
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

Graph Isomorphisms and Homeomorphisms for Part and Assembly

Matching: Distributed System and Provenance with Blockchain Technology

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

Dwaine Kenney
Norman, Oklahoma

2020

Graph Isomorphisms and Homeomorphisms for Part and Assembly

Matching: Distributed System and Provenance with Blockchain Technology

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Sridhar Radhakrishnan, Chair

Dr. Christan Grant

Dr. Shivakumar Raman

c© Copyright by DWAINE KENNEY 2020
All rights reserved.

Abstract

In recent times, the democratization of manufacturing through various develop-

ments in the industry, such as 3-D printing and crowdsourcing, has led to increasing

levels of innovation and a greater ability for smaller organizations and even individual

entrepreneurs to participate in the manufacturing process. One problem to be solved

with the advent of the democratization of manufacturing is how a manufacturer can

determine if a required part is already being manufactured by another manufacture

exactly or with sufficient similarity without having to manually search through exist-

ing parts.

In this thesis, we present algorithms for searching existing parts and assemblies

for a pattern specification, and we propose some distance measures for determin-

ing how similar two matched part or assembly trees are based on node attributes.

Furthermore, we present a distributed system that can be used to search parts and

assemblies created by other manufacturers, make purchases after receiving results

with respective distances, and track provenance of parts used in assemblies by third-

party manufacturers using blockchain technology, all without requiring a centralized

authority or database.

iv

Acknowledgements

First, I wish to thank my research advisor, Dr. Sridhar Radhakrishnan, for his

guidance and support throughout the development of this thesis, as well as for his

love of computer science and dedication to his students.

Additionally, I would like to thank my students in his research group, Sudhindra

Gopal, Aditya Narasimhan, Jonathan Leslie, Aaron Moris, Addison Womack, Michael

Nelson, and Dorian Selimovic, for providing their insight and support throughout my

time doing research.

Finally, I would like to thank my family for their support and love throughout my

education at the University of Oklahoma.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Parts and Assemblies as a Tree . 2
1.3 Assembly Search in a Distributed System 5
1.4 Contributions . 7

2 Theory 8
2.1 Definitions . 8
2.2 Rooted Tree Isomorphism Search . 11
2.3 Rooted Tree Homeomorphism Search 13
2.4 Node Matching for Matched Subtrees 14
2.5 Distance Measures . 17

2.5.1 Euclidean distance . 19
2.5.2 Cosine distance . 19
2.5.3 Ratio distance . 20

3 Distributed System Using Blockchain 21
3.1 Distributed System . 21
3.2 Blockchain and Smart Contracts . 22

4 Implementation 24
4.1 Node Implementation . 24
4.2 Blockchain Implementation . 25
4.3 Dataset Generation . 25

5 Analysis 27
5.1 Speed . 27
5.2 Distance Measures . 28

6 Conclusion 30
6.1 Future Work . 31

vi

A Source Code 33
A.1 Part and Assembly Generation . 33

A.1.1 createpart.py . 33
A.1.2 part.py . 42
A.1.3 units.py . 54

A.2 Tree Search . 60
A.2.1 parttree.py . 60
A.2.2 partisomorphism.py . 66
A.2.3 partsearch.py . 89

A.3 Server - Search . 91
A.3.1 server.py . 91

A.4 User Interface . 94
A.4.1 index.js . 94
A.4.2 App.js . 94
A.4.3 Header.jsx . 98
A.4.4 Results.jsx . 99
A.4.5 Upload.jsx . 101

A.5 Server - Publish . 103
A.5.1 index.js . 103

A.6 Smart Contracts . 105
A.6.1 Publish.sol . 105
A.6.2 Purchase.sol . 106

vii

Chapter 1

Introduction

1.1 Motivation

As of 2018, manufacturing was a $14.17 trillion industry worldwide in terms of value

added [6]. However, the industry is distributed quite unevenly geographically; four

countries, China, the United States, Japan, and Germany alone account for more than

half of this figure ($7.99 trillion). The concentration continues when one looks to in-

dividual corporations; in 2017, the 100 largest manufacturing companies worldwide

generated a total of $7.07 trillion in revenue, though it is worth noting that some of

these companies, such as Apple and Dell, provide services in addition to manufactur-

ing products which is not accounted for in this figure [4]. In addition, concentration

of the manufacturing industry in the United States has increased steadily since 2000

with respect to the market share of the largest eight firms in the industry [3].

This concentration of the manufacturing industry both in the United States and

globally presents several problems. As noted by former chair of Council of Economic

Advisors Jason Furman, high concentration within an industry can reflect “high eco-

nomic rents and barriers to competition.” [5]. In addition to these problems, he further

notes that greater concentration can lead to stifled innovation within an industry. In

the manufacturing industry, lower barriers for entrepreneurs into the industry could

serve to lessen the effects of these problems.

A recent trend in the manufacturing industry has come with developments in areas

such as crowd-funding, crowdsourcing, and 3D-printing. The term democratization

of manufacturing refers to this trend of increasing ability for smaller organizations

and individuals unaffiliated with larger manufacturing companies to enter into the

1

manufacturing market, both in the sense of being able to compete in the industry

and having the ability to obtain increasingly specialized products from other manu-

facturers [7].

