

temperature at some specified location with temperature increasing as you move up the

y-axis). For each i, Ti (ti) represents the model forecast initiated from analysis ANi. INCi

represents the adjustment added to the forecast from the observations to make the new

ANi. This figure is from Rodwell and Palmer (2007a)
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Figure 3.3: Time series showing maximum inflation for all state variables for experiment

1. Shading shows the range in the max inflation values between the 2.5 and 97.5

percentiles.
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Figure 3.4: Time series showing maximum inflation for all state variables for experiment

2. Shading shows the range in the max inflation values between the 2.5 and 97.5

percentiles.
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Figure 3.5: Time series showing max inflation associated with potential temperature over

the Arctic (a,c) and over the mid-latitudes (b,d) for experiment 1 (a,b) and experiment 2

(c,d). Dot colors represent the pressure level the max inflation value is at.
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Figure 3.6: Time series showing max inflation associated with the zonal wind over the

Arctic (a,c) and over the mid-latitudes (b,d) for experiment 1 (a,b) and experiment 2 (c,d).

Dot colors represent the pressure level the max inflation value is at.
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Figure 3.7: Time series showing max inflation associated with the meridional wind over

the Arctic (a,c) and over the mid-latitudes (b,d) for experiment 1 (a,b) and experiment 2

(c,d). Dot colors represent the pressure level the max inflation value is at.
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Figure 3.8: Mean (a) potential temperature, (b) zonal- and (c) meridional-wind inflation

calculated over experiment 2 cycling period at 250 hPa. Crosses mark locations of

radiosonde launch sites.
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Figure 3.9: Mean (a) potential temperature, (b) zonal- and (c) meridional-wind calculated

over the increased inflation period centered on 5 December 2011 in experiment 2 at 250

hPa. Inflation values were averaged over a 2 day window with the center being on 5

December 2011. Crosses mark locations of radiosonde launch sites.
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Figure 3.10: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to radiosonde temperature observations. Profiles are

averaged over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.11: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to AIRS temperature observations. Profiles are averaged

over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.12: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to radiosonde specific humidity observations. Profiles are

averaged over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.13: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to AIRS specific humidity observations. Profiles are

averaged over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.14: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to radiosonde zonal-wind observations. Profiles are

averaged over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.15: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to radiosonde meridional-wind observations. Profiles are

averaged over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.16: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to geostationary satellite wind observations. Profiles are

averaged over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.17: Cycling period averaged vertical profiles of analysis bias (dashed black),

6-hour model forecast bias (black), RMSE (dashed red), and ensemble total spread

(dashed blue) when compared to modis satellite wind observations. Profiles are averaged

over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b) and

experiment 2 (c,d). Within all panels, the left profile shows cycling period mean values

while the right profile shows total observation counts over the cycling period. Error bars

represent the 95% confidence interval from bootstrap resampling.
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Figure 3.18: Rank Histograms of Automatic Weather Stations (AWS) temperature

observations. Rank histograms were computed over the Arctic (a,c) and the mid-latitudes

(b,d) for both experiment 1 (a,b) and experiment 2 (c,d). Rejection rate is the percent (%)

of the observations that were rejected.
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Figure 3.19: Rank histograms of marine buoy temperature observations. Rank histograms

are computed over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b)

and experiment 2 (c,d). Rejection rate is the percent (%) of the observations that are

rejected.
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Figure 3.20: Rank histograms of Automatic Weather Stations (AWS) specific humidity

observations. Rank histograms are computed over the Arctic (a,c) and the mid-latitudes

(b,d) for both experiment 1 (a,b) and experiment 2 (c,d). Rejection rate is the percent (%)

of the observations that are rejected.
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Figure 3.21: Rank histograms of marine buoy specific humidity observations. Rank

histograms are computed over the Arctic (a,c) and the mid-latitudes (b,d) for both

experiment 1 (a,b) and experiment 2 (c,d). Rejection rate is the percent (%) of the

observations that are rejected.
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Figure 3.22: Rank histograms of Automatic Weather Stations (AWS) zonal-wind

observations. Rank histograms are computed over the Arctic (a,c) and the mid-latitudes

(b,d) for both experiment 1 (a,b) and experiment 2 (c,d). Rejection rate is the percent (%)

of the observations that are rejected.
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Figure 3.23: Rank histograms of marine buoy zonal wind observations. Rank histograms

are computed over the Arctic (a,c) and the mid-latitudes (b,d) for both experiment 1 (a,b)

and experiment 2 (c,d). Rejection rate is the percent (%) of the observations that are

rejected.
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Figure 3.24: Rank histograms of Automatic Weather Stations (AWS) meridional-wind

observations. Rank histograms are computed over the Arctic (a,c) and the mid-latitudes

(b,d) for both experiment 1 (a,b) and experiment 2 (c,d). Rejection rate is the percent (%)

of the observations that are rejected.
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Figure 3.25: Rank histograms of marine buoy meridional wind observations. Rank

histograms are computed over the Arctic (a,c) and the mid-latitudes (b,d) for both

experiment 1 (a,b) and experiment 2 (c,d). Rejection rate is the percent (%) of the

observations that are rejected.
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Figure 3.26: MPAS-DART spacially averaged (poleward of 60◦N) potential temperature

analysis increments time-height-sections for (a) experiment one and (b) experiment two.

Stippling shows statistical significance at the 95% confidence interval using a student’s

t-test.
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Figure 3.27: MPAS-DART spacially averaged (poleward of 60◦N) water vapor analysis

increments time-height-sections for (a) experiment one and (b) experiment two. Stippling

shows statistical significance at the 95% confidence interval using a student’s t-test.
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Figure 3.28: The same as Fig. 3.27 but zoomed into the levels spanning 300 to 50 hPa.

90



Figure 3.29: MPAS-DART spacially averaged (poleward of 60◦N) zonal wind analysis

increments time-height-sections for (a) experiment one and (b) experiment two. Stippling

shows statistical significance at the 95% confidence interval using a student’s t-test.
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Figure 3.30: MPAS-DART spacially averaged (poleward of 60◦N) meridional wind

analysis increments time-height-sections for (a) experiment one and (b) experiment two.

Stippling shows statistical significance at the 95% confidence interval using a student’s

t-test.
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Figure 3.31: Cycling period averaged potential temperature analysis increment at 100 hPa

for both (a) experiment one and (b) experiment two. Areas that are below the 20th

percentile value of a distribution of the standard deviation values are hatched. Black

dashed line represents 60◦N latitude. Stars are locations of radiosonde launch sites.
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Figure 3.32: Cycling period averaged zonal analysis increment at 75 hPa for both (a)

experiment one and (b) experiment two. Areas that are below the 20th percentile value of

a distribution of the standard deviation values are hatched. Black dashed line represents

60◦N latitude. Stars are locations of radiosonde launch sites.
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Figure 3.33: Cycling period averaged two-meter temperature analysis increment for both

(a) experiment one and (b) experiment two. Areas that are below the 20th percentile value

of a distribution of the standard deviation values are hatched. Black dashed line represents

60◦N latitude. Stars are locations of land observation sites.
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Figure 3.34: Cycling period averaged two-meter water vapor analysis increment for both

(a) experiment one and (b) experiment two. Areas that are below the 20th percentile value

of a distribution of the standard deviation values are hatched. Black dashed line represents

60◦N latitude. Stars are locations of land observation site.
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Chapter 4

Investigation of Systematic Errors

In Chapter 3, comparing MPAS-DART to observations along with evaluation of AIs re-

vealed several potential systematic biases in the modeling system. AIs have previously

been used to help identify biases in cycling systems (Dee 2005). While AIs can provide

helpful indications of areas where background forecast fields do not align with observa-

tions, the physical processes connected with the biases still needs to be parsed out. The

literature suggests two methods to correct a systematic model bias once identified: off-line

(post-processing) or on-line (bias-aware data assimilation). One common off-line approach

to remove systematic model biases at observation sites uses model output statistics (MOS)

to correct the forecast in a post-processing fashion (Glahn and Lowry 1972). MOS requires

a long development period during which the model of interest needs to remain stable with

limited changes (Mass et al. 2008). On-line (bias-aware data assimilation) approaches are

designed to correct these biases through estimation of parameters that represent them. To

estimate the parameters, model for the bias must be formulated along with reference data

to estimate the parameters of the bias model (Dee 2005). A third approach is to use anal-

ysis increments to help correct systematic biases. Danforth et al. (2007) calculated model

bias by computing the difference between 6-hour forecast fields and their corresponding

analyses, which are then averaged over many forecasts. The bias was then corrected within

the forecast system by adding on a average bias tendency (average model bias divided by

6-hours) to each of the model variables. Each of the above approaches only evaluate and

correct the systematic model bias itself instead of improving the representation of physical

processes within the model leading to the bias. This study employs a relatively new tech-

nique that allows the user to investigate systematic errors indicated by AIs, by evaluating

the physical representation of the atmosphere from decomposed model tendencies.
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4.1 Mean Initial Tendency and Analysis Increment Method

Few studies on forecast verification have considered model tendencies when diagnosing

the physical processes associated with biases. Exceptions to this include work applying

the initial tendency method, which was pioneered by Klinker and Sardeshmukh (1992),

to different research problems in different modeling setups (Rodwell and Palmer 2007b;

Williams and Brooks 2008; Cavallo et al. 2016; Wong et al. 2020). The initial tendency

method uses a series of short-term forecasts and analyses produced by a cycling data assim-

ilation system. The model tendencies associated with each physical process are accumu-

lated in the forecast model and averaged over the cycling period, which will allow the user

to decompose across the different model processes. Doing so will help the user identify the

physical processes that might be driving the systematic errors found in the AIs.

Studies employing the initial tendency method have tracked time-averaged model ten-

dencies over 6-hour model integrations to diagnose systematic errors in their cycling sys-

tems (Rodwell and Palmer 2007b; Rodwell and Jung 2008; Cavallo et al. 2016). One

important component of the initial tendency method is the use of native analyses (i.e. those

generated by the same model as the forecast system) to initialize your forecasts. Non-native

analyses can introduce external biases within your cycling system which could have large

impacts on your short-term forecasts (Klocke and Rodwell 2014). Cavallo et al. (2016)

highlighted the impacts initializing forecasts with non-native analyses and using different

physics schemes with the same model. They showed that the tendencies from early fore-

casts hours were very sensitive to both non-native analyses and the use of different physics

schemes. For this study, I will follow closely the procedures laid out in Cavallo et al.

(2016). Previous studies showed that systematic model errors can be established using

only the mean of the initial forecast tendencies (Klinker and Sardeshmukh 1992; Rodwell

and Palmer 2007b); this adaption of the initial tendency method is called the mean initial

tendency and analysis (MITA) increment method (Cavallo et al. 2016). The equation for
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applying the MITA increment method to potential temperature is described in three differ-

ent components:

m

∑
i=1

INCi︸ ︷︷ ︸
(1)

=−∆tda

m−1

∑
i=0

θ̇ b
i +θ

a
m,0−θ

a
0,0

=−∆tda

m−1

∑
i=0

θ̇ b
i︸ ︷︷ ︸

(2)

+ analysis drift︸ ︷︷ ︸
(3)

.

(4.1)

Term one is the summed potential temperature AIs over m data assimilation cycles. Term

two is the sum of the average total model forecast tendency over m data assimilation cycles.

Since term two contains the total model forecast tendencies, these can be broken down into

their individual components:

θ̇ b
i =

1
n

n

∑
j=0

(θ̇ dynamics,j + θ̇ radiation,j + θ̇ latent heating,j + θ̇ cumulus,j + θ̇ pbl,j) (4.2)

where θ̇dynamics,j, θ̇radiation,j, θ̇latent heating,j, θ̇cumulus,j, θ̇pbl,j represent the different model ten-

dencies for potential temperature at forecast step j from the model’s physical parameter-

izations. Lastly, term 3 from equation 4.1 represents the natural evolution in potential

temperature that occurs over the duration of the cycling period. If the analysis drift and

the accumulated averaged total model tendencies equal, then the AIs should be close to

zero since the model is representing the natural evolution of the atmosphere. While the

example above is applied to potential temperature, the MITA increment method can be ap-

plied to any prognostic variable in the chosen numerical weather model. Since AIs and

accumulated model tendencies are required for the entire cycling duration, problems may

arise storing the potentially large amount of data, especially possible for a global model

system that has 96 members. However, if the cycling system is well-calibrated, and is a

non-mixed physics ensemble system, each member is equally likely to correctly represent

the atmosphere (Leith 1974). Based on this notion, I randomly choose one member to save

accumulated model tendencies and analysis increments for the cycling period. However,

choosing one member randomly could include results unique to that member, which needs
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to be consider during evaluation. The MITA increment method is applied to MPAS-DART

for both cycling experiments described in section 2.4. Combining the information pro-

vided by the AIs and the outputted accumulated model tendencies allows this study to trace

systematic errors back to representation of physical processes of the atmosphere.

4.1.1 Experiment One

The MITA increment method is applied to all the prognostic variables within MPAS-DART,

which are potential temperature, water vapor, zonal- and meridional-wind components for

experiment 1 (Table 2.2; Fig. 4.1). For all four variables, the residual line is approximately

zero which means the budget (LHS of equation 4.1 minus RHS of equation 4.1) for the

MITA increment method equation has been closed (Fig. 4.1).

Starting with potential temperature, total accumulated averaged model tendency shows

too much cooling compared to the analysis drift near the surface, leading to warming from

observations (Fig. 4.1a). Potential temperature in the middle-troposphere is represented

relatively well, which results in small AIs. Further aloft, disagreement between observa-

tions and the model is evident just above 200 hPa (Fig. 4.1). There is a disagreement be-

tween the observations and model since the AIs and the total accumulated averaged model

tendency in this layer are of opposite sign. The layer above 200 hPa containing increased

AIs in potential temperature is co-located with the area of significant Arctic averaged AIs

(compare Fig. 4.1 to Fig. 3.26a). For water vapor, the model shows too much mois-

ture reduction near the surface compared to the analysis drift, which leads to observations

increasing moisture (Fig. 4.1b). Furthermore in the middle troposphere, the total accumu-

lated averaged model tendency is the opposite sign compared to the analysis drift, meaning

observations are consistently showing lower amounts of moisture than the model predicts

(Fig. 4.1b). Lastly, there is agreement between analysis drift and total accumulated aver-

aged model tendency for the wind components (Fig. 4.1c,d). AIs are relatively small along
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with no layers of large separation between total accumulated averaged model tendency and

the observations.

This evaluation will focus on the regions where large biases were identified: 1) too

much cooling between 200 hPa and 50 hPa, 2) too much cooling near the surface, and 3) too

much water vapor reduction near the surface. While my initial investigation also identified

disagreement between the model and observations near the model top, MPAS has been

shown to have issues in representing stratospheric inertia-gravity waves with coarse vertical

resolutions (Skamarock et al. 2019). Thus, errors near the model top are not considered in

the present study. The Arctic near-surface region is complex due to the different surface

types that are present. As such, the MITA increment method is applied over land, ocean

and sea ice separately to compare back to calculations including the entire Arctic domain

(Fig. 4.2). The evaluation of different surface types allows for the investigation of whether

the increased cooling from the model above 200 hPa has regional characteristics while also

investigating the cause of cooling near the surface.

