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ABSTRACT 

The shale exploration and production in the United States have changed the dynamics of 

the oil and gas business in the world. The production heterogeneity associated with shale resource 

plays demands recording different kinds of data during the lifecycle of a shale reservoir. Surface 

seismic, microseismic, well logs, vertical seismic profile (VSP), and core data are some of the 

most common data acquired for subsurface characterization. Due to the large number of wells 

drilled in some of the most prolific basins such as Anadarko and Permian Basins, geoscientist 

resort to well correlations and statistical analysis to plan optimum well locations and the surface 

seismic data is considered unsought. Well planning with well log correlation entails high 

uncertainty due to high inherent rock heterogeneity. In this dissertation, I show how incorporating 

the surface seismic data with log/core data can decrease the uncertainty of mapping producible 

rock types, and aid in avoiding perilous drilling location such as those that can cause induced 

earthquakes.  

In this dissertation I show a methodology that combines core and seismic data to delineate 

petrophysically defined rock types away from the cored well. In the case study presented in the 

dissertation, the rock types were delineated over an area of 477 square miles from measurements 

conducted on one cored well. The rock types were defined using porosity and permeability values 

and estimated away from the well by combining elastic measurements from seismic and core 

samples. The seismic elastic properties P-impedance (ZP), S-impedance (ZS), and density (ρ) were 

estimated by simultaneous prestack inversion. One of the limitations of estimating elastic 

parameters from prestack data is ZS, and ρ experiencing a decrease in resolution compared to ZP 

due stretching of the non-zero offset data caused by NMO corrections. Hence, we propose a 
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method to compensate for the NMO stretch that balances the spectrum across the reflector, 

increasing the resolution of ZS and ρ after prestack inversion.  

In the final chapter of the dissertation, I propose methodologies to image seismogenic 

faults. The strike-slip faulting is the dominant deformation style in Anadarko Basin, and the faults 

get unrecognized due to their low offset in the sedimentary formation while planning water 

injection or hydrocarbon production well. These faults might act seismogenic to injection or 

production activities based on their orientation and regional stress conditions. I propose a new 

method called band-limited multispectral coherence to image the strike-slip faults in basins with 

similar deformation style as Anadarko Basin and with a record of active induced seismicity. In 

Anadarko Basin, the strong visual correlation between recorded earthquakes and the faults 

delineated by the proposed methodology signals the seismogenic nature of the faults. The faults 

with no associated induced seismicity, geomechanical modeling is proposed to investigate their 

reactivation potential.   
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CHAPTER 1 INTRODUCTION 

After the Mitchell energy commercialized the first Shale gas well in 1991, more than 1 

million wells have been drilled in the United States producing more than 12 million barrels of oil 

and 100 billion cubic feet of natural gas per day in 2019, making country the largest producer of 

oil and gas in the world (EIA report 2019). A vast amount of seismic, core and log data have been 

recorded through these years for drilling these wells but only 25% of the data is used for analysis 

(personal communication Halliburton personals). In the dissertation, I discuss methods to improve 

the value of products that can be created with the core, log, and/or seismic data. 

In Chapter 1, I address the problems associated with NMO/migration stretched data. I 

discuss about the improvements that can be made in analyzing seismic data by compensating for 

NMO/migration stretch. Alignment of the non-zero offset traces with the zero offset traces causes 

stretching of the non-zero offset traces which is proportional to source-receiver offset to depth 

ratio. The stretching causes changes in AVO and AVAZ signature and decrease in resolution of 

prestack inversion products. I propose a method to compensate for the stretch using matching 

pursuit algorithm to locate the reflection’s spike, fit wavelet to the data and then compensate for 

the migration stretch. The method was applied to the wide azimuth survey acquired over the Fort 

Worth Basin. A less than 2o dip of the reflectors in the study area makes seismic data ideal for 

testing the applicability of the method. The method balances the frequency across the reflectors 

increasing resolution of the far-offset data.  We support out analysis with forward AVO modeling 

and address the limitation of the methods using elastic modeling.     
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In Chapter 2, I discuss about spatial delineation of rock types by combining core and 

seismic data. It is very well established that the resource play exploitation must deal with inherit 

production heterogeneity which arise due to low fluid flow capacity of the rock matrix. The 

effectiveness of the exploitation will depend on the way the hydraulic fractures intersects with the 

producible and permeable rock types. Hence, it is imperative to locate such rock types before the 

well or completion is planned. I propose a methodology to define rock types using porosity and 

permeability measured on core samples, thereafter upscaling the rock types to seismic scale using 

Bayesian statistics. I address the challenges that occur in extending the rock types from core to 

seismic due to resolution difference between core and seismic. The methodology was applied to a 

survey acquired over the STACK area of Anadarko Basin located in the north central Oklahoma 

in the Anadarko Basin. The outcome of the methodology is a rock type volume, showing the lateral 

and horizontal variation of rock types, and probability volumes for each rock types. 

In chapter 3, I propose methods to improve seismic imaging of seismogenic faults in 

Oklahoma. Oklahoma has witnessed 34000 earthquakes within the last decade. Majority of the 

earthquakes are attributed to wastewater injection into the subsurface formation. The injection 

causes decrease in effective stress leading to reactivation of critically stressed faults causing 

earthquakes. Recent studies attribute some of the earthquakes to hydraulic fracturing also. A 

hydraulic fracturing completion near a critically stress fault can reactivate it leading to 

earthquakes. Oklahoma Geological Survey (OGS) has cataloged hundreds of faults in Oklahoma 

using published literature and contribution from industry. While in some parts of Oklahoma 

earthquakes occur along the previously mapped faults, in many places in Oklahoma a lack of 

correlation is observed between the earthquakes and the mapped faults. This is likely because the 

previously mapped faults are located within the sedimentary layers, while earthquakes mainly 
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occur within the crystalline basement or due to incomplete fault mapping.  The incomplete fault 

mapping can be due to lack of data or faults overlooked by interpreter due to low vertical offset. 

STACK (Sooner Trend Anadarko Basin Canadian Kingfisher counties) is one of the regions which 

has witnessed increase in earthquake, but the earthquakes does not show correlation with mapped 

faults. We propose a method called band-limited multispectral coherence and aberrancy to image 

the seismogenic faults. The faults mapped using the seismic attributes show excellent correlation 

with the earthquakes laterally and horizontally.       
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ABSTRACT 

Because of their improved leverage against ground roll and multiples, as well as the ability 

to estimate azimuthal anisotropy, wide-azimuth 3D seismic surveys are now routinely acquired 

over most resource plays. For a relatively shallow target, most of these surveys can be considered 

to be long offset as well, containing incident angles up to 45°.Unfortunately, effective use of the 

far offset data is often compromised by noise and NMO (or more accurately, prestack migration) 

stretch.  The conventional NMO correction is well known to decrease the frequency content and 

distort the seismic wavelet at far offsets, sometimes giving rise to tuning effects. Most quantitative 

interpreters work with prestack migrated gathers rather than unmigrated NMO-corrected gathers. 

However, prestack migration of flat reflectors suffers from the same limitation called migration 

stretch.  Migration stretch leads to lower S-impedance (ZS) and density (ρ) resolution estimated 

from inversion, misclassification of AVO types, and infidelity in AVAZ inversion results. We 

describe a matching pursuit algorithm commonly used in spectral decomposition to correct the 

migration stretch by scaling the stretched wavelets using a wavelet compensation factor. The 

method is based on hyperbolic moveout approximation. The corrected gathers show increased 

resolution and higher fidelity amplitudes at the far offsets leading to improvement in AVO 
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classification. Correction for migration stretch rather than conventional “stretch-mute” corrections 

provides three advantages: (1) preservation of far angles required for accurate ρ inversion, (2) 

improvement in the vertical resolution of ZS and ρ volumes, and (3) preservation of far angles that 

provide greater leverage against multiples. We apply our workflow to data acquired in the Fort 

Worth Basin and retain incident angles up to 42o at the Barnett Shale target. Comparing ZP, ZS, and 

ρ of the original gather and migration stretch compensated data, we find an insignificant 

improvement in ZP, but a moderate to significant improvement in resolution of ZS and ρ. The 

proposed method is valid for reservoirs, which exhibit dip no more than 2o. Consistent 

improvement is observed in resolving thick beds, but the method might introduce amplitude 

anomalies at far offset for tuning beds.  

INTRODUCTION 

The normal moveout (NMO) correction is to align the non-zero offset traces with the zero-

offset trace, allowing the reflection events to be stacked and facilitating subsequent AVO, AVAZ, 

or prestack impedance inversion analysis.   Prestack migration improves on the simple NMO 

correction by reducing CMP smear, placing dipping reflectors in a more accurate location, and 

properly focusing diffractions. In the time domain, both NMO-corrections and prestack migration 

are usually implemented on a sample-by-sample basis leading to distortion of the non-zero incident 

angle traces, where the amount of distortion increases with increasing source-receiver offset to 

depth ratio. Such distortion leads to a decrease in frequency and increased waveform interference 

at the farther incident angles. Such distorted gathers lead to a decrease in the resolution of inversion 

products and may create misleading results. The Aki and Richards’ (1980) approximation to 

Zoeppritz’s (1919) equations shows that P-impedance (ZP), S-impedance (ZS), and density (ρ) can 

be estimated from the “PP” reflected waves as a function of incident angle (Figure 1). At near 
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angles, the PP reflection is only sensitive to changes in ZP. At farther angles, the PP reflection is 

sensitive to changes in all three parameters, ZP, ZS, and ρ. Because no converted waves are 

measured, the loss in resolution for inverted ZS and ρ can be partially attributed to migration 

stretch. 

 As early as 1972, Buchholtz (1972) quantified the degree of stretch with offset introduced 

by the NMO correction. To avoid the negative impact of stretch on the final stack, it was desirable 

to perform simple mute on the part of the far offset data that was unacceptably distorted. Since 

muting decreases the stack fold and causes a loss of information contained in the far offset data, 

Rupert and Chun (1975) proposed a Block Move Sum (BMS) method to address the stretching 

problem without muting. In this method, the seismic data are treated as blocks, and a single 

dynamic correction is applied to a block of data to eliminate stretching. Unfortunately, overlapping 

of adjacent blocks at far offsets introduced wavelet replication and discontinuities. Shatilo and 

Aminzadeh (2000), Brouwer (2002), and Masoomzadeh et al. (2010) improved upon Rupert and 

Chun’s (1975) BMS technique. Hicks (2001) combined Radon, and spatial Fourier transforms to 

develop a new transform to remove the NMO stretch from the NMO corrected CMP gather. 

Trickett (2003) discussed the shortcomings of the Hicks (2001) method and proposed an 

alternative method which directly generates stretch-free stacked data using an inversion process. 

However, this technique does not provide an NMO stretch corrected CMP gather required for 

AVO analysis and prestack inversion.  Hilterman and Van Schuyver (2003) developed an approach 

for wide-angle data based on prestack migration using event-based travel time to correct the NMO 

stretch for a specified interval. The limitation with their method is that only the specified interval 

is truly flat in the gathers after the processing.  
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 Estimating the correct vertical shift of the non-zero incident angle traces for a particular 

reflection is the most crucial task in NMO correction. Chen et al. (2018) describe the two most 

common means of estimating vertical shift in NMO-correction techniques: (1) using velocities 

based on user-defined travel time equations, and (2) computing local time shifts of adjacent non-

zero offset traces with respect to the zero offset trace (Fomel, 2007). The first technique computes 

the NMO correction using velocity spectra (Taner and Koehler, 1969).  

Chen at al. (2018) uses the second technique to align the data by applying a Dynamic Time 

Wrapping (DTW) algorithm to find the time shifts based on the similarity of the adjacent traces in 

the prestack time-migrated gather. The process does not require a velocity spectrum; however, a 

velocity model is needed for the implied reverse NMO correction. The process also fails for 

interfering events and thin-layer waveform interference.  

Careful velocity analysis is a critical tool in discriminating between primaries, reflectors, 

and crossing coherent events (such as multiples). Stretch correction processes developed by 

Perroud and Tygel (2004), Abedi and Riahi (2016), Shatilo and Aminzadeh (2000), Zhang et al. 

(2013), Faccipieri et al. (2019) and Abedi et at. (2019) require velocity or travel time analysis prior 

to the application of the process. Zhang et al. (2013) compute a wavelet-by-wavelet rather than 

sample-by-sample NMO correction, where the reflection events are modeled using a matching-

pursuit wavelet-based decomposition algorithm. Mutlu and Marfurt (2015) used the workflow 

described by Zhang et al. (2013) and combined with prestack structure-oriented filtering provided 

S- impedance volumes exhibiting the same vertical resolution as the P-impedance volumes. The 

major drawback of the Zhang et al. (2013) algorithm is the complexity and computational intensity.  

 In this paper, we combine Zhang et al.’s (2013) reverse NMO and non-stretch NMO 

processes into one, significantly decreasing algorithmic complexity and increasing speed. For the 
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same dataset, Zhang et al.’s (2013) methods completed both the processes of reverse NMO and 

non-stretch NMO in 14 hours, whereas the method mentioned in this paper completed in 

approximately 8 hours. We begin with a detail description of our migration-stretch compensation 

algorithm. We then show the effect of migration stretch on AVO and prestack inversion computed 

from a simple elastic synthetic model.  Next, we apply our algorithm to prestack migrated data 

volume acquired over a Barnett Shale reservoir in the Fort Worth Basin, Texas, showing the 

improvement in resolution of ZS and ρ over those obtained by inverting the uncorrected data. 

Finally, we conclude with a summary of the value and limitations of this workflow. 

METHODOLOGY 

NMO and NMO stretch 

Travel time for a flat and homogeneous isotropic layer is hyperbolic. If the vertical two-

way travel time is given by T0, then the travel time for the same reflector at source-receiver offset 

h for velocity vRMS is approximated by  

𝑡(𝑇0, 𝑣RMS, ℎ) = {𝑇0
2 + [

ℎ

𝑣RMS(𝑇0)
]

2

}
1/2

,                                          (1) 

where each trace is defined by a fixed offset, h. The change in two-way travel time t as a function 

of the zero-offset travel time T0 is simply 

𝜕𝑡

𝜕𝑇0
= 𝑇0 {𝑇0

2 + [
ℎ

𝑣𝑅𝑀𝑆(𝑇0)
]

2

}
−1/2

< 1.                                         (2) 
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Wavelet decomposition 

 Let us assume an earth model   is composed of a suite of J reflections at time tj and reflection 

coefficient rj. Let’s also assume that the time-varying source wavelet can be represented by Morlet 

wavelets of the form w(fj, ϕj), where fj and ϕj are the frequency and phase of the wavelets. The 

seismic trace without the NMO correction is then 

( ) ( )RNMO RNMO

1

( ) ,
J

j j j j

j

u t r t w f 
=

=                                                   (3) 

where the superscript RNMO indicates that the times are measured after reverse NMO. After a 

conventional sample-by-sample NMO correction, these wavelets are stretched, which leads to 

lower frequencies in the far-offset data for non-interfering events.  