With the advent of the democratization of manufacturing, an interesting problem

is to determine how a manufacturer or other purchaser may determine if a part they

need is already being manufactured by another manufacturer, and if not, determining

how similar existing parts are to the necessary specification. Extending this prob-

lem further, it would be useful for a manufacturer looking to create some part from

smaller, less complex components to determine which of the smaller components can

be sourced from other manufacturers and combined together. Furthermore, once a

manufacturer has agreed to sell a part they have created to some other party for

use in their own manufactured component, the problem arises of how to guarantee

that provenance of the original part is honored in the new manufactured component

without requiring a centralized authority to maintain that information.

1.2 Parts and Assemblies as a Tree

Consider the assembly pictured in Figure 1.1, created using SolidWorks. Observe that

the assembly has been visually exploded to allow for an observer to see constituent

parts and sub-assemblies, many of which can be further decomposed into smaller

assemblies. We can imagine that a manufacturer or designer may wish to search

for assemblies that are similar to any of these sub-assemblies (or possibly the entire

assembly). With this in mind, the first problem is to consider how the assembly can

be represented to more intuitively allow it to be searched by a user.

2

Figure 1.1: A complex assembly with many constituent parts and sub-assemblies.
Sourced from

https://blog.grabcad.com/blog/2013/04/15/finally-your-favorite-3d-files-wherever-you-go//. Accessed
April 20, 2020.

To solve this problem, observe in Figure 1.2 that assemblies can be represented

as a rooted tree. Note that a complete assembly is represented at the root node

of this tree, with children nodes representing smaller, constituent assemblies, with

indivisible parts at the leaf nodes of the tree. Consider again the radial engine shown

in Figure 1.1. If we are to consider this device as a rooted tree, we can imagine that

the root node of the tree corresponds to the entire device, perhaps with some node

attributes containing consumer information about the device, such as its name or

price, as well as possibly information about the construction and makeup of device,

such as its weight, density, heat tolerance, etc. The children of the root nodes then will

correspond to smaller components that may constitute parts in their own right, with

each node having some unstructured set of attributes that give further information

about the part. This hierarchy of increasingly smaller parts as children of larger ones

can continue down to the smallest components of the engine, such as screws or wires,

which themselves may have children to outline their features, such as the thread and

head of a screw.

3

https://blog.grabcad.com/blog/2013/04/15/finally-your-favorite-3d-files-wherever-you-go//

Figure 1.2: An assembly represented as a rooted tree, with the complete assembly
represented by the root node of the tree. Sourced from

https://www.innova-systems.co.uk/solidworks-treehouse-tutorial/. Accessed April 19, 2020.

Any part or assembly can be represented as such a rooted tree, which we will refer

to as an assembly tree. Assembly trees should have some information to describe the

characteristics of the assembly as well as its constituent parts and sub-assemblies.

In order to provide this information, each node will contain some unstructured at-

tributes; the attributes are unstructured in that any two nodes may not have the same

number of attributes, and attributes may describe different characteristics of their re-

spective parts and assemblies. It is also important in this research that attributes be

useful for someone who may be searching for a part using specific constraints; each

node’s attributes should demonstrate tolerances, limits, operating requirements, and

other specifications that may be important to someone looking for a specific part or

sub-assembly to use in their own assembly.

Once a manufacturer has created a tree structure for some set of parts and as-

semblies that they have currently available to be manufactured, a searcher can create

their own tree that sets up the requirements they have for a part or assembly they

are looking to use and query that manufacturer’s database of part trees to determine

if any part, assembly, or section of a part or assembly matches what they are looking

for to a near enough degree.

4

https://www.innova-systems.co.uk/solidworks-treehouse-tutorial/

1.3 Assembly Search in a Distributed System

Once manufacturers have created their database containing part trees for parts and

assemblies they manufacture, we can image a system that allows them to search

and reuse each other’s parts and assemblies. Such a system, called GrabCAD, al-

ready exists. As shown in Figure 1.3, GrabCAD connects a community of millions

of professional designers and manufacturers with a library consisting of millions of

assemblies. However, this system presents two problems. The first is a limited search

capability, where searching for assemblies can be done using a few simple properties,

such as keywords and category; adding deeper search functionality can be accom-

plished by searching through rooted tree representations of assemblies, as discussed

in Section 1.2.

Figure 1.3: The GrabCAD library. Sourced from https://grabcad.com/library. Accessed April 20,
2020.

A second problem is that GrabCAD acts as a centralized database, where man-

ufacturers and designers must share designs through a single database, rather than

5

https://grabcad.com/library

communicating with each other directly; this presents a single point of failure for the

system. To solve this problem, a peer-to-peer network consisting of a node for each

participating manufacturer can be used. In this network, each participant, whether

they be a manufacturer, designer, or engineer, stores their design files at their own

database, as shown in Figure 1.4; as such, each participant node acts as both a client

and a file server. When manufacturer A wants to buy a part or assembly based on

some part tree specification, they can query the database of part trees at each other

node, which in turn will respond with results containing matching part trees and some

measure of similarity of each resulting part tree to the specification provided by A.

Figure 1.4: A peer-to-peer network with design files stored at each participant node.
Modified from https://grabcad.com/workbench. Accessed April 20, 2020.

The use of a peer-to-peer network rather than a network with a central server

presents problems with tracking provenance, however. For example, consider that

manufacturer A manufactures some assembly a, while manufacturer B manufactures

some assembly b. Now suppose that manufacturer C needs assemblies a and b to

develop their part c. After searching the databases of manufacturers A and B and

determining that a and b meet their specifications, manufacturer C purchases a and

b from manufacturers A and B to use in their new assembly c. Now suppose that

6

https://grabcad.com/workbench

manufacturer D has similarly determined that they need to use c in order to create

their assembly d. It is necessary that manufacturer D compensate not only manufac-

turer C for the use of c, but also manufacturers A and B since they own the rights to

sub-assemblies contained in c. This information may not be published in the part tree

for c, and it must be stored somewhere without requiring a central authority. This

problem can be solved by the use of blockchain technology, where each manufacturer

and designer in the peer-to-peer network also participates on the blockchain.

