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Abstract 
 

This dissertation consists of three chapters. In the first chapter, using proxies for conversion 

cost parameters in conjunction with a special set of default free corporate bonds, I empirically 

establish that the term structure of liquidity spreads was positively sloped in the financial crisis 

period of 2008 and negatively sloped in the subsequent post crisis period. Importantly, these results 

indicate the segment of the term structure that provides the largest liquidity premiums to lenders 

for alternative economic scenarios. At the same time, for different financial epochs, the liquidity 

spreads associated with different times to maturity are clear to those who issue debt. 

In the second chapter, across credit ratings for alternative financial scenarios, I obtain the 

term structures of corporate bond liquidity premia using an enhanced version of a classic debt 

valuation equation. For purposes of estimation, unscented transformations (UT) accommodate the 

nearly two dozen nonlinear appearances of liquidity premiums in the determination of a bond’s 

yield. A Kalman filter then extracts the otherwise latent liquidity premiums from the observed 

yield. I find that the term structures of liquidity premiums were upward sloping for all credit ratings 

and in all three economic epochs considered. In addition, the structures were much steeper during 

the financial crisis and steeper for lower quality bonds across all three scenarios. I also empirically 

establish that the magnitude of the liquidity premiums more than doubled during the recent 

financial crisis relative to the pre-crisis period. Furthermore, the liquidity premiums do not retreat 

to their pre-crisis level after the financial crisis.  

Finally, in the third chapter, using a classical model of debt valuation that acknowledges 

liquidity premiums, I study how corporate bond market illiquidity may result in an elevated 

likelihood of the issuer’s default. Clearly, these liquidity considerations should be included in the 

pricing of securities that depend on credit risk, such as credit default swaps (CDS). Empirical 



 xii 

analyses suggest that increases in bond illiquidity measures result in a heightened likelihood of the 

issuer’s default and occasion a greater price of its CDS contracts. I also establish that the impact 

of illiquidity upon CDS premiums is more severe for less creditworthy issuers and in periods of 

financial stress. 
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Chapter 1: Estimating the Term Structure of Corporate 

Bond Liquidity Premiums: An Analysis of Default Free 

Bank Bonds 
 

1. Introduction            

The liquidity of anything that can be traded is a very important dimension of its value.  

Ceteris paribus, an asset that is more liquid tends to have more value than an asset that is relatively 

less liquid. The finance literature that describes and models liquidity has grown tremendously in 

recent decades. Two groundbreaking theoretical contributions have been those of Kyle (1985), 

who describes the basic dimensions of liquidity as trading cost, depth, and resiliency,1 and of 

Acharya and Pedersen (2005), who develop a liquidity-adjusted capital asset pricing model where 

the asset returns depend on expected liquidity and covariance with market returns and market 

liquidity.2  The liquidity of default free U.S. Treasury bonds has been analyzed by, among others, 

Amihud and Mendelson (1991) and, more recently, by Fontaine and Garcia (2012) and Musto, 

Nini and Schwarz (2018). Driessen, Nijman, and Simon (2017) analyzed differential pricing and 

liquidity of German short and long-term sovereign bonds. With respect to corporate bonds, Bao, 

Pan, and Wang (2011) examined the liquidity of corporate bonds where they use the Roll (1984) 

measure in preference to the bid-ask spread.3 Lin, Wang, and Wu (2011) find that liquidity risk is 

an important determinant of expected corporate bond returns. Bao and Pan (2013) find that 

empirical volatilities of corporate bond returns are higher than those implied by the Merton (1974) 

 
1 Respectively, these can be represented by such measures as bid-ask spreads, the Amihud 
(2002) measure, and changes in dealer inventory. 
2 They find that negative shocks to liquidity reduce valuation and thus give low 
contemporaneous returns on equities. 
3 It is noteworthy that they find the liquidity component of the yield spread can sometimes be 
greater than the default spread component. 
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model and attribute this finding to inadequate modelling of liquidity. More recently, Bongaerts, de 

Jong, and Driessen (2017) analyze corporate bond liquidity as a function of both asset-specific 

characteristics and systematic liquidity shocks. 

Investors in search and bargaining based models maximize their expected utility subject to 

the cost features of asset conversions. As a consequence of investor behavior, the magnitude of 

conversion considerations determines the shape of the term structure of liquidity spreads (TSLS). 

However, when financial markets transition from one economic scenario to another, a host of 

changes take place in these conversion costs. If the intertemporal changes are weighted by their 

marginal impact and then aggregated, they generate a new maturity structure of liquidity spreads. 

Clearly, search and bargaining models provide testable hypotheses about the shape of the TSLS in 

alternative economic periods. Using proxies for conversion cost parameters in conjunction with a 

special set of insured, default free bank bonds, we empirically establish that the term structure of 

liquidity spreads was positively sloped in the financial crisis of 2008 and negatively sloped in the 

subsequent post crisis period.4 Importantly, these results indicate the segment of the term structure 

that provides the largest liquidity premiums to lenders for alternative economic scenarios. At the 

same time, for different financial epochs, the liquidity spreads associated with different times to 

maturity are clear to those who issue debt. 

Of course, the attraction of using insured bank debt that participated in the guaranteed debt 

program was that the yield spread is exclusively the liquidity premium.  However, in order to both 

generalize our results and to establish the robustness of our conclusions, we extended the maturity 

 
4 Lewis, Longstaff and Petrasek (2017) also use this data base of insured bonds to analyze 
different important questions than we do. In clear contrast to our work, their basic question is 
framed in the context of mispricing (divergence from fundamental value) of insured bonds 
where, for example, funding costs and slow moving capital are given as reasons for 
mispricing. Explaining the shape of the term structure of liquidity premiums is not mentioned 
in their study. 
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structure of our bank bonds.  Extending debt to include securities which have a time to maturity 

greater than four years involves yield spreads that contain both a liquidity premium and a default 

premium. The Kalman filter routinely estimates state variables and is capable of extracting a 

liquidity premium from a confounded yield spread.  However, our empirical analysis is now 

plagued with both unobserved state variables (the liquidity premium and the default premium) as 

well as the unknown parameters on the right hand side variables.  Consequently, the conventional 

Kalman, which presumes knowledge of the model's parameters, cannot be directly applied to this 

empirical challenge. We employ a dual estimation technique to the problem of determining both 

the state of the dynamics and the model which gives rise to the dynamics.5 

 Section 2 of this paper contains our hypotheses. Then, sections 3 and 4 describe our data 

and methodology. The results of testing the hypotheses are given in section 5. Section 6 

summarizes our major finding and concludes our research. 

2. Hypothesis 

In Duffie, Garleanu and Pedersen (2005, 2007) (DGP) “search and bargaining” based 

models, investors maximize the expected value of their intertemporal utility functions. DGP 

market equilibrium conditions produce steady state results that parsimoniously incorporate the 

 
5 We note that Longstaff (2004) documents regression results for the liquidity premiums of 
Refcorp agency bonds. On the other hand, we examine liquidity premia of corporate bonds.  
In contrast to Longstaff (2004) data, our insured bond premiums seem to respond positively 
to increases in the slope of the U.S. Treasuries and are very sensitive to changes in financial 
anxiety. Additionally, the differences in the specifications in Longstaff (2004) and in our study 
suggest that the liquidity premiums for these two types of bonds are determined by different 
economic variables and that the premiums themselves are different.  These results highlight 
the distinction in the papers and ensure the independent importance of each piece of research. 
We also note that Schwarz (2019) examines the relative contributions of default and liquidity 
risks in the determination of bond spreads of European countries. In contrast to our analysis, 
Schwarz (2019) examines the implications of the liquidity spreads in other markets of various 
different countries, while we focus on the determinants of the liquidity spreads across 
maturities in only the U.S. 
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salient economic considerations of asset conversions. Significantly, the tractable pricing equations 

occasion yields to maturity which are amenable to a comparative static analysis of the term 

structure of liquidity premiums. DGP (2005, 2007) models include at least three parameters whose 

variations could significantly change the shape of the term structure of liquidity premiums: 1) the 

investor’s search intensity /0, 2) the holding costs 1, and 3) the joint likelihood of 2 and 3 which 

characterize the probability of an adverse liquidity shock.6,7 Plots of intertemporal comparative 

static behavior of these individual parameters are illustrated in Panels A, B, C, and D of Figure 1. 

A detailed interpretation of these figures is provided in Appendix A.  

When financial markets transition from one economic scenario to another, a host of 

parametric changes take place, not just a solitary change in a single asset conversion cost 

characteristic. If the intertemporal changes in these cost considerations are weighted by their 

marginal impact and then summarized, they generate a new maturity structure for liquidity 

premiums. In order to illustrate the impact of a transition from one economic scenario to another, 

consider a period of stress and then a post stress period.  For instance, and loosely consistent with 

some empirical results, we double the magnitude of 1 and 2 from their baseline settings, halve the 

value of our search parameter, and set 3 = 1 to generate a representation of TSLS that could 

 
6 For each investor, the probability of finding a dealer follows a Poisson distribution with intensity 

/0, where 5 ∈ [1,2, … ,;] is an index for different search intensities with  /0 > 	/?	 if   5 > @. For 

each investor type, a shock arrives according to a Poisson process with intensity	2. The probability 

that the investor will become type “high”, without holding cost, is 1- 3 and the probability he will 

become a “low” type, with holding cost, is 3.  
7 In DGP based models the liquidity premium is defined as the yield of a bond under average 

search intensities (average /0) minus the yield of a bond under no search frictions (/0 → ∞).  The 

yield to maturity, C, is the rate that makes the expected value of the discounted future cash flows 

equal to the price of the bond, D, for a random time to maturity.  D is the average of steady state 

bid and ask price occasioned by the DGP model. This approach to the determination of the liquidity 

premium is identical to that employed by Feldhütter (2012), He and Milbradt (2014) and Chen, 

Cui, He, Milbradt (2018). 
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possibly exist during a period of stress.  In contrast, we halve 1 and 2, double our search parameter 

/0 and reduce 3 to 0.5 to occasion a post stress period.8 The consequences of our two sets of 

parameters are depicted in Figures 2A and 2B. The positively sloped TSLS is an artifact of the 

parameter settings consistent with a period of financial stress. The negatively sloped TSLS is 

associated with parameters meant to characterize a post stress scenario. The contrasting schedules 

simply demonstrate what is possible.  However, DGP based models consider the major economic 

features of asset conversions and, while the magnitude of the parameters is merely suggestive, the 

direction of their changes occasion shapes of the TSLS that are a consequence of expected utility 

maximizing behavior of investors. Given these two diagrams, DGP based models provide testable 

hypotheses about the shape of the term structure of liquidity spreads in alternative economic 

periods.  Furthermore, we believe that proxies for DGP asset conversion parameters exist so that 

we will be able to empirically investigate the following hypothesis:  

The term structure of liquidity premiums was upward sloping in the financial stress period 

of 2008 and downward sloping in a subsequent post stress scenario. 

 

 

 
8 Adrian, Fleming, Shachar, and Vogt (2017) find that between 2008 and 2009, the average bid-

ask spread for U.S. corporate bonds widened to about 2.3% of par and then declined to pre-crisis 

levels of around 1%.  Anderson and Stulz (2017) and Adrian, Fleming, Shachar, and Vogt (2017) 

also document a steep decline in the price impact measure during and after the financial crisis, 

from 1% to 0.4% of par value per million.  Dick-Nielsen and Rossi (2018) use exclusions from a 

corporate bond index to show that the cost of immediacy doubled since before the 2008 crisis. 

Lastly, Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) document that trade 

execution costs nearly doubled during the financial crisis compared to the subsequent years. These 

three citations point to dramatic changes in the cost of asset conversions, per se, as we transition 

from a stress to a post stress period. In addition, we believe these references provide a loose 

justification for the dramatic changes we assume in the holding costs 1 for Figures 2A and 2B. 

Furthermore, the fact that VIX nearly doubled during the stress period casually supports the 

changes in 2 that we use to construct the representations 2A and 2B. 
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3. Data Description 

To perform our analysis, we gathered data for four different types of bonds.  The first type 

of bond is insured corporate bonds which were issued by numerous banks in 2008 and 2009.  These 

bonds were insured by the U.S. Treasury and were backed by the full faith and credit of the U.S. 

Treasury; thus these corporate bonds had no default risk. These bonds were part of the debt 

guarantee program meant to stabilize the banking system. The debt guarantee limit was restricted 

to 125% of the face value of senior unsecured debt that was outstanding as of September 30, 2008. 

The last day to issue debt under the program was October 31, 2009. Any insured bonds included 

in the debt guarantee program matured on or before December 31, 2012, by which time all debt 

insurance disappeared. Bond price data for these insured corporate bonds were gathered from the 

Trade Reporting and Compliance Engine (TRACE), which provides comprehensive coverage of 

bond trades. For these insured bonds, we also gathered information such as bond maturity, issuance 

dates, coupon rates and other issuance characteristics from Mergent FISD. 

The second type of bond is U.S. Treasury bonds which are commonly assumed free of 

default risk.  To compute the spread of our insured corporate bonds over equal maturity Treasury 

bonds, we use the H-15, which publishes data on U.S. Treasury yields for fixed maturities on a 

daily basis. We use GOVPX to compute bid–ask spreads of Treasury bonds. Liquidity spreads are 

the difference in yield between insured corporate bonds and U.S. Treasury bonds of equal maturity. 

The third type of bond is all U.S. corporate bonds other than the insured bonds. These other 

corporate bonds were used to represent market wide liquidity of the corporate bond market. 

TRACE is used to gather prices and yields for these bonds. To remove errors, cancellations, 

corrections, and reversals in the TRACE data, we filter the intraday transaction data according to 
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the procedure described in Dick-Nielsen (2009 and 2014). Finally, to eliminate extreme outliers, 

the data is further treated with the median filter described in Edwards, Harris, and Piwowar (2007). 

The fourth type of bond is all AAA and AA U.S bank bonds (SIC codes between 6000 

to 6200) that traded between 2008 and 2012. We use these bonds in two additional tests where 

we attempt to generalize our results to uninsured bank bonds with a maximum maturity of up 

to 10 years. We use bank bonds of high credit rating because they are more similar in nature 

to our insured sample. We limit our maturities to 10 years because few banks issue bonds with 

maturities between 10 and 20 years. 

We merge the above bond transaction datasets with Mergent FISD, which contains at-

issuance information such as offering date, maturity, and coupon, as well as the CUSIP of the 

issuing firm. From FISD, we calculate the time-to-maturity of the bond and its age. Using the 

issuer CUSIP, we merge the resulting datasets with the issuing firm’s financial reports from the 

quarterly files in COMPUSTAT. We obtain quarterly assets, current and long-term debt, total 

interest and dividends paid, financial leverage, operating margin, and volatility of assets. 

In addition to bond price data for the above types of bonds, we use a battery of variables to 

represent financial and macroeconomic conditions such as the VIX, U.S. Treasury term structure 

slope, interest rate swaps, and the 30-day Fed funds futures price. 

4. Methodology 

Liquidity Measures 

In order to thoroughly examine the impact of liquidity measures, we compute four 

measures: bid-ask spread, the Amihud measure, the Imputed Roundtrip Trades (Roundtrip 

measure), and the interquartile range. The results for the impact of the liquidity measure upon 

liquidity spreads are very similar for all liquidity measures where we report the results using the 
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Amihud measure. Figure 3 shows the strong correlation among the liquidity measures over the 

time period of our research.9 

To proxy for the bid-ask spread we follow Hong and Warga (2000), and Black, Stock, and 

Yadav (2016) and aggregate for each bond in each day, the price (p) of the “Buys” minus the price 

of the “Sells” weighted by the volume size of each trade (q). We then divide this by the midpoint 

price between the buy and the sell in each trade: 

F5G − IJK = 100 ∙

∑ N ∙ O	P
Q

∑O
R

−	
∑ N ∙ O	P
Q

∑OS
	

∑ N ∙ O	P
Q

∑ O
R

+	
∑ N ∙ O	P
Q

∑ OS

 

We next calculate the Amihud liquidity measure for all corporate bonds following the 

definition in Dick-Nielsen, Feldhütter, and Lando (2012). We aggregate the absolute value of the 

returns per trade and we divide by the trade volume. The Amihud measure is designed to capture 

the depth dimension of liquidity, i.e. the price impact of transactions adjusted transaction size:  

U =
100

V
W

IFJ(XY − XYZQ)

[\]	/	10_

P

Q

 

 
9 As bond market liquidity analysis has progressed, there has been debate concerning the best 

measure(s) of bond market liquidity, how they may or may not move together, and how bond 

market liquidity behaves in times of stress versus post stress. Dick-Nielsen, Feldhütter, and Lando 

(2012) compute a liquidity measure that is a composite of different measures and, furthermore, 

analyze the liquidity component (versus the default component) of corporate bond yields both 

before and after the financial crisis. Schestag, Schuster, and Uhrig-Homburg (2016) compute and 

evaluate a long list of alternative liquidity measures and find that the most commonly used 

measures are very strongly correlated and move together over time. Other important bond market 

liquidity papers include Kempf, Korn, and Uhrig-Homburg (2012) who show that current trading 

needs of investors determine the short end of liquidity premiums.  We note that Houweling, 

Mentink, and Vorst (2005) find limited differences in liquidity proxies for corporate bonds. With 

regard to total spreads and our later analysis of different periods, Van Landshoot (2008) finds that 

the credit cycle as measured by default probability affects U.S. corporate bond yield spreads. 
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where XY = log	(NY) is the return of the bond for the transaction t, [\]	is the volume traded 

in transaction t, and N is the number of trades in one day. 

Also, following Feldhütter (2012), we compute the imputed roundtrip measure which 

captures pre-arranged trades. Bonds sometimes trade two or three times within a short window. 

This can be interpreted as a dealer prearranging the transaction and collecting the spread. Similar 

to Dick-Nielsen, Feldhütter, and Lando (2012), we define the roundtrip measure as the spread 

between the maximum price and the minimum price in such a roundtrip transaction. We also only 

consider roundtrip transactions where exactly two or three trades occur nearly simultaneously: 

c\deG&X5N = 100 ∙
Nf − Ng

Nf
. 

Here Ng is the lowest price in the pre-arranged deal and Nf is the highest price in the pre-

arranged deal. 

Finally, we calculate the daily interquartile range as another proxy for the daily bid-ask. 

We calculate the interquartile range as the 75th percentile of a bond-day price minus the 25th 

percentile divided by the median of the bond price in that day: 

hic =
Nj.kl − Nj.ml

Nj.lj
. 

We also include the volatility of liquidity measures, which Dick-Nielsen, Feldhütter, and 

Lando (2012) have shown to be able to explain part of the liquidity spread. We calculate the 

volatility of each measure by calculating the standard deviation over 20 day windows. We choose 

20 day windows as a compromise between sample size and explanatory power of the variable. Our 

results are also robust to 1-month and 3-month rolling windows. 

We also include the bid-ask spread for U.S. Treasury bonds from GOVPX and CRSP as a 

proxy for overall liquidity in the market and our results are robust to using either. Table 1 displays 
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means and standard deviations of liquidity measures for all bonds in TRACE (Panel A) and for 

our sample of insured bonds (Panel B). We summarize the correlations between the four liquidity 

measures used in this study in Panel C of Table 1. For statistical analysis that follows, we use the 

Amihud measure where, again, these statistical results are very similar if the above alternative 

liquidity measures are used. 

Period Selection 

A fundamental part of our analysis is to appropriately select periods of the time period – 

2008 to 2012 – for which underlying economic conditions were different. Broadly consistent with 

Dick-Nielsen, Feldhütter, and Lando (2012), Acharya, Amihud, and Bharath (2013), 

Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), and the NBER list of economic 

expansions and contractions, we define October 2008 to November 2009 as the stress period and 

November 2009 to December 2012 as the post stress period. We deviate ever so slightly from our 

predecessors’ periods in order to acknowledge the timing of significant changes of GDP, VIX, and 

Fed funds rates futures prices (10% upwards or downwards) as shown in Figure 4.10 

Table 2 Panel A summarizes the number of insured bank bonds in the sample, the number 

of bank issuers, the total number of trade/days in the stress and post-stress periods, and the average 

number of trades per insured bond. Table 2 Panel B provides averages of the liquidity premium 

spreads relative to the U.S. Treasury rates and the interest swap rates for quarterly increments of 

the time to maturity. These averages are for the period of stress (Table 3A) and post-stress (Table 

3B). Figure 5 contains raw liquidity premium spreads (insured corporate bond yields less Treasury 

 
10 We alternatively use the NBER definition of the periods of stress and post stress, from October 

2008 to June 2009 and from June 2009 to December 2012. The results using these dates are very 

similar to the ones we present below.  
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yields of equal maturity) plotted against maturity for the different periods. The plots are averages 

of all bond spreads with the same time to maturity. These spreads are aggregated by maturity 

buckets of one-week length to avoid noise and high dispersion in the data. The green triangles 

provide preliminary evidence of a positive slope for the early (stress) part of the data while the 

blue diamonds suggest a negative slope for later (post stress) observations. Appendices B and C 

use alternative periods where the main results are similar to Figure 5 and other results we report 

below.  

Maturity portfolio selection and regression framework 

To test whether periods of stress and post stress have a differential impact on the TSLS, 

we aggregate bonds into maturity buckets. We choose two buckets – short and long – in order to 

parsimoniously describe the slopes of the TSLS without sacrificing sample size in each of the 

buckets. We alternatively used three buckets—short, medium, and long—in addition to using 

different periods where the results are always similar. See Appendices B and C for this robustness 

analysis. 

We then allocate our daily bond observations into the two buckets according to the 

following procedure. If the time to maturity is below the 50th percentile for that period, the 

observation is categorized as short-term, and if it is above the 50th percentile, it is categorized as 

long-term. For expositional convenience, we adopt the notation nopPq and ropPq to characterize 

our relatively “short-term” and “long-term” insured bank bonds, even though the maximum time 

to expiry of this special sample is only 4 years. 

To test hypotheses about liquidity spreads, we proceed as follows. For each period and 

each maturity portfolio (see period and maturity portfolio selection above), we run the regression 

equation found below where the liquidity spread is the yield on the insured corporate bond less the 
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yield on the equal maturity U.S. Treasury and r5Od5G5&C	stIJdXt is the Amihud measure. 

Furthermore, VIX is the volatility index, Fed funds futures is the futures contract price, Treasury 

slope is the yield of a 6 month Treasury less the yield of a 3 month Treasury, TTM is time to 

maturity, market liquidity is the liquidity measure for all corporate bonds in TRACE, volatility of 

liquidity is the standard deviation of the liquidity measure for the bond over a 20-day rolling 

window, and t0,Y represents the error term. 

rn0,Y = u + vQ ∙ (r5Od5G5&C	stIJdXt)0,Y + 		vm ∙ (!hw)Y + vx ∙ ($tG	$d&dXtJ	DX5yt)Y +	vz

∙ (oXtIJ	J]\Nt, 6; − 3;)Y + vl ∙ (oos)0,Y + v_ ∙ (sIXKt&	r5Od5G5&C)Y +

∙ (!\]I&5]5&C	\}	r5Od5G5&C)0,Y + t0,Y	 

Here, 5 is one of the two periods and & is one of the two maturity buckets. We follow a 

panel regression in this specification and we include issuer fixed effects. We also cluster the 

standard errors at the firm level to account for serial correlation in the covariates. 

5. Results 

DGP based models generate alternative shapes of TSLS that vary according to the 

magnitude of parameters assigned to investor search intensity /, holding costs 1, the hazard rate 

of financial shocks 2, and the likelihood of investors being financially constrained 3.  Parameter 

assignments meant to characterize stressful periods provide a positively sloped term structure of 

liquidity spreads.  Parameter values which describe a post stress period create a negatively sloped 

TSLS.  Figures 2A and 2B provide a testable hypothesis for our empirical investigation and DGP 

asset conversion cost parameters inform the selection of RHS variables in our regression analysis.   

The results from regressing liquidity spreads upon important explanatory variables related 

to our hypothesis are detailed in Columns 1 to 4 in Table 3. The Amihud liquidity measurement 

(AMIHUD), the VIX, the fed funds futures price (FFFP), and the slope of the treasury term 
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structure of interest rates (TREASLP) are all independent variables in our empirical analysis. We 

also include explanatory variables not directly related to our hypotheses –market-wide liquidity 

(AMIHUDMKT) and volatility of liquidity (AMIHUDVOL) – as control variables following other 

studies such as Dick-Nielsen, Feldhütter and Lando (2012). Our right hand side variables are 

characterized by large differences in their respective magnitudes. Consequently, in order to 

facilitate a comparison of their relative impact upon the liquidity spread, we have standardized 

(zero mean, standard deviation of one) our regressors.  After this transformation of our data, a unit 

increase in any independent variable corresponds to a one standard deviation increment in that 

variate. We run separate regressions for short and long-term maturity buckets in “stress” and in 

“post stress” economic periods in order to estimate the determinants of the liquidity spread for 

alternative times to maturity in different periods.11 One aspect of our results is that the coefficient 

of determination averages 51% over our period of economic stress for short (nopPq) and long-term 

(ropPq) insured bonds, while the average Rm for the nopPq and ropPq liquidity spreads in our post 

stress period is only 15%.  In addition, ropPq reduced form coefficients are larger than nopPq 

regression coefficients for six of seven variates in the period of stress, while, in distinct contrast, 

the inequality is reversed for five of seven independent variables during the post stress period.  

These four observations point to the possibility that market participants pay very close attention to 

bond specific liquidity measurements, macroeconomic variables, and monetary policy during 

periods of economic stress. Moreover, investors translate the behavior of these variables into 

portfolio decisions. 

 
11 At this point, we reiterate that our notation nopPq and ropPq characterizes our short-term and 

“long-term” insured bank bonds, even though the maximum time to expiry in our special sample 

is only 4 years. At the end of this section, we extend our results by investigating the liquidity 

premiums of longer term bonds. 
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In Table 3, bond specific liquidity is quantified by the Amihud measurement, AMIHUD. 

In our stress period, a unit increase in the standard deviation of Amihud liquidity increases the 

nopPq liquidity spread by 4.4 basis points and the ropPq spread by 15.6 basis points.12 Both 

regression coefficients are statistically significant at the 1% level. Of course, Amihud liquidity is 

actually a measurement of illiquidity, where an increase corresponds to an increase in the absolute 

value of the change in the log of the security price due to the transaction at hand. The greater the 

AMIHUD, the greater the illiquidity; consequently, the positive effect of AMIHUD upon both 

nopPq and ropPq liquidity spreads is well anticipated. However, remarkably, the ropPq regression 

coefficient on AMIHUD is nearly four times larger than the impact of AMIHUD upon the nopPq 

spread. Not only does the impact of AMIHUD increase with the time to maturity, it does so 

dramatically. This is emphatic support for the notion that times of stress enhance the focus of 

investors upon meaningful economic variables. Furthermore, changes in AMIHUD 

disproportionately impact the ropPq yield spread since the consequences of holding ropPq bonds 

during a financial shock can be severe. 

Using the regression coefficients of AMIHUD to examine the differential change in the 

liquidity spread as AMIHUD changes within the stress period yields  G(rn0) =

�
ÄÅqÇ

ÄÉfpÑÖÜ
á G(Ushàâä)	. Clearly G(rnÅãåçé) will be greater than G(rnqãåçé), with 

G(Ushàâä	) > 0.  Consequently, we have differential changes in the liquidity spread that 

contribute to the determination of the positively sloped term structure of the liquidity spread 

depicted in Figures 5, 6, and 8.     

 
12 We also used numerous alternative measures of liquidity (bid-ask spread, roundtrip, and 

interquartile range) where, throughout our research, all show very similar results as using 

AMIHUD; these results are available from the authors. 
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In our post stress period, AMIHUD continues to have a positive impact upon the liquidity 

spread. Both coefficients are statistically significant with a one standard deviation increase in 

AMIHUD increasing the nopPq liquidity spread by 22.5 basis points and, in contrast, increasing 

the ropPq liquidity spread by only 3.2 basis points.  These coefficients detail a dramatic reversal 

in the relative importance of AMIHUD for short-term and long-term spreads in post stress periods.  

Equally notable is the fact that AMIHUD's impact upon the ropPq liquidity spread is one-third of 

the size it was during a financial crisis.13 

VIX is a standard measure of financial stress.14 A standard deviation increase in VIX during 

the stress period increases the liquidity spread on nopPq bonds 12.9 basis points and 22.3 basis 

points on ropPq bonds where both coefficients are statistically significant. The positive reduced 

form coefficients are intuitive since an increase in VIX proxies an elevated level of investor anxiety 

which generally occasions an increase in the liquidity spread.  The fact that the ropPq reduced form 

coefficient on VIX is nearly twice as large as the nopPq coefficient provides further evidence that 

periods of economic stress motivate longer-term security holders to pay close attention to and to 

react to macroeconomic factors.   

The average normalized value of VIX during our stress period was 1.32 while the average 

normalized value of VIX for 13 months before the crisis was -0.43.  This  change in VIX of 1.75 

standard deviations combined with our regression coefficients for ropPq VIX and nopPq VIX yields 

 
13 Relatively free of the threat of a liquidity shock, clientele effects, as suggested by Gehde-Trapp, 

Schuster, and Uhrig-Homburg (2016), motivate some investors to hold long-term securities with 

little need for a liquidity premium.  Meanwhile, enhanced spreads are enjoyed by ST bond holders 

as compensation for incurring the repeated search costs of owning short-term bonds. 
14 VIX documents market volatility and is routinely interpreted as market anxiety. It is reasonable 

to consider VIX as a proxy for the DGP parameter 2, the hazard rate for the time to a financial 

shock. An increase in 2, in part, created the positively sloped DGP term structure of the liquidity 

spread found in Figure 2A. The differential impact of VIX upon GrnÅã and Grnqã had a dramatic 

impact on Figure 8 and mimicked the role that G2 played in the determination of Figure 2A. 
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G(rnÅãåçé) = 0.39025 and G(rnqãåçé) = 0.2275. These differential changes in the liquidity spread 

during a period of economic stress contribute to the determination of the positively sloped term 

structure of the liquidity spread depicted in Figures 5, 6, and, most prominently, 8.    

In our post stress period, VIX again registers a positive and statistically significant impact 

upon both nopPq and ropPq liquidity premiums, 0.048 and 0.032 percentage changes, respectively.  

However, it is very important to note that the relative magnitudes of VIX upon nopPq and ropPq 

securities is reversed.  Even more importantly, the regression coefficient of VIX upon the ropPq 

liquidity spread in our post stress period is only one seventh of its size in the earlier period. While 

the average VIX is zero over all three periods, the VIX retreats to an average of -0.022454 standard 

deviations below the mean in the post stress period. 

The importance of VIX is clear; a unit increase in its standard deviation can change rnÅãåçé 

in a stress period as much as 22.3 basis points, or, in contrast, only increase the liquidity spread 

for nopPq bonds as little as 4.8 basis points in a post stress period.  Longstaff (2004) suggests that 

the short-term liquidity spread is less sensitive to VIX than the rnÅãåçé.  In contrast, our regression 

results record a greater increase in the rnqãåçé (4.8 basis points) than in the rnÅãåçé (3.2 basis 

points) for a standard deviation increase in VIX during a post stress period. 

We used the Fed funds futures price (FFFP) to proxy the impact of Federal Reserve 

behavior upon the liquidity spread. The Fed fund futures is a popular 30-day contract whose price 

implicitly contains investor expectations about the future cost of overnight borrowing between 

banks.  The sustained actions of the Federal Reserve in the Fed funds market in the stress period 

pushed the average FFFP 1.4 standard deviations above its pre-stress level found in the 13 months 

before the crisis of 2008.  This escalated value of the Fed funds futures price failed to impact the 

nopPq liquidity spread in a statistically meaningful way.  However, this absence of a statistically 
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significant regression coefficient is a powerful result. It suggests a strong relationship between the 

nopPq yields on the insured bonds and Treasury bonds.  Clearly if FFFP was 1.4 standard deviations 

above its pre-stress level, then the Treasury yield must have fallen dramatically due to Federal 

Reserve policy behavior. However, nopPq insured bond yields matched the deterioration of 

government yields and left the nopPq liquidity spread unaffected by FFFP in the stress period.  This 

remarkable interdependence between the two yields establishes the existence of market forces 

which preserve the short-term liquidity spread in the stress period despite aggressive monetary 

policy. The reduction in the anticipated Fed funds futures rate did occasion a statistically 

significant change in the long-term liquidity spread of -7.0 basis points.  

For the post stress time period, Table 3 documents a significant positive relationship 

between FFFP and the liquidity spread of ropPq bonds.  A one standard deviation increase in the 

Fed funds futures price increases the ropPq liquidity spread by 1.7 basis points.  As in the stress 

period, a change in FFFP occasions no statistically significant impact upon the nopPq liquidity 

spread.  Again, we argue that the insignificant regression coefficient documents the strength of 

market forces to preserve the existing short-term premium regardless of Federal Reserve 

operations. 

We maintain that monetary policy will impact segments of the term structure differently 

and the effect(s) will change over the business cycle.  Our research analyzes short-term monetary 

policy by the Federal Reserve, in terms of its impact upon the Fed funds futures price.  

Surprisingly, the FFFP has no statistically significant impact upon the short-term liquidity in either 

period. This result is in contrast to Longstaff’s (2004) conjecture that the greater the Federal 

Reserve activity at the short end of the maturity spectrum, the greater the spread. Our empirical 

results do establish the FFFP as having a statistically meaningful impact at the longer end of the 
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term structure of the liquidity spread and that the direction of that effect depends on business 

conditions. 

It is often held that the slope of the Treasury term structure proxies the expected change in 

risk-free yields. While we have no prior notions as to the impact of the slope of Treasury term 

structure upon the liquidity spread, Table 3 documents the regressor’s impact with reduced form 

coefficients of 2.7 basis points on the nopPq and 3.9 basis points on the ropPq liquidity spread.  The 

estimates are statistically significant and increasing in the TTM (time to maturity).  It is possible 

that an increase in the slope of the Treasury term structure reflects inflationary expectations or 

contractionary monetary policy.  Either scenario, of course, engenders the kind of investor anxiety 

that must be offset with a higher liquidity premium.   

These regression results confirm the positively sloped term structure of the liquidity spread.  

For the 13 months before the crisis, the standardized slope of the term structure of treasury 

securities averaged 0.304045 standard deviations above the zero mean garnered over the pre-stress, 

stress, and post stress periods.  The average normalized value of TREASLP for the stress period 

was 0.469915 so that the differential change in TREASLP was [0.469915 - 0.304045] = 0.165870.  

Combining G(ocèUnrD) > 0 with estimates for the marginal impact of the treasury slope upon 

the liquidity spread for nopPq and ropPq securities occasions a “G(rn0)” that is increasing in the 

time to maturity and contributes to the determination of the positively sloped term structure of the 

liquidity spread in a period of stress.  

In the post stress period, our regression analysis documents no meaningful relationship 

between the treasury slope and short-term liquidity premiums.  However, the impact of the slope 

of treasury term structure upon ropPq liquidity spreads is positive and statistically significant.  

Consistent with our earlier analysis, the regressor’s impact upon the spread in a period of relative 
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calm is proportionately much less than its impact upon the ropPq premium in a crisis, 2.7 basis 

points and 3.9 basis points, respectively.  As the threat of asset conversion diminishes, ropPq bond 

owners become less sensitive to meaningful independent variables and become marginally more 

passive.   

