
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

DEVELOPING A WATER BALANCE MODEL TO ESTIMATE CONSUMPTIVE USE IN 

THE SOUTHEAST WATERSHED PLANNING REGION OF OKLAHOMA 

 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

MASTER OF ENVIRONMENTAL SCIENCE 

 

 

By 

WALTER CHANDLER 

Norman, Oklahoma 

2020 

 

  



 

 

 

DEVELOPING A WATER BALANCE MODEL TO ESTIMATE CONSUMPTIVE USE IN 

THE SOUTHEAST WATERSHED PLANNING REGION OF OKLAHOMA 

 

 

 

 

A THESIS APPROVED FOR THE  

SCHOOL OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE 

 

 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 

Dr. Jason Vogel, Chair 

 

Dr. Jeffery Basara 

 

Dr. Jonathan Gourley  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by WALTER CHANDLER 2020 

All Rights Reserved.



iv 

 

 

Acknowledgments 

 First, I would like to thank my advisor Dr. Vogel for believing in me and giving 

me this opportunity to work with him on this project and supporting my graduate education. The 

knowledge and experience I’ve gained not only from this research, but the many other 

opportunities I’ve had during my two years at the Oklahoma Water Survey have been immensely 

beneficial. His passion for solving water and environmental related issues is truly inspiring, and I 

consider myself very lucky to have worked with him these past two years. I also want to thank 

my other committee members, Dr. Basara and Dr. Gourley for providing their expertise and 

guidance throughout this project. 

 Next I want to thank all the current and former Water Survey employees who contributed 

to this project in some way or another. Special thanks to Grant Graves and Shana Mashburn for 

providing their expertise in helping me solve the countless problems that arose from this 

research, and to all my fellow student employees who helped with the tedious GIS analyses or 

kayaking around ponds collecting bathymetric data in the middle of summer. Their assistance 

was crucial to this research and I am extremely grateful. 

 Finally, I want to thank my family and friends for all their love and support, especially 

my amazing fiancé Suzie. I would not have been able to accomplish all I have the past two years 

without her constant encouragement and love. I thank God for surrounding me with such 

wonderful people who care for me deeply. 

 

  



v 

 

Table of Contents 

 
List of Tables ................................................................................................................................. vi 

List of Figures .............................................................................................................................. viii 

List of Appendix Tables................................................................................................................ xii 

Abstract ........................................................................................................................................ xiv 

Chapter 1 – Introduction ................................................................................................................. 2 

Chapter 2 - Background .................................................................................................................. 5 

2.1 Water Balance Models ..................................................................................................... 5 

2.2 Consumptive Use ............................................................................................................. 8 

 

Chapter 3 – Study Area ................................................................................................................. 12 

3.1 Physical Geography........................................................................................................ 12 

3.2 Hydrology....................................................................................................................... 16 

3.3 Human Geography ......................................................................................................... 18 

 

Chapter 4 – Methodology ............................................................................................................. 20 

4.1 Precipitation ................................................................................................................... 22 

4.2 Streamflow ..................................................................................................................... 23 

4.3 Surface Storage Change ................................................................................................. 27 

4.3.1 Mapped Surface Waterbodies ................................................................................. 28 

4.3.2 Unmapped Surface Waterbodies............................................................................. 33 

4.4 Sub-surface Storage........................................................................................................ 41 

4.5 Evapotranspiration ......................................................................................................... 44 

4.6 Additional Hydrologic Components .............................................................................. 46 

4.6.1 Baseflow ................................................................................................................. 46 

4.6.2 Wastewater Discharges ........................................................................................... 47 

4.6.3 Reservoir Discharges .............................................................................................. 48 

4.7 Statistical Methods ......................................................................................................... 48 



vi 

 

 

Chapter 5 – Results & Discussion ................................................................................................ 51 

5.1 Water Balance Model Components................................................................................ 51 

5.2 Uncertainty ..................................................................................................................... 55 

5.2.1 Precipitation ............................................................................................................ 55 

5.2.2 Streamflow .............................................................................................................. 56 

5.2.3 Surface Storage Change .......................................................................................... 57 

5.2.4 Sub-surface Storage Change ................................................................................... 59 

5.2.5 Evapotranspiration .................................................................................................. 60 

5.3 Water Balance Model Component Analysis .................................................................. 61 

5.4 Baseflow, Wastewater Discharges, and Reservoir Discharges ...................................... 69 

5.5 Consumptive Use ........................................................................................................... 74 

5.6 Total Water Balance Model Uncertainty ....................................................................... 79 

5.7 Annual Water Balance Model ........................................................................................ 80 

 

Chapter 6 – Conclusions & Future Research ................................................................................ 86 

References ..................................................................................................................................... 91 

Appendix ....................................................................................................................................... 97 

 

List of Tables 

Table 1: Estimated water demand by sector (cm) in the Southeast Watershed Planning Region of 

Oklahoma for 2010 and projected for 2020-2060 (OWRB, 2011b). ........................... 19 

Table 2: United State Geological Survey (USGS) stream gauges used to calculate net flow gains 

for Southeast Watershed Planning Region of Oklahoma outflow streams. ................. 25 

Table 3: Regression equations to estimate storage volume from surface area on mapped 

Southeast Watershed Planning Region of Oklahoma reservoirs, where V is storage 

volume in ac-ft and A is surface area in ac. R2 is the coefficient of determination for 

each equation. ............................................................................................................... 31 



vii 

 

Table 4: Performance metrics used to evaluate regression models for predicting lentic waterbody 

storage volume from surface area. R2 = coefficient of determination, nRMSE = 

standard deviation normalized root mean square error, NSE = Nash-Sutcliffe 

Efficiency, and % bias = percent bias. ......................................................................... 37 

Table 5: Regression models for predicting storage volume of small and large unmapped lentic 

waterbodies in the Southeast Watershed Planning Region of Oklahoma, evaluated with 

performance metrics. Chosen models are shown in bold. ........................................... 38 

Table 6: Minimum quantifiable uncertainty of each water balance model (WBM) component 

shown as an average % of the total quarterly volume. NA was given for components 

that had no quantifiable uncertainty. WBM components include precipitation (P), 

streamflow out (Qout), evapotranspiration (ET), surface storage change (ΔSsurf), and 

sub-surface storage change (ΔSsub). .............................................................................. 55 

Table 7: Mean (μ) in cm and coefficient of variation (CV) of precipitation (P), 

evapotranspiration (ET), streamflow out (Qout), total surface storage (Ssurf). For sub-

surface storage change (ΔSsub), the standard deviation (σ) is shown instead of CV. ... 62 

Table 8: Correlation matrix with Pearson correlation coefficients (CC) between the water balance 

model (WBM) components and additional variables and sub-components used in 

analysis. The WBM components include precipitation (P), evapotranspiration (ET), 

streamflow out (Qout), surface storage change (ΔSsurf), and sub-surface storage change 

(ΔSsub). The additional sub-components and variables are solar radiation (R), baseflow 

(BF), wastewater discharges (WWD), and reservoir discharges (RD). * denotes 

significance at the 95% confidence level. .................................................................... 62 

Table 9: Quarterly baseflow (BF) depths in cm and baseflow index (BFI) values for streams 

flowing out of the Southeast Watershed Planning Region of Oklahoma. Data from 

United State Geological Survey. .................................................................................. 70 

Table 10: Quarterly wastewater discharge (WWD) depths within the Southeast Watershed 

Planning Region of Oklahoma. Data from Oklahoma Department of Environmental 

Quality. ......................................................................................................................... 71 

Table 11: Quarterly reservoir discharge (RD) depths from Broken Bow Lake, Hugo Lake, and 

Pine Creek Lake. Data from United States Army Corps of Engineers. ....................... 73 

Table 12: Estimated quarterly consumptive use + error (C+err) depths from the Southeast 

Watershed Planning Region of Oklahoma water balance model. ................................ 75 



viii 

 

Table 13: Correlation coefficients between consumptive use + error (C+err) and each of the other 

water balance model component for each of the four annual quarters, and for all 

quarters combined. The WBM components include precipitation (P), 

evapotranspiration (ET), streamflow out (Qout), surface storage change (ΔSsurf), and 

sub-surface storage change (ΔSsub). * denotes significance at the 95% confidence level.

 ...................................................................................................................................... 77 

Table 14: Quarterly consumptive use + error (C+err) volumes with minimum uncertainty given in 

both cm and relative percent. ....................................................................................... 80 

Table 15: Results of the annual water balance model (WBM) analysis. Annual volumes for each 

WBM component and consumptive use + error (C+err) are given in cm along with the 

average annual volumes for 2007-2017. WBM components include precipitation (P), 

streamflow out (Qout), evapotranspiration (ET), surface storage change (ΔSsurf), and 

sub-surface storage change (ΔSsub). .............................................................................. 82 

Table 16: Average annual coefficient of variation (CV) values for the annual water balance 

model (WBM) component’s, and average quarterly CV values for the quarterly WBM 

components. WBM components include precipitation (P), streamflow out (Qout), 

evapotranspiration (ET), surface storage change (ΔSsurf), and sub-surface storage 

change (ΔSsub).  Total surface storage (Ssurf) was used to represent ΔSsurf variability. * 

standard deviation was used to represent ΔSsub variability. ......................................... 85 

Table 17: Limitations and suggestions for how to improve and reduce uncertainty for each water 

balance model (WBM) component estimation method. WBM components include 

precipitation (P), streamflow out (Qout), evapotranspiration (ET), surface storage 

change (ΔSsurf), and sub-surface storage change (ΔSsub). Some limitations are specific 

to the Southeast Watershed Planning Region of Oklahoma (SEWPR). ...................... 90 

 

List of Figures 

Figure 1: Visualization of the natural hydrologic cycle from the United States Geological Survey.

 ........................................................................................................................................ 3 

Figure 2: European Union Water Framework Directive water balance model (European 

Commission, 2015). ....................................................................................................... 7 



ix 

 

Figure 3: Watershed Planning Regions of Oklahoma. Map courtesy of the 2012 Oklahoma 

Comprehensive Water Plan from the Oklahoma Water Resources Board (OWRB, 

2011a). .......................................................................................................................... 13 

Figure 4: Level III Ecoregions located within the Southeast Watershed Planning Region of 

Oklahoma. Data from the United States Environmental Protection Agency. .............. 14 

Figure 5: Land cover classification in the Southeast Watershed Planning Region of Oklahoma 

from the National Land Cover Database (NLCD 2016). ............................................. 15 

Figure 6: Topography of the Southeast Watershed Planning Region of Oklahoma. Data from 

United States Geological Survey Digital Elevation Model.......................................... 15 

Figure 7: Major waterbodies within the Southeast Watershed Planning Region of Oklahoma. 

Data from Oklahoma Water Resources Board and United States Geological Survey. 17 

Figure 8: Major and minor aquifers underlying the Southeast Watershed Planning Region of 

Oklahoma. Map courtesy of the 2012 Oklahoma Comprehensive Water Plan – 

Southeast Watershed Planning Region Report from the Oklahoma Water Resources 

Board (OWRB, 2011b). ............................................................................................... 17 

Figure 9: Precipitation accumulations from the National Centers for Environmental Prediction 

Stage IV Quantitative Precipitation Estimates in the Southeast Watershed Planning 

Region of Oklahoma for 2007 Quarter 1. .................................................................... 23 

Figure 10: Active United States Geological Survey stream gauges within the Southeast 

Watershed Planning Region (USGS, 2019b). .............................................................. 24 

Figure 11: Location of United States Geological Survey stream gauges on Little River, Red 

River, and Lower Mountain Fork River used for streamflow out (Qout) estimation in 

the Southeast Watershed Planning Region of Oklahoma (SEWPR). .......................... 26 

Figure 12: Locations of Oklahoma Water Resource Board mapped reservoirs in the Southeast 

Watershed Planning Region of Oklahoma. Imagery from United States Department of 

Agriculture National Agricultural Imagery Program. .................................................. 30 

Figure 13: Contour intervals used to determine surface area to storage volume relationships for 

mapped Oklahoma Water Resource Board reservoirs. 5 feet intervals for Lake Nanih 

Waiya are shown. Imagery from United States Department of Agriculture National 

Agricultural Imagery Program. .................................................................................... 31 



x 

 

Figure 14: True color Red-Green-Blue (left), Modified Normal Difference Water Index 

(MNDWI) (middle), and binary raster (right) images of Lake Nanih Waiya derived 

from Landsat reflectance data. Pixels with higher MNDWI values are shown in dark 

blue (middle), and pixels identified as water in the binary raster are shown in light 

blue (right). ................................................................................................................... 33 

Figure 15: Bathymetric data collection on waterbody in the Southeast Watershed Planning 

Region of Oklahoma, including the kayak with fish finder mounted on the right side 

(left). Collection of shoreline global positioning system points used for bathymetric 

data processing (right). ................................................................................................. 35 

Figure 16: Depth points collected from a bathymetric survey of a lentic waterbody in the 

Southeast Watershed Planning Region of Oklahoma on 10/28/2019 (left) and contour 

intervals and depth raster surface derived from collected depth points used to estimate 

storage volume (right). ................................................................................................. 37 

Figure 17: Distribution of selected United States Department of Agriculture National 

Agricultural Imagery Program (NAIP, 2018) images for unmapped waterbody 

digitizing from 2015 Quarter 3. ................................................................................... 40 

Figure 18: Example of a digitized waterbody from 2008 United States Department of Agriculture 

National Agricultural Imagery Program imagery in the Southeast Watershed Planning 

Region of Oklahoma. ................................................................................................... 40 

Figure 19: Operational Simplified Surface Energy Balance model actual evapotranspiration in 

inches for the Southeast Watershed Planning Region of Oklahoma for 2007 Quarter 1, 

with United State Army Corps of Engineers reservoirs removed (FEWS NET, 2019).

 ...................................................................................................................................... 45 

Figure 20: Trends of quarterly precipitation (P), evapotranspiration (ET), streamflow out (Qout), 

surface storage change (ΔSsurf), and sub-surface storage change (ΔSsub). P, ET and Qout 

are shown on the left axis, and ΔSsurf and ΔSsub are shown on the right axis to account 

for the negative values. ................................................................................................ 52 

Figure 21: Trends of quarterly precipitation (P). Data from the National Centers for 

Environmental Prediction Stage IV Quantitative Precipitation Estimates. .................. 52 

Figure 22: Trends of quarterly streamflow out (Qout). .................................................................. 53 

Figure 23: Trends of quarterly evapotranspiration (ET). Data from the Famine Early Warning 

Systems Network. ........................................................................................................ 53 



xi 

 

Figure 24: Trends of quarterly surface storage change (ΔSsurf)..................................................... 54 

Figure 25: Trends of quarterly sub-surface storage change (ΔSsub). Data from the Gravity 

Recovery and Climate Experiment satellite mission. .................................................. 54 

Figure 26: Trends of quarterly precipitation (P) and evapotranspiration (ET). P data from the 

National Centers for Environmental Prediction Stage IV Quantitative Precipitation 

Estimates and ET data from the Famine Early Warning Systems Network. ............... 64 

Figure 27: Trends of quarterly evapotranspiration (ET) in cm (left axis) and solar radiation (R) in 

Mega Joules (MJ) (right axis). ET data from the Famine Early Warning Systems 

Network and R data from Oklahoma Mesonet. ............................................................ 64 

Figure 28: Trends of quarterly precipitation (P) and streamflow out (Qout). P data from the 

National Centers for Environmental Prediction Stage IV Quantitative Precipitation 

Estimates. ..................................................................................................................... 66 

Figure 29: Trends of quarterly surface storage change(ΔSsurf) and sub-surface storage change 

(ΔSsub). ΔSsub data from the Gravity Recovery and Climate Experiment satellite 

mission. ........................................................................................................................ 67 

Figure 30: Trends of quarterly sub-surface storage change (ΔSsub) (left axis) and 

evapotranspiration (ET) (right axis). ΔSsub data from the Gravity Recovery and Climate 

Experiment satellite mission and ET data from the Famine Early Warning Systems 

Network. ....................................................................................................................... 68 

Figure 31: Trends of quarterly surface storage change (ΔSsurf) (left axis) and precipitation (P) 

(right axis). P data from the National Centers for Environmental Prediction Stage IV 

Quantitative Precipitation Estimates. ........................................................................... 68 

Figure 32: Trends of quarterly baseflow (BF) and streamflow out (Qout). BF data from United 

States Geological Survey. ............................................................................................ 70 

Figure 33: Percentage of total quarterly wastewater discharge (WWD) in the Southeast 

Watershed Planning Region of Oklahoma from different water use sectors (ODEQ, 

2018). ........................................................................................................................... 72 

Figure 34: Trends of quarterly streamflow out (Qout) and reservoir discharges (RD). RD data 

from the United States Army Corps of Engineers. ...................................................... 73 

Figure 35: Trends of quarterly consumptive use + error (C+err) depths. ...................................... 75 



xii 

 

Figure 36: Trends of quarterly consumptive use + error (C+err) and surface storage (ΔSsurf) 

depths. .......................................................................................................................... 77 

Figure 37: Trends of quarterly consumptive use + error (C+err) (left axis) and precipitation (P) 

(right axis) depths. P data from the National Centers for Environmental Prediction 

Stage IV Quantitative Precipitation Estimates. ............................................................ 78 

Figure 38: Trends of quarterly consumptive use + error (C+err) (left axis) and evapotranspiration 

(ET) (right axis) depths. ET data from the Famine Early Warning Systems Network. 78 

Figure 39: Trends of quarterly consumptive use + error (C+err) and net precipitation (Net P) 

(precipitation – evapotranspiration) depths. ................................................................. 79 

Figure 40: Trends of annual precipitation (P), streamflow out  (Qout) and evapotranspiration (ET) 

depths. P data from the National Centers for Environmental Prediction Stage IV 

Quantitative Precipitation Estimates. ET data from the Famine Early Warning Systems 

Network. ....................................................................................................................... 83 

Figure 41: Trends of annual surface storage change (ΔSsurf) and sub-surface storage change 

(ΔSsub) depths. ΔSsub data from the Gravity Recovery and Climate Experiment satellite 

mission. ........................................................................................................................ 83 

Figure 42: Trends of annual consumptive use + error (C+err) depths. .......................................... 84 

  

List of Appendix Tables 

Table A1: Quarterly streamflow coefficients (SC) representing the proportion of long-term 

average (1971-2017) to observed net flow gain from 2007-2017 for the Little River 

and Red River. Data from the United States Geological Survey. ................................ 97 

Table A2: StreamStats average annual flow in cubic feet per second (cfs), and drainage area in 

square kilometers (km2) for each outflow stream in the Southeast Watershed Planning 

Region of Oklahoma. Streams are organized in ascending order by drainage area. Data 

from the United States Geological Survey. .................................................................. 98 

Table A3: Quarterly storage in cm for United States Army Corps of Engineers (USACE) 

managed reservoirs within the Southeast Watershed Planning Region of Oklahoma, 

including Broken Bow Lake, Hugo Lake, Pine Creek Lake, and Sardis Lake. The first 



xiii 

 

day of each quarter was used as the storage depth. Data from USACE Tulsa District.