1.4 Contributions

In this thesis we make several contributions:

1. We present an algorithm to search for part tree matches or subtree matches

within a query tree.

2. We consider methods for determining distances between matched subtrees.

3. We present a distributed system that utilizes the algorithm and distance mea-

sures for searching within any number of manufacturer’s databases.

4. We demonstrate how blockchain technology can be used to store information

about available parts and honor provenance of individual parts and sub-assemblies

used in assemblies across manufacturers.

7

Chapter 2

Theory

In order to query a database of part trees with some pattern tree provided as a

search parameter, there are a mathematical concepts and algorithms that must be

introduced, which we will outline in this chapter.

2.1 Definitions

Suppose that a manufacturer is searching a database to determine if a part tree they

have created to specify requirements for a part or assembly; we will refer to this tree

as a pattern tree. Any part tree in the database that is being searched to determine

if it or one of its subtrees matches the pattern tree will be referred to as a query tree.

Note that both the pattern tree and the query tree are rooted trees.

In order to search for a pattern tree within a query tree, we must first determine

structural matches of the query tree or one of its subtrees to the pattern tree. Let T1

and T2 be rooted trees with respective vertex sets V1 and V2 and respective edge sets

E1 and E2. T2 is an isomorphism of T1 (or rather, T1 and T2 are isomorphic) if there

exists a bijection between V1 and V2

f : V1 → V2

where for any vertices u, v ∈ V1, u and v are adjacent if and only if f(u) and f(v) are

adjacent in T2. As such, searching for isomorphisms of a pattern tree within a query

tree will provide a set of strict structural matches. In figure 2.2, observe that Trees

A and B are isomorphic, with one possible bijection of nodes shown with node labels.

8

Figure 2.1: Two isomorphic trees.

However, it may be the case that the manufacturer searching for a pattern tree in a

database may not want such a strict structural match; it is impossible to know exactly

what procedure any given manufacturer may use for organizing nodes in a part tree,

and they may define parts using more or fewer nodes than the manufacturer might

place in the pattern tree, with sub-components placed lower or higher than expected.

As such, a looser mechanism for structural matching is useful.

Suppose in some tree T with vertex set V and edge set E there is an edge between

vertices u, v ∈ V . We can subdivide the edge between u and v by adding a vertex w

to V , removing the edge between u and v from E, and adding edges between u and

9

w and between v and w. A tree T ′ is a subdivision of T if T ′ can be obtained by

subdividing edges in T . We say that T2 is an homeomorphism of T1 (or rather, T1 and

T2 are homeomorphic) if there exists some subdivision of T1 that is isomorphic to some

subdivision of T2. As such, searching for homeomorphisms of a pattern tree within a

query tree will provide a set of structural matches that allow for more flexibility in

the way the two trees are defined by their respective manufacturers.

Figure 2.2: Two homeomorphic trees. If nodes u, v, and w are removed, then Trees
A and B will be isomorphic.

Note that when searching for isomorphisms and homeomorphisms of a pattern tree

within a query tree in this context, only subtrees of the query tree such that the entire

10

rooted subtree, including all the root’s descendents, are isomorphic or homeomorphic

to the pattern tree will be included in the set of resulting matches.

In this context, each node of a given tree will have a set of attributes that describe

it. These attributes can be of any type, though this work largely considers only

numerical attributes. The attributes that each node has has no guaranteed structure,

and as such, each attribute set at a node cannot be considered tuple. Therefore,

each node will have its attributes organized as set of key-value pairs. We refer to the

attribute set of a node as the set of key-value pairs, while we refer to the attribute key

set to be the set of keys in the attribute set.

2.2 Rooted Tree Isomorphism Search

Algorithms for determining if two rooted trees are isomorphic have been demonstrated

in previous research, and this research builds upon one of them; however, a few

modifications have been made. In searching to determine if a pattern tree is contained

within a query tree, we must check all rooted subtrees of the query tree to determine

which are isomorphic to the pattern tree. However, we also want to determine if any

rooted subtrees of the pattern tree can be matched within the query tree as well; as

noted earlier, it can be equally useful in this context to combine some set of part

trees to form the pattern tree even if the entire pattern tree cannot be matched to a

query tree or one of its rooted subtrees; if a subtree of the query tree T ′ is matched

to a subtree of the pattern tree P ′, then the tuple (T ′, P ′) will be added to the list of

isomorphisms.

Algorithm 1 has been adapted, with the aforementioned modifications, from an

algorithm described in The Design and Analysis of Computer Algorithms [1] using

improvements described by Alexander Smal [8], which assigns each node of the the

query tree and pattern tree a canonical name that contains the complete history of

their descendants; the two trees are isomorphic if their roots have the same label.

In the following pseudocode, let T and P be the query tree and pattern tree, with

root nodes r and q respectively, and let T (u) (resp. P (u)) be the rooted subtree of T

(resp. P) with root node u. Note that if a T ′(v) and P ′(v) are homeomorphic and,

without loss of generality, if v had been combined with its single child n in the process

of removing subdivisions from T , it is also true that T (n) is homeomorphic to P ′(v).