Regardless of surface type, significant increase in cooling from the model is apparent

above 200 hPa, which is leading to warming from observations (Fig. 4.2). The cooling from

the model over all surface type implies that the previously shown disagreement between

the model and observations is not due to regional bias. At the surface, there is too much

cooling from the model over land and seaice, but not over the ocean (compare Fig. 4.2b,d

to Fig. 4.2c). The total accumulated averaged model tendency matches the analysis drift,

which means the model is cooling at the appropriate rate and AIs values are near zero (Fig.

4.2c). To get better insight about which physical processes may be associated with these

biases, the total accumulated average model tendency is now decomposed into the separate

physics scheme contributions (Fig. 4.3). There are three model-process tendencies above

200 hPa: longwave radiation, shortwave radiation, and dynamics. The only model-process

tendency that is directly cooling in the layer from 200 hPa to 50 hPa is the longwave

radiation scheme (Fig. 4.3). The largest magnitude in cooling from the longwave radiation
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scheme is occurring around 100 hPa, which coincides with the largest magnitude of cooling

in the total accumulated average model tendency (compare 4.3 to Fig. 4.2). Near the surface

over land and seaice, the dominant model-process tendency scheme directly acting to cool

is the longwave radiation scheme (Fig. 4.3b,d). The near surface longwave cooling may be

connected back to the increase in near surface water vapor. Note that over sea ice, dynamics

also contributes to cooling.

Since moisture can impact longwave cooling, further investigation into positive water

vapor AIs near the surface is warranted (Fig. 3.27). The MITA increment method is applied

to the different surfaces over the Arctic (Fig. 4.4). The model is reducing the moisture at

the surface at a faster rate than what the analysis drift shows over all surfaces except over

the ocean (compare Fig. 4.4a,c,d to Fig. 4.4c). To further investigate the strong reduc-

tion in water vapor near the surface, total accumulated averaged model tendency is again

decomposed into the individual model-process tendencies (Fig. 4.5). Over land and sea

ice, the dominant parameterization scheme reducing water vapor near the surface is the

convection parameterization scheme, which is responsible for representing sub-grid scale

cloud processes (Fig. 4.5b,d). The convection and the microphyics schemes are responsible

for the formation and representation of clouds. Over land, the convection and microphy-

ics schemes contrast with each other on cloud formation near the surface. The convection

scheme is using water vapor to make clouds where microphysics scheme is evaporating

clouds back to water vapor (Fig. 4.5b). The water vapor disagreement between physics

schemes could be a result of the order MPAS is computing the individual model physic

tendencies (Donahue and Caldwell 2018). Over sea ice, the microphysics scheme is com-

paratively small to the convection scheme (Fig. 4.5d). In general, the microphyics scheme

is reducing water vapor just above the surface over both land and sea ice but increasing

water vapor at the surface over land (Fig. 4.5). There may also be a disagreement on the

positioning of clouds with the convection scheme producing clouds near the surface while

the microphysics scheme is producing clouds aloft.
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Since both the microphysics and convective scheme are non-active above 200 hPa,

the dominant feature that can absorb and reemit longwave radiation is water vapor. Arc-

tic averaged profiles of cycling period averaged analysis water vapor are computed from

the MPAS-DART ensemble average, MPAS-DART member 70 (the member used for the

MITA increment method), GEFS, and ERA5 (Fig. 4.6a,b). Near the surface, there is in-

creased moisture in MPAS-DART compared to other analyses produced by global models,

but the profiles became similar higher up in the atmosphere (Fig. 4.6a). Focusing on the

region above 200 hPa, a bias in moisture is evident, where MPAS-DART has a positive

water vapor bias with respect to GEFS and ERA5 analysis (Fig. 4.6b). The region of in-

creased water vapor in MPAS-DART member 70 is co-located with the region of enhanced

longwave cooling (compare Fig. 4.6b to Fig. 4.2).

To further investigate increased water vapor within MPAS-DART, Arctic averaged pro-

files of analysis water vapor at initialization time are computed (Fig. 4.6c,d). For MPAS-

DART, these profiles are the MPAS initialization files produced from the GEFS lagged

forecasts that were provided to the MPAS source code. From the surface to the middle

troposphere, there is more water vapor within MPAS-DART compared to GEFS and ERA5

(Fig. 4.6c). This may explain the discrepancies in total accumulated average model ten-

dency and analysis drift found for water vapor near the surface. The increased water vapor

within MPAS-DART could drive the convection scheme to erroneously produce clouds near

the surface. Erroneous cloud presence would than lead to erroneous longwave radiative ten-

dencies due to the associated cloud-radiative feedbacks. Focusing on levels above 200 hPa,

there is overall too much water vapor within MPAS-DART compared to GEFS and ERA5

analysis (Fig. 4.6d). It is apparent that MPAS-DART is initialized with too much water

vapor at the start of the cycling period. Thus, I hypothesize that the water vapor bias was

introduced into MPAS-DART from a subroutine within the WPS software.

For NCEP products, the relative humidity values are initially with respect to both liquid

and ice. In order to get correct specific humidity values in MPAS initial conditions, the
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GEFS relative humidity values need to be adjusted so that they represent relative humidity

with respect to liquid only, not both liquid and ice. To obtain the modified relative humid-

ity values from GEFS, the data must be passed through a WRF WPS subroutine, which

will modify the values before MPAS source code computes specific humidity values for

initial conditions (Bolton 1980; Murphy and Koop 2005). When the relative humidity fix

is applied, the calculated specific humidity from relative humidity has a better match to the

specific humidity within the GEFS data (Fig. 4.7).

Looking at averaged longwave radiation model tendency profile, there is increased cool-

ing at the top of the increased moisture layer and a reduction in cooling at the bottom of the

layer (Fig. 4.8). The enhanced cooling at the top is a result of longwave radiation being lost

to space with little above this layer to absorb longwave radiation. In contrast to the layers

where water vapor decreases with height, the bottom of the layer is absorbing more from

the layers below, reducing the amount of longwave cooling that would otherwise occur

from radiative processes.

Recall from the MITA increment method enhanced cooling was found from the long-

wave radiation scheme in the layers spanning 200 hPa up to 50 hPa. Furthermore, there is

increased cooling near the surface also associated with to the longwave radiation scheme,

which is the dominant parameterization scheme providing the cooling in the model. Re-

garding water vapor near the surface, there is an increase in the reduction of water vapor

within the model which is associated with the convective scheme dominating the tendency

budget. Furthermore, there are challenges representing atmospheric evolution over sea ice

with static characteristics (sea ice thickness, sea ice albedo, etc) and uncertainties in sea ice

data (Figs. 4.9 and 4.10). In experiment 1, sea ice concentration was set to GFS analysis

values which may not be representative of the observed sea ice concentration. There is

overall too much moisture initialized into MPAS-DART evident in the comparisons with

GEFS and ERA5. The moisture bias found between 200 hPa and 100 hPa is co-located
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with enhance cooling from the longwave radiation scheme. I hypothesize that the enhanced

cooling above this layer is a result of the moisture bias, which will be tested later.

4.1.2 Experiment Two

Based on the results above, changes were implemented to MPAS-DART for experiment 2:

1) initializing moisture using the relative humidity fix and 2) observed sea ice data used for

the sea ice concentration instead of GFS sea ice concentration data. A quick comparison

between experiment 1 and 2 can still provide information about the sensitivity of previously

identified issues to the changes implemented in the modeling system. Briefly, the similari-

ties and differences between the MITA increment method profiles from experiments 1 and

2 are introduced here (compare Fig. 4.1 to Fig. 4.11). Experiment 2 indicates there is a

reduction in the moisture bias which was previously identified between 200 hPa and 100

hPa in experiment one (compare Fig. 4.12 to Fig. 4.6). For potential temperature, the

cooling associated with the total accumulated averaged model tendency in the layers from

200 hPa to 50 hPa is reduced compared to experiment 1 (Fig. 4.11a to Fig. 4.1a). However,

warming in the total accumulated averaged model tendency increases starting just above

100 hPa, which is of similar sign as the analysis drift. The reduction in water vapor associ-

ated with the total accumulated averaged model tendency is similar to experiment one, but

of reduced magnitude (compare Fig. 4.1b to Fig. 4.11b). There is a decrease in zonal wind

speed from the model starting at 100 hPa and above (Fig. 4.11c). This decrease in zonal

windspeed was not found in experiment 1. The collocation of increased warming and de-

creased zonal winds suggests a possible connection. Further discussion of the comparisons

between experiments will provided later in this section.

Potential temperature total accumulated averaged model tendency calculations over

land are different than the calculations over the entire Arctic, over sea ice and over ocean

(Fig. 4.13). The increase in warming aloft from the model is strongest over sea ice (Fig.

4.13d). Over ocean, there is warming, but it does occur aloft close to the damping layer
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(Fig. 4.13c). Enhanced cooling aloft from the model found in experiment 1 over all surface

types is not present in experiment 2 regardless of surface type (compare Fig. 4.2 to Fig.

4.13). However, it is apparent that the increased warming from the model is regionally lo-

calized over the top of the pole in the Arctic. To investigate the increased warming over sea

ice, the total accumulated average model tendency is decomposed into individual model-

process tendencies (Fig. 4.14). The dominant model-process tendencies over sea ice active

above 100 hPa are dynamics and longwave radiation (Fig. 4.14d). Dynamical processes are

acting to warm the layers above 100 hPa, which is consistent with tendencies that would be

associated with temperature advection. The cooling associated with the longwave radiation

scheme is similar over land and over sea ice, lending evidence that the net tendencies over

sea ice are related to the dynamics (compare Fig. 4.14b to Fig. 4.14d). Near the surface,

enhanced cooling from the model is only noted over sea ice in experiment 2 instead of over

land and ocean as in experient 1 (compare Fig. 4.13 to Fig. 4.2). This cooling is dominated

by longwave radiation and dynamics over sea ice (Fig. 4.14d). The model cooling could be

a result of the longwave radiation scheme cooling temperatures over sea ice and advection

of the resulting cooler air by the model dynamics. Applying the relative humidity fix to

initialize with corrected water vapor values could be leading to a better representation of

clouds near the surface over land (compare Fig. 4.2b to Fig. 4.13b). Separating experiment

2 MITA increment method profiles over the different surface types reveal similar profiles as

those found in experiment one (Fig. 4.15 to Fig. 4.4). However, there is a reduction in the

overall rates of water vapor reduction in experiment 2 compared to experiment 1 (compare

(Fig. 4.15) to (Fig. 4.4)). Reduction in water vapor rates could be associated with the

different water vapor initialization process for experiment 2, but there also is generally less

moisture in experiment 2 which would reduce the rate of water vapor change. Also similar

to experiment 1, the convective parameterization scheme is the most active scheme reduc-

ing moisture near the surface (Fig. 4.16). Despite the new moisture initialization process
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for experiment two, the model is reducing moisture too quickly near the the surface and

this loss dervies from the convective scheme.

There were significant positive AIs for zonal wind above 100 hPa in experiment two

which were not found in experiment one (Fig. 3.29). The gravity wave absorbing layer

applied in model starts at 22 km (∼ 40 hPa), which means evaluation can only be done up

to this level. The MITA increment method profiles also shows a model-induced reduction

in the zonal wind in experiment 2, which is not found in experiment one (compare Fig.

4.17c to Fig. 4.17c). Furthermore, the region above 100 hPa that is characterized by

stronger reductions in zonal wind by the model is co-located with increased warming from

the model, especially over the pole (compare Fig. 4.17c to Fig. 4.14). The decomposition

of the model-process tendencies show both dynamics and gravity wave drag by orography

(GWDO) are working to reduce the zonal wind above 100 hPa, which is not present in

experiment 1 (compare Fig. 4.17d to 4.17b).

4.1.3 Summary

The MITA increment method enabled further investigation into previously identified sys-

tematic errors in MPAS-DART. The significant positive potential temperature AIs above

200 hPa found in experiment one was associated with enhanced cooling from the longwave

radiation scheme. Additionally, the enhanced cooling from longwave radiation scheme was

connected back to a moisture bias present at the same level. Longwave radiation profiles

between experiments shows a reduction in the magnitude of cooling in experiment 2, which

used different moisture initialization. Since experiment 2 was ran during a different time

period, further evaluation is needed to clarify if enhanced cooling is related to the moisture

bias or just related to seasonal differences in model cooling leading to sensitivities. Future

work would include re-running experiment 1 with the modified moisture profiles to confirm

results found in experiment 2.
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Near surface AIs showed warming and moistening from observations, implying there

was too much cooling and drying from the model. Experiment one showed too much cool-

ing for all surfaces expect over ocean, while experiment two only showed too much cool-

ing over seaice. Regardless of experiment and surface type, the convection scheme was

the dominant process reducing water vapor near the surface. Wong et al. (2020) discussed

biases within the boundary layer that developed when switching to the “new” Tiedtke con-

vection parameterization scheme. Further investigation is needed to determine if the “new”

Tiedtke convection scheme chosen within MPAS-DART is appropriate for high latitude

weather. Temperature improvements over land in experiment 2 may be linked back to the

different moisture initialization process, but more investigation is needed to be certain.

Lastly over the pole, a reduction in zonal wind from the model tendencies above 100

hPa was identified, and was co-located with warming in potential temperature from the

model. Since wave breaking frequency over the North Pacific during the winter time is very

common (Martius and Rivière 2016), the interaction of tropospheric Rossby waves propa-

gating into the stratosphere might not be captured correctly in MPAS-DART (Holton et al.

1995; Domeisen et al. 2018). Furthermore, poor representation of stratospheric inertia-

gravity waves due to coarse vertical resolution above the tropopause may result in noise

and spurious structures (Skamarock et al. 2019). It is possible that model top is too low,

which hinders the ability to represent the lower portion of the stratosphere.

The MITA increment method was used to evaluate a significant negative zonal wind

bias found in the lower-stratosphere in experiment 1, negative potential temperature and

water vapor bias near the surface, and significant potential temperature bias in the upper-

troposphere lower-stratosphere region in experiment 1. Due to TPVs residing in the upper-

levels of the atmosphere, and that studies have shown moisture can impact TPV evolution,

the focus of this of the remainder chapter will be on understanding the moisture bias im-

pacts found in experiment one.
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4.2 WRF Single Column Sensitivity Simulations

To test the hypothesis that the enhanced cooling above 200 hPa is driven by the moisture

bias would require MPAS-DART being re-cycled over the experiment 1 time period. The

computational expense of re-cycling MPAS-DART is not feasible. One research tool that

is not computationally expensive to run is the WRF single column model (SCM), provided

with the standard WRF code. A SCM is a one-dimensional (in the vertical) computa-

tional model that represents a specific column of the atmosphere only through the specified

parameterization schemes (Zhang et al. 2016). WRF-SCM does not include the changes

within the column from the 3D dynamical core, instead provides a method to isolate the

effects of the different parameterization schemes and processes in the column. In the sim-

plest setting, a SCM calculates the time evolution of the vertical distribution of temper-

ature, wind, and moisture without direct representation horizontal and vertical advective

tendencies (Zhang et al. 2016). However, these advective tendencies can be represented by

applying a 2D or 3D specified large-scale forcing which can help represent a full 3D com-

putational model (Randall and Cripe 1999; Xie et al. 2003, 2006; Kennedy et al. 2011).