 ...................................................................................................................................... 99 

 

 

Table A4: Estimated quarterly storage in cm for reservoirs within the Southeast Watershed 

Planning Region with bathymetric data from the Oklahoma Water Resources Board 

(OWRB) including Lake Carl Albert, Lake Nanih Waiya, Ozzie Cobb Lake, and 

Schooler Lake. Storage depth was estimated on the day closest to the beginning of 

each quarter that a suitable Landsat image was available to estimate surface area, 

using equations in Table 3. ........................................................................................ 101 

Table A5: Surface area in acres (ac) and storage volume in acre-feet (ac-ft) for 17 small lentic 

waterbodies in the Southeast Watershed Planning Region of Oklahoma, based on 

bathymetric data was collected between July and October, 2019. Each waterbody also 

includes the area and volume for each contour interval below the actual shoreline, 

which provided additional area-volume data to build regression equations (Table 5).

 .................................................................................................................................... 102 

Table A6: Estimated total quarterly unmapped waterbody storage within the Southeast 

Watershed Planning Region of Oklahoma. Quarters in bold had available imagery 

from the United States Department of Agriculture National Agricultural Imagery 

Program used to calculate waterbody surface area. ................................................... 105 

Table A7: Estimated quarterly change in equivalent water thickness (EWT) in cm for the 

Southeast Watershed Planning Region of Oklahoma (SEWPR). EWT represents the 

total amount of surface-water, groundwater, and soil moisture across the SEWPR. 

Quarters in italics were estimated using linear interpolation (Equation 14). 2017 Q3 

and Q4 (denoted with *) were estimated using a regression model (Equation 15) due to 

a lack of available data for those quarters. Data from the Gravity Recovery and 

Climate Experiment satellite mission. ....................................................................... 105 

Table A8: Quarterly depths in cm for all water balance model components including 

precipitation (P), streamflow out (Qout), evapotranspiration (ET), surface storage 

change (ΔSsurf), and sub-surface storage change (ΔSsub). Negative depths for ΔSsurf and 

ΔSsub indicate a decrease in total storage from the previous quarter. Maximum values 

for each component are written in bold, minimum values are written in italics. ...... 106 

  



xiv 

 

Abstract 

 

With the passage of the Water for 2060 Act, Oklahoma established a statewide goal of 

consuming no more freshwater in 2060 than was consumed in 2012. However, there currently 

does not exist a quantifiable method to estimate consumptive water use in the long-term. A 

quantitative analysis of freshwater consumptive use in Oklahoma using a water balance approach 

would not only make it possible to gauge whether quantifiable water use goals are being met, but 

would also be useful for water resource managers across the state to track consumptive use and 

determine where and when conservation strategies may be implemented to have the most impact.  

 A water balance model (WBM) was developed to quantify consumptive water use at a 

Watershed Planning Region scale in Oklahoma. Under perfect natural conditions, the inflow and 

outflow water volumes in a region over a given period of time will be equal. However, humans 

disturb the natural conditions by removing water from the hydrologic cycle through consumptive 

use. Considering consumptive use as a component of the water balance, the volumes of each 

inflow and outflow component of the water balance were estimated, and consumptive use was 

estimated using a water balance equation as the residual imbalance caused by humans removing 

the water from the natural system. The WBM was developed for the Southeast Watershed 

Planning Region of Oklahoma (SEWPR) at a quarterly (3-month) temporal scale, with the goal 

of applying the model to other Watershed Planning Regions in the future.  

 The WBM results for quarterly consumptive use were unrealistically high and even 

negative in some cases. The likely cause of these extreme values is the large and mostly 

unknown uncertainty associated with the WBM component estimation methodologies. While the 

WBM is currently not suitable for consumptive use estimation, the gathered data, developed 
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methodologies, and valuable information obtained from this research provide a useful framework 

for future research.
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Foreword 

 This study set out to develop and test a methodology for estimating consumptive water 

use on a watershed scale using a water balance model (WBM) approach. Each of the WBM 

components were estimated for the spatial and temporal scale of the model, and consumptive use 

estimates were calculated. The consumptive use estimates in this study are provided to show how 

the WBM functions, and to highlight current limitations in areas that require improvement. The 

objective of this study was to develop the methodologies for the WBM, not to provide realistic 

and accurate consumptive use estimates. This project was a success, because the framework for 

meeting the overall goal of providing water resource managers with a useful tool for tracking 

consumptive use through the use of the WBM was established. In addition, several methods 

described in this report include innovative approaches for estimating WBM components that 

were developed specifically for this study, but have potential applications for many different 

water resources related challenges.   
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Chapter 1 – Introduction 

As populations continue to rise, the demand for water resources increases as well. 

Conservation initiatives to reduce human consumption of water have become an important aspect 

of water resource management. The state of Oklahoma passed the Water for 2060 Act in 2012, 

which established a statewide goal of consuming no more freshwater in 2060 than was consumed 

in 2012 (H.B. 3055). However, there currently does not exist a quantifiable method to estimate 

consumptive freshwater use on an ongoing basis that can be used to guide policy and 

management decisions in Oklahoma. The Oklahoma Water Resources Board (OWRB) released 

the Oklahoma Comprehensive Water Plan (OCWP) in 2012 which included reports for each of 

the 13 watershed planning regions across the state. The reports contain data for water use and 

demand estimates, but no direct estimate of consumption. This is often due to insufficient or 

unreliable water withdrawal and return data from water users. Methods for estimating 

consumptive freshwater use on at least an annual scale, which do not rely on estimated water use 

data, must be developed for Oklahoma. This would allow water resource managers to determine 

consumptive water use in any given year, including the 2012 target goal for 2060 and in future 

years to track progress towards this goal. 

This study explores the method of using a water balance model (WBM) to estimate 

consumptive freshwater use on a watershed planning region scale in Oklahoma. A WBM is a 

simple and refined method for understanding hydrologic processes and interactions on some 

spatial scale (Martinez and Gupta 2010). The WBM developed in this study does not rely on 

human water use estimates, but rather uses components of the natural hydrologic cycle (Figure 1) 

that have already been estimated or were estimated using available data.  
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Figure 1: Visualization of the natural hydrologic cycle from the United States Geological Survey. 

 

The overall goal of this project was to provide water resource managers in Oklahoma – 

and potentially other states – with a useful tool for tracking consumptive use through the use of 

the WBM. If the model can be successfully used to estimate consumptive use in Oklahoma, it 

could help facilitate more water use studies, and provide a useful way to track progress towards 

water use goals, such as Water for 2060.  

The main objective of this project was to develop a WBM designed to estimate human 

consumptive water use by considering it as an output component of the water balance equation. 

Consumptive use was estimated by quantifying all other hydrologic inputs and outputs to a 

region, and solving the WBM equation for consumptive use as the residual imbalance of the 

natural hydrologic balance.  

In addition, there were two sub-objectives. The first was to quantify the uncertainty 

associated with each WBM component estimation method and add up all uncertainty to calculate 
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the overall uncertainty of the consumptive use estimation output of the WBM. The second was to 

estimate other important hydrologic components within the SEWPR boundary that are 

incorporated into other major components. These include wastewater discharges, reservoir 

discharges, and baseflow.  
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Chapter 2 - Background 

 In this chapter, background information for the concepts of water balance models (WBM) 

and consumptive water use is provided. Information from previous studies on both the use of 

WBMs for hydrologic variable estimation, and on consumptive use estimation methods, are 

provided. This information is necessary to fully understand the need for alternative methods for 

consumptive use estimation, and how a WBM approach could be used for consumptive use 

estimation. 

2.1 Water Balance Models 

One of first known studies to utilize the concept of a WBM was done by Thornwaite & 

Mather (1955). They developed a method to estimate potential evapotranspiration (PET) using a 

simple mass balance equation of hydrologic inputs and outputs, solved for PET. This study is 

considered by many to be the first to introduce the idea of using seasonal hydrologic data in a 

WBM to estimate unknown components of the hydrologic cycle (Ferguson 1996). Since then, 

WBMs have been adopted and modified for use in numerous water-resource studies. The 

increased complexity has allowed WBMs to be applied to a wide range of hydrologic problems, 

including the impacts of climate change on hydrologic systems (Gleick, 1987; Guo et al., 2002; 

Wang et al., 2009), runoff estimation (Schaake et al., 1996; Arnell, 1999), and groundwater 

recharge (Westonboek et al., 2010).  

 Despite the many different applications for WBMs, most differ in details such as the 

input data required, the spatial and temporal scale, and scope of hydrologic processes they aim to 

address, but are similar in overall concept. In their review of WBMs, Xu and Singh (1998) 

outline some of the common features among typical WBMs: (1) they describe spatially averaged 

hydrologic processes, (2) they require hydrologic data at specific time scales as input parameters, 
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and they may utilize other non-hydrologic data inputs, and (3) the basis of the models is the 

water-balance equation. The water-balance equation can take many forms depending on the 

objectives of the research and the intended output of the WBM. However, all water-balance 

equations take the same general form of the continuity equation, where: 

Change in storage = Inflow - Outflow  

A simple form of the equation above, in which major outflow and inflow components of the 

water balance for a watershed are represented, is written as: 

 ∆S = P + Qin - ET - Qout (1) 

 

where P is precipitation, Qin is streamflow into the watershed, ET is actual evapotranspiration 

(the sum of evaporation from soils, surface-water bodies, and plants), ∆S is change in water 

storage over time, and Qout is streamflow out of the watershed (Healy et al., 2007). The number 

of water balance components differs depending on the complexity and intended output of the 

WBM. Equation 1 employs only the basic hydrologic components, with groundwater interactions 

ignored. More complex models may contain additional components such as soil moisture change 

(Xu and Chen, 2005; Saravanane et al., 2014), infiltration or groundwater recharge (Alemaw and 

Chaoka, 2003; Martinez and Gupta, 2010), or even irrigation (Andales et al., 2011). Figure 2 

shows the components of a moderately complex WBM developed by the European Commission 

for the European Union Water Framework Directive (European Commission, 2015). In some 

models, ∆S is considered negligible and ignored, or left as the remaining component for which to 

solve the WBM equation for. This depends on the objective and spatial/temporal scale of the 

WBM. ∆S is usually ignored in mean annual or interannual WBM calculations, but even then, 

some temporal variability is lost by ignoring ∆S (Wang, 2012).  
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Figure 2: European Union Water Framework Directive water balance model (European 

Commission, 2015). 

 

For typical WBMs, any component can be estimated provided that all other components 

can be calculated or estimated from available data. For example, the United State Geological 

Survey (USGS) developed a method for estimating groundwater recharge within a watershed. 

The model estimates precipitation, surface water inflow/outflow, interception, 

evapotranspiration, and change in soil moisture by using data inputs of climate, land use, 

hydrologic soil group, flow direction, and soil-water capacity data (Westonboek et al. 2010). 

Most WBMs are used to estimate historical fluxes or predict future fluxes in natural hydrologic 

processes. However, with growing populations creating a greater demand for water resources, 

there is an apparent need for evaluation of human impact on the water balance. 
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2.2 Consumptive Use 

One way to measure the impact of humans on the natural water balance is by estimating 

human consumptive water use. USGS defines consumptive water use as “water that is 

evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or 

otherwise removed from an immediate water environment” (Shaffer, 2008). A distinction is also 

made between consumptive water use and water withdrawals. Water withdrawals refer to the 

total water withdrawn from surface or groundwater systems. Much of that water is returned to 

the hydrologic systems immediately or after a short period of time. This portion can be 

considered non-consumptive water use. Major non-consumptive water uses include industrial or 

domestic water uses that are captured as wastewater, treated, and discharged back in the system. 

Withdrawn water that is not returned back to the system is considered consumptive use. For the 

US, irrigation and thermoelectric power are the largest consumptive uses of water (Maupin et al. 

2014). Estimating consumptive use and understanding its role in the water balance is critical for 

water resources management. 

 Consumptive use is commonly estimated in one of two ways: (1) by application of 

consumptive use coefficients; and (2) using a water balance equation (Shaffer, 2008). For the 

consumptive use coefficient method, the coefficients are calculated by subtracting total 

withdrawn water returned from total water withdrawn, and then dividing by total water 

withdrawn. Typically, the coefficients are represented as a percent. Coefficients calculated for a 

specific area where withdrawal and return flow data is available are typically applied to larger 

areas where return flow data may not be available. At a minimum, complete water withdrawal 

data for the entire area and time interval of interest is required to use the consumptive use 

coefficient method.  

A USGS study estimated consumptive water use in the Great Lakes Basin using the 
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consumptive use coefficient method. Coefficients calculated or referenced in other studies 

conducted for the Great Lakes Basin, or climatically similar areas, were compiled for different 

water use categories: domestic and public supply, industrial, thermoelectric power, irrigation, 

livestock, commercial, and mining. The coefficients for each water use category were 

statistically analyzed to determine the appropriate consumptive use coefficient to apply to the 

Great Lakes Basin (Shaffer and Runkle, 2007). The major limitation of this study was the 

sources of the consumptive use coefficients. Some of previous studies from which coefficients 

were taken were over 10 years old at the time of the study. Many studies were also listed as 

secondary sources for the coefficients they provided, meaning they were calculated even earlier. 

Even if the USGS study utilized current water withdrawal data in their calculation of 

consumptive use, the older coefficients used in the analysis could lead to an inaccurate 

representation of current consumptive water use patterns. 

Another USGS study utilized similar methods to estimate consumptive use for irrigation 

and thermoelectric power for each US state in 2015 (Dieter et al., 2018). One limitation of this 

consumptive use data is that it does not include all major water use categories, only irrigation 

and thermoelectric power. While these were the largest two categories for the entire US in 2015 

(41% and 37% respectively) this may not be the case in all areas. Another limitation is the 

infrequency of estimation. 2015 was the first year since 1995 that consumptive use estimates 

were included in the USGS water use report. Even if they continue to include the data in future 

reports, new data will only be available every five years. The data is also only available at the 

state level, so additional assumptions must be made to use the data for areas smaller than 

statewide scale.  

Another method for consumptive use estimation, the water balance method, may provide 
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a way to estimate consumptive use in a more complete and frequent manner than previously used 

methods. The water balance method equation for estimating consumptive use can take several 

forms. The simplest form is the same basic equation for calculating consumptive use when total 

withdrawal and return flow data is known (Shaffer and Runkle, 2007). 

Consumptive use = Withdrawal – Return flows 

Similar to the consumptive use coefficient method, successful use of this form of a water 

balance equation is limited to areas where withdrawal and return flow data is available. These 

areas may include individual commercial, industrial, or agricultural operations, municipalities, 

states, or even nations. It is rare to find applications on a watershed scale, since water use data is 

typically organized based on private or political boundaries, rather than by watershed boundaries. 

A study by Tidwell et al. (2014) estimated water availability and future consumptive use for 17 

western states in the US. Consumptive water use was estimated with a simple water balance 

equation using historical water use data from each state’s water plan. The consumptive use 

projections for 2030 were estimated using linear extrapolation from current consumptive use 

estimates and population growth estimates (Tidwell et al., 2014). While this study provided 

important information for future water resource management, the methods relied on the 

availability of statewide water withdrawal data, which may not be available at different spatial or 

temporal scales. The study also did not incorporate their estimations into the overall water 

balance, such as the one shown in Figure 2.  

To the author’s knowledge, there are no studies which employ a holistic water balance 

approach to estimating consumptive water use on a watershed scale. The consumptive water use 

studies reviewed here are dependent on the availability of water withdrawal data, and/or 

previously calculated consumptive use coefficients. These studies also do not provide 
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consumptive use data in a frequent or semi-frequent time frame (e.g. monthly or quarterly). An 

important factor in watershed management is knowing the quantity of water flowing in and out 

of the watershed over a certain period of time, and how much is available for human use. The 

need for an integrated WBM approach for estimating human water use is apparent. The WBM 

approach proposed in this study utilizes readily and frequently available hydrologic data and 

validated estimation methods for the calculation of water balance components. In order for water 

use goals such as the state of Oklahoma’s Water for 2060 Act to be met, timely water use 

estimations are needed. 
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Chapter 3 – Study Area 

This chapter describes the physical geography, hydrology, and human geography of the 

project study area which is the Southeast Watershed Planning Region (SEWPR) of Oklahoma as 

defined by OWRB (OWRB, 2011a). There are 13 different watershed planning regions across 

Oklahoma separated by both watershed and state boundaries (Figure 3). The SEWPR was chosen 

as the initial study area because it has one of the lowest water demands of the 13 planning 

regions (OWRB, 2011a). Selecting a region with lower demand simplified the WBM analysis so 

the methods could be developed and tested more easily. 

3.1 Physical Geography 

The SEWPR encompasses almost 11,500 square kilometers (km2) located in the 

southeastern corner of the state and includes all of McCurtain County, and portions of Atoka, 

Choctaw, Latimer, Le Flore, Pittsburg, and Pushmataha Counties. The SEWPR is located within 

two different United States Environmental Protection Agency (US EPA) Level III Ecoregions 

(Woods et al., 2005), the Ouachita Mountains in the north, and the South Central Plains in the 

south (Figure 4). The primary land cover types within the SEWPR are Deciduous Forest and 

Evergreen Forest covering 27.5% and 26.2% of the region respectively, followed by Pasture/Hay 

covering 15.3% (NLCD, 2016). The region contains only 4.2% developed land, with 89% of that 

being open space developed (Yang et al., 2018) (Figure 5). The topography of the SEWPR varies 

greatly, from the Kiamichi Mountains in the north which reach heights of over 820 meters (m) 

above sea level, to the alluvial plains and hardwood wetlands near the Red River in the south 

with minimum elevations of approximately 40 m. The total relief within the SEWPR is 
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approximately 780 m with elevation generally increasing going from south to north with the 

exception of a few valleys between mountain ranges in the north (Figure 6).  

 

 

Figure 3: Watershed Planning Regions of Oklahoma. Map courtesy of the 2012 Oklahoma 

Comprehensive Water Plan from the Oklahoma Water Resources Board (OWRB, 2011a). 
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Figure 4: Level III Ecoregions located within the Southeast Watershed Planning Region of 

Oklahoma. Data from the United States Environmental Protection Agency. 
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Figure 5: Land cover classification in the Southeast Watershed Planning Region of Oklahoma 

from the National Land Cover Database (NLCD 2016). 