In order to have the most information available with respect to node attributes and

11

computing distance measures, this thesis uses the highest possible node in a tree as

root when returning homeomorphic subtrees.

Algorithm 1 GetIsomorphisms(T, P)

isomorphisms← ∅
AssignCanonicalNames(r)

AssignCanonicalNames(q)

for vertex u in P do

for vertex v in T do

if v.name = u.name then

isomorphisms = isomorphisms ∪ (T (v), P (u))

end if

end for

end for

return isomorphisms

Algorithm 2 AssignCanonicalNames(u)

if u is a leaf then

u.name←“10”

else

for v in u.children do

AssignCanonicalNames(v)

end for

end if

childrenNames← sorted names of u.children

u.name← “1”

for name in childrenNames do

u.name← u.name+ name

end for

u.name← u.name+“0”

12

2.3 Rooted Tree Homeomorphism Search

Algorithms exist for determining if one tree contains a subtree that is homeomorphic

to a pattern tree, such as the one presented by Moon Jung Chung [2]. However,

many of these algorithms are capable of finding homeomorphisms of a pattern tree

within a query tree where the entire matched subtree is not guaranteed to be included

in the homeomorphism. The use of such an algorithm would require us to check

each returned homeomorphism to verify that it includes an entirety of the subtree

corresponding to its root.

A simpler algorithm can actually be adapted from Algorithm 1. Note that home-

omorphisms form an equivalence class, and as such, satisfy the transitivity property;

that is, if rooted subtrees T1 and T2 are homeomorphic and T2 and T3 are homeomor-

phic, then T1 and T3 must also be homeomorphic. With this in mind, the problem

of determining whether two trees are homeomorphic becomes as simple as removing

any possible subdivisions from both trees and checking if the resultant trees are iso-

morphic. Algorithm 3 modifies Algorithm 1 to accomplish this. Again, let T and P

be the query tree and pattern tree, with root nodes r and q respectively, and let T (u)

(resp. P (u)) be the rooted subtree of T (resp. P) with root node u.

Algorithm 3 GetHomeomorphisms(T, P)

homeomorphisms← ∅
T ′ ← Compress(T)

P ′ ← Compress(P)

AssignCanonicalNames(r)

AssignCanonicalNames(q)

for vertex u in P ′ do

for vertex v in T ′ do

if v.name = u.name then

homeomorphisms← homeomorphisms ∪ {T (v), P (u)}
end if

end for

end for

return homeomorphisms

13

Algorithm 4 Compress(T)

for vertex v in T such that v has one child u do

v.children← u.children

Remove v from T

end for

return T

2.4 Node Matching for Matched Subtrees

Once a pattern tree (or one of its subtrees) P ′ has been matched to an isomorphic

subtree of a query tree T ′, in order to determine how similar the two matched trees

are based on the attributes at each of their nodes, it is necessary to determine a map

g : V (P ′)→ V (T ′)

Once this map has been discovered, we can apply some distance function to the map

δ(g) in order to determine how dissimilar the two matched trees are.

In order to for a vertex v in P ′ to be mapped to a vertex u in T ′, then P ′(v)

must be isomorphic to T ′(u); knowing this makes it relatively simple to determine

the mapping of nodes that can be used to calculate distance. However, it is possible

that there exists more than one isomorphism between P ′ and T ′; in this case, it is

undesirable to find only one of the isomorphisms, as it is possible that using a different

mapping of nodes could result in a lower distance between P ′ and T ′.

If the P ′ is homeomorphic to T ′ but the two trees are not isomorphic, then de-

termining which nodes of P ′ to map to corresponding nodes in T ′ becomes more

difficult; in addition to the challenges with matching nodes in isomorphic trees, P ′

and T ′ may not even have the same number of nodes. However, by the definition of a

homeomorphism, there exist subdivisions P ′′ and T ′′ of P ′ and T ′ respectively. That

is to say, the map

h : V (P ′′)→ V (T ′′)

can be used to find the distance between the two trees similarly to if the trees were

isomorphic by calculating δ(h).

In order to determine these subdivisions, some nodes of P ′ and/or T ′ will need

14

to be removed. However, when nodes are removed, the attributes defining that node

will be removed as well; in order to avoid losing information that could be potentially

useful in calculating δ(h), attributes in nodes that are removed will be attached

to their parent nodes before removal, except for in cases where the parent has an

attribute with the same key.

Algorithm 5 can be used on T ′ and P ′ whether they are isomorphic or only home-

omorphic, and results in some set of mappings between either P ′ and T ′ or some

subdivisions of them. Note that for each pair of nodes matched between P ′ and T ′,

the level of the tree that the nodes appear on is included as well; while the nature of δ

has been left ambiguous, it can be seen how in some contexts, it may be desirable to

weight the distances between individual pairs of nodes differently depending on their

distance from the root node. Also note that the IsHomeomorphic function is used

to determine whether two nodes can be mapped together, and works in the same way

as Algorithm 3, but only checks the root nodes of two trees to determine if they are

homeomorphic; as all isomorphisms are also homeomorphisms, this function will work

whether T ′ and P ′ were determined to be isomorphisms or only homeomorphisms.