This simplifies interpretation of impacts model-process tendencies by removing feedbacks

from the dynamical core. Different studies have used the WRF-SCM to investigate various

atmospheric processes (Hacker and Angevine 2013; Huang et al. 2013; Pithan et al. 2016;

Lee et al. 2017).

To test the effects of the moisture bias, 24 6-hour WRF-SCM simulations were ran

over 105 sea ice grid points during the experiment one cycling period. The same physics

packages that were used in MPAS-DART cycling are used in the WRF-SCM. Analyses

from MPAS-DART member 70 were used to obtain the 105 sea ice grid profiles to initialize

the WRF-SCM simulations. Two sets of simulations were ran: one with increased moisture

at the same level as the previously identified moisture bias and one with decreased moisture

at that same level. The adjustment of water vapor in the analysis profiles was achieved by

calculating the moisture bias over the 105 sea ice grid points over the entire cycling period

109



(24 times) of experiment 1. This produced distributions of water vapor bias profiles at each

of the 105 sea ice grid points. The 5th and 95th percentile values from the water vapor bias

profile distributions were used to adjust the water vapor values in the analyses for the 105

sea ice grid points over the entire cycling period of experiment one.

QvAdjusted = QvOrginal−QvCalculated Bias (4.3)

In equation 4.3, QvOrginal is the original MPAS-DART water vapor, QvCalculated Bias is the

calculated 5th or 95th percentile water vapor bias, and QvAdjusted is the adjusted water

vapor value used in WRF-SCM simulations. For most cases, the 5th percentile water vapor

bias value is negative, from equation 4.3 this means the 5th percentile adjusted water vapor

profiles will have more water vapor. When water profiles were adjusted, if values exceeded

saturation, or 100% relative humidity, they were then adjusted to be just below saturation

(or 99% relative humidity). Likewise, 95th percentile water vapor bias value is usually

positive, which means the 95th adjusted water vapor profiles will have less water vapor.

The water vapor adjustments are shown plotting the distributions of water vapor profiles

when adjusted by the 5th and 95th percentile bias values (Fig. 4.18). In the layer spanning

from 200 to 50 hPa, which is the region of the water vapor bias within MPAS-DART, there

is an increase in the distribution of water vapor when adjusted by the 5th percentile water

vapor bias value. Conversely, there is a decrease in the distribution of water vapor when

adjusted by the 95th percentile water vapor bias value. While there are larger differences

in the distribution of water vapor near the surface, the focus of the simulation will be in the

layer that contained the moisture bias within MPAS-DART. Lastly, only water vapor was

adjusted in the profiles used to initialize the WRF-SCM simulations.

Since WRF-SCM is both computationally inexpensive and the file size is small, po-

tential temperature model tendency profiles are output every time step for each of model-

process tendencies. Outputting every time step allows for model tendencies to be accumu-

lated and averaged in a similar manner as in the MITA increment method. However since

this is a single column model, there is no accumulated average dynamics tendency unless
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it is specified through boundary conditions forcing the single column. Focusing on the re-

gion between 200 and 50 hPa, there is a reduction in the magnitude of cooling from the

total accumulated average model tendency with water vapor profiles that have less water

vapor (95th percentile simulations; Fig. 4.19a). There is a reduction in cooling on the or-

der of ∼0.5 K day−1 when less water vapor is present in the analysis profiles versus when

more water vapor is present in analysis profiles. The only model-process tendency that is

active in the layers between 200 and 50 hPa is the longwave radiation scheme since there

is no dynamic model tendency in WRF-SCM. There is a reduction in the magnitude of the

longwave cooling in the simulations with less water vapor (Fig. 4.19b). The shape of the

longwave cooling profile in the layer of interest matches perfectly with the total accumu-

lated averaged model tendency (compare Fig. 4.19b to Fig. 4.19a). So the ∼0.5 K day−1

reduction in cooling seen in the total accumulated average model tendency is coming from

the reduction in cooling from the longwave radiation scheme. The reduction in model cool-

ing supports the hypothesis that the moisture bias was driving the enhanced cooling from

the longwave radiation that was found using the MITA increment method.

4.3 NAWDEX Observations

Up to this point, the moisture bias found above 200 hPa in experiment one has only been

investigated from a model tendency perspective. Approaching the issue from a model ten-

dency perspective is mainly due to the lack of high quality, consistently available con-

ventional observations over the Arctic. However, this study aims to understand the po-

tential impacts of the moisture bias on TPV evolution during forecast integration. A

field campaign occurred during the same time as the cycling period for experiment one

called the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX).

The NAWDEX field campaign explored the impacts of diabatic effects on the jet stream and

those impacts on downstream high impact weather through the use of aircrafts (Schäfler

et al. 2018). A flight mission during the NAWDEX field campaign was one of the first
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known targeted observation flight through a TPV on 6 October 2016. This TPV is referred

to as the NAWDEX TPV for this study. During the flight through the NAWDEX TPV,

the aircraft released 20 dropsondes spanning 9:17 UTC to 11:55 UTC (Fig. 4.20a). These

dropsondes were released around and through the center of the NAWDEX TPV at a level

near 350 hPa (Fig. 4.20b). The dropsondes were able to resolve the associated jet streak

maximum situated just above the tropopause fold as well as the enhanced moisture gradient

right below the tropopause (Fig. 4.20b). The NAWDEX TPV dropsondes offer a novel ob-

servational view of the vertical moisture distribution previously only depicted in numerical

models.

Before the dropsondes could be assimilated within the MPAS-DART system, some

modifications needed to be made. The NAWDEX dropsonde profiles had vertical sampling

rate of about once every 1 hPa, which is different than conventional radiosonde data on

mandatory and significant levels (NCEP 2020). To stay consistent with conventional ra-

diosondes but not degrade the information content from the dropsondes, each profile was

interpolated to levels with 50 hPa spacing. Furthermore, the dropsonde data did not come

with observation errors, so DART-provided observation errors for dropsonde temperature,

wind components, and water vapor were applied to stay consisted with specification of

other observation errors within MPAS-DART. The provided DART dropsonde observation

errors are similar to the observation errors applied to radiosonde observations. These obser-

vation errors are similar to what other studies shown concerning radiosonde and dropsondes

(Wang et al. 2013a; Dirksen et al. 2014). Since the dropsonde observations coverage spans

times from 9 UTC to 12 UTC, modifications had to be made to stay consisted with the

3-hour observation window set within MPAS-DART. Typically, cycling for MPAS-DART

involves 6-hourly cycling with data assimilation steps occurring at 00,06,12,18 UTC with a

observation window of 3 hours (Fig. 4.21a). When assimilating the NAWDEX dropsondes,

this includes a special assimilation step at 09 UTC that will contain all dropsonde obser-

vations that fall in that 3-hour window. Then a 3-hour forecast is ran to 12 UTC were the
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rest of the dropsondes along with all observations that are included in normal cycling will

be assimilated (Fig. 4.21b). The adapted cycling method will ensure that the observation

window is consistent across experiments. The dropsondes recorded several observation

types, but only temperature, wind components and water vapor were assimilated within

the MPAS-DART system. This portion of the study will evaluate the impacts of the well-

positioned observations of the NAWDEX TPV, specifically related to the moisture bias.

There are two different experiments presented here, forecasts with NAWDEX observations

assimilated and forecasts without NAWDEX observations assimilated.

The net impact of dropsonde observations in MPAS-DART analyses is first evaluated.

AIs associated only with the dropsonde observations (not mean AIs across all observa-

tions) are used to determine the magnitude of the impacts to MPAS-DART analyses (Fig.

4.22). Overall, dropsonde observations are having some impact on the analyses, with vary-

ing degrees of magnitude. For dropsonde temperatures, the AI increases temperature most

dominantly in the middle-troposphere, which implies the temperature observations are at-

tempting to correct the cold bias previously identified in MPAS-DART (Fig. 4.22a, Figs.

3.10 and 3.11). The dropsonde water vapor observations are primarily decreasing moisture

in the lower portion of the middle-troposphere, in agreement with the water vapor AIs av-

eraged over the Arctic (Fig. 4.22c, Fig. 3.27). Additionally, the spike in water vapor AI

at 600 hPa results from a large difference between one dropsonde observation and MPAS-

DART. Lastly, dropsondes are acting to increase wind speeds, on average, for both wind

components except for v-wind above 500 hPa (Fig. 4.22d).

To further evaluate the impacts the dropsondes are having on the NAWDEX TPV, cross-

section analysis composite differences were calculated for the 96 different realizations of

the NAWDEX TPV from each experiment (Fig. 4.23). Statistical significance is identified

in the differences between the two experiments by applying a student t-test. Potential tem-

perature comparisons show significant differences identified in the tropopause fold region

(Fig. 4.23a). There is a large, positive difference in potential temperature with a narrow
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area of negative differences just below where potential temperature values are smaller when

NAWDEX dropsondes are assimilated. There are significant decreases in EPV within the

tropopause fold region when NAWDEX dropsonde are assimilated, which means the fold is

enhanced (Fig. 4.23b). For water vapor, there is a significant reduction in water vapor just

below the tropopause in the core of the TPV extending towards the surface, which increases

the gradient of moisture across the tropopause (Fig. 4.23c). Lastly, there is a significant

increase in the normal wind component when NAWDEX observations are assimilated (Fig.

4.23d). The increase in the normal wind component could be related to the tropopause fold

being pulled back towards the center of the NAWDEX TPV, which is highlighted by the

differences in EPV, or the increase in the gradient of potential temperature. Overall, the

dropsonde observations are having significant impacts on the MPAS-DART analyses.

Mean analysis differences between the 96 NAWDEX TPV realizations for two experi-

ments shows areas of large significant differences. However since this is a relatively large

dataset, it is useful to analyze the variability within the model analyses of the two exper-

iments. The spatial representation of a TPV can be explored though analysis of a single

variable, potential temperature, on the 2 PVU surface. To do so, empirical orthogonal

function (EOF) analysis is applied determine the leading modes of variability of the 2 PVU

potential temperature field within the two different experiments (Wilks 2011). Vertical TPV

structure manifests across several variables. As such, multivariate EOF analysis is applied

to NAWDEX TPV cross-sections for potential temperature, water vapor, and the normal

wind component to determine the leading modes of co-variability among those different

field variables. To compute the EOFs, the data from both experiments were combined

to compute an ensemble mean which was then used to compute anomalies for the fields

of interest. To compute the EOFs, singular value decomposition (SVD) is applied to the

calculated anomalies. The standardized principal components (PCs) series is computed,

which allows this study to determine which members from the two experiments match the

leading mode of variability. The significance of each EOF in the analysis is determined by
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applying the equations from North et al. (1982), and calculating the standard error for the

eigenvalues. This technique provides a method to determine which EOFs are significantly

separated from each other. For this study, the 95% confidence interval is used to determine

which EOF modes are significantly separated, and thus which modes to further investigate.

Eigenvalue significance is calculated for both the spatially computed EOFs and the TPV

cross-section multivariate EOFs (Fig. 4.24). For the spatial eigenvalues, the two leading

modes, EOFs 1,2, and 3 are distinguishable from each other with 95% confidence (Fig.

4.24a). For this study, EOFs 1 and 2 will be the focus for investigating the variability in the

2 PVU potential temperature field since these modes will explain the highest percentage of

the variability within the data. There is significant separation between eigenvalue 1 and 2

for the multivariate EOFs, but this is not the case for eigenvalues 2 and 3 (Fig. 4.24b). Fur-

thermore, EOFs 4 and 5 are statistically distinguishable, however, the amount of explained

variance will be lower compared to EOF 1. From this evaluation, only multivariate EOF 1

will be used to investigate TPV cross-sections.

Examining first the spatial variability associated with the NAWDEX TPV, a dipole pat-

tern indicates the TPV position is the leading mode of variability with the explained vari-

ance at 24.6% (Fig. 4.25a). The PCs describe how each of the ensemble member represents

the corresponding EOF pattern. Large positive PCs correspond strongly to the EOF pat-

tern, large negative PCs correspond strongly to the opposite of the EOF pattern, and PCs

that are close to zero have no resemblance to the EOF pattern. The separated PCs for

the experiment with NAWDEX observations assimilated shows most members match the

EOF 1 pattern with little spread in the PC values (Fig. 4.25a). For the experiment without

NAWDEX observations assimilated, the PCs show that most members have the opposite

pattern than EOF 1 and there is a larger spread in the PCs (Fig. 4.25a). This implies that

when NAWDEX observations are assimilated there is a shift in the NAWDEX TPV posi-

tion in almost all of the ensemble members. EOF 2 potentially reflects variability of the

NAWDEX TPV intensity, where positive PCs represent a more intense TPV and negative
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PCs represents a less intense TPV (Fig. 4.25b). The explained variance is lower at 8.7%,

which is further reasoning for not investigating past EOF 2. For both experiments, the cen-

ter of the highest proability of PCs is centered at zero, but there is smaller spread in the PCs

for the experiment with NAWDEX observations assimilated (Fig. 4.25b). This implies that

with the assimilation of the NAWDEX observations, there is less spread in the strength of

the TPV.

The multivariate EOF (MV-EOF) analysis is used to investigate the leading modes of

variability for the structure of the TPV. MV-EOF 1 highlights an increase in the separation

of the potential temperature contours, an increase in the normal component of the wind

speed inside the TPV center, and a decrease in water vapor just below the tropopause (Fig.

4.26a). Once again, there is smaller spread in the PCs when NAWDEX observations are

assimilated and larger spread in PCs when NAWDEX observations are not assimilated (Fig.

4.26a). Furthermore, the NAWDEX observations shift the PCs towards zero, which means

the ensemble is better capturing both sides of the leading mode.

Overall, the EOF analysis helped display the variability within MPAS-DART analy-

ses when assimilating NAWDEX dropsonde versus when NAWDEX dropsondes are not

assimilated. Spatially, there are impacts on TPV position and on the spread of the TPV

intensity when NAWDEX observations are assimilated. Furthermore, there are impacts on

the TPV structure and variability when assimilating NAWDEX dropsondes.

Since there were large impacts on the analyses when NAWDEX observations were

assimilated, investigation of sensitivities of forecasts to dropsonde observations are further

evaluated. Five-day forecast were performed for both NAWDEX simulations (with and

without assimilating the NAWDEX observations). First focusing on spatial differences,

there are statistically significant differences at the analysis time, consistent with the spatial

EOF-1 pattern discussed above (Fig. 4.27a and Fig. 4.25a). The data assimilation impacts

of the dropsonde observations extend out from the TPV of interest (Fig. 4.27a), which

means the representation of other atmospheric features could be positively impacted as

116



well. As forecasts progress, there are statistically significant differences along the gradient

in potential temperature and near the center of the TPV (Fig. 4.27b-f). While there are

areas of statistically significant differences out to forecast hour 60, the magnitudes of the

differences are relatively small. Lastly, there is a region of EPV that that cuts off and splits

form the main TPV at forecast hour 24 when NAWDEX observations are assimilated (Fig.

4.27c). Future work should include further investigation into why the cutoff EPV formed

only when assimilating NAWDEX observations.