 

 

Figure 6: Topography of the Southeast Watershed Planning Region of Oklahoma. Data from 

United States Geological Survey Digital Elevation Model. 
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3.2 Hydrology 

The topography of the region results in a general flow of major streams from east to west 

in the north, and north to south/east in the south. The major lotic water bodies include the 

Glover, Kiamichi, Little, and Mountain Fork Rivers, and the major lentic waterbodies include 

Broken Bow, Hugo, Pine Creek, and Sardis Lakes (Figure 7). The Red River flows along most of 

the southern boundary of the SEWPR, but the water within the Red River was not considered 

part of the SEWPR’s hydrologic system for this project. There are two major aquifers within the 

SEWPR, the Antlers and Red River aquifers, that underlie the southern portion of the region. The 

Antlers aquifer is a major bedrock aquifer which stretches east to west and underlies 

approximately 3,370 km2 across the region. The Red River aquifer is a major alluvial aquifer 

extending north from the Red River and underlies approximately 870 km2 of the region. There 

are several other minor bedrock and alluvial aquifers across the region, the largest being the 

Kiamichi bedrock aquifer which underlies approximately 7,070 km2 (61%) of the SEWPR 

(OWRB, 2011b) (Figure 8). Major aquifers are defined by OWRB as having an average annual 

water well yield of at least 568 liters per minute (150 gallons per minute) for alluvial aquifers 

and at least 189 liters per minute (50 gallons per minute) for bedrock aquifers, and minor alluvial 

and bedrock aquifers do not meet those thresholds (OWRB, 2011b). The region receives an 

average of 125 centimeters (cm) in annual precipitation which is about 34 cm more than the 

statewide average (Oklahoma Mesonet, 2019). 
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Figure 7: Major waterbodies within the Southeast Watershed Planning Region of Oklahoma. 

Data from Oklahoma Water Resources Board and United States Geological Survey. 

 

Figure 8: Major and minor aquifers underlying the Southeast Watershed Planning Region of 

Oklahoma. Map courtesy of the 2012 Oklahoma Comprehensive Water Plan – Southeast 

Watershed Planning Region Report from the Oklahoma Water Resources Board (OWRB, 

2011b). 
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3.3 Human Geography   

Estimated population in the SEWPR was approximately 59,400 as of 2010 (US Census, 

2010). The largest town in the SEWPR is Idabel with a 2010 population of 7,010. Other major 

towns within the region include Hugo (5,310), Broken Bow (4,120), and Antlers (2,450). To 

estimate population projections in the SEWPR for 2060, county population projections from an 

Oklahoma Department of Commerce study (Barker, 2012) were weighted by the percentage of 

each county that falls within the SEWPR. The projected 2060 population for the SEWPR was 

estimated to be 64,500, an 8.6% increase from 2010.  

In the 2012 OCWP SEWPR report, the total annual water demand for the SEWPR was 

estimated at 0.62 cm in 2010 and was estimated to grow by about 26% by 2060. The 2010 

estimate accounted for approximately 3% of the state’s total estimated water demand, with 96% 

supplied by surface water and 4% from groundwater. The sector that contributed to the largest 

demand was industrial which includes water demands from large industries that do not depend 

on public water supply. This accounted for about 60% of the total estimated water demand in 

2010 (Table 1). Water use data is also estimated in USGS reports published every five years, and 

data is available for 2010 and 2015 at the statewide level (Maupin et al., 2014; Dieter et al., 

2018). Assuming the same 3% share of the state’s water demand for the SEWPR from OWRB, 

the total freshwater withdrawals for the SEWPR were 0.64 and 0.65 cm for 2010 and 2015 

respectively. These values were consistent with the OCWP water demand estimates. The same 

report also estimated consumptive use from irrigation and thermoelectric power at the statewide 

level in 2015. The total consumptive use for these two water use categories in the SEWPR would 

be 0.29 cm assuming the 3% share for the SEWPR again, which is 45% of 2015 estimated total 

withdrawals.  
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The values for both water demand and withdrawals from OWRB and USGS represent the 

amount of water pumped or diverted to meet user needs. The OWRB report does not include any 

estimates for the water returned to the hydrologic system post-use, so consumptive use cannot be 

estimated using this data. The USGS report includes these return estimates for irrigation and 

thermoelectric power, but not for the other water use sectors. A consumptive use estimation in 

the SEWPR can be made for 2015 using the USGS data, but major assumptions must be made to 

separate the SEWPR from the entire state. However, this 2015 consumptive use estimate was a 

useful baseline to compare to WBM consumptive use estimations. It is also important to note that 

the OWRB and USGS water use estimates are projections based partially on self-reported survey 

data from water users. While this data is useful, it may not accurately represent the true amount 

of water used by humans in the SEWPR. 

 

Table 1: Estimated water demand by sector (cm) in the Southeast Watershed Planning Region of 

Oklahoma for 2010 and projected for 2020-2060 (OWRB, 2011b). 

 
Crop 

Irrigation 
Livestock 

Municipal 

& 

Industrial 

Oil & 

Gas 

Self-

Supplied 

Industrial 

Self-

Supplied 

Residential 

Thermoelectric 

Power 
Total 

Year Depth in cm 

2010 0.027 0.043 0.076 0.001 0.374 0.014 0.089 0.624 

2020 0.033 0.044 0.080 0.002 0.374 0.015 0.099 0.647 

2030 0.040 0.045 0.084 0.003 0.374 0.016 0.111 0.672 

2040 0.046 0.045 0.088 0.004 0.380 0.016 0.124 0.704 

2050 0.051 0.046 0.092 0.005 0.392 0.017 0.138 0.741 

2060 0.059 0.047 0.096 0.007 0.402 0.018 0.154 0.783 
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Chapter 4 – Methodology 

A WBM has been developed with the goal of estimating consumptive use on a quarterly 

basis within the SEWPR. For the purposes of this study, consumptive use was defined as the 

volume of freshwater removed from a watershed that is not included in natural hydrologic 

processes, and generally contributed to human activities. The WBM estimates consumptive use 

by estimating all input and output components of the natural hydrologic balance and solves for 

consumptive use as the remaining output component. The hydrologic zone of analysis includes 

both surface water and groundwater within the boundaries of the SEWPR. The surface water 

system is considered to be all water sources above ground, including all lentic and lotic 

waterbodies, water stored in plants, and any volume of water held in man-made water supply 

systems. The groundwater system is considered to be all below ground water sources, including 

soil moisture and any confined or unconfined aquifers.  

To understand the interactions between each input and output component of surface water 

and groundwater, it is helpful to first consider both the surface and sub-surface regions as their 

own separate water balance. The equations for the surface water and groundwater balances are 

written as Equations 2 and 3 respectively: 

  ΔSsw = P + Qin + Gwd + GwSw – ETsw – Qout – Re – SwGw – Csw 

 

(2) 

 ΔSgw = Re + SwGw – ETgw – GwSw – Gwd – Cgw (3) 

where ΔSsw is the change in surface-water storage, ΔSgw is the change in groundwater storage, Re 

is groundwater recharge, Gwd is groundwater withdrawals, GwSw is groundwater to surface-water 

flow, SwGw is surface-water to groundwater flow, ETsw is surface water actual evapotranspiration, 
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ETgw is groundwater actual evapotranspiration, Csw is surface water consumptive use, and Cgw is 

groundwater consumptive use. Since the hydrologic zone of analysis includes both the surface 

water and groundwater systems, the two equations were combined. Several components which 

are inputs to the surface water system are also outputs to the groundwater system, and vice versa. 

These components cancel out, leaving only components that contribute as net inputs or outputs to 

the overall system. The assumption was made that all groundwater inputs and outputs take place 

within the SEWPR, and there are no groundwater exchanges to or from other regions. Thus, the 

water balance equation for the overall system becomes 

 ΔS = P + Qin – ET – Qout – C (4) 

where ΔS is total change in water storage, ET is total actual evapotranspiration, and C is total 

consumptive use. 

The final water balance equation designed to estimate consumptive use in the SEWPR 

takes a similar form to equation 3, with several changes made for reasons specific to the SEWPR 

and the chosen methods of this study. The Qin component is considered negligible for the 

SEWPR, since there are almost no streams that flow into the region, and was omitted from the 

final equation. This is further explained in Section 4.2. The ΔS component is divided into surface 

and sub-surface storage change due to the confidence in the developed estimation methods and 

available data. This is further explained in Sections 4.3 and 4.4. Finally, the equation is 

rearranged to solve for consumptive use, and is written as: 

 C = P – ΔSsurf – ΔSsub – Qout – ET  (5) 

where ΔSsurf is change in surface water storage, and ΔSsub is change in sub-surface water storage.    
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The volume of water for each of these components was estimated on a quarterly (3-

month) timescale from 2007-2017. This time period was chosen because it includes five years 

before and after the Water for 2060 baseline year of 2012. Throughout this document, when the 

terms “quarters” or “quarterly” are used, they refer to the 44 3-month periods between 2007 and 

2017. The abbreviation “Q” followed by the numbers 1 – 4 were used to denote each of the four 

annual quarters, where Q1 is January, February and March, Q2 is April, May, and June, Q3 is 

July, August, and September, and Q4 is October, November and December. The following 

sections describe the different estimation methods used for each WBM component.  

4.1 Precipitation 

Quarterly precipitation for the SEWPR was estimated using the National Centers for 

Environmental Prediction (NCEP) Stage IV Quantitative Precipitation Estimates (QPE) from the 

National Weather Service. This data product includes monthly gridded precipitation (P) 

estimates from radar and rain gauge measurements. Each cell has a 4 kilometer (km) spatial 

resolution and contains a value for monthly P accumulation depth in inches. Monthly gridded 

raster files for 2007-2017 were downloaded and processed using ESRITM ArcGIS software 

(ESRI, 2018). A subset was made for each monthly P raster file by removing all pixels not 

included in the SEWPR boundary (Figure 9). Next, the monthly rasters were summed into 

quarters using the Raster Calculator spatial analyst tool (ESRI, 2018) (e.g., Q1 = Jan + Feb + 

Mar). Finally, the Surface Volume 3D analyst tool (ESRI, 2018) was used to estimate the volume 

of P across the SEWPR for each quarter.  
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Figure 9: Precipitation accumulations from the National Centers for Environmental Prediction 

Stage IV Quantitative Precipitation Estimates in the Southeast Watershed Planning Region of 

Oklahoma for 2007 Quarter 1. 

 

4.2 Streamflow 

The SEWPR is a unique region in that there are essentially no streamflow input sources. 

There are several minor streams that enter the region along the Arkansas border, however, these 

streams exit the region shortly after entering and without converging with other streams, so their 

inflow contribution can be considered negligible for the WBM. All streamflow volumes were 

estimated as the Qout component of the WBM. The USGS National Water Information System 

(USGS, 2019b) provides streamflow data as daily mean discharge in cubic feet per second (cfs) 

from seven active stream gauge stations across the SEWPR (Figure 10). To directly measure the 

total Qout volume for the SEWPR for each quarter, stream gauges would need to exist at locations 
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where each stream exits the SEWPR. Since this is not the case, alternative methods were used to 

estimate Qout for each outflow stream at the point where it exited the SEWPR. 

 

Figure 10: Active United States Geological Survey stream gauges within the Southeast 

Watershed Planning Region (USGS, 2019b). 

Average daily discharge in cfs at ungauged locations can be estimated using the USGS 

StreamStats web application. StreamStats uses regional regression equations with contributing 

drainage area and mean annual P from 1971-2000 as input parameters to estimate a long-term 

average daily discharge rate (Esralew and Smith, 2010). However, the discharge estimation from 

StreamStats cannot be directly used to estimate the quarterly Qout component of the WBM, since 

it only provides the long-term average. To account for the temporal variability in streamflow 

between quarters, a streamflow coefficient (SC) method was developed. This method uses a 

proportional SC based on observed USGS stream gauge discharge data to estimate mean 

quarterly streamflow at ungauged locations where each stream exits the SEWPR.  
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Streams that exit the SEWPR either flow south into the Red River at the Oklahoma-Texas 

border, or flow east across the Oklahoma-Arkansas border where they flow into either the Little 

River or Red River. Both rivers have multiple USGS stream gauges located within or near the 

SEWPR. Mean quarterly discharge data from the closest gauge upstream and downstream of the 

reach where the SEWPR outflow streams join their respective river was used to calculate the 

quarterly net streamflow gains caused by the SEWPR outflow streams (Table 2). The net flow 

gains were calculated by subtracting upstream gauge discharge measurements from downstream 

gauge discharge measurements (Figure 11). For the Little River however, discharge from USGS 

gauge 07339000 – Mountain Fork near Eagletown, OK was also subtracted from downstream 

gauge discharge to exclude the possibility of anthropogenic influence flows from the Broken 

Bow Lake dam releases (Figure 11). 

Table 2: United State Geological Survey (USGS) stream gauges used to calculate net flow gains 

for Southeast Watershed Planning Region of Oklahoma outflow streams. 

River USGS Gauge Location 

Red River 07335500 at Arthur City, TX Upstream 

Red River 07337000 at Index, AR Downstream 

Little River 07338500 near Idabel, OK Upstream 

Little River 07340000 near Horatio, AR Downstream 
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Figure 11: Location of United States Geological Survey stream gauges on Little River, Red 

River, and Lower Mountain Fork River used for streamflow out (Qout) estimation in the 

Southeast Watershed Planning Region of Oklahoma (SEWPR). 

 

Once quarterly net streamflow gains were calculated for both rivers, the average net 

streamflow gains between upstream and downstream gauges on both rivers for the period of 

1971-2017 were calculated using available USGS gauge data. This time period includes the 11-

year period for this study and is representative of the long-term average data provided by 

StreamStats (1971-2000) assuming mean annual P has not changed significantly since 2000. 

Next, the SC for each quarter was calculated for both the Little River and Red River (Table A1) 

using the following equation: 

 SCi = 
Q

i

Q
avg

 (6) 
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where SCi is the streamflow coefficient for any quarter i (dimensionless), Qi is the average 

streamflow gain for any quarter i (cfs), and Qavg is the average streamflow gain from 1971-2017 

(cfs). Since the streams flowing out of the SEWPR are a major source of the streamflow gains 

between gauges, it was assumed that each quarter’s SC was representative of the relationship 

between the average streamflow for the quarter and the average streamflow from 1971-2000 

(from StreamStats) at the location where the stream exits the SEWPR. Average quarterly 

streamflow in cfs for each outflow stream was estimated using the following equation 

 Q
cfs

 = SCi * SSavg (7) 

where Qcfs is the average quarterly streamflow for a particular outflow stream in cfs, and SSavg is 

the average streamflow for the same outflow stream in cfs given by StreamStats (Table A2). 

Quarterly outflow volumes for each stream were then converted from cfs to total volume units by 

extrapolating the average flow rate for each quarter and summed to estimate the Qout component 

of the WBM for the entire SEWPR. 

4.3 Surface Storage Change 

To determine the ΔSsurf component of the WBM, storage volume of lentic surface 

waterbodies across the SEWPR were estimated for each quarter. Lentic surface waterbodies in 

the SEWPR are divided into two categories: mapped and unmapped waterbodies. The mapped 

waterbodies include United States Army Corps of Engineers (USACE) managed reservoirs and 

other reservoirs mapped by OWRB. The unmapped waterbodies include the remaining 

waterbodies which consist mostly of small public or privately-owned ponds for which no known 

bathymetric data exists. Since the methods for estimating storage volume differ for mapped and 
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unmapped waterbodies, this section is divided into two parts describing the methods for each 

category. 

4.3.1 Mapped Surface Waterbodies 

The USACE manages four reservoirs within the SEWPR as part of the Lower Red River 

Basin, managed by the Tulsa District in the Southwestern Division.  These reservoirs include 

Broken Bow Lake, Hugo Lake, Pine Creek Lake, and Sardis Lake (Figure 7). The USACE Tulsa 

District reports daily data for each of their reservoirs including storage volume. Storage volumes 

were calculated using area-capacity curves which were developed from bathymetric survey data 

collected by USACE. Relationships between elevation depth, surface area, and storage volume 

or capacity were developed using the curves, which were then used to calculate storage volume 

from the reservoir pool elevation that is monitored hourly at USACE reservoirs (USACE, 2013).  

Only the change in reservoir storage volume over the course of each quarter was needed 

to calculate the ΔSsurf component of the WBM. The general equation for calculating quarterly 

change in any variable is written as: 

 ΔX = Xi+1 – Xi (8) 

   

where ΔX is the change in variable X, Xi is the value of X for quarter i, and Xi+1 is the value of X 

for the following quarter. Since ΔX represents the change from one quarter to the next, values 

may be positive or negative. The storage volume of each reservoir on the first day of the quarter 

of interest was used in Equation 7 to calculate storage change (Table A3). For example, the 

change in storage volume for 2007 Q1 is the difference between storage volumes on 04/01/2007 

and 01/01/2007. Storage volume change was calculated for all quarters on each of the four 
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reservoirs, and each corresponding quarter for each reservoir was summed together to yield the 

total USACE reservoir quarterly storage volume change values for the SEWPR.  

There are four additional mapped reservoirs within the SEWPR that are not managed by 

USACE. These include Lake Carl Albert, Lake Nanih Waiya, Lake Ozzie Cobb, and Schooler 

Lake (Figure 12). Bathymetric data exists for these reservoirs from previously conducted OWRB 

surveys, but the pool elevations are not frequently monitored like the USACE reservoirs. To 

estimate storage volume from surface area like is done in the USACE methods, surface area must 

be estimated using alternative methods. Reservoir storage volumes have been estimated from 

remote sensing-based surface area data with overall success in previous studies (Liebe et al., 

2005; Rodrigues et al., 2012). Bathymetric data was used to develop a relationship between a 

reservoir’s surface area and storage volume, and surface area was estimated from Landsat 

satellite imagery. This same approach was used to estimate storage volumes for the four 

reservoirs mapped by OWRB. 
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Figure 12: Locations of Oklahoma Water Resource Board mapped reservoirs in the Southeast 

Watershed Planning Region of Oklahoma. Imagery from United States Department of 

Agriculture National Agricultural Imagery Program. 

 

The available bathymetric data for the four reservoirs included contour lines created from 

measured depth points representing the underwater topography for each reservoir. The storage 

volume and surface area of each contour interval along with the remaining intervals of greater 

depth included within (Figure 13) was estimated using ArcGIS 3D Analyst tools (ESRI, 2018). 

The resulting area and volume data was used to develop a regression model to represent the 

relationship between area and volume for each reservoir. Each reservoir’s regression equation 

was used as an empirical method for estimating volume in acre-feet (ac-ft) when area in acres 

(ac) is known (Table 3).  
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Figure 13: Contour intervals used to determine surface area to storage volume relationships for 

mapped Oklahoma Water Resource Board reservoirs. 5 feet intervals for Lake Nanih Waiya are 

shown. Imagery from United States Department of Agriculture National Agricultural Imagery 

Program. 

 

Table 3: Regression equations to estimate storage volume from surface area on mapped 

Southeast Watershed Planning Region of Oklahoma reservoirs, where V is storage volume in ac-

ft and A is surface area in ac. R2 is the coefficient of determination for each equation. 

Reservoir Regression Equation R2 

Carl Albert V = 0.0768A2 + 4.0356A 0.998 

Nanih Waiya V = 0.0860A2 + 0.5685A 0.992 

Ozzie Cobb V = 0.1024A2 + 1.9326A 1.000 

Schooler V = 0.3287A2 + 2.0094A 0.998 

 

 Next, the quarterly surface area of each reservoir was estimated from Landsat satellite 

imagery. Landsat TM, ETM+, and OLI sensors, which provide the appropriate temporal data 

coverage for this study, measure surface reflectance from discrete wavelength ranges at 30 m 
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spatial resolution with a 16-day return interval. Images from the days closest to the beginning of 

each quarter with the least amount of cloud cover over the reservoirs were selected. 