15

Algorithm 5 GetMatchedNodes(T, P, level)

if T has no children or P has no children then

return ∅
end if

possibleMatches← ∅
for vertex u in T.children do

partMatches← ∅
for vertex v in P.children do

checkForMatches← false

if level = 0 then

checkForMatches← true

else if IsHomeomorphic(T (u), P (v)) then

checkForMatches← true

while T (u) and P (v) have different numbers of children do

if T (u) has 1 child then

CombineChild(u))

else if P (v) has 1 child then

CombineChild(v))

end if

end while

end if

if checkForMatches then

childMatches← GetMatchedNodes(T (u), P (v), level + 1)

end if

for match in childMatches do

match← match ∪ (u, v, level)

end for

partMatches← partMatches ∪ childMatches

end for

possibleMatches← possibleMatches ∪ {partMatches}
end for

finalMatches← ReduceMatches(possibleMatches)

return finalMatches

16

Algorithm 6 CombineChild(v)

u← child of v

for attribute key k in u not already in v do

v.k ← attribute value of u with key k

end for

v.children← u.children

Algorithm 7 ReduceMatches(matches)

finalMatches← ∅
checkedMatches← ∅
for matchesX in matches do

checkedMatches← checkedMatches ∪ {matchesX}
for matchesY in possibleMatches− checkedMatches do

for matchX in matchesX do

for matchY in matchesY do

if matchX and matchY share no vertices then

matchX ← matchX ∪matchY
end if

end for

end for

end for

finalMatches← finalMatches ∪ {matchesX}
end for

return finalMatches

2.5 Distance Measures

Once nodes of a subtree of a query tree have been matched to nodes of a pattern tree,

some measure of distance, or dissimilarity, should be applied to the pairs of nodes to

determine the distance between the two trees. However, determining a measure of

distance between two trees poses some challenges.

The first challenge that must be considered is that, as each node in a given part

or assembly may correspond to an arbitrary assembly, part, or feature, the set of at-

17

tributes at any given node is not guaranteed to have a determined structure. As such,

any two nodes that have been matched together by Algorithm 5 are not guaranteed

to have all the same attributes, and may have no attributes in common.

The second challenge in determining the distance between two trees is that the

context of search can vary. There may be situations where certain attributes must

have exact or nearly exact values, or where specific attributes may be more important

than others. There may also be situations where the distance between two nodes

should be weighted more heavily in the overall distance between the two trees if it

appears closer to the root node.

The third challenge is that there may not be a sensible way to determine the

similarity between two values of a particular attribute. For example, if an attribute

is listed on two matched nodes defining the material used to create the corresponding

component, there may not be a way to translate this into a numerical distance.

Furthermore, many distance measures use some knowledge about the distribution of

values of a particular attribute, such as mean and standard deviation, but in this

context, a distribution may not be useful. Note that not all nodes will have all

attributes, and furthermore, an attribute may not mean the same thing at all nodes

that have a value defined for that attribute. For example, it does not make sense to

include the mass of a screw on the battery cover of a TV remote and the mass of a

screw used to hold together pieces of an earth mover.

Given these challenges, it is important to note that there can be no distance

function that will work properly in all situations. As such, we propose only a few

simple measures, each having some advantages and disadvantages; note that each

measure proposed deals only with numerical attributes. Given that two matched

nodes may have not have all attributes in common, a user may wish to consider

two matched nodes as more dissimilar if they have different attributes; with this in

mind, for each measure we also provide a modification based on the Jaccard index

that considers two nodes more dissimilar the more attributes there are in their union

of attribute keys but not in their intersection. Note that while there exist scenarios

where a user may wish to weight certain nodes’ importance with respect to calculating

the distance of two isomorphic or homeomorphic trees, in our implementation, the

distance between two trees is calculated to be the average distance between their

matched nodes using one of the measures proposed.

18

2.5.1 Euclidean distance

Euclidean distance is a common distance measure used to compare two data points;

the formula for comparing nodes x and y is as follows with attribute key sets Ax and

Ay respectively:

distance =
√ ∑

a∈Ax∩Ay

(x(a)− y(a))2

In order to account for nodes with different attributes, the following measure can

also be used:

distance =

(
2−

(
|Ax ∩ Ay|
|Ax ∪ Ay|

))√ ∑
a∈Ax∩Ay

(x(a)− y(a))2

In determining the distance of two matched nodes, Euclidean distance can be

useful in ruling out matched trees that have significant distance between the values

of one or many attributes. However, given that the mean and standard deviation

are likely to be meaningless for any given attribute key across the dataset of all

parts, attribute values cannot be normalized; thus, Euclidean distance is sensitive to

attribute values that exist on larger scales, which may be a problem in some contexts.

2.5.2 Cosine distance

The formula for comparing nodes x and y with attribute key sets Ax and Ay, respec-

tively, using Cosine distance is as follows:

distance = 1−
∑

a∈Ax∩Ay
x(a)y(a)(∑

a∈Ax∩Ay
x(a)2

) (∑
a∈Ax∩Ay

y(a)2
)

In order to account for nodes with different attributes, the following measure can

also be used:

distance =

(
2−

(
|Ax ∩ Ay|
|Ax ∪ Ay|

))1−
∑

a∈Ax∩Ay
x(a)y(a)(∑

a∈Ax∩Ay
x(a)2

) (∑
a∈Ax∩Ay

y(a)2
)

Cosine distance can be particularly useful in situations where proportionality is

more important than having exact values for particular attributes at matched nodes,

19

and unlike Euclidean distance, is not sensitive to attributes values existing using dif-

ferent scales across different nodes. However, in situations where attribute values at

a particular node have entirely different contexts and by extension where proportion-

ality is not meaningful, Cosine distance is not useful.