Comparison of the NAWDEX TPV for the two experiments is completed by tracking

the feature of interest throughout the forecast period. A previously developed and tested

watershed TPV tracker was used in this study (Szapiro and Cavallo 2018). NAWDEX

TPV object counts and median forecast track positions for both experiments show that the

TPV of interest evolved along similar paths in both experiments (compare Figs. 4.28 and

4.28). Lastly, the median forecasted minimum potential temperature associated with the

NAWDEX TPV is also very similar (Fig. 4.28). The similarities in TPV minimum potential

temperature is in agreement with the spatially computed differences in the 2 PVU potential

temperature field discussed above. The spread in potential temperature associated with

the NAWDEX TPV for both experiments is computed to compare differences in intensity

(Fig. 4.29). At analysis time, the spread in NAWDEX TPV potential temperatures is

smaller and shifted towards lower values for the with NAWDEX observations assimilated

versus without NAWDEX observations assimilated (compare Fig. 4.29b to Fig. 4.29a).

As forecast hour increases, the NAWDEX TPV potential temperatures for each experiment

drift closer together, and by forecast day-1 the values are very similar (compare Fig. 4.29b

to Fig. 4.29a). This suggests that there are differences between experiments at analysis

time but as forecast time increases, the differences get washed out and the forecasts become

quite similar.
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Ling et al. (2014) found similar analysis and forecast results when investigating the

impacts of including special radiosonde profiles from a field campaign evaluating the Mad-

den–Julian oscillation. For the NAWDEX TPV case, the small differences in forecasts are

related back to the localized nature of the perturbations induced by the NAWDEX dropson-

des. Since the perturbations are very localized, the regions surrounding the NAWDEX TPV

start to dominate the evolution of forecasted fields, which starts to overpower any impacts

of the NAWDEX perturbations.

While there was a moisture reduction below the tropopause when NAWDEX obser-

vations were assimilated, the differences in the forecast were quite small. Furthermore,

focusing only on the NAWDEX TPV provides only one case while there are many TPVs

present through the cycling period. Since ERA5 was shown to have a lower moisture values

in the region where MPAS-DART was shown to have a bias, comparisons to ERA5 allows

for broader evaluation of the impact of moisture on TPV evolution. This study tracked all

6-hour forecasted TPVs within MPAS-DART member 70 and all analysis TPVs in ERA5.

Furthermore, TPVs were tracked in both MPAS-DART experiment 1 and 2 to test the ef-

fects of the different water vapor initialization process. The tracking period for the TPVs

was the length of the cycling period for the MPAS-DART experiments. For experiment 1,

the median potential temperature for the TPVs in their early lifetimes was similar between

MPAS-DART and ERA5 (Fig. 4.30a). As TPV lifetime increases, ERA5 has lower poten-

tial temperature values compared to MPAS-DART (Fig. 4.30a). The process rates associ-

ated with the longwave radiation cooling for the moisture bias could take longer than a few

days. While there is a multitude of possible reasons for this, one reason could be the reduc-

tion moisture which was found in ERA5 compared to MPAS-DART member 70. However,

in MPAS-DART experiment 2 there are similar median TPV potential temperature values

not only in the early lifetimes but also in the later lifetimes (Fig. 4.30b). The similarities

in later lifetime median TPV potential temperatures could be highlighting the impacts the

reduction in moisture has on forecasted TPV intensity within MPAS-DART. Lastly, there
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is better agreement with ERA5 in the distribution of the lifetime minimum TPV potential

temperatures for MPAS-DART experiment 2 compared to experiment 1 (Fig. 4.31). For

experiment one, there were larger TPV lifetime potential temperature minimums compared

to ERA5. Once again, this could be highlighting the moisture bias impacts on TPV evolu-

tion for the different moisture initialization process. Future work should include re-running

experiment 1 with the improved moisture initialization process to fully understand moisture

impacts on TPVs.

Overall, the NAWDEX dropsonde observations impart significant impacts in both the

analyses and forecasts. The magnitude of those impacts seemed larger in the analyses

produced in the data assimilation cycle compared to the forecasts produced by the model.

There was a shift in the TPV position and reduction in magnitude when NAWDEX drop-

sonde observations were assimilated. Also, there were impacts on the TPV structure in

the analysis, which included a reduction in water vapor along the tropopause. The forecast

differences for the NAWDEX TPV were small and quite localized, when comparing exper-

iments with and without NAWDEX observations assimilated. However, differences were

found when tracking TPVs in MPAS-DART member 70 for the two MPAS-DART experi-

ments and comparing to ERA5. There was better agreement at later lifetimes in the median

TPV potential temperatures between ERA5 and MPAS-DART experiment 2 versus exper-

iment 1. These results suggest the improved moisture profiles in experiment 2 improved

TPV evolution. However, to fully quantify the differences between experiments would

require re-running experiment 1 to fully evaluate the impact of the moisture initialization

technique.
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Figure 4.1: Experiment one spatially averaged profiles of MITA increment method for (a)

potential temperature, (b) water vapor, (c) zonal wind, and (d) meridional wind over the

Arctic. Each colored line represents a different term in equation 4.1. The black line is the

residual which is the difference between the RHS and LHS in equation 4.1. Error bars are

included on the total accumulated average model tendency profiles only at points where

the 70% confidence intervals (Cavallo et al. 2016) do not cross zero, indicating the profile

values are statistically different from zero.
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Figure 4.2: Experiment one spatially averaged profiles of MITA increment method for

potential temperature (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the

Arctic, and (d) over seaice in the Arctic. Each colored line represents a different term in

equation 4.1. The black line is the residual which is the difference between the RHS and

LHS in equation 4.1. Error bars are included on the total accumulated average model

tendency profiles only at points where the 70% confidence intervals (Cavallo et al. 2016)

do not cross zero, indicating the profile values are statistically different from zero.
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Figure 4.3: Experiment one spatially averaged accumulated model tendencies for potential

temperature (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the Arctic,

and (d) over seaice in the Arctic. Each colored line represents a different physics tendency

representing potential temperature.
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Figure 4.4: Experiment one spatially averaged profiles of MITA increment method for

water vapor (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the Arctic,

and (d) over seaice in the Arctic. Each colored line represents a different term in equation

4.1. The black line is the residual which is the difference between the RHS and LHS in

equation 4.1. Error bars are included on the total accumulated average model tendency

profiles only at points where the 70% confidence intervals (Cavallo et al. 2016) do not

cross zero, indicating the profile values are statistically different from zero.
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Figure 4.5: Experiment one spatially averaged accumulated model tendencies for water

vapor (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the Arctic, and (d)

over seaice in the Arctic. Each colored line represents a different physics tendency

representing qv.
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Figure 4.6: Arctic averaged water vapor profiles (a,b) averaged over the cycling period

and (c,d) at initialization time for experiment one. MPAS ensemble average (solid red

line), MPAS member 70 (dashed red line), and control member GEFS (solid blue line) are

compared to ERA5 (solid black line).
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Figure 4.7: (a) GEFS Water vapor profiles comparing computed water vapor from relative

humidity when the WPS subroutine fix is applied (dashed red line) versus when the

relative humidity fix is not applied (solid red line). The solid black is the water vapor

profile provided from the GEFS data. (b) Water vapor bias profiles comparing when the

relative humidity fix is applied versus when the fix is not applied.
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Figure 4.8: Schematic illustrating the radiative cooling linked back to the increase in

moisture. The red line represents the moisture profile found in MPAS-DART member 70.

The black wiggly lines represent longwave (LW) radiation being absorbed and reemitted

from the layer with increased moisture. The moisture gradient in shown by the black

dashed lines. The longwave wave cooling profile from MPAS-DART member 70 is shown

with by the blue line.
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Figure 4.9: Sea ice concentration provided from (a) NCEP GFS, (b) ERA5, and (c)

passive microwave satellite from National Snow and Ice Data Center (NSIDC) that are

valid on 8 October 2016 at 00 UTC.
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Figure 4.10: Accumulated model tendency profiles for simulations initialized using sea

ice concentration data from (a,b) GEFS and (c,d) ERA5. Figures (a,c) represent total

accumulated averaged model tendency while figures (b,d) are the decomposed model

tendencies.
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Figure 4.11: Experiment two spatially averaged profiles of MITA increment method for

(a) potential temperature, (b) water vapor, (c) zonal wind, and (d) meridional wind over

the Arctic. Each colored line represents a different term in equation 4.1. The black line is

the residual which is the difference between the RHS and LHS in equation 4.1. Error bars

are included on the total accumulated average model tendency profiles only at points

where the 70% confidence intervals (Cavallo et al. 2016) do not cross zero, indicating the

profile values are statistically different from zero.
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Figure 4.12: Arctic averaged water vapor profiles (a,b) averaged over the cycling period

for experiment two. MPAS ensemble average (solid red line), MPAS member 70 (dashed

red line), and control member GEFS (solid blue line) are compared to ERA5 (solid black

line).
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Figure 4.13: Experiment two spatially averaged profiles of MITA increment method for

potential temperature (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the

Arctic, and (d) over seaice in the Arctic. Each colored line represents a different term in

equation 4.1. The black line is the residual which is the difference between the RHS and

LHS in equation 4.1. Error bars are included on the total accumulated average model

tendency profiles only at points where the 70% confidence intervals (Cavallo et al. 2016)

do not cross zero, indicating the profile values are statistically different from zero.
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Figure 4.14: Experiment two spatially averaged accumulated model tendencies for

potential temperature (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the

Arctic, and (d) over seaice in the Arctic. Each colored line represents a different physics

tendency representing potential temperature.
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Figure 4.15: Experiment two spatially averaged profiles of MITA increment method for

water vapor (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the Arctic,

and (d) over seaice in the Arctic. Each colored line represents a different term in equation

4.1. The black line is the residual which is the difference between the RHS and LHS in

equation 4.1. Error bars are included on the total accumulated average model tendency

profiles only at points where the 70% confidence intervals (Cavallo et al. 2016) do not

cross zero, indicating the profile values are statistically different from zero.
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Figure 4.16: Experiment two spatially averaged accumulated model tendencies for water

vapor (a) over the Arctic, (b) over land in the Arctic, (c) over ocean in the Arctic, and (d)

over seaice in the Arctic. Each colored line represents a different physics tendency

representing qv.
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Figure 4.17: Arctic spatially averaged (a,c) MITA increment method and (b,d)

accumulated model tendencies for zonal wind for (a,b) experiment one and (c,d)

experiment two. (a,c) Each colored line represents a different term in equation 4.1. The

black line is the residual which is the difference between the RHS and LHS in equation

4.1. Error bars are included on the total accumulated average model tendency profiles only

at points where the 70% confidence intervals (Cavallo et al. 2016) do not cross zero,

indicating the profile values are statistically different from zero. (b,d) Each colored line

represents a different physics tendency representing the zonal wind.
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Figure 4.18: Water vapor profiles used to initialize WRF single column simulations. (a)

Represents an increase in water vapor while (b) represents a decrease in water vapor.

Shading represents distribution of water vapor within the profiles.
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Figure 4.19: WRF single column model (a) accumulated total tendencies and (b)

accumulated longwave radiation tendency averaged over 105 sea ice grid points spanning

experiment one cycling period. Shading represents 95% of the adjusted water vapor

distribution. The solid lines represent the mean of the adjusted water vapor distribution.
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Figure 4.20: (a) Black line with dots represents the flight path through TPV of interest.

Red line with dots represents the dropsonde profiles used to time-height cross-sections.

(b) Time-height cross-section showing dropsonde potential temperature (colorfill), ERA5

2 PVU surface (thick black line), and dropsonde wind speed (white contours). (c)

Time-height cross-section showing dropsonde potential temperature (colorfill), ERA5 2

PVU surface (thick black line), and dropsonde relative humidityy (white contours).
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Figure 4.21: Schematics showing MPAS-DART cycling procedures for (a) without

NAWDEX observations assimilated and (b) when NAWDEX observations are assimilated.

The black lines correspond to MPAS forecasts while the red lines are the data assimilation

step. The shaded boxes represent the observation window.

140



Figure 4.22: Analysis increment associated only from NAWDEX dropsonde (a)

temperature, (b) water vapor, (c) zonal-wind, and (d) meridional wind.
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Figure 4.23: TPV composite cross-section differences between experiments with

NAWDEX dropsondes versus without NAWDEX dropsonde observations for (a) potential

temperature, (b) Ertel’s potential vorticity (EPV), (c) water vapor, and (d) normal

component of wind (positive values correspond to wind coming out of page).
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Figure 4.24: Eigenvalue spectrum’s for (a) spatial EOF analysis and (b) NAWDEX TPV

Multivariate EOF (MVEOF) analysis. The calculation of the eigenvalue spectrum follows

the equations in North et al. (1982).
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Figure 4.25: EOFs (a) 1 and (b) 2 of the 2 PVU potential temperature analysis field for the

NAWDEX TPV for both experiments with NAWDEX dropsondes assimilated and without

NAWDEX dropsonde assimilated. Proability density functions (PDF) are computed for

each experiments PCs.

144



Figure 4.26: Multivariate EOF 1 that contains cross-section analysis potential

temperature, normal component wind speed, and water vapor for both experiments with

NAWDEX dropsondes assimilated and without NAWDEX dropsonde assimilated.
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Figure 4.27: 2 PVU potential temperature differences between experiments with

NAWDEX observations assimilated vesus without NAWDEX observations assimilated

valid at forecast hour (a) 0, (b) 12, (c) 24, (d) 36, (e) 48, and (f) 60. Hatching represents

significant differences at the 95% confidence level. Significance testing was calculated

using a student t-test. The grey contours are ensemble mean 2 PVU potential temperature

from the experiment where NAWDEX observations were assimilated.
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Figure 4.28: TPV counts (colorfill), median track position (black line), and median

minimum potential temperature associated with tpv (colored dots) for the 96 realization of

the NAWDEX TPV for experiments (a) with NAWDEX dropsondes assimilated and (b)

without NAWDEX dropsondes assimilated.
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Figure 4.29: Potential temperature distribution throughtout the forecast for the NAWDEX

TPV for experiments with NAWDEX dropsondes assimilated (red) and without

NAWDEX dropsondes assimilated (black). The shading shows the range of 95% of the

potential temperature distribution and the dotted line is the median of the potential

temperature distribution.
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Figure 4.30: MPAS-DART member 70 and ERA5 TPV characteristics for TPV tracks

spanning the entire cycling period for (a) experiment one and (b) experiment two. Time

series shows median TPV potential temperature (lines with dots), spread in the potential

temperature associated with TPVs (shading), and number of TPVs that last some lifetime

(dot-dashed line, values on the y-axis). MPAS-DART member 70 TPV tracks were

computed using 6-hour forecasts while ERA5 TPV tracks were computed using analyses.
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Figure 4.31: MPAS-DART member 70 and ERA5 TPV characteristics for TPV tracks

spanning the entire cycling period for (a) experiment one and (b) experiment two. Box

and whisker plot shows minimum potential temperature for each TPV that last longer that

two days. MPAS-DART member 70 TPV tracks were computed using 6-hour forecasts

while ERA5 TPV tracks were computed using analyses.
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Chapter 5

TPV and Rossby Wave Initiation Case Study

5.1 Introduction

The forecast skill of global models has increased over the mid-latitudes in recent decades

(Yang 2017). However, few studies have focused on the ability of global models to pre-

dict the Arctic region. Those studies have focused on the seasonal averaged forecast skill

in the Arctic and initially found low scores compared to the mid-latitudes, but in recent

years, Arctic skill scores have gradually increased to those found in the mid-latitudes (Jung

and Matsueda 2016). However, daily anomaly correlation coefficient (ACC) scores remain

more variable in the Arctic compared to the mid-latitudes with more ACC scores dropping

to below 0.6 (Fig. 1.3). Understanding impacts of Arctic predictability on mid-latitude on

mid-latitude forecast skill could improve lead-times of skill over the mid-latitudes (Francis

and Vavrus 2012; Jung et al. 2014; Francis and Vavrus 2015; Semmler et al. 2016). Jung

et al. (2014) found that nudging the Arctic region towards reanalysis during forecast in-

tegration reduces forecast errors over the mid-latitudes at later forecast lead times. More

recent work expanding on Jung et al. (2014) found the largest reduction in forecast error

in the mid-latitudes occurs over Northern Asia (Semmler et al. 2018). The reduction in

RMSE could imply that a dominant pathway exists for features to leave the Arctic and im-

pact mid-latitude weather. While there are different processes, both Arctic and non-Arctic

related, that could be impacting the forecast skill in this region, one common Arctic feature

that can migrate into the mid-latitudes and interact with weather systems is the TPV (Fig.