Compensation for migration stretch 

 Rather than starting with uncorrected gathers, most interpreters start with prestack time 

migrated data volumes. In addition to placing the data in a more appropriate lateral position, 

prestack migration also reduces CMP smear. Velocity analysis of smeared CMP gathers over 

dipping reflectors results in velocities that are erroneously high. Deregowski (1990) recognized 

this shortcoming and developed a workflow (called the Deregowski loop) whereby prestack time-

migrated gathers are subjected to reverse NMO, from which velocity spectra are computed and 

analyzed. These new velocities can then be used by NMO to align the gathers better (e.g., Mutlu 

and Marfurt, 2016) or, in Deregowski’s (1990) case, to remigrate the data.  

 Let’s assume our migration velocities were (1) sufficiently accurate, and (2) provided by 

the service company along with the migrated gathers. Applying reverse NMO followed by NMO 

using the same velocity reproduces the original migrated data. Zhang et al. (2013) applied reverse 

NMO and then constructed a wavelet decomposition on the reverse-NMO corrected gathers, where 
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each wavelet (rather than each sample) was subjected to a subsequent NMO correction, thereby 

eliminating NMO stretch.  

 Our modification is simple, but also quite efficient. Here, we represent each migrated trace 

using the same method as in equation 3: 

( ) ( )0 0

1

( ) ,
J

j j j j

j

u T r T w f 
=

=                                                (4) 

where the time axis T0 indicates that the reflection event times have already been migrated (or 

NMO-corrected).  We can compensate for migration stretch by computing a wavelet compression 

factor, c, by mapping T0j to tj, using equation 5: 

𝑐𝑗 =
1

𝑇0𝑗
{𝑇0

2 + [
ℎ

𝑣𝑅𝑀𝑆(𝑇0)
]

2

}
1/2

> 1,                                       (5) 

which can then be used to scale the wavelets in equation 4 and generate the compensated trace 

( ) ( )comp 0 0

1

( ) ,
J

j j j j j

j

u T r T w c f 
=

=                                             (6) 

The input to the algorithms consists of migrated seismic gathers and either an RMS or 

migration velocity model (Figure 2). The output is a volume of gathers that have been compensated 

for migration stretch.  

Implementation of matching pursuit in stretch compensation 

Matching pursuit (e.g., Castagna and Sun, 2006; Liu and Marfurt, 2007) works in a manner 

similar to high-resolution Radon transforms, where the spectra of the strongest events are 

estimated and subtracted from the trace first, followed by iterative estimation and subtraction of 

successively weaker events. Since their original introduction, more general basis pursuit 
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algorithms that use a suite of nonorthogonal basis functions as well as L1 norms applied to the 

data misfit and L1 constraints to minimize the number of components has been found to be quite 

effective in improving the resolution of seismic data (e.g., Puryear and Castagna, 2011). We 

provide an updated description of the relatively simple matching pursuit algorithm used by Liu 

and Marfurt (2007). 

  We begin the analysis by assuming that each seismic time trace, u(t), is band-limited and 

can be represented by a linear combination of J Morlet wavelets, w: 

1

( ) ( , , ) ( )
J

j j j j

j

u t r w t t f n t
=

=  − + ,                                      (7) 

where rj, tj, fj, and j represents the reflection coefficient, center time, peak frequency, and phase 

of the jth wavelet centered about time tj, and n(t) represents noise.  In general, reflected events from 

thin beds, gradients in impedance, discontinuities in attenuation (1/Q), and inaccurately migrated 

events, as well as dispersed events, will have arbitrary phases even if the source wavelet is zero 

phase.  For this reason, we construct our basis functions using a suite of complex Morlet wavelets 

(Figure 3). We calculate the center time tj of each candidate wavelet using the peaks in the 

instantaneous envelope and the wavelet frequency, fj, using the instantaneous frequency at the 

envelope peak.  The temporal behavior of a zero-phase Morlet wavelet is given by: 

2 2( , ) exp( 2ln 2) cos(2 )j j jw t f t f f t= −   ,                                       (8) 

while its magnitude spectrum is given by: 

2 2

2

( )/ ln 2
( , ) exp

2ln 2

j

j

j j

f f
w f f

f f

  −
=  − 

  

 .                                    (9) 
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To efficiently solve for both the magnitude and phase of each wavelet, we use the Hilbert 

transform, and form both an analytic data-trace, U(t):  

)()()( tiututU H+= ,                                                     (10) 

and a table of analytic complex wavelets: 

),(),(),( j

H

jj ftiwftwftW += ,                                             (11) 

where w are symmetric cosine wavelets given by equation 8, and wH are antisymmetric sine 

wavelets (Figure 3).                  

The first step in the matching pursuit algorithm is to precompute a finely sampled wavelet 

dictionary that spans the bandwidth of the input data. The analytic analog of equation 7 then 

becomes:   

( ) ( , ) (t)j j j j

j

U t A W t t f N=  − + ,                 (12) 

where  

( ) ( )e t U t= ,              (13) 

ji

j jA r e


= ,           (14) 

and where e(t) is the instantaneous envelope of the seismic trace, and rj and j represents the 

magnitude and phase of the complex wavelet Wj. Our objective is to minimize the energy of the 

residual analytic trace, R(t), defined as the squared difference between the analytic seismic trace 

and the matched wavelets: 
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2

2
( ) ( ) [ ( , )]

J

j j j j

j

R t U t A W t t f= − −  .                                       (15) 

If we were to attempt to estimate all wavelet coefficients in one iteration, we would write equation 

15 in matrix form and simply solve the normal equations:   

UWI]W[WA
H1H −+= ε                                                     (16) 

where W=[W(t,f1),W(t,f2),…,W(t,fm)] is a vector of wavelets centered of known frequency 

at each known envelope peak, ),...,( 21 mAAA=A  is a vector of unknown complex wavelet 

amplitudes, I is the identity matrix and   is a small number which makes the solution stable. For 

seismic data, A will be a complex-symmetric banded matrix, with the bandwidth proportional to 

the number of samples used to define the lowest frequency wavelet used, and therefore amenable 

to an efficient solution. Liu’s (2006) provides a graphical image of equation 15, where the black 

and red curves represent the real part and imaginary parts of the complex trace and complex 

wavelets (Figure 4).  

Even if we attempted to approximate the seismic data using wavelets centered about all the 

peaks of e(t), the resulting residual R(t) may still contain weaker seismic events of interest, 

implying an iterative solution to find them. Alternatively, isolated low amplitude events may 

represent noise, implying that we may wish to start with the highest amplitude event, estimate and 

subtract it, and iteratively repeat the process on the residual, giving rise to what is called a greedy 

matching pursuit algorithm (Mallat and Zhang, 1993). If we consider a thin bed tuning model 

where the top and bottom reflection events are nearly equal, resolvable, but interfere with each 

other, it is clear that the greedy matching pursuit will be biased. For this reason, Liu and Marfurt 
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(2007) provide a parameter, 0≤β≤1, that allows the interpreter to adjust how many events k=1, 

2, …, K of the J envelope peaks are used in each iteration. Specifically, 

( )

( )

    if  

 if  

k j
j

k j
j

j e MAX e

k
null e MAX e





 


= 




,                         (17) 

where “null” indicates that that event is not used. The iteration continues until either an acceptable 

residual has been reached or if the convergence rate slows down to a level indicating numerical 

convergence.    

 To compensate for migration stretch, we simply replace the wavelets given by equation 7 

with the “non-stretched” wavelets fk with compensated wavelets ckfk described by equations 5 and 

6. We also apply the phase shift occurring in Aj to the real wavelet, w, rather than to the reflection 

coefficient, rj: 

  ( )
1 1

( ) Re ( ) Re exp ( , ) (t) ( , , ) (t)
J J

j j j j j j j j j j

j j

u t U t r i W t t f N r w t t f n 
= =

 
= = − + = − + 

 
  .    (18) 

APPLICATION 

 Results after compensating for migration stretch 

            We apply the algorithm to a wide-azimuth seismic survey acquired over the Fort Worth 

Basin. The depth of the Barnett Shale target is approximately 5600 ft while the offset of farthest 

migrated gather is 10560 ft. The sweep of the vibrator was 120 Hz. The data were prestack time-

migrated using a Kirchhoff algorithm. Figure 5a shows an unmuted common reflection point 

(CRP) gather from the data. Figure 5b shows the migration stretch compensated unmuted CRP 

gather. Figure 5c shows the data not modeled by the matching pursuit algorithm. The unmodeled 
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is the uncompensated data.  The algorithm compensates for significantly greater amounts of stretch 

mute, where the default value of 100% will compress correspondingly stretched wavelets by a 

factor of 2. The unmodeled data is the one stretched above 100%. Figure 5d shows the frequency 

compensation factor.  The compensation factor increases with offset and decreases with depth, 

such that the far offset data of the shallower zone suffer from more significant stretching. Figure 

5b shows an increase in resolution at the farther offsets at the Barnett Shale target at t=1.1 s when 

corrected for migration stretch.  

Data conditioning  

 Migrated gathers are often contaminated by noise, may require a residual move out, or even 

muting prior to AVO or prestack inversion analysis. To ascertain changes caused by migration 

stretch compensation, the same suite of conditioning steps and parameters were applied to both 

the volumes.  First, we applied a seismic mute to remove high amplitude reverberations that 

overprint the shallow far-offset data. Then we applied a parabolic Radon transform to discriminate 

between primaries and long period multiples. Next, we suppress the noise crosscutting the 

reflectors of interest by applying prestack structure-oriented filtering (Zhang et al., 2016; Sinha et 

al., 2017) using a Lower Upper Median (LUM) filter. Finally, we apply trim statics to align the 

reflectors better horizontally.  Figures 6a and 6b shows the same gathers shown in Figure 5 after 

data conditioning. Compensating for migration stretch has considerably improved the resolution 

of the far-offset data. Figure 7 compares the amplitude spectra of original and compensated near-

, mid- and far-angle traces. Figure 7a shows that stretch compensation has a limited effect on the 

amplitude spectrum of near incident angles. Examining the compensation factor in Figure 5d 

shows only a small factor C for near incident angles that increases as the incident angle increases, 
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which is validated by the increase in high frequencies for the mid and far angle traces (Figures 7b 

and c).        

Effect of stretching on AVO 

 Zoeppritz’s (1919) equations describe the partitioning of the P- and S-wave energy into 

transmitted and reflected components as a function of incident angle. Figure 1 shows a cartoon of 

conventional “PP” seismic data acquisition. For flat-layered geology and vertical incidence, almost 

100% of the near-offset reflected energy consists of PP reflections. At farther offset, the P wave 

energy is converted to PP and PS reflections and transmissions, which leads to the PP reflection at 

far offset sensitive to both ZS and ρ. Unless we acquire multicomponent data, we do not directly 

measure the PS reflection events. Rather, it is the sensitivity of the PP reflection events to the 

incident angle that allows us to invert for ZS and ρ. The three-term approximation of the Zoeppritz’s 

equations developed by Aki and Richards (1980) show that ZP, ZS, and ρ can be estimated from the 

coefficients (intercept, gradient, and curvature) of the three-term approximation equations which 

are calculated from ‘PP’ reflected waves as a function of incident angles (Figure 8). The intercept 

is the zero-angle reflection coefficient, which is related to the acoustic impedance contrast across 

the reflector. The gradient is related to both the shear and acoustic impedance contrast across the 

interface. The third coefficient (curvature), which measures the curvature of the amplitude near 

the critical angle, is greatly influenced by the density contrast across the interface. Because the 

offset is small, the recorded seismic wavefield does not suffer from migration stretch. At farther 

offsets (Figure 1b), the PP reflected event now suffers from migration stretch. Since the farther 

offset is sensitive to ZS and ρ, the lower resolution of ZS and ρ compared to that of ZP is partially 

attributed to migration stretch.  
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 Inversion results for reflectors that fall near the tuning frequency are particularly affected 

by migration stretch, which we demonstrate using the elastic finite-difference model shown in 

Figure 9.  Figure 9a shows a sketch of the model used for modeling migration stretch effect on 

tuning beds. ZP of the background model is 6,900 (m/s * g/cm3).  ZP of both top and bottom events 

is 7,200 (m/s * g/cm3) but are 50 m and 150 m thick, respectively. The acquisition consists of 100 

receivers and 100 sources spread across 10,000 m offset. The elastic wave propagation was carried 

out using a Ricker wavelet of 25 Hz peak frequency.  The CMP gather was then prestack time 

migrated (PSTM) to obtain Figure 9b. The stretching causes interference of positive and negative 

amplitude response of the top and bottom of the event A, which in turn causes resolution loss of 

event A with offset, which is just above the tuning resolution, disappearing at the farthest offset. 

Figure 9c shows the applied migration stretch compensation algorithm provides good, but not 

perfect improvement to thin, tuned event A by broadening the spectrum. The algorithm introduces 

positive and negative amplitudes at the offset where it was supposed to compensate for stretch to 

resolve event A. This is because the composite amplitude of those spectral components that fall 

below thin-bed tuning is incorrectly represented by a composite wavelet with a 90o phase change. 

The compensation algorithm then inaccurately represents this part of the spectrum by a broader 

band but 90o phase wavelet that falls in the middle of the thin bed. Event B is less effected by 

stretching because it is significantly thicker than the tuning resolution. The composite amplitude 

for the better components of the amplitude spectrum is accurately corrected, like the event at 1.1 

seconds in Figures 10a and b that are adequately resolved, giving rise to higher positive and 

negative amplitudes at the farther offsets that previously suffered from destructive interference.  

The events in Figure 10a and b show improvement in resolution at far offset after 

compensating for migration stretch. The reflectors, which gradually disappear at far offset due to 
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interference of over- and under-lying reflectors caused by stretching appear stronger after the 

compensation (reflector highlighted by the red and blue lines in Figure 10). Figure 10 shows that 

such interference causes false amplitude signature at far offset for the reflector bounded by the 

interfering reflectors, which in turn leads to an inaccurate AVO signature. The positive amplitude 

event at 1.1 seconds (Figure 10) shows a phase reversal at far offset in the original angle gather. 

In reality, the phase reversal is caused by interference of negative amplitude reflectors over- and 

under-lying this positive amplitude event. The compensation causes resolution balancing over the 

entire reflector, which leads to the appearance of the positive amplitudes at far offset, which was 

hidden by stretching and interference. We confirm the fidelity of the appearance of amplitude at 

far offset by comparing original and compensated gather with the forward modeled angle gather 

(Figure 11). Unlike the modeled angle gather (purple arrow in Figure 11c), the negative amplitude 

reflector at 1.1 second disappears at far offset due to stretching and interference of overlying and 

underlying positive amplitudes reflectors (purple arrows in Figure 11a). The stretch compensation 

algorithm improves the resolution of far offset data leading to the appearance of negative amplitude 

reflector at far offset as shown by the modeled angle gather data (purple arrow in Figure 11b). Due 

to balanced resolution, the events appear continuous after stretch compensation as predicted by 

modeled data (Figure 11c). The stretch compensation also improves amplitude consistency across 

the offset as predicted by modeled gather (events shown by orange arrow in Figure 11).  