Figures 8 and 9 dramatically depict the deterioration in the liquidity spread of ropPq 

securities as we move from a period of financial stress to a period of relative economic calm.  The 

standardized slope of the Treasury term structure fell from 0.469915 to -0.52464 standard 

deviations below the mean, moving from the first to the second period where G(ocèUnrD) =

	[	−0.52464	 − 	0.46992].		 Consequently, the liquidity spread on ropPq bonds fell by 

G(rnÅãåçé) = (0.027)(-0.994555) = -0.026853 or -2.7 basis points.  Clearly the behavior of 

G(rnÅãåçé) =
ÄÅqíì

ÄãîïÉqÅñ
	G(ocèUnrD) contributes significantly to the transition of the term 

structure of the liquidity spread from the configuration of Figure 8 to the negatively sloped Figure 

9.   

Our hypothesis maintains that the shape of the term structure of the liquidity spread 

changes from a positive to a negative slope reflecting changes in a host of asset cost conversion 

parameters. We document empirical support for this notion with Figures 8 and 9.  To generate 

these figures, we first collected the estimated daily values of the liquidity spread according to their 

time to maturity.  These estimated daily values, in each of the two economic scenarios, are the 

product of right hand side variables and their respective parameter estimates at the time of the 

transaction.  However, a complication arises because, on average for each day of transactions, 

more than a dozen estimated spreads are recorded for the same time to maturity.  Consequently, in 

order to summarize those estimated values of the liquidity spread, our representation of TSLS 
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minimizes the sum of the squared deviations of those computed values from a mean computed 

value at each TTM.  Clearly the Figures 8 and 9 admit to a non-linear possibility.   

The positively sloped term structure of liquidity premiums in Figure 8 (stress period) is not 

a surprise. Three sets of the regression coefficients were statistically significant in the 

determination of both the nopPq and ropPq liquidity spreads in this period.  The impact of the 

regressor is greater upon the ropPq liquidity premiums than the short-term liquidity spread in all 

three sets of stress period estimates.  As the economy transitioned from our pre-stress period to the 

stress period, all three independent variables recorded an increase in their average standardized 

value.15 These changes, taken in conjunction with the difference in the size of nopPq and ropPq 

regression coefficients, created the positively sloped term structure depicted in Figure 8.  

The TSLS found in Figure 8 mimics the DGP term structure of liquidity spreads in Figure 

2A in an important way; it is positively sloped in a period of economic stress. The similarity of the 

two diagrams emanates, first, from the ability of DGP to capture the features of asset conversion 

costs and, then, the success of our independent variables to proxy the behavior of DGP conversion 

parameters and their impact in the first period. 

As the economy moved from a period of stress to relative tranquility, not only did the 

magnitude of our right hand side variables reflect this migration but their impact upon ropPq 

liquidity spreads retreated.  At the same time, the impact of independent variables on the nopPq 

liquidity premiums escalated.  The combined behavior of the magnitude of the variates and their 

estimated impact produced the negatively sloped TSLS found in Figure 9.   

 
15 The standardization process uses observations from all three scenarios: pre-stress, stress, and 

post stress. The means for the aggregation of the intervals is clearly zero. For any one period, the 

mean is above or below zero. 
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The term structure of the liquidity premiums in Figure 9 reproduces the negatively sloped 

TSLS provided by post stress DGP parameters in Figure 2B.  The ability of Figure 9 to match the 

theoretically predicted shape of TSLS follows from the success of our regressors to proxy the 

behavior of DGP asset conversion cost considerations in the second period.16, 17 

In Columns 5 to 7 in Table 3, we also provide alternative ways to statistically test the 

differential impact of the liquidity measure on the liquidity spread for nopPq versus ropPq bonds, 

in the periods of crisis and post crisis. For this purpose, we define the indicator function 1{òôöõúù}, 

which takes the value 1 when the bond is characterized as an ropPq debenture and 0 when the bond 

is classified as an nopPq bond. We also define the indicator function 1{ü†°0õ¢ôüõSY}, which takes 

the value 1 if the transaction occurs during our post crisis period and 0 if it occurred during our 

crisis period. 

In Columns 5 and 6, we summarize our estimates when we simply interact the expression 

1{òôöõúù} with the AMIHUD liquidity measure in the crisis and post crisis periods. In our crisis 

 
16 We now briefly discuss coefficients for explanatory variables that may be considered control 

variables. With regard to the maturity (TTM in days) within buckets for the stress period, there is 

a small statistically significant coefficient for the shorter maturity bucket which is consistent with 

the notion that the term structure is positive during a stress period. The long-term TTM coefficient 

in the stress period is negative but very small and not significant.  For the post stress period, the 

short bucket TTM coefficient is negative and strongly significant which is consistent with the 

notion of a negatively sloped term structure during a post stress period.  In contrast, the second 

period’s long-term coefficient is not significant. In summary of the above, these results support 

the hypothesis that the shape of the term structure changes over time dependent upon varying asset 

conversion cost characteristics, where their magnitudes are generated, alternatively, by periods of 

stress and post stress. The coefficients for Amihud market wide measures are much smaller than 

for the AMIHUD measure. The volatility of the Amihud measure is clearly significant in only the 

post stress short maturity.  
17 We test the results of Table 3 for endogeneity difficulties in a manner similar to Dick-Nielsen, 

Feldhütter, and Lando (2012) in Appendix D.  Issuance amount and age of issuance are used as 

instruments where the results are that endogeneity is not a problem.  In Appendix E, we provide 

additional robustness tests where we regress our liquidity spreads upon the difference in liquidity 

measures of the insured bonds and maturity matched U.S. Treasuries. We find that similar results 

hold for this alternative specification. 
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period (Column 5), a one standard deviation increase in the AMIHUD liquidity measure is 

accompanied by a 6.1 bp increase in the liquidity premiums for our nopPq debentures. Also in the 

crisis period, we document that that a one standard deviation increase in AMIHUD leads to a 7.9 

basis points increase in the liquidity spreads for ropPq bonds, in excess of the contribution of 

AMIHUD on the liquidity spreads for the nopPq bonds. Put differently, a one standard deviation 

increase in AMIHUD results in a 14.0 bp (6.1 + 7.9) increase in the liquidity premiums for ropPq 

bonds in the crisis period. In the post crisis period (Column 6), a one standard deviation increase 

in the AMIHUD measure results in a 20.1 bp increase in the liquidity spread for nopPq debentures. 

Also in the post crisis period, we report that a one standard deviation increase in the liquidity 

measure of an ropPq bond in the post crisis period results in only a 4.1 basis points increase in its 

liquidity spread. The results we present in Columns 5 and 6 are consistent with the coefficient 

estimates in Columns 1 through 4 in Table 3. The coefficients for the additional right hand side 

variables remain virtually unchanged in Columns 5 and 6, relative to those reported in Columns 1 

to 4, so we do not reiterate their magnitude, statistical significance, or economic interpretation 

beyond what is provided in Table 3. 

In Column 7 we summarize our estimates when we interact the expressions 1{òôöõúù} and 

1{ü†°0õ¢ôüõSY} with the AMIHUD liquidity measure. We first note that a 1 standard deviation 

increase in the AMIHUD liquidity measure of an nopPq bond during the crisis period results in a 

6.1 bp increase in its liquidity spread. Additionally, the results in Column 7 show that the impact 

of AMIHUD on the liquidity spread for ropPq bonds is increased by 6.9 bp relative to the impact 

for the nopPq FIS during our first period. This result coincides with those we report in Columns 1, 

2, and 5 in Table 3 for the crisis period. In Column 7, we show that as we transition from the crisis 

to the post crisis period, the impact of the AMIHUD measure on the liquidity spread for nopPq 
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bonds is increased by 14.3 basis points. Finally, our estimate for the difference-in-differences 

coefficient is statistically significant at the 1% level and achieves a value of -23.3 bp. This implies 

that as our bonds transition from the crisis to the post crisis period, the impact of a one standard 

deviation increase in the AMIHUD measure on the liquidity premiums for the ropPq bonds is 

decreased by 23.3 bp relative to the nopPq bonds. These results are consistent with those we report 

in Columns 3, 4, and 6 in Table 3 for our post crisis period. 

Analyses with bonds of extended maturities  

The data used in our regression analysis is limited to bank bonds that were insured by the 

Debt Guarantee Program.  Of course, the attraction of bank debt that participated in the guaranteed 

debt program was that the yield spread is exclusively the liquidity premium.  However, in order to 

both generalize our results and to establish the robustness of our conclusions, we extend the 

maturity structure of our bank bonds.  Extending debt to include securities which have a time to 

maturity greater than four years will involve the yield spreads that contain both a liquidity premium 

and a default premium.18 The Kalman filter routinely estimates state variables and is capable of 

extracting a liquidity premium from a confounded yield spread.  However, our empirical analysis 

is now plagued with both unobserved state variables (the liquidity premium and the default 

premium) as well as the unknown parameters on RHS variables.  Consequently, the conventional 

 
18 We can directly test for the existence of an interaction between liquidity and default premiums (a 

feedback loop) in the data that includes high grade bank bonds whose time to maturity extended 

beyond the expiration of the Debt Guarantee Program.  Estimating the parameters of a Box/Cox 

model reveals no “feedback loop” in this sample of high-grade extended maturity bank bonds. 

However, when we extend our analysis to a sample of bank bonds with S&P credit ratings of BBB, 

BB, B, CCC, CC, C, and D, we are able to document the presence of an interaction between the 

liquidity and default premiums for a sample of lower quality bank bonds. Our empirical results tend 

to support the conclusions of He and Milbradt (2014) and of Chen, Cui, He and Milbradt (2018) 

where the calibrated feedback loop is dramatically larger for low grade bonds than for high quality 

debentures. 
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Kalman, which presumes knowledge of the model's parameters, cannot be directly applied to this 

empirical challenge. We employ a dual estimation technique to the problem of determining both 

the state of the dynamics and the model which gives rise to the dynamics.19 

We utilize the expectation maximization (EM) approach, in the context of a Kalman filter, 

to the problem of estimating both the liquidity spread itself and the parameters that give rise to this 

premium.  Heuristically, the KF/EM dual estimation method works by alternating between using 

the model to estimate the signal, and using the signal to estimate the model.  In particular, we begin 

with some guesstimates of parameter values to generate an initial set of liquidity premiums over 

the sample period.  Then with a collection of the expected values the liquidity premiums over the 

entire period a likelihood function is specified and we derive a set of maximum likelihood 

estimates of the model's parameters.  This process iterates back and forth, minimizing the variance 

of the estimation error and of the prediction error until a linear combination of the estimated 

variances converges.20 

The model is given by the following set of equations:  

Measurement equation:    J0,Y = ;Q ∙ (]5O)0,Y 	+ ;m ∙ (Gt})0,Y 	+ £f,0,Y 

 

Transition equation:     §
(]5O)0,Y	

(Gt})0,Y
• = u0 + ¶0 ∙ §

(]5O)0,YZQ	

(Gt})0,YZQ
• + v0 ∙ w0,Y + £ã,0,Y. 

 

Above, J0,Y is the corporate spread and (]5O)0,Y	and (Gt})0,Y are the liquidity and default 

spreads of bond 5	at time &. The error term in the measurement equation, £f,0,Y, follows a normal 

distribution with mean zero and standard deviation ßf.  In the transition equation, u′0 =

 
19 References for the Kalman filter/expectation maximization approach to dual estimation include 

Dempster, Laird, and Rubin (1977), Hamilton (1994), Harvey (1991) McLachlan (1996), and  

Maybeck (1979). 
20 Details of the EM algorithm that we programmed will be provided upon request. 
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[u0,Q u0,m] is the vector of intercepts for each transition equation, ¶0 is the matrix of 

autoregressive coefficients, v0 is the matrix of control coefficients, and w0,Y is the vector of liquidity 

and default controls that includes Amihud liquidity measure, time to maturity, age, liquidity 

volatility, firm leverage, firm profitability, coupon amount, VIX, U.S. Treasury slope, and market 

liquidity. The error term in the measurement equation is a vector £′ã,0,Y = [£Q,ã,0,Y £m,ã,0,Y], where 

each component follows a normal distribution with mean zero and standard deviation ß?, with @ =

1, 2. We estimate the parameters ;Q,;m, ßf, u0, ¶0, v0, ßQ, ßm	 individually for each bond in the 

stress and post stress periods.21 The convergence of our estimation algorithm guarantees that the 

extracted signals optimally reflect daily unobserved liquidity and default premiums and that the 

parameters truly summarize the impact of our explanatory variables upon the liquidity spreads.  

Columns 1 and 2 in Table 4 below show our parameter estimates in the stress and post 

stress periods when we use all available observations of the new sample. Upon examining these 

coefficients, it becomes apparent that several of the prominent determinants of liquidity premiums 

in the insured sample (Table 3) share the sign and a similar magnitude in this new extended sample. 

As in Table 3, the coefficient of AMIHUD is positive and statistically significant in both economic 

periods, highlighting that the liquidity measure contributes greatly to the determination of the 

liquidity spreads. However, the magnitude of the coefficient of AMIHUD is much greater in the 

stress period (11.5 basis points) relative to the post stress period (0.17 basis points) indicating that 

investors pay increased attention to liquidity measures in a period of heightened economic anxiety. 

 
21  We use a global optimization algorithm, particle swarm optimization, to guarantee that are 

estimates are global minimizers. See Kennedy and Eberhart (1995) for a good reference. 
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These results parallel our findings for the impact of AMIHUD upon the liquidity spread for the 

insured sample. 

Columns 1 and 2 also show that the coefficient of TTM is statistically significant at the 1% 

level in the stress and post stress periods. During the stress period in Column 1, the coefficient of 

TTM is positive and statistically different from zero, supporting an upward sloping relationship 

between the liquidity premiums and the time to expiry (0.067 basis points per standard deviation 

increase in TTM). However, in the subsequent post stress period, the relationship between liquidity 

spreads and time to maturity reverses, suggesting a negative dependency between liquidity spreads 

and maturity (-0.16 basis points per standard deviation increase in TTM). Clearly, these coefficient 

estimates provide unqualified support for the upward and downward sloping nature of the 

relationship between liquidity spreads and time to expiry in the stress and post stress periods and 

are consistent with the results we document in Table 3 for the insured sample. 

The impact of the remaining control variables upon liquidity spreads for this extended 

sample is well received. For example, the coefficient of rt[tXI©t is always statistically 

significant in both periods, where the magnitude is larger in the crisis period than in the post crisis 

period. Nonpayment is an important predictor of default premiums and its importance is larger 

during crises. Our proxy for financial stress, VIX, is positive and statistically significant in the 

stress period, much like its impact for our sample of insured bank bonds.   

We document the TSLS for the extended sample by averaging the liquidity premiums in 

monthly maturity buckets and plotting the outcome against time to maturity. The result for both 

economic periods is presented in Figure 10. For this sample of high grade bonds with extended 

maturities, the Kalman filter/EM is able to generate an upward sloping TSLS in the stress period 
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and a downward sloping TSLS in the subsequent post stress period. This result supports our 

findings about the shapes of the TSLS for the insured sample in Figures 8 and 9. 

We test the out-of-sample validity of our KF/EM estimates in the following fashion. We 

estimate the model’s parameters as described above, but using a sample that contains all available 

uninsured bonds (with maturities up to 10 years) plus a percentage “™” of randomly selected 

insured bonds (with maturities less than 4 years). We provide two sets of coefficient estimates 

where ™, the percentage of insured bonds used, equals 50% and, alternatively, 75%. Clearly, these 

estimates will reflect the marginal contributions of our RHS regressors in explaining liquidity and 

default premiums in a sample with up to 10 years to maturity and with and without an “insured” 

distinction. We then use the parameter estimates, along with the Kalman filter, to obtain the 

liquidity premiums of the remaining excluded insured bonds.   

In Columns 3 and 4 of Table 4, we provide stress and post stress KF/EM estimates for the 

sample when ™ = 50%. This additional percentage increases the number of bonds in the 

estimation sample from 179 to 212 in the crisis period and from 343 to 374 in the post crisis period. 

These coefficients closely resemble the ones in Columns 1 and 2. Most prominently, the coefficient 

of AMIHUD is positive and statistically significant in both economic periods, intuitively the 

magnitude is twice as large in the stress period (2.32 bp) relative to the post stress period (0.93 

bp). Also, the coefficient of TTM is positive in the stress period (21 bp) and negative in the post 

stress period (-2.9 bp). The signs of the coefficient for the time-to-expiry validates our findings 

about the slope of the term structure of liquidity premiums in the stress and post stress periods for 

the insured bonds, as shown in Figures Figures 8 and 9. 

We obtain out-of-sample estimates of liquidity premiums when we feed the remaining 50% 

of the insured bonds into a Kalman filter that incorporates the coefficients in Columns 3 and 4. If 
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we average the liquidity premiums in monthly maturity buckets and plot the outcome against time 

to maturity, we obtain out-of-sample term structures of liquidity premiums in the period of stress 

and post stress as shown in Figure 11. Clearly, our methodology is able to generate an upward 

sloping TSLS in the stress period and a downward sloping TSLS in the subsequent post stress 

period. This result provides additional support for the shapes we generate for the insured sample 

in Figures 8 and 9. Clearly, our out-of-sample testing results are reassuring. 

Columns 5 and 6 replicate the analysis in Columns 3 and 4, but randomly including a 

fraction ™ = 75% of the insured bonds. This additional percentage increases the number of bonds 

to 228 in the crisis period and to 390 in the post crisis period. The most important right-hand side 

variables in our analysis, AMIHUD and TTM, remain intact in these two Columns, compared to 

the results in Columns 1 to 4. We filter the liquidity premiums for the remaining 25% of the insured 

sample when we feed the out-of-sample data to a Kalman filter with parameters given in Columns 

5 and 6. If we average the liquidity premiums in monthly maturity buckets and plot the outcome 

against time to maturity, we obtain out-of-sample term structures of liquidity premiums in the 

period of stress and post stress that confirm our predictions in Figures 8 and 9. This result is 

depicted in Figure 12.  

Next, we provide an alternative approach for decomposing the credit spreads of our high 

grade bank bonds into their liquidity and default premiums. More specifically, we project the credit 

spreads on a variable that proxies for the liquidity risk and on variables that proxy for default risk. 

This method is analogous to the one presented in Dick-Nielsen, Feldhütter and Lando (2012). We 

estimate the OLS coefficients of the following regression for our periods of crisis and post crisis: 

J0,Y = vj + vQ ∙ (rs)0,Y 	+ ´0,Y ∙ w0,Y + £0Y. 
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In the expressions above, 5 and & are indices for the bond and for the day. J0,Y is the corporate 

spread, (rs)0,Y is the AMIHUD liquidity measure, and w0,Y is a vector of controls that includes the 

same variables as in our KF/EM methodology: firm leverage, firm profitability, coupon amount, 

VIX, U.S. Treasury slope, time to maturity, age, liquidity volatility, and market liquidity. Then, 

for each bond and day, we define the “liquidity score” as the product vQ ∙ (rs)0,Y, the component 

of the credit spread along the liquidity risk axis. This is as done in Dick-Nielsen, Feldhütter, and 

Lando (2012). 

Columns (1) and (2) in Table 5 below summarize our coefficient estimations for the periods 

of crisis and post crisis. Our results closely parallel those from our insured bonds in Table 3 and 

those from our KF/EM dual estimation in Table 4. For example, vQ is positive and statistically 

significant at the 1% in the crisis and post crisis periods. This confirms that the AMIHUD is an 

important determinant of the credit spreads. Yet, the magnitude of vQ is much greater in the stress 

period (21.7 basis points) relative to the post stress period (5.2 basis points) indicating that 

illiquidity matters more during times of economic stress.  

We also report in Columns (1) and (2) that the coefficient of TTM achieves a value of 50.1 

basis points in the crisis period and a value of -20.7 basis points in the post crisis period. Both 

coefficients are statistically significant at the 1% level. These results suggest that the liquidity 

premiums increase with maturity during our stress period, but that they decrease with maturity in 

the post stress period. These regression estimates confirm our prior findings with a sample of 

extended maturity high grade bank bonds. 

We document the TSLS obtained from this approach by averaging the “liquidity scores” in 

monthly maturity buckets and by plotting the outcome against the time to maturity. The resulting 

plots are presented in Figure 13. We find that our linear projection methodology is able to generate 
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an upward sloping TSLS in the stress period (Panel A) and a downward sloping TSLS in the 

subsequent post stress period (Panel B). This result is consistent with the shapes of the TSLS 

generated by our KF/EM dual estimation in Figures 10, 11, and 12. 

6. Conclusion   

DGP (2005, 2007) based models of liquidity generate shapes of TSLS that vary according 

to the magnitude of parameters assigned to investor search intensity, investor holding cost, the 

hazard rate of financial shocks and the likelihood of investors being financially constrained. 

Parameter values meant to characterize stressful periods provide a positively sloped TSLS.  DGP 

parameter magnitudes, which describe a post stress period, create a negatively sloped term 

structure of liquidity spreads. In this paper, with a special set of default free bonds, we used asset 

conversion cost parameters to inform the selection of the explanatory variables for our empirical 

analysis. The magnitude of our regressors in each period, as well as their relative impact upon ST 

and LT liquidity premiums, created term structures that support our research hypothesis: The term 

structure of liquidity premiums was upward sloping in the financial stress period of 2008 and 

downward sloping in the subsequent post stress scenario. Importantly, these results demonstrate 

that the TSLS can be used to inform lenders which segment of the term structure provides the 

largest liquidity premiums in alternative economic scenarios. At the same time, for different 

financial epochs, the TSLS can apprise those who issue debt of the liquidity spreads associated 

with different times to maturity.  
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Chapter 2: Nonlinear Structural Estimation of Corporate 

Bond Liquidity 
 

 

1. Introduction 

A number of research papers have shown that bond liquidity is an important factor that 

helps explain bond yield spreads and bond returns. Chen, Lesmond, and Wei (2007) use a large 

sample of U.S. corporate bonds of different investment quality and find that declines in liquidity 

measures lead higher yield spreads. Also, Lin, Wang, and Wu (2011) find that return on bonds 

with high sensitivities to aggregate liquidity exceeds that for bonds with low sensitivities to 

aggregate liquidity and conclude that liquidity risk is an important determinant of expected 

corporate bond returns. Several papers establish a relationship between bond liquidity and the 

business cycle. For example, liquidity premiums are a particularly large component of corporate 

bond yield spreads in times of financial crisis as documented by, among others, Dick-Nielsen, 

Fedhütter, and Lando (2012), and Friewald, Jankowitsch, and Subrahmanyam (2012).        

Several studies attempt to isolate the bond premiums due to illiquidity by subtracting the 

yields of bonds that differ only on their liquidity dimension. For example, Amihud and Mendelson 

(1991) analyzed the liquidity of  U.S. Treasury notes versus that of Treasury bills of equal maturity. 

Another set of studies assumes that if a bond’s default risk is insignificant, then its spread relative 

to the risk-free rate may only be attributed to its degree of illiquidity. For example, Longstaff 

(2004) examined the spreads of Refcorp U.S. agency bonds which were backed by U.S. Treasuries 

and thus were free of default risk. Black, Stock, and Yadav (2016) use the spreads of a sample of 

default-free corporate bonds issued under the umbrella of the Debt Guarantee Program to analyze 

corporate bond liquidity.  
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Separately, many papers have attempted to estimate liquidity spreads from corporate bond 

trading data. Dick-Nielsen, Feldhütter, and Lando (2012) use a pooled version of several liquidity 

measures to linearly estimate corporate bond liquidity premia. Friewald, Jankowitsch, and 

Subrahmanyam (2012) use the Amihud (2002) measure, price dispersion, and the Roll (1984) 

measure to estimate the impact of liquidity measures on yield spreads.22  

Although the above papers concerning corporate bond liquidity provide significant insights 

into liquidity premia, it is also important to note that liquidity and default interact in a nontrivial 

way. One group of theoretical studies in finance attempts to model how complex interactions 

between the default and the liquidity components may determine a bond’s yield. For example, He 

and Xiong (2012) develop a model where a decline in aggregate liquidity evokes an increase in 

both liquidity yield premia and default yield premia.23 These authors call this the “feedback effect”. 

He and Milbradt (2014) and Chen, Cui, He, and Milbradt (2018) model the intricate relationship 

between endogenous liquidity and default for corporate bonds in terms of potential rollover losses 

for equity holders.24 

Even though there has been a large number of publications concerning corporate bond 

liquidity in recent years, there has been very little analysis of the fundamental shapes of the term 

 
22 Even the determination of the best measures for bond liquidity is a subject of considerable debate 

in the finance literature. For example, Schestag, Schuster, and Uhrig-Homburg (2016) conduct a 

thorough analysis of how various corporate bond liquidity measures compare to each other. 

Reichenbacher and Schuster (2019) develop revised liquidity measures to eliminate idiosyncratic 

dependence on trade size and find that these new measures explain a large part of yield spread 

variations. 
23 Simply put, a decline in aggregate liquidity causes an increase in required yield that makes debt 

more expensive and increases the likelihood the firm will cross a default threshold; of course, bond 

holders will demand an enhanced yield for disadvantageous changes in both liquidity and default 

risk. 
24 Bongaerts, de Jong, and Driessen (2017) jointly analyze the effects of bond specific liquidity, 

bond market liquidity, and equity market liquidity, where their focus is, in contrast to ours, upon 

expected returns and do not address term structures of liquidity premia. 
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structure of liquidity premiums. Clearly, the difficulties posed by segregating the liquidity 

premiums from other components from a bond’s yield have impeded investigating the relationship 

between liquidity spreads and time to maturity.   One notable exception is the work of Dick-

Nielsen, Feldhütter, and Lando (2012), who present averages of the magnitude of the liquidity 

spread for 0-2y, 2-5y, and 5-30y maturity buckets. Their summary statistics hint at a positively 

sloped term structure between January 2005 and June 2009, while the theory suggested by Amihud 

and Mendelson (1991), Ericsson and Renault (2006) and Feldhütter (2012) prescribes a negative 

slope over the same period. They do not, for example, analyze how the term structure may depend 

upon the degree of stress in the financial system.  Relatedly, there is very little analysis of how the 

liquidity term structure varies with credit rating.  That is, for example, how does the term structure 

of liquidity premia of, say, a AA bond compare to that of a B bond? 

The purpose of this research is to extract the liquidity premiums of corporate bonds of 

different credit rating in alternative economic scenarios and to document the implicit relationship 

between liquidity premiums and time to maturity. To guide the extraction of these premiums, we 

create an enhanced version of Leland and Toft’s (1996) classic debt valuation equation.25 Our 

model assumes the value of the firm follows a stochastic differential equation dependent upon such 

considerations as the expected return on the firm, the volatility of the individual firm value, and 

allows for bankruptcy of the firm before the bond matures.26 Importantly, we have the liquidity 

premium ́ Y enter the evolution of value equation as a component of the price of risk. The premium 

compensates the investor for holding a bond that is less than perfectly liquid.  

 
25 This model is also in the spirit of He and Xiong (2012). 
26 Merton (1974) is an alternative classic model that has been criticized because default occurs 

only at maturity. However, we note that Feldhütter and Schaefer (2018) find that both Black and 

Cox (1976) and Merton-type models perform quite well when using an improved, long term history 

of default rates to test its accuracy. 
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Documenting the behavior of the liquidity premium in the context of an equilibrium debt 

pricing equation occasions formidable econometric challenges. Unscented transformations (UT) 

are used to accommodate the nearly two dozen nonlinear appearances of liquidity premiums in the 

determination of a bond’s yield.27 The transformed variates are then substituted into a Kalman 

filter to confront the problem of both documenting the state variable, extracting ´Y, and then, 

subsequently, estimating the model’s parameters. This iterative two step procedure is provided by 

the Expectation/Maximization algorithm (EM). 

 Using corporate bond transaction data from Enhanced TRACE between January 2004 and 

November 2019, we find that the term structures of liquidity premiums were upward sloping for 

all credit ratings during the pre-crisis, crisis, and post-crisis periods.28 In addition, the structures 

were much steeper during the financial crisis and steeper for lower quality bonds across all three 

epochs. We also empirically establish that the magnitude of the liquidity premiums more than 

 
27 Unlike many empirical studies that assume a linear impact of liquidity premiums upon the 

liquidity spreads, our analysis accommodates the nonlinearity that is commonly found in  

theoretical term structure models such as the ones presented by Ericsson and Renault (2006) and 

by Feldhütter (2012). 
28 Studying the term structure of liquidity premiums during the most recent pre-crisis, crisis, and 

post-crisis periods is sensible given the stark regulatory and structural contrast among those three 

epochs. For example, Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) find that 

dealer capital commitment and the average bond trade size decreased since the financial crisis as  

corporate bond markets move from bank-affiliated dealer capital to nonbank dealers. Dick-Nielsen 

and Rossi (2019) observe a large reduction in dealer inventories of corporate bonds and find the 

related cost of trade immediacy has increased since 2008. Adrian, Boyarchenko and Shachar 

(2017) find that  institutions that face more regulations after the crisis reduce their trading volume 

and are less able to intermediate customer trades. In contrast, Trebbi and Xioa (2017) do not find 

a negative impact of the recent post-crisis financial regulation on corporate bond liquidity. Wang 

and Zhong (2019) develop theory to explain interesting aspects of corporate bond market trading. 

For example, they discuss why there was increased difficulty in executing large trades after the 

2008 crisis. Cai,  Han, Li, and Li (2019) find that the price impact of herding in corporate  bond 

trading is highly asymmetric and that sell herding is destabilizing and particularly strong for 

speculative-grade illiquid bonds during the financial crisis. The severe differences in bond trading 

behavior during the pre-crisis, crisis, and post-crisis period make studying liquidity premiums in 

each epoch individually, a necessity.  
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doubled during the recent financial crisis relative to the pre-crisis period. Furthermore, these 

liquidity premiums do not retreat to their pre-crisis level after the financial crisis.  

The rest of the paper is structured as follows. In section 2 we provide our model. 

Subsequently, in section 3 we detail our methodological approach. Section 4 describes the 

databases we use and details empirical proxies. In section 5 we document our empirical results. 

Finally, section 6 presents our conclusions. 

2. Theory 

We presume a representative firm has productive assets whose unleveraged value !(J) 

follows a continuous diffusion process with a constant proportional volatility ß: 

¢¨(S)

¨(S)
= (≠(!, J) − 1)GJ + ßGÆS    (1) 

where ≠(!, J) is the total expected rate of return on asset value !(J), 1 is the constant fraction of 

the asset’s value paid out to security holders, and GÆS is the increment of a standard brownian 

motion.29 The process continues without limit until !(J) falls to !Ø, the optimal value of the firm’s 

assets at which to declare bankruptcy. Much like Leland and Toft (1996), we characterize the 

default triggering barrier “F” as ln ±
¨(S)

¨≤
≥ when !(J) = !Ø. 

 Girsanov’s theorem allows us to change the diffusion process for !(J) from the real 

probability measure to a risk-neutral characterization so that expression (1) becomes 

G!(J) = I!(J)GJ + ß!(J)GÆS
∗    (2) 

where “I” equals �(X + ´) − 1 −
Q

m
ßmá and GÆS

∗ is the increments of brownian motion in the risk-

neutral measure. The risk-free rate is X. The liquidity premium ´ enters the evolution of value 

 
29 We will omit the time dependency for the value of the firm !(J) and for the brownian motion 

GÆS
∗ whenever it is convenient and not confusing. 
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equation as a component of the price of risk and it compensates the investor for holding a bond 

that is less than perfectly liquid.30 

We assume that the representative firm has a bond outstanding with maturity &, continuous 

coupon payments y(&) and a principal payment of N(&). Upon bankruptcy, bondholders will 

recover a fraction /(&) of !Ø. If we designate }(J, !, !Ø) as the probability density function of the 

time to the bankruptcy threshold, with $(J, !, !Ø) as its cumulative distribution, then the 

discounted present value of debt is: 

G(!, !Ø, &) = 	∫ tZ
(°(Y)µ∂(Y))∙S ∙ y(&) ∙ ∑1 − $(J, !, !Ø)∏	GJ

Y

j
+ tZ

(°(Y)µ∂(Y))∙Y ∙ N(&) ∙

∑1 − $(&, !, !Ø)∏ +	∫ tZ∑°
(Y)µ∂(Y)∏∙S ∙ /(&) ∙ !Ø ∙ }(J, !, !Ø)GJ

Y

j
		.     (3) 

In the expression above, the first term on the right-hand side is the present value of all the 

coupon payments, y(&), weighted by the likelihood that they are paid up to the time of maturity of 

the bond. The second term is the present value of the principal, N(&), discounted by X(&) + 	´(&) 

and weighted by the probability that the firm will not default before expiration of the debt. The 

final term on the right-hand side is the present value of the proportion of !Ø available to 

bondholders at the time of default, weighted by the likelihood of a default.  

 

 

 

 

 
30 Note that including the liquidity premium ´(&) in such a fashion is consistent with the bond 

pricing approach in Longstaff, Mithal, and Neis (2005). Weiland, Laeven, and de Jong (2017) also 

include a liquidity parameter in a fashion similar to our own. Also, note that this treatment of the 

liquidity premium corresponds to He and Xiong’s (2012) characterization. 
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Integrating (3) by parts yields:31  

G(!, !Ø, &) =
π(Y)

°(Y)µ∂(Y)
+ tZ(°(Y)µ∂(Y))Y ∙ ±N(&) −

π(Y)

°(Y)µ∂(Y)
≥ ∙ ∑1 − $(&)∏ +

±/(&) ∙ !Ø −
π(Y)

°(Y)µ∂(Y)
≥ ∙ ((&)       (4) 

where: 

$(&) = V ∫
−F − Ißm&

ß√&
º + Ω

!

!Ø
æ

Zmø

∙ V ∫
−F + Ißm&

ß√&
º (5) 

 

((&) = Ω
!

!Ø
æ

Zøµ¿

∙ V(OQ) + Ω
!

!Ø
æ

ZøZ¿

∙ V(Om) 

OQ =
−F − Æßm&

ß√&
;		Om = 	

−F + Æßm&

ß√&
 

ℎQ =
−F − Ißm&

ß√&
;		ℎm = 	

−F + Ißm&

ß√&
 

I =

(X + ´) − 1 − Ω
ßm

2
æ

ßm
; 		F = ln Ω

!

!Ø
æ ; 		Æ =

√(Ißm)m + 2(X + ´)ßm

ßm
 

  

!Ø =

±
ƒ

X + ´
≥ Ω

U

(X + ´)o
− "æ −

UD

(X + ´)o
−

≈ƒ∆

X + ´

1 + u∆ − (1 − u)"
 

(6) 

 

with  

U = 2ItZ
(°µ∂)ãV∑Iß√o∏ − 2ÆV∑Æß√o∏ −

2

ß√o
e∑Æß√o∏ +

2tZ
(°µ∂)ã

ß√o
e∑Iß√o∏ + (Æ − I) 

 
31 In Appendix F, we provide a more detailed presentation of our revised version of Leland and 

Toft’s (1996) classic model. 
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and with  

" = 	− Ω2Æ +
2

Æßmo
æV∑Æß√o∏ −

2

ß√o
e∑Æß√o∏ + (Æ − I) +

1

Æßmo
		. 

In the expression above, V(∙) denotes the cumulative distribution of the standard normal while 

e(∙) is the density function of the standard normal.32 

The value of debt given by equation (4) is subject to multiple sources of nonlinearities and 

plagued by both latent variables and unknown parameters. Despite these econometric challenges, 

embedded within the equilibrium price of a bond is an implicit relationship between the time to 

maturity “&” and the liquidity premium ´Y. Calibration, of both the parameters and the variables 

appearing in the nonlinear configuration of equation (4), will allow us to momentarily side step 

the statistical issues of estimating G(!, !Ø, &) and generate a term structure for ´Y. 