5.1). Previous chapters evaluate the ability of the NWP model within the cycling system

to represent TPVs in both analysis and forecasts (t-5 to t=0 in Fig. 5.1). This chapter will

investigate the impacts TPVs can have on the generation of Rossby waves (t=0 and beyond

in Fig. 5.1).

151



Rossby wave initiation and propagation has been studied extensively throughout the

literature. Chapter 1 provides a more in depth look at some of those studies. Most stud-

ies focus on the equatorward side of the jet stream, where upper-tropospheric negative PV

anomalies primarily form as a result of diabatic processes associated with large convective

systems (Rodwell et al. 2013), warm conveyor belts of extra-tropical cyclones (Madonna

et al. 2014; Martı́nez-Alvarado et al. 2016), or recurving tropical cyclones (Archambault

et al. 2013; Grams and Archambault 2016). Fewer studies focus on the poleward side of

the jet where PV anomalies are located (Kew et al. 2010; Davies and Didone 2013; Röthlis-

berger et al. 2018). An isolated positive PV anomaly located near the jet stream could act

to perturb the jet stream and initiate a Rossby wave on the nearby enhanced PV gradient

(Davies and Didone 2013). The strength of the Rossby wave response would depend on

strength and scale of the PV anomaly along with the location relative to the jet (Schwierz

et al. 2004b). Poleward PV anomalies, the focus of this study, can result from wave break-

ing (Martius et al. 2010) or from TPV generation processes. Perturbations to the jet stream

associated with a poleward PV anomaly can lead to surface cyclogenesis (Kew et al. 2010).

Röthlisberger et al. (2018) describes four important ingredients for a wintertime rossby

wave initiation (RWI): 1) PV anomaly approaching the jet on the poleward side around

time of RWI, (2) moisture transport leading to latent heat release which creates a negative

PV anomaly on southern side of the jet, (3) baroclinic structure with a surface low forming

downstream of a PV anomaly, and (4) an amplified downstream ridge with enhanced de-

formation once RWI has started. However, the study does not conclude which of the four

ingredients is dynamically dominant in the RWI events, leading to the conclusion that some

combination of the ingredients must be important. The present study will investigate the

impacts of different TPV characteristics on RWI and the sensitivities of the downstream

forecasts.
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5.2 Methods

Rossby wave packet identification datasets have been produced using different feature-

based techniques which would include RWI events (Glatt and Wirth 2014; Souders et al.

2014; Grazzini and Vitart 2015). This study will use the RWI dataset produced by Röthlis-

berger et al. (2016). RWIs were identified by geometric changes in the 2 PVU surface

contour on different isentropic levels (Röthlisberger et al. 2016). The highest frequency

of RWIs is over the North Pacific during the wintertime (Fig. 5.2). There is also RWI

frequency over the North Atlantic in most seasons (Fig. 5.2).

Starting from the RWI dataset, TPVs are identified which were located near the RWI

events in order to identify our case study. Forecast sensitivities associated with TPVs and

other large-scale characteristics are investigated through the use of ensemble sensitivity

analysis (ESA; Hakim and Torn 2008). The formulation of ESA uses linear relations and

gaussian statistics (Hakim and Torn 2008). For a given ensemble size M, the original

expression for ESA is a linear regression of M sized forecast metrics to M sized state

variables, where the forecast metric is the dependent variable and the state variable is the

independent variable (Torn and Hakim 2008),

∂J
∂x

=
cov(J,x)
var(x)

. (5.1)

From equation 5.1, J is the forecast metric and x is the state variable for 1 × M ensemble

estimates. Furthermore, cov denotes the covariance of J and x while var represents the

variance of 1 × M state variables. Using this formulation, the linear regression describes

how the forecast metric (dependent variable) is changing as the state variable (independent

variable) is changing and carries the units of the forecast metric over the state variable. In

more recent studies, the ESA formula is modified to divide by both the standard deviation

of the forecast metric and state variable (Chang et al. 2013; Zheng et al. 2013), to provide

the following equation for the sensitivity,

“sensitivity” =
cov(J,x)√

var(J)
√

var(x)
. (5.2)
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This sensitivity is dimensionless and is equal to the correlation between the forecast metric

and the state variable. Another way to interpret equation 5.2 is as sensitivity computed for

forecast metrics with the variance normalized (Chang et al. 2013).

This study employs the correlation form of ESA (eq. 5.2), which is defined as “sensi-

tivity” for this rest of this study. ESA has been applied to many different research problems

which includes sensitivities to initial conditions (Torn and Hakim 2009), extra-tropical cy-

clones (Torn and Hakim 2009; Chang et al. 2013; Zheng et al. 2013), precipitation forecasts

(Torn and Hakim 2008), African easterly waves (Torn 2010), and mesoscale convection

forecasts (Bednarczyk and Ancell 2015; Hill et al. 2016). Statistical significance of the

calculated sensitivity is computed using a t-test with the null hypothesis that there is no

linear relationship between the forecast metric and the state variable (correlation is zero).

This study computed sensitivity values over the entire domain, but will highlight regions

where statistical significance is achieved at the 95% confidence interval. In this study,

the multiple instances of ESA are used with varying forecast metric (J)–state variable (x)

pairs: analysis TPV intensity–250 hPa windspeed; analysis TPV position–250 hPa wind-

speed; TPV intensity–250 hPa height; analysis TPV position–250 hPa height; analysis TPV

position–precipitable water; analysis TPV position–poleward moisture flux; minimum sea

level pressure–320 K PV; minimum sea level pressure–320 K windspeed; minimum sea

level pressure–preicipitable water; minimum sea level pressure–poleward moisture flux.

When using ESA, a forecast metric must be chosen. Various forecast metrics are em-

ployed in previous studies, but all usually include taking a statistical measure (e.g. aver-

age, max, min, etc) over a defined area in the region of interest (Torn and Hakim 2008;

Chang et al. 2013). A recent approach combines ESA with EOF analysis to investigate

the forecasts sensitivities associated with the dominant modes of variability (Zheng et al.

2013). For this study, forecast sensitivities associated with different TPV characteristics

are evaluated. Using a watershed TPV tracker (Szapiro and Cavallo 2018), two metrics are

computed to test their sensitivities in forecasts: TPV intensity and position. TPV intensity
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is defined as the minimum potential temperature associated with the TPV of interest, while

the position of the TPV is computed as distance from TPV center to the jet stream. These

metrics provide a method to test the impacts of both TPV position and intensity on down-

stream development of RWI. Furthermore, investigation of sensitivities of forecast surface

low pressure development to upstream PV features is considered for two different time pe-

riods. Minimum forecast surface low pressures are calculated for the different ensemble

members over a specified region, described below.

To select an individual RWI event for this case study, only wintertime North Pacific

events are considered. This ensured the maximum number of events to be considered since

the North Pacific had the most RWI events (Fig. 1.4). Combining the RWI dataset with

TPV tracks, the distance between RWI events and the closest TPV is calculated. To be

considered, TPV genesis had to start north of 65◦N latitude. Composites centered on RWI

events show both a more enhanced negative anomaly in 2 PVU potential temperature and

larger increase in windspeed when TPVs are close (within less than 1000 km) versus when

they far (more than 2500 km) away (Fig. 5.3). When TPV are far away the pattern in

potential temperature anomalies and the shift in windspeed max resembles a wave breaking

pattern which may be the reason the RWI was identified. Furthermore, the probability of

a TPV associated with a RWI event is higher in the wintertime over the North Pacific

as compared to summer (Fig. 1.4). Lastly, RWI events identified before 2008 could not

considered for this case study since GEFS forecasts used for ensemble initialization are

not available. Applying a 1000 km threshold for distance between RWIs and TPVs (e.g.,

considering only “close” cases) leaves 97 cases for consideration. Periods when no surface

cyclone is present and periods where forecast skill remained high are not considered. Out

of the remaining dates, the RWI event chosen for this study occurred on 31 December 2011

at 00z. MPAS-DART forecasts are produced starting 12 hours prior to the identified RWI

(i.e., 31 December 2011 at 12z), which allows MPAS-DART to model the evolution of the

RWI-TPV interaction. Five-day forecasts are produced for all 96 ensemble members.
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5.3 RWI Case Study Description

The evolution of the RWI event chosen for this case study is investigated with ERA5 analy-

ses (Fig. 5.4). Twelve hours prior to the RWI event, a TPV was situated just to the northeast

of Japan, and the zonal jet appears relatively undisturbed (Fig. 5.4 a). At the time of the

RWI event, small undulations in the 2 PVU potential temperature surface formed along

with a more northerly component to the wind in the location of the RWI (Fig. 5.4 b). The

undulations in the 2 PVU potential temperature surface started to intensify while a surface

low pressure system began to develop 24 hours after RWI occurred (Fig. 5.4 b-d). The

surface low pressure system associated with the RWI continued to deepen until it reached

a minimum pressure of around 970 hPa at 72 hours after the RWI (Fig. 5.4 e-h). Further-

more, a second TPV formed over Siberia and slowly progressed towards the jet stream,

which led to the formation of a second surface pressure system apparent on 3 January 2012

at 00z (Fig. 5.4). The interaction of the Siberia TPV and jet stream produced a RWI event,

which is captured with the RWI dataset.

In order to evaluate whether MPAS-DART forecasts produce a reasonable evolution of

this event, the following diagnostics are chosen: 2 PVU potential temperature and wind,

and mean sea level pressure. Evaluations are performed with respect to ERA5. Three

MPAS-DART ensemble members are excluded due to these members not identifying the

2 PVU surface but identifies spurious features in MPAS potential vorticity near the model

top being instead.

At analysis time, the ensemble mean position and strength of the TPV of interest in

MPAS-DART is very similar to that found in ERA5 (compare Fig. 5.5 a to Fig. 5.4 a).

Furthermore, the position and shape of the zonal jet is similar between ERA5 and MPAS-

DART analyses. However, differences in analyses become apparent near the US continent.

The ERA5 2 PVU potential temperature analysis shows a trough just off the California

coast which does not appear in MPAS-DART ensemble mean (compare Fig. 5.5 a to Fig.

5.4 a). The misrepresentation of the trough in the MPAS-DART analyses could be related to
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the mesh transition zone of coarser resolution located in that region (Fig. 2.7). Regardless,

the MPAS-DART representation of the TPV of interest matches the ERA5 analysis reason-

ably well in the higher resolution mesh region near the time of the RWI event (compare

Fig. 5.5 b to Fig. 5.4 b).

At the time of the RWI, forecast differences in the mean sea level pressure field become

apparent downstream of the RWI, where ERA5 shows lower surface low pressures than

MPAS-DART (compare Fig. 5.5 b to Fig. 5.4 b). Differences in sea level pressure is likely

related to the same misrepresentation of the trough just west of California discussed above.

The MPAS-DART evolution of the RWI is captured relatively well by MPAS-DART but

timing of the surface low pressure development associated with the RWI differs slightly

with ERA5 (compare Fig. 5.5 c-e to Fig. 5.4 c-e). Furthermore, the continued deepen-

ing of the surface low pressure in MPAS-DART is not as intense as what is shown in the

ERA5 analyses (compare Fig. 5.5 f-h to Fig. 5.4 f-h). While some differences exist be-

tween MPAS-DART and ERA5, overall the MPAS-DART forecasts simulate the evolution

of the fields reasonably. Lastly, evaluation of the ensemble’s spread-skill relationship is

completed to determine the spread is capturing enough uncertainty. Profiles of the spread-

skill relationship was evaluate against observations back in Chapter 3 where there was

good agreement between RMSE and total spread within MPAS-DART 6-hour forecasts

throughtout the cycling. For these particular forecasts, the spread-skill relationship is in

agreement for the early forecast times but the agreement disappears as forecast time in-

crease to around 1.5 days (Not Shown). The RMSE within the forecasts grow quicker than

the ensemble, meaning our ensemble becomes under-dispersive as forecast hours grow.

Even so, the quality of the ensemble remains good up to 2 days which is the maximum

length of a forecast used for ESA calculations.

Next, a comparison of the structures associated with the TPV of interest are evaluated

for both MPAS-DART and ERA5. Cross-sections are computed through the middle of the

TPV from ERA5 and MPAS-DART ensemble mean analysis fields (Fig. 5.6). In ERA5,
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the TPV extends down to around 700 hPa and the circulation associated with the TPV

is captured relatively well (Fig. 5.6 a). In MPAS-DART, the TPV also extends down to

around 700 hPa but the circulation associated with the TPV is less well represented (Fig.

5.6 b). The distance of the TPV to the jet stream, situated around 200 hPa, is similar be-

tween MPAS-DART and ERA5 (compared Fig 5.6 b to Fig 5.6 a). Furthermore, there is

evidence of a jet superposition present in both MPAS-DART and ERA5, which is the ver-

tical stacking of the subtropical and polar jet stream (Defant and Taba 1957; Winters and

Martin 2014). The chosen case of interest is located in a region with high jet superposition

event frequency (Christenson et al. 2017). Jet superposition is also apparent on the 2 PVU

potential temperature surface, which is highlighted by the enhanced potential gradient lo-

cated equatorward of the TPV of interest in both MPAS-DART and ERA5 (Figs. 5.5 and

5.4). The enhanced 2 PVU potential temperature gradient near the TPV of interest could

result in a nearly vertical tropopause structure extending from the polar to the subtropical

tropopause (Winters and Martin 2014). Overall, the vertical structure is in good agreement

between the two modeling systems.

Evaluation of the RWI event indicates two areas well-suited for investigation of fore-

cast sensitivities using ESA. The first evaluation period focuses on TPV characteristics,

including intensity and position relative to the jet stream, and their impacts on the devel-

opment of the RWI (Fig. 5.7 a). This evaluation period spans 30 December 2011 at 12z

to 31 December 2011 at 6z which captures TPV evolution leading up to the RWI. The sec-

ond evaluation period focuses on the formation of the surface low pressure that develops

downstream of the RWI. This evaluation period spans 31 December 2011 at 00z (time of

RWI) to 1 January 2012 at 12z. ESA is performed on all above-listed pairs which use min-

imum sea level pressure as the forecast metric (J) within a box around the region where

the surface low develops (Fig. 5.7 b). The 2 PVU potential temperature surface is noisy

due to interpolation issues, thus PV on the 320 K potential temperature surface (this level

is coincident with the identified RWI) is used since it can act as a proxy for the location
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of the TPV of interest. Connections between the development of the surface low pressure

system and upstream characteristics of the PV and windspeed surface are investigated.