Prestack simultaneous inversion 

 Simultaneous inversion to estimate ZP, ZS, and ρ are critical in many resource plays. ZP and 

ZS can be correlated to mineralogy and hence brittleness using ECS or other mineralogy logs, 

which in turn can map areas that are amenable to hydraulic fracturing. Volumetric estimates of ρ 

can be correlated to log measurements and core analysis to predict areas that have total organic 
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carbon. The maximum usable incident angle of 42o at the Barnett Shale target allowed us to 

estimate ρ from inversion. Angles beyond 42° were contaminated by strong linear noise from the 

shallow section; they also fall beyond the critical angle and are not useful for inversion. The 

inversion of both data volumes was carried out with the exact same parameters. Figures 11a and c 

show the ZP estimated from simultaneous inversion of the original prestack migrated and migration 

stretch compensated gathers, respectively. A good match between the ZP
log and ZP

seismic 

(impedances measured by well logs and seismic inversion) confirms the fidelity of the inversion 

(Figure 12b and d). Comparing with well ZP, we do not see significant improvement in ZP after 

stretch compensation. 

The difference between ZP
original and ZP

compensated (Figure 12e) highlights the area of 

significant change. The maximum change in ZP occurs near the fast rocks (limestone and 

basement). During prestack inversion, ZP is not independently estimated from zero offset traces, 

rather it is calculated from the coefficients of the three-term linear approximation equation. Stretch 

compensation causes change in the values of those coefficients by changing the AVO response. 

The AVO is a function of impedance contrast across the reflector. If the contrast is high, the change 

is AVO before and after compensation will be high (Figure 13). Hence, we observe a maximum 

change in ZP near the fast rocks (Caddo, Forrestburg, Ellenberger, and Basement). The change 

observed in Figure 12e is attributed to change in the AVO response.  There is an insignificant 

change in ZP after stretch compensation away from the fast rocks.    

 Figure 14a and c show ZS from prestack simultaneous inversion for original and 

compensated gather. The black arrows in Figure 14e highlight the areas of maximum change. 

These changes can be attributed to both a change in the AVO response and an increase in 

resolution. The gray arrows indicate areas where an increase in resolution is observed. A 
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significant increase in resolution is obtained in the shallower zone than the deeper. This is because 

the wavelet compensation factor applied in the methodology decreases with depth and increases 

with angle of incidence (Figure 5c). Figure 14b and d shows the change in ZS near the well. A good 

match between the well and seismic shows fidelity of the inversion. We do see a significant change 

in resolution near the well as well as far away from the well; some of them highlighted by grey 

arrows in Figure 14c.  

 A maximum usable incident angle of 42o at Barnett Shale allowed us to invert the prestack 

data for density during simultaneous prestack inversion. The ρ results for the original and 

compensated gathers is shown in Figure 15a and c, respectively. The black arrows in the difference 

volume (Figure 15e) indicate areas near the fast reflectors, where the maximum change in ρ is 

observed. We attribute these changes to a change in AVO response and an increase in resolution. 

The gray arrows indicate areas away from the faster reflectors where the change in density is 

attributed to the increase in resolution. Comparing with the density logs, Figure 15b, and d shows 

that we observe an overall increase in density resolution. As with the ZS images, the improvement 

in resolution is higher for the shallower zone than the deeper zone because the compensation factor 

is higher for the shallower zone.  

LIMITATIONS 

The stretch-compensation we use assumes that the stretch from prestack time migration is 

approximately the same as caused due to NMO. We believe this to be an accurate approximation 

for most resource plays in North America, such as the Barnett Shale, which exhibits dips no more 

than 2°. Furthermore, commercial prestack impedance inversion software used by oil company 

quantitative interpreters often assumes the dip of the reservoir to be relatively gentle. The 

migration stretch compensation algorithm described here (and most commercial inversion 
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software) will not work on steeply dipping reservoirs located on salt flanks and other tectonically 

complex terrains. These data often require prestack depth migration to be imaged appropriately 

and will require the development of a stretch compensation algorithm based on the kinematics of 

residual moveout algorithms currently in use. Stretch compensation applied on the 2D elastic 

response of the model suggest that resolution improvement using bandwidth extension methods 

based on the location of energy peaks such as matching pursuit (Mallat and Zhong (1992), Matos 

and Marfurt (2014)) cannot extend the resolution of poorly resolved spectral components. The 

method incorrectly compensates the composite response of the tuned beds at far offset by a broader 

band but 90o phase wavelet that falls in the middle of the bed. This introduces false positive and 

negative amplitudes at offsets, where it is supposed to resolve the bed. A potential solution to this 

approach is a double spike inversion approach described by Puryear and Castagna (2006). 

CONCLUSIONS 

 In principle, seismic reflections are represented by discrete spikes at reflector boundaries. 

These spikes are then convolved with the seismic wavelet to provide the seismic trace. Migration 

assumes each sample of the seismic trace is a potential reflection spike, leading to stretch of the 

imaged wavelets, which in turn leads to a lower resolution for inverted S-impedance and density. 

Such stretching may give rise to an apparent phase reversal of the reflectors due to interference of 

the stretched reflectors bounding it, leading to false AVO signatures and inversion results. We use 

a matching pursuit algorithm to estimate the location of the reflection’s spikes, fit wavelets to the 

data, and then compensate for migration stretch. Comparison of the amplitude spectrum for near, 

mid and far angle stack of the original gather and stretch-compensated gathers shows an increase 

in higher frequencies. Because P-impedance is heavily dependent on the zero angles reflected PP 

waves, there is an insignificant improvement in P-impedance resolution. In contrast, there is a 
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significant improvement in resolution for ZS and ρ in the shallow section and a moderate 

improvement in the deeper section. The method shows significant improvement for well-resolved 

beds, but it incorrectly estimates the composite response of tuned beds at the far offset, leading to 

the addition of false amplitudes.  
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FIGURES 

 

 

Figure 2-1. Cartoon showing conventional “PP” seismic data acquisition using 

vertical geophones (on land) or hydrophones (at sea). (a) At near incident angles, P 

wave generates only PP reflections and transmission. Hence, the near incident angles 

are sensitive to only ZP contrast across the interface. At large offset (b), P wave 

generates both P and S reflections and transmission such that ‘PP’ reflection energy 

is sensitive to the ZS and ρ contrasts across the interface as well. Because the farther 

offsets suffer from migration stretch, inverted for ZS and ρ volumes often exhibit 

lower resolution than the corresponding ZP volume. 
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Figure 2-2. Flow chart of the migration stretch compensation algorithm. The input to 

the program is unmuted prestack time-migrated gathers and the velocities used to 

migrate the data.  
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Figure 2-3. (a) A complex 30 Hz Morlet wavelet consisting of a real part or 0° Morlet 

wavelet (yellow) and an imaginary part 90° Morlet wavelet (cyan). (b) The 

corresponding magnitude spectrum. (After Liu, 2006).  

 

Figure 2-4. (a) A complex seismic trace represented by (b) six complex amplitudes, 

and (c) six complex Morlet wavelets. The goal of equation 15 is to compute the 

complex wavelet amplitudes A j that, when multiplied by W j and summed, 

approximate the complex seismic trace in a least -squares sense. (After Liu, 2006).  
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Figure 2-5. (a) The unmuted CRP gather of the data, (b) unmuted migration stretch 

compensated CRP gather, (c) unmodeled data and, (d) the frequency compensation 

factor. The compensation factor increases with increasing offset and decreases with 

increasing time. 
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Figure 2-6. The (a) original migrated and (b) stretch-compensated CRP gathers 

corresponding to Figure 3a and b, but now after data conditioning. The same suite of 

conditioning steps and parameters have been applied to both data volumes. Note how 

stretch compensation increased the resolution of the long-offset data, leaving the 

near-offset unchanged.    



29 

 

 

Figure 2-7. Amplitude spectrum of the original and compensated gather for (a) near 

angle CRP gather (6o-20o), (b) mid angle CRP gather (20o – 34o), and (c) far angle 

CRP gather (34o-42o). Compensation for migration stretch increases the ratio of high 

frequency to the overall spectrum.  

 
Figure 2-8. (a) The angle gathers corresponding to the compensated gather shown in 

Figure 4b with reflectors of interest highlighted in blue. (b) The AVO response of the 

event indicated by the red line in (a). The blue dashed line indicates the approximate 

AVO gradient. The red dashed line indicates the AVO curvature.   
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Figure 2-9.  (a) A simple model constructed to show the change of tuning with offset.  

Layer A is 50 m thick while Layer B is 150 m thick.  The thickness of the event A is 

just above the quarter wavelength of source wavelet. The ZP of both the event is 7200 

(m/s * g/cm3), while the ZP of the background model is 6900 (m/s * g/cm3).  (b) 

Prestack time migrated CMP gather of the 2D elastic modeling response of the model. 

The yellow arrow indicates the offset where it is challenging to resolve event A due 

to stretching of the top and bottom reflector of the event. c) Migration stretch 

compensated CMP gather of the 2D elastic modeling response of the model. The 

yellow arrow indicates artifacts caused due to incorrect representation of the 

composite wavelet for the event. Source wavelet (Ricker) in (d) time domain and (e) 

frequency domain. The red dash lines show the top and bottom of the events. The 

modeling shows a decrease in the resolution of event A with offset (yellow arrows). 

The elastic modeling also shows interference of positive (top  of event A) and bottom 

(bottom of event A) negative amplitudes at far offset, leading to the thickness of 

event A being unresolved at far offset.  
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Figure 2-10. Shows the angle gather of (a) original and (b)  compensated prestack 

data with the reflectors of interest highlighted by green lines.  (c) The red and blue 

line shows the AVO curve for original and compensated gather for an event at 1.1 

seconds highlighted by red and blue line in (a) and (b) respectivel y. The AVO curve 

has been derived using Aki and Richards’ three -term approximation equation.  

 
Figure 2-11. a) Shows the original, b) stretch compensated, and c) forward modeled 

angle gather. The purple arrow in a) shows the far offset gather where two events 

intersect each other due stretching but are resolved after stretch compensation in b) 

as shown by forward modeled gather in c). The orange arrow indicates an event where 

a decrease in amplitude is observed in the original gather, unlike modeled gather, but 

stretch compensation restores the amplitude at far offset.   
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Figure 2-12. ZP estimated from simultaneous inversion of the (a) original prestack 

and, (c) migration stretch compensated prestack gathers  and e) the difference between 

(b) and (a) (compensated-original).  b) and d) is a close-up view near the well of a) 

and b), respectively, showing a change in ZP with respect to well after stretch 

compensation. Black arrows indicate areas where significant changes in ZP are 

observed. An insignificant change is observed in the resolution after compensation.  
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Figure 2-13. The difference between original and stretch compensated a) ZP 

(compensated-original), b) ρ (compensated-original). Angle gathers c) original and 

d) stretch compensated. e) AVO curve of the Caddo formation shown by the red l ine 

in c) and d). f) AVO curve of formation shown by the orange line in c) and d). We 

can observe that a significant change in AVO occurs near the fast rocks. Hence, we 

see a change in ZP near the fast rocks. Whereas away from the fast rocks, we do not 

see a significant change in AVO except the change in curvature above 35 o (orange 

curve in f)), which is reflected by an insignificant change in ZP and considerable 

change in ρ. 
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Figure 2-14. ZS estimated from simultaneous inversion of (a) original prestack gather 

and, (c) migration stretch compensated prestack gather  and e) the difference between 

(b) and (a) (compensated-original). b) and d) is a close-up view near the well of a) 

and b), respectively, showing a change in ZS with respect to well after stretch 

compensation. The grey arrows show some of the areas of a significant improvement 

in the resolution of ZS from the compensation of migration stretch. The black arrows 

point to the zone where the change in ZS is observed across the whole reflector. These 

changes might be due to change in AVO and/or change in resolution.  
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Figure 2-15. ρ estimated from simultaneous inversion of (a) original prestack gather 

and, (c) migration stretch compensated prestack gather  and e) the difference between 

(b) and (a) (compensated-original). b) and d) is a close-up view near the well of a) 

and b), respectively, showing a change in ρ with respect to well after stretch 

compensation. Grey arrows indicate some of the areas of significant improvement in 

resolution of ρ by compensating for migration stretch.  The black arrows point to the 

zone where the change in ZS is observed across the whole reflector. These changes 

might be due to change in AVO and/or change in resolution.  
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ABSTRACT 

The Mississippian-age STACK area of Oklahoma is one of the more important new 

resource plays in North America and consists of multilevel objectives including mudrock, 

siltstone, and carbonate reservoirs, some of which are self-sourced and all of which require 

hydraulic fracturing to produce commercial quantities of oil. The efficacy of the fracturing relies 

on whether the created fracture network drains from producible rock types. We integrated data at 

both core and seismic resolution scales to map the spatially exhaustive lateral and vertical variation 

of the rock types for this new play. We measured porosity, permeability, saturated P- and S- wave 

velocity and density in the lab at 2 ft intervals on the cores. We then defined rock types 

corresponding to engineering flow units based on porosity and permeability measurements. We 

mapped these rock types against alternative elastic property cross plots, including P-impedance, 

S-impedance, Poisson’s ratio, LamdaRho, and MuRho.  P- and S- impedance are the only two 
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independent elastic properties measured on the core samples. The other elastic properties are 

calculated from these two measurements. Hence, the rock types showed equal sensitivity to all the 

elastic property pairs. We observe a 30% difference between core and seismic elastic values, only 

part of which can be attributed to dispersion. We address this discrepancy between core and surface 

seismic elastic values by simple linear scaling. We found that P-impedance and Poisson’s ratio 

core measurements were easier to scale linearly to the corresponding seismic frequency 

measurements. Once scaled, we used Bayesian classification to map the P-impedance and 

Poisson’s ratio rock type template defined by the core measurements to the same elastic parameters 

measured by prestack seismic inversion. As we move away from the six cored wells deeper into 

the basin and more distal from the shelf, we encounter P-impedance/Poisson’s ratio pairs not seen 

in core, resulting in areas where the rock type is “unknown”. The seismically predicted rock types 

show an excellent correlation at the well locations and provided stratigraphically reasonable 

images away from the wells, suggesting that as more wells are cored, these unknown rock types 

can be classified. 

INTRODUCTION 

The Meramec formation is considered one of the principal reservoirs in the STACK 

(Sooner Trend Anadarko [Basin] Canadian Kingfisher counties) play of Oklahoma. Long lateral 

horizontal wells combined with hydraulic fracturing lead to economic exploitation of the formation 

beginning in 2010 and continuing until the present day. Optimum exploitation of the Meramec 

requires the well lateral and hydraulic fractures to intersect rock types/fluid flow units with a large 

hydrocarbon storage capacity, which we call ‘sweet spots.’ The fluid flow heterogeneity of the 

formation in the Anadarko Basin can be attributed to two factors: 1) deposition of the formation 

during the transition from decreasing thermal subsidence to flexure subsidence mechanisms 
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foreshadowing the tectonic events of the Pennsylvanian period (Miller et al., 2019), and 2) change 

in depositional environment from shallow-water carbonates sediments in the North (Rogers, 2001; 

Pranter et al., 2016) to the deep water siliciclastic carbonate sediments in the south of the Anadarko 

Basin (Price et al., 2017).  

A rock type/fluid flow unit is a representative volume of rock that has predictable and 

consistent fluid flow influencing petrophysical properties within the representative rock volume 

(Amaefule et al., 1993). These rock types are generally mapped using porosity and permeability 

cross plots, where Amaefule et al. (1993) introduced the concept of Flow Zone Indicator (FZI) to 

map the rock types. Winland and Pitman (1992) introduced a rock type classification based on Hg 

injection measurements while Kaale (2010) defined rock types based on similar values of porosity, 

FTIR mineralogy, Hg injection capillary pressure, and TOC measured on 1600 ft of core. Using 

these kinds of measurements as input, Lee et al. (2002) defined rock types using principal 

components and model-based cluster analysis while Gupta et al. (2017) used unsupervised 

clustering algorithms. We map the rock types using the Flow Zone Indicator (FZI) technique 

developed by Amaefule et al. (1993). 