To distinguish surface water from other land surfaces, a spectral index called the 

Modified Normal Difference Water Index (MNDWI) was applied. The MNDWI is an algorithm 

designed to distinguish open water from other land surfaces based on the different light 

wavelengths absorbed or reflected by water compared to other surfaces (Xu, 2006). The formula 

for MNDWI is written as: 

 
MNDWI = 

Green - MIR

Green + MIR
 (9) 

where Green is the Landsat band for green light reflectance (0.52-0.60 µm wavelength), and MIR 

is the Landsat band for middle infrared reflectance (1.55-1.75 µm wavelength). Values of 

MNDWI range from -1 to 1. Water reflects a similar amount of green light as other surface types 

but reflects much less MIR light. Applying the MNDWI to a water pixel should produce a 

positive value, while pixels of other surface types should produce a negative value.  

ArcGIS Spatial Analyst tools (ESRI, 2018) were used to apply the MNDWI to Landsat 

images (USGS, 2019a) for each quarter. A conditional binary raster was then created which 

assigns all positive MNDWI pixels a value of 1, and all negative pixels a value of 0 (Figure 14). 

Pixels not in close proximity to the shoreline of each reservoir were removed from the rasters, 

and the number of water pixels associated with each reservoir was calculated within ArcGIS for 

each quarter. The surface area was calculated by multiplying the number of water pixels by the 

area of each pixel (900 m2), and then converted to ac and used in the appropriate regression 

equation for each reservoir to estimate storage volume for each quarter. Storage volumes for the 
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four reservoirs were summed together and used in Equation 7 to calculate quarterly storage 

change (Table A4). 

 

 

Figure 14: True color Red-Green-Blue (left), Modified Normal Difference Water Index 

(MNDWI) (middle), and binary raster (right) images of Lake Nanih Waiya derived from Landsat 

reflectance data. Pixels with higher MNDWI values are shown in dark blue (middle), and pixels 

identified as water in the binary raster are shown in light blue (right). 

 

4.3.2 Unmapped Surface Waterbodies 

Estimating storage for unmapped surface waterbodies in the SEWPR requires an 

alternative approach than used for mapped surface water bodies, since bathymetric data is not 

available for these waterbodies, and most are too small in area to be accurately represented by 

Landsat pixels. To address this issue, bathymetric data was manually collected from small lentic 

waterbodies in the SEPWR by the author and several other employees and students from the 

Oklahoma Water Survey.   

Bathymetric surveys were conducted on 17 small lentic waterbodies within the SEWPR 

on three separate trips between July and October of 2019, totaling 7 days, consisting of travel 
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and field work. The surveys were conducted using simple and low-cost equipment including a 

kayak, a Deeper Pro+ Smart Sonar portable fish finder (Deeper, UAB, Vilnius, Lithuania) and a 

Garmin GPSMAP 78s handheld global positioning system (GPS) unit (Garmin International, 

Inc., Olathe, Kansas, USA). The fish finder was mounted to the side of the kayak with a flexible 

arm mount and positioned so the sonar sensor was submerged and facing towards the bottom of 

the waterbody (Figure 15). The device was controlled by a tablet using an application and 

continuously measured waterbody depth and coordinate location with a built in GPS as the kayak 

traveled across the waterbody. The collected depth and coordinate location data was stored in a 

cloud data base and automatically appeared on a map interface within the application as the 

person operating the kayak and fish finder traveled across the waterbody. The kayak was guided 

across the waterbody in evenly spaced transects until the waterbody was sufficiently covered in 

data points. One limitation of the Deeper fish finder was its inability to measure depth and 

coordinate location data in water less than 1 foot deep. For this reason, the coordinate location of 

the shoreline could not be collected using the built in GPS of the fish finder. Instead, a Garmin 

handheld GPS unit was used to collect waypoints spaced every 10 feet around the shoreline of 

the waterbody (Figure 15). This allowed an accurate shoreline to be delineated to serve as the 

boundary during post-processing of the bathymetric data. 
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Figure 15: Bathymetric data collection on waterbody in the Southeast Watershed Planning 

Region of Oklahoma, including the kayak with fish finder mounted on the right side (left). 

Collection of shoreline global positioning system points used for bathymetric data processing 

(right). 

 

The areas of these waterbodies ranged from <0.1 to 60.3 ac and were chosen to be 

representative of the remaining unmapped waterbodies across the SEWPR. The waterbodies 

were located on both public and private land owned by several different, local, state, federal, and 

tribal agencies including the City of Broken Bow, Oklahoma State University, Oklahoma 

Department of Wildlife Conservation, Oklahoma Tourism and Recreation Department, USACE, 

US Forest Service, and Choctaw Nation. Representatives from each of these agencies were 

contacted and asked for permission to conduct the bathymetric surveys on their property. Once 

the bathymetric data was processed, informational maps of each waterbody were created and sent 

to their respective agency representatives, courtesy of the Oklahoma Water Survey. 

The collected data was processed using ArcGIS software (ESRI, 2018) to calculate the 

storage volume of each full waterbody, along with decreasing contour intervals for each 

waterbody, as was done with the mapped reservoirs. First, the waterbody shoreline was 
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delineated from the collected GPS points. This made it possible to estimate the surface area of 

each waterbody at the time of the bathymetric survey. Then the collected points from the fish 

finder with depth and coordinate location data were used to create an interpolated raster surface 

and contour lines that represent the underwater topography of each waterbody (Figure 16). The 

storage volume for each waterbody was then estimated using 3D Analyst tools built in to 

ArcGIS. This process was repeated for each contour interval within the waterbody to represent 

the area and volume of the waterbodies if the water level dropped to each specific contour 

interval.  

In addition to the collected bathymetric data (Table A5), contour interval areas from 

reservoirs mapped by OWRB and USACE that were less than 100 acres were selected to 

represent smaller waterbodies. Contour lines from shallower depths were removed from each 

reservoir until the total area was less than 100 ac. Then the volume was estimated as if the water 

level had dropped to the contour interval. This additional area and volume data was added to the 

collected bathymetric data, and used to develop regression models that predict storage volume 

from surface area. Separate models were fit for small (0 to 5 ac) and large (5 to 100 ac) 

waterbodies to more accurately estimate waterbody volumes of different sizes. A single model 

trained with data that included large waterbodies predicted small waterbodies with less accuracy 

than a model trained only with small waterbody data. Because small waterbodies make up over 

99% of the sample of digitized waterbodies, accurately modeling these waterbodies was crucial. 

Different types of regression models including linear, quadratic, and power models using 

different surface area thresholds were trained and tested with independent datasets from the 

bathymetric data. The performance of each model was evaluated using four different 

performance metrics which compare modeled values to observed values (Table 4). Within the 0 
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to 5 ac and 5 to 100 ac thresholds, none of the different types of regression models (linear, 

quadratic, or power) performed significantly better than one of the other, so the model with the 

highest NSE value was chosen for each area threshold (Table 5).  

 

Figure 16: Depth points collected from a bathymetric survey of a lentic waterbody in the 

Southeast Watershed Planning Region of Oklahoma on 10/28/2019 (left) and contour intervals 

and depth raster surface derived from collected depth points used to estimate storage volume 

(right). 

Table 4: Performance metrics used to evaluate regression models for predicting lentic waterbody 

storage volume from surface area. R2 = coefficient of determination, nRMSE = standard 

deviation normalized root mean square error, NSE = Nash-Sutcliffe Efficiency, and % bias = 

percent bias. 

Performance Metric Range Target Value 

R2 -1 to 1 1 

nRMSE 0 to 1 0 

NSE -∞ to 1 1 

% bias -100 to 100 0 
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Table 5: Regression models for predicting storage volume of small and large unmapped lentic 

waterbodies in the Southeast Watershed Planning Region of Oklahoma, evaluated with 

performance metrics. Chosen models are shown in bold. 

Area Range 

(acres) 

Model Type Equation R2 nRMSE NSE % bias 

0-5 Linear V = 3.044A 0.833 0.432 0.808 -8.6 

0-5 Quadratic V = 1.464A2 + 2.080A 0.836 0.426 0.813 -10.5 

0-5 Power V = 3.333A1.260 0.836 0.424 0.814 -7.5 

5-100 Linear V = 7.154A 0.992 0.201 0.955 -5.0 

5-100 Quadratic V = 0.068A2 + 3.275A 0.979 0.330 0.879 -28.0 

5-100 Power V = 1.099A1.470 0.975 0.326 0.882 -32.7 

 

The spatial resolution of Landsat imagery is too low to accurately estimate many of the 

small unmapped surface waterbody areas. To address this issue, high resolution (1 m) aerial 

imagery from the United States Department of Agriculture National Agricultural Imagery 

Program (USDA NAIP) was used (NAIP, 2018). While the spatial resolution of the NAIP 

imagery is much higher than Landsat, images are taken only once every 2 to 3 years, which 

limits the availability to only 5 out of 44 quarters. However, NAIP was the only imagery source 

with high enough spatial resolution that was available at no charge. Sets of images covering at 

least 96 km2 and evenly spaced across the SEWPR, were chosen for each available quarter 

(Figure 17). The minimum number of km2 of images required to represent the entire SEWPR 

was determined using the following equations 
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n = 
 N × X  

X + N + 1
  (10) 

 

 

where, 

X = 
 𝑧2 × 0.5 × (1 - 0.5)

𝜀
 (11) 

 

and N is the population size, z is the critical value of a normal distribution at the desired 

confidence level, ε is the margin of error, and n is the minimum sample size. The sample size 

required to represent all 11,500 km2 within the SEWPR with a confidence level of 95% and a 

margin of error of 10% was 96 km2.  

All lentic surface waterbodies greater than 10 square meters (m2) within the images were 

manually digitized using ArcGIS Editor tools. Digitizing creates a polygon for each waterbody 

and allows surface area to be directly calculated (Figure 18). Digitizing the entire extent of the 

SEWPR would be far too time consuming, so the data collected from the sample images was 

extrapolated across the entire SEWPR. 
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Figure 17: Distribution of selected United States Department of Agriculture National 

Agricultural Imagery Program (NAIP, 2018) images for unmapped waterbody digitizing from 

2015 Quarter 3.  

 

Figure 18: Example of a digitized waterbody from 2008 United States Department of Agriculture 

National Agricultural Imagery Program imagery in the Southeast Watershed Planning Region of 

Oklahoma. 

 

The appropriate regression model was applied to the surface area data from the digitized 

waterbodies to estimate their storage volume. The storage volume was then summed for each 
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km2 of digitized area during that quarter, and the mean storage volume per km2 was extrapolated 

across the entire SEWPR to estimate total storage volume for the quarter. For quarters where 

imagery is not available, a multiple linear regression model was developed to estimate the 

quarterly total storage volume of unmapped lentic waterbodies using hydrologic input variables 

that were available for all quarters. Since there was only 5 quarters of digitized waterbody data to 

train the model on, the model could not be tested with an independent sample or evaluated with 

performance metrics. Instead, the model was chosen based on which variables had a coefficient 

and intercept that were significant at the 95% confidence level. The equation is written as: 

 V = -0.015ET + 0.022P + 42,603 (12) 

   

where V is total unmapped waterbody storage volume, ET is evapotranspiration, and P is 

precipitation. Each parameter volume is in ac-ft. Once each quarter had an estimated storage 

volume for unmapped waterbodies across the entire SEWPR, quarterly storage change was 

calculated using Equation 7 (Table A6). 

Finally, to calculate the total ΔSsurf component for each quarter, the three different 

estimated values for storage change were summed together 

 ΔSsurf = ΔS1 + ΔS2 + ΔS3 (13) 

   

where ΔS1, ΔS2, and ΔS3 are the storage changes on USACE reservoirs, OWRB mapped 

reservoirs, and unmapped waterbodies, respectively. 

 

4.4 Sub-surface Storage 

Sub-surface storage change (ΔSsub) is difficult to estimate in Southeast Oklahoma because 

groundwater and soil moisture monitoring networks are much more limited than those of surface 
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water. Even when sub-surface water monitoring data exists, there are often spatial and temporal 

limitations that prevent quarterly sub-surface storage change from being estimated. A common 

solution to the lack of ground sourced environmental data is the use of remote sensing, 

specifically Gravity Recovery and Climate Experiment (GRACE) satellite data for sub-surface 

water storage (Swenson, 2012; Landerer and Swenson, 2012; Swenson and Wahr, 2006). 

GRACE consists of two satellites that orbit Earth at approximately 140 miles apart. The satellites 

measure monthly changes in Earth’s gravity field caused by changes in mass over land and in the 

atmosphere, relative to a time-mean baseline. Changes in atmospheric mass are removed during 

processing, leaving only changes in mass over land. Since most monthly gravity changes over 

land are due to changes in water storage, GRACE data is reported as equivalent water thickness 

(EWT) in cm, which represents a theoretical height of water gained or lost required to produce 

mass based monthly gravity changes (Wahr et al. 1998). The total EWT includes changes in 

surface water storage, groundwater storage, soil moisture storage, and snow water equivalent 

storage. Previous studies have used GRACE EWT data to estimate soil moisture and 

groundwater storage changes by removing the other water storage changes contributing to the 

EWT total (Rodell et al., 2007; Scalon et al., 2012; Swenson et al., 2008). 

 There are several periods of 1 to 2 months with missing EWT data throughout the WBM 

study period due to satellite operational errors. To estimate the EWT for the missing months with 

the GRACE period of record, linear interpolation was used. In this case, the equation for linear 

interpolation is written as: 

 
EWTi = 

 EWT2  -   EWT1

n
+ EWTi -1 (14) 

where EWTi is the EWT for the month of interest, EWT1 is the EWT of the closest known month 
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before EWTi, EWT2 is the EWT of the closest known month after EWTi, n is the number of 

months between EWT1 and EWT2, and EWTi-1 is the EWT of the month previous to EWTi.  

Equation 7 was used with the measured and estimated EWT for the first month of each quarter to 

estimate the quarterly change in EWT. Then each quarter’s ΔSsurf volume was subtracted from 

the EWT change, and the remaining volume of water lost or gained was assumed to be due to 

soil moisture and groundwater storage changes, or ΔSsub. Snow water equivalent storage is 

negligible for the SEWPR and can be ignored.  

No EWT data is available for July-December 2017 as a result of the two GRACE 

satellites being decommissioned after June 2017. To estimate ΔSsub for 2017 Q3 and Q4 which 

fall outside of the GRACE period of record, a multiple linear regression model was developed to 

estimate quarterly change in EWT using quarterly EWT change based on only observed GRACE 

data and not interpolated quarters, and other known quarterly hydrologic variables. Different 

models were trained and tested with independent data sets using different combinations of 

independent variables. The regression model with significant (95% confidence level) variable 

coefficients and intercept was chosen and is written as: 

 EWT(2017 Q3,4) = -0.328ET(2017 Q3,4) + 1.830 ΔSsurf(2017 Q3,4) + 8.242 (15) 

   

   

where EWT(2017 Q3,4) is the equivalent water thickness for 2017 Q3 and Q4, ET(2017 Q3,4) is 

evapotranspiration for 2017 Q3 and Q4, and ΔSsurf(2017 Q3,4) is surface storage change for 2017 Q3 

and Q4. The model performed reasonably well when compared with observed data, with an R2 of 

0.72, nRMSE of 0.54, NSE of 0.67, and % bias of 23.7%. The ΔSsurf for 2017 Q3 and Q4 was 

subtracted from the model estimated EWT to calculate ΔSsub for those quarters. Estimated change 

in GRACE EWT for each quarter is shown in Table A7 in the Appendix. 
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4.5 Evapotranspiration 

The evapotranspiration (ET) component of the WBM was estimated using a similar 

procedure to P. Actual evapotranspiration (ETa) data is available from the Famine Early Warning 

Systems Network (FEWS NET, 2019). The data product is a raster surface with 1 km resolution 

pixels containing monthly ETa volumes in millimeters (mm), estimated using the Operational 

Simplified Surface Energy Balance (SSEBop) model (Senay et al., 2013). The SSEBop model is 

a modified version of the SSEB approach developed by Senay et al., where ETa is estimated by 

temperature differences based on two reference hot and cold land surface temperature pixels. The 

hot pixel represents bare land, while the cold pixel represents wet and well vegetated land. The 

difference between the near-surface temperature and the land surface temperature is assumed to 

be the latent heat flux, or the energy consumed by evapotranspiration. Therefore, the hot pixel 

has the lowest latent heat flux and minimum ETa, while the cold pixel has the highest latent heat 

flux and maximum ETa. The remaining pixels have ETa estimates proportional to their land 

surface temperature in relation to the hot and cold pixels (Senay et al. 2007). The way the 

SSEBop differs from SSEB is the unique parameterization for operational applications that uses 

seasonally dynamic pre-defined boundary conditions for hot and cold reference points that are 

unique to each pixel, improving local ETa estimates (Senay et al., 2013). 

 Because the SSEBop model is designed for land pixels, it may not be as accurate over 

large bodies of water compared to open water evaporation estimation methods. The USACE 

Tulsa District reports daily evaporation data for each of their managed reservoirs that is available 

to the public online (USACE, 2020). They use a set of empirical equations that estimate daily 

reservoir evaporation (Er) using environmental input parameters including temperature, wind 

speed, relative humidity, and solar radiation (Harwell, 2012). The daily Er depths in inches were 
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summed into quarterly Er depths for each reservoir and multiplied by its surface area to convert 

from depth to volume. This made it possible to sum the Er volumes of all four USACE reservoir 

for each quarter. 

 Since Er was estimated separately, SSEBop ETa pixels for the four USACE reservoirs 

were removed from the analysis within the SEWPR. The monthly ETa rasters with the reservoirs 

removed were summed into quarters, and ArcGIS 3D analyst tools were used to estimate the 

volume of ETa across the SEWPR for each quarter (Figure 19). Er and ETa were added together 

for each quarter to calculate the ET component of the WBM. 

 

Figure 19: Operational Simplified Surface Energy Balance model actual evapotranspiration in 

inches for the Southeast Watershed Planning Region of Oklahoma for 2007 Quarter 1, with 

United State Army Corps of Engineers reservoirs removed (FEWS NET, 2019).  
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4.6 Additional Hydrologic Components 

This section describes the methods used to estimate two additional hydrologic 

components on a quarterly basis within the SEWPR that are not separate components of the 

WBM. These include baseflow (BF), wastewater discharges (WWD), and reservoir discharges 

(RD) from USACE managed reservoirs within the SEWPR. All three of these sub-components 

are accounted for within the main components of the WBM. While they are not necessary for 

estimating consumptive use within the WBM, their volume and magnitude relative to each other, 

and the rest of the main WBM components could potentially be of interest to water managers.  