The expression for the value of debt includes nine parameters which describe firm quality, 

the financial/economic scenario at hand, and the interdependence of the two. Manipulation of the 

assigned parameters and variables will explicate the relationship between the time to maturity and 

liquidity premia in the context of the equilibrium price of a bond. To illustrate the possibilities, we 

select parameters to represent alternatively, “high” and “low” quality firms in a period of calm and 

then in a period of economic stress. For instance, the volatility of asset value ß would clearly 

increase in times of financial stress and increase more so for firms of poor quality. The risk-free 

rate X would be greater for both types of firms during times of heightened economic anxiety. Firm 

payout ratios 1 are higher for low grade bonds than for high quality securities regardless of the 

economic circumstance. Furthermore, payout ratios are larger for both low grade and high grade 

 
32 We provide our modification of Leland and Toft’s (1996) optimal default threshold !Ø in 

Appendix G. 
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bonds in times of stress relative to periods of economic calm. Default recovery ratios deteriorate 

in times of economic anxiety for both high and low quality bonds. 

If the 9 parameters included in equation (4) are chosen to characterize low and then high 

grade bonds in a period of financial calm, then the relationship between the time to maturity and 

the liquidity premium that will leave the equilibrium value of debt unchanged is depicted in Figure 

14A. If equation (4) is depicted to, alternatively, portray low quality and then high quality firms in 

an epoch of economic stress, then the term to maturity of ´Y that will leave the equilibrium price 

of a bond undisturbed is found in Figure 14B.33 While the consequence of our two sets of 

parameters are only loosely based on possible empirical results, the diagrams are an artifact of the 

implicit relationship between the time to maturity and the liquidity premium in the context of a 

widely accepted characterization of the price of debt. The figures suggest that regardless of the 

financial epoch, the term structure of ´Y is concave for both low and high grade bonds. In addition, 

there is an inverse relationship between the grade of the bond and the magnitude of the premium. 

At every time to maturity, the lower the quality of the bond, the larger the spread in each of the 

two proposed financial scenarios. For both low quality securities and for the high grade bonds 

respectively, the spread is larger at all times to maturity during a period of stress relative to a period 

of calm. 

Given these two sets of diagrams, it is clear that an “enhanced” LT debt pricing model 

provides a vehicle for investigating the term structure of liquidity spreads. Furthermore, we believe 

real world proxies for the 9 parameters included in equation (4) exist, that a latent ´Y can be 

explicated, and the fundamentally nonlinear RHS of equation (4) can be econometrically 

 
33 In Appendix H, we summarize our selection of these four sets of illustrative parameters that 

characterize high and low quality firms in a period of stress and in a period of calm. 
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accommodated, so that the following questions can be empirically answered. Are term structures 

positively or negatively sloped? Are the structures monotonic? Are the slopes of the empirical 

TSLS (term structure of liquidity spreads) concave or convex? Do the slopes vary according to 

credit rating or according to the economic epoch at hand? Does the empirical magnitude of the 

liquidity premiums depend upon the credit rating of the FIS (fixed income securities) or on the 

existing financial scenario? Does the estimated difference in the premiums, due to bond quality, 

depend upon the economic epoch at hand? 

3. Methodology 

Perhaps the greatest empirical challenge to establishing a relationship between the term to 

maturity of a fixed income security and its liquidity premium is documenting the otherwise 

unobservable ´Y. Estimating equation (4) involves yield spreads that contain both liquidity and 

default premia. In order to provide a sense of how we extracted the liquidity premium from the 

confounded yield spread, we offer the following simple illustration.   

Consider the following variables:   

yield for a bond with a given time to maturity = C,  

risk free rate for a given time to maturity = X, 

yield spread for a given time to maturity = C − X = FQ´ + Fm« + [,  

liquidity premium for a given time to maturity = ´, 

default premium for a given time to maturity = « 

and, measurement error for a given time to maturity = [. 

For this example, the premiums have means of zero and we assume that FQ, Fm, ƒ(´, «), ß∂
m,	 

and ß»
m are known parameters. The spread, of course, is only observable in aggregate (FQ´ + Fm« +

[ ). In order to generate an estimate of “´”, the liquidity premium, we minimize 

è[´ − …(FQ´ + Fm« + [)]m  with respect to	…. 

Taking the derivative, setting the result equal to zero, and, finally, distributing the 

expectation operator yields: 
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… =
FQß∂

m + Fmƒ(´, «)

FQ
mß∂

m + Fm
mß

»
m + ß 

m + 2FQFmƒ(´, «)
				. 

Thus, our best estimator of ´ given that we can observe only the aggregate yield spread 

(C − X = 	FQ´ + Fm« + [)	is: 

è	(´|(C − X)) = §
FQß∂

m + Fmƒ(´, «)

FQ
mß∂

m + Fm
mß

»
m + ß 

m + 2FQFmƒ(´, «)
• (C − X). 

Our decomposition, intuitively, reveals that the greater ß∂
m , then the larger the proportion 

of ¶	attributed to è(´|(C − X)	) while increases in ß»
m and ß 

m reduce that proportion.  The static 

specification of the ´ and «, above, is too simplistic to be useful per se. In addition, signal 

extraction in our empirical analysis is not a single stage procedure. Decomposition of (C − X) is 

nearly continuous in each of our epochs, with current estimates of the premiums being updated 

with new signals constantly; for example, there are 193,970 observations in the post stress period 

alone. 

The Kalman filter, detailed in Appendix I, initially seems like it is an ideal vehicle for our 

empirical aspirations. The transition equations of the Kalman clearly admit to the premiums being 

characterized as autoregressive.34  In addition, the Kalman gain ÃY, is capable of performing the 

necessary decomposition analysis (detailed above) if M is appropriately specified.  In fact, ÃY 

collapses to … if the assumptions associated with our simple example are fully employed.   

Transition equation: 

 
34 Preliminary statistical testing suggests the sufficiency of this parsimonious specification of the 

lag structure. Prior studies of corporate bond liquidity measures, such as Lin, Wang, Wu (2011), 

have modeled liquidity measures such as the Amihud and Pastor-Stambough measures using a first 

order autoregressive process. While liquidity measures and liquidity premiums are not equivalent, 

the work of Lin, Wang, Wu (2011) suggests that liquidity measures in general may be expressed 

as an AR(1) process. 
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Our transition equation has two latent variables, the liquidity premium ´0,S and the default 

premium «0,S, and is characterized by: 

Transition equation:     ∆0,S = u0 + $0 ∙ ∆0,SZQ + Õ0,S	. 

The variate ∆′0,S  is the vector [´0,S	,			«0,S], where  ´0,S	and «0,S are as previously defined.  In 

the transition equation, u0 = [u0,Q u0,m] is a vector containing intercepts for each transition 

equation and $0 is a conformable matrix of autoregressive coefficients. The error term in the 

transition equation is a vector Õ0,S = [ÕQ,0,S Õm,0,S], where each component has a mean of zero 

and standard deviation ß?, for @ = 1, 2. We estimate the parameters u0, $0, ßQ, ßm	 individually for 

each bond in the pre-crisis, crisis, and post-crisis periods. 

Measurement equations: 

We utilize two measurement equations. The first one is inspired by the work of He and 

Milbradt (2014) and Chen, Cui, He, and Milbradt (2018) and explicitly includes a nonlinear 

feedback loop premium. Our second measurement equation is an artifact of equating the RHS of 

the value of riskless debt that is not traded, to the RHS of G(!, !Ø, &) which is subject to transaction 

costs and the possibility of default.   

The interaction between liquidity and default premiums has gained some traction in the 

finance literature.35 According to this research, the yield spreads of corporate bonds may be 

considered the sum of a liquidity premium, a default premium, a liquidity-driven-default portion, 

and a default driven liquidity portion.36 Thus, to properly extract the liquidity premium signal, we 

must acknowledge an interaction between liquidity and default premiums. 

 
35 However, the contributions in this area have been almost entirely theoretical, where some of the 

most prominent papers are He and Xiong (2012), He and Milbradt (2014), and Chen, Cui, He, and 

Milbradt (2018). We are not aware of any academic research that empirically documents the 

importance of the feedback loop in the determination of bond credit spreads. 
36 The last two terms are collectively known as the feedback loop between liquidity and default. 
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Our first measurement equation is:  

∫
™0,S

Œœ 	− 1

2–
º = uØ— + v∂ 	 ∙ ∫

´0,S
Œ“ 	− 1

2∂
º + v» ∙ ∫

«0,S
Œ” 	− 1

2»
º + v∂,» ∫

´0,S
Œ“ 	− 1

2∂
º ∫

«0,S
Œ” 	− 1

2»
º

+ £0,S 

In the equation above, 5 and J are indices for the individual bond and time. In addition, ™0,S 

is the credit spread,  ´0,S is the liquidity premium, and «0,S is the default premium. The terms v∂ 

and v»  measure the impact of both the liquidity premium ´0,S and the default premium «0,S in the 

formation of the credit spread ™0,S. The term v∂,»  records the impact of the feedback loop in 

determining ™0,S. 

Of course, the expression above corresponds to the Box/Cox transformation.  The strength 

of this non-linear specification is that estimated values of 2∂, 2»  and 2– can provide different 

functional forms for the variates and for the induced relationship between liquidity and default 

premiums.  The highly contrived transformations of the variates  

∂Ç,‘
’“	ZQ

Œ“
 , 
»Ç,‘

’”	ZQ

Œ”
, and 

–Ç,‘
’œ	ZQ

Œœ
 

allow special cases for 20 (e.g. 20 = 0 or 1 for 5 = ´, «, ™)  to still make arithmetic and economic 

sense. Additionally, the expression above acknowledges that liquidity, default, and feedback loop 

premiums are additive as posited in He and Milbradt (2014), and Chen, Cui, He, and Milbradt 

(2018) and allows for a signal decomposition into these three fundamental sources of premiums. 

A fixed income security’s yield “C” is computed as the return to a bond conditional on it 

being held to maturity & without default:37 

 
37 This is a well-known textbook relationship. 
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G =
π

÷
(1 − tZ÷Y) + NtZ÷Y.    (7) 

In particular, given the bond price, the coupon payment, the principal, and the time to 

maturity, then the yield "C" can be calculated. Meanwhile, recall our debt valuation equation, 

G(!, !Ø, &) =
π

°µ∂ÿ
+ t

(°µ∂ÿ)Y ±N −
π

°µ∂ÿ
≥ ∑1 − $(&)∏ + ±/!Ø −

π

°µ∂ÿ
≥ ((&),     (8) 

an “informed” solution for “C” could be obtained if the RHS of (8) were equated to the RHS of 

(7) as in the expression below 

y

X + ´Y
+ t

(°µ∂ÿ)Y ΩN −
y

X + ´Y
æ ∑1 − $(&)∏ + Ω/!Ø −

y

X + ´Y
æ ((&) =

y

C
(1 − tZ÷Y) + NtZ÷Y.	(9) 

Since the LHS of (9) includes considerations of both trading costs and bankruptcy costs, the 

calculated C would include both a liquidity and a default premium. So the determination of the 

yield provides our model with another measurement equation and a second source of information 

useful in extracting the liquidity premium from the LHS of equation (9). In fact, ´Y explicitly 

appears in a nonlinear fashion in the debt valuation equation 4 times, there are another 6 nonlinear 

entries of ´Y included in $(&), 10 nonlinear appearances of liquidity premiums in ((&), and 4 

nonlinear entries of ´Y in !Ø.38 Collectively, these terms account for 20 nonlinear appearances of 

the liquidity premium on the RHS of (8). We employ the “unscented transformation” algorithm 

(UT) to address the complications posed by these nearly two dozen sources of nonlinearities in 

just one measurement equation and another four sources of nonlinearities in the first measurement 

equation. In Appendix J, we consider a simple debt valuation problem in order to provide the 

reader some insight to the UT algorithm. In addition, we detail and simulate the advantage of UT 

over linearization as an approach to characterize nonlinear functions. Finally, in Appendix K we 

 
38 $(&) and ((&) are cumulative distributions and !Ø is the endogenous bankruptcy threshold, all 

three of these expressions are included in the determination of G(!, !Ø, &). 
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provide a summary of just how the UT algorithm was employed in our empirical investigation of 

the term structure of liquidity premiums. 

Once we have transformed our transition and our measurement equations by the UT 

algorithm, we are still confronted with a dual estimation problem. Both state variables are 

unobservable and the parameters which characterize the interaction between the state variables 

need to be identified. We use expectation maximization (EM) in the context of our unscented 

Kalman filter as our approach to this dual estimation problem. Introduced by Dempster, Laird, and 

Rubin (1977), the EM algorithm has proven to be a useful method of analysis in econometric and 

statistical models.39 Heuristically, this dual estimation method works by alternating between using 

the model to estimate the state variables, and then using the state variables to estimate the model.  

In particular, we begin with preliminary values of the vector of unknown parameters in the 

measurement and transition equations to generate an initial set of estimates of our respective 

premiums over the sample periods.  With a collection of the expected value of the state variables 

over the entire epoch, a likelihood function is specified and we derive a set of maximum likelihood 

estimates of the parameters.  This process iterates back and forth, minimizing the variance of the 

estimation error and then the variance of the prediction error until a weighted linear combination 

of the estimated variances converges.40  

4. Data Description 

We use sum of the total book value of short (DLCQ) and long-term debt (DLTTQ) to proxy 

for the total principal D. We obtain these two items with quarterly frequency from the 

COMPUSTAT files. We utilize total debt instead of the face value of the individual bonds because 

 
39 For some general background, the reader is referred to McLachlan (1996), Harvey (1991), and 

Hamilton (1995).   
40 Details of the EM algorithm that we programmed will be provided upon request.   
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theoretical models assume that firms only issue debt in the form of bonds. Of course, failing to 

account for all debt outstanding would lead to a lower leverage and lower yields. Following a 

similar procedure as Eom, Helwege, and Huang (2004) and Feldhütter and Schaefer (2018), we 

then calculate the value of the firm ! as the sum of D and the equity value of the firm, which is the 

number of shares outstanding (SHROUT) times the price of the firm’s stock (PRC). Stock price 

data is obtained with a daily frequency from the CRSP records. 

The variable 1 captures the total payouts of the firm in the form of interest payments to 

debt holders, dividends to equity holders, and net stock repurchases. The data is obtained from the 

quarterly COMPUSTAT files as follows: interest payments are the previous fourth quarter’s total 

interests paid (INTPNY), dividends to equity are the total annual dividends (DVY), and net stock 

repurchases are the previous year’s net purchase or common and preferred stock (PRSTKCY).  

The payout ratio is then computed as the ratio of total payout divided by total assets. 

The coupon y is obtained explicitly from Mergent FISD while the time to maturity is 

calculated daily as the number of days remaining till the expiry of the bond (maturity date minus 

current date). The daily yield of the bond is also directly obtained from TRACE and the spread J 

is defined as the daily yield minus the risk-free rate of a maturity matching U.S. Treasury bond, 

interpolated as explained above. 

The volatility of the firm’s assets is calculated in a similar fashion as in Schaefer and 

Strebulaev (2008) and Feldhütter and Schaefer (2018). First, we compute the volatility of equity, 

ß†Ÿ⁄0Y÷, as standard deviation of daily returns (RET from CRSP) using a rolling 1-year period and 

we multiply the result by √255 to annualize the standard deviation. Since the value of the firm is 

composed of both debt and equity, the volatility of assets is obtained from aggregating these two 

components as follows: 
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ßm = (1 − ]t[) ∙ ß†Ÿ⁄0Y÷
m

+ ]t[ ∙ ß¢†RY
m

+ 2 ∙ ]t[ ∙ (1 − ]t[) ∙ ß†Ÿ⁄0Y÷,¢†RY 

where ß†Ÿ⁄0Y÷
m  and ß¢†RY

m  are the variance of equity and debt, respectively, and ß†Ÿ⁄0Y÷,¢†RY 

is their covariance. Schaefer and Strebulaev (2008) find that the volatility of assets can be 

approximated by assuming that the volatility of debt is zero and then multiplying the result by a 

correction factor. Thus, we estimate the total volatility of assets as ßm = 	 (1	 − 	]t[)ß†Ÿ⁄0Y÷
m  and 

multiply this by 1 if ]t[ < 0.25, 1.05 if 0.25 < ]t[ < 0.35	, 1.10 if 0.35 < ]t[ < 0.45, 1.20 if 

0.45 < ]t[ < 0.55, 1.40 if 0.55 < ]t[ < 0.75, and 1.80 if ]t[ > 0.75. 

We proxy for the risk-free rate by using the daily yield of a U.S. Treasury bond with the 

same maturity as the corporate bond. The data on the U.S. Treasury bonds is from the H-15 website 

maintained by Federal Reserve of St. Louis. For virtually all bonds, there are no available U.S. 

Treasury with the exact same time to expiry as our corporate bonds. Thus, we calculate the risk-

free rate for each bond on each trading day as the interpolated yield using the Treasury term 

structure prevailing on that day. A statistical summary of all our variables can be found in Table 

7. 

5. Results  

Pre-crisis Period 

We consolidate bonds into three major credit rating categories: high for bonds with S&P 

credit ratings AAA and AA, medium for bonds with credit ratings A and BBB, and low for 

speculative grade bonds. Estimates are aggregated in this fashion because sometimes there are very 

few observations per credit rating where this is most common for the AAA bonds but also occurs 

for other categories. One may consider levels of liquidity premia and the shapes of the TSLP during 

the pre-crisis period as our “baseline” results because this period was less affected by financial 

stress, the regulations that followed the financial stress, and by the Volcker rule that came to full 
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effect on June 2015. This baseline period is free of dramatic policy initiatives by the Federal 

Reserve. 

Table 8 includes average liquidity premia from our unscented Kalman filter estimation for 

each credit rating category during the pre-crisis period in the first column . The average level of 

liquidity premiums (LP) increases with lower credit quality. For the highest grade bonds the 

average liquidity premium is 0.425% during the pre-crisis period. For medium quality bonds, the 

average liquidity premium is 0.534% while it is 0.678% for the speculative grade bonds. The next 

column reports liquidity premia for the crisis period where, as expected, the increase from the pre-

crisis column is quite dramatic for all credit qualities. For example, the average high grade liquidity 

premium increases from 0.425% to 1.009%. The last column represents average post-crisis 

liquidity premia which are much lower than the crisis but still greater than the pre-crisis situation. 

Given these averages of term premia across all maturities for different credit ratings in the 

three periods, we next illustrate our estimated families of term structures for ‘high’ quality, 

‘medium’ quality, and ‘low’ quality bonds during the pre-crisis period in Figure 15. The general 

pattern across all credit ratings in this period is that the relationship between liquidity premiums 

and maturity is positive where the curves are upward sloping.  

For high grade bonds, the model implies that shortest maturity bonds have a liquidity 

premium of about 0.38% while the longest term bonds have a liquidity premium of about 0.62%.  

For medium term bonds, the impact of increasing maturity tends to be stronger. That is, although 

the level of liquidity premium for the shortest maturity tends to be lower than for high grade at 

about 0.18%, the liquidity premium rises with maturity to be approximately the same for the 

longest maturity. For low grade bonds, the liquidity premium begins at approximately 0.20%, rises 

slowly until about 10 years maturity, and then rises very strongly to be over 1.0% at 20 years to 
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maturity. In summary, the term structure tends to be concave for the highest quality bonds, 

approximately linear for intermediate bonds, and strongly convex for lower quality. The difference 

between the shortest and longest maturity clearly increases with every reduction in the credit rating 

where the difference due to maturity is clearly least for the highest credit quality and greatest for 

the lowest credit quality.  

Separate from the above slopes of TSLP’s of differing credit quality, we note that the 

general level of TSLP is higher for lower credit grades. Greater liquidity premia for lower grades 

is well documented in Dick-Nielsen, Feldhütter and Lando (2012) and, also, Friewald, Jankowitsch 

and Subrahmanyam (2012). More recently Chen, Cui, He, and Milbradt (2018) develop 

simulations where liquidity premia for lower grade bonds often tend to be higher for lower grade 

bonds. In summary, the results in Figure 15 strongly suggest that liquidity premia are 

unequivocally greater for longer maturity bonds, irrespective of the credit quality of the issue.  

We provide statistical support for our representations of the TSLP in Table 9. We regress 

the liquidity premiums on time to maturity as prescribed by the equation: 

rD = uj +	vQ ∙ oos +	vm ∙ oos ∙ 1{ããf‹›} + vx ∙ 1{ããf‹›}. 

 In the equation above, rD is the liquidity premium and oos is the time remaining until maturity. 

The expression 1{ããf‹›} is an indicator function that takes the value 1 when the oos for that 

observation is greater than a predetermined value “fi” and takes the value zero when oos is less 

than fi. For each rating class, we document regressions where fi takes the value of the median oos 

(0.5) in each period.  

In this analysis, we consider a bond short term when oos < fi. For short term bonds, the 

expression vm ∙ oos ∙ 1{ããf‹›} in the equation above is zero because oos < fi. Thus, vQ is our 
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estimate for the slope of the short- term bonds. Next, we consider a bond to be long term when 

oos > fi. For long-term bond, the expression vQ ∙ oos +	vm ∙ oos ∙ 1{ããf‹›} ,of course, 

becomes (vQ +	vm) ∙ oos. Thus, the slope for long-term bonds is given by the sum of the 

coefficients vQ and vm.  

In Columns 1, 2, and 3 of Table 9, we document our findings in the pre-crisis period for 

the high, medium, and low credit classes, where all the coefficients are statistically significant at 

1%. In Column 1, we report the slope of the term structure of the short-term high quality bonds 

(vQ) as about 0.023 % per year, while the slope for the long-term bonds (vQ +	vm) is 0.014 % per 

year (0.023 – 0.009). In Column 2, we show that for the medium quality bonds the slope for the 

short-term (vQ) is 0.027 % per year which is unchanged for the long- term bonds because vm is 

estimated to be zero. Finally, in Column 3, we document that the slope for the short-term low grade 

(vQ) is 0.026 % per year while the slope for the long-term is greater at 0.032%  per year (0.026 

+0.006). In all three specifications for the pre-stress period, the slopes vQ and vQ +	vm are positive 

for both short and long-term bonds. However, the slope coefficient is statistically larger for the 

short- term relative to long term for the high grade bonds. This supports the concave TSLP that we 

find for this credit rating. In contrast, the slope of the long-term low grade bonds is greater than 

the slope of the short-term low grade bonds due to a positive vm coefficient of 0.006.  This last 

result suggests a convex shape consistent with the shape depicted in Figure 15. 

Crisis Period 

The period of crisis starts in April 2007 and ends in June 2009. This is as defined by the 

NBER and as done in Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018). We again 

refer to Table 8 where, as mentioned above, the crisis period shows a very dramatic increase in 

average liquidity premia for all credit qualities as compared to the pre-crisis period.  Figure 16 
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displays the term structure of liquidity premia for the crisis period of different credit qualities 

where the term structure is concave and positive for all. The dramatically high levels of liquidity 

premiums in the crisis period are consistent with Dick-Nielsen, Feldhütter, and Lando (2012) and 

Friewald, Jankowitsch and Subrahmanyam (2012). We note that the term structure is mildly 

upward sloping for high grade bonds but much more steeply sloped for medium grade bonds. The 

slope for low grade bonds is greater than for high grade but less than for medium grade. Recent 

work by Goldstein and Hotchkiss (2019) shows that dealers have a higher propensity to offset 

trades the same day for speculative grade bonds which leads to a higher turnover where this might 

explain why the liquidity premiums are slightly lower for the bonds of the lowest quality. 

As done for the pre-crisis period, we support our analysis of the TSLP during a period of 

crisis with the same regression specification. In Columns 1, 2, and 3 of Table 10, we document 

our findings in the period of crisis for the high, medium, and low credit classes, where all the 

coefficients are statistically significant at the 1%. In Column 1, we report the slope of the term 

structure of the short-term high quality bonds (vQ) as about 0.003 % per year, while the slope for 

the long-term bonds (vQ +	vm) is about 0.002 % per year (0.003 -0.001). In Column 2, we show 

that for the medium quality bonds the slopes for the short-term (vQ) and long-term bonds (vQ +

	vm) are 0.089 % per year and 0.066 % per year, respectively. Finally, in Column 3, we document 

that the slope for the short-term speculative grade (vQ) is 0.042 % per year while the slope for the 

long-term is 0.030% per year. In all three specifications for the crisis period, the slope coefficient 

is positive for both short and long-term bonds. However, the coefficient is larger for the short-term 

bonds relative to the longer term bonds given the negative vm values. This suggests that larger 

increases in the liquidity premia occur for bonds that are close to maturity, but that these increases 
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decline as the maturity horizon of the bond increases. This evidence clearly supports the 

appearance of a concave term structure of liquidity premiums in the crisis period. 

For the high grade bonds, liquidity premiums are a much greater fraction of the total credit 

spread  (default plus liquidity) during a period of crisis than in any of the other epochs. For the 

short-term, high quality bonds, liquidity premia represent 33% of the total  credit spread, while for 

the long-term high quality bonds in the same economic epoch, liquidity premia constitute 48% of 

their total credit spread. These magnitudes are large when compared to  the ratio of liquidity premia 

to total credit spread for the high quality bonds in the other two (non-crisis) periods. For example, 

for the high quality bonds in the pre-crisis period, the percentage of the credit spread due to the  

liquidity premium is only 6% for the short-term bonds and  only 7% for the long-term bonds. 

During the post-crisis period, the liquidity premium is 15% of total credit spread for short-term 

bonds and 33% for the long-term bonds.  

Post-crisis Period 

The last column of Table 8 reports the average liquidity premiums during the post-crisis 

period for high, medium, and low grade corporate bonds where, again, these are estimated by the 

UKF method. For each grade, the liquidity premium is higher than the pre-crisis number but lower 

than the crisis. These results confirm that illiquidity in the bond market has not returned to its pre-

crisis levels. This evidence supports the claims in Anderson and Stulz (2017), Adrian, Fleming, 

Shachar, and Vogt (2017) and Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018). As 

before, the highest grade bonds have the lowest liquidity premium. The liquidity premium of the 

high quality bonds (0.722%) is about one fifth lower than the liquidity premium of the medium 

grade bonds (0.916%) in the post-crisis. It is curious that the liquidity premia do not decline as 

bonds move from the medium to the speculative grade ratings; that is, the liquidity premiums of 
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the low quality bonds are about 1% lower than the medium grade bonds. The difference is small 

and is consistent with Goldstein and Hotchkiss (2019) who show that dealers have a higher 

propensity to offset trades in the same day for speculative grade bonds where this leads to a higher 

turnover where this might explain why the liquidity premiums are slightly lower for the bonds of 

the lowest quality.  

Figure 17 displays the term structure of liquidity premia for the post-crisis period for 

different credit qualities where the term structure is convex and positive for all credit qualities. 

The high grade short-term bonds have a liquidity premium of about 0.45% while high grade long-

term bonds have a liquidity premium of about 1.18%. For medium grade bonds, the liquidity 

premium for the shortest maturity is about 0.28% and 1.5% for the longest. Finally, the average 

liquidity premium of the shortest maturity low grade bond is 0.60% and 1.1% for the longest. 

In Table 11 we support our depictions of the TSLP during the post-crisis period with the 

same regression specification used before. Column 1 includes the slope of the term structure of the 

short-term high quality bonds (vQ) as about 0.013 % per year, while the slope for the long-term 

bonds (vQ +	vm) is about 0.023 % per year (0.013+0.010). In Column 2, we show that for the 

medium quality bonds the slope for the short-term (vQ) is 0.041 % per year and is 0.055 %  per 

year for the long term bonds. Finally, in Column 3, we document that the slope for the short-term 

speculative grade (vQ) is 0.012 % per year while the slope for the long-term is 0.017%  per year. 

It is important to contrast  the behavior of vm in the post-crisis period to the other periods. That is  

vm is positive in post-crisis estimations for all credit qualities wherein it was typically negative for 

the earlier periods. This helps explain the convexity of the TSLP that we find for all credit ratings 

in the post-stress period. 
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 In summary, our results show how liquidity premia behave with respect to bond maturity 

where we have taken special care to utilize econometric methods that fit the nonlinear character of 

liquidity premia found by prior researchers. Our estimations show that the character of the term 

structure liquidity premia changed significantly as we progressed from pre-crisis, to crisis, to post-

crisis periods. In summary, the first two periods had positively sloped, concave term structures 

wherein the crisis period had dramatically higher liquidity premia than pre-crisis. The post-crisis 

term structure was quite different in that the positively sloped term structure of liquidity premia 

was convex instead of concave. Also, we note that  the level of liquidity premia in post-crisis was 

lower than the crisis period but higher than pre-crisis period.  

6. Conclusion 

In this paper, we obtained the term structures of corporate bond liquidity premia for fixed 

income securities of different credit ratings in alternative economic circumstances. For purposes 

of estimation, unscented transformations (UT) accommodated the nearly two dozen nonlinear 

appearances of liquidity premiums in the determination of a bond’s yield. Subsequently, a Kalman 

filter was used to extract an otherwise latent liquidity premium from the bond’s observed yield. 

We found that the term structures of liquidity premiums were upward sloping for all credit ratings 

and in all three economic epochs considered. In addition, the structures were much steeper during 

the financial crisis and steeper for lower quality bonds across all three financial scenarios. 

Empirically, we also established that the magnitude of the liquidity premiums more than doubled 

during the recent financial crisis relative to the pre-crisis period. Furthermore, the liquidity 

premiums did not retreat to their pre-crisis level after the financial crisis.  
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Chapter 3: Does Corporate Bond Illiquidity Spill Over to 

CDS Premiums? 
 

1. Introduction 

Credit default swaps (CDSs) on corporate entities are insurance type financial instruments 

whereby the buyer of the protection receives a lump sum payment from the seller in the event that 

the firm referred to in the contract defaults on its debt obligations. Since the insurance payment 

only occurs if the bankruptcy provisions for the referenced firm are triggered, the key input in 

pricing a CDS is the likelihood that this firm defaults within a certain time horizon. Independently, 

such firms might also raise capital in the bond market to finance their projects. It is known that the 

yields on these bonds are subject to bond market illiquidity considerations which can be so severe, 

that they could move the firm closer to a bankruptcy event. Clearly, bond market illiquidity 

frictions could be priced in CDS spreads. 

The purpose of this research is to document the relationship between bond market 

liquidity premiums and the price of credit default swaps. To guide the intuition and to motivate my 

empirical investigation, I use an enhanced version of Leland and Toft’s (1996) (LT) classical debt 

valuation equation. The model assumes that the firm’s probability of default depends upon such 

considerations as the expected return of the firm’s assets, the volatility of the value of individual 

firm’s assets, and fraction of the value of the firm’s assets that are paid out over time. Importantly, 

the liquidity premium “´” enters the evolution of value equation as a component of the price of 

risk. The premium compensates the investor for holding a bond that is less than perfectly liquid. 

The fair market price of a credit default swap is obtained by setting the present value of the 

premium payments, weighted by the probability of default, equal to the discounted expected value 

of the protection payment. 
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Using daily single-name CDS prices from the CMA database between January 2007 and 

November 2019 and corporate bond transaction data from Enhanced TRACE, I find results that 

support the predictions of my enhanced CDS pricing model. My first finding is that, after 

controlling for credit risk determinants, increases in the illiquidity measures in corporate bonds 

lead to decreases in the Bharath and Shumway (2008) distance to default measure.41 The decreases, 

in the distance to default, are statistically significant. In line with the prior research in credit 

spreads, my results show that the magnitude of the impact of the illiquidity measures on the 

distance to default is between 1/10 and 1/3 of the magnitude of variables commonly included in 

structural models of default. Finding that exogenous shocks to bond illiquidity lead to reductions 

in the distance to default is an interesting result in its own right since it constitutes a first empirical 

test that bond market illiquidity can lead to early default, as theoretically hypothesized by He and 

Xiong (2012), He and Milbradt (2014), and Chen, Cui, He and Milbradt (2018). 

My second finding is that, after controlling for the credit risk determinants suggested by 

the model and by time-to-maturity, the CDS premiums increase with increases in the illiquidity of 

the corporate bond market. This increase in the premiums is both statistically significant and 

economically meaningful even when controlling for the bid ask spread of the CDS contract. In a 

subsample of single-name 5-year CDS premiums, a one standard deviation increase in the 

illiquidity measures of the bond market leads to between a 1 bp and a 7 bp increase in the CDS 

spreads. Increases in bond market illiquidity, as quantified by other common measures, lead to 

similar increases in the CDS spreads for the 5-year tenor. This bond illiquidity premium is also 

present in all the other CDS tenors available in the data. All specifications seem to indicate that 

 
41 Simultaneity between the dependent and the main independent variable may bias the measure 

of the effect of debt market illiquidity on the distance to default. I address this issue by using 12 

month lags of the illiquidity measure as instruments for current illiquidity. 



 

 57 

CDS spreads reflect a sizable premium due to the illiquidity in the corporate bond market. Finally, 

subsample analyses suggest that the impact of bond market liquidity of CDS premiums is greater 

when liquidity is scarce, that is, during the financial crises and for lower quality bonds. 

Whether participants in one financial market include information pertaining to a distinct 

market is an important question that dates back to, for example, Shiller and Beltratti (1992) and 

Bekaert, Engstrom and Grenadier (2010). Both papers investigate the correlation of returns 

between stocks and bonds. Clearly, a high correlation between the returns of different assets 

suggests that investors use similar fundamental information to price them. Analogously, in the 

market microstructure literature, Hasbrouck and Seppi (2001), Huberman and Halka (2001), and 

Chordia, Roll and Subrahmanyam (2000) are the first empirical works to study how liquidity 

measures for different stocks in NYSE might be related. They conclude that liquidity measures for 

different stocks are closely linked since they are determined by similar fundamental variables. 

Their findings suggest that either participants in the market for one stock are aware of the liquidity 

considerations in the market for other stocks, or that investors are simultaneously involved in more 

than one market, leading to similar liquidity supply and demand schedules. 

Establishing the prices for corporate bonds and for credit default swaps requires similar 

information. Importantly, the yields on bonds are determined by the creditworthiness of the issuer, 

while the payment or nonpayment of the CDS contract is also dictated by the probability of default 

of the underlying entity. Thus, clearly, factors that might change the likelihood of default will 

impact the prices of both securities. There is some academic evidence which favors the 

presumption that these two markets are integrated. For example, Subrahmanyam, Tang and Wang 

(2014) find that the introduction of a CDS contract on an entity leads to an increase in the 

probability of default of the referenced firm. These authors explain that creditors are more willing 
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to lend more money to the firm once their claim is insured. This, in turn, increases the firm’s 

leverage and attracts more creditors which complicates the debt restructuring process. Thus, the 

likelihood of a default triggering event is elevated. In a theoretical contribution, Sambalaibat 

(2013) simultaneously models the markets for bonds and for credit default swaps and shows that 

the introduction of CDSs increases the liquidity of the underlying bonds. According to Sambalaibat 

(2013), the availability of a credit default swap contract attracts new investors to both markets, 

which enhances their respective liquidities. 

Relatedly, companies may raise external capital by offerings bonds. These issuances 

frequently occur in over-the-counter markets which are subject to illiquidity frictions.42 Bond 

issuing firms must offer a greater yield on their debt to compensate buyers for this heightened 

liquidity risk. Evidence of this phenomenon is presented in, for example, Goldstein, Hotchkiss and 

Pedersen (2019), who find a negative correspondence between bond liquidity and yields at 

issuance. Then, the market value of the firm’s total debt, which is the aggregated value of its 

individual outstanding bonds, will also be partly determined by the market’s liquidity frictions. 

The total value of the firm as well as the total value of equity  does not elude these implications. 

Furthermore, structural models of default, such as Merton (1974), Black and Cox (1976), Leland 

(1994), and Leland and Toft (1996), presume that the owners of the firms select a default barrier 

such that, in case this barrier is crossed, it is optimal for the equity holders to shut down operations. 