In this paper, we delineated the lateral and spatial distribution of rock types over a 477 

square mile area. The process requires the integration of core and seismic data. Since the resolution 

of these data is different, extending the rock type classification from core to seismic scale can be 

challenging. Furthermore, petrophysical properties such as permeability used in defining the rock 

types are not directly measured by surface seismic data. For these reasons, the process of extending 

these rock types from the core to seismic requires statistical analysis of their response in seismic 

attribute space. The number of rock types discriminated in the seismic attribute space might be 
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less than one defined at core scale due to different sensitivity of petrophysically derived rock types 

in seismic attribute space.  

Such classification can be achieved through statistical, automated clustering, or pattern 

recognition algorithms (Grana et al., 2016). Da Veiga and La Ravalec (2012) and Schlanser et al. 

(2014) used maximum likelihood criteria to classify facies. Wang et al. (2014) used a supervised 

classification technique to classify different kinds of shales in unconventional resource plays. 

Avseth et al. (2001) used Mahalanobis quadratic discriminant analysis to classify lithofacies 

derived on the geological description. Grana et al. (2016) compare the Bayesian classification and 

expectation-maximization method used in facies classification. Mukerji et al. (2001) and Doyen 

(2007) details the process of extending the classification at log or core scale to seismic scale.  In 

this paper, we classify the core derived rock types in the seismic elastic domain using a Bayesian 

classification scheme.  

Bayesian classification links rock types with the elastic parameters through conditional 

probability and prior probability functions. Such a scheme measures interpretation uncertainty in 

rock type classification extended to the seismic scale. A classical approach in computing 

conditional probabilities assumes that the elastic properties are normally distributed (Gaussian) for 

each facies. Such an assumption is not always valid and can lead to the misclassification of outliers 

and the inability to mathematically map a nonlinear trend in the hyperplane separating the facies. 

In contrast, a non-parametric classification such as the kernel density function used here, does not 

assume the data distributions to be Gaussian. For this reason, the computed conditional 

probabilities are less affected by outliers, give fewer outliers, and map non-linear trends in the 

discriminant hypersurface (Gonzalez et al., 2000).  Gonzalez et al., (2000) find that although non-

parametric conditional probability density estimation can be computationally exhaustive is high-
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dimensional space, it works well for two or three  attributes; implying that is appropriate to use in 

computing .conditional probabilities from geomechanical properties derived from surface seismic 

data such as P-impedance and Poisson’s ratio. 

We begin our paper with an overview of Meramec play in the study area. We then use 

results from laboratory core measures to construct a suite of rock types that are correlated to flow 

unit zones. Next, we correlate the elastic parameters estimated from surface seismic data to those 

measured in core, allowing us to transfer our rock type template to the 3D seismic volume. Using 

this rock type template, we then construct 3D probability volumes for each rock type for the entire 

survey. We conclude with a discussion of the advantages and limitations of this workflow. 

STUDY AREA 

The study area is in the STACK area of the Anadarko Basin (Figure 1) which covers four 

counties of central Oklahoma. With depths to the basement of 30,000-40,000 ft, the south-dipping 

asymmetric Anadarko Basin along the northern flank of Wichita uplift, is the deepest phanerozoic 

sedimentary basin in North America, shallowing out into the Anadarko Shelf to the north and east. 

The formation and evolution of the Anadarko Basin have strongly influenced the sedimentation 

rate, erosion, depositional environment, reservoir seal, and source rocks from Cambrian through 

Permian time.  Perry (1989)  divides the history of the Anadarko basin into four significant periods: 

(1) Precambrian igneous activities leading to crustal consolidation, (2) development of the 

Southern Oklahoma Aulacogen during Early Cambrian through Middle Cambrian, (3) 

development of the southern Oklahoma trough  during Late Cambrian through Early Mississippian 

and (4) initiation of an independent Anadarko Basin during Late Mississippian time. The Basin 

continued to experience crustal unrest till the late Pennsylvanian period leading to the formation 

of  Wichita Mountains (the southwest margin of the Anadarko Basin), the Arkoma Basin, Ouachita 
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Mountains (southeast Oklahoma) and the Nemaha Uplift and fault zone (Figure 1).  The geometry 

of the facies deposition is mainly attributed to tectonic events during the Cambrian Period (Higley 

et al., 2014). 

The Meramec formation was deposited during the Mississippian period approximately 320 

to 360 million years ago when the continental shelf was covered by a shallow warm sea. The 

shallow marine Meramec was deposited during second-order marine transgression and subsidence. 

A higher-order sea level cyclicity is also visible at a finer scale. Physiochemical conditions varied 

from the shallow water in the north to deeper water in the south leading to a variety of lithofacies 

deposition. Duarte (2018) suggests that the deposition of the Meramec was controlled by a range 

of tectonic activities; hence, the source of sediments of these lithofacies is only partly understood. 

Based on the core descriptions, Miller (2019) reports five different lithofacies in the study area:  

mudstone, argillaceous siltstone, argillaceous, calcareous siltstone, silty limestone, and calcareous 

siltstone.  While important in understanding the depositional environment, completion engineers 

are less interested in geologic lithofacies and more interested in rock types that define porosity and 

permeability properties used to define flow zone indicators.  Nevertheless, the lateral change in 

geologic lithofacies as we extend further from the shelf will modify our rock type template based 

on elastic parameters measured in core and from surface seismic data. 

CORE-DERIVED ROCK TYPES 

The purpose of rock typing is to integrate various petrophysical properties, including 

porosity, permeability, X-Ray Fluorescence (XRF) mineralogy, ultrasonic velocities, and water 

saturation measured in the lab or calculated using logs. When mapped to seismic data, rock type 

volumes across the study area can help select sweet spots for future well locations as well as select 

optimum zones for completion. We mapped the rock types using the Flow Zone Indicator (FZI) 
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technique on core porosity and permeability data measured in six cored wells. Figure 2 indicates 

that the Meramec consists of three different rock types, which we denote as RT1, RT2, and RT3. 

Figure 3 shows the variability in porosity, permeability, as well as carbonate and clay content for 

these rock types. Average porosity and clay content decrease from rock type 1 to rock type 3, while 

the average permeability and carbonate content increase from rock type 1 to rock type 3 (Figures 

3a and 3b). The increasing carbonate content from rock type 1 to rock type 3 suggests increasing 

calcite cement as the cause of the decreasing porosity trend from rock type 1 to rock type 3 (Figures 

3a and 3c). Figures 3a and 3d suggest higher clay content is correlated with higher porosity.  

During the course of this study, the mineralogy, porosity and permeability measurements 

were made on six cored samples but experimentally exhaustive P-wave, S-wave and density 

measurements as a function of confining pressure on saturated vertical core samples were made 

only for one of the core. The P-wave, S-wave and density measurements were then used to 

calculate other elastic moduli. An increase in Young’s modulus from rock type 1 to rock type 3 

implies a corresponding increase in brittleness (Figure 3f). A similar trend is observed in brittleness 

calculated using elastic parameters using Rickman et al.’s (2008) scaled Poisson’s ratio and 

Young’s Modulus.   For our data, rock type 1 is the clay-rich porous ductile rock, while rock type 

3 is calcite-rich less porous brittle rock. Rock type 2 is a transitionary between rock types 1 and 3. 

Although rock type 3 is more permeable than rock type 1, all wells will be hydraulically fractured, 

such that the greater hydrocarbon storage capacity of more porous rock type 1 makes it the 

preferred drilling target. 

Although rock type 1 is relatively ductile, seismic brittleness calculated using elastic 

parameters such as proposed by Rickman et al. (2008) ignores the stress dependence of moduli 

and might behave brittlely under in-situ stress conditions.  More important, operator experience 
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has shown no problems in hydraulic fracturing and producing from rock type 1 in the Meramec 

formation.   Hence, in the next sections, we combine seismic data with these core derived rock 

types to map the spatial variation of rock type 1, where the lateral and horizontal variation of rock 

type 1 will define “sweet spots” in the Meramec formation. 

THE SENSITIVITY OF ROCK TYPES TO ELASTIC PROPERTIES 

The rock types mentioned in the previous section were derived from porosity and 

permeability measurements. Although P-wave impedance is often well correlated with porosity, 

the seismic experiment is quite insensitive to lateral changes in permeability. Mapping these rock 

types using seismic data therefore requires correlating both rock types and surface seismic data to 

a measurement common to the two analyses. Elastic parameters derived using prestack seismic 

inversion is a natural choice since  measured the same elastic parameters for each laboratory 

sample measured for porosity and permeability. Ultrasonic P-wave velocity, S-wave velocity, and 

density were measured as a function of confining pressure on vertical core samples at every 2 ft 

for one of the wells. The core samples were saturated with dodecane at a confining pressure of 

5000 psi. P- and S-wave velocities measured on vertical core plugs at confining pressure of 4000 

psi were used to calculate P-impedance (ZP
core), S-impedance (ZS

core), VP/VS
core, Lambda-rho 

(λρcore), Mu-rho (μρcore), Youngs modulus-rho (Eρcore) and Poisson's ratio (νcore). The same elastic 

parameters were independently estimated at the seismic scale (ZP
seismic, ZS

seismic, VP/VS
seismic, 

λρseismic, μρseismic, Eρseismic, and νseismic)  using prestack seismic inversion. Initial analysis suggested 

that classifying all three rock types in the ZP – ZS elastic domain (Figure 4a) resulted an 

unacceptably high prediction error. . Similar unsatisfactory results were obtained in cross plots 

between ZP and ν, λρ and μρ, ZP and VP/Vs, Eρ and ν.  
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The confusion matrix obtained using Bayesian classification indicate that there is only a 

42% probability of correctly estimating RT2 (Table 1). RT1 and RT2 are clay-rich high porosity 

low permeable rocks, while RT3 is a calcite-rich low porosity high permeable rock. We therefore 

combined  RT2 with RT1 and called the new rock type RT1*. Such a combination reduced the 

dimensionality of the problem to classifying only two rock types in the elastic domain: high 

porosity RT1* and high permeability RT3. The cross plot between ZP and ZS shows improved 

discrimination between RT1* and RT3 (Figure 4b). Also, such a combination of rock types 

increases the probability of correct estimation using the corresponding seismic volumes (Table 2). 

Figure 5a-d shows cross plots of the typical elastic domains used to separate lithologies or 

rock types. RT1* and RT3 are sensitive to all the parameters. Some classification algorithms, such 

as artificial neural networks, require the construction of a linear discriminator. In this case, better 

separation can be obtained by applying nonlinear transformations to the input data (e.g. converting 

ZP and ν to λρ and μρ). The kernal density function allows irregular boundaries and hence can 

classify the rock types in for different domain choices with a similar probability. In this paper, we 

choose the P-impedance and Poisson’s ratio domain to classify RT1* and RT3. 

COMPENSATING ELASTIC PROPERTIES FOR FREQUENCY 

DEPENDENCE 

The core elastic properties were measured using ultrasonic (~200-600 MHz) frequencies, 

while the seismic elastic properties were measured using seismic (~10-60 Hz) frequencies, with 

the background velocity model constructed using P- and S-wave sonic logs measured at  2000 Hz 

frequencies. Even though both measurements are independent of each other, they follow a similar 

trend along with depth, implying fidelity of the seismic inversion to the core measurement (Figure 
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6). However, the core properties exhibit higher values than the corresponding seismic elastic 

properties, which we attribute to velocity dispersion and spatial sampling. The average difference 

between core and seismic ZP and ν relative to the core is 25% (+/- 7%) and 0.9% (+/- 16%), 

respectively.  

Velocity dispersion is a phenomenon wherein velocity is a function of frequency or 

wavelength.  An elastic wave propagates with a different velocity at different frequencies or 

wavelengths. Hence, the elastic properties measured at seismic and ultrasonic scale will have the 

same trend but different values. Since the recognition of the phenomenon, its effect on different 

frequency bands ranging from seismic (10-100 Hz) to sonic (1000-10,000 Hz) to ultrasonic 

frequency (1 MHz) has been well documented. Stewart at al., (1984), Hornby et al., (1995) and 

Schmitt., (1999) discuss the change in velocity due to dispersion effect at seismic and sonic 

frequencies. Murphy et al., (1986), Best et al., (1997), Duranti et al., (2005) and Hofmann (2006) 

discusses dispersion effects at sonic and ultrasonic frequencies. Hornby et al., (1995) showed that 

in sands, the difference in velocity measured with a sonic tool and in the lab was only 3%. 

However, Hoffman (2006) states that this difference can be as high as 15% in shales. Suarez-

Rivera et al., (2001) have seen as much as 45% change in P-velocity between sonic and ultrasonic 

measurements. Duranti et al. (2005) made velocity measurements on shale samples. They observed 

almost no dispersion effect until 1000 Hz. The maximum effect was observed at ultrasonic 

frequencies. The difference in P-wave between ultrasonic and sonic was 30% for a wave traveling 

perpendicular to the fabric and 28% for a wave traveling parallel to the fabric. Azra (2010) 

measured velocity as a function of frequency for different shales as well as sandstone rocks. The 

pressure at which these measurements were made is not reported. A significant difference of 32% 

was observed for P-wave passing through TGShale1 at sonic and ultrasonic frequencies. The 
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Meramec formation show as much as 32% variation in P-wave velocity between seismic and 

ultrasonic frequencies. Since Meramec is argillaceous, calcareous siltstone, such a high variation 

in P-wave velocity with frequency is possible due to dispersion.  

In order to use our core-based template for subsequent Bayesian classification of the 

seismic inversion elastic measurements, we need to first account for the variation of elastic 

properties with frequencies. We do not correct for dispersion effects through a model; instead, we 

scale core and seismic elastic properties through a simple linear transform.  

Figure 7 shows the cross plots of core elastic properties against the similar properties 

extracted along the well from seismic inversion. As expected, the core values are higher than those 

at the lower frequency seismic scale. We used a simple linear transform for each acoustic 

parameter and found that λρ, ν, ZS, and μρ show a high variation along the best fit line. The 

transform is not linear, which will cause an error in Bayesian classification. μρ shows the same 

scaling as ZS. Eρ shows better scaling opportunities than all acoustic properties except ZP. We 

ultimately chose ZP and ν to be the best domain to scale our rock type template for use in Bayesian 

classification. The best linear transform was observed for ZP since most of the points clustered 

around the best fit line.  ν required a minimum correction to scale core to seismic measurements 

(Figures 7a and e). ZP
core and vcore were scaled to seismic frequencies using linear transforms 

(equations shown in Figures 7a and e). Figures 8a and b show the same cross plots as Figures 7a 

and e but after scaling. 
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CONSTRUCTING A ROCK TYPE TEMPLATE FOR USE WITH 3D 

SEISMIC DATA 

Once the elastic parameters have chosen and scaled, the rock types need to be classified in 

the elastic domain. We use a Bayesian classification scheme to classify the rock types. In Bayesian 

classification, we compute conditional probabilities and a prior probabilities of rock types using 

core/log measurements to yield the probability of occurrence of rock types in each seismic voxel: 

𝑷 (𝑹𝒊|
𝒁𝒑

𝝊
) =   

 𝑷(
𝒁𝒑

𝝊
|𝑹𝒊)𝑷(𝑹𝒊)

𝑷(
𝒁𝒑

𝝊
)

  ,                                               (1) 

where, Ri is the ith rock type/classes (in our case RT1* and RT3), 𝑷(𝑹𝒊) is the prior probability of 

the rock types, 𝑷(
𝒁𝐏

𝝊
) is the probability of having the specific value of elastic parameters (Zp, ν) 

regardless of the class, 𝑷 (
𝒁𝒑𝐏

𝝊
|𝑹𝒊) is the conditional probability that we have a specific value of 

the combination of ZP and ν given rock type Ri, and 𝑷 (𝑹𝒊|
𝒁𝒑𝐏

𝝊
) is the “a posterior” probability that 

we have rock type Ri given a value of the combination of ZP and ν.  