2.5.3 Ratio distance

Ratio distance is a simple measure that utilizes the proportional difference between

values at a particular attribute to, in a sense, normalize attribute values without

requiring any kind of structure to the data. The formula for comparing nodes x and

y with attribute key sets Ax and Ay, respectively, using ratio distance is as follows:

distance = 1−

∑a∈Ax∩Ay

min(x(a),y(a))
max(x(a),y(a))

|Ax ∩ Ay|

In order to account for nodes with different attributes, the following measure can

also be used; note that this measure has the same value if the two nodes have the

same set of attribute keys:

distance = 1−

∑a∈Ax∩Ay

min(x(a),y(a))
max(x(a),y(a))

|Ax ∪ Ay|

Ratio distance is useful in situations where it is important that attribute values

be similar to each other on the respective scale of the attribute; unlike Euclidean

distance, it is not sensitive to differing scales of attributes across nodes. However, it

is not particularly useful in situations where the minimum and maximum values at

an attribute have different signs.

20

Chapter 3

Distributed System Using

Blockchain

In this chapter we will describe a distributed system that provides capabilities for

searching for a pattern tree across any number of databases of parts and assemblies

and return a set of matches with corresponding distances, for purchasing a matched

query tree from a manufacturer, and for tracking provenance of a part or assembly

once it has been purchased and placed into a larger assembly.

3.1 Distributed System

The distributed system implemented follows a peer-to-peer model with an arbitrary

number of participants, and in this model, no centralized authority is required at any

step. Each node in the distributed system can act as a server processing requests

to search for a pattern tree; in this case, the node will search through its database

for tree matches, calculate a distance for each match, and return the results to the

source of the request. Acting as a server, the node can also return the data for a tree,

structured as an XML file, that a client has purchased after conducting a search.

Naturally, each node can also act as a client. In order to perform a full search

for a pattern tree, the node must send a request to all nodes whose corresponding

databases it wishes to search. Upon receiving results, the node can then be used to

make a purchase of a part or assembly that the user deems to have a low enough level

of dissimilarity to the pattern tree.

21

3.2 Blockchain and Smart Contracts

While the simple peer-to-peer system described in Section 3.1 can be used to process

searches and initiate purchases, each node may not properly track information about

purchases. Furthermore, if an assembly containing parts and/or assemblies from other

manufacturers is purchased, the corresponding manufacturers should be appropriately

compensated as well; in Figure 3.1, consider the propagation of small parts being used

in larger and larger assemblies until such a assembly as the radial engine in Figure 1.1.

Unfortunately, this peer-to-peer model alone is unsuitable for maintaining provenance

of a part or assembly once it has been purchased and added to a larger assembly by

another party.

Figure 3.1: The propagation of smaller parts, such as A and B, into larger
assemblies. Modified from https://grabcad.com/library/

karl-erik-olsryd-9-cylinder-radial-wright-j-5-whirlwind?viewer=ab88242f5eb28702abba41afc69f60c5.
Accessed April 21, 2020.

The use of blockchain technology in the peer-to-peer system can alleviate these

issues. A blockchain consists of a list of blocks, each containing a hash of the previous

block in the blockchain, a timestamp, and the block’s data. As a block in a blockchain

cannot be altered without also altering every other block following, a blockchain can

be used to securely store information in a decentralized system. A variety of protocols

22

https://grabcad.com/library/karl-erik-olsryd-9-cylinder-radial-wright-j-5-whirlwind?viewer=ab88242f5eb28702abba41afc69f60c5
https://grabcad.com/library/karl-erik-olsryd-9-cylinder-radial-wright-j-5-whirlwind?viewer=ab88242f5eb28702abba41afc69f60c5

exist for communicating between nodes in a decentralized system with respect to the

blockchain and validating new blocks placed on the blockchain.

In this context, a blockchain with each manufacturer as a participant can be used

to store information about which parts and assemblies are available for purchase

and transactions between manufacturers. In order to carry out both transactions

between manufacturers and the publishing of new parts or assemblies available for

purchase, we can use smart contracts. A smart contract refers to some computation

that can be done on a blockchain. As such, when a smart contract is used to carry

out a transaction or publish a new part, the computation is verified and stored on

the blockchain and cannot be altered, similar to any other block residing on the

blockchain. The immutability of smart contracts can be useful in tracking purchases;

in particular for this context, its usefulness is in its application for tracking provenance

of parts and assemblies and making appropriate payments when assemblies containing

smaller parts and assemblies are purchased.

For this system, two different kinds of a smart contracts are used. One, called

Publish, is used to place information about a new part or assembly to the blockchain,

including its manufacturer, price, and any parts or assemblies that it makes use of,

referenced by the addresses of their corresponding Publish contracts. Once a Publish

contract has been placed on the blockchain, no further processing is required except

to view the information stored. The second, called Purchase, is used to make a trans-

action between two manufacturers when one purchases a part or assembly created by

the other. The contract stores information pertaining to the purchase, such as the

two manufacturers and the part involved. More importantly, however, the Purchase

smart contract utilizes information in the Publish smart contract corresponding to

the part being purchased to pay any other manufacturers whose parts or assemblies

were used in the part being purchased.

23

Chapter 4

Implementation

In this chapter, we provide in more detail implementation details for the algorithms

detailed in chapter 2 and chapter 3, including tools necessary to use this implementa-

tion. Furthermore, we provide details of how datasets were generated for use by the

system.