This endogenous default threshold must then embed the same illiquidity issues that affect the 

market price of the bond, the value of total debt, the value of total equity, and the value of the firm. 

This construct points to a clear link between liquidity frictions in the secondary market for bonds 

 
42 See, for example, the work in Duffie, Garleanu, and Pedersen (2005, 2007) who modeled 

illiquidity in OTC markets in terms of “search and bargaining” considerations.   
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and the firm’s probability of default. Under these conditions, financial instruments whose prices 

depend on the likelihood of bankruptcy, such as credit default swaps, might also be affected by 

illiquidity. 

In recent decades, credit default swaps have become one of the most frequently traded 

financial instruments with the purpose of transferring credit risk among counterparties. Academic 

research has recognized this trend.43 This paper sheds light on the literature studying the interaction 

between corporate bond and CDS markets (Nashikkar, Subrahmanyam and Mahanti (2011), 

Subrahmanyam, Tang and Wang (2014), Sambalaibat (2013), and Lee, Naranjo and Velioglu 

(2018)) by showing that CDS spreads reflect a premium solely attributable to liquidity frictions in 

the corporate bond market. The recent literature on this topic finds support for an illiquidity 

spillover effect from CDSs to corporate bonds. This paper describes an economic channel through 

which corporate bond illiquidity may spill over to credit default swap prices. 

The remainder of the paper is organized as follows. In section II, I formulate the model. I 

describe the data in section III. In section IV, I summarize the empirical results. In section V, I 

summarize my conclusions. 

2. Model 

We presume a representative firm has productive assets whose unleveraged value !(J) 

follows a continuous diffusion process with a constant proportional volatility ß: 

G!(J) = (≠(!, J) − 1) ⋅ !(J)GJ + ß!(J)GÆS	,						(1) 

where ≠(!, J) is the total expected rate of return on asset value !(J), 1 is the constant fraction of 

the asset’s value paid out to security holders, and GÆS is the increment of a standard brownian 

 
43 See for example the work in Lando (1998) and Longstaff, Mithal and Neis (2005). 
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motion.44 The process continues without limit until !(J) falls to !Ø, the optimal value of the firm’s 

assets at which to declare bankruptcy. Much like Leland and Toft (1996), I characterize the default 

triggering barrier “b” as ln ±
¨(S)

¨≤
≥, when !(J) = !Ø. 

Girsanov’s theorem allows us to change the diffusion process for !(J) from the real 

probability measure to a risk-neutral characterization so that expression (1) becomes: 

G!(J) = ∫(X + ´) − 1 −
1

2
	ßmº!(J)GJ + ß!(J)GzS

∗						(2), 

where X is the risk-free rate and GzS
∗ is the increment of a brownian motion in the risk-neutral 

measure. The liquidity premium “´” enters the evolution of value equation as a component of the 

price of risk and it compensates the investor for holding a bond that is less than perfectly liquid.45 

Credit default swap contracts compensate the buyers in case the referenced entity defaults 

on its obligations. The fair price for this contract may be found by setting the discounted expected 

value of the flow of premium payments “n” equal to the discounted expected value of the lump 

sum protection payment “c”. The premium payments are assumed to occur continuously until 

either the expiry of the CDS or until the default of the underlying company. Similarly, the 

protection payment will only occur if the underlying entity fails in its commitments.  

Consider the discounted expected value of the flow of premium payments n(&) 

·tZ
(°µ∂)∙S ∙ n(&) ∙ [1 − $(J, !, !Ø)]	GJ

Y

j

,							(i) 

 
44 We will omit the time dependency for the value of the firm !(&) and for the brownian motion 

GÆS whenever it is convenient and not confusing. 
45 Note that including the liquidity premium ´ in such a fashion is consistent with the bond pricing 

approach in Longstaff, Mithal and Neis (2005). Also, note that this treatment of the liquidity 

premium corresponds to He and Xiong’s (2012) characterization. 
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which will be paid at “s” with probability of 1 − $(J), where $(J) is the cumulative distribution 

function of the first passage time to default !Ø. The CDS expires at &. 

Rewriting (i) yields  

n(&) ‚· tZ
(°µ∂)∙SGJ

Y

j

−	· tZ
(°µ∂)∙S ∙ $(J)	GJ

Y

j

„ 						(ii) 

and 

·tZ
(°µ∂)∙SGJ

Y

j

=
−1

(X + ´)
	tZ

(°µ∂)∙S‰

j

Y

 

which becomes 

·tZ
(°µ∂)∙SGJ

Y

j

= Ω
1

X + ´
æ Â1 − tZ

(°µ∂)∙YÊ. 

Rewriting the second term in (ii) 

·tZ
(°µ∂)∙S ∙ $(J)	GJ

Y

j

 

and invoking integration by parts 

·d	G[

É

Ø

	= d[|Ø
É − · [	Gd

É

Ø

 

with  

d	 = $(J) 

G[ = tZ
(°µ∂)∙SGJ 

so that Gd = }(J)GJ and [ =
ZQ

(°µ∂)
tZ

(°µ∂)∙S. Consequently, ∫ tZ
(°µ∂)∙S ∙ $(J)	GJ

Y

j
 becomes  
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Á§$(J)
−1

X + ´
tZ

(°µ∂)S‰

j

Y

• +	·
1

X + ´
tZ

(°µ∂)S}(J)	GJ

Y

j

Ë 

and evaluating the limits yields 

$(&) Ω
−1

X + ´
tZ

(°µ∂)Yæ +	
1

(X + ´)
·tZ

(°µ∂)S}(J)	GJ

Y

j

. 

Gathering all three terms and the expected value of the discounted premium becomes  

n(&) Ω
1

X + ´
æ Â∑1 − tZ

(°µ∂)∙Y∏ 	+ 	$(&) ∙ tZ
(°µ∂)Y 	− ((&)Ê 

with  

((&) = 	·tZ
(°µ∂)S}(J)	GJ

Y

j

. 

 The discounted expected value of the lump sum protection payment c would be written as  

c·tZ
(°µ∂)S}(J)	GJ

Y

j

 

which, using the notation above, equals c ∙ ((&). 

Finally, equating the expected value of the discounted flow of premiums to the discounted 

expected value of the protection payment and then solving for n(&) yields  

n(&) = 	
c ⋅ ((&)

±
1

X + ´
≥ [(1 − tZ(°µ∂)∙Y) 	+ 	$(&) ∙ tZ(°µ∂)Y 	− ((&)]

	.				(iii) 

The expressions for $(&), ((&), and !Ø are provided here and derived in Appendices L and 

G. 

$(&) = V ∫
−F − Ißm&

ß√&
º + Ω

!

!Ø
æ

Zmø

⋅ V ∫
−F + Ißm&

ß√&
º 
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((&) = Ω
!

!Ø
æ

Zøµ¿

⋅ V(OQ) + Ω
!

!Ø
æ

ZøZ¿

⋅ V(Om) 

OQ =
−F − Æßm&

ß√&
;		Om = 	

−F + Æßm&

ß√&
 

ℎQ =
−F − Ißm&

ß√&
;		ℎm = 	

−F + Ißm&

ß√&
 

I =

(X + ´) − 1 − Ω
ßm

2
æ

ßm
; 		F = ln Ω

!

!Ø
æ ; 		Æ =

√(Ißm)m + 2(X + ´)ßm

ßm
 

!Ø =

±
ƒ

X + ´
≥ Ω

U

(X + ´)o
− "æ −

UD

(X + ´)o
−

≈ƒ∆

X + ´

1 + u∆ − (1 − u)"

 

with 

U = 2ItZ
(°µ∂)ãV∑Iß√o∏ − 2ÆV∑Æß√o∏ −

2

ß√o
e∑Æß√o∏ +

2tZ
(°µ∂)ã

ß√o
e∑Iß√o∏ + (Æ − I) 

and with 

" = 	− Ω2Æ +
2

Æßmo
æV∑Æß√o∏ −

2

ß√o
e∑Æß√o∏ + (Æ − I) +

1

Æßmo
		. 

Above, V(⋅) denotes the cumulative distribution of the standard normal while e(⋅) is the 

density function of the standard normal. 

Equation (iii) formally acknowledges the impact of liquidity premiums upon the price of a 

CDS. In particular, ´Y is embedded in $(&) 106 times, liquidity premiums make exactly 150 

appearances in ((&) and ´Y itself is found on the RHS of (iii) 3 times. In aggregate, there are 409 

(((&) is both in the numerator and denominator of (iii))  instances of the liquidity premiums in the 
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determination of the price of a credit default swap. Though the magnitude of ´Y will be in basis 

points, the number of occurrences of the premium demand the recognition of ´Y in any empirical 

investigation of the determinants of CDS. 

Our enhanced CDS pricing equation provides a basis for investigating an empirical 

relationship between a liquidity premium and the price of credit default swap. However, the 

multitude of the appearances of ´Y on the RHS of (iii) and the confounded nature of their entry 

frustrates both calculus and casual intuition.46 Consequently, in order to establish an “a priori” 

notion about the comparative static relationship between liquidity premiums and CDS prices, I 

used some illustrative parameters to simulate a relationship between the variates.47 For example, 

I set the initial unlevered value of the assets !j and the corporate tax rate equal to $100 and 0.35, 

respectively. I also fix the risk-free rate X and the volatility of assets ß equal to 0.05 and 0.20, 

respectively. Finally, I set the payout ratio 1 to 0.07 and the fraction of face value paid by the 

insurance in default, c, equal to 0.60. Plotting the price of a CDS contract for different values of 

the liquidity premium results in the relationship illustrated in Figure 18. Clearly, increases in the 

liquidity premia result in increases in the price of CDS contracts and, more importantly, they 

provide a rationale to empirically investigate the relationship between the two variates. 

 

 

 
46 Liquidity premiums ´Y are part of the value evolution equation  

G!(J) = ΩX + ´ − 1 −
1

2
ßmæ!(J)GJ + ß!(J)GÆS

∗ 

consequently, increases in ´(&) as part of G!(J) would reduce the likelihood of firm default. In 

addition, ´Y impacts the RHS of (iii) as a discount factor, reducing the expected present value of 

the premium payments over time and also reducing the expected present value of the lump sum 

payment c. 
47 The magnitude of the parameters chosen is based on those used in Leland and Toft (1996) and 

He and Xiong (2012). 
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3. Data 

The data for this paper comes from four different sources. The first source is the CMA 

data, owned by Intercontinental Exchange, which contains detailed end-of-day market information 

for over 2000 single-name credit default swaps. This database contains daily transaction 

information such as bid and offer par spreads, bid and offer quote spreads, bid and offer upfront 

fees, and mid daily high and low spreads. The CMA data also contains the restructuring clause 

applicable to the CDS, the coupon, the recovery rates, and the cumulative probabilities of default. 

This rich dataset allows for a detailed exploration of liquidity implications in credit default swaps. 

For example, I am able to calculate bid-ask spreads using par spreads, quoted spreads, and upfront 

fees. From the CMA data set, I gather all single-name contracts that are active, trade in the United 

States, and are denominated in U.S. dollars. I remove contracts written on sovereign entities. The 

time series for all variables is available from January 2006 to June 2019. The data for prices and 

bid-ask spreads is available for the ten tenors: 6 months and 1, 2, 3, 4, 5, 7, 10, 20, and 30 years. 

In total, I am able to obtain 32,026,253 observations for 1,336 single-entity contracts. Panel A of 

Table 12 summarizes some of the main variables in the CDS data set by sector and by time period. 

The second source is TRACE which contains all intraday trading data for U.S. corporate 

bonds. From TRACE, I collect transaction yields, buy and sell prices, and volumes. I only collect 

bonds for firms that also appear on the CMA data set. Since the first observation in the CMA data 

occurs in 2006, I only gather bond transactions from 2006 to 2019. Using TRACE, I calculate 

daily bid-ask spreads, the Amihud (2002) measure, the interquartile range, and the roundtrip 

measure, as detailed in Dick-Nielsen, Feldhütter, and Lando (2012). Panel B of Table 12 presents 

averages for the most prominent variables in this data set. 

The third source is Mergent FISD which contains at-issuance information on the corporate 
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bonds. I collect the issuance and maturity date, coupon rate, and exclude any bonds with call 

provisions. 

The fourth source is the merged files from CRSP/COMPUSTAT, from which I collect 

the total book value of short (DLCQ) and long-term (DLTTQ) debt to proxy for the face value of 

the outstanding bond. I calculate the value of the firm as the sum of the face value of the bond 

and the equity value of the firm, which is the number of shares outstanding (SHROUT) times the 

price of the firm’s stock (PRC). The variable 1 captures the total payouts of the firm in the form 

of interest payments to debt holders, dividends to equity holders, and net stock repurchases. The 

data is obtained from the quarterly COMPUSTAT files as follows: interest payments are the 

previous fourth quarter’s total interests paid (INTPNY), dividends to equity are the total annual 

dividends (DVY), and net stock repurchases are the previous year’s net purchase of common and 

preferred stock (PRSTKCY). The payout ratio is then computed as the ratio of total payout 

divided by total assets. 

The LT model requires precise calculation of the volatility of the firm’s assets ß. Yet, this 

variable knows no direct empirical counterpart. We utilize the procedure put forth in Schaefer 

and Strebulaev (2008) and in Feldhütter and Schaefer (2017) to develop a proxy for ß using the 

volatility of the firm’s stock returns ß†, the volatility of the firm’s debt ß¢, the correlation between 

ß† and ß¢, ß†,¢, and the firm’s leverage ]t[. Following Schaefer and Strebulaev (2008), we 

compute the ß† as standard deviation of daily returns (RET from CRSP) using a rolling 1-year 

period and we then multiply the result by √255. This last step converts the result into an annual 

standard deviation. Since the value of the firm’s assets is no more than a weighted average 

between the values of debt and equity using ]t[ as the weight, the volatility of assets may be 

obtained by invoking the equation for the variance of a linear combination of two random 
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variables: 

ßm = (1 − ]t[) ∙ ß†
m + ]t[ ∙ ß¢

m
+ 2 ∙ ]t[ ∙ (1 − ]t[) ∙ ß†,¢. 

Schaefer and Strebulaev (2008) find that this relationship can be simplified further by 

assuming that ß¢ = 0, resulting in ßm = (1 − lev)ßequity
m . Finally, Schaefer and Strebulaev (2008) 

prescribe that the result must be multiplied by a correcting factor which takes the following values 

depending on the firm’s leverage: 1 if ]t[ < 0.25, 1.05 if 0.25 < ]t[ < 0.35 , 1.10 if 0.35 <

]t[ < 0.45, 1.20 if 0.45 < ]t[ < 0.55, 1.40 if 0.55 < ]t[ < 0.75, and 1.80 if ]t[ > 0.75. We 

mimic this procedure when calculating ß. 

4. Results 

Implications of changes in bond market liquidity on the likelihood of default 

The calibrated results depicted in Figure 18 suggest that bond market illiquidity 

contributes to the determination of credit default swap prices. In the context of Leland and Toft’s 

liquidity enhanced model, increases in the liquidity premiums engender a multitude of firm 

variable changes which, together, contribute to a greater likelihood of default. Thus, to establish a 

credible empirical channel through which liquidity premiums help determine CDS prices, I begin 

by studying the relationship between bond liquidity and the likelihood of default. 

I use the “distance-to-default” measure proposed by Bharath and Shumway (2008) as an 

empirical counterpart of the likelihood of default. Their measurement is virtually identical to 

Merton’s (1974) probability that the value of the firm is greater than the face value of the firm’s 

outstanding debt at its time of maturity.48 To characterize bond market liquidity, I use the TRACE 

 
48 Merton’s (1974) model is an application of Black and Scholes’ (1976) option pricing 

model to the value of the firm. In Merton’s work, a firm’s value of equity, è, can be conceptualized 

as a European call option written on the value of the firm, !, with a strike price equal to the face 
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database to calculate the bond’s bid-ask spread, the Amihud (2002) illiquidity measure, and the 

Roll (1984) liquidity measure.49 All these measures are aggregated at a firm-day level. Table 13 

shows the results of the following regression: 

ä5J&Ieyto\ät}Id]&(0,Y) = 	uj + uQ ∙ ]5Od5G5&C(0,Y) + y\e&X\]J(0,Y) + «0 + ÈY + £(0,Y). 

In the equation above, 5 and & are indices for the firm and for the day of the observation. 

In addition, ä5J&Ieyto\ät}Id]&(0,Y) is Bharath and Shumway’s (2008) measure, ]5Od5G5&C(0,Y) is 

one of the three liquidity measures (bid-ask spread, the Amihud (2002) measure, or the Roll (1984) 

 
value of debt, ". The firm’s debt is assumed to mature at time &. Substituting the value of equity, 

the value of debt, and the value of the firm into Black and Scholes (1976) option pricing model 

yields 

è = ! ∙ V(GQ) − tZ°Y ∙ " ∙ V(Gm),	 

ä = ! − è,	with 

GQ = 	
ln ±

!

"
≥ + ±X +

1

2
ßm≥ &

ß√&
,				and				Gm = 	

ln ±
!

"
≥ + ±X −

1

2
ßm≥ &

ß√&
. 

This is exactly Merton’s model. The term V(Gm) is the risk-neutral probability that the 

option will be in the money at expiration (see for example Cox and Rubinstein (1985) page 205). 

In the context of Merton’s equity valuation, this implies that V(Gm) is the probability that the value 

of the firm is greater than the face value of debt at time &. Clearly, as a “z-score”, the larger the 

value of Gm, the greater the probability that ! > " at maturity. This is precisely the reason why 

Bharath and Shumway (2008) denominate Gm the “distance-to-default”. Finally, note that V(Gm) 

is only allowed to take values in the range [0,1], while Gm is conceptually allowed to take any 

value in the real line. Thus, choosing Gm over V(Gm) as a dependent variable justifies the use of 

linear regressions as an adequate statistical estimation method. 
49 I compute a bond’s bid-ask spread within a day by subtracting the daily average of the bonds 

“buy” price from the daily average of the bonds “sell” price. The weights used for the averages are 

the dollar volumes in each transactions. Thus, clearly the daily bid-ask spread is in units of dollars 

($). Next, we compute the daily Amihud (2002) measure by averaging the bond’s daily absolute 

returns, and then by dividing the result by the total bond’s daily volume, expressed in millions of 

dollars. Since the numerator of Amihud’s measure is expressed as percentage and the denominator 

is expressed in dollars, the units of this liquidity measure are 
Q

¢õööø°
= 1/$. Lastly, Roll’s (1984) 

measure is computed by obtaining the daily covariance between consecutive bond returns, taking 

the squared root of the result, and then multiplying by two. Thus, Roll’s measure is expressed as a 

percentage. 
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measure), and y\e&X\]J(0,Y) is a vector of the covariates: leverage, profitability, payout ratio, 

volatility of assets (“Volty”), time-to-maturity (“TTM”), the VIX, and the slope of the U.S. 

Treasury bonds (“Trea. Slope”). These control variables are typically included in regressions 

where the credit spread is the dependent variable.50 Finally, «0  symbolizes single entity fixed 

effects, ÈY  represents day fixed-effects, and £(0,Y) are random errors.51 

In Column 1 of Table 13, the coefficient of “Bid Ask” is negative and statistically 

significant at the 1% level. This first result suggests that a one dollar widening of the bid-ask 

spread, an increase in bond illiquidity, results in a 0.079 standard deviation decrease in the distance 

to default. In Column 2 of Table 13, the coefficient of the Amihud (2002) illiquidity measure is 

also negative and statistically significant at the 1% significance level. The coefficient in that 

column asserts that a 1-unit increase in the per-dollar change in price (an increase in illiquidity) 

results in a 0.018 standard deviation reduction in the distance to default. Finally, Column 3 in Table 

13 shows that the impact of the Roll (1984) measure is positive and statistically significant at the 

1%. Thus, an increase in the one period lagged correlation between returns, a manifestation of 

greater liquidity, results in a 0.008 standard deviation increase in the distance to default. In 

summary, Table 13 suggests that increases in illiquidity may increase the possibility of a 

bankruptcy event. In Table 13, the magnitude of the coefficient for “Bid Ask”, “Amihud”, and 

“Roll” are between 1/10 and 1/3 of the magnitude of the coefficients for “Leverage”, “Payout 

Ratio”, and “Volty”. Thus, clearly, bond liquidity measures stand out as important determinants of 

the “distance to default”, even when compared with prominent determinants of default, provided 

by the classic LT framework. Furthermore, these results are in line with, for example, Dick-

 
50 See, for example, Dick-Nielsen, Feldhütter, and Lando (2012). 
51 The use of time and firm fixed effects is partially inspired by the analyses in Subrahmanyam, 

Tang and Wang (2014).  
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Nielsen, Feldhütter and Lando (2012), who find that a similar proportion of the credit spread is 

explained by illiquidity. 

Proxies for bankruptcy, which are common in structural models of default are statistically 

significant in Columns 1 to 3 of Table 13. For example, in all three specifications, a 1 percent 

increase in the firm’s ratio of total debt to total assets results approximately in a 0.002 standard 

deviation decrease in the distance to default. All coefficients for leverage are significant at the 1%. 

This result certainly implies that default becomes more likely when firms assume more debt as a 

fraction of their value. Also, as expected, the volatility of the firm’s assets, “Volty”, is statistically 

significant at the 1% level and negatively correlated with the firm’s distance to default. Additional 

variables such as the firm’s profitability (a percentage) and the total payout ratio seem to increase 

the distance-to-default, although the magnitude of these coefficients is not statistically different 

from zero. 

While the preliminary results present in Table 13 support the importance of bond 

illiquidity in reducing the distance-to-default, the empirical design is subject to endogeneity 

concerns. More specifically, the inferences in Table 13 may be affected by reverse causality, where 

a decrease in the Bharath and Shumway (2008) distance-to-default might lead to an increase in 

illiquidity and not the other way around. To address the endogeneity concerns, I implement an 

instrumental variable approach. I use 12-month lagged liquidity measures as an instrument for 

market illiquidity.52 This has two main advantages. First, it is unlikely that a change in the distance 

to default at time t is able to explain changes in market liquidity at time t − k for any positive 

integer k. If this were true, it would suggest that distance-to-default calculations incorporate market 

 
52 Using 12 month lagged liquidity measures is consistent with the work in Korajczyka and Sadka 

(2009). 
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information quicker than liquidity calculations. This is clearly not true. Second, prior research 

work in bond market, such as Lin, Wang, and Wu (2011), have proposed that bond liquidity may 

be predicted with time series analysis. Thus, for each point in time, I compute the predicted average 

of the monthly liquidity measure using 12-month lagged values of liquidity for all the bonds of the 

firm that traded on that month, weighted by the trading volume of each bond. The panel data ranges 

from 2008 to 2018 and the regressions are for firm-months, where standard errors are clustered 

also at the same level. The results from the second stage of the instrumental variable approach are 

presented in Columns 1 to 3 of Table 14, where the dependent variable is the monthly distance-to-

default of the referenced firm. 

In Column 1 of Table 14, I present the impact of the predicted “Bid-ask” on the distance 

to default. The coefficient of -0.032 is significant at the one percent level. The sign and magnitude 

of the regression coefficient indicate that a dollar widening of the predicted bid-ask shortens the 

distance to bankruptcy. This result corroborates the preliminary results shown in Column 1 of 

Table 13. In Column 2 of Table 14, I show that the coefficient estimate for the impact of the Dick-

Nielsen’s “lambda” illiquidity measure on the distance to default is -0.044. This coefficient 

supports the notion that increases in illiquidity reduce the distance to default. Finally, Column 3 in 

Table 14 presents a negative and statistically significant coefficient at the 1% level, of the impact 

of the predicted Amihud illiquidity measure on the distance to default. Certainly, increases in the 

per-dollar change in returns result in an increase the probability of a bankruptcy event. Note that 

the sign and the statistical significance of the coefficients for the liquidity measure remain 

unchanged from the ones in Table 13. This is by itself a powerful result because it indicates that 

reversed causality between the two variables is not an issue. Additionally, the results in Tables 2 
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and 3 suggest that decreases in bond market liquidity shorten the distance to default, regardless of 

the liquidity measure used as a right hand side regressor. 

In summary, the preliminary results in Tables 2 and the instrumental variable results in 

Table 14 document that reductions in bond market liquidity can reflect an increase in the likelihood 

of a default event. Next, I empirically study the implications of changes in the bond market 

liquidity in the pricing of CDS contracts themselves. 

 

Implications of changes in bond market liquidity on the prices of credit default swaps 

The coefficient estimates in Tables 2 and 3 in the preceding section suggest that adverse 

changes in market liquidity can reduce the firm’s distance to a default triggering event. This result 

provides some credibility for the notion that increases in ´Y  can bring the company closer to 

bankruptcy. Additionally, the calibrated results in Figure 18 propose that increases in liquidity 

premiums widen the spreads of credit default swaps. To test this claim, I project the daily CDS 

spreads onto measures of bond market illiquidity, where the daily CDS spreads (expressed as the 

CDS premium payment relative to the face value of the contract) are obtained from the CMA 

dataset and the daily bond liquidity measures are the same as above.53 I employ the following 

specification: 

 
53In order to explain the dependent variables that I feature in this study, it is appropriate to discuss 

how market participants commonly quote credit default swap prices. CDS premiums, “n” in the 

model section, are quoted as an annual percentage of the face value. For example, a CDS contract 

with a face value of $5 million and a 100 basis points (1%) premium implies a total annual payment 

of $5	;5]]5\e × 1%	 = 	$50,000. Thus, CDS premiums are in fact quoted as 
q

Ïøπ†	¨øö⁄†
 and 

expressed as basis points. This is referred to as the “par spread”. One appropriate reading would 

be Chapter 67 of Fabozzi’s “The Handbook of Fixed Income Securities”, eighth edition. However, 

ISDA’s (International Swaps and Derivatives Association Inc.) 2009 “Big Bang Protocol” 

standardized premiums of CDSs trading in the U.S. to either 100bp or 500bp. More details on the 

2009 “Big Bang Protocol” may be found in Chapter 66 of Fabozzi’s book. Of course, fixing the 

value of 
q

Ïøπ†	¨øö⁄†
 implies that the discounted expected value of the premium payments will NOT 
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ƒänJNXtIG(0,Y) = 	uj + uQ ∙ "ÌVä]5O(0,Y) + um ∙ ƒän]5O(0,Y) + y\e&X\]J(0,Y) + «0 + ÈY + £(0,Y). 

Here, ƒänJNXtIG(0,Y) is the daily CDS spread for each referenced entity, ƒän]5O(0,Y) is 

the bid-ask spread of the CDS contract, and "ÌVä]5O(0,Y) is an aggregate of the bond market 

liquidity measures of all outstanding bonds issued by the referenced entity. Typically, firms have 

more than one outstanding bond and they may differ by maturity. One strand of the corporate bond 

literature documents that liquidity premiums might be substantially different for issues in 

alternative segments of the term structure, even for bonds in the same credit rating category. In 

general, term structures of liquidity premiums are found to be increasing and concave for 

investment grade bonds. With this in mind, I aggregate the liquidity measures for bonds of the 

same firm, but different maturities in two ways: first, as the simple average of their respective 

liquidities and second, as the maturity-weighted average of the liquidities. In the equation above, 

y\e&X\]J(0,Y) are covariates that explain default, «0  are single entity fixed effects, ÈY  are day fixed-

effects, and £(0,Y) are the random error terms. 

Columns 1 through 4 in Table 15 summarize the relative contributions of the bond’s bid 

ask spread and the bond’s Amihud (2002) measure in the determination of the CDS par spread, 

while columns 5 through 8 in Table 15 summarize the contributions of the same liquidity measures 

in the determination of the CDS quoted spread. The impact of all four liquidity measures on both 

 
equal the discounted expected value of the insurance payment in the event of the firm’s default. 

Thus, an “upfront fee” must be paid be either the buyer or the seller of the insurance to guarantee 

that the net expected present value of the contract equals zero. Yet, as a market observation, 

oftentimes the “upfront fee” might not agree with the predictions of any CDS pricing model. In 

this scenario, markets participants substitute the CDS’s observed “upfront fee” into a CDS pricing 

model and obtain the premium such that the model implied upfront fee exactly equals the observed 

upfront value. Such a premium is termed the “quoted spread”. Again, we refer the reader to Chapter 

67 of Frank Fabozzi’s “The Handbook of Fixed Income Securities” eighth edition for a detailed 

discussion. In the results section, we alternatively use the “par spread” and the “quoted spread” as 

left hand side variables in the regression analyses. 
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the par and the quoted CDS spreads is positive and statistically significant at the 1% level for the 

5-year tenor. Additionally, a one-unit (dollar for the bid-ask spread, and 1/dollar for the Amihud 

measure as detailed in footnote 48) increase in the liquidity measures contribute to a widening of 

the CDS spread between 1.3 and 2.7 basis points. Clearly, increases in bond illiquidity are 

positively correlated with increases in the spread of these contracts, even after accounting for the 

liquidity of the CDS contract itself, and after including relevant determinants of default. The signs 

and magnitudes of the remaining explanatory variables are consistent with conventional economic 

reasoning. 

In Columns 1 to 8 in Table 16, I implement a similar regression analysis for each of the 

eight CDS tenors: 1 year, 2 years, 3 years, 4 years, 5 years, 8 years, 10 years and 30 years. For 

brevity, I only employ Amihud’s measure as a proxy for bond market liquidity. For all tenors, the 

coefficient of Amihud’s measure is positive and statistically significant at the 1% level. Further, 

the magnitude of the coefficients averages 1.1 basis points per unit increase in the bond market 

illiquidity. Thus, bond liquidity remains an important determinant of CDS prices even after 

simultaneously including the CDS liquidity as a regressor. Additionally, in each Column of Table 

16, the magnitudes of the coefficients of “Amihud” are between 1/4 to 1/3 of the magnitude of the 

coefficient of “CDS Bid Ask”. This last statement is noteworthy because it emphasizes the notion 

that bond illiquidity may increase the likelihood of default to such an extent that the bond illiquidity 

is reflected in the prices of CDSs. Furthermore, the magnitude of this impact is non-trivial. The 

coefficient of a bond’s Amihud measure is comparable in magnitude to the coefficient of the CDS 

bid ask spread. This further stresses the notion that bond illiquidity, through the channel of a shorter 

distance to default, is a crucial determinant of CDS spreads. 
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Subsample analyses 

I detail results when I classify the observations into the 2008 financial period and the 

subsequent non-crisis period. Prior research in corporate bond liquidity has found that the 

percentage of the corporate spread explained by liquidity increases during periods of financial 

instability (see for example Friewald, Jankowitsch, and Subrahmanyam (2014) and Dick-Nielsen, 

Feldhütter, and Lando (2012)). Thus, the contribution of bond liquidity in the determination of 

CDS spreads should be more pronounced during the 2008 financial crisis. I define the financial 

crisis from December 2007 to June 2009, which is consistent with the NBER definition and with 

Bessembinder, Jacobsen, Maxwell, and Venkarataraman (2018). 

In Column 1 of Table 17, I summarize the coefficients of a regression of CDS prices on 

bond liquidity and on additional controls during the 2008 financial crisis. In Column 2 of the same 

table, I present a similar set of regression coefficients during the subsequent non-crisis period.  

The coefficient of the Amihud measure is positive and statistically significant during the 

2008 crisis period and during the subsequent non-crisis epoch. Yet, the magnitude of the 

contribution of the Amihud measure in the determination of the CDS spreads is almost 70% greater 

during the 2008 crisis period than in the non-crisis period. During the non-crisis period, a 1/$ 

increase in Amihud measure leads to a 3.2 basis points increase in the CDS spreads. However, in 

the 2008 crisis period, a 1/$ increase in the price impact measure leads to a 5.5 basis points 

increase in the price of the CDS contracts. In Column 3 of Table 17, I present coefficient estimates 

for the following regression: 

ƒänJNXtIG(0,Y)

= 	uj + uQ ∙ "ÌVä]5O(0,Y) + um ∙ ƒän]5O(0,Y) + ux ∙ 1òôSY°†SS ∙ "ÌVä]5O(0,Y)

+ y\e&X\]J(0,Y) + «0 + ÈY + £(0,Y). 



 

 76 

As in the preceding analysis, 5 and & are indices for the bond and for the day of the 

observation. ƒänJNXtIG(0,Y) is the price of the CDS contract, ƒän]5O(0,Y)  is the bid-ask spread of 

the credit default swaps, "ÌVä]5O(0,Y) is the bond Amihud measure, and y\e&X\]J(0,Y) is a vector 

that includes common determinants of default. Additionally, the expression “1òôSY°†SS” is an 

indicator function that takes the value 1 when the observation takes place during the 2008 stress 

period and 0 when the observation takes place in the subsequent non-stress period. Thus, the 

expression 1òôSY°†SS ∙ "ÌVä]5O(0,Y) equals zero for observations in the non-crisis period because 

1òôSY°†SS  is zero. During the 2008 crisis period, the expression uQ ∙ "ÌVä]5O(0,Y) + ux ∙ 1òôSY°†SS ∙

"ÌVä]5O(0,Y) reduces to (uQ + ux) ∙ "ÌVä]5O(0,Y) because 1òôSY°†SS  is one. This description 

implies that the coefficient uQ provides an estimate of the impact of "ÌVä]5O(0,Y) upon 

ƒänJNXtIG(0,Y) during a time of financial tranquility. Analogously, the sum of the coefficients 

uQ + ux summarizes the impact of the bond market liquidity upon CDS spreads during the 2008 

financial crisis. In addition, statistical significance of the coefficient ux implies that the impact of 

"ÌVä]5O(0,Y) on ƒänJNXtIG(0,Y) is statistically different between the 2008 financial crisis and the 

subsequent non-crisis period. 

In Column 3 in Table 17, the coefficient uQ of the Amihud measure is positive and is 

statistically significant with a “p-value” of 0.001, implying that a one unit increase in the liquidity 

measure is accompanied by a 2.8 bp increase in the spread of credit default swaps during the non-

crisis period. Furthermore, Column 3 also documents that ux is positive and statistically significant 

with a p value of 0.001. This result suggests that a similar increase in the Amihud liquidity measure 

leads to a 2.4 basis points increase in the credit spread of credit default swaps during the 2008 

crisis period, in excess of the contribution of "ÌVä]5O(0,Y)  on ƒänJNXtIG(0,Y) during the non-crisis 
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period. Put differently, a one unit increase in "ÌVä]5O(0,Y) results in a 5.2 bp increase in 

ƒänJNXtIG(0,Y)  during the crisis period. This result is consistent with the ones in Columns 1 and 

2 in Table 17.  

Next, I study the impact of corporate bond liquidity upon the CDS spreads when the data 

is sorted into “distressed” and “non-distressed” firms. I define a “distressed” firms as one whose 

cumulative probability of default is above the sample median, whereas a “non-distressed” firm is 

one whose cumulative probability of default is below the sample median. 