Since the rock types were already defined from the core measurements, the prior 

probability of the rock types was calculated by dividing the number of points into each rock type 

by the total number of 87 core measurement. P(RT1*) was 0.54, and P(RT3) was 0.47. 𝑷(
𝒁𝒑

𝝊
) can 

be calculated by summing the products of the conditional probabilities and prior probabilities of 

all classes. The conditional probabilities  𝑷 (
𝒁𝒑

𝝊
|𝑹𝒊) can be calculated using a Probability Density 

Function (PDF). In our case, the probability density was calculated from the core data (Figure 9a). 

Figure 9b shows the confidence of predicting the rock types based on conditional PDFs shown in 

Figure 9a. 
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The histogram and PDFs showed in Figures 9c, and d suggest that the distribution of the 

elastic property is not Gaussian. Hence a non-parametric statistic is required to solve for the 

conditional probability,  𝑷 (
𝒁𝒑

𝝊
|𝑹𝒊). We use kernel density estimates of the points in each class to 

calculate the conditional probabilities. A kernel is a weighting function used to calculate the 

density functions of variables. Once we have calculated the conditional and prior probabilities, the 

probabilities of rock type occurrence in each seismic voxel in the 3D seismic volume are calculated 

using equation 1. The class of rock types to which each seismic voxel away from the well belongs 

is estimated using a decision rule. Since each seismic voxel away from the well has a value of ZP 

and ν,   

If 𝑷 (
𝒁𝒑

𝝊
|𝑹𝑻𝟏∗)  𝑷(𝑹𝑻𝟏∗) >  𝑷 (

𝒁𝒑

𝝊
|𝑹𝑻𝟑) 𝑷(𝑹𝑻𝟑), then the ZP and ν pair at the voxel belongs to 

class RT1* , or  

If 𝑷 (
𝒁𝒑

𝝊
|𝑹𝑻𝟑)  𝑷(𝑹𝑻𝟑) > 𝑷 (

𝒁𝒑

𝝊
|𝑹𝑻𝟏∗)  𝑷(𝑹𝑻𝟏∗)  then the ZP and ν pair at the voxel belongs 

to class RT3. 

Similar calculations for each voxel estimate the probability of each rock type in the entire seismic 

volume. Some voxels exhibit ZP - ν pairs not encountered in our core and will be poorly represented 

by either rock type kernel density function. To better represent the uncertainty in our predictions, 

we construct a third, “unknown” rock type. 

RESULTS 

The rock types were estimates over an area of 477 square miles between the top of the 

Meramec and the top Woodford in the Anadarko Basin using Bayesian classification. Zones of 

rock type 1* with more than 80% probability were considered to be sweet spots.  Figure 10a shows 
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a proportional slice 40% below the Meramec and Woodford tops through the predicted rock type 

volumes. Channels seen by other seismic attributes such as coherence and spectral decomposition 

(Patel and Marfurt, 2019) are also highlighted by the rock types. The N-S flowing channels are 

filled with mainly RT3, indicating that they are more calcite rich lower porosity, and high 

permeability compared to the surrounding flood plain, which consists of RT1*. Production data 

(not shown) indicate that the best rock type is RT1*, which has higher storage capacity but less 

natural permeability than RT3. Figure 10b shows a vertical cross-section along line AA’ through 

the rock type volume. The predicted rock types on from the 3D surface seismic data show a perfect 

match at the well location. At this location, rock type RT1* spreads in the middle of the Meramec 

sandwiched by the over- and underlying rock type RT3. The black arrows in Figures 10a and b 

indicate zones of unknown rock type, where the ZP - ν pairs were not represented by the core. The 

presence of unknown rock type increases as we move away from the six cored wells used in 

constructing our rock type template. Studies by Miller at al. (2019) based on over 1000 triple 

combo wells showed a lateral change in geologic lithofacies with proximity to the shelf. Figure 

10c and d show the uncertainty associated with the prediction calculated using equation 1. We 

obtain a high probability of predicting RT1* at the center of the zone of interest and RT3 at the 

bottom.  Hence, the middle zone of the Meramec at this location is considered the most productive.  

CONCLUSIONS 

The Meramec of the STACK play can be represented by five geologic lithofacies based on 

the geological description of core and three rock types based on porosity and permeability core 

measurements. The core measurements provide sparse, very localized information. Optimum 

exploitation of the formation requires the prediction of these rock types away from previously 

drilled wells. To address this issue, we constructed a 3D probability estimate of the rock types that 
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can be used in well planning and completion design. We constructed a Bayesian rock type template 

based on the shared elastic ZP and ν measurements, which was then applied to the 3D seismic ZP 

and ν volumes. Classifying the three rock types measured porosity and permeability space in the 

laboratory two the two-dimensional ZP and ν space shared by the laboratory measurements and 

surface seismic data increased uncertainty in the prediction. Hence, the three rock types were 

regrouped into two – a higher porosity, lower permeability rock type, and lower porosity, higher 

permeability rock type. Because of dispersion and effective media effects, the ultrasonic acoustic 

properties of the core samples showed differences in absolute value compared to the lower 

frequency seismic measurement extracted along the well.  We compensated for these differences 

by using a linear transform to match the rock physics template to our seismic data. Using Bayes’ 

theorem to estimate the probability of each rock type at each seismic voxel we found excellent 

predicted rock types at the six cored locations. In addition, the rock types delineate channels on 

the proportional slice seen on geometric attributes and spectral decomposition. The study suggests 

that most of the high porosity rocks are lying at the center of the reservoir sandwiched between 

the high permeable rocks. The center of the reservoir is considered to be a sweet spot zone since 

high porosity rocks are hypothesized to provide higher storage of hydrocarbons. We were not able 

to predict a rock type at all voxels in the seismic volume. Such shortcomings arise for two reasons: 

1) prediction from only one well data is insufficient to sample spread of seismic elastic parameters, 

and 2) there may be additional rock types in the unknown zones have different porosity, 

permeability, ZP and ν  than used to define the three rock types used in this study. Elastic property 

analysis of other core measurements suggests that that changes in lithofacies as we extend further 

from the self-causes the variation of elastic expression of rock types both vertically and laterally. 

Ideally, we should create one probability density function by combining probability functions from 
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multiple core measurements spread across the study area using inverse distant weighing functions. 

Using the inverse distant weighted probability function in the Bayes theorem should eliminate the 

unpredictable zone and improve estimates. 
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FIGURES 

 

Figure 3-1. Map showing locations of the different basins in Oklahoma. The 

Anadarko Basin extends from northwestern to central Oklahoma.  The red line 

indicates the Sooner Trend Anadarko Canadian Kingfisher (STACK) play of 

Oklahoma. The black dashed line shows contours of the top of Precambrian and 

Cambrian Basement rocks in thousands of feet. (Figure modified from Johnson, 

2008). 

 

Figure 3-2. Cross plot between porosity and permeability measured on six cored 

wells. The dotted lines represent different flow zone indicator (FZI) values. We have 

defined three rock types (RT1, RT2, and RT3) using the FZI values.  
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Figure 3-3. Variation of petrophysical properties for the three rock types: (a) 

porosity, (b) permeability, (c) XRF-derived carbonate content,  (d) XRF-derived clay 

content, (e) Brittleness (as defined by Rickman et al., 2008) and (f) Young’s Modulus. 

Porosity decreases while permeability increases  from RT1 to RT3. Carbonate content 

increases while clay content decreases from RT1 to RT3. Brittleness increases from 

RT1 to RT3. 
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Figure 3-4. Cross plot of ZP and ZS computed from core measurements. The colors 

indicate the rock types using (a) all three rock types, and (b) rock types RT1* and 

RT2. A better delineation between the rock types is obtained in the elastic domain 

when we combine RT2 with RT1 to construct RT1*.  

 

Table 3-1. Confusion matrix obtained from Bayesian classification when all the three 

rock types were classified in the ZP - ZS domain. Note that rock type 2 is poorly 

classified using these elastic parameters . 
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Rock type 1 74.11% 24.92% 5.66% 

Rock type 2 22.56% 41.55% 27.64% 

Rock type 3 3.33% 33.53% 66.70% 
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Table 3-2. Confusion matrix obtained from Bayesian classification when RT2 was 

combined with RT1 (RT1*) and RT1* and RT3 were classified in the ZP - ZS domain. 

This simplification results in a more accurate classification for the two remaining 

rock types. 

 

 

Figure 3-5. Cross plots between (a) lambda-rho (λρ) and mu-rho (μρ), (b) P-

impedance (ZP) and Poisson’s ratio (ν) , (c) P-impedance (ZP) and S-impedance (ZS), 

and (d) Young’s modulus-rho (Eρ) and Poisson’s ratio (ν) measured on one of the 

well cores. Irrespective of elastic domain choice, the RT1* and RT3 show good , 

though not complete, elastic separability. 



59 

 

 

Figure 3-6. The left track shows the difference between ZP derived from ultrasonic 

laboratory measurements on core (blue curve) and ZP extracted along the well from 

the inverted seismic impedance volume (black curve). The middle track is the same 

as left track but with a change in scale, showing variation with depth. The right track 

shows the core and seismic ν, where very little shift is observed between the core and 

seismic measurements.  
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Figure 3-7. Cross plots between elastic properties measured at the core and seismic 

frequencies for (a) ZP, (b) ZS, (c) λρ, (d) μρ, (e) ν, and (f) Eρ. 
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Figure 3-8. Cross plot between elastic properties measured at the core and derived 

from seismic for (a) ZP and (b) ν after scaling. The scaling has been performed using 

the linear equation mentioned in the respective cross plot.  

 

Figure 3-9. (a) Cross plot between ZP
core and νcore overlain by the isomap of the 

conditional PDF. (b) The confidence map of predicting the facies.  The overlap 

between the PDF of each rock type decreases confidence. Seismic estimates of ZP-ν 

pairs that fall in the white area are not represented by the rock properties sampled by 

the core measurements and are assigned to an “Unknown” rock type. One dimensional 

histograms and PDFs of (c) ZP and (d) ν for RT1* and RT3. 
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Figure 3-10. (a) Proportional slice at 40% below the top horizon through the (most 

likely) predicted rock type volume.  Red arrows indicate channels. Black arrows 

indicate areas where rock type is unknown as described in Figure 9. (b) Cross-section 

along line AA’ showing a good match of the predicted rock types at  the well location. 

(c) and (d) show the probability of estimation of RT1* and RT3 respectively across 

the cross-section AA’. 
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ABSTRACT 

In the last decade across the Central and Eastern US, there has been a substantial increase 

in the seismicity rate that scientists broadly attribute to wastewater disposal and, to a lesser extent, 

hydraulic fracturing. Active clusters of seismicity illuminate linear fault segments within the 

crystalline basement that were not known until seismicity began. Such surprises are due to the 

limited availability of 3D surface seismic surveys and the difficultly in imaging relatively shallow 

earthquake events from sparse seismic monitoring arrays.   The STACK play of Central Oklahoma 

provides an opportunity to map such basement faults. Modern, high-quality surface seismic 

acquired to map the Meramec, and Woodford unconventional resource plays enable us to image 

basement faults and intrusions. Furthermore, because of increased earthquake risk from 

anthropogenic activities in the last decade, state regulatory agencies have deployed a relatively 

dense array of seismic monitoring stations, which allows us to integrate earthquake data into 

subsurface fault analysis. We map structural deformation using a suite of seismic attributes, 

including multispectral coherence, volumetric curvature, and aberrancy in a 3D seismic reflection 

dataset covering 1100 sq mi in the STACK area of Anadarko Basin, Oklahoma. To unravel the 

relationship between the structures and seismicity, we use relocated locally recorded earthquakes 

and compute the focal mechanism solution for the relocated events. Our results reveal a total of 90 
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previously unmapped top basement fault segments with dominant N-S, NW, and NE trends, the 

majority of which extend into the shallower sedimentary Hunton and Woodford formations. 

Because of the small fault offset, we find that aberrancy and curvature attribute best illuminate the 

basement-rooted faults in the study area.  Fault segments with significant offset are better 

illuminated by bandlimited multispectral coherence. We argue that the inherited structure of these 

faults makes them easily illuminable by flexure-related seismic attributes, especially within the 

sedimentary cover. The integration of the illuminated faults with relocated earthquakes and focal 

mechanism solutions shows that some of the illuminated faults that have hosted intra-sedimentary 

and/or basement seismicity are reactivated strike-slip faults. We hypothesize that careful attribute 

mapping of faults and flexures, coupled with an understanding of the local stress and 

geomechanical properties, and calibrated with recent seismic activity in the area can help mitigate 

seismic hazards in tectonic settings where small-offset faults predominate.  

INTRODUCTION 

Within intraplate regions of the earth where low strain rates dominate, pre-existing faults 

are important for seismic hazard quantification. The hazard is highlighted by the recent spike in 

intraplate seismicity in Central and Eastern United States, which has been attributed to 

unconventional resource exploration and disposal of wastewater into deep sedimentary units that 

overlie the crystalline basement (e.g., Ellsworth, 2013; Weingarten et al., 2015; Machado et al., 

2020). The increase in induced seismicity is most sporadic and widespread in the crystalline 

basement of Oklahoma, where the susceptibility has been attributed to the pre-existing structural 

fabric and frictional stability of the basement fault rocks (Kolawole et al., 2019). 

In the last decade, Oklahoma went from a state experiencing an Mw 3.0 or greater 

earthquake about twice per year to experiencing 579 and 903 M3.0 or greater earthquakes in 2014 
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and 2015, respectively (Walter et al., 2020). From 2010 till present, Oklahoma Geological Survey 

cataloged more than 34,000 earthquakes (Figure 1a), including 24,840 earthquakes with magnitude 

>2.0, 2920 earthquakes with magnitude >3.0, and 77 with size >4.0 

(https://ogsweb.ou.edu/eq_catalog/). The Nemaha fault separates two major seismic zones to the 

west and east sides and may plausibly act as a pressure boundary (Qin et al., 2019). The seismicity 

is mainly caused by wastewater produced as part of hydrocarbon production from shallower targets 

injected into deeper subsurface karstic Arbuckle Group, which lies directly above much older 

basement rocks at most places in Oklahoma. Such “injection-induced” seismicity peaked in 2015, 

which correlated to the dramatic increase in saltwater injection into the subsurface formation in 

the same year (Langenbruch et al. 2018). After 2015, market forces and a decrease in the injection 

rate were mandated by the Oklahoma Corporation Commission, which plausibly drove a reduction 

in the seismic activity rate (Walter et al., 2020). Though the injection-induced seismicity reduced 

substantially, the 2016 Mw 5.8 Pawnee Oklahoma earthquake (Walter et al. 2017) was one of the 

two largest cases of induced seismicity in the world within the past decade. 