5.4 Results from Case Studies

Previous literature proposes that PV anomalies on the poleward side of the jet could induce

a Rossby wave (Davies and Didone 2013). While some studies imply that TPVs could act

to induce Rossby waves (Röthlisberger et al. 2016, 2018), no studies to-date have evalu-

ated it from the TPV framework (2 PVU potential temperature). The first evaluation period

focuses on TPV characteristics in the MPAS-DART analyses and their impacts on Rossby

wave development downstream (Fig. 5.5 a). TPV minimum potential temperature and dis-

tance between the TPV and jet stream are evaluated (Fig. 5.8). These TPV characteristics

are computed for each analysis ensemble member, excluding the 3 aforementioned mem-

bers. The average TPV minimum potential temperature across ensemble members is ∼275

K with individual member values from 273 to 279 K (Fig. 5.8 a). The average TPV-jet

stream distance is ∼1000 km and ranges from 500 km to 1200 km (Fig. 5.8 b).

Sensitivities of wind speed and height forecasts at 250 hPa are now investigated, since

the maximum in the jet stream is situated at this level (Fig. 5.6 b). At analysis time near

the TPV, there is a small region of significant negative correlation, which means lower TPV

mimimum potential temperatures were associated with stronger 250 hPa wind speeds (Fig.

5.9 a). Lower TPV potential temperatures imply an enhanced the potential temperature

gradient, and, in turn, increased wind speeds. Closer to the RWI event, the patterns of

correlation became less organized and less significant suggesting there is not a linear rela-

tionship between TPV mimimum potential temperature and 250 hpa wind speed (Fig. 5.9

b-d).

For TPV-jet stream distance, there are significant negative correlations in the region

around the TPV, meaning lower distances are associated with stronger 250 hPa wind speeds

(Fig. 5.10 a). TPVs that are closer to the jet stream enhance the potential temperature
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gradient, which, in turn, leads to stronger wind speeds. As time progresses towards the

RWI event, the regions of significant negative correlation propagate downstream and are

present up to the time of the RWI event (Fig. 5.10 b-d). In general, sensitivities of 250 hPa

wind speeds forecasts to the TPV-jet stream distance are larger and have a longer-lasting

impact than the sensitivities associated with TPV minimum potential temperature.

In the region of the RWI, greater 250 hPa heights are expected as the Rossby wave

starts to grow. There are no significant correlations through the early forecast period when

evaluating the sensitivity of the 250 hPa heights to TPV minimum potential temperature

(Fig. 5.11 a-d). There is not a linear relationship between TPV minimum potential temper-

ature and 250 hPa heights. In the evaluation of sensitivities associated with TPV-jet stream

distance, there are small areas of significant correlations in the analysis time (Fig. 5.12

a). However, as forecast time increases there are growing significant negative correlations

in the region downstream of the TPV and near the RWI event (Fig. 5.12 b-d). This im-

plies that smaller TPV-jet stream distance in the analysis are connected to increased 250

heights downstream. The 250 hPa heights and wind speeds have similar forecast sensi-

tivity to TPV-jet stream distances. Also, there is stronger association between the RWI

event and TPV-jet stream distance than the RWI event and TPV minimum potential tem-

perature. This suggests that the relative position of the TPV to the jet stream is more

impactful on Rossby wave development, consistent with previous studies on PV anomalies

(Schwierz et al. 2004a; Davies and Didone 2013). Lastly, TPVs that are close to the jet

stream help enhance 2 PVU potential temperature gradient (and thus the vertical structure

of PV), which is associated with an increase in wind speeds in a superimposed jet stream

(Winters and Martin 2014). A stronger jet stream may intensify the horizontal and vertical

motion associated with the ageostrophic circulation (Handlos and Martin 2016), leading to

an enhancement of downstream high-impact weather (Defant 1959; Hoskins and Berrisford

1988; Winters and Martin 2014, 2016).
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In the development of a RWI, moisture transport leading to latent release is one of the

four critical ingredients (Röthlisberger et al. 2018). Moisture and poleward moisture flux

sensitivities are investigated in relation to the TPV-jet stream distances, since that is where

the largest significant sensitivities are found in 250 hPa heights and windspeed. Precipitable

water is used to quantify the change in total column water vapor associated with distances

between the TPV and the jet stream. Poleward moisture flux is computed as a product

between 925 hPa meridional wind component v (cm s−1) and the 925 hPa mixing ratio (kg

kg−1), which follows the method of Winters and Martin (2014). Precipitable water is not

provided in the MPAS-DART analysis, so computed sensitivities start at forecast hour six.

At forecast hour six, there is a small area of significant positive correlation just south of

Japan and an area of significant negative correlation just east downstream of Japan (Fig.

5.13 a). As forecast hour evolves, the region of significant negative correlation persists

while the region of significant positive correlation declines (Fig. 5.13 b-d). The significant

negative correlation means shorter TPV-jet stream distances may result in an increase in

precipitable water downstream. To investigate the connection between moisture transport

and RWIs, poleward moisture flux sensitivity to TPV-jet stream distances are computed. In

the early forecast periods, there are no large areas of significant correlations in the region of

increased poleward moisture flux (Fig. 5.14 a,b). However, there is a small area of signif-

icant negative correlations co-located in the region of increased poleward moisture flux at

forecast hour 12 (Fig. 5.14 c). The significant negative correlation suggests an increase in

poleward moisture flux with shorter TPV-jet stream distances. Winters and Martin (2014)

finds increased poleward moisture flux associated with jet superposition event in response

to the superposed jet’s ageostrophic circulation. TPVs that are closer to the jet stream

could further enhance the jet streak, which could aid in stronger ageostrophic circulations

increasing moisture in the vicinity. Lastly, larger regions of significant correlations for

precipitable water are found compared to the poleward moisture flux, but this could be a

result of moisture flux being computed on the 925 hPa surface. Since precipitable water is
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total column integrated value, the increase in moisture might be occurring at levels above

925 hPa. While areas of significant correlations are relatively small, the impacts of mois-

ture transport might be more associated with a surface cyclone that develops once there is

enough dynamically driven rising motion.

The surface low pressure as a result of the RWI is not as well represented in the en-

semble mean when compared to ERA5 (compared Fig. 5.5e to Fig. 5.4e). To investigate

sensitivities associated with the development of the surface low pressure, minimum sea

level pressures were identified in the development region of the surface low (Fig. 5.7 a).

The average minimum sea level pressure for the surface cyclone of interest is ∼978 hPa

while ranging from 969 hPa to 986 hPa (Fig. 5.15 a). While the sea level pressure ensemble

mean for the surface low pressure is around 988 hPa, there are some ensemble members

where a strong surface cyclone develops. At the time and location of the RWI, there is a

small area of significant positive correlation, suggesting lower values of potential vorticity

would later result in lower pressures (Fig. 5.16 a). The above sensitivity highlights a poten-

tial vorticity gradient sensitivity where a shift in the gradient can have impacts downstream.

Since this is occurring around the location of the RWI event, this could imply that the fore-

cast sensitivity is related to the development of the RWI. As forecast lead times increased,

the significant positive correlation evolves downstream into the development area of the

surface low pressure (marked by the box in Fig. 5.16 b-d). Twelve hours prior to the peak

strength of the surface low pressure, there is a large area of significant positive correlation

within the surface low development region and an area of significant negative correlations

just downstream of it (Fig. 5.16 d). Significant positive correlations mean lower surface

pressures are associated with lower values of PV at the time of peak surface cyclone inten-

sity. The lower values of PV may be related to the amplified ridge that is in place within the

area where the surface low pressure develops and intensifies. Furthermore, the significant

negative correlations found just downstream of the development of the surface low pressure
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could be representing the trough position and its effect on the development of the surface

cyclone.

Forecast sensitivities of 250 hPa wind speed to TPV-jet stream distances are found in

the area of the RWI, which motivates investigation of the sensitivity of surface low pressure

development to the wind speed on the 320 K potential temperature surface (Fig. 5.17). At

the time of the RWI, there is a dipole pattern in sensitivities near the RWI location where

there are significant positive and negative correlations (Fig. 5.17 a). The significant posi-

tive correlations mean a decrease in wind speed is associated with lower surface pressures,

and the significant negative correlations mean a increase in wind speed is associated with

lower surface pressure. The dipole pattern of correlations suggests stronger wind speeds

are shifted upstream in instances with lower surface pressures. As forecast lead times in-

crease, the dipole pattern in sensitivities appears downstream in the region of surface low

pressure development (Fig. 5.17 b-d). Twelve hours prior to the peak strength of the surface

low pressure, there are significant negative correlations within the region of the surface low

pressure development extending downstream around the trough (Fig. 5.17 d). Furthermore,

there is a dipole pattern with both significant negative and positive correlations around the

trough (Fig. 5.17 d). Within the surface low pressure development region, significant neg-

ative correlations show that an increase in the wind speeds is connected to lower surface

pressures. This may be highlighting the importance of the upper-level large-scale deforma-

tion thought to be connected to RWIs (Röthlisberger et al. 2018). Furthermore, this may be

representing divergence aloft, which would further aid in the development of the surface

low pressure.

Since diabatic processes and moisture transport are linked to deepening extratropical

cyclones (Knippertz and Wernli 2010; Liberato et al. 2011; Fink et al. 2012), which moti-

vates investigation of the roles moisture and moisture transport play in the development of

the surface low pressure. At the time of the RWI, there is a small area of significant neg-

ative correlation in the region of the identified RWI (Fig. 5.18 a). The area of significant
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negative correlation is largest in magnitude in the area of the surface cyclone peak intensity

(Fig. 5.18 b-d). The significant negative correlations suggest a deeper surface pressure cy-

clone forms if there are large values of precipitable water. At early forecast times near the

RWI, larger values of precipitable water result in a strong surface low pressure, indicated

by the negative correlations. In terms of poleward moisture flux, there are small scattered

areas of significant positive and negative correlations at the time of the RWI (Fig. 5.19 a).

As forecast hours progress, there is a dominant area of significant negative correlation in

the region where the poleward moisture flux is enhanced (Fig. 5.19 a-d). Twelve hours

prior to the surface low’s maximum intensity, there is a tri-pole (positive-negative-positive)

pattern in significant correlations associated with the poleward moisture flux (Fig. 5.19 d).

The forecast surface low pressure sensitivities associated with both precipitable water and

poleward moisture flux begin upstream around the RWI event and then appear downstream

in the location of the cyclone development. The increase in moisture in and around the sur-

face cyclone development region aid in development of the Rossby wave through diabatic

effects (Rodwell et al. 2013; Stensrud 2013). Since moisture sensitivities are relatively

small for analysis TPV-jet stream distances (Figs. 5.13 and 5.14), the development of the

surface cyclone has the largest impact on the moisture transport, which likely plays a role

in the RWI.

Overall, the sensitivities are largest for TPV-jet stream distances compared to TPV in-

tensity for the development of the RWI event. If a TPV is closer to the jet stream, potential

temperature gradients on the tropopause – and hence the corresponding wind speeds –

may be greater. Also, TPVs closer to the jet stream allow the induced flow around the

PV anomaly to modify the flow, which would have a larger impact on perturbing the jet

stream. In superpostion jet cases, closer TPVs steepen the potential vorticity wall and

increase horizontal gradients in potential temperature. Since jet superposition events are

linked to high-impact weather (Bosart et al. 1996b; Christenson 2013), better understand-

ing of their roles on the development of RWI events could help increase predictability.
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Moisture transport sensitivities are small for both considered TPV characteristics, but there

is a small connection implying TPVs that are in relatively close proximity to the jet stream

result in increased moisture near the time of the RWI. It is still unclear if this response is

related to the jet superposition ageostrophic circulation (Winters and Martin 2014) or if

closer TPVs simply lead to quicker development of a surface low pressure, which drives

the moisture transport. The sensitivities associated with the development of the surface

cyclone start near the RWI location and are large for both the potential vorticity and the

windspeed on the 320 K potential temperature surface. The large magnitudes of the signif-

icant negative correlations found for the sensitivities to the windspeeds could be indicative

of the importance of divergence associated with downstream ridging (Röthlisberger et al.

2018). Lastly, the moisture sensitivities for the surface cyclone development are present

near the RWI and downstream. Strong surface low pressure is linked to either an increase

in precipitable water or increased poleward moisture flux. Further investigation is needed

to determine if the increase in moisture is a result of a stronger cyclone advecting the mois-

ture poleward or if the stronger low pressure is a result of the moisture increase.
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Figure 5.1: Diagram showing a TPV (blue circle) and mid-latitude interaction. Times -5 to

0 are analysis representative of a TPV moving out of the Arctic and interacting with a jet

streak (red). Times 0 to +7 are forecast representative of the height field (black contours)

propagating downstream. The different black contours represent the uncertainty

associated with the forecast height field.
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Figure 5.2: Seasonal climatology of gridded RWI segments (frequency is per month and

per 1◦ by 1◦ grid box) for (a) DJF, (b) MAM, (c) JJA, and (d) SON. The value of 0.1 is

highlighted by the black contour. Figure is from from Röthlisberger et al. (2016)
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Figure 5.3: RWI event centered composites of 2 PVU potential temperature anomalies

(colorfill, K) and windspeed anomalies (contours, knots) for (a) 15th percentile ((within

less than 1000 km) and (b) 85th percentile (more than 2500 km) concerning TPV RWI

distance. Anomalies were calculated from a ERA5 climatology spanning 1980 to 2010.
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Figure 5.4: ERA5 analysis of 2 PVU potential temperature (colorfill, K), 2 PVU wind

(barbs, knots), and mean sea level pressure (black contours, hPa) for (a) 12 hours prior to

RWI, (b) time of RWI, (c) 12 hours after, (d) 24 hours after, (e) 36 hours after, (f) 48 hours

after, (g) 60 hours after and (h) 72 hours after the RWI event occurred. The gold star

represents the location of the identified RWI event. Analysis cross-section through TPV of

interest is denoted by the white line.
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Figure 5.5: MPAS-DART analysis and forecasts ensemble mean of 2 PVU potential

temperature (colorfill, K), 2 PVU wind (barbs, knots), and mean sea level pressure (black

contours, hPa) for (a) 12 hours prior to RWI, (b) time of RWI, (c) 12 hours after, (d) 24

hours after, (e) 36 hours after, (f) 48 hours after, (g) 60 hours after and (h) 72 hours after

the RWI event occurred. The gold star represents the location of the identified RWI event.