Column 1 of Table 18 summarizes the coefficients of a regression of CDS spreads on 

bond liquidity, CDS liquidity, and on a set of default controls. Only observations that belong to 

“distressed” firms are used to obtain the coefficients in Column 1. Column 2 in Table 18 displays 

the coefficients of a similar regression, where only non-distressed firms are selected. The 

coefficient of the Amihud measure is positive and statistically significant in both Columns 1 and 

2. Yet, the magnitude of the contribution of the bond liquidity measure in the determination of the 

CDS spreads is more than twice for the distressed firms than for the non-distressed companies. For 

the non-distressed firms, a one unit increase in Amihud leads to a 1.549 basis points increase in 

the CDS spreads. However, for the distressed firms, a similar increase in the price impact measure 

leads to a 3.9 basis points increase in the price of the CDS contracts. In Column 3 of Table 18, I 

summarize results for the following linear specification: 

ƒänJNXtIG(0,Y)

= 	uj + uQ ∙ "ÌVä]5O(0,Y) + um ∙ ƒän]5O(0,Y) + ux ∙ 1Y÷ü†ô¢0SY°†SS ∙ "ÌVä]5O(0,Y)

+ y\e&X\]J(0,Y) + «0 + ÈY + £(0,Y). 
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In this equation, ƒänJNXtIG(0,Y), "ÌVä]5O(0,Y), ƒän]5O(0,Y), and y\e&X\]J(0,Y) have the 

same meaning as in Table 17. However, the expression 1Y÷ü†ô¢0SY°†SS  is now an indicator function 

that takes the value 1 when the observation belongs to a distressed company, and takes the value 

of 0 when the observation belongs to a non-distressed firm. Thus, clearly the expression 

1Y÷ü†ô¢0SY°†SS ∙ "ÌVä]5O(0,Y) equals zero for observations of non-distressed firms, because 

1Y÷ü†ô¢0SY°†SS is zero. For the distressed bonds, the expression uQ ∙ "ÌVä]5O(0,Y) + ux ∙

1Y÷ü†ô¢0SY°†SS"ÌVä]5O(0,Y) reduces to (uQ + ux) ∙ "ÌVä]5O(0,Y) because 1Y÷ü†ô¢0SY°†SS  is one. 

This description implies that the coefficient uQ provides an estimate of the impact of "ÌVä]5O(0,Y)  

upon ƒänJNXtIG(0,Y),  for the non-distressed companies. Analogously, the sum of the coefficients 

uQ + ux summarizes the impact of liquidity upon the CDS prices for the distressed firms. 

In Column 3 in Table 18, the coefficient uQ of the Amihud measure is positive and is 

statistically significant with a p-value of 0.001. Thus, that a one unit increase in the liquidity 

measure is accompanied by a 1.16 bp increase in the spread of credit default swaps for the non-

distressed firms. Yet, Column 3 also documents that ux is positive and statistically significant with 

a p-value of 0.001. This result suggests that a one unit increase in the Amihud liquidity measure 

leads to a 2.052 basis points increase in the price for credit default swaps of the distressed firms, 

in excess of the contribution of "ÌVä]5O(0,Y)  on ƒänJNXtIG(0,Y) for the non-distressed firms. This 

finding confirms the notion that the impact of the bond liquidity measures in the CDS spreads is 

larger for companies in financial distress. 

5. Conclusions 

Credit default swaps (CDSs) on corporate entities are financial instruments whereby the 

buyer of the protection receives a lump sum payment from the seller in the event that the firm 

referred to in the contract defaults on its debt obligations. Since the insurance payment only occurs 
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if the bankruptcy provisions for the referenced firm are triggered, the key input in pricing a CDS 

is the likelihood that this firm defaults within a certain time horizon. Independently, such firms 

might also raise capital in the bond market to finance their projects. It is known that the yields on 

these bonds are subject to illiquidity considerations which can be so severe, that they could move 

the firm closer to a bankruptcy triggering event. Thus, if the bonds of the referenced firm are 

sufficiently illiquid, they may increase the firm’s likelihood of default. Clearly, bond market 

illiquidity frictions must be priced in CDS spreads. Using a classical model of debt valuation 

enhanced with a consideration of liquidity premiums, I study how corporate bond market 

illiquidity may result in an elevated likelihood of the issuer’s default. I use daily single-name CDS 

prices from the CMA data set and daily corporate bond yields from the TRACE data files. Both 

sources contain information from 2007 to 2019. I find that increases in bond illiquidity measures 

result in a heightened likelihood of the bond issuer’s default. Additionally, I find that greater bond 

illiquidity occasions higher prices for the credit default swaps written on the bond issuer. I also 

empirically establish that the illiquidity implications on CDS premiums are more severe for less 

creditworthy issuers and in periods of financial stress.
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Appendices 
Appendix A: Comparative Statics Analysis of Duffie, Garleanu, and Pedersen (2005) 

In panel 1A of Figure 1, we illustrate how different term structures of liquidity premiums 

arise by changing /0. If /0 is low then suitable dealers are hard to find and liquidity shocked 

investors would be forced to suffer the instantaneous funding cost 1. Under these conditions, 

investors can only wait for their position to mature. Consequently, the partial expected value of 

the funding cost increases with the bond horizon, leading to a larger liquidity premium for long-

term bondholders and to a concave term structure for liquidity premiums. In contrast, as /0 

increases, the average time until the arrival of the next dealer decreases. However, this waiting 

time could still be greater than the maturity for some short-term bonds. Thus, short-term 

bondholders are more likely to suffer the consequences of a liquidity shock. This scenario implies 

a downward sloping term structure of liquidity premiums under high values of /0. (DGP and 

Feldhütter (2012) presume that the number of completed financial transactions in the interval & is 

given by a Poisson distribution with parameter (/0 ∙ &), where /0 is the search intensity of traders 

in the 5th level of investor sophistication. In DGP, /0 was set equal to 26 implying the expected 

value of the time to a completed transaction is 2 weeks. Feldhütter invokes a search intensity of 

372 for his most sophisticated investor and 147 for an average search intensity trader. These two 

settings imply expected times to the completion of a financial transaction of 5.5 hours and 14.15 

hours, respectively. In Figure 1A we choose to set /0 equal to 1000 and to 100 implying 2 hours 

and 2.5 days, respectively, to an asset conversion. The wide range in our settings of /0 was for 

illustrative purposes.) Figure 1B depicts the relationship between term to maturity and liquidity 

spread by changing the magnitude of the holding cost for an investor. Different values of 1 are 
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able to generate both the convex (low 1) and the concave (high 1) term structures of liquidity 

premiums.  

The probability of an adverse liquidity shock is a circumstance in which the likelihood of 

a shock is high (large 2) and the probability of the investor being severely financially constrained 

is high (large 3).  In this scenario, long-term investors will likely incur higher expected cumulative 

holding costs. This parameterization leads to a scenario where an upward sloping term structure 

of liquidity premiums prevails, as illustrated in Figures 1C and 1D. (The time to a financial shock 

is given by the exponential distribution with }(&) = 2 ∙ tZŒ∙Y where 2 is the hazard rate. Feldhütter 

sets 2 = 3.6 which implies that the expected time to a shock is 
Q	÷†ø°

x._
= 3

Q

x
 months. He and 

Milbradt (2014) set 2 =
k

Qj
 so that expected time to a financial shock equals 1.43 years. In Figure 

1C, we chose 2 = 1 and 2 = 6	which implies that the expected time to a financial shock is as 

remote as 1 year and as imminent as 2 months.) In contrast, when the likelihood of a shock itself 

is diminished and, at the same time,  is low, long-term liquidity shocked investors enjoy a higher 

probability of switching types. This implies that the cumulative expected holding costs must be 

smaller for long-term bondholders compared to short-term bondholders. In this case, liquidity 

premiums must be smaller for longer maturities. This situation is presented in Figures 1C and 1D 

which depict a convex term structure of liquidity premiums. (The likelihood that an investor is 

financially constrained at the time of the economic shock, 3, was set equal to 9% by both DGP 

and Feldhütter (2012) as a baseline representation. For illustrative purposes, we initially assigned 

3 a value of 80%, to reflect a great deal of financial exposure for the investor to a financial shock, 

and then reduced that exposure to just 20% in Figure 1D.) 
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Appendix B: Liquidity spread under alternative periods 

To alleviate concerns that our results are dependent upon the particular partitions of the 

data into our periods of “stress” and “post stress”, we provide plots and regression tables using 

alternative methodologies for finding date intervals.  That is, we now select five new periods based 

on significant changes of GDP and Fed Funds futures. By identifying significant changes in the 

price of the Fed Funds futures (10% upwards or downwards), we believe we can identify periods 

of relative economic stress and, also, differing investor appetites for alternative segments of the 

maturity spectrum. We define five periods as follows: 1) October 1, 2008 to April 1, 2009, 2) April 

1, 2009 to November 30, 2009, 3) November 30, 2009 to July 4, 2010, 4) 2010 to July 1, 2011, 

and 5) July 1, 2011 to December 31, 2012. Following the National Bureau of Economic Research 

definition of economic recession, the first two periods coincide with “stress”, while the last three 

periods coincide with periods of “post stress” (relative calm). 

In Figure B1, we present the raw liquidity spreads for each of the five periods defined above. 

Periods 1 and 2, which comprise our period of stress, are clearly upward sloping, while periods 4 

and 5 are downward sloping. Period 3 may be viewed as a period of transition. These results 

support our prior notion that periods of stress are indicative of a positive TSLS while periods of 

post stress are indicative of a negative TSLS. 
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Figure B1: Term structure of liquidity spread for each of five alternative periods 

The below graphs are raw spreads of the insured corporate bonds for each of the five alternative 

periods. The plots are averages of all bond spreads with the same time to maturity for the period. 

These spreads are aggregated by weekly buckets to avoid noise and high dispersion in the data. 
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Appendix C: Regressions of liquidity spread using alternative periods and three maturity 

buckets  

Similar to Appendix B, we split the data into five periods in order to demonstrate 

robustness to alternative stress and post stress periods. The five intervals are defined as follows: 

1) October 1, 2008 to April 1, 2009, 2) April 1, 2009 to November 30, 2009, 3) November 30, 

2009 to July 4, 2010, 4) July 2010 to July 1, 2011, and 5) July 1, 2011 to December 31, 2012. 

Furthermore, we include a medium maturity bucket in addition to short and long maturity buckets. 

The three buckets are defined according to whether the time remaining to maturity is below the 

25th percentile, between the 25th and 75th percentile, or above the 75th percentile of times to 

maturity (TTM) in that period. We then perform regressions where the dependent variable is the 

yield of the insured corporate bond minus the yield of a treasury bond, matched by maturity. As in 

prior results, each right hand side variable is normalized by its mean and standard deviation over 

the whole sample period (October 2008 to December 2012). As before, each specification 

regresses the spread of the insured corporate bonds upon the liquidity measure, its volatility, the 

VIX, time-to-maturity of the insured corporate bond, the 6-month minus the 3-month treasury 

slope, a measure of market-wide liquidity, and the price of the futures contracts. The regressions 

include firm-fixed effects, and the standard errors of the coefficients are in parenthesis. The results 

in general support the notion that in periods of stress, the impact of the liquidity measure 

(AMIHUD) is higher for long-term bonds, while in post stress periods, the impact is higher for 

short-term bonds. The sign of TTM is typically positive in a stress period but typically negative 

post stress. 
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Table C1: Regression for Period 1 (October 1, 2008 to April 1, 2009) 

 

 Regression of Liquidity Spread for Period 1 

  

 Insured Spread minus Treasury Yield 

 Shorter Medium Longer 

 (1) (2) (3) 

 

AMIHUD 0.050*** 0.054*** 0.060*** 

 (0.007) (0.008) (0.010) 

AMIHUDVOL -0.004 -0.006 0.014 

 (0.008) (0.009) (0.011) 

TTM 0.120*** 0.073*** 0.113*** 

 (0.008) (0.009) (0.011) 

VIX 0.099*** 0.110*** 0.056*** 

 (0.007) (0.008) (0.011) 

TREASLP 0.044*** 0.042*** 0.052*** 

 (0.007) (0.008) (0.011) 

AMIHUDMKT 0.010 0.007 -0.014 

 (0.007) (0.007) (0.010) 

FFFP -0.063*** -0.078*** -0.061*** 

 (0.007) (0.008) (0.011) 

Constant 1.173*** 1.215*** 0.912*** 

 (0.161) (0.145) (0.022) 

 

Observations 1,360 927 483 

R2 0.461 0.498 0.467 

Adjusted R2 0.449 0.483 0.449 

Residual Std. 

Error 
0.226 (df = 1331) 0.204 (df = 900) 0.197 (df = 466) 

F Statistic 
40.583*** (df = 28; 

1331) 

34.321*** (df = 26; 

900) 
25.506*** (df = 16; 466) 

 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table C2: Regression for Period 2 (April 1, 2009 to November 30, 2009) 

 

 Regression of Liquidity Spread for Period 2 

  

 Insured Spread minus Treasury Yield 

 Shorter Medium Longer 

 (1) (2) (3) 

 

AMIHUD 0.049*** 0.063*** 0.249*** 

 (0.003) (0.014) (0.014) 

AMIHUDVOL -0.007* -0.009 -0.004 

 (0.003) (0.016) (0.013) 

TTM 0.053*** 0.025 -0.004 

 (0.006) (0.017) (0.015) 

VIX 0.033*** 0.043** 0.056*** 

 (0.005) (0.020) (0.020) 

TREASLP 0.027*** 0.010 0.045** 

 (0.004) (0.018) (0.019) 

AMIHUDMKT -0.004 -0.008 -0.026* 

 (0.004) (0.018) (0.015) 

FFFP 0.018*** -0.014 -0.030** 

 (0.005) (0.019) (0.015) 

Constant 0.165*** 0.287*** 0.342*** 

 (0.012) (0.085) (0.036) 

 

Observations 1,168 2,591 1,609 

R2 0.523 0.035 0.255 

Adjusted R2 0.516 0.024 0.243 

Residual Std. 

Error 
0.101 (df = 1150) 0.646 (df = 2561) 0.455 (df = 1582) 

F Statistic 
74.310*** (df = 17; 

1150) 

3.165*** (df = 29; 

2561) 
20.860*** (df = 26; 1582) 

 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table C3: Regression for Period 3 (November 30, 2009 to July 4, 2010) 

 

 

 Regression of Liquidity Spread for Period 3 

  

 Insured Spread minus Treasury Yield 

 Shorter Medium Longer 

 (1) (2) (3) 

 

AMIHUD 0.124*** 0.041* 0.022*** 

 (0.008) (0.023) (0.002) 

AMIHUDVOL -0.001 -0.001 -0.007*** 

 (0.007) (0.027) (0.003) 

TTM -0.032*** 0.006 0.016*** 

 (0.009) (0.031) (0.003) 

VIX 0.047*** 0.071** 0.035*** 

 (0.010) (0.031) (0.002) 

TREASLP -0.001 0.066*** 0.002 

 (0.007) (0.023) (0.002) 

AMIHUDMKT -0.006 -0.006 -0.001 

 (0.009) (0.030) (0.003) 

FFFP 0.0005 0.036 0.030*** 

 (0.008) (0.028) (0.003) 

Constant 0.153*** 0.122 0.214*** 

 (0.031) (0.221) (0.010) 

 

Observations 743 2,056 1,201 

R2 0.361 0.030 0.406 

Adjusted R2 0.345 0.016 0.394 

Residual Std. 

Error 
0.164 (df = 723) 0.952 (df = 2026) 0.066 (df = 1177) 

F Statistic 
21.540*** (df = 19; 

723) 

2.139*** (df = 29; 

2026) 

34.920*** (df = 23; 

1177) 

 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table C4: Regression for Period 4 (July 4, 2010 to July 1, 2011) 

 

 

 Regression of Liquidity Spread for Period 4 

  

 Insured Spread minus Treasury Yield 

 Shorter Medium Longer 

 (1) (2) (3) 

 

AMIHUD 0.345*** 0.142*** 0.049*** 

 (0.028) (0.004) (0.002) 

AMIHUDVOL 0.187*** 0.006 -0.003 

 (0.037) (0.005) (0.002) 

TTM -0.333*** -0.036*** -0.0003 

 (0.037) (0.004) (0.003) 

VIX 0.001 -0.024*** 0.007** 

 (0.044) (0.005) (0.003) 

TREASLP 0.046 0.011*** 0.001 

 (0.030) (0.004) (0.002) 

AMIHUDMKT -0.027 0.003 0.005* 

 (0.046) (0.005) (0.003) 

FFFP -0.026 -0.039*** -0.020*** 

 (0.046) (0.005) (0.003) 

Constant 0.613*** 0.129*** 0.181*** 

 (0.184) (0.032) (0.007) 

 

Observations 1,146 3,529 2,069 

R2 0.283 0.557 0.416 

Adjusted R2 0.267 0.554 0.410 

Residual Std. 

Error 
0.981 (df = 1120) 0.214 (df = 3497) 0.079 (df = 2044) 

F Statistic 
17.688*** (df = 25; 

1120) 

142.084*** (df = 31; 

3497) 

60.768*** (df = 24; 

2044) 

 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table C5: Regression for Period 5 (July 1, 2011 – Dec 31, 2012) 

 

 

 Regression of Liquidity Spread for Period 5 

  

 Insured Spread minus Treasury Yield 

 Shorter Medium Longer 

 (1) (2) (3) 

 

AMIHUD 0.505*** 0.191*** 0.094*** 

 (0.037) (0.008) (0.005) 

AMIHUDVOL 0.246*** 0.015 -0.020*** 

 (0.055) (0.009) (0.005) 

TTM -0.091 -0.053*** -0.002 

 (0.059) (0.009) (0.006) 

VIX 0.140 0.030** 0.032*** 

 (0.094) (0.015) (0.009) 

TREASLP 0.095* -0.002 0.004 

 (0.057) (0.010) (0.007) 

AMIHUDMKT 0.090 0.033** 0.011 

 (0.086) (0.014) (0.008) 

FFFP -0.124 0.018 0.025*** 

 (0.085) (0.013) (0.007) 

Constant 0.222 0.144** 0.261*** 

 (0.611) (0.073) (0.018) 

 

Observations 655 2,401 1,537 

R2 0.376 0.319 0.294 

Adjusted R2 0.348 0.310 0.283 

Residual Std. 

Error 
1.025 (df = 625) 0.382 (df = 2369) 0.181 (df = 1513) 

F Statistic 
13.013*** (df = 29; 

625) 

35.835*** (df = 31; 

2369) 

27.411*** (df = 23; 

1513) 

 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Appendix D:   Potential Endogeneity of the Liquidity Measures 

One potential shortcoming in the regressions that we present is that the liquidity measure 

might be correlated with the error term in the spread specification. To test for endogeneity bias, 

we perform a Durbin-Wu-Hausman test as specified in Greene (2003) and report it below in Tables 

D1 and  D2. The logic of the Durbin-Wu-Hausman test is as follows: under the null hypothesis, 

both the OLS and the 2SLS estimators are consistent. Under the alternative hypothesis, only the 

2SLS estimator is consistent. Thus, if we fail to reject the null hypothesis, we can safely conclude 

that the both estimators are consistent and there is no endogeneity bias in our regressions.  

Similar to Dick-Nielsen, Feldhütter, and Lando (2012), we use the issuance amount and 

age of the insured bonds as instruments for liquidity. We first present the cm of the first stage 

regression, and we then present the Chi-square values of the Durbin-Wu-Hausman test. We 

perform regressions by period – stress and post stress – and by maturity bucket –short, medium, 

long.   

Table D1: Issuance amount as an instrument for liquidity  

Panel a: cm of first-stage regressions 
R-squares of the 1st 

stage regression 
Shorter Medium Longer 

Stress 0.2532 0.3402 0.3928 

Post Stress 0.2841 0.3518 0.2901 

Panel b: Óm values and 5% significance levels for Durbin-Wu-Hausman test 
Chi-square of Durbin-

Wu-Hausman test 
Short Medium Long 

Stress 0.5833 

(33.92) 

0.006012 

(48.60) 

0.1422 

(48.60) 

Post Stress 1.394 

(49.80) 

5.036 

(50.99) 

1.451 

(48.60) 

 

In panel a, we present the cm of the first-stage regressions – liquidity measure on issuance 

amount and other explanatory variables. The values for the coefficient of determination are high 
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and we conclude that the issuance amount is a strong instrument for the liquidity measures. In 

panel b we present the Chi-square values for the Durbin-Wu-Hausman tests along with the 5% 

significance level. We can see that in all the periods and maturity buckets, the test fails to reject 

consistency of both estimators. The results for using only two maturity buckets are very similar. 

Table D2 repeats the analysis but uses age as the instrument.  Similar results hold. Thus, 

we can conclude that endogeneity is not a concern in our models.  Again, the results for using only 

two maturity buckets are very similar.     

Table D2: Using age of the bond as an instrument for liquidity 

Panel a: cm of first-stage regressions 

 
R-squares of the 1st 

stage regression 

Shorter Medium Longer 

Stress 0.60 0.10 0.34 

Post Stress 0.14 0.25 0.01 

 

Panel b: Óm values and 5% significance levels for Durbin-Wu-Hausman test 
Chi-square of Durbin-

Wu-Hausman test 

Short Medium Long 

Stress 0.2010 
(32.67) 

0.7564 
(47.40) 

5.6278 
(48.60) 

Post Stress 0.02549 

(48.60) 

0.3259 

(49.80) 

0.3107 

(47.40) 
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Appendix E: Regressions with difference in liquidity measure 

We perform similar regressions as in Table 3, but, in contrast, use the difference in the 

liquidity measure of the corporate bonds and the U.S. Treasuries as our measure of liquidity. The 

regressions are for the periods of stress – October 2008 and November 2009 – and post stress – 

December 2009 to December 2012. We further classify the daily bond transactions into short-term 

and long-term depending on whether the time to maturity is above or below the median in that 

period. The dependent variable is the yield of the insured bond minus the yield of a treasury bond, 

matched by maturity. Each right hand side variable is normalized by its mean and standard 

deviation over the respective period, stress or post stress. BIDASK- BIDASKMKT is our liquidity 

measure, FFFP is the price of the price of the Fed funds 30-day futures, TREASLP is the slope of 

the 6-months Treasury bonds relative to the 3-months, TTM is the time-to-maturity of the insured 

bond, BIDASKMKT is the aggregate bid-ask measure for all outstanding corporate bonds, and 

BIDASKVOL is the volatility of the Bid-Ask liquidity measure for the insured bonds. The 

regressions include firm-fixed effects, and the standard errors of the coefficients are in parenthesis. 

The results in general support the notion that in periods of stress, the impact of the liquidity 

measure is higher for long-term bonds, while in post stress periods, the impact is higher for short-

term bonds.
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Regression Analysis of the Liquidity Spread (LS) 

 

 
Stress nopPq 

(1) 

Stress ropPq 

(2) 

Post Stress nopPq 

(3) 

Post Stress ropPq 

(4) 

BIDASK – 
BIDASK_TREA 

0.019*** 0.083*** 0.076*** 0.004 

 (0.003) (0.006) (0.013) (0.007) 

VIX 0.129*** 0.197*** 0.054* 0.039*** 

 (0.007) (0.017) (0.029) (0.011) 

FFFP -0.001 -0.049*** 0.003 0.014 

 (0.005) (0.011) (0.026) (0.009) 

TREASLP 0.029*** 0.027** 0.011 0.034*** 

 (0.006) (0.013) (0.021) (0.011) 

 Control Variables  

TTM 0.048*** 0.001 -0.212*** 0.009 

 (0.004) (0.010) (0.021) (0.011) 

BIDASKMKT -0.019*** -0.035*** 0.023 -0.001 

 (0.006) (0.012) (0.028) (0.013) 

BIDASKVOL 0.043*** 0.087*** 0.296*** 0.002 
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 (0.004) (0.009) (0.017) (0.009) 

Constant 0.235*** 0.826*** 0.211 0.130 

 (0.030) (0.289) (0.260) (0.184) 

Observations 1,880 2,514 2,793 5,122 

Rm 0.619 0.415 0.171 0.026 

Adjusted Rm 0.614 0.407 0.162 0.020 

Residual Std. Error 0.155 (df = 1854) 0.406 (df = 2481) 0.899 (df = 2760) 0.608 (df = 5090) 

F Statistic 
120.620*** (df = 

25; 1854) 
54.925*** (df = 

32; 2481) 
17.815*** (df = 

32; 2760) 
4.386*** (df = 31; 

5090) 

   
*p<0.1 ;  **p<0.05;  ***p<0.01 
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Appendix F: An explanation of our enhanced bond valuation equation 

Following Leland/Toft model (LT) closely, we assume firm has productive assets whose 

unleveraged value ! follows a continuous diffusion process with a constant proportional volatility 

ß: 

 

G!

!
= (≠(!, J) − 1)GJ + ßGÆ 

where ≠(!, J) is the total expected rate of return on asset value !, 1 is the constant fraction 

of value paid out to security holders, and GÆ is the increment of a standard brownian motion. The 

process continues without limit until ! falls to !Ø, the optimal value of the firm’s assets at which 

to declare bankruptcy. We characterize the default triggering barrier “F” as ln ±
¨

¨≤
≥ when ! = !Ø. 

 

We have, [ = ln ±
¨

¨≤
≥, for ! ≠ !Ø, where G[ would be given by 54 

G[ =
Ä 

Ä¨
G! +

Q

m

Ä 

Ä¨Ä¨
(G!)m. 

 

Substituting G! = 	 (≠(!, J) − 1)!GJ + ß!GÆ into the expression for G[ yields 

 

G[ =
1

!
∑(≠ − 1)!GJ + ß!GÆ∏ +

1

2
Ω−

1

!m
æ ∑(≠ − 1)!GJ + ß!GÆ∏

m
 

G[ = (≠ − 1)GJ + ßGÆ − (1/2)ßmGJ 

G[ = Ω≠ − 1 −
1

2
ßmæGJ + ßGÆ	 

 

Employing Girsanov’s theorem will allow us to put this process in a risk neutral 

environment, so that  

G[ = Ω≠ − 1 −
1

2
ßmæ GJ + ß(GÆ∗ − ¶GJ) 

 

54 The cautious reader will recognize that 
¢	 ÒÚΩ

Û

Û≤
æ

¢¨
=

±Q
¨≤
Ù 	≥

±¨ ¨≤
Ù ≥

=
Q

¨
 which is surprising because 

¢ ÒÚ(¨)

¢¨
 

also equals 
Q

¨
. 
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where ¶ is the price of risk, and therefore 

G[ = Ω≠ − 1 −
1

2
ßmæ GJ + ß(GÆ∗ − Ω

≠ − (X + ´)

ß
æGJ) 

or, 

G[ = ∫(X + ´) − 1 −
1

2
ßmº GJ + ßGÆ∗ 

or, 

G[ = I	GJ + ß	GÆ∗ with I = Ω(X + ´) − 1 −
Q

m
ßmæ. 

This risk neutral brownian process can be written as: 

G[⁄ = I	Gd + ß	GÆ⁄
∗ . 

Integrating, 

 

· G[⁄ = I· Gd

S

j

+ ß· GÆ⁄
∗

S

j

S

j

 

yields, 

[S − [j = I(J − 0) + ß· GÆ⁄
∗

S

j

 

or, 

è[[S] = 	[j + I ∙ J 

and, 

!IX([S) = ßm!IX ∫· GÆ⁄
∗

S

j

º 

or, finally 

!IX([S) = ßmè ∫· GÆ⁄
∗

S

j

º

m

. 

Furthermore, Ito’s isometry allows us to write, 

è ±∑∫ GÆ⁄
∗S

j
∏∑∫ GÆ⁄

∗S

j
∏≥ as ∫ Gd

S

j
. 

 

Gathering terms,  

!IX([S) = ßm · Gd

S

j
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or 

!IX([S) = ßmJ 

so that [S is normally distributed with a mean of [j + IJ and a variance of ßmJ. With these 

characteristics, the pdf for [ must be  

N([j, [; J) =
1

ß√23J
t
Z( Z ıZøS)



mˆS  

The variate [S is characterized by [(JR) when [S equals b. The likelihood N([j, [; J) is the 

probability that [S = [ and that the process has not reached the barrier in the interval (0, J). 

Consequently, the cumulative probability D∑[(J) < F			for  	J < (JR|[(0) = [j)∏ equals 

∫ N([j, [; J)G[
R

Z˜
= D([j, F; J). D([j, F; J) equals the probability that “b” has not been reached 

by J which could be written as D([j, F; J) = 	prob(JR ≥ J) or as D([j, F; J) = 	1 − $(J; [j, F), 

where $(J; [j, F) is the cumulative probability of the time to the barrier. Furthermore,  

GD

GJ
([j, F; J) = 	−$˘(J; [j, F) 

or 

−
GD

GJ
([j, F; J) = 	}(J; [j, F) 

where }(J; [j, F) is the marginal probability of the time to bankruptcy, which, upon 

differentiation by J, could be written as 

}(J; [j, F) = 	
RZ ı

ˆ√m˙S˚
t
¸(˝¸˛ı¸ˇ‘)



!‘ . 

This probability density function integrates to one and the time to bankruptcy has, 

intuitively, a mean of ±
RZ ı

ø
≥. 

In our model, F is not just a threshold, but an absorbing barrier. Consequently N([j, [; J) 

has to be rewritten as a linear combination N([j, [; J) = 	NQ([j, [; J) + 	UNQ([j, [; J) to ensure 

that N([j, F; J), the probability that [ = F, equals zero for every possible JR. The method of images 

yields 

N(0, [; J) =
1

ß√23J
§t

Z( ZøS)

mˆS − t
Ω
møR

ˆ
	µ	

Z( ZmRZøS)

mˆS
æ
• 

where U = 	−t
ˇ˝

! . 
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This solution can be easily verified by setting [ equal to F where, consequently, the 

expression for N(0, [; J) quickly reduces to 0. 

Using the expression for N(0, [; J) after the adjustment for the boundary condition yields 

the following expression for the cumulative of [: 

D(0, F; J) = ·
1

ß√23J
§t

Z( ZøS)

mˆS − t
Ω
møR

ˆ
	µ	

Z( ZmRZøS)

mˆS
æ
• G[

R

Z˜

 

If D([j, F; J) is standardized, we have 

D(0, F; J) = V Ω
F − IJ

ß√J
æ − t

møR

ˆ 	V Ω
−F − IJ

ß√J
æ 

where V(∙) is the cumulative distribution for the standardized normal variate. If the 

expression is rewritten so that the absorbing barrier is at zero, the cumulative normal becomes 

D([j, F; J) = V ±
RµøS

ˆ√S
≥ − t

¸ˇ˝

! 	V ±
ZRµøS

ˆ√S
≥     for some “J”. 

 

The term t
¸ˇ˝

! = t

¸ˇ

! ∙ÒÚΩ
Û

Û≤
æ
 by definition (i) and t

¸ˇ˝

! = ±
¨

¨≤
≥

¸ˇ

!
 (ii), because, taking the 

log of both the LHS and RHS terms of (i) yields −
mø

ˆ
∙ ln ±

¨

¨≤
≥ = −

mø

ˆ
∙ ln ±

¨

¨≤
≥. Consequently, 

D([j, F; J) becomes 

D([j, F; J) = V ±
RµøS

ˆ√S
≥ − ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥. 

 

Of course, for the standardized normal variate Æ, V(U) = 	1 − V(−U) due to symmetry, 

consequently, D([j, F; J) becomes 

D([j, F; J) = 1 − 	V ±
ZRZøS

ˆ√S
≥ − ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥ or, 

D([j, F; J) = 1 − §V ±
ZRZøS

ˆ√S
≥ + ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥• . 

As detailed above, D([j, F; J) can be written as D([j, F; J) = 1 − $(J; [j, F) where 

$(J; [j, F) is the cumulative probability of the time to the barrier. So if  

D([j, F; J) = 1 − ‚V Ω
−F − IJ

ß√J
æ + Ω

!

!Ø
æ

Zmø

ˆ

	V Ω
−F + IJ

ß√J
æ„ 
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then, 

$(J; [j, F) = 	V ±
ZRZøS

ˆ√S
≥ + ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥. 

 

The expression immediately above is identical to the expression we have on page 37. 

 

Recall  

−
G

GJ
D([j, F; J) = 	}(J; [j, F) 

 

so that the evaluation of the expression ∫ tZ(°µ∂)S}(J, [j, F)
˜

j
GJ will involve the 

differentiation of  

D([j, F; J) = V Ω
F + IJ

ß√J
æ − t

ZmøR

ˆ 	V Ω
−F + IJ

ß√J
æ 

with respect to J. The partial derivative of the first term on the RHS can be written as 

R

ˆ√m˙S˚
t
¸(˝"ˇ‘)

!‘ , when zero is acknowledged as the absorbing barrier. The determination of 

∫ tZ(°µ∂)S
R

ˆ√m˙S˚
t
Z
(˝"ˇ‘)

!‘ GJ
˜

j
 involves completing the square and if 2 =

∑øµm(°µ∂)ˆ∏

#


ˆ
 then the 

expression above eventually becomes  

 

·
F

ß√23Jx
t
Z(Q/m)Ω

RµŒˆS

ˆ√S
æ



Z(Q/m)R(
mø

ˆ
ZmŒ)	

GJ

˜

j

. 

This expression can be rewritten as 

t
Z(Q/m)ÒÚ	(

¨

¨≤
)±
mø

ˆ
ZmŒ≥

·
F

ß√23Jx
t
Z(Q/m)Ω

RµŒˆS

ˆ√S
æ



	

GJ

˜

j

 

and, since for any U and ", tÉ	öú(Ø) = "É, we have  

Ω
!

!Ø
æ

ŒZ
ø

ˆ

·
F

ß√23Jx
t

Z(Q/m)$
Rµ∑øµm(°µ∂)ˆ∏

#
S

ˆ√S
%



	

GJ

˜

j

 

where the drift is now (Im + 2(X + ´)ßm)Q/m. 
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Furthermore, if 2 −
ø

ˆ
 is rewritten as –I + Æ and if F + (Im + 2(X + ´)ßm)Q/mJ equals F +

ÆßmJ then we now have 

±
¨

¨≤
≥
Zøµ¿

∫
R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝"'!‘
!√‘

æ



	
GJ

˜

j
. 

For a particular fixed income security with a time to maturity of &, the expression for the 

likelihood of reaching the absorbing barrier F before the expiration of the bond would be: 

±
¨

¨≤
≥
Zøµ¿

(∫ R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝"'!‘
!√‘

æ



	
GJ

Y

j
). 

 

In terms of the cumulative normal, we have  

±
¨

¨≤
≥
Zøµ¿

�1 − V ±
Rµ¿ˆY

ˆ√Y
≥á or 

±
¨

¨≤
≥
Zøµ¿

�V ±
ZRZ¿ˆY

ˆ√Y
≥á  

because V(−U) = 	1 − V(U) for the standardized normal variate. This is exactly what we 

have as the first half of the expression for ((&) in the theory section. 

Differentiation of the second term on the RHS of D([j, F; J) = V ±
RµøS

ˆ√S
≥ −

t
Z
ˇ˝

! 	V ±
ZRµøS

ˆ√S
≥ with respect to J almost immediately yields 

−t
ZmøR

ˆ ·
−F

ß√23Jx
t

Z(Q/m)∑m(°µ∂)Sˆ∏

ˆ t
Z(Q/m)Ω

(ZRµøS)

ˆ√S
æ



GJ

˜

j

. 

Completing the square yet again yields 

−t
¸ˇ˝

! ∫
ZR

ˆ√m˙S˚
t
Z(Q/m)Ω

˝¸’!‘
!√‘

æ



t
Z(Q/m)R(

¸ˇ

!
µmŒ)

GJ
˜

j
   or 

 

t
R±

ˇ

!
	Z	

ˇ

!
	Z	Œ≥

∫
R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝¸’!‘
!√‘

æ



GJ
˜

j
. 

This expression can be written as  

±
¨

¨≤
≥
Z±

ˇ

!µŒ
≥

∫
R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝¸’!‘
!√‘

æ



GJ
˜

j
. 
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Furthermore, if ±
ø

ˆ
+ 2≥ is written as (I + Æ) and if 

RZŒˆS

ˆ√S
 is written as 

RZ¿ˆS

ˆ√S
 then we 

have  

Ω
!

!Ø
æ

ZøZ¿

·
F

ß√23Jx
t

ZQ

m
Ω
RZ¿ˆS

ˆ√S
æ



GJ

˜

j

 

which can be written in terms of the cdf of the standardized normal variate as 

Ω
!