4.1 Node Implementation

The distributed system used in this project consists of ten nodes. Each node consists

of a server and a client, communicating with each other via HTTP POST requests and

responses. The client side of each node implements a simple user interface, created

using React.js, that allows a user to upload a pattern tree specification, select a

distance measure to use, initiate a search of the other manufacturers’ databases, and

make purchases of any returned matches. When initiating a search, the client makes

requests to each manufacturer and combines the results once each corresponding

server has responded with results from its respective database.

The server side of each node is implemented as a Flask server in Python. The API

has only one endpoint, accepting a string containing the pattern tree represented as

an XML tree and a distance measure to use when searching. Because homeomorphism

search can also return isomorphic matches to a pattern tree as well, by default only

Algorithm 3 is used. The search algorithm and node matching is implemented in

Python.

24

4.2 Blockchain Implementation

Given that currency is required to participate on a live blockchain, this project

was implemented using a local blockchain. This was a local version of the pro-

grammable Ethereum blockchain, a popular platform for building distributed applica-

tions. Ethereum provides its own native currency, similar to Bitcoin, known as Ether;

transactions on the Ethereum blockchain are done using Ether, and some amount of

Ether is required in order to carry out a smart contract on the blockchain, depending

on the amount of memory and processing power the smart contract requires. A local

Ethereum blockchain can be created and interfaced with using the Ganache tool.

In order to connect to the local Ethereum blockchain, the JavaScript web3 library

is used. This required the addition of an Express server running on Node.js with

endpoints that can be used to publish or purchase a part or assembly; this server is

accessed both by the client side of a node when making purchases and during dataset

generation when parts are published, described in Section 4.3.

The Ethereum blockchain provides a Turing-complete language, called Solidity,

for use in creating smart contracts. Each smart contract in Solidity takes the form

of an class that can be instantiated, with instance methods that can be used to do

calculations on the object’s fields, view the object’s fields, or perform Ether transac-

tions between participants on the blockchain. Two classes, implementations of the

Publish and Purchase smart contracts, were created using the Solidity language.

4.3 Dataset Generation

For the purposes of this project, finding a real-world dataset proved difficult; finding

parts or assemblies represented as a tree structure presented a challenge, and most

manufacturers naturally do not have the specifications for their products freely avail-

able. As such, it was necessary to generate a synthetic dataset that provided the

necessary tree structure for testing.

To begin with, a set of a simple parts is generated from several templates. Each

template provides some kind of structure to a part; for example, the template for

a screw describes the screw’s pin, thread, and head in numerical parameters. Each

template provides some constraints for the numerical parameters; for example, the

head of a screw cannot be wider than the diameter of the corresponding pin. The

25

generator accepts a template and some user-defined number of parts to generate,

and for each generated part fills the template in with randomly-generated fields for

each parameter, rejecting a field if it does not meet the constraints laid out by the

template.

Once some set of simple parts have been generated from any number of templates,

a set of assemblies can be created by combining some random subset of simple parts

and adding additional simple parameters to each such as placement and rotation.

Any number of assemblies can be generated this way. Additionally, assemblies can be

generated in the same manner by combining both assemblies and simple parts. Once

a set of assemblies of sufficient depth to satisfy the user has been created, the dataset

can be used for testing.

This part generation mechanism interfaces with the blockchain as well. Each time

it is run, each part or assembly is randomly assigned to any of the participating

nodes and a price strictly greater than the sum of prices of children parts/assemblies

is randomly generated, and the generator keeps track of which parts and assemblies

are used as children for each assembly it creates. At the end of the run, a Publish

contract is created on the blockchain, storing the part name, manufacturer, children

parts, and price of each. The contract address must be stored at the top-level tag of

the XML file for the respective tree in order to look up this information later.

26

Chapter 5

Analysis

In this chapter, we analyze the speed of the system in performing search and examine

the performance of the proposed distance measures given changes against a baseline

part.

5.1 Speed

The search algorithm was performed in each case on a 2015 Macbook Pro with a 2.9

GHz Dual-Cord Intel Core i5 processor and 8 GB of 1867 MHz DDR3 RAM. For

each proposed distance measure, the search algorithm was performed on randomly

generated datasets consisting of 10, 25, 50, 100, 200, 500, and 1,000 query trees

varying from 10 to 86 nodes in size and a pattern tree with 26 nodes. Figure 5.1

shows the average speed of performing the algorithm with each distance measure

across five runs.

As expected, the algorithm appears to increase runtime linearly as parts increase;

given that the time taken to search for homeomorphisms within a part is not affected

by the number of additional parts that must be searched. Also note that the distance

measure used does not affect the speed; this is also expected, as searching a tree

for homeomorphisms and matching nodes is more complex than performing simple

calculations using node attributes.

27

Figure 5.1: The speed of the algorithm with each distance measure

5.2 Distance Measures

In order to compare distance measures, the same pattern tree used to test the speed

of the algorithm was modified into five different parts. For each of five probabilities

p = 0.1, 0.25, 0.5, 0.9, 1, each attribute at each node of the pattern tree was mutated

randomly by a factor of 0.05 to 2 with probability p. The original pattern tree was

compared to each mutated pattern tree using the three distance measures (without

the additions based on the Jaccard index, as no attributes were removed in any

mutated tree), with the results shown in Table 5.1. Note that for all distance measures

proposed, the distance between any pattern tree and itself is 0.