Saltwater, that is, coproduced with hydrocarbons, is injected into porous and permeable 

subsurface formations in Oklahoma for two operations: water flooding enhanced oil recovery 

(EOR) and saltwater disposal (SWD) (Walsh and Zoback, 2015). Saltwater disposal can cause an 

increase in the formation of pore pressure, promoting fault slip along optimally oriented faults 

(Walsh and Zoback, 2015; National Research Council, 2013). In addition to wastewater disposal 

or injection, carbon sequestration (Kaven et al. 2015) and hydraulic fracturing (Holland et al., 

2013; Skoumal et al. 2015; Lei et al. 2017, Skoumal et al. 2018, Eyre et al. 2019) have also been 

linked to inducing earthquakes. Unlike carbon sequestration, hydraulic fracturing is common in 

Oklahoma because the economic exploitation of the Mississippian formation in the STACK 
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(Sooner Trend Anadarko Basin Canadian Kingfisher counties) area of Oklahoma requires 

marrying horizontal well technology with hydraulic fracturing. Shemeta et al. (2019) statistically 

identified 333 wells out of ~5,000 completions with hydraulic-related seismicity between October 

2016 and August 2019. Though the broader statewide earthquake activity peaked in 2015 in 

Oklahoma (Langenbruch et al. 2018), relatively fewer earthquakes were recorded in the STACK 

during that time (Figure 1b). Most of the events in the STACK occurred between 2015-2019 

(Figure 1c), coinciding with the exploitation of the Mississippian formation in the STACK area 

through drilling new wells in the unconventional Woodford and Meramec plays. The histogram 

analysis by Shemeta et al. (2019) correlated 1438 earthquakes in STACK and adjacent SCOOP 

(South Central Oklahoma Oil Province, Figure 1a) with the hydraulic fracturing notices filed by 

the operators. Out of 1438 events, the largest event of magnitude (Mw) 3.6 occurred in Kingfisher 

county in mid-2019. For this reason, although the bulk of earthquakes are associated with 

wastewater disposal, hydraulic fracturing-induced earthquake seismicity in the STACK cannot be 

ruled out.  

The Oklahoma fault database (http://www.ou.edu/ogs/data/fault) is a comprehensive 

dataset of mapped faults created to gain a better understanding of seismic hazards and subsurface 

geology (Marsh and Holland, 2016). Figure 1 shows interpreted faults from the Oklahoma fault 

database compiled using data voluntarily provided by the oil and gas industry augmented by the 

published literature. Though induced seismicity is mainly caused by critically stressed fault 

reactivation, it is not necessary that the hypocenters of the earthquakes coincide with the mapped 

faults (Figure 1d). Such lack of direct correlation is due to multiple reasons: few faults in the 

identified in the basements and included in the database, uninterpreted faults in the area, 

hypocenter location uncertainty, and fault location uncertainty, particularly from those measured 
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near the surface and projected into the basement. Marsh and Holland (2016) noted that though the 

database cataloged many faults, that the database remains incomplete. Incompleteness stems from 

different definitions of “significant” faults across the industry, the difference in interpretation of 

subsurface data, the relatively poor illumination of smaller faults by legacy 2D seismic surveys, 

the inability of the interpreter to provide file formats compatible with the database (Holloway et 

al., 2015), and incomplete fault mapping in non-hydrocarbon prone areas of Oklahoma (Marsh 

and Holland, 2016).  Hence, uninterpreted faults in the STACK area may underlie observed 

seismicity lineaments (Figure 1e).   

In this paper, we use surface seismic and earthquake data to map potentially seismogenic 

faults in the STACK area. Such mapping can aid operators in minimizing injection-induced or 

hydraulic fracturing-induced earthquakes. We begin the paper by examining the problems that 

cause difficulty in imaging the faults in the STACK area.  We then show how seismic attributes 

such as band-limited multispectral coherence, curvature, and aberrancy help delineate not only 

faults that exhibit offset, but also flexures that may indicate faults that fall below seismic 

resolution.  Next, we correlate earthquake events imaged by a statewide array of surface 

seismometers to previously mapped faults and to faults and flexures mapped in the 3D seismic 

volume. We conclude with a summary of how the use of 3D surface seismic data, calibrated by 

mapping previous earthquake locations, may help minimize future earthquakes induced by 

wastewater injection and/or completion processes. 
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GEOLOGIC SETTING 

The STACK area is located within the Anadarko Basin, Oklahoma (Figure 1a). The NE-

SW -dipping Anadarko Basin is the deepest phanerozoic sedimentary basin in North America 

(Perry, 1989) and is composed of Ordovician to Permian sedimentary sequences that 

unconformably overlie the Precambrian granitic basement (Johnson, 2008). The present depth to 

the top of the eroded Precambrian basement ranges from 1,000 ft in the northeast to 40,000 ft in 

the southwest (Johnson, 2008). Burke (1977) reported that rifting during the Late Proterozoic 

extensional tectonics reactivated older Proterozoic and Cambrian faults to create the Mid-

Continent Rift and Southern Oklahoma Aulacogen. Perry (1989) provides details on the tectonic 

evaluation of the Anadarko Basin, dividing the evolution of the Anadarko Basin into four different 

stages: 1) crustal consolidation and metamorphism during the middle Proterozoic, during which 

time much of the basement in central Oklahoma was formed by igneous activity, 2) development 

of the South Oklahoma Aulacogen during the Cambrian Period, 3)  development of the southern 

Oklahoma trough between the Cambrian and the Mississippian and 4) contractional tectonic 

deformation of the older sedimentary units and subsidence of the Anadarko Basin as an 

intracratonic foreland basin during the Late Mississippian to Late Pennsylvanian. The Late 

Paleozoic contractional deformation peaked in the Late Pennsylvanian time during which the 

reactivation of the Precambrian basement faults resulted in folding, faulting, and transpressional 

deformation of the Phanerozoic sedimentary units (Gay, 2003; McBee, 2003; Kolawole et al., 

2020). Hence, the basement faults have been created and reactivated several times during 

Precambrian, Cambrian, and Late Paleozoic time. The study area, STACK, is bounded by one of 

these faults, the Nemaha fault, to the east (Figure 1a). 
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The STACK area has garnered renewed interest due to multiple stacked layers of 

producible hydrocarbon formations. Figure 2a provides a generalized stratigraphic layout of the 

Anadarko Basin. The Mississippian Woodford and Meramec are the current target formation for 

unconventional hydrocarbon exploitation, whereas the Ordovician Arbuckle is the target formation 

for wastewater injection. The Ordovician to Mississippian formations were deposited on the top 

of the unconformity created by a brief period of erosion of the earlier Cambrian and Precambrian 

rocks.  This period of erosion was followed by a long geologic time when sediments were 

deposited as parts of Oklahoma were alternately flooded by shallow seas and then raised above 

sea level. The Arbuckle Group was deposited during the Late Cambrian to Middle Ordovician time 

when Oklahoma was submerged entirely, and subsequently, thick limestone and dolomite were 

deposited over the entire state. The Hunton Group was deposited during the Silurian and Early 

Devonian periods and consisted of limestone and dolomite overlain by black shale. After 

widespread uplift and erosion forming an erosional unconformity, the Woodford Shale was 

deposited in the same areas as the Hunton during the Late Devonian and Early Mississippian 

periods. During the last half of the Mississippian, the basin subsided and led to deposition 

predominantly of shale with layers of limestone and sandstone. Primary formations deposited 

during this period are the Caney Shale, the Goddard formation, and the Springer formation. 

DATA AND METHODS 

3D Seismic Reflection Data 

In this study, we analyze an ~1,100 square mi (~2,800 square km) high fold 3D seismic 

reflection survey located in the STACK area of central Oklahoma (Figure 1a). The data are devoid 

of random noise, migration artifacts, and acquisition footprint. The survey is a part of the 

Gigamerge survey created by combining 20 legacy and seven recent surveys acquired in the 
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northcentral Oklahoma. spectrally balancing of seismic volume provided a flat spectrum between 

15 to 60 Hz with usable frequencies between 10 to 70 Hz, giving quarter wavelength resolution of 

73 feet in the Mississippian formations.   

The stratigraphic surfaces (top of the Mississippian, Meramec, Woodford, and Hunton 

formations) were interpreted in the seismic using well tops and seismic well ties (Figure 2b). The 

depth of the Woodford Formation in the survey ranges from 1470 ms. to 2140 ms. 

 The thickness of the interpreted sedimentary formations increased towards the northeast and 

decreased towards the southwest. Due to the unavailability of a well-drilled deep enough to the 

basement, the first continuous reflector above the basement was interpreted as the top of the 

basement.    

To illuminate the structures in the dataset, we compute a suite of seismic attributes, 

including bandlimited multispectral coherence, curvature, and aberrancy. Examining horizon 

slices along the top basement allow us to characterize basement-related structural deformation, 

whereas horizon slices along the top Hunton provide an assessment of structural deformation in 

the shallower intra-sedimentary sections.  

3-D Seismic attributes 

Frequency-Dependent Multispectral Coherence 

Seismic coherence is a routine measure to image structural and stratigraphic 

discontinuities. Marfurt and Chopra (2007) described several ways to compute waveform 

dissimilarity in nearby traces. Generally, interpreters prefer to calculate coherence using the 

broadband amplitude spectrum to image maximum resolvable features. But due to thickness tuning 

effect and variable signal to noise ratio at different frequencies, coherence computed on specific 

spectral components can highlight features of certain thicknesses much better than at others 
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(Marfurt, 2017; Li et al. 2018). Also, Partyka et al. (1999), Peyton et al. (1996), and Gao (2013) 

have shown that different spectral components reveal different geologic details. In the seismic data 

used in this paper, the 30-55 Hz frequency range revealed smaller as well as larger faults on 

coherence in the Mississippian formation (Patel and Marfurt, 2019). Adding or subtracting 

frequencies did not change the resolution of faults in the Mississippian formations. Hence, we 

computed coherence on the 30-55 Hz spectral components using the approach described by Li et 

al. (2018). A significant improvement is observed by computing coherence using band-limited 

data when compared to conventional broadband coherence (Figure 3a and b).  

Volumetric Curvature 

Although curvature does not map discontinuities, it does map the structural deformation 

about faults.  Curvature will have large positive values for tightly folded anticlines, large negative 

values for tightly fold synclines, and a zero value for a flat or dipping planar features. For 2D 

structures, the curvature is reciprocal to the radius (r) of the circle that is tangent and best fits a 

deformed surface at a particular point (Figure 4d). Figure 4c shows the anticlinal features of the 

flexures in the basin imaged by k1 and the synclinal features imaged by k2. Since the flexures 

appear conformal over the sedimentary section, unlike coherence, the curvature will image these 

deformed features across the whole section. The interpretation problem then becomes in 

distinguishing a simple fold from faults whose throw falls below seismic resolution and appears 

to be a fold. For normal faults, the most-positive k1 and most-negative curvature k2 anomalies 

bracket the fault rather than map the fault surface (Figure 4e).  In contrast, aberrancy, the derivative 

of curvature, better delineates the fault surface. 
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Volumetric Aberrancy 

Aberrancy measures the lateral change in curvature of a picked surface (Qi and Marfurt, 

2018). Like curvature, it is also a measure of the deformation. In 3D, the aberrancy is described 

by its magnitude and azimuth (Qi and Marfurt, 2018). The magnitude is proportional to the amount 

of deformation, and the azimuth describes the direction of a decrease in curvature value (Figure 

4g). Whereas the dip vector is the first derivative of the structure, the principal curvatures is the 

second derivative, and the aberrancy is the third derivative of the structure. Automatically 

computing time-structure maps for every voxel is currently limited only to small zones of interest 

(Schmidt et al. 2010). However, there are multiple ways to compute volumetric estimates of dip 

(Chopra and Marfurt, 2007). For this reason, volumetric aberrancy is computed using the second 

derivatives of the dip vector. Algorithmic details can be found in Di and Gao (2014) and Qi and 

Marfurt (2018).  

In this paper, the azimuth of aberrancy is mapped against the hue axis of an HLS color 

model represented by a cyclical color bar. The magnitude of aberrancy is mapped against the 

saturation axis of the HLS color model.  Several interpretation software packages allow mapping 

any three attributes against HLS. In cases where this option is not available, a workaround is to 

co-render the aberrancy azimuth and magnitude using opacity, as described by Marfurt (2015), 

where the aberrancy magnitude is plotted against the monochrome gray of the grey color. High 

magnitude values have low opacity (are transparent), showing the underlying azimuth value, while 

low magnitude values have high opacity and appear gray. Hence, the planar features appear grey 

while the flexures appear colored corresponding to the aberrancy azimuth values (Figure 4f). 

Unlike the curvature, the aberrancy magnitude images the fault trace (Figure 4h). 
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Earthquake Data, Event Relocation, and Focal Mechanism Computation 

  The Oklahoma Geological Survey (OGS) has monitored earthquake activity in the state 

over the last several decades (Walter et al., 2020). The network has expanded in an ad-hoc fashion 

to address monitoring needs as the seismicity rate increased in the last decade. OGS operates over 

100 seismometers throughout the state and is the official Advanced National Seismic System 

(ANSS) regional network within the state, such that USGS catalog events are sourced from OGS. 

During business hours, analysts manually pick waveform phases and determine P-wave polarities 

for regional events within the state, when the signal-to-noise ratio allows. Accurate phase picks 

and P-wave polarities inform precise relocation and focal mechanism determination for events in 

the study region. 

 Since July 2010, we identified 3,438 catalog earthquakes within the study region defined 

by the bounds of 35.5- and 36.5-degrees’ latitude North and 98.5- and 97.5-degrees’ longitude 

West. We relocated events using a double-difference algorithm, HypoDD (Waldhauser and 

Ellsworth, 2000), and initially chose a velocity model consistent with the one used for OGS routine 

locations (Walter et al., 2020). We altered the velocity model to be more consistent with known 

basement and stratigraphic constraints (e.g., Crain and Chang, 2018). In addition, we used a Vp/Vs 

ratio of 1.78 rather than the 1.73 to be consistent with available well sonic log information and 

consistent with a recent relocation study (Schoenball and Ellsworth, 2017). The velocity model 

used for relocation is included as electronic supplemental information.  In addition to the 

relocation, we recomputed focal mechanisms in a uniformly consistent manner using analyst-

picked polarities inputted into the HASH program (Hardebeck and Shearer, 2002). 
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RESULTS 

Structures revealed in Seismic Attribute Maps 

Figure 5 shows a horizon slices along the top basement through a suite of seismic attribute 

volumes. Figure 6 shows similar horizon slices along the top Hunton. The paleotopographic 

features are best delineated on bandlimited multispectral coherence along the top Basement, but 

the correlation of the attribute with the earthquakes reveals that most earthquakes do not correlate 

to any mapped coherence anomalies (Figure 5a). The horizon slices through curvatures (Figure 

5b) and aberrancy (Figure 5c) provide images of flexures rather than discontinuities.  For normal 

faults with sufficient offset, the coherence anomaly maps the fault trace while the most-positive 

and most-negative curvature anomalies bracket the fault trace. As seismic resolution (or fault 

offset) decreases, the coherence anomaly disappears, but the curvature anomalies remain. 