!Ø
æ

ZøZ¿

‚1 − · }(Æ)GÆ

RZ¿ˆS

ˆ√S

Z˜

„ 

or as  

Ω
!

!Ø
æ

ZøZ¿

· }(Æ)GÆ

ZRµ¿ˆS

ˆ√S

Z˜

 

due to symmetry 1 − V(U) = 	V(−U). For a fixed income security with a time to 

maturity of & this expression can be written as  

±
¨

¨≤
≥
ZøZ¿

V ±
ZRµ¿ˆY

ˆ√Y
≥. 

The expression above corresponds to the second half of the RHS of our expression for 

((&) in our theory section.  

Gathering these results, we have 

 

· tZ(°µ∂)S}(J, [j, F)

˜

j

GJ = Ω
!

!Ø
æ

Zøµ¿

§V ∫
−F − Æßm&

ß√&
º• +	Ω

!

!Ø
æ

ZøZ¿

§V ∫
−F + Æßm&

ß√&
º•	 

which is identical to what we provide in the theory section. 
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Appendix G: Optimal Bankruptcy Threshold *+∗  

By assuming that debt, tax benefits and bankruptcy costs are all corporate securities that 

depend on only the underlying firm value, closed form solutions are available for these features 

of optimal value of the firm. In particular, when securities have no explicit time dependence 

$Y(!) = 0, the value of a claim on a firm that continuously pays ƒ (ƒ ≥ 0) satisfies the 

following ordinary differential equation 
1

2
ßm!m$̈ ¨(!) + (X + ´)!$̈ (!) − (X + ´)$(!) + ƒ = 0. 

So that, 

$(!) = Uj + UQ! + Um!
Z, 

where ∆ =
m(°µ∂)

ˆ
 . 

Any time independent claim must have this functional form with the constants Uj, UQ, and 

Um being determined by the boundary conditions of the security at hand. 

Given the argument above, debt, is given by ä(!) = Uj + UQ! + Um!
Z, where 

characterizations of Uj, UQ, and Um are provided by the following eventualities. We assume that 

ä(!) promises a perpetual coupon payment of ƒ unless the firm declares bankruptcy. 

Consequently, if ! → ∞ then ä(!) would be given by ä(!) =
—

(°µ∂)
 so that Uj must be assigned 

the value of 
—

(°µ∂)
 and UQ is clearly zero. The third boundary condition, Um is provided by the 

circumstance in which ! = !Ø. In this case, ä(!) collapses to (1 − u)!Ø (u is the proportional 

cost of bankruptcy) so that 

ä(!) =
—

(°µ∂)
+ Um!Ø

Z, = (1 − u)!Ø   and 

Um!Ø
Z, = ∫(1 − u)!Ø −

—

(°µ∂)
º    so that 

Um = -(1 − u)!Ø
Qµ, −

ƒ

(X + ´)
!Ø
,.. 

Substituting the expression above into ä(!) =
—

°µ∂
+ Um!

Z, yields 

ä(!) =
ƒ

(X + ´)
+ -(1 − u)!Ø

Qµ, −
ƒ

(X + ´)
!Ø
,.!Z, . 

Similar treatments of the tax benefit o"(!) and the cost of bankruptcy "ƒ(!) will yield 

 

o"(!) =
≈ƒ

(X + ´)
−

≈ƒ

(X + ´)
Ω
!

!Ø
æ

Z,

 

and 

"ƒ(!) = u!Ø Ω
!

!Ø
æ

Z,

 

where ≈ is the proportion of coupon payments that are tax deductible. 

At this point, the total value of the firm can be characterized by 

&[(!) = ! + o"(!) − "ƒ(!) 

while the value of equity is given by 

è(!) = &[(!) − ä(!). 
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If the partial derivative of è(!) is taken with respect to ! and then set equal to zero, we 

have  

!Ø
∗ =

(1 − ≈)ƒ

(X + ´) + ±
1

2
≥ ßm

 

when we evaluate the derivative at ! = !Ø. This result implies that any level of asset value 

which triggers bankruptcy will mean that the value of equity is zero. 

In the analysis above, we used consols to insure time independence of the firm’s debt 

service requirements. In LT’s 1996 publication a stationary debt structure was employed to insure 

time homogenous debt cash flows and maintain the viability of the assumption that $Y(!) = 0. 

These circumstances insure that !Ø
∗ is an endogenous constant which determines the optimal level 

of asset value at which to declare bankruptcy. Clearly, this debt structure recognizes that bonds 

can have a finite time to maturity. 

In their 1996 JF paper, Leland/Toft consider an environment where at each moment in 

time, the firm has debt with a constant total principal D, paying a constant total coupon rate ƒ. 

That is, the firm continuously retires outstanding debt and replaces it with new debt of equal 

coupon and principal. As long as the firm remains solvent, at any time “J” the total outstanding 

debt principal will be D and have a uniform distribution of maturities over the interval (J, J + o). 

Bonds with a principal N pay a constant coupon rate y per year implying total coupon paid on all 

outstanding bonds of ƒ per year. Total debt service payments are time independent and equal to 

±ƒ +
ñ

ã
≥. In this paper, we employ LT’s assumption of the firm having a stationary debt structure, 

but we acknowledge the role of a liquidity premium in the discount rate. 

Given that the value of an individual bond G(!; !Ø; &) is provided in the text of this paper, 

the value of all outstanding bonds ä(!; !Ø, o) would be: 

ä(!; !Ø, o) = 	 · G(!; !Ø, &)G&

ã

Yôj

=
ƒ

(X + ´)
+ ΩD −

ƒ

(X + ´)
æ-

1 − tZ(°µ∂)ã

(X + ´)o
− h(o).

+ -(1 − u)!Ø −
ƒ

(X + ´)
. /(o) 

 

where 

 

h(o) =
1

o
· tZ(°µ∂)Y$(&)G& =

1

(X + ´)o
±((o) − tZ(°µ∂)ã$(o)≥

ã

j

 

 

/(o) =
1

o
· ((&)G&

ã

j

=
1

Æß√o
-−Ω

!

!Ø
æ

Zøµ¿

V[OQ(o)]OQ(o) + Ω
!

!Ø
æ

ZøZ¿

V[Om(o)]Om(o)..	 

 

Using &[(!; !Ø) provided earlier in this appendix, the value of equity in this new context 

would be 
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è(!; !Ø, o) = &[(!; !Ø) − ä(!; !Ø, o). 

Taking the derivative of è(!; !Ø, o) with respect to ! and evaluating the first order 

condition at ! = !Ø yields 

 

!Ø
∗ =

Ω
ƒ

(X + ´)
æ Ω

U

(X + ´)o
− "æ −

UD

(X + ´)o
−

≈ƒ∆

(X + ´)

1 + u∆ − (1 − u)"
 

 

where 

 

U = 2ItZ(°µ∂)ãV∑Iß√o∏ − 2ÆV∑Æß√o∏ −
2

ß√o
e∑Æß√o∏ +

2t(°µ∂)ã

ß√o
e∑Iß√o∏ + (Æ − I) 

 

and where 

 

" = 	− Ω2Æ +
2

Æßmo
æV∑Æß√o∏ −

2

ß√o
e∑Æß√o∏ + (Æ − I) +

1

Æßmo
. 

 

V(∙) denotes the cumulative distribution of the standard normal while e(∙) is the density 

function of the standard normal.
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Appendix H: Calibration of LT Liquidity Premium Enhanced Model 

 

Period “Firm 
Quality” 

0 Leverage 1 2 3 Liq. 
Ratio 

Calm Higher 2.5% 30% 4% 20% 0.4 5% 

Lower 40% 5% 30% 0.5 10% 

Stress Higher 7.5% 50% 6% 40% 0.6 10% 

Lower 60% 7% 50% 0.7 20% 

 

Our enhanced version of the LT model is able to generate term structures of liquidity 

spreads that characterize periods of heightened financial uncertainty and periods of relative 

economic tranquility, and also for firms with varying probability distributions of the time-to-

default. To illustrate the possibilities, we select parameters to be used in our enhanced LT model 

to represent “high” and “low” quality firms in a “calm” and in a “stress” economic periods. 

In the construct of and Leland and Toft (1996), the value of the debt with maturity &, G(&), 

the value of total debt ä, the value of equity è, and the value of the firm [, are a function of 9 

parameters that characterize the dynamics of the firm. These parameters are: 1) the risk-free rate 

X, 2) the firm payout ratio 1, 3) the volatility of the value of the unlevered firm ß, 4) the initial 

value of the unlevered firm !j, 5) the maturity of the newly issued debt o, 6) the total coupons 

paid to all outstanding debt ƒ, 7) the total principal value of outstanding debt D,	8) the fraction of 

asset lost in bankruptcy u, and 9) the tax rate ≈. We enhance LT’s model by additionally including 

the liquidity premium ´Y. We next describe our parameter calibrations. 

For both types of firms in both types of economic scenarios, we assume that the initial 

unlevered value of the assets !j takes the value 100 and we assume that the corporate tax rate 

equals 35%. The parameters X, ß, 1, and u are calibrated to historical averages so as to represent 

calmed and stressed economic periods, as well as high and low quality firms. For example, we set 

X = 2.5% for high quality and low quality firm types in a period of financial tranquility, but we 

increase the interest rate to X = 7.5% for both types of firms during a time of heightened economic 

anxiety.  

During the calmed period, we set the volatility of assets to ß = 20% for the high quality 

firm, but we modestly increase ß to 30% for the low quality firm in the same period. We increase 

the volatility of assets for the lower quality firm because, all else equal, increases in ß lead to an 

enhanced likelihood of early default. In the period of financial distress, we increase the volatility 

of assets for types of firms to 40% and 50% because during a period of stress there is a higher 

uncertainty about the future value of the firm’s assets.  

In the period of relative calm, we set the payout ratio 1 to equal 4% for the higher graded 

firm and 5% for the lower graded firm. Again, we choose a slightly greater value of 1 for the lower 

quality form because, all else equal, a larger 1 implies a greater likelihood of earlier default. We 

increase the value of 1 for both firms in the stress period to 6% and 7%.  

In both economic epochs, we calibrate the recovery rate 1 − u to a greater value for the 

high grade firm than for the low grade firm. This captures the notion that the higher quality firm 

might own assets with a greater salvage value than those of the lower quality firm. In the non-

stress period, we set the recovery rates to 0.6 for the high quality firm and to 0.5 for the low quality 

firm. Yet, as we transition to the stress period, we slightly decrease the recovery rates to 0.4 and 

0.3.  
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Firms in the revised LT model want to maintain a specific leverage ratio r. To achieve this 

desired leverage, the firms select a value of the total principal D so that the fraction of the resulting 

total debt ä to the total value of the firm &[ exactly equals the value r. Thus, the firms strategically 

choose the value of the principal D to meet their required capital structure. Also, to find the total 

coupon payments ƒ,  the enhanced LT model assumes that firm selects the coupon y so that the 

value of the newly issued debt G(o) equals N. This of course implies that debt is issued at par 

value. These conditions from LT imply that the values of D and ƒ are determined jointly as the 

solution to a dual minimization problem so that r =
Ü(ñ,—)

Y (ñ,—)
 and lim

Y↓ã
G(D, ƒ, &) = N. In our 

calibrations we select the leverage ratios 20% and 30% in the non-stress period, and 40% and 50% 

in the stress period because highly levered firms are assumed to be riskier. 

The plots depicted in Figure 1 are the outcome of solving for the value of ´ for different 

values of &, the time to maturity, and plotting the relationship between the two while maintaining 

the existing equilibrium value of debt. 
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Appendix I: the conventional Kalman filter algorithm 

For expositional convenience, we provide a brief summary of the Kalman filter (KF) 

algorithm. Let the e state discrete-time linear system be given by the following equations: 

∆SµQ = $	∆S + ÕS, 

CS = s∆S + [S, 

ÕS~	(0, iS), 

and	[S	~	(0, cS). 

Above, CS equals	¶	the observed yield spread at time J, ∆S equals [ Ś			«S]′ the state vector at 

time J, ÕS is a 2 x 1 vector of Gaussian noise and known covariance matrix iS, and [S is a 1 x 1 

measurement error with a mean of zero and known covariance matrix and cS. The matrix $ is the 2 

x 2  system matrix and s is the 1x2 measurement system. Denote by ∆8SZ the a priori estimate of the 

state variable ∆S and by ∆8Sµ the a posteriori estimate of ∆S. The state vector at time 0 is a random 

vector with known mean è[∆j] and known covariance matrix Dj. The KF is initialized as follows: 

∆8jµ = è[∆j],     and 

Dj
µ = è[(∆j − ∆8jµ)(∆j − ∆8jµ)ã] = Dj. 

We first utilize the transition equation to propagate from the time step (J − 1) to J: 

∆8SZ = $∆8SZQµ , 

and the covariance in the a priori estimate is given by: 

DS
Z = $DSZQ

µ $ã +	iS. 

In the updating step, where we use the measurement equation to improve the estimation of 

the state vector ∆8SZ. We can calculate the a posteriori update ∆8Sµ as well as the a posteriori 

covariance DS
µ by using the usual Kalman filter equations, where ÃS denotes the Kalman gain, 

∆8Sµ = ∆8SZ + ÃS[C9 −s∆8SZ] 
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ÃS = 	DS
Zsã(sDS

Zsã + cS)
ZQ, and 

DS
µ = (h − ÃSs)DS

Z.
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Appendix J: A brief illustration of the UT algorithm and its advantages 

To illustrate the superiority of the unscented transformation algorithm over linearization, 

we compare the approximations of both approaches to nonlinear functions. Our example is 

designed to capture the essence of UT in a simple context. For example, assume that the value of 

debt is given by: 

G< =
y

X + ´
∑1 − tZ(°µ∂)Y∏ + N ∙ tZ(°µ∂)Y	 

where again, y is the coupon, (X + ´) is the discount factor, and & is the time to maturity. With no 

loss in generality, assume that the bond pays no coupons, that the principal is 1, the risk-free rate 

X is constant, and the time to maturity is 1. We will characterize the liquidity premium as being 

given by ́ =	≠∂ +	£∂ where ≠∂ is the mean and £∂ is a random variable with mean 0 and standard 

deviation ß∂. 

Our intent, in particular, is to compare the ability of the UT and linearization to 

approximate the first two orders of a Taylor expansion of the expected value of debt G<, itself. That 

is, the objective is to accurately approximate: 

èÂG<Ê = 	è[©(´)] = 	è[tZ
(∂µ°)] 

with the mean of two popular methodologies for the treatment of nonlinear functions. A 

second order expansion of èÂG<Ê is: 

èÂG<Ê = è (	©∑≠∂∏ + ∑´ − ≠∂∏ ∙
=©(´)
=´ >

∂ô?“

+ ∑´ − ≠∂∏
m
∙
1

2

=m©(´)
=´m >

∂ô?“

)

= 				è @tZ(∂µ°)A
∂ô?“

B− è @tZ(∂µ°)A
∂ô?“

∙ ∑´ − ≠∂∏B

+
1

2
	è @tZ(∂µ°)A

∂ô?“
∙ ∑´ − ≠∂∏

mB		 
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èÂG<Ê = 	 tZ∑?“µ°∏ − tZ∑?“µ°∏èÂ£∂Ê +
1

2
	tZ∑?“µ°∏èÂ£∂

mÊ 

which equals 

èÂG<Ê = 	 tZ∑?“µ°∏ ∙ [1 +
Q

m
ß∂
m]    since    èÂ£∂Ê = 0	    and     èÂ£∂

mÊ = 	ß∂
m. 

We next show that we can fully recover the expected value of the second order Taylor 

series expansion of risky debt above using the mean of  a UT algorithm to estimate èÂG<Ê. First, we 

prepare our “deterministic” sample by combining two sigma points (ß∂, −ß∂) with the sample 

mean of the discount factor X +	 ´̅ and then we transform them with the nonlinear function ©(∙) so 

that we have ©(X +	 ´̅ 	+ ß) and ©(X +	 ´̅ − ß). Finally, we take the expected value of a second 

order expansion of the sample mean of the UT variates. 

èÂG̅ÖãÊ = 	èÂtZ
(∂µ°)Ê

D“ôj
+

1

2(E + 1)

=©
=ßQ

GßQ +	
1

4(E + 1)

=m©
=ßQ=ßQ

(GßQ)
m +	

1

2(E + 1)

=©
=ßm

Gßm

+	
1

4(E + 1)

=m©
=ßm=ßm

(Gßm)
m

= tZ∑°µ	?“∏ +
1

2(E + 1)
∑−tZ∑°µ	?“∏∏GßQ +	

1

4(E + 1)
∑tZ∑°µ	?“∏∏GßQ

m

+	
1

2(E + 1)
∑tZ∑°µ	?“∏∏Gßm +	

1

4(E + 1)
∑tZ∑°µ	?“∏∏Gßm

m 

which simplifies to: 

èÂG̅ÖãÊ = 	 tZ
(∂µ°) ∙ [1 +

Q

m
ß∂
m],    since     ß0 = Â(1 + 	E)ß∂mÊ

Q/m
. 

Thus, with an unscented transformation, by estimating the mean using a deterministic 

sample of points around the mean of (X + ´̅) we can get an estimate which, on average, identically 

captures the first two orders of a Taylor expansion of the mean of the nonlinear function èÂG<Ê 

itself. In contrast, if an estimator of the value of debt relies on only the linearization of the expected 

value of G<, a single observation on ´̅ would yield 
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èÂG̅ÅpPÊ = è (tZ(°µ∂F)A
∂Fô?

+	
=ÂtZ(°µ∂F)Ê

=´̅ >
∂Fô?

G´̅) 

where G´̅ = ´̅ − ≠. 

The mean of this estimator would be  

èÂG̅ÅpPÊ = 	 tZ
(°µ?) − tZ

(°µ?)è[G´̅] 

or simply, 

èÂG̅ÅpPÊ = 	 tZ
(°µ?). 

 

 Clearly, the mean of  G̅ÅpP fails to  duplicate èÂG<Ê  and falls short  of the ability of the  

èÂG̅ÖãÊ to characterize  èÂG<Ê. However, the economic  significance of G̅ÅpP’s bias will be 

considered in the next 4 pages
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Generalizing our simple debt valuation equation to include coupons and alternative times 

to maturity would result in G< = π

°µ∂
+ ±N −	

π

°µ∂
≥ tZ

(°µ∂)Y. The expression above would allow us 

to conduct a comparative static analysis, alternatively varying N, ß∂
m, X, &, 	≠, and y, to illustrate 

the economic importance of the UT approach to the treatment of nonlinearities. 

We first calculate the expected value of a second order expansion of G<, then we consider 

the results provided by èÂG̅ÖãÊ and èÂG̅ÅpPÊ for a set of baseline parameters given as follows: the 

maturity & equals 20 years, the principal N is $500 million, the coupon payment y is $20 million, 

the short-term interest rate X is 5%, the mean of the liquidity premium is ≠ = 0.03, and the standard 

deviation of the liquidity premium is ß = 0.02. To study how changes in these variables 

individually worsen the estimate provided by the linearization method when compared to the UT, 

we then increase and decrease each variable independently of the rest and recompute the values of 

èÂG<Ê, èÂG̅ÖãÊ, and èÂG̅ÅpPÊ. We document the results from this analysis when we vary just one of 

the five variables in Panels A, B, C, D, and E for a time to maturity equaling 20 years. In Panel A 

we let N take the values $400 million, $500 million, and $600 million while the remaining variables 

stay at their baseline levels. In Panel B, we evaluate X at 5%, 4%, and 6%. In Panel C, we equate 

≠ to either 3%, 4%, and 5%. In Panel D, we set ß to 2%, 1%, and 3%. Lastly, in Panel E, we select 

y from among the values $17.5 million, $20 million, and $22.5 million.  

 In Panel A, we calculate the deviation between the estimates for èÂG<Ê  provided by èÂG̅ÖãÊ, 

and èÂG̅ÅpPÊ if we vary the principal amount. When N equals $400 million, the UT computes a 

value of debt of $290.13 million. This result agrees with the expected value of G<. However, the 

linearization method predicts a value of debt of $280.28 million, which is 3.40% lower than the 

correct estimate. If the principal is increased to $600 million, the UT correctly calculates a value 
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of debt of $333.74 million, while the linearization method imputes a value of $320.66 million. 

This implies that the prediction error of the linearization method increases to 3.92%.  

In Panel B, we compare the estimates provided by the UT and the linearization, when we 

vary the interest rate. When X equals 5%, the UT correctly calculates a value of debt of $311.94 

million, while the linearization method assigns a value of debt of $300.47 million. This is is a 

mispricing of about 3.68%. Yet, when increase X to 6%, the error slightly decreases to about 3.45%.  

In the equations for èÂG<Ê, èÂG̅ÖãÊ, and èÂG̅ÅpPÊ above, clearly both X and ≠ have identical 

implications for the value of debt. Thus, the linearization errors obtained when we vary ≠ in Panel 

C exactly mirror those displayed in Panel B. 

Changes in the standard deviation of the liquidity premium also induce large differences in 

pricing between the UT and the linearization method. To illustrate this statement, in Panel D, we 

display results when ß = 0.02, ß = 0.01, and when ß = 0.03. These results suggest that èÂG̅ÅpPÊ 

deviates from the true expected value by a factor between 3.68% and 7.9%. Lastly, the results in 

Panel E also seem to indicate that when we vary the coupon payment from its baseline level, the 

UT offers an accurate estimation of the value of debt, while the linearization method deviates from 

the correct answer by a margin of error no less than 3.53%.  

Consistent with our goal of providing reliable estimates for a term structure, we report the 

results provided by èÂG̅ÖãÊ, and èÂG̅ÅpPÊ when we evaluate & at 10 years, 15 years, and 20 years 

to maturity. When & = 20 years and all other parameters are fixed at their baseline level, the UT 

computes a value of debt of $311.94 million. However, the linearization method predicts a value 

of debt of $300.47 million, which is 3.40% lower than the correct estimate. For a bond with 15 

years to maturity, the value of debt calculated by the UT is $261.21 million while the value of debt 
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calculated by the linearization method is $250.59 million. This is a difference of about 4.1%. 

Finally, for a bond with 10 years until expiry, the bias of the linearization is about 4.6%.  

This scenario illustrates the advantage of the UT over the linearization in a simple bond 

pricing example with three sources of nonlinearity on the RHS of our expression for G<. Yet, even 

in this simple example the biases from linearization can range between 3.40% and to as much as 

7.8%. Furthermore, in the debt valuation equation that we estimate in the paper, there are 4 explicit 

nonlinear entries for the liquidity premium, another 6 nonlinear entries of ´Y are included in $(&), 

10 nonlinear appearances of ´Y in ((&), and 4 nonlinear entries of the liquidity premium in !Ø. 

$(&), ((&), and !Ø are all terms included in the determination of G(!, !Ø, &). Clearly, the 

accumulated econometric advantage of a UT approach to nonlinearities in equation 4 would be 

monumental. The superiority of UT it is the basis for our reliance on the unscented Kalman filter 

at the exclusion of the extended Kalman filter as being the vehicle for our estimation for our 

enhanced debt valuation model.  

 
Panel A: Varying the Principal G 

 

 H(IJ) H(IFKL) H(IFMNO) 
G = $PQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

290.13 290.13 280.28 

G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

311.94 311.94 300.47 

G = $XQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

333.74 333.74 320.66 
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Panel B: Varying the Interest Rate Y 
 

 H(IJ) H(IFKL) H(IFMNO) 
G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

311.94 311.94 300.47 

G = $SQQR 
0 = Q.QP 
T = Q.QU 
2 = Q.QV 
W = $VQR 

352.30 352.30 338.56 

G = $SQQR 
0 = Q.QX 
T = Q.QU 
2 = Q.QV 
W = $VQR 

277.71 277.71 268.14 

 
Panel C: Varying the Mean of the Liquidity Premium T 

 

 H(IJ) H(IFKL) H(IFMNO) 
G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

311.94 311.94 300.47 

G = $SQQR 
0 = Q.QS 
T = Q.QV 
2 = Q.QV 
W = $VQR 

352.30 352.30 338.56 

G = $SQQR 
0 = Q.QS 
T = Q.QP 
2 = Q.QV 
W = $VQR 

277.71 277.71 268.14 
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Panel D: Varying the Standard Deviation of the Liquidity Premium 2 
 

 H(IJ) H(IFKL) H(IFMNO) 
G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

311.94 311.94 300.47 

G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QZ 
W = $VQR 

352.30 352.30 338.56 

G = $SQQR 
Y = Q.QS 
T = Q.QU 
2 = Q.QU 
W = $VQR 

326.26 326.26 300.47 

 

Panel E: Varying the Coupon Payment W 
 

 H(IJ) H(IFKL) H(IFMNO) 
G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $Z[.SR 

352.30 352.30 338.56 

G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VQR 

311.94 311.94 300.47 

G = $SQQR 
0 = Q.QS 
T = Q.QU 
2 = Q.QV 
W = $VV.SR 

337.30 337.30 325.41 
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Appendix K: the unscented Kalman filter algorithm 

We provide a summary of the unscented Kalman filter (UKF) algorithm, which is mostly 

based on Simon (2006). Let the e state discrete-time nonlinear system be given by the following 

equations: 

∆SµQ = }(∆S) + ÕS, 

CS = ©(∆S) + [S, 

ÕS	~	(0, iS), 

and	[S	~	(0, cS). 

Above, CS is the observed signal at time J, ∆S is the state vector at time J, and ÕS and [S 

are white noise processes with zero mean, and have known covariance matrices iS and cS. The 

system equation }(∙) and the measurement equation ©(∙) are nonlinear functions. Denote by ∆8SZ 

the a priori estimate of the state variable ∆S and by ∆8Sµ the a posteriori estimate of ∆S. The state 

vector at time 0 is a random vector with known mean è[∆j] and known covariance matrix Dj. 

The UKF is initialized as follows: 

∆8jµ = è[∆j],     and 

Dj
µ = è[(∆j − ∆8jµ)(∆j − ∆8jµ)ã] = Dj. 

To propagate from the time step (J − 1) to J, we utilize the unscented transformation 

algorithm (UT) where we first choose the 2e sigma points ∆8
SZQ

(0)
 given by 

∆8
SZQ

(0)
= 	 ∆8SZQZ +	∆\(0) for 5 = 1,… ,2e   with  

∆\(0) = ∑√eDSZQ
µ ∏

0

ã

 for 5 = 1,… , e,   and 

∆\(úµ0) = −∑√eDSZQ
µ ∏

0

ã

 for 5 = 1,… , e. 
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In the equations above, √eDSZQ
µ  is the matrix square root of eDSZQ

µ  such that 

∑√eDSZQ
µ ∏

ã

∑√eDSZQ
µ ∏ = √eDSZQ

µ  and ∑√eDSZQ
µ ∏

0
 is the 5th row of √eDSZQ

µ . Next, we use the 

nonlinear system equation }(∙) to predict  the vectors ∆8S
(0)

 from the sigma points ∆8
SZQ

(0)
 as follows: 

∆8S
(0)

= }±∆8
SZQ

(0)
, dSZQ	≥.	

Then, we combine the ∆8S
(0)

 vectors to obtain the time J a priori state estimation, ∆8SZ: 

∆8SZ =
1

2e
W∆8S

(0)

mú

0ôQ

. 

We also estimate the a priori error covariance of ∆8SZ, DS
Z, in the following fashion:  

DS
Z =

1

2e
W±∆8S

(0)
− ∆8SZ≥±∆8S

(0)
− ∆8SZ≥

ã
mú

0ôQ

+ iSZQ. 

We now turn to the updating step, where we use the measurement equation to improve 

the estimation of the state vector ∆8SZ. First, as prescribed by the UT, we choose sigma points ∆8S
(0)

 

given by 

∆8S
(0)

= 	 ∆8SZ + ∆\(0) for 5 = 1,… ,2e    where 

∆\(0) = ∑√eDS
Z∏

0

ã

 for 5 = 1,… , e,   and 

∆\(úµ0) = −∑√eDS
Z∏

0

ã

 for 5 = 1,… , e. 

We then use the nonlinear measurement equation ©(∙) to transform the sigma points into 

C8S
(0)

 vectors 

C8S
(0)

= ©±∆8S
(0)
, t^	≥ 

 and we combine the C8S
(0)

 vectors to obtain the predicted measurement at time J: 
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C8S =
1

2e
WC8S

(0)

mú

0ôQ

. 

We next estimate the covariance of the predicted measurement using: 

D÷ =
1

2e
W±C8S

(0)
− C8S≥±C8S

(0)
− C8S≥

ã
mú

0ôQ

+ cS. 

We also estimate the cross covariance between ∆8SZ and C8S as follows: 

D,÷ =
1

2e
W±∆8S

(0)
− ∆8SZ≥±C8S

(0)
− C8S≥

ã
mú

0ôQ

. 

Finally, we can calculate the a posteriori update ∆8Sµ as well as the a posteriori covariance 

DS
µ by using the usual Kalman filter equations, where ÃS is the Kalman gain, 

ÃS = 	D,÷D÷
ZQ, 

∆8Sµ = 	∆8SZ + ÃS(CS −	C8S),	and 

DS
µ = DS

Z − ÃSD÷ÃS
ã. 
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Appendix L: An explanation of _(`) and a(`) as they appear in the enhanced CDS equation 

Following Leland/Toft model (LT) closely, we assume firm has productive assets whose 

unleveraged value ! follows a continuous diffusion process with a constant proportional volatility 

ß: 

 

G!

!
= (≠(!, J) − 1)GJ + ßGÆ 

where ≠(!, J) is the total expected rate of return on asset value !, 1 is the constant fraction 

of value paid out to security holders, and GÆ is the increment of a standard brownian motion. The 

process continues without limit until ! falls to !Ø, the optimal value of the firm’s assets at which 

to declare bankruptcy. We characterize the default triggering barrier “F” as ln ±
¨

¨≤
≥ when ! = !Ø. 

 

We have, [ = ln ±
¨

¨≤
≥, for ! ≠ !Ø, where G[ would be given by 55 

G[ =
Ä 

Ä¨
G! +

Q

m

Ä 

Ä¨Ä¨
(G!)m. 

 

Substituting G! = 	 (≠(!, J) − 1)!GJ + ß!GÆ into the expression for G[ yields 

 

G[ =
1

!
∑(≠ − 1)!GJ + ß!GÆ∏ +

1

2
Ω−

1

!m
æ ∑(≠ − 1)!GJ + ß!GÆ∏

m
 

G[ = (≠ − 1)GJ + ßGÆ − (1/2)ßmGJ 

G[ = Ω≠ − 1 −
1

2
ßmæGJ + ßGÆ	 

 

Employing Girsanov’s theorem will allow us to put this process in a risk neutral 

environment, so that  

G[ = Ω≠ − 1 −
1

2
ßmæ GJ + ß(GÆ∗ − ¶GJ) 

 

55 The cautious reader will recognize that 
¢	 ÒÚΩ

Û

Û≤
æ

¢¨
=

±Q
¨≤
Ù 	≥

±¨ ¨≤
Ù ≥

=
Q

¨
 which is surprising because 

¢ ÒÚ(¨)

¢¨
 

also equals 
Q

¨
. 
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where ¶ is the price of risk, and therefore 

G[ = Ω≠ − 1 −
1

2
ßmæ GJ + ß(GÆ∗ − Ω

≠ − (X + ´)

ß
æGJ) 

or, 

G[ = ∫(X + ´) − 1 −
1

2
ßmº GJ + ßGÆ∗ 

or, 

G[ = I	GJ + ß	GÆ∗ with I = Ω(X + ´) − 1 −
Q

m
ßmæ. 

This risk neutral brownian process can be written as: 

G[⁄ = I	Gd + ß	GÆ⁄
∗ . 

Integrating, 

 

· G[⁄ = I· Gd

S

j

+ ß· GÆ⁄
∗

S

j

S

j

 

yields, 

[S − [j = I(J − 0) + ß· GÆ⁄
∗

S

j

 

or, 

è[[S] = 	[j + I ∙ J 

and, 

!IX([S) = ßm!IX ∫· GÆ⁄
∗

S

j

º 

or, finally 

!IX([S) = ßmè ∫· GÆ⁄
∗

S

j

º

m

. 

Furthermore, Ito’s isometry allows us to write, 

è ±∑∫ GÆ⁄
∗S

j
∏∑∫ GÆ⁄

∗S

j
∏≥ as ∫ Gd

S

j
. 

 

Gathering terms,  

!IX([S) = ßm · Gd

S

j
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or 

!IX([S) = ßmJ 

so that [S is normally distributed with a mean of [j + IJ and a variance of ßmJ. With these 

characteristics, the pdf for [ must be  

N([j, [; J) =
1

ß√23J
t
Z( Z ıZøS)



mˆS  

The variate [S is characterized by [(JR) when [S equals b. The likelihood N([j, [; J) is the 

probability that [S = [ and that the process has not reached the barrier in the interval (0, J). 

Consequently, the cumulative probability D∑[(J) < F			for			J < (JR|[(0) = [j)∏ equals 

∫ N([j, [; J)G[
R

Z˜
= D([j, F; J). D([j, F; J) equals the probability that “b” has not been reached 

by J which could be written as D([j, F; J) = 	prob(JR ≥ J) or as D([j, F; J) = 	1 − $(J; [j, F), 

where $(J; [j, F) is the cumulative probability of the time to the barrier. Furthermore,  

GD

GJ
([j, F; J) = 	−$˘(J; [j, F) 

or 

−
GD

GJ
([j, F; J) = 	}(J; [j, F) 

where }(J; [j, F) is the marginal probability of the time to bankruptcy, which, upon 

differentiation by J, could be written as 

}(J; [j, F) = 	
RZ ı

ˆ√m˙S˚
t
¸(˝¸˛ı¸ˇ‘)



!‘ . 

This probability density function integrates to one and the time to bankruptcy has, 

intuitively, a mean of ±
RZ ı

ø
≥. 

In our model, F is not just a threshold, but an absorbing barrier. Consequently N([j, [; J) 

has to be rewritten as a linear combination N([j, [; J) = 	NQ([j, [; J) + 	UNQ([j, [; J) to ensure 

that N([j, F; J), the probability that [ = F, equals zero for every possible JR. The method of images 

yields 

N(0, [; J) =
1

ß√23J
§t

Z( ZøS)

mˆS − t
Ω
møR

ˆ
	µ	

Z( ZmRZøS)

mˆS
æ
• 

where U = 	−t
ˇ˝

! . 
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This solution can be easily verified by setting [ equal to F where, consequently, the 

expression for N(0, [; J) quickly reduces to 0. 

Using the expression for N(0, [; J) after the adjustment for the boundary condition yields 

the following expression for the cumulative of [: 

D(0, F; J) = ·
1

ß√23J
§t

Z( ZøS)

mˆS − t
Ω
møR

ˆ
	µ	

Z( ZmRZøS)

mˆS
æ
• G[

R

Z˜

 

If D([j, F; J) is standardized, we have 

D(0, F; J) = V Ω
F − IJ

ß√J
æ − t

møR

ˆ 	V Ω
−F − IJ

ß√J
æ 

where V(∙) is the cumulative distribution for the standardized normal variate. If the 

expression is rewritten so that the absorbing barrier is at zero, the cumulative normal becomes 

D([j, F; J) = V ±
RµøS

ˆ√S
≥ − t

¸ˇ˝

! 	V ±
ZRµøS

ˆ√S
≥     for some “J”. 

 

The term t
¸ˇ˝

! = t

¸ˇ

! ∙ÒÚΩ
Û

Û≤
æ
 by definition (i) and t

¸ˇ˝

! = ±
¨

¨≤
≥

¸ˇ

!
 (ii), because, taking the 

log of both the LHS and RHS terms of (i) yields −
mø

ˆ
∙ ln ±

¨

¨≤
≥ = −

mø

ˆ
∙ ln ±

¨

¨≤
≥. Consequently, 

D([j, F; J) becomes 

D([j, F; J) = V ±
RµøS

ˆ√S
≥ − ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥. 