4.6.1 Baseflow 

Baseflow (BF) is the component of streamflow that is sustained in the absence of direct 

runoff, largely due to groundwater discharges (USGS, 2017). While BF is not a separate 

component of the WBM, it is an important parameter for understanding the hydrologic patterns 

of a watershed, including groundwater-surface water interactions. The PART program within the 

USGS Groundwater Toolbox software was used to estimate quarterly BF discharge at all stream 

sites leaving the SEWPR. PART uses streamflow partitioning to estimate a daily BF record from 

the streamflow record. PART equates BF to streamflow on days that fit an antecedent recession 

requirement of being unaffected by runoff or interflow, and linearly interpolates BF on other 

days (Rutledge, 1998).  

 Observed discharge data from all USGS gaging stations within the SEWPR was imported 

into Groundwater Toolbox. Data from several other stations with small drainage areas (less than 

830 km2) nearby but outside the SEWPR was also imported. Importing these additional stations 

helps increase the sample of observed discharge from small drainage areas, which were used to 

estimate BF on the small ungauged tributaries that exit the SEWPR. The PART program within 
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Groundwater Toolbox estimates the BF discharge rate and volume, along with the baseflow 

index (BFI) which is the ratio of BF to total stream discharge. For the two larger rivers flowing 

out of the SEWPR (Kiamichi River and Little River), the quarterly estimated BFI from the 

station nearest to the point where each river exits the SEWPR was multiplied by the estimated 

discharge out at the ungauged point from Section 4.2, which yields the estimated quarterly BF 

volume. For the smaller ungauged streams exiting the SEWPR, with drainage areas ranging from 

23 to 190 km2, the mean of quarterly BFI from the five gaging stations with the smallest drainage 

areas (103 to 829 km2) was multiplied by estimated ungauged discharge on each outflow stream 

from Section 4.2. 

4.6.2 Wastewater Discharges 

It is useful to quantify wastewater discharges (WWD) within the SEWPR and the 

proportion that WWD contribute to the Qout component of the WBM. Quantifying WWD 

provides water managers with an estimation of the amount of water being used, but not 

consumed, for industrial, municipal, or private purposes. Quarterly WWD were estimated using 

Oklahoma Department of Environmental Quality (ODEQ) Discharge Monitoring Report (DMR) 

data from National Pollutant Discharge Elimination System (NPDES) permits (ODEQ, 2018). 

The discharge data for each outfall location at wastewater treatment facilities within the SEWPR 

is reported each month as an average daily flow rate and is available by water year (October 1 – 

September 30) beginning in 2010. The daily flow rates were multiplied by the number of days in 

the respective month to calculate the monthly discharge volume, and monthly total volumes were 

summed into quarters for each reporting facility within the SEWPR. 
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4.6.3 Reservoir Discharges 

 Water released from the dams of three of the four USACE managed reservoirs in the 

SEWPR (Broken Bow, Hugo, and Pine Creek) into the receiving rivers below each reservoirs 

dam are referred to as reservoir discharges (RD). The RD from Sardis Lake were excluded 

because water discharged from the lake eventually flows into Hugo Lake further downstream via 

the Kiamichi River. The USACE Tulsa District reports daily RD data for each of their managed 

reservoirs that is available to the public online (USACE, 2020). Daily RD data for Broken Bow, 

Hugo, and Pine Creek reservoirs was summed into quarterly total RD volume, and then 

converted into relative depth in cm over the entire SEWPR.  

4.7 Statistical Methods 

 Various statistical methods were used to analyze the relationships between the different 

WBM components. These included the coefficient of variation (CV), Pearson correlation 

coefficient (CC), and the independent two sample t-test. The CV is a standardized measurement 

of variability, or dispersion, in a distribution and is calculated as the ratio of standard deviation 

(σ) to the sample mean (μ). 

 CV =
𝜎

|𝜇|
 (16) 

The CV can range from 0 to √n - 1, where n is the sample size. A CV close to 0 indicates the 

values in the sample have a low variability, while a CV close to √n - 1 indicates the values in the 

sample have high variability. The CV is useful for comparing the variability among the WBM 

components with different sample means. However, CV can only be used for components with 

absolute zeros such as P, ET, and Qout, and not for ΔSsurf and ΔSsub which can have negative or 

positive values. The presence of both negative and positive values causes the mean to approach 
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0, while the σ does not change whether the values are negative or positive. This leads to 

misleadingly large CV values. 

Another statistical metric used to analyze the WBM components was the Pearson CC, 

which represents the degree of correlation between two samples. The equation for the Pearson 

CC is written as: 

 
CC =

n( ∑ x1x2)-( ∑ x1)( ∑ x2)

√[n ∑ x1
2-( ∑ x1)

2
] [n ∑ x2

2-( ∑ x2)
2

]

 
(17) 

 

where n is the number of pairs between the two samples, Σx1x2 is the sum of the product of the 

pairs, Σx1 is the sum of the values in the first sample, and Σx2 is the sum of the values in the 

second sample. The “Hmisc” statistical analysis package (Harrell et al., 2019) written within the 

R programing language (R Core Team, 2018) was used to calculate the CCs between the 

different WBM components, and test for statistical significance at the 95% confidence level. A 

CC of 1 indicates perfect positive correlation between the two samples, a CC of 0 indicates no 

correlation between the two samples, and a CC of -1 indicates perfect negative correlation 

between the two samples. 

 The last type of statistical test used for WBM component analysis was the independent 

two sample t-test. This test determines whether the means of two samples are significantly 

different based on a selected confidence level. To perform the test, first the t statistic is computed 

as: 
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t =

μ
1 

- μ
2

√  
σ1

2

n1
 + 

σ2
2

n2

 

(18) 

where μ1 is the mean of the first sample, μ2 is the mean of the second sample, σ1 is the standard 

deviation of the first sample, σ2 is the standard deviation of the second sample, n1 is the sample 

size of the first sample, and n2 is the sample size of the second sample. The computed t statistic 

is then compared to the critical value for the chosen confidence level. For this study, the chosen 

confidence level for independent two sample t-tests was 95%. Therefore, if the probability (p), of 

the t statistic being greater than the critical value was less than 0.05, the means of the two 

samples were determined to be statistically different. 
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Chapter 5 – Results & Discussion 

In this chapter, the results for each part of the SEWPR WBM analysis are presented along 

with statistical analysis and discussion of the noteworthy findings. The following sub-sections 

provide estimated quarterly volumes of WBM components, estimated uncertainty associated 

with each WBM component estimation method and the overall model, quarterly consumptive use 

volumes and uncertainty of the entire WBM, and results of the WBM on an annual basis to 

compare with the quarterly results. Water volumes are given as a representative depth in cm 

across the entire SEWPR for the purposes of simpler reporting and analysis. The volumes can be 

converted to representative depths in other units or to different volume units by applying the 

appropriate conversion factors and multiplying by the SEWPR area. 

5.1 Water Balance Model Components  

The estimated quarterly volumes for the components of the SEWPR WBM are shown in 

Figure 20 and in Table A8 in the Appendix. Trends for each component are shown in Figures 21, 

22, 23, 24, and 25 for P, Qout, ET, ΔSsurf, and ΔSsub respectively. The results illustrate both the 

seasonal variability of the WBM components and the magnitude of each component during the 

different quarters from 2007-2017.  
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Figure 20: Trends of quarterly precipitation (P), evapotranspiration (ET), streamflow out (Qout), 

surface storage change (ΔSsurf), and sub-surface storage change (ΔSsub). P, ET and Qout are shown 

on the left axis, and ΔSsurf and ΔSsub are shown on the right axis to account for the negative 

values.  

 

 
Figure 21: Trends of quarterly precipitation (P). Data from the National Centers for 

Environmental Prediction Stage IV Quantitative Precipitation Estimates. 
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Figure 22: Trends of quarterly streamflow out (Qout). 

 
Figure 23: Trends of quarterly evapotranspiration (ET). Data from the Famine Early Warning 

Systems Network. 
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Figure 24: Trends of quarterly surface storage change (ΔSsurf). 

 

 

 
Figure 25: Trends of quarterly sub-surface storage change (ΔSsub). Data from the Gravity 

Recovery and Climate Experiment satellite mission. 
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5.2 Uncertainty 

 The uncertainty associated with each WBM component estimation method or data set 

used were quantified wherever it was feasible to do so. The combined uncertainty of each 

component represents the uncertainty of the quarterly consumptive use estimation from the 

WBM. The following sub-sections describe the uncertainty estimation for each WBM or explain 

why an uncertainty could not be quantified for certain components. The minimum total 

quantifiable uncertainty for each WBM component is shown in Table 6. It is extremely important 

to note that these quantified uncertainties do not fully represent the total uncertainty of any 

WBM component, but simply represent the minimum quantified uncertainty. The true 

uncertainty of each component and the overall WBM was not quantifiable within the scope of 

this study but is likely much larger than the given minimum values. 

Table 6: Minimum quantifiable uncertainty of each water balance model (WBM) component 

shown as an average % of the total quarterly volume. NA was given for components that had no 

quantifiable uncertainty. WBM components include precipitation (P), streamflow out (Qout), 

evapotranspiration (ET), surface storage change (ΔSsurf), and sub-surface storage change (ΔSsub). 

WBM Component Minimum Uncertainty 

P NA 

Qout >18% 

ET >17% 

ΔSsurf >13% 

ΔSsub NA 

 

5.2.1 Precipitation 

 The uncertainty associated with the NCEP Stage IV QPE used to estimate quarterly P 

volumes in the SEWPR cannot be estimated in the scope of this study due to the manual quality 

control that is performed in post-processing of the observation data. NCEP Stage IV QPE is the 
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latest precipitation accumulation data product available from the National Weather Service, with 

an hourly temporal resolution. The data product was used in a study that estimated the 

uncertainty of another QPE rainfall product, using NCEP Stage IV QPE as reference data (Chen 

et al., 2013). Any uncertainty associated with the NCEP Stage IV QPE data product is likely 

relatively small and was considered negligible for the WBM. 

5.2.2 Streamflow 

 Several potential sources of uncertainty associated with the streamflow estimation 

methods could be resulting from many different factors, such as flow contributions to the Little 

and Red Rivers from additional streams outside the SEWPR, different groundwater-surface 

water interactions among streams, or human withdrawals. The complexity of the different factors 

potentially contributing to this uncertainty make it infeasible to quantify within the scope of this 

study. To quantify this uncertainty in the future, stream gauges would need to be installed on 

several SEWPR outflow streams that are representative of the type present in the watershed to 

gather discharge observations. There are 19 total streams that exit the SEWPR (Table A2). Using 

the calculation steps for minimum sample size (Equation 10 and 11), along with a 95% 

confidence level and a 10% margin of error, stream gauges should be installed on a minimum of 

17 streams to be representative of the 19 total outflow streams. Discharge observations should be 

recorded at each gauge. After the gauges have periods of observed discharge that are 

representative of both wet and dry years within the SEWPR, Qout could then be estimated at each 

gauge site using the WBM methods and compared to observed streamflow data from the new 

gauge stations. 

 The estimated long-term average flow rates at ungauged locations from USGS 

StreamStats are another source of uncertainty associated with the Qout estimation methods. The 
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StreamStats estimated flow rate for each outflow stream was multiplied by each quarter’s SC 

(Equation 6) and summed to calculate quarterly Qout volumes. A study from USGS quantified the 

uncertainty of the regional regression equations used by StreamStats to estimate long-term 

average flow rates at ungauged sites in Oklahoma, and the relative standard error as percent was 

used as an estimate of uncertainty (Esralew and Smith, 2010). The uncertainty of the regression 

equation for Region 3, which includes the SEWPR, was 18%. This uncertainty estimate was used 

for Qout, with the assumption that there is additional unquantifiable uncertainty also associated 

with the quarterly Qout estimates. 

5.2.3 Surface Storage Change 

 The separate methods for ΔSsurf volumes estimation for mapped and unmapped surface 

waterbodies both have associated uncertainty that contributes to the overall uncertainty of the 

quarterly ΔSsurf volume estimates. The mapped waterbody ΔSsurf estimation methods include 

uncertainty from both USACE and OWRB mapped reservoirs, and the unmapped waterbody 

methods include uncertainty for the remaining lentic waterbodies within the SEWPR. The 

USACE reservoirs account for the largest percentage of average quarterly ΔSsurf in the SEWPR 

(73.8%) followed by unmapped waterbodies (25.9%) and OWRB mapped reservoirs (0.3%). 

These percentages were used to proportionally weight the uncertainty from each type of 

waterbody. 

The USACE Tulsa District has not quantified the uncertainty of the storage volume data 

they report for each reservoir, but there is likely some uncertainty from human and instrumental 

measurement error for the bathymetric data used to develop the area-capacity curves, and from 

the area-capacity curve method for estimating storage volume from reservoir pool elevation.  
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The uncertainty of the OWRB reservoir methods potentially comes from errors in the 

bathymetric data collection, the MNDWI methods for identifying surface water pixels from 

Landsat data to estimate quarterly surface area of each reservoir, and the area-volume regression 

models for each waterbody (Table 2). The bathymetric data collection uncertainty comes from 

human and instrumental measurement errors and could not be quantified but is expected to be 

relatively small. The range of accuracy of the MNDWI method for identification of surface water 

pixels from Landsat data was estimated to be 94-99% with an average of 95% in previous studies 

(Rokni et al., 2014; Xu, 2006). An uncertainty of 5% was used for the number of surface water 

pixels identified using MNDWI.  

Additional uncertainty came from the spatial resolution of the Landsat pixels. The 

Landsat pixel resolution of 30 m potentially causes over/underestimation of waterbody surface 

area along the shoreline. To estimate this uncertainty, each OWRB mapped waterbody was 

manually digitized using USDA NAIP aerial images to calculate the surface area. The NAIP 

based surface areas were compared to Landsat based areas, calculated using Landsat images 

from the date closest to the NAIP aerial imagery date and the MNDWI analysis. The average 

uncertainty of the Landsat based area compared to the NAIP based area for each reservoir was 

calculated and added to the 5% uncertainty from MNDWI water pixel identification. The 

uncertainty of the area-volume regressions models for each waterbody could not be quantified 

due to lack of reference data. The average known quarterly uncertainty for the OWRB mapped 

waterbodies was estimated to be 11%. 

The unmapped surface waterbody ΔSsurf method uncertainty potentially comes from 

several sources including: bathymetric data collected for the sample of small lentic waterbodies 

in the SEWPR, human measurement error from manual digitization of waterbodies from aerial 
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images, regression models that estimate storage volume from surface area based on the 

bathymetric data (Table 4), extrapolation of an estimated storage volume per km2 to the entire 

SEWPR, and the regression model to estimate quarterly ΔSsurf for unmapped waterbodies for 

quarters with no available aerial imagery based on other quarterly WBM components (Equation 

9). Uncertainty from the bathymetric data collection and manual digitization is not quantified but 

assumed to be relatively small. The RMSE of the regression models used to estimate unmapped 

waterbody volume from surface area was considered the uncertainty. This uncertainty was 

weighted based on the percentage of digitized ponds each model’s area threshold included. Both 

weighted model uncertainties were added to calculate the uncertainty of a single modeled 

waterbody volume, which was then extrapolated to the entire SEWPR based on estimated 

waterbody density per km2. An estimated uncertainty of 52% was used for this portion of the 

methodology. The uncertainty of Equation 9 could not be quantified due to the lack of reference 

data. 

Most of the uncertainty associated with the ΔSsurf methods was not quantifiable in the 

scope of this study, including the USACE reservoirs which account for 74.7% of total ΔSsurf 

volume, and portions of other mapped and unmapped waterbody methods. The minimum known 

uncertainty is 13%, but this includes only a small portion of the potential uncertainty, which is 

likely considerably larger. 

5.2.4 Sub-surface Storage Change 

 The total uncertainty of the ΔSsub component comes from the uncertainty of the monthly 

GRACE EWT measurements, and the large spatial resolution of the GRACE pixels. To the 

author’s knowledge, there are no previous studies where the uncertainty of GRACE EWT data or 

its application for sub-surface storage change estimation has been quantified. Previous studies 
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have shown GRACE EWT can be suitable for estimating groundwater storage changes over 

large areas (Rodell et al., 2007; Scalon et al., 2012; Swenson et al., 2008), but these studies 

removed soil moisture from the analysis, and were conducted over much larger areas than the 

SEWPR (160,000 to 900,000 km2). A common recommendation is to use a minimum study area 

of 200,000 km2 when using GRACE data for hydrologic applications, which is approximately 17 

times greater than the SEWPR area. The resolution of a single GRACE pixel is approximately 

90,000 km2, compared to the SEWPR area of 11,500 km2. This means that over 87% of the land 

area contributing to each EWT value is outside the SEWPR. Using GRACE data at such a small 

scale means there are likely large uncertainties associated with the quarterly ΔSsub volumes 

derived from the GRACE EWT values that are not quantifiable in the scope of this study. 

However, for this project, using GRACE was the only feasible option for estimating ΔSsub. 

5.2.5 Evapotranspiration 

 The total uncertainty of the quarterly ET volume estimates comes from two separate 

sources, the SSEBop model used to estimate actual ET for the entire SEWPR except for the four 

USACE reservoirs, and the USACE evaporation estimates for each reservoir. The USACE 

reservoir evaporation accounts for about 11% of the of the total quarterly ET volume on average, 

so the uncertainty of the reservoir evaporation methods contributes less to the overall uncertainty 

of the ET component estimation than the SSEBop method.  

 For the SSEBop model uncertainty, data from a previous study that estimated the 

uncertainty of the SSEBop model by comparing its results with measured actual ET from 

AmeriFlux tower sites located within different land cover types was used (Chen et al., 2016). 

The relative error of the SSEBop model for forest and grassland sites, the most predominant land 

cover types in the SEWPR, ranged from 18-19%, so an uncertainty of 19% was used for 
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quarterly SSEBop actual ET estimates in the SEWPR. The USACE Tulsa District has not 

quantified uncertainty for its reservoir evaporation estimates, but it was assumed that a small 

amount of unknown additional uncertainty from the USACE reservoir evaporation data also 

contributes to the quarterly ET volume estimates for the WBM. The proportionally weighted 

uncertainty of the SSEBop estimated ETa volumes provides a minimum known uncertainty of 

17% for the ET component. 

 

5.3 Water Balance Model Component Analysis 

In this section, relationships and trends between the quarterly WBM components were 

analyzed, and notable similarities and differences between the components were shown. The 

mean (μ) and coefficient of variation (CV) of each WBM component for each of the four 

quarters and for all quarters combined from 2007-2017 are shown in Table 7. The CV for ΔSsurf 

and ΔSsub are not shown because the existence of both positive and negative values leads to the 

mean to be closer to zero than the other components. This causes misleadingly large or negative 

CV values when the standard deviation is divided by the mean (Equation 16). Instead the CV of 

total surface storage (Ssurf) is shown, which is representative of the variability of ΔSsurf since 

ΔSsurf value are calculated from Ssurf values. Total sub-surface storage data was not available, 

because GRACE equivalent water thickness data is only reported as a change in storage. Instead, 

the standard deviation (σ) is shown for ΔSsub as a measure of variability, but cannot be compared 

to other components. 