Analysis cross-section through TPV of interest is denoted by the white line.
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Figure 5.6: North-south cross-section through TPV of interest showing potential vorticity

(colorfill, PVU), potential temperature (black contours, K) and zonal windspeed (white

contours, knots) for (a) ERA5 and (b) MPAS-DART ensemble mean analysis.
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Figure 5.7: MPAS-DART ensemble average 2 PVU potential temperature (colorfill, K), 2

PVU wind (barbs, knots), and mean sea level pressure (black contours, hPa) for (a) at the

time of the RWI event and (b) 72 hours after initial RWI event. Black boxes denote the

area that minimum sea level pressures were computed for each ensemble member.
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Figure 5.8: Histograms showing analysis (a) minimum potential temperature and (b)

distance to the jet stream for the TPV.
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Figure 5.9: Sensitivity (Eq. 5.2) of 250 hPa windspeed to analysis minimum potential

temperature associated with TPV of interest for forecast hours (a) 0, (b) 6, (c) 12, and (d)

18. Black contours are the ensemble mean 250 hPa geopotential heights (m) surface.

Black stars indicate relative position of TPV of interest. RWI occurred on 31 December

2011 at 00z.
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Figure 5.10: Sensitivity (Eq. 5.2) of 250 hPa windspeed to the distance from the jet stream

to TPV in the analysis for forecast hours (a) 0, (b) 6, (c) 12, and (d) 18. Black contours are

the ensemble mean 250 hPa geopotential heights (m) surface. Black stars indicate relative

position of TPV of interest. RWI occurred on 31 December 2011 at 00z.
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Figure 5.11: Sensitivity (Eq. 5.2) of 250 hPa windspeed to analysis minimum potential

temperature associated with TPV of interest for forecast hours (a) 0, (b) 6, (c) 12, and (d)

18. Black contours are the ensemble mean 250 hPa geopotential heights (m) surface.

Black stars indicate relative position of TPV of interest. RWI occurred on 31 December

2011 at 00z.
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Figure 5.12: Sensitivity (Eq. 5.2) of 250 hPa windspeed to the distance from the jet stream

to TPV in the analysis for forecast hours (a) 0, (b) 6, (c) 12, and (d) 18. Black contours are

the ensemble mean 250 hPa geopotential heights (m) surface. Black stars indicate relative

position of TPV of interest. RWI occurred on 31 December 2011 at 00z.
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Figure 5.13: Sensitivity (Eq. 5.2) of precipitable water (Kg m−2) to the distance from the

jet stream to TPV in the analysis for forecast hours (a) 6, (b) 12, (c) 18, and (d) 24. Black

contours are the ensemble mean precipitable water. Black dashed contours are the

ensemble mean 250 hPa geopotential heights (m) surface. Black stars indicate relative

position of TPV of interest. RWI occurred on 31 December 2011 at 00z.
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Figure 5.14: Sensitivity (Eq. 5.2) of poleward moisture flux (cm s−1) to the distance from

the jet stream to TPV in the analysis for forecast hours (a) 6, (b) 12, (c) 18, and (d) 24.

Black contours are the ensemble mean poleward moisture flux. Black dashed contours are

the ensemble mean 250 hPa geopotential heights (m) surface. Black stars indicate relative

position of TPV of interest. RWI occurred on 31 December 2011 at 00z.
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Figure 5.15: Histogram of minimum sea level pressures from each ensemble member

within the sensitivity box.
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Figure 5.16: Sensitivity (Eq. 5.2) of mean sea level pressure to potential vorticity on 320

Kelvin surface for forecast hours (a) 12, (b) 24, (c) 36, and (d) 48. Black contours are the

ensemble mean potential vorticity (PVU) on the 320 Kelvin potential temperature surface.

The black box represents the sensitivity box where minimum surface pressures where

computed for each ensemble member. Black stars indicate relative position of TPV of

interest. Black circle is relative position of surface cyclone. RWI occurred on 31

December 2011 at 00z.
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Figure 5.17: Sensitivity (Eq. 5.2) of mean sea level pressure to wind speeds on the 320

Kelvin surface for forecast hours (a) 12, (b) 24, (c) 36, and (d) 48. Black contours are the

ensemble mean potential vorticity (PVU) on the 320 Kelvin potential temperature surface.

The black box represents the sensitivity box where minimum surface pressures where

computed for each ensemble member. Black stars indicate relative position of TPV of

interest. Black circle is relative position of surface cyclone. RWI occurred on 31

December 2011 at 00z.
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Figure 5.18: Sensitivity (Eq. 5.2) of mean sea level pressure to precipitable water (Kg

m−2) for forecast hours (a) 12, (b) 24, (c) 36, and (d) 48. Black contours are the ensemble

mean precipitable water. Black dashed contours show the ensemble mean 2, 3, and 6

potential vorticity (PVU) contours on 320 Kelvin potential temperature surface. The black

box represents the sensitivity box where minimum surface pressures where computed for

each ensemble member. Black stars indicate relative position of TPV of interest. Black

circle is relative position of surface cyclone. RWI occurred on 31 December 2011 at 00z.
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Figure 5.19: Sensitivity (Eq. 5.2) of mean sea level pressure to poleward moisture flux (cm

s−1) for forecast hours (a) 12, (b) 24, (c) 36, and (d) 48. Black contours are the ensemble

mean poleward moisture flux. Black dashed contours show the ensemble mean 2, 3, and 6

potential vorticity (PVU) contours on 320 Kelvin potential temperature surface. The black

box represents the sensitivity box where minimum surface pressures where computed for

each ensemble member. Black stars indicate relative position of TPV of interest. Black

circle is relative position of surface cyclone. RWI occurred on 31 December 2011 at 00z.
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Chapter 6

Conclusions

The Arctic has been changing over recent decades. Temperatures are rising more rapidly

than elsewhere via Arctic amplification (Serreze and Francis 2006; Blunden and Arndt

2013) and sea ice is rapidly declining (Screen and Simmonds 2010a). It is important to

quantify how these observed rapid changes in the Arctic may impact mid-latitude weather

that effects large portions of the general population. Studies have begun to explore the im-

pacts changes observed in Arctic have on mid-latitude weather (Min et al. 2011; Coumou

and Rahmstorf 2012; Westra et al. 2013). Cohen et al. (2014b) proposes three dynamical

pathways through which the observed rapid changes over the Arctic can effect the mid-

latitudes, but there are still large uncertainties surrounding such pathways (Barnes 2013).

An improved physical understanding of the processes through which energy can be trans-

ferred from the Arctic to the mid-latitudes is critical in order to understand what their

implications may be.

Tropopause polar vortices (or TPVs) are features frequently observed in the Artic that

can migrate into the mid-latitudes. These long-lived, coherent vortices are defined by

closed potential temperature contours on the 2 PVU potential vorticity surface. Due to

the fact that TPVs reside in the upper-troposphere lower-stratosphere of the Arctic away

from the jet stream, their maintenance and intensification are primarily to diabatic effects

(Cavallo and Hakim 2010). Climatological data show a preferred pathway through which

TPVs move from the Arctic to the mid-latitudes over the North Pacific/Northern Asia in

the wintertime (Fig. 1.4), in agreement with Semmler et al. (2018), suggesting this is a

pathway for information from the Arctic to enter the mid-latitudes.

TPVs can interact with the jet stream in the mid-latitudes, leading to perturbations

which can lead to Rossby wave initiation (RWI) (Kew et al. 2010; Davies and Didone
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2013). Most RWI studies focus on upper-tropospheric negative PV anomalies related to

diabatic effects (Rodwell et al. 2013; Madonna et al. 2014; Grams and Archambault 2016),

while fewer studies focus on PV anomalies on the poleward side of the jet stream (Röthlis-

berger et al. 2018). Further understanding of the processes related to TPVs interacting

with the jet stream may increase predictability of RWI events and lead to improvements in

downstream forecasts.

In order to model TPV evolution correctly and any associated impacts in mid-latitudes

such as RWI events, numerical weather prediction (NWP) models must be able to represent

important TPV-related process accurately, such as latent heating, radiation, and moisture.

In this study, the development and application of a new research tool, MPAS-DART, to

study TPVs and their impacts on atmospheric flow is implemented and evaluated. This

study is one of the first to explore the application of MPAS-DART in the Arctic. The tool

is evaluated against observations to identify any potential limitations, particularly those

which could potentially impact the representation of TPVs. A newly developed process-

based method is used to identify and investigate potential biases. Next, some of the first

ever in-situ observations of a TPV are assimilated to quantify observation impacts on TPV

representation in a case study. Lastly, sensitivities related to TPV characteristics and the

development of an RWI event are evaluated.

The modeling system used for this study, MPAS-DART, is an ensemble Kalman fil-

ter (EnKF) data assimilation system coupled with the Model for Prediction Across Scale

(MPAS) global model. The use of a global model provides a method to capture the evolu-

tion of the atmosphere in both the Arctic and the mid-latitudes. MPAS is a non-hydrostatic

global model that allows smooth transitions from coarse resolutions to finer resolutions.

This feature allows for mesoscale mesh resolutions over the Arctic, fine enough to resolve

TPVs, while reducing computational expense by applying coarse resolution elsewhere. The

background error covariances in MPAS-DART are flow-dependent, allowing information
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to spread to appropriate locations across the domain based on the physical state of the at-

mosphere for a given time, such as along fronts and across synoptic scale cyclones. Since

the Arctic is a data sparse region, the use of a flow-dependent background error covari-

ance is especially important (Whitaker et al. 2004; Jung and Leutbecher 2007; Whitaker

et al. 2009). Furthermore, deficiencies in the model physics parameterization schemes

can be isolated in a cycling EnKF system, allowing for process-based corrections. The

non-hydrostatic core within MPAS allows for better representation of mesoscale processes

that might not be well-captured in global models with hydrostatic cores, such as tropical

cyclones, squall lines, and TPVs.

The number of observations over the Arctic is relatively limited in comparison to the

dense conventional observation coverage over the mid-latitudes (Fig. 2.1 a). Over the Arc-

tic, there is a gap in conventional observation coverage, which puts more weight on polar

orbiting satellite observations (Fig. 2.1 b). Data assimilation over the Arctic relies heavily

on polar orbiting satellite observations, as these account for the highest percentage of ob-

servations assimilated over the region (Fig. 2.3 a). Including these polar orbiting satellite

observations increases the assimilated observation count in MPAS-DART by ∼25,000 (in

addition to available conventional observations), which can improve analyses. The combi-

nation of EnKF and MPAS in MPAS-DART provides accurate analyses for this study. To

explore a variety of research questions throughout this work, two different MPAS-DART

cycling experiments are ran for fall 2016 and winter 2011 (experiment 1 and 2, respectively;

see Table 2.2).

Ensemble inflation can provide a good estimate of similarity between the model and

observation, where reduced inflation values imply better agreement. Evaluation of max-

imum ensemble inflation shows an overall decrease with time for both experiments. For

early cycling times in experiment 2, there is a slight increase in the maximum ensemble

inflation that may be a result of model stability issues, which reducing the model time step

resolves. Both experiments exhibit biases of similar magnitude and sign with respect to
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radiosonde temperatures, windspeeds, and specific humidity over different regions on the

globe. However, biases are inconsistent between observation types over the Arctic. At the

surface, both spread and bias issues are present within MPAS-DART. Analysis increment

is used to see how the observations are affecting the background forecasts. This allows

evaluation of these biases, which reveals three main areas this study focuses on for further

investigation:

1. In experiment 1, potential temperature shows a significant negative bias above 200

hPa when averaged over the Arctic through the cycling period. No preferred regional

biases are found.

2. In experiment 2, zonal wind shows a significant negative bias above 100 when av-

eraged over the Arctic through the cycling period. Regionally, there is a positive

bias over the North Pacific Ocean extending to Alaska at 75 hPa. Co-located with

this pattern at 100 hPa, a dipole pattern in potential temperature biases suggests a

connection between the zonal wind and temperature gradient.

3. In both experiments, potential temperature and water vapor biases near the surface

are positive through the cycling periods. Over sea ice, potential temperature and

water vapor biases are positive near observation locations.

The biases highlighted above are the main focus for investigation. While other biases may

be present, the above are highlighted because two reside in the upper-troposphere lower-

stratosphere (UTLS) where TPVs are located, and the other is near the surface, where

complex surface types over the Arctic may play an important role.

To further investigate these three biases, a relatively new technique, the mean initial

tendency and analysis (MITA) increment method, is applied to MPAS-DART. The MITA

increment method combines model physics and dynamics tendencies with analysis incre-

ments to (1) provide information about bias patterns on a grid beyond the points where
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observations are available for comparison, and (2) decompose the biased model into con-

tributions from individual component tendencies to identify the physical mechanisms re-

sponsible for the bias. Application of the MITA increment method for the three biases show

the following results:

1. The model is consistently cooling temperatures in the 50-200 hPa layer where obser-

vations are consistently warming temperatures, implying there is a cold model bias

in this layer. This cooling is present over all Arctic surface types with varying mag-

nitude. The only contributor to the cooling in this layer is the longwave radiation

scheme.

2. A moisture bias is located in the same region as the enhanced cooling and is found

to be related to the method by which moisture is initialized in MPAS-DART. WRF-

SCM experiments are performed to further evaluate this moisture bias in isolation

from the full model physics and dynamical processes in the full MPAS-DART. These

experiments show that less moisture in that layer leads to reduced longwave cooling

associated with radiative processes in a moist layer (see Fig. 4.8). When relative

humidity is computed with respect to water only during the moisture initialization

process, which is the case in experiment 2, longwave cooling reduces in this layer.

3. Too much cooling is identified near the surface over all surface types expect for

over ocean. Cooling near the surface is dominated by longwave radiation scheme

contributions. Further, water vapor reduction is large near the surface over both land

and sea ice, mainly driven by the convection parameterization scheme. This bias still

occurs in experiment 2 with a different moisture initialization process mentioned

above.

4. In experiment 2, the model consistently decreases zonal winds speed above 100 hPa

where observations are consistently increasing wind speed. The model dynamics

and the gravity wave drag parameterization are the only two model tendencies that
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are actively decelerating the wind. Furthermore, the model dynamics tendency is

acting to increase temperatures above 100 hPa, especially over sea ice. The warming

and under-representation of zonal wind above 100 hPa are likely connected, and may

suggest poor representation of UTLS interactions. This may be related to vertical

grid spacing in the upper levels (Skamarock et al. 2019).

Special dropsonde observations collected during the NAWDEX field campaign are as-

similated within the MPAS-DART system to investigate their impacts on mitigating the

moisture bias on the representation of the TPV in both analyses and forecasts. The obser-

vations have positive impacts on TPV position and intensity and improved representation

TPV vertical structure. An EOF approach reveals that assimilation of dropsonde obser-

vations reduces the spread in the variability of TPV position and intensity. The dominant

pattern of TPV vertical structure variance is associated with position of the upper-level

front, the jet streak position, and the magnitude of moisture near the tropopause. There

are differences in the forecast position and intensity of the TPV in the early forecast times

between experiments. However, those differences become relatively small at later forecast

lead times. At these later times, TPV potential temperature and position are similar be-

tween the experiments. It is hypothesized that the relatively small perturbations induced

by these observations influence only a small area, and are subsequently overwhelmed by

the physical processes associated with the MPAS-DART moisture bias over time. To quan-

tify the impacts of the moisture bias on more than just one TPV, tracks are computed for

both MPAS-DART member 70 6-hour forecast TPVs and ERA5 analysis TPVs. In MPAS-

DART experiment 1, the median TPV potential temperature in early lifetimes are similar

to ERA5 TPVs, but later in their lifetimes, ERA5 TPVs have lower potential temperatures.

In MPAS-DART experiment 2, there is better agreement between MPAS-DART and ERA5

TPV potential temperatures throughout TPV lifetime. It is hypothesized that this is due

to the different initialization process for this experiment. The longwave radiation process

rates associated with the moisture bias may be longer than several days. While normal

190



longwave cooling is around ∼2 K Day−1 throughout troposphere during the fall/winter

times (Turner et al. 2018), MPAS-DART has a slight decrease than an increase in longwave

cooling in the UTLS region where the moisture bias is located. While work still needs to be

done to determine how sensitive TPV evolution is varying moisture profiles, studies have

shown the importance moisture has on growing TPV intensity (Cavallo and Hakim 2012,

2013). So, longer-lived TPVs have a longer duration of time for which they intensify via

the erroneous longwave cooling rates that result from the moisture bias in experiment 1.