Aberrancy maps the crossing point (flexure) from positive to negative curvature, thereby mapping 

a hypothesized fault trace. A total of 36, 70, and 76 lineaments were mapped on coherence, 

curvature, and aberrancy, respectively (Figure 5e). The lineament density is much lower in 

coherence compared to curvature and aberrancy.      

Unlike along top basement, horizon slices through multispectral coherence along the top 

Hunton show considerable faulting. The most prominent are the NS lineament (purple arrow, 

Figure 6), imaged by curvature and aberrancy on the top basement, and the EW lineament (yellow 

arrow, Figure 6). The signature of the paleotopographic features disappears on coherence through 

top Hunton. Curvature reveals several new features and improves continuity of the NS lineament, 

as well as the splays associated with the EW lineament (Figure 6c). Aberrancy improves continuity 

of some of the lineaments imaged by curvature, and it also delineates other features that correlate 

with the paleotopographic features on top Hunton (Figure 6d). We attribute some of the greater 
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detail seen along the top Hunton to the higher frequency data at the shallower depths compared to 

the lower frequencies at the deeper basement. However, some of these features are geological, 

perhaps related to the helicoidal deformation of strike-slip faults like those observed over a Trenton 

Limestone play in Ohio (Sagan and Hart, 2006).  A total of 56, 74, and 85 lineaments were mapped 

on coherence, curvature, and aberrancy, respectively, along top Hunton (Figure 6f). Coherence 

reveals a higher number of features on top Hunton than the top of the basement but still less than 

revealed by curvature and aberrancy. Aberrancy reveals the highest number of lineaments on top 

Hunton.  

Because the Woodford formation overlays the Hunton, aberrancy delineates similar 

features on top Hunton and top Woodford (Figure 6d and e). Hence, we do not show a separate 

analysis for the Woodford and anticipate a similar statistical correlation on it. The earthquakes in 

the STACK area do not occur isolated, but rather correlate with the lineaments delineated by the 

curvature and aberrancy (Figure 5b-c, 6c-e). Aberrancy provides superior imaging of these 

structural features on the top Hunton and top basement.  Where earthquakes align with aberrancy 

anomalies, they corroborate our hypothesis that these anomalies are faults or fault zones with 

offsets that fall below seismic resolution, or even weaker, fractured flexures rather than simple 

flexures that have deformed elastically or plastically. 

On vertical slices (e.g., see Figures 3a, 4c, and 4f), these lineaments represent sub-vertical 

discontinuity surfaces that vertically offset and/or otherwise deform the stratigraphic reflectors. 

Along any of the discontinuity surfaces, we observe that offset geometries are often localized on 

the deeper reflectors, whereas the flexures often occur upsection on the shallower reflectors (e.g., 

Figure 3a). Because vertical seismic resolution decreases (and the loss of lateral resolution 

resulting in blurring increases) with depth, this observation implies that the change in the fault 



79 

 

character with depth is based on geology rather than on seismic data quality. Faults may lose offset, 

splay into a fault zone, or continue into more plastic lithologies as they propagate upward into the 

sedimentary section.  We also observe that many of the discontinuities extend into the basement 

and offset or truncate vertically stacked intra-basement reflectors interpreted by Chopra et al. 

(2017) and Folarain et al. (2020) to be igneous sills (e.g., Figure 3a). Although sills can step upward 

(Chopra et al., 2017), such steps always follow a zone of weakness, which we would also interpret 

to be joint or fault. Following on the observations from previous studies (Chopra et al., 2017; Patel 

and Marfurt, 2019; Kolawole et al., 2019) and observing a correlation between the earthquakes 

and lineaments delineated by curvature and aberrancy, we interpret these illuminated lineaments 

as faults. Overall, these fault-related lineaments show little to no offset on the top basement and 

top Hunton surfaces. Within the seismic survey, the largest observed offset of faulting at the top 

Basement surface is ~30ms, whereas, at the top Hunton, the largest observed flexure is ~45ms. 

Distribution of Interpreted Fault Lineaments 

By integrating the seismic attribute maps (Figures 5 and 6), we identified and mapped 86 

fault lineaments on the top Basement, 88 on the top Hunton, and 90 on the top Woodford surfaces 

(Figures 7a). Essentially, the density of fault lineaments decreases slightly with depth from the 

sedimentary sequences into the basement. The frequency-azimuth distribution of the fault 

lineaments for all three surfaces show multimodal distribution with similar prominent trends 

(Figures 7b-d). The prominent trends on three surfaces are NNW-SSE to ~N-S, NW-SE, and NE-

SW. Among the NW and NE trends, the NW trend appears to be more dominant on the top 

basement and top Woodford surfaces. 
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Relocated Earthquake Patterns and Focal Mechanism Solutions 

For the Kingfisher-Blaine-Canadian Counties (Figures 1a and 1e), we relocated a total of 

3,523 recorded between 2010 to 2019 with magnitudes ranging from Mw0.6 to Mw4.5 (Figures 

8a-b). The median error in the relocated events was 400 m horizontally and 800 m vertically. 

HypoDD relocation can get very good relative locations, but the absolute event location depends 

on velocity model. This is a challenge for regional seismic network. The surface locations (lat, 

long) of these events are generally more reliable than depth. The event histogram (Figure 8a) shows 

that although events extend down to >12 km depths, most of the earthquakes in this part of the 

basin occurred between 4-8 km which is located within the crystalline basement (Figure 8a). Only 

2.2% of the events were located in the sedimentary formations. Additionally, a scatter plot of the 

earthquake magnitude shows that most of the intra-sedimentary earthquakes cover a relatively 

narrower range (Mw1.9 – 2.8) compared to those hosted within the basement (Mw1.0 – 3.8). 

A North-South vertical section of seismicity clusters across the study area (Figure 8b) 

shows that the event clusters delineate sub-vertical rupture planes that extend from the deep 

basement zones (>10 km) across the top basement surface through the shallow sedimentary 

sequences. Additionally, the temporal evolution of the seismicity shows that the events recorded 

2015 onwards overprints the older event clusters in the basement. Further, the shallowest events 

(blue arrow in Figure 8b) occurred more recently consistent with the period of most prevalent 

seismicity in the study area (Figure 1c). 

We generated focal mechanism solutions for 207 events across the study area (Figures 9a-

b). In plane-view, the relocated event clusters and focal mechanism solutions are collocated with 

(occurred directly on or near) several fault lineaments in the seismic attribute maps of the top 

basement (Figures 9a-b). Overall, the focal mechanism solutions show predominantly strike-slip 
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faulting with minor normal faulting along NW-SE and NE-SW trending nodal planes. The overlay 

of earthquake events on the seismic depth-sections (e.g., Figures 10a-b) shows the collocation of 

basement and sedimentary earthquake clusters with stacked discontinuity surfaces. Extracted 

curvature seismic attributes reveal multiple sub-vertical discontinuity surfaces that extend from 

the basement up into the sedimentary cover and connect isolated or clusters of earthquake events 

in both basement and sedimentary intervals (Figures 10b-c). 

DISCUSSION 

Seismic Illumination of Small-Offset Seismogenic Faults with Aberrancy and Curvature 

Attributes 

The bandlimited multispectral coherence (Figure 4a) provides a much better improvement 

to broadband coherence (Figure 3a). However, the lateral extents of the fault lineaments in the 

coherence maps are largely underrepresented when compared to the curvature (Figure 5c) and 

aberrancy (Figure 5d) maps. For example, aberrancy and curvature attributes show significant 

improvement in delineating the N-S-trending faults compared to coherence. Additionally, we 

observe that the coherence fault lineaments are restricted to fault segments that show distinct offset 

character with associated significant flexure of the stratigraphic reflectors. Coherence measures 

similarity between neighboring waveforms. If the waveforms are very similar, the coherence 

attribute will have high value, and if the waveforms are very different, coherence will have low 

value. Coherence will image a fault with a seismically resolvable offset (more than one-quarter of 

the seismic wavelength), because the waveforms across the faults will be dissimilar. Figures 3b 

and c show broad-band coherence computed on the seismic data and extracted across the top of 

the basement and Hunton formation. Some of the faults have seismically resolvable offset on the 

top of the basement (Figure 3b). Coherence fails to image these faults in the sedimentary sections 
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because of flexures in the sedimentary section cause waveform similarity in nearby traces (Figure 

3c). 

Therefore, we infer that in geologic settings such as the Anadarko Shelf, where low fault 

offsets dominate, the curvature and aberrancy seismic attributes may be the most effective attribute 

in illuminating fault traces. Essentially, the aberrancy and curvature attributes may be additionally 

effective in delineating fault zones with sub-seismic offsets, whereas the coherence attribute may 

be more useful where the fault offset is significant enough to be seismically resolvable. However, 

we find that an interpretation approach that incorporates all three attributes best illuminates the 

lateral extents of the mapped fault (e.g., Figure 6b). Although previous structural investigations in 

the Anadarko Basin utilized curvature and coherence attributes to delineate fault segments (Elebiju 

et al., 2011; Liao et al., 2017; Kolawole et al., 2019, 2020), we emphasize that the aberrancy 

seismic attribute provides even better detail of structural deformation in such geologic settings as 

the study area (e.g., Patel and Marfurt, 2019). 

Our results show that several faults in the study area extend from the sedimentary cover 

into the basement (e.g., Figures 4c and 4f, 8b, 10b-c). A detailed analysis of the vertical partitioning 

of structural styles along the basement-rooted faults in the Anadarko Basin was presented in 

Kolawole et al. (2020). It was shown that the faults are transpressional faults with an upward 

propagation that features a deeper domain of faulted blocks near the top basement, which 

transitions into faulted monocline upsection and simple monoclinal flexures in the shallower 

sections. Therefore, the small vertical offset of these faults provides an explanation for the rare 

occurrence of fault offsets only in the near top basement depths, and dominance of monoclinal 

flexures across most of the sedimentary section (e.g., Figure 3a). Additionally, the relatively more-

compliant mechanical properties of the sedimentary units make it easier for the faults and top 
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basement paleotopographic features to flexurally deform the rocks. Hence, faults show better 

continuity on Hunton than the top of the basement. Therefore, we propose that, in fact, the large-

scale structural styles of these small-offset faults make the aberrancy and curvature (flexure-

illuminating) seismic attributes the ideal attributes for their illumination.  

In both plane-view (e.g., Figures 5-6, 9) and cross-section (Figures 10a-c), the distribution 

of relocated seismicity clusters shows a collocation of the earthquakes with our carefully 

illuminated fault lineaments. Thus, we recommend the use of aberrancy and curvature seismic 

attributes for the investigation of potentially seismogenic faults in the Anadarko Basin, and other 

intraplate sedimentary basins where small-offset pre-existing faults pose critical seismic hazards. 

In relation to the recent spike in induced seismicity in Oklahoma and surrounding areas (e.g., 

Figure 1a), the seismogenic basement-rooted faults are often delineated after the fact (e.g., 

Schoenball and Ellsworth, 2017; Chen et al., 2017; Kolawole et al., 2019). There are several fault 

lineaments in the survey along or in the vicinity of which no earthquake activities have been 

recorded (e.g., Figure 6d). However, we suggest that the careful integration of fault geometry 

mapping (using the recommended seismic attributes) with geomechanical modeling of fault 

reactivation potential (e.g., Walsh and Zoback, 2016; Qin et al., 2019) of the mapped faults may 

be effective in mitigating resource-exploration-related seismic triggering. 

The Illuminated Fault Structure and Induced Seismicity in Central Oklahoma and Other 

Areas 

The illuminated faults show dominant plan-view trends along the N-S, NW-SE, and NE-

SW orientations (Figures 7b-d). The focal mechanism solutions for the events show a 

predominance of strike-slip with minor normal fault reactivation on NW and NE-trending nodal 

planes (Figures 9a-b). Kolawole et al. (2019) demonstrated that the structural fabric of the 
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Precambrian crystalline basement underlying Oklahoma, Kansas, and surrounding areas is defined 

by a prominent NE- and NW- trending fault and fracture networks with a minor N-S trending set. 

Kolawole et al. (2020) showed that these Precambrian structural trends were reactivated in the 

Late Paleozoic, leading to basement-driven (unidirectional) and metasedimentary-driven (bi-

directional) fault propagation patterns across the Anadarko Shelf. However, Qin et al. (2019) 

showed that in various parts of the basin, these three structural trends were reactivated in varying 

proportions relative to one another, such that in some places, only one or more of the structural 

trends propagated up into the pre-Paleozoic cover. Here, we observe a dominance of all three 

structural trends, extending across the basement-sedimentary interface (Figures 7b-c and 10a-c). 

In addition, the relative abundance of faulting in the basement compared to the sedimentary cover 

(Figure 7a) is consistent with observations in Kolawole et al. (2020), which suggested that it is 

related to the partial reactivation of the inherited Precambrian basement faults in the Late 

Paleozoic. 

The present-day strike-slip faulting regime observed in the study area (Figures 9a-b) is 

consistent with most areas of seismicity in the basin (e.g., Alt and Zoback, 2017; Qin et al., 2019). 

The normal faulting events may be associated with flower structures along the strike-slip faults, as 

observed in the Woodward sequence located farther northwest of the study area (Qin et al., 2018). 

Previous studies have shown how fault orientations with respect to the ambient stress field 

influence the susceptibility of fault segments to shear reactivation which may be seismogenic or 

aseismic (e.g., Walsh and Zoback 2016; Alt and Zoback, 2017; Kolawole et al., 2019; Qin et al., 

2019). Based on the orientation of maximum horizontal stress in the Kingfisher County area (~83° 

red arrows in Figures 7b-d; Qin et al., 2019), we infer that the NW-SE and NE-SW -trending fault 

segments are most critically oriented for shear reactivation in the present-day stress field. Thus, it 
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is not surprising that the illuminated fault lineaments with earthquakes on them (Figures 9a-b) are 

oriented at low oblique angles to the stress field. However, it is important to note that the 

illuminated N-S -trending fault lineaments could also be seismogenically triggered at very high 

fluid pressures (Qin et al., 2019). 

As described above, the interpreted faults are basement-rooted strike-slip faults that 

developed during the Late Paleozoic transpressional tectonics (Liao et al., 2017; Gay, 2003; 

Kolawole et al., 2020), and the vertical partitioning of their structural styles (Kolawole et al., 2020) 

facilitate a prevalence of flexures along most of their segments (e.g., Figures 3a, 10a-c). These 

flexures may be simple differential compaction folds, faults smeared by seismic processing, sub-

seismic conjugate faults or folds associated with reactivated basement faults. Patel and Marfurt 

(2019) hypothesized that some of the flexures are due to differential compaction caused by top 

basement paleotopography. 