The strengths of the relationships between WBM components and some additional 

variables were measured using Pearson correlation coefficients (CC) (Equation 17). A 

correlation matrix with the CC values between each pair of WBM components, the three sub-
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components (BF, WWD, and RD), and an additional variable solar radiation (R), is shown in 

Table 8. 

Table 7: Mean (μ) in cm and coefficient of variation (CV) of precipitation (P), 

evapotranspiration (ET), streamflow out (Qout), total surface storage (Ssurf). For sub-surface 

storage change (ΔSsub), the standard deviation (σ) is shown instead of CV.  
 

P Qout ET Ssurf ΔSsub 

Quarter μ CV μ CV μ CV μ CV μ σ 

1 33.0 0.4 17.8 0.6 8.5 <0.1 17.8 0.3 6.5 3.2 

2 52.7 0.3 22.0 0.6 39.4 <0.1 17.1 0.2 -11.0 6.7 

3 38.0 0.3 8.8 1.1 46.2 <0.1 17.3 0.2 -3.3 8.5 

4 39.0 0.6 10.7 1.2 11.4 0.1 15.2 0.1 8.6 4.9 

All 40.7 0.5 14.8 0.9 26.4 0.6 16.8 0.2 0.2 10.0 

 

Table 8: Correlation matrix with Pearson correlation coefficients (CC) between the water balance 

model (WBM) components and additional variables and sub-components used in analysis. The 

WBM components include precipitation (P), evapotranspiration (ET), streamflow out (Qout), 

surface storage change (ΔSsurf), and sub-surface storage change (ΔSsub). The additional sub-

components and variables are solar radiation (R), baseflow (BF), wastewater discharges (WWD), 

and reservoir discharges (RD). * denotes significance at the 95% confidence level. 

 P Qout ET ΔSsurf ΔSsub R BF WWD RD 

P - 0.69* 0.25 0.53* -0.14 0.14 0.45* 0.72* 0.61* 

Qout 0.69* - 0.02 0.04 -0.20 -0.01 0.93* 0.78* 0.95* 

ET 0.25 0.02 - -0.20 -0.69* 0.95* -0.03 0.13 0.04 

ΔSsurf 0.53* 0.04 -0.20 - 0.17 -0.27 -0.24 0.13 -0.10 

ΔSsub -0.14 -0.20 -0.69* 0.17 - -0.75* -0.20 -0.14 -0.20 

R 0.14 -0.01 0.95* -0.27 -0.75* - 0.00 0.06 0.05 

BF 0.45* 0.93* -0.03 -0.24 -0.20 0.00 - 0.68* 0.93* 

WWD 0.72* 0.78* 0.13 0.13 -0.14 0.06 0.68* - 0.76* 

RD 0.61* 0.95* 0.04 -0.10 -0.20 0.05 0.93* 0.76* - 

 



63 

 

Precipitation (P) was the largest component in 34 of 44 quarters, while ET was larger in 

the remaining ten quarters, eight being in Q3 and two being in Q2 (Figure 26). ET displayed a 

very consistent cyclical pattern that was unlike the other four components. Average Q2 and Q3 

ET volumes were approximately 3 to 5 times larger than Q1 and Q4, and variability within each 

quarter over the 11-year period was the lowest for ET than any other component, with the 

exception of Ssurf in Q4 (Table 7). The mean quarterly ET was significantly lower in Q1 and Q4 

than in Q2 and Q3 (p < 0.01), while the same cannot be said for the mean quarterly P during the 

same quarters (p = 0.10).  

An additional correlation analysis was performed between P and ET to determine if P had 

a delayed effect on ET in the following quarter. Quarterly P was compared to ET with a one 

quarter delay, meaning ET from Q2 was compared to P from Q1, and so on for the remaining 

quarters. If correlation between quarterly P and the next quarter’s ET was stronger positive than 

a direct quarterly comparison, it would indicate that quarterly ET was more dependent on the 

previous quarter’s P than the same quarter’s P. However, the CC for quarterly P and ET with a 

one quarter delay (0.18) was lower than the CC for a direct quarterly comparison between P and 

ET (0.25). These results suggest that the amount of ET across the SEWPR each quarter was not 

dependent on the amount of P. For example, 2015 Q4 received the most P of any quarter with 

98.6 cm, yet only lost 10.0 cm to ET. While in, 2014 Q3 had the highest ET with 51.3 cm, and P 

was just 41.1 cm. ET was much more dependent on energy availability than water availability in 

the SEWPR, because energy from solar radiation (R), which is the main energy source that 

drives the ET process, is greater during Q2 and Q3 than in Q1 and Q4 in the SEWPR (p < 0.01) 

(Mesonet, 2018). R exhibited a very similar cyclical quarterly pattern to ET (Figure 27) and the 

CC between quarterly R and ET for all quarters is much greater than for P and ET (Table 8). 
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Figure 26: Trends of quarterly precipitation (P) and evapotranspiration (ET). P data from the 

National Centers for Environmental Prediction Stage IV Quantitative Precipitation Estimates and 

ET data from the Famine Early Warning Systems Network. 

 

 

Figure 27: Trends of quarterly evapotranspiration (ET) in cm (left axis) and solar radiation (R) in 

Mega Joules (MJ) (right axis). ET data from the Famine Early Warning Systems Network and R 

data from Oklahoma Mesonet. 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
ep

th
 (

cm
)

Year/Quarter

P ET

700

900

1100

1300

1500

1700

1900

2100

2300

0

10

20

30

40

50

60

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

S
o
la

r 
R

ad
ia

ti
o
n

 (
M

J)

E
v
ap

o
tr

an
sp

it
at

io
n

 (
cm

)

Year/Quarter

ET R



65 

 

 While ET is not strongly correlated with P (Table 8), Qout showed a positive correlation 

with P (Table 8) and follow similar quarterly trends (Figure 28). These trends are typical for a 

rainfall-streamflow relationship where greater rainfall leads to greater streamflow, and less 

rainfall leads to less streamflow. However, there are several quarters that are exceptions to this 

general trend for the SEWPR. For example, from 2007 Q1 to 2007 Q2, P increased by 121%, 

while Qout decreased by 52%. Conversely, in 2007 Q3, P decreased by 18%, while Qout increased 

by 224%. There are several other quarters where a similar trend is seen. This negative 

relationship could potentially have been due to delayed releases from the USACE managed 

reservoirs following periods of heavy precipitation when water was held in the reservoirs to 

avoid excess flooding and then released slowly once downstream flow returned to normal levels. 

This was likely the case in 2016 Q1 when Qout exceeded P by 4.7 cm following 2015 Q4 which 

received the most P of any quarter. High flows may still have been present in early 2016 Q1 

causing that quarter to be the only one where Qout exceeded P. Uncertainty associated with the 

Qout estimation methods is likely also playing a role in the inverse relationship.  
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Figure 28: Trends of quarterly precipitation (P) and streamflow out (Qout). P data from the 

National Centers for Environmental Prediction Stage IV Quantitative Precipitation Estimates. 

 

 The relationship between the two storage change components (ΔSsurf and ΔSsub) was also 

analyzed. ΔSsub had a greater magnitude than ΔSsurf in 36 of 44 quarters (Table A8) and the 

average quarterly magnitude of ΔSsub was greater than ΔSsurf for all quarters (p <0.01). This could 

mean that there is much greater sub-surface storage capacity than surface storage capacity in the 

SEWPR, but there is no known way to test that theory. Regarding the trends of ΔSsurf and ΔSsub 

(Figure 29), in 12 out of 44 quarters there was an opposite trend for the two storage change 

components. For example, in 2007 Q1 ΔSsurf was -2.9 cm while ΔSsub was 5.0 cm. These 

occurrences could be due to a number of different factors, but it is most likely due to differences 

in surface and sub-surface hydrology, and associated uncertainty of estimation methods that is 

still mostly unknown.  
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Figure 29: Trends of quarterly surface storage change (ΔSsurf) and sub-surface storage change 

(ΔSsub). ΔSsub data from the Gravity Recovery and Climate Experiment satellite mission. 

 

There were also several noteworthy relationships between P, ET and storage change. P 

and ET are the main input and output components in the WBM, so it is expected that they appear 

to influence storage change. ΔSsub displays a somewhat cyclical pattern which was opposite to ET 

for nearly all quarters (Figure 30). This pattern, along with a CC of -0.69 between ΔSsub and ET 

(Table 8), suggests that higher ET volumes led to more negative ΔSsub, and lower ET volumes led 

to more positive ΔSsub. The was no strong correlation between ΔSsub and P (Table 8), suggesting 

that ΔSsub is more dependent on ET than P in the SEWPR. However, the unknown uncertainty of 

the ΔSsub estimation methods make it difficult to draw meaningful conclusions from these 

relationships. For ΔSsurf, there was a positive correlation with P and a negative correlation with 

ET (Table 8). Even though the magnitude of ΔSsurf is much smaller than P for nearly every 

quarter (Table A6), some similar trends can be seen between the two components (Figure 31). 
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experienced both the largest amount of P and the largest positive ΔSsurf. The two following 

quarters, (2015 Q3 and 2016 Q1) had the largest negative ΔSsurf and below average P.  

 

Figure 30: Trends of quarterly sub-surface storage change (ΔSsub) (left axis) and 

evapotranspiration (ET) (right axis). ΔSsub data from the Gravity Recovery and Climate 

Experiment satellite mission and ET data from the Famine Early Warning Systems Network. 

 

Figure 31: Trends of quarterly surface storage change (ΔSsurf) (left axis) and precipitation (P) 

(right axis). P data from the National Centers for Environmental Prediction Stage IV 

Quantitative Precipitation Estimates.  
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5.4 Baseflow, Wastewater Discharges, and Reservoir Discharges 

 Quarterly baseflow (BF), wastewater discharges (WWD), and reservoir discharges (RD) 

for the SEWPR are provided in this section. These sub-components are included in the main 

WBM components, but their proportions and relationships to each other, and the main WBM 

components can be useful information for water managers. The estimated quarterly depths for 

BF are shown in Table 9, which also includes BFI values that represent the proportion that BF 

contributes to the total streamflow. The remaining streamflow volume is assumed to be from 

runoff. On average, Q1 and Q2 had higher BF volumes than Q3 and Q4, which was also the case 

with Qout volumes. BF was estimated using Qout, so the quarterly trends between the two 

components are similar, with BF having smaller magnitudes (Figure 32). The larger the gap was 

between BF and Qout, the smaller the BFI was, and more of the total streamflow was due to 

runoff. The average BFI value was 0.49 for all quarters, and the average BFI for individual 

quarters ranged from 0.47 for Q2 to 0.51 for Q1. This means the outflow streams typically had a 

fairly even mix of BF and runoff contributing to total flow, with an average of 1% more BF in 

Q1, and an average of 1-3% more runoff in Q2-Q4. 
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Table 9: Quarterly baseflow (BF) depths in cm and baseflow index (BFI) values for streams 

flowing out of the Southeast Watershed Planning Region of Oklahoma. Data from United States 

Geological Survey. 

 Quarterly BF volumes and BFI values 
 Q1 Q2 Q3 Q4 

Year BF BFI BF BFI BF BFI BF BFI 

2007 12.9 0.57 2.7 0.25 11.7 0.33 2.3 0.44 

2008 9.6 0.35 18.3 0.54 1.9 0.33 2.5 0.59 

2009 3.4 0.49 17.0 0.42 1.2 0.12 19.5 0.49 

2010 12.2 0.40 3.8 0.51 1.6 0.53 0.7 0.40 

2011 3.3 0.67 9.4 0.48 2.1 1.12 3.3 0.26 

2012 10.7 0.45 7.5 0.90 1.0 0.69 0.7 0.70 

2013 2.4 0.48 8.0 0.43 1.2 0.43 4.6 0.38 

2014 5.5 0.53 7.6 0.43 2.5 0.41 2.5 0.52 

2015 8.6 0.45 24.1 0.45 10.4 0.63 7.7 0.24 

2016 26.8 0.68 7.9 0.33 2.6 0.53 2.4 1.05 

2017 3.3 0.59 3.5 0.40 2.8 0.29 0.7 0.34 

Avg. 9.0 0.51 10.0 0.47 3.5 0.49 4.3 0.49 

 

 

Figure 32: Trends of quarterly baseflow (BF) and streamflow out (Qout). BF data from United 

States Geological Survey. 
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 Estimated quarterly WWD are shown in Table 10 (ODEQ, 2018). WWD data was only 

available by water year from 2009-2017, so the period of record begins in 2008 Q4 and ends 

after 2017 Q3. On average, quarterly WWD accounted for just 1.5% of quarterly Qout. While 

WWD volumes are far too small to make an impact on the overall SEWPR water balance, this 

data can be useful for identifying major water users in the SEWPR. Industrial facilities 

accounted for the largest percentage (74%) of the total WWD in the SEWPR on average, 

followed by commercial facilities (16%) and municipalities (11%) (Figure 33). One single paper 

mill facility accounted for over 64% of the total WWD on average, nearly 6 times greater than all 

municipalities combined.  

Table 10: Quarterly wastewater discharge (WWD) depths within the Southeast Watershed 

Planning Region of Oklahoma. Data from Oklahoma Department of Environmental Quality. 

 Quarterly WWD Depths (cm) 

Year Q1 Q2 Q3 Q4 

2007 - - - - 

2008 - - - 0.080 

2009 0.094 0.127 0.106 0.119 

2010 0.115 0.097 0.096 0.098 

2011 0.090 0.112 0.091 0.096 

2012 0.123 0.104 0.096 0.090 

2013 0.096 0.114 0.104 0.125 

2014 0.102 0.104 0.118 0.106 

2015 0.120 0.147 0.109 0.133 

2016 0.136 0.144 0.108 0.106 

2017 0.114 0.116 0.120 - 

Avg. 0.110 0.118 0.105 0.106 
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Figure 33: Percentage of total quarterly wastewater discharge (WWD) in the Southeast 

Watershed Planning Region of Oklahoma from different water use sectors (ODEQ, 2018). 

 

 Quarterly RD for the SEWPR are shown in Table 11 (USACE, 2020). The three 

reservoirs that contribute to the RD volumes are located in the lower portion of the SEWPR, so 

their discharges contributed largely to the quarterly Qout component of the WBM. On average, 

RD accounted for over 62% of quarterly Qout, and the two had a strong positive correlation 

(Table 8). The quarterly trends of RD and Qout are shown in Figure 34 and follow an almost 

identical pattern. These similarities in the quarterly trends of the two components are a positive 

sign for the accuracy of the Qout estimation methods, since the RD data is from a reliable source 

(USACE, 2020).  
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Figure 34: Trends of quarterly streamflow out (Qout) and reservoir discharges (RD). RD data 

from the United States Army Corps of Engineers. 

 

Table 11: Quarterly reservoir discharge (RD) depths from Broken Bow Lake, Hugo Lake, and 

Pine Creek Lake. Data from United States Army Corps of Engineers. 

 Quarterly RD Depths (cm) 

Year Q1 Q2 Q3 Q4 

2007 14.8 10.2 17.2 2.9 

2008 15.3 20.3 3.2 2.4 

2009 5.4 20.5 4.1 17.1 

2010 16.2 3.4 2.0 0.5 

2011 2.1 10.6 1.9 9.3 

2012 16.7 5.5 1.3 0.8 

2013 2.9 17.3 2.1 7.5 

2014 6.9 14.3 4.2 3.1 

2015 9.6 29.0 13.9 14.3 

2016 28.6 15.0 2.5 1.5 

2017 2.7 5.6 5.6 1.0 

Avg. 11.0 13.8 5.3 5.5 
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5.5 Consumptive Use 

 Using the quarterly WBM component results from Section 5.1 as inputs for Equation 5, 

quarterly consumptive use (C) from 2007-2017 was estimated for the SEWPR. The results of the 

WBM are shown in Table 12 and Figure 35. The range of estimated C depths is 61.8 cm with a 

maximum depth of 32.6 cm (2015 Q4) and a minimum depth of -29.2 cm (2015 Q3). Since C 

was estimated as the remaining volume of water unaccounted for in the other WBM components, 

the possibility of C being negative exists, and this was the case for 22 out of 44 quarters. 

However, C is defined in this study as the volume of water removed from a watershed by human 

activities, so it does not make practical sense for this volume to be negative over a 3-month 

period. For example, for the C estimate of -5.3 cm for 2007 Q1 to be correct, a volume of water 

that was 5.3 cm greater than the volume of water consumed would have to have been imported 

into the SEWPR, which is extremely unlikely.  

 If all quarters with negative C are ignored, the average C would be 7.0 cm for all quarters 

combined, and 5.9 cm, 6.6 cm, 2.7 cm, and 8.5 cm for Q1, Q2, Q3, and Q4 respectively.  While 

these values do seem more reasonable than negative values, it is still highly unlikely that such a 

large volume of water could be consumed in the SEWPR during any given quarter. The average 

annual C depth for 2007-2017 was estimated to be 23.7 cm if negative C values are ignored. This 

is 79 times greater than the 2015 C depth (0.3 cm) in the SEWPR from irrigation and 

thermoelectric power that was estimated from the 2015 USGS water use study (Dieter et al., 

2018). While the USGS estimate only includes C from irrigation and thermoelectric uses, it is 

extremely unlikely that an additional 23.4 cm of C came from other water use sectors. The WBM 

appears to be considerably overestimating quarterly C in the SEWPR. The overestimated and 

negative C volumes are likely due to large, mostly unknown uncertainty associated with the 
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other WBM components which are discussed in Section 5.2. Since this uncertainty makes up a 

considerable portion of the estimated C volumes, it is not appropriate to refer to the estimates as 

consumptive use. Instead, the results of the WBM are referred to as consumptive use + error 

(C+err).  

Table 12: Estimated quarterly consumptive use + error (C+err) depths from the Southeast 

Watershed Planning Region of Oklahoma water balance model. 
 