Few studies investigate the impacts that TPVs have on RWIs. This study evaluates the

relationship between analysis TPV characteristics and the development of a specific RWI

event. The RWI event chosen has a superposition structure in the analysis of the jet stream,

with the polar and subtropical jets vertically stacked in the atmosphere. While this study

will just evaluate one TPV-RWI event, this will provide a basis for future work in this area.

An ensemble sensitivity analysis is employed, where a correlation approach is used to de-

termine the sensitivities. The RWI forecast sensitivities are stronger for analysis TPV-jet

stream distances than analysis TPV intensity. There are stronger windspeeds and greater

heights at 250 hPa for shorter TPV-jet stream distances at the time of the RWI. There are

small areas of precipitable water and poleward moisture flux sensitivities associated with

TPV-jet stream distances. Forecast sensitivities are also computed for the downstream

development of a surface cyclone associated with RWI event. There are small areas of sig-

nificant sensitivity at the time of the RWI for both potential vorticity and windspeed near

the increased PV gradient, which is the position of the jet stream. These small sensitivi-

ties grow downstream and are largest within the region of the most intense period for the

surface cyclone’s life cycle. Small changes upstream in the position of the PV gradient or

jet stream can have large impacts on the development of the surface cyclone. An increase

in the poleward moisture flux at the time of the RWI is associated with a deeper surface

cyclone. In this particular case, small sensitivities occurring upstream can impact the sur-

face cyclone in the the downstream forecasts. Further investigation is needed to determine
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the impacts the developing surface low pressure has on the poleward moisture flux or if the

TPV position relative to the jet stream could play an important role on the moisture flux.

This study is one of the first to explore the application of MPAS-DART in the Arctic.

Systematic biases in the MPAS-DART modeling system are identified, and linked to the

representation of particular physical processes. However, the modelling system framework

could be further improved. More WRF-SCM and MPAS simulations are needed to fur-

ther test whether the convection scheme chosen for MPAS-DART is appropriate for Arctic

studies. Raising the model top to include more of the stratosphere could allow for bet-

ter representation of upper-troposphere lower-stratosphere processes and the stratospheric

polar vortex. Additionally, increasing the number of vertical levels could offer better rep-

resentation of atmospheric features in the lower stratosphere. It was clear that model rep-

resentation of near surface variables is greatly influenced by the model surface type (e.g.,

sea ice, land, ocean, etc.). Improved understanding of coupled processes would be impor-

tant for representation of Arctic land-atmosphere feedback. In the evaluation of TPV-RWI

interactions, this study only considers a single RWI case. Further evaluation of more RWI

cases could help quantify the impacts TPV characteristics may have on RWI development

and determine the importance of jet superposition in RWI-TPV interactions.

Even with increasing average forecast skill, Arctic daily forecast skill scores still re-

main variable (Jung and Matsueda 2016). Several factors contribute to poor forecast skill,

including lack of conventional observations, model resolution, well suited parameterization

options, and the relative scarcity of global model evaluation efforts focused on this region.

Since the majority of Arctic observations are satellite derived products, large uncertainties

may be carried into model (Zhu et al. 2014). This study assimilates special NAWDEX

dropsondes and finds significant improvements in representation of TPV characteristics

in the analysis, but those improvements do not carry into the forecast, where impacts are

nearly negligible after one day. Similar results are found in an assimilation study focused
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on the Madden-Julian Oscillation (DYNAMO; Ling et al. 2014). The Arctic poses ad-

ditional challenges for NWP, since the Rossby radius of deformation is small, resulting in

smaller features that must be well resolved for accurate analyses and prediction (Bromwich

et al. 2018; Zhang et al. 2019). In this work, that challenge is overcome through the use of

a global model on a non-uniform mesh. This enables the required mesh resolution to rep-

resent important Arctic features, like TPV, well while also including mid-latitudes through

the use of a global domain.

Most parameterization schemes available in today’s numerical models were not devel-

oped for application in the Arctic (Sotiropoulou et al. 2016; Hines and Bromwich 2017).

Results from this study suggest that the convection scheme may be overactive in moisture

modification near the surface. Global models like the one used here have largely not been

evaluated in the Arctic (Jung and Leutbecher 2007; Judt 2020). Evaluation is challenging

in this region given the general lack of in-situ observational coverage. Here, that challenge

is addressed by applying the MITA increment method (Cavallo et al. 2016), which can

provide information about biases beyond points where observations are available. Addi-

tionally, the MITA method enables the decomposition of biases into individual physical

contributions. This study is able to connect identified biases to physical processes that may

be driving them.

Although this study makes progress in the development and evaluation of a global

model in this region, challenges remain. Like studies before it (Bauer et al. 2016; Jung

and Matsueda 2016; Lawrence et al. 2019), this study shows that the complex Arctic sur-

face remains difficult to represent. Further development of coupled modeling would aid

in both in better representation of evolving surface types and the complex coupled inter-

actions occurring over the surface. Better understanding how Arctic processes are treated

within model parameterization is still needed. The convection parameterizaton scheme is

identified as potentially erroneous in this study, raising questions about the applicability of

this scheme in the Arctic and the need for a convection scheme at all. In boarder terms,
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this work determines there is still a need for a baseline of TPV forecast skill within global

models to understand for which TPV processes and under which conditions forecast skill

deteriorates.

Previous studies provide the initial evaluation of TPV characteristics and evolution

mechanisms for intensification and maintenance (Cavallo and Hakim 2010, 2013). The

present study expands on the mechanisms important to TPV evolution by exploring the

impacts of moisture in the UTLS region and connections to diabatic processes that effect

TPVs. Furthermore, this study shows that a misrepresentation of moisture in the UTLS

region can lead to under-intensification of forecast TPV. Since TPV are sub-synoptic scale

vortices (Hakim and Canavan 2005b), their evolution is sensitive to the representation of

mesoscale processes in NWP models. However, most global NWP models use a hydro-

static core, which can make representation of mesoscale processes more difficult (Kato

1997; Wedi and Malardel 2010). This study uses a non-hydrostatic global model with

mesoscale resolution over the Arctic to represent TPVs. Furthermore, most studies of

TPVs rely on numerical depiction of the feature, which could include inherent model biases

(Køltzow et al. 2019). Here, special dropsondes from a field campaign provide an obser-

vational depiction of spatial TPV characteristics and specify vertical moisture distribution.

The observations confirm the vertical moisture gradient situated just below the tropopause

shown in modeling studies (Cavallo and Hakim 2013). Earlier work describes the ways

TPVs move around and potentially beyond the Arctic (Cavallo and Hakim 2010) and the

role PV anomalies can play in mid-latitude development of Rossby waves (Röthlisberger

et al. 2018) and downstream cyclogenesis (Kleinschmidt 1950). This study connects these

ideas and investigates relationships between TPVs and Rossby wave initiations, showing

that Rossby wave initiation is more sensitive to TPV position than TPV intensity. Ad-

ditionally, the relationship between TPVs and moisture transport near the Rossby wave

initiation, which previous studies have identified as an important ingredient (Röthlisberger

et al. 2018), is weaker than expected. Lastly, the development of a RWI does not guarantee
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cyclogenesis, however, sea level pressure (e.g., the development of a surface cyclone) is

shown to be sensitive to the position of the TPV-enhanced PV gradient at the time of the

RWI, which suggests TPV characteristics may still be important early in the cyclogenesis

process.

While this study contributes to the understanding of TPV characteristics and the role

these features can play in mid-latitude weather, there are still open questions. More high-

quality, in-situ observations are needed over the Arctic to gain a better temporal and spa-

tial understanding of TPV evolution and maintenance mechanisms. Moisture is sparse in

the Arctic but plays important roles in Arctic processes like TPVs (Cavallo and Hakim

2013). Moisture is difficult to observe, and in the Arctic, most observations are remotely

retrieved and carry sometimes large uncertainty (Lawrence et al. 2019). As such, special

in-situ observations, particularly of moisture, in the Arctic can be powerful. Further un-

derstanding of physical mechanisms associated with TPV-Rossby-wave interactions is still

needed. Toward this end, field campaigns and numerical simulation studies would be use-

ful. Field campaigns could provide much-needed observational data for the investigation of

TPV-Rossby-wave interactions and the important physical mechanisms therein. Idealized

simulations could further determine and quantify the sensitivities of Rossby wave initiation

to TPV characteristics in both dry and moist atmospheres. Finally, more real-data based

case studies using an ensemble framework could extend our understanding of sensitivities

associated with TPV-Rossby wave interactions and downstream development of surface

cyclones.

195



Bibliography

Ahmadi-Givi, F., G. Graig, and R. Plant, 2004: The dynamics of a midlatitude cyclone with
very strong latent-heat release. Quarterly Journal of the Royal Meteorological Society,
130 (596), 295–323.

Allen, R. J., and S. C. Sherwood, 2008: Warming maximum in the tropical upper tropo-
sphere deduced from thermal winds. Nature Geoscience, 1 (6), 399–403.

Allen, R. J., and C. S. Zender, 2011: Forcing of the Arctic Oscillation by Eurasian snow
cover. Journal of Climate, 24 (24), 6528–6539.

Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009:
The data assimilation research testbed: A community facility. Bulletin of the American
Meteorological Society, 90 (9), 1283–1296.

Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from
ensemble model integrations. Journal of Climate, 9 (7), 1518–1530.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation.
Monthly Weather Review, 129 (12), 2884–2903.

Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for en-
semble filters. Tellus A, 59 (2), 210–224.

Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for
ensemble filters. Tellus A: Dynamic Meteorology and Oceanography, 61 (1), 72–83.

Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the down-
stream impacts of the extratropical transition of tropical cyclones: Case studies. Monthly
Weather Review, 136 (9), 3226–3247.

Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological
analysis of the extratropical flow response to recurving western North Pacific tropical
cyclones. Monthly Weather Review, 141 (7), 2325–2346.

Armstrong, T. E., G. W. Rogers, and G. Rowley, 1978: The circumpolar north: a political
and economic geography of the Arctic and Sub-Arctic, Vol. 639. Taylor & Francis.

Bader, J., M. D. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles, 2011: A
review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation:
Observations and projected changes. Atmospheric Research, 101 (4), 809–834.

Bannister, R., 2017: A review of operational methods of variational and ensemble-
variational data assimilation. Quarterly Journal of the Royal Meteorological Society,
143 (703), 607–633.

196



Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme
weather in midlatitudes. Geophysical research letters, 40 (17), 4734–4739.

Barwell, B., and A. Lorenc, 1985: A study of the impact of aircraft wind observations on a
large-scale analysis and numerical weather prediction system. Quarterly Journal of the
Royal Meteorological Society, 111 (467), 103–129.

Bauer, P., L. Magnusson, J.-N. Thépaut, and T. M. Hamill, 2016: Aspects of ECMWF
model performance in polar areas. Quarterly Journal of the Royal Meteorological Soci-
ety, 142 (695), 583–596.

Baumgart, M., M. Riemer, V. Wirth, F. Teubler, and S. T. Lang, 2018: Potential vorticity
dynamics of forecast errors: A quantitative case study. Monthly Weather Review, 146 (5),
1405–1425.

Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a
southern plains convective event. Monthly Weather Review, 143 (1), 230–249.

Benjamin, S. G., B. E. Schwartz, and R. E. Cole, 1999: Accuracy of ACARS wind and
temperature observations determined by collocation. Weather and Forecasting, 14 (6),
1032–1038.

Bergeron, T., 1935: On the physics of clouds and precipitation. Proc. 5th Assembly UGGI,
Lisbon, Portugal, 1935, 156–180.

Bierdel, L., T. Selz, and G. Craig, 2018: Theoretical aspects of upscale error growth on the
mesoscales: Idealized numerical simulations. Quarterly Journal of the Royal Meteoro-
logical Society, 144 (712), 682–694.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the
ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review,
129 (3), 420–436.

Blunden, J., and D. S. Arndt, 2013: State of the climate in 2012. Bull. Amer. Meteor. Soc.,
94 (8), S1–S238.

Bolton, D., 1980: The computation of equivalent potential temperature. Monthly weather
review, 108 (7), 1046–1053.
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J. S. Rodrigo, 2017: Improving wind predictions in the marine atmospheric boundary
layer through parameter estimation in a single-column model. Monthly Weather Review,
145 (1), 5–24.

Lee, S. H., P. D. Williams, and T. H. Frame, 2019: Increased shear in the North Atlantic
upper-level jet stream over the past four decades. Nature, 572 (7771), 639–642.

Leith, C., 1974: Theoretical skill of monte carlo forecasts. Monthly Weather Review,
102 (6), 409–418.

Liberato, M. L., J. G. Pinto, I. F. Trigo, and R. M. Trigo, 2011: Klaus–an exceptional winter
storm over northern Iberia and southern France. Weather, 66 (12), 330–334.

Lillo, S. P., and D. B. Parsons, 2017: Investigating the dynamics of error growth in ECMWF
medium-range forecast busts. Quart. J. Roy. Meteor. Soc., 143 (704), 1211–1226.

207



Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang,
2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO.
Monthly Weather Review, 142 (6), 2228–2247.

Listowski, C., and T. Lachlan-Cope, 2017: The microphysics of clouds over the Antarc-
tic Peninsula-Part 2: modelling aspects within Polar WRF. Atmospheric Chemistry and
Physics, 17 (17), 10 195–10 221.

Little, E. M., 1968: Day length versus date graph at Arctic Circle is almost a sawtooth
curve. Journal of Geophysical Research, 73 (2), 735–738.

Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic
sea ice on winter snowfall. Proceedings of the National Academy of Sciences, 109 (11),
4074–4079.

Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring ana-
logues. J. Atmos. Sci., 26 (4), 636–646.

Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model.
Tellus, 34 (6), 505–513.

Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-
Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. Jour-
nal of climate, 27 (1), 3–26.

Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST
and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and
storm track characteristics of the response. Journal of Climate, 17 (5), 857–876.

Martı́nez-Alvarado, O., E. Madonna, S. L. Gray, and H. Joos, 2016: A route to systematic
error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142 (694), 196–210.

Martius, O., and G. Rivière, 2016: Rossby wave breaking: Climatology, interaction with
low-frequency climate variability, and links to extreme weather events, chap. 5, 69–78.
Cambridge University Press.

Martius, O., C. Schwierz, and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos.
Sci., 67 (3), 866–879.

Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008: Removal of systematic
model bias on a model grid. Weather and Forecasting, 23 (3), 438–459.

Matsumura, S., X. Zhang, and K. Yamazaki, 2014: Summer Arctic atmospheric circulation
response to spring Eurasian snow cover and its possible linkage to accelerated sea ice
decrease. Journal of Climate, 27 (17), 6551–6558.

McInnes, K. L., and J. A. Curry, 1995: Modeling the mean and turbulent structure of the
summertime Arctic cloudy boundary layer. Boundary-layer meteorology, 73, 125–143.

208



Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and
convective weather at the mesoscales. Journal of the Atmospheric Sciences, 69 (11),
3350–3371.

Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-
intense precipitation extremes. Nature, 470 (7334), 378–381.
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