 

Of course, for the standardized normal variate Æ, V(U) = 	1 − V(−U) due to symmetry, 

consequently, D([j, F; J) becomes 

D([j, F; J) = 1 − 	V ±
ZRZøS

ˆ√S
≥ − ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥ or, 

D([j, F; J) = 1 − §V ±
ZRZøS

ˆ√S
≥ + ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥• . 

As detailed above, D([j, F; J) can be written as D([j, F; J) = 1 − $(J; [j, F) where 

$(J; [j, F) is the cumulative probability of the time to the barrier. So if  

D([j, F; J) = 1 − ‚V Ω
−F − IJ

ß√J
æ + Ω

!

!Ø
æ

Zmø

ˆ

	V Ω
−F + IJ

ß√J
æ„ 



 

 131 

then, 

$(J; [j, F) = 	V ±
ZRZøS

ˆ√S
≥ + ±

¨

¨≤
≥

¸ˇ

!
	V ±

ZRµøS

ˆ√S
≥. 

 

The expression immediately above is identical to the expression we have on pages 62 and 

63. 

 

Recall  

−
G

GJ
D([j, F; J) = 	}(J; [j, F) 

 

so that the evaluation of the expression ∫ tZ(°µ∂)S}(J, [j, F)
˜

j
GJ will involve the 

differentiation of  

D([j, F; J) = V Ω
F + IJ

ß√J
æ − t

ZmøR

ˆ 	V Ω
−F + IJ

ß√J
æ 

with respect to J. The partial derivative of the first term on the RHS can be written as 

R

ˆ√m˙S˚
t
¸(˝"ˇ‘)

!‘ , when zero is acknowledged as the absorbing barrier. The determination of 

∫ tZ(°µ∂)S
R

ˆ√m˙S˚
t
Z
(˝"ˇ‘)

!‘ GJ
˜

j
 involves completing the square and if 2 =

∑øµm(°µ∂)ˆ∏

#


ˆ
 then the 

expression above eventually becomes  

 

·
F

ß√23Jx
t
Z(Q/m)Ω

RµŒˆS

ˆ√S
æ



Z(Q/m)R(
mø

ˆ
ZmŒ)	

GJ

˜

j

. 

This expression can be rewritten as 

t
Z(Q/m)ÒÚ	(

¨

¨≤
)±
mø

ˆ
ZmŒ≥

·
F

ß√23Jx
t
Z(Q/m)Ω

RµŒˆS

ˆ√S
æ



	

GJ

˜

j

 

and, since for any U and ", tÉ	öú(Ø) = "É, we have  

Ω
!

!Ø
æ

ŒZ
ø

ˆ

·
F

ß√23Jx
t

Z(Q/m)$
Rµ∑øµm(°µ∂)ˆ∏

#
S

ˆ√S
%



	

GJ

˜

j

 

where the drift is now (Im + 2(X + ´)ßm)Q/m. 
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Furthermore, if 2 −
ø

ˆ
 is rewritten as –I + Æ and if F + (Im + 2(X + ´)ßm)Q/mJ equals F +

ÆßmJ then we now have 

±
¨

¨≤
≥
Zøµ¿

∫
R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝"'!‘
!√‘

æ



	
GJ

˜

j
. 

For a particular credit default security with a time to maturity of &, the expression for the 

likelihood of reaching the absorbing barrier F before the expiration of the CDS would be: 

±
¨

¨≤
≥
Zøµ¿

(∫ R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝"'!‘
!√‘

æ



	
GJ

Y

j
). 

 

In terms of the cumulative normal, we have  

±
¨

¨≤
≥
Zøµ¿

�1 − V ±
Rµ¿ˆY

ˆ√Y
≥á or 

±
¨

¨≤
≥
Zøµ¿

�V ±
ZRZ¿ˆY

ˆ√Y
≥á  

because V(−U) = 	1 − V(U) for the standardized normal variate. This is exactly what we 

have as the first half of the expression for ((&) in the theory section of Chapter 3. 

Differentiation of the second term on the RHS of D([j, F; J) = V ±
RµøS

ˆ√S
≥ −

t
Z
ˇ˝

! 	V ±
ZRµøS

ˆ√S
≥ with respect to J almost immediately yields 

−t
ZmøR

ˆ ·
−F

ß√23Jx
t

Z(Q/m)∑m(°µ∂)Sˆ∏

ˆ t
Z(Q/m)Ω

(ZRµøS)

ˆ√S
æ



GJ

˜

j

. 

Completing the square yet again yields 

−t
¸ˇ˝

! ∫
ZR

ˆ√m˙S˚
t
Z(Q/m)Ω

˝¸’!‘
!√‘

æ



t
Z(Q/m)R(

¸ˇ

!
µmŒ)

GJ
˜

j
   or 

 

t
R±

ˇ

!
	Z	

ˇ

!
	Z	Œ≥

∫
R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝¸’!‘
!√‘

æ



GJ
˜

j
. 

This expression can be written as  

±
¨

¨≤
≥
Z±

ˇ

!µŒ
≥

∫
R

ˆ√m˙S˚
t
Z(Q/m)Ω

˝¸’!‘
!√‘

æ



GJ
˜

j
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Furthermore, if ±
ø

ˆ
+ 2≥ is written as (I + Æ) and if 

RZŒˆS

ˆ√S
 is written as 

RZ¿ˆS

ˆ√S
 then we 

have  

Ω
!

!Ø
æ

ZøZ¿

·
F

ß√23Jx
t

ZQ

m
Ω
RZ¿ˆS

ˆ√S
æ



GJ

˜

j

 

which can be written in terms of the cdf of the standardized normal variate as 

Ω
!

!Ø
æ

ZøZ¿

‚1 − · }(Æ)GÆ

RZ¿ˆS

ˆ√S

Z˜

„ 

or as  

Ω
!

!Ø
æ

ZøZ¿

· }(Æ)GÆ

ZRµ¿ˆS

ˆ√S

Z˜

 

due to symmetry 1 − V(U) = 	V(−U). For a CDS with a time to maturity of & this 

expression can be written as  

±
¨

¨≤
≥
ZøZ¿

V ±
ZRµ¿ˆY

ˆ√Y
≥. 

The expression above corresponds to the second half of the RHS of our expression for 

((&) in our theory section.  

Gathering these results, we have 

 

· tZ(°µ∂)S}(J, [j, F)

˜

j

GJ = Ω
!

!Ø
æ

Zøµ¿

§V ∫
−F − Æßm&

ß√&
º• +	Ω

!

!Ø
æ

ZøZ¿

§V ∫
−F + Æßm&

ß√&
º•	 

which is identical to what we provide in the theory section of Chapter 3.
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Table 1: Liquidity Measure Statistics 

Panel A reports summary statistics for the four daily liquidity measures of all corporate bonds in 

the period from 2008 to 2012. The bid-ask spread, Amihud measure and interquartile range are 

calculated from the fixed-income transaction data available in TRACE. Details about the 

procedure to calculate these measures are provided in the methodology section. The bid-ask spread 

is the weighted average difference between sells and buys, the Amihud measure is the change in 

price by transaction volume, the interquartile range is the 75th percentile minus the 25th percentile 

divided by the median, and the roundtrip measure is the difference between the maximum and the 

minimum price for transactions that occur at the same time and have the same volume. Panel B 

reports summary statistics for the sub-sample of insured corporate bonds. The same liquidity 

measures are shown as in panel A and the calculation procedure is equivalent. In Panel C we report 

the pairwise correlations of our four liquidity measures between 2008 and 2012. 

 
Panel A: All corporate bonds in TRACE 

 
 

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max 
 

Bid-Ask 5,163,470 42.717 67.893 -96.70 3.425 21.500 56.250 342.500 
Amihud 5,460,943 53.502 117.747 0.000 1.118 13.470 48.727 799.205 

IQR 6,591,554 0.006 0.023 0.000 0.000 0.002 0.007 2.973 
Roundtrip 4,045,509 0.487 1.243 0.000 0.000 0.099 0.607 100.000 

 
 

Panel B: Insured corporate bonds 

 
Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max 

 
Bid-Ask 31,083 4.511 16.828 -96.700 0.000 1.913 7.224 342.500 
Amihud 34,005 14.883 48.033 0.000 0.126 2.019 10.723 799.205 

IQR 39,413 0.001 0.003 0.000 0.0001 0.0005 0.001 0.095 
Roundtrip 24,554 0.086 0.335 0.000 0.000 0.000 0.098 41.909 

 
 

Panel C: Pairwise correlations between liquidity measures 

  

 Bid Ask Amihud Round-trip IQR 

  

Bid Ask 1 0.579 0.440 0.576 

Amihud 0.579 1 0.419 0.695 

Round-trip 0.440 0.419 1 0.355 

IQR 0.576 0.695 0.355 1 
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Table 2:  Summary Statistics of Sample of Insured Bonds 

In this Table, we report summary statistics for our sample of insured corporate bonds. These bonds were issued by numerous banks in 
2008 and 2009 and were backed by the full faith and credit of the U.S. Treasury; thus these corporate bonds had no default risk. Any 
insured bonds included in the debt guarantee program matured on or before December 31, 2012. Panel A presents the number of bonds, 
number of bond-days, and average number of transactions per bond. Panels B and C present averages of the spreads of these bonds on 
the maturity matched U.S. Treasury and interest rate swaps in maturity buckets in the stress (Panel B) and post stress period (Panel C). 

 
Panel A: Observations in Stress and Post Stress Periods 

 
 Stress Post stress 

Number of distinct bond issuers 30 29 

Number of distinct bonds 68 68 

Number of bond-days 10,392 29,018 

Average transaction days per bond 153 427 

 

Panel B: Average Insured Bond Premiums in Stress Period 
TTM interval (years) 1-1.25 1.25-1.5 1.5-1.75 1.75-2 2-2.25 

Spread (swap) 0.157 0.111 0.204 0.146 0.214 

Spread (Treasury) 0.113 0.114 0.267 0.404 0.260 

 
TTM interval (years) 2.25-2.5 2.5- 2.75 2.75-3 3-3.25 3.25- 3.5 3.5 3.75 

Spread (swap) 0.411 0.158 0.195 0.254 0.183 0.457 

Spread (Treasury) 0.353 0.392 0.505 0.490 0.599 0.632 

 
Panel C: Average Insured Bond Premiums in Post Stress Period 

TTM interval (years) 0-0.25 0.25-0.50 0.60-0.75 0.75-1 1-1.25 1.25-1.5 1.5-1.75 
Spread (swap) 1.348 0.614 0.426 0.319 0.295 0.180 0.127 

Spread (Treasury) 0.519 0.277 0.233 0.228 0.215 0.189 0.170 

 
TTM interval (years) 1.75-2 2-2.25 2.25-2.5 2.5-2.75 2.75-3 3- 3.25 
Spread (swap) 0.195 0.118 0.113 0.041 0.042 0.374 

Spread (Treasury) 0.205 0.207 0.219 0.212 0.258 0.260 
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Table 3: Regression Analysis of the Liquidity Spread 

This Table reports regressions of insured corporate bond liquidity spreads on our hypothesized 
determinants. The regressions are for the periods of stress – October 2008 to November 2009 – 
and post stress – December 2009 to December 2012. We further classify the daily bond 
transactions into !"#$% and &"#$% depending on whether the time to maturity is above or below the 
median in the stress period (Columns 1 to 4). In Columns 5 and 6, we present aggregate regressions 
for each period and we include the indicator function 1{)*+,-.} which takes the value 1 when the 
bond is characterized as being an &"#$% debenture at the time of the transaction and 0 when the 
bond is classified as an !"#$% FIS at the time of transaction. The dependent variable is the yield of 
the insured bond minus the yield of a treasury bond, matched by maturity. In Column 7, we include 
the term 1{0123,4*0,56} which is an indicator function that takes the value 1 if the bond transaction 
occurs during our post crisis period and 0 if it occurred during our crisis period. Each right hand 
side variable is normalized by its mean and standard deviation over the respective period, stress or 
post stress. AMIHUD is our liquidity measure, VIX is the volatility index derived from the implied 
volatility on S&P 500 index options, FFFP is the price of the price of the Fed funds 30-day futures, 
TREASLP is the 6-month Treasury yield relative to the 3-month yield, TTM is the time-to-
maturity of the insured corporate bond, AMIHUDMKT is the aggregate Amihud measure for all 
outstanding corporate bonds, and AMIHUDVOL is the volatility of the Amihud liquidity measure 
for the insured bonds. The regressions include firm-fixed effects, and the standard errors of the 
coefficients are in parenthesis. 

 
 Regression of Liquidity Spread 
  
 Insured Spread 

 Stress 
!"#$% 

Stress 
&"#$% 

Post 
Stress 
!"#$% 

Post 
Stress 
&"#$% 

Stress Post 
Stress All 

 (1) (2) (3) (4) (5) (6) (7) 
 

789:;< 0.044*** 0.156*** 0.225*** 0.032**

* 0.061*** 0.201*** 0.061*** 

 (0.004) (0.009) (0.007) (0.003) (0.008) (0.006) (0.008) 
        

789:;<
∙ 1{)*+,-.} 

    0.079*** -0.160*** 0.069*** 

     (0.011) (0.008) (0.012) 
        

789:;< ∙
1{0123,4*0,56}  

      0.143*** 

       (0.009) 
        

789:;< ∙
1{)*+,-.} ∙

1{0123,4*0,56}   
      -0.233*** 

       (0.014) 
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1{)*+,-.}       -0.044*** 

       (0.017) 
        

1{0123,4*0,56}     -0.032* 0.126*** 0.066*** 
     (0.018) (0.017) (0.013) 
        

 AMIHUD 
VOL -0.0003 0.009 0.048*** -0.005 0.002 0.018*** 0.014*** 

 (0.004) (0.009) (0.009) (0.003) (0.007) (0.006) (0.004) 
        

TTM 0.048*** -0.008 -
0.195*** 

0.0002 0.059*** -0.156*** -0.113*** 

 (0.004) (0.009) (0.010) (0.007) (0.009) (0.010) (0.009) 
        

VIX 0.129*** 0.223*** 0.048*** 0.032**

* 0.178*** 0.038*** 0.103*** 

 (0.006) (0.015) (0.010) (0.003) (0.011) (0.005) (0.005) 
        

TREASLP 0.027*** 0.039*** 0.002 0.027**

* 0.026*** 0.030*** 0.085*** 

 (0.005) (0.012) (0.008) (0.008) (0.010) (0.006) (0.006) 
        

AMIHUD 
MKT 0.002 -0.022* -0.020* 0.005 -0.019* 0.023*** 0.004 

 (0.006) (0.013) (0.012) (0.004) (0.011) (0.007) (0.010) 
        

FFFP 0.001 -
0.070*** 

-0.012 0.017**

* 
-

0.034*** 0.006 -0.004 

 (0.005) (0.010) (0.018) (0.003) (0.008) (0.006) (0.005) 
        

Constant 0.240*** 1.012*** 0.269*** 0.253**

* 0.437*** 0.126** 0.256*** 

 (0.021) (0.273) (0.062) (0.011) (0.059) (0.050) (0.040) 
 

Observations 2,285 2,850 7,321 2,917 7,220 15,337 22,557 
Adjusted R2 0.596 0.414 0.240 0.313 0.237 0.147 0.167 

Residual Std. 
Error 

0.150 
(df = 
2258) 

0.385 
(df = 
2815) 

0.604 
(df = 
7286) 

0.147 
(df = 
2889) 

0.467 
(df = 
7181) 

0.559 
(df = 

15301) 

0.537 (df = 
22516) 

F Statistic 

135.955
*** (df = 

26; 
2259) 

61.870*

** (df = 
34; 

2816) 

68.978*
** (df = 

34; 
7286) 

50.183
*** (df 
= 27; 
2889) 

59.964*

** (df = 
38; 

7181) 

76.668**

* (df = 
35; 

15301) 

114.234*** 
(df = 40; 
22516) 

 
Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 4: Summary of Parameter Estimates for Liquidity and Default Premiums from 
Kalman Filter and EM Algorithm 

In this Table, we summarize the Kalman filter/EM parameters we obtain when we segregate the 
credit spreads into liquidity and default premiums, for a sample of high grade, U.S. bank bonds 
with longer maturities. We use the following measurement and transition equations: 

Measurement equation:    >3,6 = AB ∙ (DEF)3,6 	+ AJ ∙ (KLM)3,6 	+ NO,3,6 
 

Transition equation:     P
(DEF)3,6	
(KLM)3,6

Q = R3 + S3 ∙ P
(DEF)3,6TB	
(KLM)3,6TB

Q + U3 ∙ V3,6 + NW,3,6. 

 
In the measurement equation, >3,6 is the corporate spread and (DEF)3,6	and (KLM)3,6 are the liquidity 
and default spreads of bond E	at time X. The error term in the measurement equation, NO,3,6, follows 
a normal distribution with mean zero and standard deviation YO.  In the transition equation, R′3 =
[R3,B R3,J] is the vector of intercepts for each transition equation, S3 is the matrix of 

autoregressive coefficients, U3 is the matrix of control coefficients, and V3,6 is the vector of liquidity 

and default controls that includes Amihud liquidity measure, time to maturity, age, liquidity 
volatility, firm leverage, firm profitability, coupon amount, VIX, U.S. Treasury slope, and market 
liquidity. The error term in the measurement equation is a vector N′W,3,6 = [NB,W,3,6 NJ,W,3,6], where 
each component follows a normal distribution with mean zero and standard deviation Y], with ^ =
1, 2. We provide estimations for the stress and post stress periods using three alternative samples: 
without insured bonds (Columns 1 and 2), random selection of ` = 50% of the insured bonds 
(Columns 3 and 4), and a random selection of ` = 75% of the insured bonds (Columns 5 and 6). 
The bonds used in the sample are AAA and AA U.S. bank bonds with a maximum maturity of 10 
years. p-values are reported in parenthesis. 
 

 All extended sample ` = 50% ` = 75% 
 (1) (2) (3) (4) (5) (6) 
 Stress Post Stress Stress Post Stress Stress Post Stress 
       

RB 0.026***    
(0.0001) 

-0.167***    
(0.000) 

0.229    
(0.117) 

-0.169**    
(0.014) 

0.193***    
(0.000221) 

-0.0932***    
(0.00014) 

SB 0.013    
(0.695) 

0.0022    
(0.109) 

0.0038***    
(0.0051) 

-0.004***    
(0.0016) 

0.0041***    
(0.000688) 

0.00262    
(0.659) 

789:;< 0.115**    
(0.0215) 

0.0017**    
(0.011) 

0.0232***    
(0.0031) 

0.0093***    
(0.0043) 

0.0843**    
(0.026) 

0.00125**    
(0.0338) 

""8 0.0666***    
(0.0001) 

-0.161***    
(0.000) 

0.21**    
(0.0321) 

-0.029***    
(0.0007) 

0.391**    
(0.0205) 

-0.087***    
(0.00065) 

7eL 0.39**    
(0.0258) 

-0.076***    
(0.0016) 

0.257**    
(0.028) 

-0.391**    
(0.0174) 

0.234***    
(0.00105) 

-0.19***    
(0.00001) 
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789:;<fg& 0.0827    
(0.128) 

-0.003***    
(0.0031) 

0.0294    
(0.574) 

-0.2    
(0.255) 

0.0563    
(0.445) 

-0.00041**    
(0.0382) 

f9V 0.024***    
(0.0002) 

-0.006***    
(0.0081) 

0.0077***    
(0.0014) 

-0.0365**    
(0.045) 

0.135    
(0.13) 

-0.00274**    
(0.0407) 

!DhiL1j10j 0.0466***    
(0.0005) 

0.0239    
(0.246) 

0.0464**    
(0.0446) 

-0.004***    
(0.0032) 

0.0944    
(0.18) 

0.0316    
(0.849) 

AMIHUDMKT 0.0041*    
(0.0764) 

0.0004    
(0.246) 

0.0001**    
(0.039) 

0.0032    
(0.123) 

0.0031**    
(0.0853) 

0.0002    
(0.687) 

YB 0.274***    
(0.000) 

0.26***    
(0.000) 

0.264***    
(0.000) 

0.252***    
(0.000) 

0.269***    
(0.000) 

0.254***    
(0.000) 

RJ 0.448    
(0.455) 

0.106    
(0.342) 

0.378    
(0.702) 

0.0577***    
(0.000) 

0.357    
(0.271) 

0.0763    
(0.33) 

SJ 0.0127    
(0.682) 

-0.0001**    
(0.0105) 

0.0031***    
(0.0046) 

-0.0062**    
(0.014) 

0.0069***    
(0.000959) 

-0.0015***    
(0.00611) 

&LkLlmeL 3.41***    
(0.000) 

2.61***    
(0.000) 

3.01***          
(0.000) 

1.39***    
(0.000) 

3.25***    
(0.000) 

1.7***      
(0.000) 

nlhMEX 0.626    
(0.482) 

-0.382***    
(0.000) 

0.457    
(0.709) 

-0.353*    
(0.0804) 

0.785    
(0.45) 

0.0245    
(0.178) 

ohpihq 0.368***    
(0.0057) 

-0.0126**    
(0.0156) 

-0.048***    
(0.000) 

-0.046***    
(0.0003) 

0.47**    
(0.0276) 

0.275    
(0.803) 

YJ 0.282***    
(0.000) 

0.252***    
(0.000) 

0.258***    
(0.000) 

0.253***    
(0.000) 

0.27***    
(0.000) 

0.257***    
(0.000) 

Median Max 
Likelihood 

(average initial 
ML = -10,000) 

15.12 7.31 3.16 24.36 4.06 23.64 

Number of 
bonds  179 343 212 374 228 390 
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Table 5: Regression of Credit Spread on Proxies for Liquidity and Default 

This Table presents regressions of the credit spread on the liquidity measure, time to maturity, and 
other covariates. The dependent variable – liquidity score– was obtained by regressing the 
corporate yields on proxies for liquidity and default as in Dick-Nielsen, Feldhütter, and Lando 
(2012). Column (1) presents the results for the period of stress (October 2008 to November 2009), 
while column (2) shows the regression for the post stress period (November 2009 to December 
2012). All standard errors are clustered at the firm-year level.  
 

 
  
  
 Crisis Post Crisis 
 (1) (2) 

 
789:;< 0.217*** 0.052*** 

 (0.020) (0.004) 
   

&LkLlmeL 0.167*** 0.120*** 
 (0.022) (0.006) 
   

nlhMEX -0.772*** 0.136*** 
 (0.042) (0.006) 
   

ohpihq -0.033 0.001 
 (0.021) (0.003) 
   

789:;<fg& -0.066*** -0.014*** 
 (0.021) (0.004) 
   

""8 0.509*** -0.207*** 
 (0.023) (0.006) 
   

7eL 0.883*** 0.005 
 (0.024) (0.007) 
   

f9V 1.250*** 0.022*** 
 (0.025) (0.003) 

   
!DhiL1j10j 0.034 -0.046*** 

 (0.022) (0.003) 
   

Constant 1.604*** 0.311*** 
 (0.028) (0.005) 

 
Issue effects Y Y 
Observations 4,927 5,454 
Adjusted R2 0.780 0.574 

Residual Std. Error 1.107 (df = 4916) 0.203 (df = 5443) 
F Statistic 1,743.833*** (df = 10; 4916) 736.658*** (df = 10; 5443) 

 
Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 6: Illustrative Parameters that Represent High, Medium, and Low Quality Firms in 
Periods of Stress and Nonstress 

In the table below, we summarize the parameters we choose to represent high, medium, and low 
quality firms in a period of stress and of nonstress. These are the short-term interest rate l, the 
firm’s leverage, the firm’s payout rate r, the firm’s volatility of assets Y, the borrowers recovery 
rate during default R, and the fraction of the credit spread that is due to illiquidity. The values in 
the Table below are selected to distinguish firms in a period of crisis and noncrisis, and also firms 
of high, medium, and low credit quality within each economic period. We are able to generate 
illustrative plots for each credit category in each period in Figure 11 when we input the parameters 
below into out Leland and Toft liquidity premium inclusive model and increase the times to 
maturity. 
 

Period 
Credit 
Quality s Leverage t u v 

Liq. 
Ratio 

Nonstress 
High 

2.5% 
40% 3% 20% 0.4 5% 

Medium 45% 4% 22.5% 0.5 7.5% 
Low 50% 5% 25% 0.6 10% 

Stress 
High 

7.5% 
50% 5% 25% 0.5 10% 

Medium 55% 6% 27.5% 0.6 15% 
Low 60% 7% 30% 0.7 20% 
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Table 7: Descriptive Statistics  

In the table below, we report summary statistics of the main variables that we use in this paper. 
We obtain corporate bond credit yields and credit spreads (yield minus maturity matching U.S. 
Treasury rate) from the Enhanced TRACE data set. The corporate bond characteristics are obtained 
from FISD, and firm-level data is obtained from CRSP and COMPUSTAT. We aggregate our data 
by calendar months. We classify the observations into three major credit rating categories: high 
for bonds with S&P credit ratings AAA and AA, medium for bonds with credit ratings A and BBB, 
and low for speculative grade bonds. We also classify our observations into three economic 
periods: pre-crisis (March 2004 to October 2007), crisis (November 2007 to June 2009), and post-
crisis (July 2009 to November 2019). We are able to collect 235,600 bond month observations. 
Panels A, B, and C contain summary statistics for our main variables in each economic period. 

 
Panel A: Pre-Crisis Period 

High Credit Category 
 

Statistic N p25 Median p75 St. Dev. 
Spread 3,142 3.873 4.803 5.295 1.162 

Maturity 3,142 1.167 2.305 4.683 3.562 
Leverage 3,142 0.600 0.637 0.746 0.078 

Payout Ratio 3,142 0.006 0.009 0.012 0.003 
Equity Volty 3,142 0.022 0.041 0.107 0.060 

Coupon 3,142 4.125 5.500 7.000 1.414 
Medium Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 894 5.868 6.065 6.387 0.504 

Maturity 894 26.697 27.845 28.846 4.089 
Leverage 894 0.600 0.635 0.651 0.078 

Payout Ratio 894 0.006 0.011 0.012 0.003 
Equity Volty 894 0.035 0.088 0.109 0.062 

Coupon 894 6.125 6.125 6.125 0.593 
Low Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 14,155 4.930 5.287 5.581 1.260 

Maturity 14,155 4.107 6.414 8.496 3.400 
Leverage 14,155 0.620 0.637 0.746 0.119 

Payout Ratio 14,155 0.007 0.011 0.013 0.006 
Equity Volty 14,155 0.022 0.048 0.109 0.066 

Coupon 14,155 5.000 5.400 6.650 1.303 
 

Panel B: Crisis Period 
High Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 812 4.685 5.354 5.756 1.329 

Maturity 812 2.062 2.873 4.094 6.618 
Leverage 812 0.610 0.626 0.633 0.086 

Payout Ratio 812 0.011 0.012 0.013 0.013 
Equity Volty 812 0.251 0.319 0.419 0.170 

Coupon 812 6.375 6.600 6.600 0.956 
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Medium Credit Category 
Statistic N p25 Median p75 St. Dev. 
Spread 2,140 6.391 7.019 7.889 2.102 

Maturity 2,140 17.117 25.155 28.264 9.700 
Leverage 2,140 0.322 0.611 0.633 0.166 

PayoutRatio 2,140 0.011 0.012 0.022 0.030 
EquityVolty 2,140 0.035 0.251 0.419 0.207 

Coupon 2,140 6.125 6.750 7.625 1.383 
Low Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 20,487 5.017 6.114 8.287 1.600 

Maturity 20,487 2.856 4.899 7.177 4.329 
Leverage 20,487 0.456 0.611 0.773 0.206 

PayoutRatio 20,487 0.010 0.012 0.013 0.034 
EquityVolty 20,487 0.026 0.050 0.359 0.201 

Coupon 20,487 5.000 5.500 6.500 1.439 
 

Panel C: Post-Crisis Period 
High Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 11,376 2.485 2.987 3.503 0.867 

Maturity 11,376 4.466 6.967 9.211 7.562 
Leverage 11,376 0.039 0.084 0.270 0.259 

Payout Ratio 11,376 0.003 0.008 0.038 0.036 
Equity Volty 11,376 0.047 0.063 0.163 0.168 

Coupon 11,376 3.000 3.500 4.300 1.101 
Medium Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 82,096 3.308 4.074 5.030 1.353 

Maturity 82,096 5.197 7.682 14.090 8.667 
Leverage 82,096 0.263 0.453 0.562 0.173 

Payout Ratio 82,096 0.008 0.013 0.023 0.022 
Equity Volty 82,096 0.027 0.054 0.134 0.191 

Coupon 82,096 3.625 4.750 5.700 1.263 
Low Credit Category 

Statistic N p25 Median p75 St. Dev. 
Spread 100,498 2.004 3.456 5.669 15.010 

Maturity 100,498 2.205 4.003 6.016 3.684 
Leverage 100,498 0.292 0.475 0.605 0.212 

Payout Ratio 100,498 0.008 0.012 0.021 0.018 
Equity Volty 100,498 0.026 0.053 0.125 0.203 

Coupon 100,498 3.500 5.500 6.750 2.173 
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Table 8: Average Liquidity Premiums (LP) by Credit Category 

In this table, we report the average liquidity premiums obtained by means of our estimation 
procedure, aggregated by credit category and economic period. Bond observations are classified 
into three major credit rating categories: high for bonds with S&P credit ratings AAA and AA, 
medium for bonds with credit ratings A and BBB, and low for speculative grade bonds. Bond 
observations are additionally sorted into three economic periods: pre-crisis (March 2004 to 
October 2007), crisis (November 2007 to June 2009), and post-crisis (July 2009 to November 
2019).  The liquidity premiums are estimated for each month and for each bond using a liquidity 
premium inclusive model of credit spread in the context of an unscented Kalman filter and using 
an expectation maximization algorithm. Additional details of the model and its estimation are 
provided in the theory and methodology sections. In total, we are able to collect 235,600 bond 
month observations from March 2004 to November 2019.  
  

Pre-Crisis Crisis Post-Crisis 

High Grade 0.4253% 1.0091% 0.7221% 
Medium Grade 0.5346% 1.6542% 0.9168% 

Low Grade 0.6784% 1.3398% 0.9072% 
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Table 9: Regression of Liquidity Premiums on Time to Maturity for ST and LT Bonds 
during Pre-Crisis Period 

In the table below, we measure the slopes of the term structure of liquidity premiums for short-
term and long-term bonds during the pre-crisis period. To do this, we regress the UKF extracted 
liquidity premiums on time to maturity (""8) for the high (Column 1), medium (Column 2), and 
low (Column 3) credit categories during this period. To capture the slopes for short versus long-
term bonds, we interact ""8 with a dummy variable “Long”, which takes the value 1 for bonds 
with a remaining maturity greater than the median maturity in each period, and zero otherwise.  
 
 

 Liquidity Premiums 
 High Grade Medium Grade Low Grade 
 (1) (2) (3) 

TTM (β1) 0.023*** 0.027*** 0.026*** 
 (0.002) (0.000) (0.005) 

TTM*Long  (β2) -0.009*** -0.000** 0.006* 
 (0.001) (0.000) (0.003) 

Long (β3) 0.464*** 0.162*** 0.118*** 
 (0.009) (0.000) (0.027) 

Observations 1,498 217 11,417 
R2 0.200 0.205 0.056 
Adjusted R2 0.199 0.198 0.056 
Residual Std. Error 0.211 (df = 1495) 0.210 (df = 214) 0.655 (df = 11414) 
F Statistic 187.262*** (df = 2; 1495) 27.628*** (df = 2; 214) 339.911*** (df = 2; 11414) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 10: Regression of Liquidity Premiums on Time to Maturity for ST and LT Bonds 
during Crisis Period 

In the table below, we measure the slopes of the term structure of liquidity premiums for short-
term and long-term bonds during the crisis period. To do this, we regress the UKF extracted 
liquidity premiums on time to maturity (""8) for the high (Column 1), medium (Column 2), and 
low (Column 3) credit categories during this period. To capture the slopes for short versus long-
term bonds, we interact ""8 with a dummy variable “Long”, which takes the value 1 for bonds 
with a remaining maturity greater than the median maturity in each period, and zero otherwise.  
 

 Liquidity Premiums 
 High Grade Medium Grade Low Grade 
 (1) (2) (3) 

TTM (β1) 0.003*** 0.089*** 0.042*** 
 (0.0002) (0.004) (0.002) 

TTM*Long  (β2) -0.001*** -0.023*** -0.012*** 
 (0.0002) (0.003) (0.002) 

Long (β3) 1.002*** 1.036*** 1.023*** 
 (0.001) (0.024) (0.013) 

Observations 436 860 9,808 
R2 0.106 0.320 0.027 
Adjusted R2 0.102 0.319 0.027 
Residual Std. Error 0.726 (df = 433) 0.681 (df = 857) 0.770 (df = 9805) 
F Statistic 25.736*** (df = 2; 433) 201.895*** (df = 2; 857) 137.857*** (df = 2; 9805) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 11: Regression of Liquidity Premiums on Time to Maturity for ST and LT Bonds for 
the Post-Crisis Period 

In the table below, we measure the slopes of the term structure of liquidity premiums for short-
term and long-term bonds during the post-crisis period. To do this, we regress the UKF extracted 
liquidity premiums on time to maturity (""8) for the high (Column 1), medium (Column 2), and 
low (Column 3) credit categories during this period. To capture the slopes for short versus long-
term bonds, we interact ""8 with a dummy variable “Long”, which takes the value 1 for bonds 
with a remaining maturity greater than the median maturity in each period, and zero otherwise.  
 

 Liquidity Premiums 
 High Grade Medium Grade Low Grade 
 (1) (2) (3) 

TTM (β1) 0.013*** 0.041*** 0.012*** 
 (0.004) (0.005) (0.004) 

TTM*Long  (β2) 0.010*** 0.014*** 0.005* 
 (0.003) (0.004) (0.003) 

Long (β3) 0.342*** 0.153*** 0.478*** 
 (0.024) (0.030) (0.023) 

Observations 11,395 73,237 92,631 
R2 0.367 0.367 0.245 
Adjusted R2 0.367 0.367 0.245 
Residual Std. 
Error 0.304 (df = 11392) 0.473 (df = 73234) 0.627 (df = 92628) 

F Statistic 3,300.946*** (df = 2; 
11392) 

21,261.940*** (df = 2; 
73234) 

94.710*** (df = 2; 
92628) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 12: Summary Statistics 

In this table, I summarize the main variables used in this research. In Panel A, I describe the sample 
of credit default swap contracts which feature in the CMA data set provided by Intercontinental 
Exchange. The prefix “Mid” implies that the quantity is the midpoint between the bid and the ask 
prices of that variable, while the prefix “BA” implies the quantity is the difference between the 
ask and bid prices of that variable. For example, “MidParSpread” is the midpoint between the ask 
par spread and the bid par spread, while “BAParSpread” is the difference between the ask par 
spread and the bid par spread. The data set includes all single-name contracts that are active, trade 
in the United States, and are denominated in U.S. dollars. In Panel B, I report summary statistics 
for the daily liquidity measures of all corporate bonds in the period from 2006 to 2019. The bid-
ask spread, Amihud measure and interquartile range are calculated from the fixed-income 
transaction data available in TRACE. 