The seismicity recorded within the study area (Figures 8a-b) may be related to fault 

reactivation by wastewater disposal into the deeper sedimentary units (e.g., Arbuckle Formation), 

hydraulic fracturing within shallower sedimentary units (e.g., Woodford and Hunton Formations), 

or natural intraplate fault reactivation. The vertical extents of the seismic events (Figure 8b) and 

collocation with fault discontinuities in the 3D seismic data (Figures 10a-c) may indicate a 

potential link between intra-sedimentary and basement-hosted seismicity in this part of the 

Anadarko Basin. Therefore, the analyses presented in this study may provide better insight into 

the structures in the area relevant for future exploration activities in the area.  
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CONCLUSIONS 

In this paper, we used attributes computed on 1100 square miles of seismic reflection data 

to delineate the tectonic framework of the STACK area of the Anadarko Basin. The attributes 

reveal that the faults in the area extending from sedimentary cover into the basement with the rare 

occurrence of offsets near the top basement but the prevalence of flexures across the sedimentary 

section. We show that though broadband coherence delineated some of the faults near the 

basement, it fails to image them in the sedimentary section due to sub seismic offset of the faults. 

Because of layering, the empirical analysis showed that faults are tuned at a 30-55 Hz frequency 

in the Mississippian formations. Hence, we suggest limiting multispectral coherence to the 

bandwidth that best represents the discontinuities of interest. The lateral and horizontal continuity 

of the fault is best delineated by flexure-sensitive attributes such as curvature and aberrancy. 

Unlike coherence, curvature and aberrancy map smoothly deformed rather than discontinuous 

structural features. We demonstrate that location of the fault is best delineated by the combination 

of bandlimited multispectral coherence, aberrancy, and curvature. Aberrancy delineates the most 

number of fault lineaments, and we consider it the most effective attribute to delineate tectonic 

features in the geologic setting such as Anadarko Basin. The lineament analysis of the seismic 

attributes shows that the density of fault lineaments decreases from sedimentary layers to top 

basement. The illuminated faults show multimodal distribution with dominant plan view trends 

along N-S, NW-SE, and NE-SW.  

 The locally recorded earthquakes collocate near the fault lineaments delineated by the 

seismic attributes indicating the seismogenic nature of the faults in the Anadarko Basin. The 

earthquake cluster reveals a sub-vertical rupture plane extending from the sedimentary section to 

the deep basement. The focal mechanism of the earthquakes reveals predominantly strike-slip 
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faulting with minor normal faulting along NW and NE-trending nodal planes. Some of the recent 

earthquake events occur in the sedimentary section coinciding with the increase in oil and gas 

exploration and production activities in the region. There are several faults in the STACK area, 

which are imaged by the seismic attributes shown in this study, but no earthquake activities have 

been recorded in their vicinity. We propose to study the reactivation potential of those faults. We 

also recommend the use of flexure sensitive attributes to delineate structural features in other 

Basins with similar structural characteristics as Anadarko Basin.  
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FIGURES 

 

Figure 4-1. Map of earthquakes that occurred in Oklahoma from 2010-2019. The 

black line shows the faults the purple line delimits the STACK and SCOOP plays, 

and a thick black line delineates the Nemaha fault. Zoom views of (a). The area of 
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Interest [KF = Kingfisher County, BL = Blaine County, CA = Canadian County, and 

CD = Caddo County] showing earthquake (b) before, and (c) after 2015. Note the 

increase in the number of earthquakes after 2015. d) A zoom view of (a) from the 

north of Oklahoma showing that earthquakes in Alfal fa County (AL), Major County 

(MJ), and Woods County (WD) do not coincide with the currently mapped faults in 

the region. (e) A similar observation to (d) is observed in the area of interest. (1c 

inset) Green arrows represent the σ Hmax orientation for the Kingfisher County (from 

Qin et al., 2019) (data courtesy OGS). 

 

 

Figure 4-2. A generalized stratigraphic chart of Anadarko Basin modified from 

Johnson and Cardott (1992), showing formations mapped in the 3D seismic data 

volume. b) A zoom view of seismic cross -section near the Well. (c) An east-west 

seismic amplitude cross-section in the study area showing the top of the basement 

and top of some of the sedimentary sections interpreted using the well tops.  The 

Meramec and Woodford are the more important oil and gas producing formations in 

the STACK area (Seismic data courtesy of TGS).  
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Figure 4-3. Vertical slice AA’ through the seismic amplitude volume. Some faults 

show offsets (such as that indicated by the purple arrow)  at the top of the basement 

(blue horizon) but appear as flexures in the sedimentary section (indicated by the blue 

arrow). The top Hunton (yellow horizon) and top Woodford (red horizon) form the 

bottom of the exploration target for most operators. Green arrows indicate a possible 

fault given its offset deeper in the section (pink arrow); however, because of the lack 

of displacement, no fault appears on the horizon slices through the coherence volume 

at the (b) top basement or (c) top Hunton. The purple and green arrows indicate the 

same locations as shown in (a)  (seismic data courtesy TGS). 
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Figure 4-4. a) Broadband, and (b) bandlimited (30-55 Hz) multispectral coherence 

through Hunton, where the multispectral coherence provides improved fault images. 

(c) seismic amplitude co-rendered with most-positive (k1) and most-negative (k2) 
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curvature. For normal faults, k1 delineates the footwall while k2 delineates the 

hanging wall. (d) A cartoon showing curvature on a 2D structure. The synclinal 

feature exhibits negative curvature, generally mapped as a blue anomaly by k2, 

whereas the anticlinal feature exhibits positive curvature, mapped as a blue anoma ly 

by k1.  Planar features exhibit zero curvature (Chopra and Marfurt, 2007). (f) Vertical 

slice AA’ through seismic amplitude co-rendered with the aberrancy vector (defined 

by a magnitude and azimuth). The planar features appear grey (black arrow) while 

the strong flexures appear colored where the color represents the azimuth of downside 

of the flexure. (g) A cartoon showing that aberrancy measures the lateral change of 

the curvature (After Qi and Marfurt, 2018). (h) A cartoon showing that for a fault 

zone whose offset falls below seismic resolution that curvature anomalies bracket a 

fault while aberrancy aligns with the fault trace (Seismic data courtesy of TGS).   
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Figure 4-5. Horizon slices along top basement through the (a) bandlimited 

multispectral coherence (30-55 Hz), (b) co-rendered aberrancy magnitude and 

azimuth volumes, and (c) co-rendered k1  and k2 curvature. Earthquake locations 

indicated as red or black dots. (d) The same horizon slice shown  in (a) but now with 

seismogenic faults mapped by curvature and aberrancy marked as blue lines. 

Seismogenic faults that are better mapped by aberrancy appear as dashed blue lines.  

The purple arrow indicates the NS strike-slip El Reno fault, which is poorly imaged 

by coherence but well imaged by curvature and aberrancy. The orange arrow points 

to paleotopographic features on top basement. (e) Statistical analysis of the number 

of faults mapped on (a), (b), and (c). (Earthquake locations from the Oklahoma 

Geological Survey catalog (Seismic data courtesy of TGS).  
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Figure 4-6. Horizon slices along the top Hunton through the (a) bandlimited 

multispectral coherence (30-55Hz), (b) co-rendered k1 and k2 curvature, and (c) co-

rendered aberrancy magnitude and azimuth volumes. (d) The same horizon slice 

shown in (a) but now with seismogenic faults mapped by curvature and aberrancy 

marked as blue lines. Seismogenic faults that are better mapped by aberrancy appear 

as dashed blue lines.   The purple arrow indicates the same NS strike -slip El Reno 

fault as in Figure 5. Yellow arrows indicate EW strike-slip faults that do not appear 

on the top of the basement but appear on the top Hunton. The orange arrow points  to 

the same location as Figure 7a indicating decrease in paleotopographic feature’s 

signature on Hunton. The seismic attributes on Hunton delineate several other 

structural features on Hunton that do not appear on top of the basement. (e) Horizon 
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slice along the top Woodford through the co-rendered aberrancy magnitude and 

azimuth volumes. Note there is little change from the top Hunton shown in (c). (f) 

Statistical analysis of the number of faults mapped on (a), (b), and (c). (Red and 

Black earthquake locations from the Oklahoma Geological Survey catalog (Seismic 

data courtesy of TGS). 

 

Figure 4-7. (a) Histogram of interpreted faults for the three stratigraphic surfaces 

mapped in this study. Most earthquakes occur in the shallow basement. Frequency-

azimuth rose diagrams of the mapped fault segments for (b) top basement, (c) top 

Hunton, and (d) top Woodford showing dominant trends along N -S, NW-SE, and NE-

SW. Red arrows represent the σHmax (maximum horizontal stress) orientation for the 

study area found by Qin et al. (2019).  
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Figure 4-8. (a) Histogram of the depth distribution of the relocated earthquakes in 

the study area overlaid with the depth-distribution of earthquake magnitude. (b) N-S 

vertical section across the study area, showing the temporal evolution of the 

seismicity and the sub-vertical geometries of the earthquake clusters. The blue arrows 

point to recently occurred earthquakes in the sedimentary section. Horizons are top 

basement (in black), top Arbuckle (in yellow), top Simpson (in pink), top Viola (in 

green), top Sylvan (in dark pink), and top Hunton (blue). The top basement surface 

(black line) is from Crain and Chang (2018) (data courtesy OGS). 
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Figure 4-9(a) Horizon slice along the top Hunton through the co-rendered k1 and k2 

curvature volumes overlaid with seismicity epicenters, focal mechanism solutions, 

and previously reported fault segments in the area.  (b) Interpretation of the 

illuminated fault lineaments in Figure 9a.  The red and green lines are the interpreted 

faults from 9a, and blue lines shows the faults from OGS.  Earthquake information 

courtesy of the Oklahoma Geological Survey. Brown arrows represent the σ Hmax 

orientation for the study area computed by Qin et al. (2019)  (seismic data courtesy 

TGS and earthquake data courtesy OGS). 
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Figure 4-10. (a) Vertical slice through depth-converted (a) seismic amplitude volume 

along line BB’ through the NW-trending earthquake cluster shown in Figure 9) (b) 

Line BB’ through co-rendered amplitude and k1 and k2 curvature volumes. The 

vertical anomaly adjacent to the no-permit zone is an artifact. (c) Interpreted faults 

on line AA’ using flexures mapped by curvature and discontinuities seen in t he 

seismic amplitude data. The reflectors in the basement are from intruded sills, some 

of which are faulted (Chopra et al., 2017; Kolawale et al., 2020)  (seismic data 

courtesy TGS). 
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 APPENDIX  

In the appendix we summarize mathematical details on computing curvature and 

aberrancy. A detail explanation on curvature computation can found in Chopra and Marfurt, 2007. 

Xuan and Marfurt (2018) and Di and Gao’s (2014) provides detail explanation on aberrancy 

computation. 

Curvature 

Mathematically, the first step in curvature computation fits a quadratic surface z(x,y) to an 

interpreted horizon (Chopra and Marfurt, 2007). 

z(x,y) = ax2+cxy+by2+dx+ey+f                                                       (A1) 

Once the coefficients (a,b,c,d,e,f) are estimated, the mean of the curvature (kmean) and Gaussian 

curvature (kGauss) is calculated as  

Kmean = [a(1+e2) + b(1+d2) - cde] / (1 + d2+ e2)3/2                                     (A2) 

 kGauss = (4ab-c2) / (1+d2+e2)2                                                         (A3) 

The principal curvature (k1 and k2) can be calculated using kmean and kGauss,  

k1 = kmean + (kmean
2 - kGauss)

1/2                                                                                  (A4) 

k2 = kmean - (kmean
2 - kGauss)

1/2                                                                                    (A5) 

k1 is the most positive curvature and k2 is the most negative curvature. 

Aberrancy 
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Di and Gao’s (2014) aberrancy computation method requires derivatives of the dip vector 

in a coordinate system rotated to be aligned with the local reflector dip and azimuth. Once we have 

computed the 2nd derivative of the dip vector in the rotated coordinate system, the apparent flexure 

f(Ψ) at azimuth Ψ is given by: 

𝑓(𝛹) =  
𝜕3𝑧′

𝜕𝑥′3
cos3 𝛹 + 3

𝜕3𝑧′

𝜕𝑥′2𝜕𝑦′
 cos2 𝛹 sin 𝛹 +  3

𝜕3𝑧′

𝜕𝑥′𝜕𝑦′2
 𝑐𝑜𝑠 𝛹 𝑠𝑖𝑛2 𝛹 +

𝜕3𝑧′

𝜕𝑦′3
sin3 𝛹      (A7) 

Where x’,y’, and z’ are the rotating axis. The aberrancy is calculated by finding the extrema of 

equation A7. The extrema are the roots of equation A8. 

𝑑𝑓(𝛹)

𝑑𝛹
= 

3𝑐𝑜𝑠3𝛹. [−
𝜕3𝑧′

𝜕𝑥′𝜕𝑦′2 𝑡𝑎𝑛3 𝛹  − (2
𝜕3𝑧′

𝜕𝑥′2𝜕𝑦′ −
𝜕3𝑧′

𝜕𝑦′3) tan2 𝛹 + (2
𝜕3𝑧′

𝜕𝑥′𝜕𝑦′2 −
𝜕3𝑧′

𝜕𝑥′3 ) 𝑡𝑎𝑛 𝛹  +

 
𝜕3𝑧′

𝜕𝑥′2𝜕𝑦′] = 0                                                                                                                                           

(A8) 

Equation A8 is cubic in terms of tan ψ; hence it has three roots. The magnitude of the aberrancy 

is the sum of these three roots and the azimuth of the aberrancy is given by Ψ.   
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CHAPTER 5 CONCLUSIONS 

In this dissertation, I examine the need to develop data conditioning and interpretation 

workflows to improve quantitative reservoir characterization of unconventional resource plays. 

In chapter 2, we proposed a stretch compensation method to improve the resolution of far 

offset data, which is stretched by the processing steps, which aligns the non-zero offset to zero 

offset traces like NMO correction or prestack time migration. The stretch compensation is a 

function of the offset to depth ratio. I showed by comparing forward AVO modeling with original 

gather that a decrease in resolution of the far offset data leads to incorrect AVO estimation. The 

similarity between forward AVO model and stretch compensated data revealed that stretch 

compensation balances amplitude variation with the offset and improves AVO estimation. The 

balanced amplitudes and frequency across the reflectors improve the resolution of the S-impedance 

(ZS) and density (ρ). We also examine the limitations of the method bases on assumptions and 

modeling. The method is valid for reservoirs with dip no more than 2o due to the assumption that 

the stretch due to NMO is approximately the same as caused by prestack time migration. We show 

by elastic modeling that the method correctly estimates the composite response of the thick beds 

but introduces amplitude anomalies at far offset for tuned beds. The limitations of the method at 

tuning beds imply that the resolution improvement using bandwidth extension methods based on 

the location of energy peaks cannot extend the resolution of poorly resolved spectral components. 

In chapter 3, we developed a workflow to combine core and seismic elastic measurements 

to find lateral and horizontal probability estimation of rock types away from cored well. The rock 

types were predicted over an area of 477 square miles between top Meramec and top Woodford 
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Formations in the Anadarko Basin. The probability estimates showed that the more productive 

rock, rock type 1, was sandwiched between the less productive rock type 3.  

In chapter 4, we demonstrated the use of seismic attributes to delineate seismogenic faults 

in the STACK area of Oklahoma. The newly developed band-limited multispectral coherence 

attribute provided a significant improvement in delimiting faults compared to broadband 

coherence. A comparative study between aberrancy, coherence and curvature showed that the 

aberrancy is the best attribute to delineate the faults in a structural setting like Anadarko Basin, 

where strike-slip faults have a rare occurrence of offset but instead appear as flexures across the 

sedimentary section.  

 