C+err (cm) 

Year Q1 Q2 Q3 Q4 

2007 -5.3 5.6 -12.0 4.7 

2008 2.7 4.7 -13.5 3.8 

2009 1.3 3.2 -18.4 3.1 

2010 1.1 -2.2 -2.1 4.4 

2011 -5.0 12.3 -18.0 10.5 

2012 7.6 -3.3 -7.4 -4.9 

2013 11.2 4.4 -15.0 6.2 

2014 -3.4 -2.5 -7.1 1.9 

2015 -2.3 -5.9 -29.2 32.6 

2016 -8.8 9.6 -9.0 -2.2 

2017 11.3 -2.1 2.7 9.4 

Avg. 0.9 2.2 -11.7 6.3 

 

 

Figure 35: Trends of quarterly consumptive use + error (C+err) depths. 
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To understand why the WBM estimates such large, and sometimes negative, quarterly 

C+err volumes, the volumes and quarterly trends among the other WBM components were 

compared to C+err. The CC between each WBM component and C+err are shown in Table 13. For 

individual quarters, only P in Q4 and ΔSsurf in Q3 and Q4 showed correlation that was significant 

at the 95% confidence level (Table 13) with C+err, with both components showing positive 

correlation with C+err. P and ΔSsurf also showed significant positive correlation with C+err among 

all quarters, along with ET which showed significant negative correlation with C+err among all 

quarters (Table 13). These relationships can also be seen by comparing the quarterly trends of 

C+err with ΔSsurf (Figure 36), P (Figure 37), and ET (Figure 38). In quarters with higher P than 

ET, C+err was typically also higher (e.g. 2013 Q1, 2015 Q4), and when P was less than ET, C+err 

tends to be lowest (e.g. 2011 Q3, 2015 Q3). This relationship is shown in Figure 39, where C+err 

is compared to net P (P minus ET). The quarter with the highest average C+err (Q4) was also the 

quarter with the highest net P, and the quarter with the lowest C+err (Q3) was the quarter with the 

lowest net P. C+err and net P also showed a strong positive correlation (0.71) that was significant 

at the 95% confidence level. 
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Table 13: Correlation coefficients between consumptive use + error (C+err) and each of the other 

water balance model components for each of the four annual quarters, and for all quarters 

combined. The WBM components include precipitation (P), evapotranspiration (ET), streamflow 

out (Qout), surface storage change (ΔSsurf), and sub-surface storage change (ΔSsub). * denotes 

significance at the 95% confidence level. 

 P Qout ET ΔSsurf ΔSsub 

Q1 0.39 -0.40 -0.10 0.56 -0.14 

Q2 0.12 -0.06 -0.02 -0.15 -0.24 

Q3 0.39 -0.23 0.27 0.62* -0.45 

Q4 0.88* 0.55 -0.23 0.93* 0.05 

All Quarters 0.43* 0.14 -0.43* 0.60* 0.06 

 

 

Figure 36: Trends of quarterly consumptive use + error (C+err) and surface storage (ΔSsurf) 

depths. 
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Figure 37: Trends of quarterly consumptive use + error (C+err) (left axis) and precipitation (P) 

(right axis) depths. P data from the National Centers for Environmental Prediction Stage IV 

Quantitative Precipitation Estimates. 

 

 

Figure 38: Trends of quarterly consumptive use + error (C+err) (left axis) and evapotranspiration 

(ET) (right axis) depths. ET data from the Famine Early Warning Systems Network. 

0

10

20

30

40

50

60

70

80

90

100

-30

-20

-10

0

10

20

30

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
ep

th
 (

cm
)

D
ep

th
 (

cm
)

Year/Quarter

C+err P

0

10

20

30

40

50

60

-30

-20

-10

0

10

20

30

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
ep

th
 (

cm
)

D
ep

th
 (

cm
)

Year/Quarter

C+err ET



79 

 

 

Figure 39: Trends of quarterly consumptive use + error (C+err) and net precipitation (Net P) 

(precipitation – evapotranspiration) depths. 

 

 These results indicate that the unrealistic quarterly C+err volumes estimated using a WBM 

are likely caused by uncertainties associated with the estimates of the natural hydrologic 

components in the SEWPR on a quarterly basis. The total combined uncertainty of each WBM 

component contributes to the total uncertainty of the C+err calculation. The total uncertainty is 

discussed in the following section. 

5.6 Total Water Balance Model Uncertainty 

 The uncertainty of each WBM component estimation method that was estimated in 

Section 5.2 contributes to the total uncertainty of the WBM, and the C+err estimation. Because 

much of the uncertainty is still unknown, the known uncertainty estimation must be referred to as 

minimum uncertainty, as the true uncertainty value is likely higher. The quarterly C+err volumes 

along with minimum uncertainty are given in Table 14. Quarterly minimum uncertainty ranged 

from 2.0 to 18.7 cm and 23% to 724%. The average quarterly uncertainty was 8.0 cm and 181%. 
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Table 14: Quarterly consumptive use + error (C+err) volumes with minimum uncertainty given in 

both cm and relative percent.  
 

Quarterly C+err with Minimum Uncertainty (cm) 

Year Q1 Q2 Q3 Q4 

2007 
-5.3 ± 6.1 

115% 

5.6 ± 9.4 

167% 

-12.0 ± 16.3 

136% 

4.7 ± 3.3 

71% 

2008 
2.7 ± 7.7 

287% 

4.7 ± 15.0 

322% 

-13.5 ± 9.9 

74% 

3.8 ± 3.1 

82% 

2009 
1.3 ± 2.9 

219% 

3.2 ± 14.1 

442% 

-18.4 ± 11.3 

62% 

3.1 ± 10.1 

328% 

2010 
0.9 ± 7.7 

724% 

-2.2 ± 9.0 

413% 

-2.1 ± 9.3 

443% 

4.4 ± 2.6 

59% 

2011 
-5.0 ± 2.4 

48% 

12.3 ± 11.5 

94% 

-18.0 ± 7.7 

43% 

10.5 ± 4.6 

44% 

2012 
7.6 ± 6.2 

82% 

-3.3 ± 9.4 

282% 

-7.4 ± 8.3 

112% 

-4.9 ± 2.0 

 42% 

2013 
11.2 ± 3.0 

27% 

4.4 ± 10.8 

246% 

-15.0 ± 9.6 

64% 

6.2 ± 4.6 

74% 

2014 
-3.4 ± 3.6 

106% 

-2.5 ± 10.6 

422% 

-7.1 ± 11.0 

154% 

1.9 ± 3.3 

167% 

2015 
-2.3 ± 5.5 

240% 

-5.9 ± 18.7 

317% 

-29.2 ± 12.9 

44% 

32.6 ± 9.7 

30% 

2016 
-8.8 ± 10.9 

123% 

9.6 ± 12.1 

127% 

-9.0 ± 9.7 

108% 

-2.2 ± 2.5 

117% 

2017 
11.3 ± 2.6 

23% 

-2.1 ± 9.1 

438% 

2.7 ± 11.4 

422% 

9.4 ± 2.5 

26% 

 

 Even with most of the WBM uncertainty unaccounted for, the uncertainty values for C+err 

are considerably high. These values would increase greatly in all likelihood if the remaining 

uncertainty for the WBM were quantifiable. These high uncertainty values are surely a major 

factor causing the extreme over/underestimation of quarterly C+err volumes in the SEWPR.  

5.7 Annual Water Balance Model 

 While the quarterly time scale of the WBM allows for analysis of seasonal variation and 

trends between the different WBM components, using a longer time period for the WBM 
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analysis provides additional useful information about both the relationships between the different 

WBM components, and C+err estimates. A separate analysis was performed using an annual 

rather than quarterly time scale for the WBM. All parameters were kept the same as the quarterly 

WBM, including the analysis period of 2007-2017. The only variation was that WBM 

components were converted from quarterly to annual volumes and then used in Equation 5 to 

estimate C+err. The quarterly volumes P, Qout, and ET were simply summed for each year to 

calculate their annual volumes. For ΔSsurf and ΔSsub, Equation 7 was used as it was for the 

quarterly WBM, but instead using storage volumes from the first day or month of each year, 

depending on the temporal resolution of the data. The results of the annual WBM are given in 

Table 15 and annual trends for each component are shown in Figure 40 for P, Qout and ET, and 

Figure 41 for ΔSsurf and ΔSsub. Trends of estimated annual C+err are shown in Figure 42. 
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Table 15: Results of the annual water balance model (WBM) analysis. Annual volumes for each 

WBM component and consumptive use + error (C+err) are given in cm along with the average 

annual volumes for 2007-2017. WBM components include precipitation (P), streamflow out 

(Qout), evapotranspiration (ET), surface storage change (ΔSsurf), and sub-surface storage change 

(ΔSsub). 

 WBM Component Volumes (cm) 

Year P Qout ET ΔSsurf ΔSsub C+err 

2007 168.3 74.0 104.7 -3.1 -0.3 -7.0 

2008 176.4 71.0 108.6 1.9 -2.8 -2.3 

2009 208.7 97.2 108.3 -0.1 14.1 -10.8 

2010 130.5 43.1 105.8 -4.6 -15.0 1.2 

2011 138.9 39.0 97.1 2.7 0.4 -0.3 

2012 117.4 34.5 99.1 -3.7 -4.4 -8.0 

2013 161.0 38.3 105.9 3.4 6.5 6.8 

2014 134.4 39.3 111.1 -0.8 -4.1 -11.1 

2015 249.1 120.3 105.6 17.6 10.4 -4.8 

2016 151.3 70.2 105.9 -18.7 4.3 -10.4 

2017 154.0 25.9 108.0 -0.8 -0.5 21.4 

Avg. 162.7 59.3 105.5 -0.6 0.8 -2.3 
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Figure 40: Trends of annual precipitation (P), streamflow out (Qout) and evapotranspiration (ET) 

depths. P data from the National Centers for Environmental Prediction Stage IV Quantitative 

Precipitation Estimates. ET data from the Famine Early Warning Systems Network. 

 

 

Figure 41: Trends of annual surface storage change (ΔSsurf) and sub-surface storage change 

(ΔSsub) depths. ΔSsub data from the Gravity Recovery and Climate Experiment satellite mission. 
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Figure 42: Trends of annual consumptive use + error (C+err) depths. 

 

 The variability of each annual WBM was calculated using the coefficient of variation 

(CV), as was done for the quarterly WBM analysis (Table 16). The CV for ΔSsurf and ΔSsub was 

again omitted from the CV calculations due to misleading CV values caused by the negative 

change in storage values. The CV for total annual surface storage (Ssurf) from the first day of each 

year was used to represent ΔSsurf variability, and the standard deviation (σ) was used for ΔSsub 

since no total sub-surface storage estimates were available. The increased time scale from 

quarterly to annual reduced the temporal variability of each WBM component, except for Ssurf. 

This lower variability may have contributed to a reduction in the range of C+err from 61.8 cm for 

the quarterly WBM to 32.5 cm for the annual WBM. Theoretically, annual C+err should be 

greater than quarterly C+err, because humans will consume more water in a year than in 3 

months. In this case however, the negative quarterly C+err values offset many of the positive C+err 

values which led to a decreased range of values and a similar average magnitude of both 

quarterly (7.2 cm) and annual (7.4 cm) C+err. 
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Table 16: Average annual coefficient of variation (CV) values for the annual water balance 

model (WBM) component’s, and average quarterly CV values for the quarterly WBM 

components. WBM components include precipitation (P), streamflow out (Qout), 

evapotranspiration (ET), surface storage change (ΔSsurf), and sub-surface storage change (ΔSsub).  

Total surface storage (Ssurf) was used to represent ΔSsurf variability. * standard deviation was used 

to represent ΔSsub variability. 

 Coefficients of Variation 

WBM Component Average Annual Average Quarterly 

P 0.2 0.5 

Qout 0.5 0.9 

ET <0.1 0.6 

Ssurf 0.3 0.2 

ΔSsub* 7.6* 10.0* 

 

Unfortunately, the annual WBM still produced unrealistic C+err values. 8 out of 11 years 

had negative volumes, and the maximum positive volume was 21.4 cm, almost 73 times greater 

than the estimated 2015 consumptive use estimation the from USGS study (Dieter et al., 2018). 

This suggests that the extremely large and unrealistic C+err values produced by both the quarterly 

and annual WBMs are caused by the large unknown uncertainty associated with the current 

WBM methodology.  
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Chapter 6 – Conclusions & Future Research  

The main objective of this study was to develop a method for quantifying C+err without 

the need for accurate withdrawal and return flow data. Quantifying C+err provides highly useful 

information for designing and tracking progress towards water conservation initiatives like 

Oklahoma’s Water for 2060. The method for quantifying C+err developed in this study was a 

WBM designed to estimate C+err as the residual volume of water unaccounted for in the natural 

hydrologic balance. The model was designed for the SEWPR and tested on a quarterly basis 

from 2007-2017. The results showed that the SEWPR WBM estimated extremely large, and 

sometimes negative, volumes for quarterly C+err that were significantly larger than the one 

previously estimated C+err volume for the region. Even after the time scale of the WBM was 

increased from quarterly to annual to determine if seasonal variability impacted the WBM 

output, the C+err volumes were still unrealistic and relatively unaffected by the four-fold time 

scale increase.  

The most likely explanation for the extreme C+err volumes is the unquantifiable 

uncertainty associated with the WBM component estimation methods. The components that 

likely contribute the largest uncertainty are Qout, ΔSsurf and ΔSsub because, unlike P and ET, 

reliable datasets for these components are not available. Another possibility is that the use of a 

WBM with natural hydrologic components may not be an appropriate method for estimating 

C+err. Human consumption of water may be independent of the natural hydrologic processes to 

some extent, and even more so in the SEWPR than other regions since there is an abundance of 

water availability and very little demand. When C+err is considered as a part of the natural water 

balance, the possibility of imbalances between the other hydrologic components causing negative 

or extremely large C+err estimates exists. However, there is currently too much unknown 
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uncertainty associated with the WBM to determine if it is an appropriate method for estimating 

C+err or not. 

While the WBM is currently unsuitable for estimating quarterly C+err volumes in the 

SEWPR, the analysis of the WBM components conducted in this study offers useful information 

regarding hydrologic patterns and relationships within the SEWPR. Some of the noteworthy 

findings from the WBM component analysis are listed below: 

- Precipitation (P) was the largest component in terms of total depth across the SEWPR 

in 34 of 44 quarters from 2007-2017. Evapotranspiration (ET) was the largest in the 

remaining 10 quarters. 

 

- ET followed a very cyclical pattern of being much higher in Q2 and Q3 than in Q1 

and Q4. Mean quarterly depth across the SEWPR was significantly lower in both Q1 

and Q4 than in Q2 and Q3 for ET (p < 0.01), but not for P (p = 0.10). ET and P also 

showed weak correlation for all quarters from 2007-2017 (CC = 0.25), which 

suggested that the amount of ET each quarter was not dependent on the amount of P.  

 

- Solar radiation (R) showed strong positive correlation (CC = 0.95) with ET for all 

quarters from 2007-2017, and R was significantly lower in both Q1 and Q4 than in 

Q2 and Q3 (p < 0.01), as was the case with ET. This suggested that ET was 

dependent on the amount of R rather than on P. 

 

- Streamflow out (Qout) showed positive correlation with P (CC = 0.69) which is 

typical for a rainfall-streamflow relationship. However, several quarters showed an 

opposite trend where P increased while Qout decreased, or vice versa. This was likely 

due to delayed releases from reservoirs following periods of heavy rainfall to mitigate 

flooding in areas downstream of the reservoirs. 
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- For the storage change components, sub-surface storage change (ΔSsub) was greater 

than surface storage change (ΔSsurf) in magnitude for 36 of 44 quarters from 2007-

2017, and the average quarterly magnitude was greater for ΔSsub than for ΔSsurf (p < 

0.01). This could suggest there is greater sub-surface storage capacity than surface 

storage capacity, but there is too much unknown uncertainty associated with the 

estimation methods to test that theory. 

 

- Streams that flow out of the SEWPR had a fairly even mix of baseflow (BF) and 

runoff on average, with average quarterly baseflow index (BFI) for each quarter 

ranging from 0.47 in Q2 to 0.51 in Q1, with an average of 0.49 for all quarters from 

2007-2017. 

 

- Industrial facilities accounted for the largest portion of quarterly wastewater 

discharges (WWD) in the SEPWR on average (74%), followed by commercial 

facilities (16%), and municipalities (11%). A single paper mill facility accounted for 

over 64% of the average quarterly WWD, which was nearly 6 times greater than the 

average WWD from all municipalities combined. 

 

- Quarterly reservoir discharges (RD) from major reservoirs in the lower portion of the 

SEWPR (Broken Bow Lake, Hugo Lake, and Pine Creek Lake) showed strong 

positive correlation with Qout (0.95) and followed nearly identical quarterly trends to 

Qout. This is a positive sign for the accuracy of the Qout estimation methods, since the 

RD data is from a reliable database (USACE, 2020). 

 

In addition to the highlighted findings above, the innovative estimation methods that 

were developed for certain WBM components were notable achievements of this study. The 

methods for estimating both Qout and ΔSsurf were not only crucial to the function of the WBM 

approach to estimate consumptive use, but also have potential applications reaching far beyond 

this study. If the uncertainty of the Qout methodology for estimating temporal variations of 
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streamflow at ungauged sites can be further quantified and reduced, the methods could be 

incredibly useful for hydrologic and environmental research. The ΔSsurf methodology for 

estimating storage volumes of unmapped waterbodies from surface area could provide similar 

benefits if further research is done to improve its performance. This study also provides 

estimates for other important hydrologic variables (BF, WWD, and RD) which could be useful 

information for water managers and researchers.  

Although the estimates for consumptive use provided in this study were not as promising 

as expected, the more important objective of developing the methodology and establishing the 

framework for the WBM was achieved. The data gathered, the methodologies developed, and the 

valuable insights gained from this study lay the groundwork for future research. The first step for 

this study moving forward would be to quantify any remaining unknown uncertainty if it is 

feasible to do so. There is currently far too much unknown uncertainty to determine the 

appropriateness of the WBM for C+err estimation. Further research should also be done on the 

current methodologies for WBM component estimation to explore ways to alter and improve 

their performance by reducing uncertainty. Table 17 describes the current limitations of each 

WBM component estimation method, and the next steps that must be taken to improve the 

WBM.  

Another suggestion for future work would be to explore model automation for the WBM 

component estimation methods, possibly within a single programming language. This would 

allow for faster computations and more advanced model improvements like calibration and 

optimization. Automation would also make it easier to apply the WBM to other Watershed 

Planning Regions (WPR) in Oklahoma. Obtaining additional results from other regions will 

allow for a better determination of the appropriateness of the WBM for estimating C+err volumes 
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in Oklahoma. The WBM should be applied next to a WPR with a higher water demand than the 

SEWPR, such as the Central or Panhandle WPR. Consumptive use in these regions should be 

more than the SEWPR or other WPRs with low demand estimates. Analyzing C+err results for a 

WPR with higher demand could help to identify more ways to improve the WBM to be 

applicable to all WPRs across Oklahoma. 

Table 17: Limitations and suggestions for how to improve and reduce uncertainty for each water 

balance model (WBM) component estimation method. WBM components include precipitation 

(P), streamflow out (Qout), evapotranspiration (ET), surface storage change (ΔSsurf), and sub-

surface storage change (ΔSsub). Some limitations are specific to the Southeast Watershed 

Planning Region of Oklahoma (SEWPR). 