 

Panel A: Summary Statistics for Credit Default Swaps on the CMA Database 
 

Variable Num. obs Min Q1 Median Mean Q3 Max 
MidParSpread 21,435,149 11.2 52.4 99.0 135.8 176.4 624.1 
MidQuoteSpread 21,435,149 11.1 52.0 98.8 135.9 176.7 632.2 
MidUpfront 21,435,149 -94.9 -2.7 -0.8 -0.8 1.8 51.0 
MidPercentOfPar 21,435,149 49.0 98.2 100.8 100.8 102.7 194.9 
BAParSpread 21,435,149 4.6 10.1 17.2 21.1 28.0 80.2 
BAQuoteSpread 21,435,149 4.6 10.1 17.5 21.5 28.6 87.0 
BAUpfront 21,435,149 0.0 0.4 0.8 1.3 1.6 27.0 
BAPercentOfPar 21,435,149 0.0 0.4 0.8 1.3 1.6 27.0 

 
 

Panel B: Summary Statistics for Bond Liquidity Measures 
 

Variable Num. obs Min Q1 Median Mean Q3 Max 
Amihud measure 3,763,103 0.0 4.6 15.4 29.4 34.0 2513.1 
Bond bid ask spread   1,586,512 -10.4 0.3 0.7 1.0 1.4 12.9 
Amihud maturity weighted   3,763,103 0.0 4.3 15.5 32.3 37.3 2513.1 
Bid ask maturity weighted   1,586,512 -10.4 0.3 0.7 1.1 1.5 12.9 
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Table 13: Regression of Distance to Default on Bond Liquidity Measures 

In this table, I present fixed effects model regressions of the Bharath and Shumway (2008) distance 
to default on corporate bond liquidity measures. The dependent variable is the monthly distance to 
default of the reference firm. The main independent variable is the average of the daily liquidity 
measure for all the bonds of the firm that traded on that month, weighted by the trading volume of 
each bond. Columns 1 through 3 show the impact of the bid-ask spread, the Amihud (2002), and 
the Roll liquidity measures on the distance to default. The bond data is from TRACE FISD, and 
the firm level data is from CRSP COMPUSTAT. The variable definition is provided in the 
methodology section. The panel data ranges from 2008 to Q12019. Regressions are for firms-
months and standard errors are clustered at the same level. 

 
 

   Bond liquidity measures 

 Bid Ask Amihud Roll 

 (1) (2) (3) 

Bid Ask 
−0.079∗∗∗ 

(0.005) 

  

Amihud 
 

−0.018∗∗∗ 

(0.002)  

Roll 

 
 

0.008∗∗∗ 

(0.002) 

Leverage −0.224∗∗∗ −0.223∗∗∗ −0.234∗∗∗ 
 (0.032) (0.032) (0.032) 

Profitability 0.161∗ 0.169∗ 0.178∗ 
 (0.091) (0.091) (0.091) 

Payout Ratio 0.478∗∗∗ 0.445∗∗∗ 0.445∗∗∗ 
 (0.167) (0.168) (0.168) 

Volty −0.534∗∗∗ −0.538∗∗∗ −0.544∗∗∗ 
 (0.012) (0.012) (0.012) 

TTM 0.078 0.068 0.068 
 (0.091) (0.092) (0.092) 
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VIX 0.002∗ 0.002∗ 0.002 

 (0.001) (0.001) (0.001) 

Treas. Slope 0.425∗∗∗ 0.435∗∗∗ 0.428∗∗∗ 

 (0.029) (0.029) (0.029) 

Issue effects Y Y Y 

Time effects Y Y Y 

Controls Y Y Y 

Observations 19,652 19,652 19,652 

R2 0.136 0.128 0.125 

Adjusted R2 0.075 0.066 0.063 

F Statistic (df = 8; 18349) 362.454∗∗∗ 336.563∗∗∗ 328.451∗∗∗ 

 Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01  
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Table 14: Regression of Distance to Default on Predicted Bond Liquidity Measures 

In this table, I present fixed effects model regressions of the Bharath and Shumway (2008) distance 
to default on predicted corporate bond liquidity measures. The dependent variable is the monthly 
distance to default of the reference firm. The main independent variable is predicted, average of 
the daily liquidity measure using 12-month lagged values of liquidity for all the bonds of the firm 
that traded on that month, weighted by the trading volume of each bond. Columns 1 through 3 
show the impact of the bid-ask spread, the Amihud (2002), and the Roll liquidity measures on the 
distance to default. The bond data is from TRACE FISD, and the firm level data is from CRSP 
COMPUSTAT. The variable definition is provided in the methodology section. The panel data 
ranges from 2008 to Q12019. Regressions are for firms-months and standard errors are clustered 
at the same level. 
 

   Bond liquidity measures 
   “Lambda” Bid Ask Amihud 

 (1) (2) (3) 

“Lambda” measure 
−0.032∗∗∗ 

(0.006) 

  

Bid Ask  −0.044∗∗∗ 

(0.015) 

 

Amihud   −0.010∗∗∗ 

(0.006) 

Leverage −0.171∗∗∗ −0.162∗∗∗ −0.178∗∗∗ 
 (0.032) (0.031) (0.032) 

Profitability 0.136 0.111 0.142 
 (0.090) (0.089) (0.090) 

Payout Ratio 0.371∗∗ 0.352∗∗ 0.382∗∗ 
 (0.167) (0.165) (0.167) 

Volty −0.493∗∗∗ −0.485∗∗∗ −0.499∗∗∗ 
 (0.012) (0.012) (0.012) 

TTM 0.074 0.064 0.077 
 (0.091) (0.090) (0.091) 

VIX 0.002 0.002 0.002 
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 (0.001) (0.001) (0.001) 

Treas. Slope 0.424∗∗∗ 0.428∗∗∗ 0.424∗∗∗ 

 (0.028) (0.028) (0.028) 

Issue effects Y Y Y 

Time effects Y Y Y 

Controls Y Y Y 

Observations 19,652 19,652 19,652 

R2 0.145 0.164 0.140 

Adjusted R2 0.084 0.105 0.079 

F Statistic (df = 8; 18349) 387.773∗∗∗ 451.335∗∗∗ 374.335∗∗∗ 

 Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
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Table 15: Regression of CDS Spreads on Bond Liquidity Measures for 5-year Tenor 

In the table below, I summarize the regression coefficients when projecting measures of CDS spreads onto bond market liquidity 
measures for credit default swaps of 5 year tenor. The dependent variable is either the daily mid price between the bid and the ask par 
spreads, !"#$%&'(&)%# in Columns 1 to 4, mid price between the bid and the ask quoted spreads, !"#*+,-)'(&)%# in Columns 5 to 
8. I use four different proxies for bond market liquidity measures: the bond bid-ask spread (Columns 1 and 5), the bond Amihud (2002) 
measure (Columns 2 and 6), a bond market maturity weighted bid-ask spread measure (Columns 3 and 7), and a bond market maturity 
weighted Amihud (2002) spread measure (Columns 4 and 8). The regressions also include the bid ask spread of the CDS contracts and 
common proxies for default that typically explain the CDS premiums. All regressions include entity fixed effects as well as year fixed 
effects. The panel data ranges from 2008 to Q12019. Regressions are for firms-days and standard errors are clustered at the same level.  
 
 Regression of CDS Spread 

 MidParSpread MidQuoteSpread 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Bond Bid Ask 2.629∗∗∗    2.671∗∗∗    

 (0.099)    (0.102)    

Bond Amihud  1.634∗∗∗    1.638∗∗∗   

  (0.060)    (0.062)   

Maturity Bid Ask   2.287∗∗∗    2.315∗∗∗  

   (0.098)    (0.101)  

Maturity Amihud    1.280∗∗∗    1.288∗∗∗ 

    (0.060)    (0.062) 

CDS Bid Ask 34.742∗∗∗ 10.685∗∗∗ 34.762∗∗∗ 10.692∗∗∗ 34.986∗∗∗ 10.947∗∗∗ 35.007∗∗∗ 10.955∗∗∗ 
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 (0.197) (0.096) (0.197) (0.096) (0.202) (0.098) (0.202) (0.098) 

Leverage 36.063∗∗∗ 25.592∗∗∗ 36.211∗∗∗ 25.638∗∗∗ 36.721∗∗∗ 25.719∗∗∗ 36.874∗∗∗ 25.764∗∗∗ 
 (0.326) (0.190) (0.326) (0.190) (0.334) (0.195) (0.334) (0.195) 

Recovery Rate −10.412∗∗∗ −14.430∗∗∗ −10.414∗∗∗ −14.442∗∗∗ −10.539∗∗∗ −14.594∗∗∗ −10.541∗∗∗ −14.606∗∗∗ 
 (0.124) (0.093) (0.124) (0.093) (0.127) (0.096) (0.127) (0.096) 

Total Payout 2.714∗∗∗ 1.967∗∗∗ 2.701∗∗∗ 1.968∗∗∗ 2.643∗∗∗ 1.935∗∗∗ 2.630∗∗∗ 1.936∗∗∗ 
 (0.161) (0.138) (0.161) (0.138) (0.164) (0.142) (0.165) (0.142) 

TTM −4.070∗∗∗ −1.623∗∗∗ −4.032∗∗∗ −1.580∗∗∗ −4.194∗∗∗ −1.723∗∗∗ −4.154∗∗∗ −1.680∗∗∗ 
 (0.169) (0.093) (0.169) (0.093) (0.173) (0.095) (0.173) (0.095) 

Coupon 0.627 0.744 0.653 0.704 −0.629 −2.866∗∗∗ −0.602 −2.906∗∗∗ 
 (1.330) (0.459) (1.331) (0.459) (1.362) (0.470) (1.363) (0.471) 

VIX 9.305∗∗∗ 14.277∗∗∗ 9.354∗∗∗ 14.314∗∗∗ 9.474∗∗∗ 14.446∗∗∗ 9.524∗∗∗ 14.483∗∗∗ 
 (0.087) (0.062) (0.087) (0.062) (0.089) (0.063) (0.089) (0.063) 

Hazard Rate 91.333∗∗∗ 99.777∗∗∗ 91.341∗∗∗ 99.786∗∗∗ 93.634∗∗∗ 102.708∗∗∗ 93.642∗∗∗ 102.718∗∗∗ 
 (0.217) (0.126) (0.217) (0.126) (0.222) (0.129) (0.222) (0.129) 

Constant 178.940∗∗∗ 163.004∗∗∗ 179.017∗∗∗ 162.980∗∗∗ 181.260∗∗∗ 164.266∗∗∗ 181.340∗∗∗ 164.241∗∗∗ 
 (1.777) (1.024) (1.778) (1.024) (1.820) (1.049) (1.821) (1.049) 

Entity FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 142,934 304,825 142,934 304,825 142,934 304,825 142,934 304,825 

Adjusted R0 0.938 0.936 0.938 0.936 0.936 0.934 0.935 0.934 

 
Note: *p<0.1; ** p<0.05; ***p<0.01 
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Table 16: Regression of CDS Spreads on Bond Liquidity Measures for All Tenors 

In this table, I present fixed effects model regressions of corporate bond liquidity measures on CDS spreads. The dependent variable is 
the daily mid price between and the ask quoted spreads, !"#*+,-)'(&)%#. The most revealing independent variable is the a bond 
market maturity weighted Amihud (2002) measure "Maturity Amihud". Columns 1 through 8 show the impact of the Amihud (2002) 
on the 1Y, 2Y, 3Y, 4Y 5Y, 10Y and 30Y tenors. The CDS spread data is from CMA, available through the Intercontinental Exchange, 
the bond data is from TRACE FISD, and the firm level data is from CRSP COMPUSTAT. The variable definition is provided in the 
methodology section. The panel data ranges from 2008 to Q12019. Regressions are for firms-days and standard errors are clustered at 
the same level. 
 
 
 Regression of CDS Spread 

 MidQuoteSpread 

 1 yr 2 yr 3 yr 4 yr 5 yr 8 yr 10 yr 30 yr 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

Maturity 
Amihud 

0.276∗∗∗ 0.665∗∗∗ 1.038∗∗∗ 1.180∗∗∗ 1.288∗∗∗ 1.185∗∗∗ 1.065∗∗∗ 0.194∗∗∗ 

 (0.038) (0.035) (0.052) (0.056) (0.062) (0.056) (0.050) (0.050) 

CDS Bid Ask 3.029∗∗∗ 2.522∗∗∗ 5.508∗∗∗ 7.417∗∗∗ 10.955∗∗∗ 2.361∗∗∗ 0.648∗∗∗ 1.507∗∗∗ 
 (0.057) (0.055) (0.084) (0.089) (0.098) (0.075) (0.063) (0.067) 

Leverage 0.206∗ 0.174 8.558∗∗∗ 18.183∗∗∗ 25.764∗∗∗ 33.155∗∗∗ 29.321∗∗∗ 12.694∗∗∗ 
 (0.112) (0.109) (0.167) (0.181) (0.195) (0.173) (0.155) (0.265) 

Recovery Rate −8.332∗∗∗ −10.284∗∗∗ −13.218∗∗∗ −14.289∗∗∗ −14.606∗∗∗ −16.927∗∗∗ −17.827∗∗∗ −8.357∗∗∗ 
 (0.054) (0.051) (0.076) (0.081) (0.096) (0.080) (0.071) (0.092) 
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Total Payout 2.277∗∗∗ 2.072∗∗∗ 2.384∗∗∗ 1.929∗∗∗ 1.936∗∗∗ 2.661∗∗∗ 2.444∗∗∗ 2.203∗∗∗ 
 (0.073) (0.074) (0.115) (0.127) (0.142) (0.127) (0.114) (0.366) 

TTM −0.111∗ −1.093∗∗∗ −1.709∗∗∗ −1.848∗∗∗ −1.680∗∗∗ −0.079 −0.104 −0.769∗∗∗ 
 (0.064) (0.057) (0.083) (0.086) (0.095) (0.085) (0.076) (0.093) 

Coupon −2.372∗∗∗ −4.541∗∗∗ −13.883∗∗∗ −14.668∗∗∗ −2.906∗∗∗ −7.491∗∗∗ −5.298∗∗∗ −13.709∗∗∗ 
 (0.272) (0.253) (0.374) (0.403) (0.471) (0.471) (0.431) (0.569) 

VIX 4.574∗∗∗ 3.376∗∗∗ 9.440∗∗∗ 9.673∗∗∗ 14.483∗∗∗ 7.020∗∗∗ 5.643∗∗∗ −0.262∗∗∗ 
 (0.044) (0.040) (0.056) (0.059) (0.063) (0.062) (0.056) (0.048) 

Hazard Rate 66.828∗∗∗ 86.457∗∗∗ 97.504∗∗∗ 103.252∗∗∗ 102.718∗∗∗ 99.557∗∗∗ 103.841∗∗∗ 105.169∗∗∗ 
 (0.056) (0.062) (0.105) (0.119) (0.129) (0.107) (0.096) (0.131) 

Constant 62.482∗∗∗ 81.697∗∗∗ 107.530∗∗∗ 136.692∗∗∗ 164.241∗∗∗ 189.458∗∗∗ 194.411∗∗∗ 185.754∗∗∗ 
 (16.287) (2.136) (1.144) (1.042) (1.049) (0.954) (0.852) (0.779) 

         

Entity FE Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 211,213 269,685 299,169 315,550 304,825 313,732 311,856 106,661 

Adjusted R0 0.949 0.962 0.939 0.937 0.934 0.945 0.956 0.982 

 
Note: *p<0.1; ** p<0.05; ***p<0.01 
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Table 17: Regression of CDS Spreads on Bond Liquidity Measures During a Financial 
Crisis and a Financial Non-crisis Period 

In the table below, I summarize the regression coefficients when projecting measures of CDS 
spreads onto bond market liquidity measures for credit default swaps of 5 year tenor during a 
financial crisis period and then, during a financial non-crisis period. The dependent variable is the 
daily mid price between and the ask quoted spreads, MidQuoteSpread. The most revealing 
independent variable is the a bond market maturity weighted Amihud (2002) measure ”Maturity 
Amihud”. In Column 1, I present regression coefficients for observations that belong in the 2008 
financial crisis period, which started in December 2007 and ended in June 2009. In Column 2, I 
present regression coefficients for the subsequent non-crisis period. In Column 3 I present 
regression coefficients using both subsamples, and I include an indicator function 1"#$%&'$$which 
takes the value 1 if the observation belongs to the 2008 crisis period and 0 otherwise. I also include 
the interaction dummy ()*. ,-.ℎ01 × 1"#$%&'$$ which represents the marginal contribution of 
the bond market liquidity measure during the crisis period in the determination of the credit default 
spreads. All regressions include entity fixed effects as well as year fixed effects. The panel data 
ranges from 2008 to Q12019. Regressions are for firms-days and standard errors are clustered at 
the same level. 

 
 Regression of CDS Spread 

 Insured Spread 

     Crisis Non-crisis Interaction 

 (1) (2) (3) 

Maturity Amihud 5.486∗ 3.268∗∗∗ 2.809∗∗∗ 

 (0.196) (0.054) (0.071) 

CDS Bid Ask 5.704∗∗∗ 6.213∗∗∗ 9.053∗∗∗ 

 (0.376) (0.088) (0.092) 

1"#$%&'$$   7.391∗∗∗ 

(0.225) 
()*. ,-.ℎ01 × 1"#$%&'$$    2.375∗∗∗ 

(0.118) 
Leverage 129.477∗∗∗ 18.316∗∗∗ 20.061∗∗∗ 

 (7.368) (0.180) (0.185) 
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Recovery Rate −15.168∗∗∗ −14.191∗∗∗ −14.756∗∗∗ 
 (0.399) (0.088) (0.089) 

Total Payout 147.066∗∗∗ 0.940∗∗∗ 0.598∗∗∗ 
 (26.727) (0.132) (0.132) 

TTM 0.328 −0.857∗∗∗ −0.850∗∗∗ 
 (0.306) (0.086) (0.089) 

Coupon −6.062∗∗ −2.848∗∗∗ −1.024∗∗ 
 (2.863) (0.420) (0.440) 

VIX −7.076∗∗∗ 11.921∗∗∗ 11.970∗∗∗ 
 (0.180) (0.055) (0.061) 

Hazard Rate 110.156∗∗∗ 106.338∗∗∗ 104.148∗∗∗ 
 (0.544) (0.120) (0.123) 

Constant 199.741∗∗∗ 153.035∗∗∗ 157.125∗∗∗ 
 (18.324) (0.889) (0.980) 

Entity FE 

Year FE 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Observations 24,258 280,567 304,825 

Adjusted R2 0.965 0.952 0.942 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
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Table 18: Regression of CDS Spreads on Bond Liquidity Measures of High and Low Quality 
Firms 

In the table below, I summarize the regression coefficients when projecting measures of CDS 
spreads onto bond market liquidity measures for credit default swaps of 5 year tenor, alternatively 
using either high or low quality firms. The dependent variable is the daily mid price between and 
the ask quoted spreads, MidQuoteSpread. The most revealing independent variable is the a bond 
market maturity weighted Amihud (2002) measure ”Maturity Amihud”. In Column 1, I present 
regression coefficients for firms whose cumulative probability of default is greater than the 
median. I consider these firms to be in financial “distress”. In Column 2, I present regression 
coefficients for firms whose cumulative probability of default is below the median. I consider these 
firms to be “non-distressed” firms. In Column 3, I present regression coefficients using both 
subsamples, and I include an indicator function 1%45'#67$%&'$$ which takes the value 1 if the firm 
is distressed and 0 otherwise. I also include the interaction dummy ()*. ,-.ℎ01 × 1%45'#67$%&'$$ 
which represents the marginal contribution of distressed firms’ bond liquidity measure in the 
determination of the credit default spreads. All regressions include entity fixed effects as well as 
year fixed effects. The panel data ranges from 2008 to Q12019. Regressions are for firms-days and 
standard errors are clustered at the same level. 

Regression of CDS Spread 
 

Insured Spread 

                                                  Distressed            Non-distressed                 Interaction 

 (0.541) (0.093) (0.179) 

 (1) (2) (3) 

Maturity Amihud 3.886∗∗∗ 1.549∗∗∗ 1.160∗∗ 
 (0.210) (0.028) (0.064) 

CDS Bid Ask 7.708∗∗∗ 2.637∗∗∗ 9.415∗∗∗ 
 (0.285) (0.047) (0.090) 

1%45'#67$%&'$$   16.826∗∗∗ 

(0.243) 
Mat.Amihud×1%45'#67$%&'$$ 

 

 2.052∗∗∗ 

(0.002) 
Leverage 33.693∗∗∗ 7.032∗∗∗ 19.932∗∗∗ 
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Recovery Rate −25.020∗∗∗ −5.544∗∗∗ −13.781∗∗∗ 

 (0.312) (0.055) (0.087) 

Total Payout 0.891∗∗∗ 3.114∗∗∗ 1.923∗∗∗ 

 (0.253) (0.071) (0.129) 

TTM −5.552∗∗∗ −0.477∗∗∗ −1.153∗∗∗ 

 (0.453) (0.041) (0.087) 

Coupon −2.481∗ −3.002∗∗∗ 1.417∗∗∗ 

 (1.381) (0.207) (0.428) 

VIX 23.633∗∗∗ 7.730∗∗∗ 12.524∗∗∗ 

 (0.238) (0.029) (0.058) 

Hazard Rate 93.052∗∗∗ 36.005∗∗∗ 86.736∗∗∗ 

 (0.314) (0.049) (0.133) 

Constant 367.596∗∗∗ 81.941∗∗∗ 142.253∗∗∗ 

 (2.249) (0.418) (0.959) 

Entity FE Yes Yes Yes 

Year FE Yes Yes Yes 

Observations 68,911 235,914 304,825 

Adjusted R2 0.818 0.917 0.945 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01  
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Figure 1: Comparative static analysis of DGP based term structures of liquidity premiums  
These figures plot the term structure of liquidity premium for alternative values of: A) the 

search intensity 87, B) the holding costs 9, C) the hazard rate of liquidity shocks :, and D) the 
conditional probability of the liquidity shock being adverse <. In the spirit of Feldhütter (2012), 
the baseline parameters in the model are r	 = 	0.1, C = 7, F	 = 	100, z	 = 	0.9, δ	 = 	12, λ	 = 	5 
and π = 	0.5. In each of the plots below, we illustrate the impact of the variable under 
consideration by exclusively changing that parameter while keeping the other values fixed at their 
baseline specification. The liquidity premium is defined as the yield in a market where search is 
costly (87 = search intensity of the average investor) minus the yield in a market with no search 
costs (8 → ∞). 
 

1A:  Search intensity 87 

 

1B:  Holding costs 9 

 
 

1C:  Liquidity shock hazard rate : 
 

 

 
1D:  Probability of a binding financial constraint 

< 
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Figure 2: Illustrative DGP plots of the term structure of liquidity in periods of stress and 
post stress 

The figures below reflect the term structure of the liquidity premium implied by the DGP model 
after selecting parameters for the search intensity 87, the holding costs 9, the hazard rate of 
liquidity shocks :, and the conditional probability of the liquidity shock being adverse <, that best 
represent periods of stress (Figure 2A) and post stress (Figure 2B). The motivation for our inputs 
in both periods is provided in the hypothesis section. Other variables of the model were chosen in 
the spirit of Feldhütter (2012) and are: r	 = 	0.1, C = 7, F	 = 	100, z	 = 	0.9. The liquidity 
premium is defined as the yield in a market where search is costly (87 = search intensity of the 
average investor) minus the yield in a market with no search costs (8 → ∞).  
 

2A:  Stress 

 
2B:  Post stress 
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Figure 3: Time series of liquidity measures for corporate bonds 

The figure below shows the time series plot from 2008 to 2012 of four liquidity measures for all 
corporate bonds in TRACE: The bid-ask, Amihud, Roundtrip, and interquartile range.  To remove 
errors, cancellations, corrections, and reversals in the TRACE data, we filter the intraday 
transaction data according to the procedure described in Dick-Nielsen (2009). The formulas for 
the computation of these measures as well as the description of the data are presented in the 
methodology section. The liquidity measures are standardized by subtracting the mean and 
dividing by the standard deviation of the full window which shows that all measures behave 
similarly.  
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Figure 4: VIX and Fed fund futures prices 

This figure plots the VIX (blue circle, axis on the left) and the price of the Fed Fund Futures (red 
triangle, axis on the right) for our period of interest, October 2008 to December 2012. We define 
the periods that we use in this study according to significant changes in the VIX and the Fed funds 
futures price. Periods 1 and 2 below are considered periods of “stress”, while Periods 3, 4, 5, are 
considered “ post stress” periods. The vertical lines divide the sample into the periods 1) October 
1, 2008 to April 1, 2009, 2) April 1, 2009 to November 30, 2009, 3) November 30, 2009 to July 4, 
2010, 4) July 4 2010 to July 1, 2011, and 5) July 1, 2011 – Dec 31, 2012.  
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Figure 5: Term structure of raw spreads for insured corporate bonds  

This figure depicts the raw spreads of the insured corporate bonds over equal maturity Treasury 
bonds for the two periods: “stress” and “post stress”.  The vertical axis is raw spread in basis points 
and the horizontal is time to maturity. The period of stress is from October 1, 2008 to November 
30, 2009, while the post stress period goes from November 30, 2009 to Dec 31, 2012. Bond yields 
are obtained from TRACE and cleaned according to the Dick-Nielsen (2009) filter. Treasury yields 
are obtained from the H-15 website for a set of fixed maturities. The Treasury yields are 
interpolated to exactly match the maturity of the bonds for any given day. The plots are averages 
of all bond spreads with the same time to maturity. These spreads are further aggregated by weekly 
buckets to avoid noise and high dispersion in the data. A polynomial of best fit is also depicted in 
this figure. 
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Figure 6: Term structure of liquidity spreads for insured corporate bonds for period of stress 

This figure depicts the term structure of fitted spreads of the insured corporate bonds over equal 
maturity Treasury bonds for the period of “stress” from October 1, 2008 to November 30, 2009. 
The fitted spread is the predicted value of the liquidity spread (LS) from the regression of spread 
on the liquidity measure, the VIX, the Fed Fund futures, and other explanatory variables. Insured 
corporate bond yields are obtained from TRACE and cleaned according to the Dick-Nielsen 
(2009) filter. Treasury yields are obtained from the H-15 website. The plots are averages of all 
insured corporate bond spreads with the same time to maturity. These spreads are aggregated by 
weekly buckets because of noise and high dispersion in the data. 
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Figure 7: Term structure of liquidity spreads for insured corporate bonds for post stress 
period  

This figure depicts the term structure of fitted spreads of the insured corporate bonds over equal 
maturity Treasury bonds for the post stress period, from November 30, 2009 to Dec 31, 2012. The 
fitted spread is the predicted value of the liquidity spread (LS) from the regression of spread on 
the liquidity measure, the VIX, the Fed Fund futures and other explanatory variables. Bond yields 
are obtained from TRACE and cleaned according to the Dick-Nielsen (2009) filter. Treasury yields 
are obtained from the H-15 website. The plots are averages of all bond spreads with the same time 
to maturity. These spreads are aggregated by weekly buckets because of noise and high dispersion 
in the data. 
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Figure 8: Term structure of insured corporate bond liquidity spreads for period of stress 

To generate this figure, we first collected the estimated daily values of the liquidity spread, 
according to their time to maturity. These estimated daily values for the period of stress are the 
product of the right hand side variables and their respective parameter estimates at the time of 
transaction. On average, for each day of transaction, more than a dozen estimated spreads are 
recorded for the same time to maturity. Consequently, in order to summarize those values of 
relative variations in time to maturity, we minimized the sum of the squared deviations of these 
computed values from a mean computed value at each time to maturity (TTM). Thus, our 
characterization of the relationship between liquidity spread and the time to maturity is depicted 
in this figure. This figure depicts the term structure of spreads of the insured corporate bonds over 
equal maturity Treasury bonds for the period of “stress” from October 1, 2008 to November 30, 
2009. Bond yields are obtained from TRACE and cleaned according to the Dick-Nielsen (2009) 
filter. Treasury yields are obtained from the H-15 website. These spreads are aggregated by weekly 
buckets because of noise and high dispersion in the data.  
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Figure 9: Term structure of insured corporate bond liquidity spreads for post stress 
 period   

To generate this figure, we first collected the estimated daily values of the liquidity spread, 
according to their time to maturity. These estimated daily values for the post stress period are the 
product of right hand side variables and their respective parameter estimates at the time of 
transaction. On average for each day of a transaction, more than a dozen estimated spreads are 
recorded for the same time to maturity. Consequently, in order to summarize those values of 
relative variations in time to maturity, we minimized the sum of the squared deviations of these 
computed values from a mean computed value at each TTM. Our characterization of the 
relationship between liquidity spread and the time to maturity is depicted in this figure. Bond yields 
are obtained from TRACE and cleaned according to the Dick-Nielsen (2009) filter. Treasury yields 
are obtained from the H-15 website. These spreads aggregated by weekly buckets because noise 
and high dispersion in the data. 
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Figure 10: KF/EM implied term structures of liquidity spreads for extended sample of 
AAA and AA bank bonds in periods of stress and post stress 

These figures depict the term structure of liquidity spreads for a sample of AAA and AA bank 
bonds with maturities up to 10 years. This sample excludes our insured bonds and corresponds to 
the parameter estimates in Columns 1 and 2 of Table 4. The liquidity spreads are extracted using 
a Kalman filter and the expectation maximization algorithm as presented in the methodology 
section. The liquidity premiums are aggregated into monthly time to maturity buckets, averaged 
and then plotted against TTM. The term structures of liquidity premiums are for the “stress” period 
(Panel A) from October 1, 2008 to November 30, 2009, and for the “post stress” period (Panel B), 
from November 30, 2009 to Dec 31, 2012. To better visualize the slopes, we include a second 
degree polynomial of best fit for each period. 
 

Panel A: Stress Period 

 
Panel B: Post Stress Period 
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Figure 11: Kalman filter implied term structures of liquidity spreads for out of sample set of 
insured bonds when M = NO% 
Below, we depict out-of-sample estimation of the term structure of liquidity spreads for the insured 
bonds. We estimate the parameters from our KF/EM methodology using a sample that combines 
all uninsured bonds and 50% of our insured sample. We then estimate the liquidity premiums by 
feeding the sample excluded from the estimation to a Kalman filter with the previously estimated 
parameters in Columns 3 and 4. The term structures of liquidity premiums are for the “stress” 
period (Panel A), from October 1, 2008 to November 30, 2009, and for the “post stress” period 
(Panel B), from November 30, 2009 to Dec 31, 2012. To better visualize the slopes, we include a 
second degree polynomial of best fit for each period.  
 

Panel A: Stress Period 

 
Panel B: Post Stress Period 
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Figure 12: Kalman filter implied term structures of liquidity spreads for out of sample set 
of insured bonds when Q = RN% 

Below, we depict out-of-sample estimation of the term structure of liquidity spreads for the insured 
bonds. We estimate the parameters from our KF/EM methodology using a sample that combines 
all uninsured bonds and 75% of our insured sample. We then estimate the liquidity premiums by 
feeding the sample excluded from the estimation to a Kalman filter with the previously estimated 
parameters in Columns 5 and 6. The term structures of liquidity premiums are for the “stress” 
period (Panel A), from October 1, 2008 to November 30, 2009, and for the “post stress” period 
(Panel B), from November 30, 2009 to Dec 31, 2012. To better visualize the slopes, we include a 
second degree polynomial of best fit for each period.  
 

Panel A: Stress Period 

 
Panel B: Post Stress Period 
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Figure 13: Term Structures of Liquidity Scores in Periods of Stress and Post Stress Implied 
from Projection of Credit Spread onto Liquidity and Default Proxies 

These figures depict the term structure of “liquidity scores” for a sample of AAA and AA bank 
bonds with maturities up to 10 years. This sample excludes our insured bonds. We obtained these 
liquidity scores using a procedure similar to the one detailed in Dick-Nielsen, Feldhütter, and 
Lando (2012) and summarized in the methodology section. The liquidity scores are aggregated 
into monthly time to maturity buckets, averaged and then plotted against TTM. The term structures 
of liquidity premiums are for the crisis period (Panel A), from October 1, 2008 to November 30, 
2009, and for the “post stress” period (blue, circle), from November 30, 2009 to Dec 31, 2012. To 
better visualize the slopes, we include a second degree polynomial of best fit for each period.  
 

Panel A: Crisis Period 

 
Panel B: Post Stress Period 

 



 

 174 

Figure 14: Illustrative plots of the term structure of liquidity premiums in periods of 
nonstress and stress for high and low quality bonds  

The figures below reflect the term structure of the liquidity premium implied by liquidity premium 
inclusive model after selecting parameters for the short-term interest rate S, the firm’s leverage, 
the firm’s payout rate 9, the firm’s volatility of assets T, the fraction of asset value lost in 
bankruptcy U, and the fraction of the credit spread that is due to illiquidity, that best represent a 
period of nonstress (Figure 11A) and a period of stress (Figure 11B). In addition, in each period 
we present the term structures of liquidity premiums for high and low credit quality firms. The 
parameters used for each credit category in each firm are displayed in Table 6, while the motivation 
for these variables is provided in Appendix H.  
 

Panel A: Nonstress period 

 
Panel B: Period of Relative Stress 
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Figure 15: Estimated term structure of the liquidity premium per credit category for the 
pre-crisis period 

The figures below summarize term structures of liquidity premiums during the pre-crisis period 
for the three credit rating categories: high, medium and low. The pre-crisis period starts in March 
2004 and ends in October 2007. The liquidity premiums are estimated for each month and for each 
bond using a liquidity premium inclusive model of credit spread in the context of an unscented 
Kalman filter using an expectation maximization algorithm. Additional details on the model and 
its estimation are provided in the theory and methodology sections. The liquidity premiums are 
averaged by credit category and by maturity buckets. The figure below shows the result of plotting 
these averages versus the time to maturity for each credit category. In total, we are able to collect 
235,600 bond month observations from March 2004 to November 2019, where 18,191 
observations belong to the pre-crisis period. 
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Figure 16: Estimated term structure of the liquidity premium per credit category for the 
crisis period 

The figures below summarize term structures of liquidity premiums during the crisis period for 
three rating classes: high, medium, and low. The crisis period starts in November 2007 and ends 
in June 2009. The liquidity premiums are estimated for each month and for each bond using a 
liquidity premium inclusive model of credit spread in the context of an unscented Kalman filter 
using an expectation maximization algorithm. Additional details on the model and its estimation 
are provided in the theory and methodology sections. The liquidity premiums are averaged by 
credit category and by maturity buckets. The figure below shows the result of plotting these 
averages versus the time to maturity for each credit category. In total, we are able to collect 235,600 
bond month observations from March 2004 to November 2019, where 23,439 observations belong 
to the crisis period. 
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Figure 17: Estimated term structure of the liquidity premium per credit category for the 
post-crisis period 

The figures below summarize term structures of liquidity premiums during the post-crisis period 
for three different corporate credit ratings: high, medium, and low. The post-crisis period starts in 
July 2009 and ends in November 2019. The liquidity premiums are estimated for each month and 
for each bond using a liquidity premium inclusive model of credit spread in the context of an 
unscented Kalman filter using an expectation maximization algorithm. Additional details on the 
model and its estimation are provided in the theory and methodology sections. The liquidity 
premiums are averaged by credit rating and by maturity buckets. The figure below shows the result 
of plotting these averages versus the time to maturity for each credit rating.  
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Figure 18: Illustrative plot of the relationship between liquidity premiums γt and the price 
of credit default swaps 

The figure below reflects the price of credit default swaps as a function of liquidity premiums, 
implied by the model after selecting parameters for the short-term interest rate r, the firm’s payout 
rate δ, the firm’s volatility of assets σ, and the fraction of the face value of the bond paid by the 
insurance R, that best represent a typical firm in the economy. The parameters used are based on 
the ones in Leland and Toft (1996) and He and Xiong (2012) and are provided in the theory section. 
 

 
 

 
 
 
 
 
 
 
 
 