WBM 

Component 
Limitations How to Improve 

P 4 km spatial resolution of pixels 
Find data product with smaller 

spatial resolution, if possible 

Qout 
Lack of stream gauge stations on 

small streams exiting the SEWPR 

Install stream gauge stations on 

small streams exiting the SEWPR to 

collect multiple years of discharge 

observations 

ET 

Uncertainty of the SSEBop ETa 

model and USACE reservoir 

evaporation 

Search for an improved ETa product 

and quantify USACE reservoir 

uncertainty 

ΔSsurf 

Lack of aerial image availability for 

waterbody digitization, and lack of 

up-to-date bathymetric data of 

lentic waterbodies  

Gain access to historical aerial 

imagery at no greater than quarterly 

time steps, and conduct additional 

bathymetric surveys with more 

advanced equipment 

ΔSsub 

GRACE satellite data has very 

large spatial resolution that is not 

suitable for regions at the scale of 

the SEWPR 

Install a network of piezometers and 

soil moisture probes to record 

multiple years of groundwater and 

soil moisture fluxes  
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Appendix 

Table A1: Quarterly streamflow coefficients (SC) representing the proportion of long-term 

average (1971-2017) to observed net flow gain from 2007-2017 for the Little River and Red 

River. Data from the United States Geological Survey. 

 Little River Red River 

Year Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

2007 1.47 0.75 0.64 0.28 1.83 0.22 4.17 0.31 

2008 2.23 2.51 0.60 0.37 2.16 2.45 0.31 0.29 

2009 0.76 3.20 0.77 3.30 0.30 3.17 0.85 3.15 

2010 2.82 0.74 0.27 0.26 2.21 0.66 0.18 0.13 

2011 0.64 2.28 0.05 0.95 0.19 1.04 0.10 0.60 

2012 2.24 0.43 0.09 0.04 1.31 0.73 0.12 0.07 

2013 0.11 0.50 0.19 0.70 0.24 1.38 0.12 0.65 

2014 0.49 0.64 0.43 0.39 0.67 1.33 0.31 0.26 

2015 2.09 3.00 0.40 1.75 1.30 4.82 2.11 2.21 

2016 1.85 2.18 0.34 0.00 3.35 1.46 0.32 0.17 

2017 0.63 0.73 0.82 0.10 0.18 0.56 0.85 0.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 

Table A2: StreamStats average annual flow in cubic feet per second (cfs), and drainage area in 

square kilometers (km2) for each outflow stream in the Southeast Watershed Planning Region of 

Oklahoma. Streams are organized in ascending order by drainage area. Data from the United 

States Geological Survey. 

Outflow Stream 

StreamStats 

Average Flow 

(cfs) 

Drainage Area (km2) Receiving River 

Ash Creek 17.2 23.4 Little River 

South Caney Creek 16.1 28.0 Little River 

Garland Creek 16.5 34.2 Red River 

Doaksville Creek 17.6 36.3 Red River 

Buck Creek 23.3 36.7 Little River 

Pine Creek 21.1 42.3 Red River 

Buzzard Creek 20.8 43.9 Red River 

Holly Branch 25.3 47.9 Red River 

Boss Creek 24.3 49.0 Red River 

Waterfall Creek 28.2 56.4 Red River 

North Caney Creek 37.6 64.2 Little River 

Clear Creek 39.2 78.8 Red River 

Robinson Creek 66.2 84.0 Little River 

McKinney Creek 47.1 93.1 Red River 

Rock Creek 86.9 131 Little River 

Waterhole Creek 90.5 184 Red River 

Norwood Creek 111 189 Red River 

Kiamichi River 2,450 4,720 Red River 

Little River 4,150 5,920 - 
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Table A3: Quarterly storage in cm for United States Army Corps of Engineers (USACE) 

managed reservoirs within the Southeast Watershed Planning Region of Oklahoma, including 

Broken Bow Lake, Hugo Lake, Pine Creek Lake, and Sardis Lake. The first day of each quarter 

was used as the storage depth. Data from USACE Tulsa District.  

Year Quarter Broken Bow  Hugo  Pine Creek  Sardis  Total 

2007 

1 10.7 3.5 1.4 3.4 18.9 

2 9.9 2.0 0.7 3.0 15.6 

3 11.2 4.1 1.6 3.5 20.4 

4 9.5 1.7 0.6 3.0 14.8 

2008 

1 9.6 2.0 0.7 3.0 15.3 

2 13.2 4.0 2.9 3.5 23.6 

3 10.5 1.9 0.8 3.0 16.2 

4 10.3 2.0 0.6 3.0 15.9 

2009 

1 9.9 1.9 3.0 3.0 17.8 

2 10.1 2.1 0.8 3.0 16.0 

3 10.3 2.3 0.8 3.0 16.3 

4 10.7 2.0 0.6 3.0 16.3 

2010 

1 10.5 2.7 1.1 3.1 17.4 

2 9.8 1.8 0.6 2.9 15.2 

3 10.1 1.5 0.6 2.9 15.0 

4 8.9 1.2 0.4 2.8 13.2 

2011 

1 9.0 1.2 0.4 2.7 13.3 

2 8.7 1.6 0.4 2.7 13.4 

3 10.1 1.9 0.4 2.9 15.3 

4 8.7 1.2 0.2 2.6 12.8 

2012 

1 9.9 2.1 0.4 3.0 15.4 

2 11.1 2.7 1.0 3.0 17.7 

3 9.4 1.3 0.3 2.9 13.8 

4 8.7 0.9 0.2 2.7 12.5 

2013 

1 8.3 0.8 0.1 2.6 11.9 

2 10.2 2.2 0.6 3.1 16.1 

3 10.3 2.0 0.6 2.9 15.9 

4 9.3 1.5 0.5 2.8 14.1 

2014 

1 10.0 2.0 0.6 3.0 15.5 

2 9.8 1.8 0.5 3.0 15.1 

3 10.2 1.7 0.5 3.0 15.4 

4 9.1 1.5 0.5 2.9 14.0 

2015 

1 9.1 1.7 0.5 3.0 14.3 

2 10.6 2.2 0.6 3.0 16.3 

3 11.3 9.5 2.1 4.1 27.0 
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4 9.6 1.5 0.4 2.9 14.4 

2016 

1 14.3 8.7 4.7 4.2 31.9 

2 10.0 1.6 0.4 3.0 15.0 

3 9.8 1.6 0.4 2.9 14.8 

4 9.1 1.3 0.7 2.9 14.1 

2017 

1 8.3 1.2 0.7 2.8 13.1 

2 8.9 1.6 0.6 2.9 14.0 

3 9.6 1.6 0.5 3.0 14.6 

4 9.1 1.4 0.4 2.9 13.8 
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Table A4: Estimated quarterly storage in cm for reservoirs within the Southeast Watershed 

Planning Region with bathymetric data from the Oklahoma Water Resources Board (OWRB) 

including Lake Carl Albert, Lake Nanih Waiya, Ozzie Cobb Lake, and Schooler Lake. Storage 

depth was estimated on the day closest to the beginning of each quarter that a suitable Landsat 

image was available to estimate surface area, using equations in Table 3. 

Year Quarter Carl Albert Nanih Waiya  Ozzie Cobb  Schooler  Total 

2007 

1 0.029 0.008 0.003 0.002 0.042 

2 0.027 0.007 0.003 0.001 0.038 

3 0.026 0.007 0.003 0.002 0.038 

4 0.025 0.007 0.003 0.002 0.037 

2008 

1 0.031 0.008 0.003 0.002 0.044 

2 0.030 0.008 0.003 0.002 0.043 

3 0.026 0.007 0.002 0.002 0.038 

4 0.025 0.006 0.002 0.002 0.035 

2009 

1 0.028 0.007 0.003 0.001 0.039 

2 0.028 0.007 0.003 0.002 0.039 

3 0.025 0.006 0.003 0.002 0.036 

4 0.028 0.007 0.003 0.002 0.039 

2010 

1 0.030 0.007 0.003 0.002 0.041 

2 0.028 0.006 0.003 0.001 0.039 

3 0.024 0.006 0.002 0.002 0.033 

4 0.022 0.006 0.002 0.001 0.031 

2011 

1 0.021 0.006 0.002 0.001 0.031 

2 0.029 0.007 0.003 0.001 0.040 

3 0.024 0.006 0.002 0.002 0.034 

4 0.031 0.009 0.003 0.002 0.045 

2012 

1 0.031 0.008 0.004 0.002 0.045 

2 0.026 0.008 0.002 0.002 0.038 

3 0.025 0.006 0.003 0.002 0.036 

4 0.026 0.009 0.003 0.004 0.041 

2013 

1 0.029 0.008 0.003 0.002 0.043 

2 0.028 0.008 0.003 0.002 0.041 

3 0.028 0.008 0.002 0.002 0.040 

4 0.031 0.009 0.004 0.003 0.047 

2014 

1 0.032 0.010 0.004 0.002 0.048 

2 0.027 0.008 0.003 0.002 0.040 

3 0.027 0.008 0.003 0.002 0.040 

4 0.033 0.009 0.003 0.002 0.047 

2015 
1 0.031 0.010 0.004 0.002 0.047 

2 0.030 0.010 0.004 0.003 0.047 
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3 0.027 0.008 0.003 0.002 0.040 

4 0.030 0.010 0.004 0.003 0.046 

2016 

1 0.034 0.009 0.004 0.002 0.049 

2 0.027 0.008 0.003 0.002 0.040 

3 0.027 0.008 0.003 0.002 0.040 

4 0.029 0.008 0.003 0.001 0.041 

2017 

1 0.026 0.008 0.003 0.002 0.040 

2 0.028 0.008 0.003 0.002 0.041 

3 0.028 0.008 0.003 0.002 0.040 

4 0.029 0.008 0.003 0.003 0.042 

 

 

Table A5: Surface area in acres (ac) and storage volume in acre-feet (ac-ft) for 17 small lentic 

waterbodies in the Southeast Watershed Planning Region of Oklahoma, based on bathymetric 

data that was collected between July and October, 2019. Each waterbody also includes the area 

and volume for each contour interval below the actual shoreline, which provided additional area-

volume data to build regression equations (Table 5).  

Waterbody Area (ac) Volume (ac-ft) 

Waterbody 1 (full) 3.55 14.10 

2 ft contour 2.60 7.86 

4 ft contour  1.41 3.85 

6 ft contour 0.81 2.68 

8 ft contour 0.30 0.41 

10 ft contour 0.06 0.03 

Waterbody 2 (full) 0.81 3.41 

2 ft contour 0.67 2.24 

3 ft contour 0.60 2.00 

4 ft contour 0.50 0.71 

5 ft contour 0.37 0.24 

6 ft contour 0.05 0.01 

Waterbody 3 (full) 0.37 1.94 

4 ft contour  0.26 0.67 

6 ft contour 0.14 0.21 

8 ft contour 0.03 0.06 

10 ft contour 0.01 0.02 

Waterbody 4 (full) 0.40 2.08 

2 ft contour 0.34 1.33 

4 ft contour  0.28 0.70 

6 ft contour 0.16 0.25 
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8 ft contour 0.05 0.04 

Waterbody 5 (full) 0.25 0.89 

2 ft contour 0.17 0.47 

4 ft contour  0.09 0.20 

6 ft contour 0.04 0.07 

8 ft contour 0.01 0.01 

Waterbody 6 (full) 0.25 1.53 

4 ft contour  0.18 0.66 

6 ft contour 0.12 0.35 

8 ft contour 0.07 0.15 

10 ft contour  0.03 0.03 

Waterbody 7 (full) 0.35 0.91 

1 ft contour 0.30 0.58 

2 ft contour 0.25 0.29 

3 ft contour 0.14 0.08 

4 ft contour 0.01 0.01 

Waterbody 8 (full) 0.73 2.75 

1 ft contour 0.60 2.09 

2 ft contour 0.52 1.52 

3 ft contour 0.45 1.02 

4 ft contour 0.35 0.60 

5 ft contour 0.21 0.32 

6 ft contour 0.11 0.13 

7 ft contour 0.06 0.04 

Waterbody 9 (full) 0.97 4.52 

3 ft contour 0.81 1.84 

4 ft contour 0.74 1.05 

5 ft contour 0.40 0.43 

6 ft contour 0.10 0.15 

7 ft contour 0.03 0.06 

Waterbody 10 (full) 0.76 2.48 

1 ft contour 0.54 1.75 

2 ft contour 0.44 1.22 

3 ft contour 0.35 0.81 

4 ft contour 0.28 0.48 

5 ft contour 0.18 0.23 

6 ft contour 0.09 0.07 

Waterbody 11 (full) 0.18 0.65 

2 ft contour 0.12 0.36 

3 ft contour 0.10 0.24 
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4 ft contour 0.08 0.15 

5 ft contour 0.05 0.08 

6 ft contour 0.03 0.04 

Waterbody 12 (full) 5.24 14.76 

2 ft contour 2.80 7.25 

3 ft contour 2.20 4.64 

4 ft contour 1.68 2.60 

5 ft contour 0.86 1.02 

Waterbody 13 (full) 0.09 0.18 

1 ft contour 0.06 0.11 

2 ft contour 0.04 0.06 

3 ft contour 0.03 0.02 

Waterbody 14 (full) 0.05 0.08 

1 ft contour 0.03 0.04 

2 ft contour 0.02 0.01 

Waterbody 15 (full) 8.78 46.17 

2 ft contour 6.97 30.28 

4 ft contour 3.78 19.51 

6 ft contour 2.67 13.09 

8 ft contour 2.08 8.26 

10 ft contour 1.36 4.66 

12 ft contour 0.90 2.38 

14 ft contour 0.52 0.92 

16 ft contour 0.19 0.15 

Waterbody 16 (full) 7.24 60.27 

3 ft contour 5.48 41.13 

6 ft contour 3.89 26.53 

9 ft contour 2.59 16.46 

12 ft contour 1.72 9.79 

15 ft contour 1.06 5.50 

18 ft contour 0.68 2.74 

21 ft contour 0.39 1.06 

Waterbody 17 (full) 1.01 5.95 

3 ft contour 0.70 3.38 

6 ft contour 0.45 1.64 

9 ft contour 0.21 0.56 

12 ft contour 0.06 0.07 
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Table A6: Estimated total quarterly unmapped waterbody storage within the Southeast 

Watershed Planning Region of Oklahoma. Quarters in bold had available imagery from the 

United States Department of Agriculture National Agricultural Imagery Program used to 

calculate waterbody surface area.  

 Total Unmapped Waterbody Storage (cm) 

Year Q1 Q2 Q3 Q4 

2007 0.83 0.99 0.60 0.82 

2008 1.31 0.86 0.43 0.70 

2009 0.78 1.07 0.78 1.29 

2010 1.02 0.42 0.38 0.75 

2011 0.58 0.82 0.20 1.26 

2012 1.18 0.26 0.41 0.61 

2013 0.93 0.76 0.38 1.10 

2014 0.64 0.68 0.42 0.83 

2015 0.99 1.48 0.09 2.05 

2016 0.95 0.86 0.49 0.63 

2017 0.91 1.00 0.66 0.77 
   

 

Table A7: Estimated quarterly change in equivalent water thickness (EWT) in cm for the 

Southeast Watershed Planning Region of Oklahoma (SEWPR). EWT represents the total amount 

of surface water, groundwater, and soil moisture across the SEWPR. Quarters in italics were 

estimated using linear interpolation (Equation 14). 2017 Q3 and Q4 (denoted with *) were 

estimated using a regression model (Equation 15) due to a lack of available data for those 

quarters. Data from the Gravity Recovery and Climate Experiment satellite mission. 

 Change in EWT (cm) 

Year Q1 Q2 Q3 Q4 

2007 2.2 7.9 -22.0 8.7 

2008 16.7 -20.4 -1.2 4.0 

2009 8.1 -14.3 18.7 1.3 

2010 -1.2 -14.2 -12.7 8.9 

2011 4.9 -16.6 -6.8 21.7 

2012 8.8 -24.4 -3.2 10.0 

2013 9.8 -11.5 -3.6 15.4 

2014 1.6 -8.9 -9.3 11.8 

2015 11.8 3.8 -13.9 27.8 

2016 -6.0 -16.1 -1.2 7.2 

2017 7.1 -3.5 -8.7* 5.3* 
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Table A8: Quarterly depths in cm for all water balance model components including 

precipitation (P), streamflow out (Qout), evapotranspiration (ET), surface storage change (ΔSsurf), 

and sub-surface storage change (ΔSsub). Negative depths for ΔSsurf and ΔSsub indicate a decrease in 

total storage from the previous quarter. Maximum values for each component are written in bold, 

minimum values are written in italics.  

Year Quarter P Qout ET ΔSsurf ΔSsub 

2007 

1 27.5 22.8 8.2 -3.2 5.0 

2 60.7 10.9 35.9 4.4 3.9 

3 49.6 35.1 48.7 -5.3 -16.9 

4 30.5 5.2 11.9 1.0 7.6 

2008 

1 56.2 27.4 9.4 7.8 8.9 

2 59.5 33.8 41.5 -7.8 -12.6 

3 37.9 5.7 46.8 0.0 -1.1 

4 22.9 4.2 10.9 1.9 2.0 

2009 

1 24.3 6.9 7.9 -1.5 9.6 

2 64.8 40.3 35.8 0.0 -14.5 

3 60.4 10.2 49.6 0.5 18.5 

4 59.2 39.8 15.0 0.9 0.5 

2010 

1 39.7 30.8 9.3 -2.8 1.4 

2 30.9 7.5 39.9 -0.2 -14.0 

3 33.5 3.0 44.9 -1.4 -10.9 

4 26.3 1.8 11.7 -0.1 8.5 

2011 

1 12.9 4.9 7.7 0.4 5.0 

2 55.2 19.6 41.1 1.2 -18.9 

3 16.5 1.9 37.7 -1.4 -3.7 

4 54.3 12.6 10.6 2.5 18.0 

2012 

1 48.6 23.7 9.3 1.5 6.6 

2 20.7 8.3 38.8 -3.8 -19.4 

3 32.0 1.5 41.4 -1.2 -2.3 

4 16.2 1.0 9.6 -0.2 10.7 

2013 

1 33.5 5.0 8.2 4.0 5.1 

2 50.0 18.4 38.9 -0.6 -11.1 

3 31.6 2.8 47.0 -1.1 -2.2 

4 45.9 12.2 11.8 1.0 14.7 

2014 

1 17.1 10.3 8.7 -0.4 1.8 

2 45.3 17.9 38.9 0.0 -9.0 

3 41.1 6.3 51.3 -1.0 -8.3 

4 30.9 4.8 12.3 0.5 11.4 

2015 
1 37.5 19.2 9.0 2.4 9.1 

2 92.9 53.0 41.8 9.3 -5.4 
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3 20.1 16.5 44.8 -10.7 -1.3 

4 98.6 31.6 10.0 16.5 8.0 

2016 

1 34.4 39.1 8.4 -17.0 12.7 

2 57.5 23.8 40.8 -0.7 -16.0 

3 41.1 4.9 46.0 -0.5 -0.3 

4 18.3 2.3 10.7 -0.5 7.9 

2017 

1 31.5 5.7 7.7 0.8 6.0 

2 42.8 8.8 39.6 0.2 -3.8 

3 53.8 9.5 50.4 -0.7 -8.0 

4 25.9 2.0 10.4 -1.2 5.3 

Mean of 

2007-2017 

1 33.0 17.8 8.5 -0.7 6.5 

2 52.7 22.0 39.4 0.2 -11.0 

3 38.0 8.8 46.2 -2.1 -3.3 

4 39.0 10.7 11.4 2.0 8.6 
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