28

Formula Measure p = 10% p = 25% p = 50% p = 90% p = 100%√∑
a∈Ax∩Ay

(x(a)− y(a))2 Euclidean 3.75 2.55 4.69 7.46 7.65

1−
∑

a∈Ax∩Ay
x(a)y(a)(∑

a∈Ax∩Ay
A(a)2

)(∑
a∈Ax∩Ay

A(a)2
) Cosine 1.58 ∗ 10−8 1.52 ∗ 10−5 1.12 ∗ 10−3 7.26 ∗ 10−5 4.35 ∗ 10−3

1−
(∑

a∈Ax∩Ay

min(x(a),y(a))
max(x(a),y(a))

|Ax∩Ay |

)
Ratio 0.0390 0.0410 0.0767 0.119 0.168

Table 5.1: The distance generated by each distance measure against mutated trees
with various probabilities of mutation.

Observe that both Euclidean and Cosine distance do not strictly increase as the

probability of mutation increases, while Ratio distance does. However, as mentioned

in Section 2.5, the utility of a particular distance is dependent upon the user and the

context, and as such, and objective measure for determining usefulness of a particular

distance measure is not achievable.

29

Chapter 6

Conclusion

In this thesis, we have noted that the ability for parts and assemblies to be searched

by their hierarchical structure and characteristics and shared or purchased in a dis-

tributed manner rather than through a single central database is amenable to the

democratization of the manufacturing industry. We further noted that these issues

could be accomplished by use of tree search algorithms and a peer-to-peer system

with an associated blockchain, respectively.

In order to provide search functionality for parts and assemblies, we proposed al-

gorithms for discovering all isomorphisms and homeomorphisms in a query tree from

a pattern tree and matching each node in a pattern tree or one of its subtrees to

a node in the matched subtree of the query tree. We also have proposed some po-

tential distance measures that can be used to determine the distance between two

matched trees based on their attributes, each with associated advantages and disad-

vantages, and we have demonstrated that each distance measures performs differently

on mutated trees, but they perform similarly in speed.

We have also demonstrated that these algorithms and distance measures can be

used to search for a desired part or assembly within a manufacturer’s database and

provide some information on how closely the part or assembly matches the searcher’s

specifications. Additionally, we have implemented a peer-to-peer system that allows

manufacturers to publish parts and assemblies, search for assemblies based on some

specification at the other nodes in the system, and purchase assemblies given an

associated distance from a pattern assembly tree, all without requiring a centralized

authority or database. Finally, we have demonstrated that the use of blockchain

can alleviate the need to store information on manufacturer, price, or information

30

on children parts and assemblies within an assembly tree file while still maintaining

provenance when a part or assembly is used in an assembly created by a different

designer or manufacturer.

6.1 Future Work

One issue to address in future research is the creation of more context-suited distance

measures. The measures used in this thesis are simple, and while they attempt to

account for some industry-appropriate contexts, they are only usable with numerical

attributes, and they do not account for some possible factors that a user may wish

to address, such as the level at which a two matched nodes appear in their trees.

Furthermore, these distance measures do not allow for attributes that a user may

consider more important in calculating distance to be weighted.

Another issue that should be addressed in future research is guaranteeing that once

a part a published by manufacturer A has been purchased for use by manufacturer

B, part a should be recorded as originating from manufacturer A in any subsequent

assemblies that it appears in. While this system does track the provenance of part

a when publishing an assembly that part a has been included in, this requires that

manufacturer B not deliberately exclude that information when publishing a new

assembly. One potential solution to this problem is to add a fingerprinting mechanism

that allows a manufacturer to include some information in trees they publish that is

not easily found and removed by any subsequent purchasers, and as such allows them

to verify that nobody uses their trees without giving proper credit.

31

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[2] Moon Jung Chung. o(n2.5) time algorithms for the subgraph homeomorphism

problem on trees. Journal of Algorithms, 8(1):106–112, 1987.

[3] Mat́ıas Covarrubias, Germán Gutiérrez, and Thomas Philippon. From good to

bad concentration? u.s. industries over the past 30 years. 2019.

[4] Fortune. Global 500. Online.

[5] Jason Furman. Business investment in the united states: Facts, explanations,

puzzles, and policies, 2015.

[6] The World Bank Group. Manufacturing, value added (current us$). Online.

[7] Adam Robinson. The democratization of manufacturing. Online, Feb 2015.

[8] Alexander Smal. Explanation for ‘tree isomorphism‘ talk. Online, 2008.

32

Appendix A

Source Code

The source code for the distributed system and tree search is spread over three Python

sections, two JavaScript sections, and one Solidity section. The Python sections

contain code for creating and publishing new parts and assemblies, searching query

trees for a pattern tree, and accepting requests from clients to search query trees.

The JavaScript sections include code for the user interface and for making purchases.

The Solidity section contains code for the Publish and Purchase smart contracts; note

that application binary interfaces (ABIs) must also be generated from Solidity code

before smart contracts can be used by web3.

A.1 Part and Assembly Generation

A.1.1 createpart.py

from .part import AbstractPart as ap

from .part import CompoundPart as cp

import xml.etree.ElementTree as et

import requests

import random

import glob

import math

import json

For generating simple parts

33

class PartGenerator:

def __init__(self , path , output=None , debug=False):

self.abstractpart = ap(path , debug=debug)

self.checks = self.abstractpart.checks

self.params = self.abstractpart.params

self.reqparams = self.abstractpart.getrequiredparams ()

self.optparams = self.abstractpart.getoptionalparams ()

self.output = output

self.debug = debug

Randomly generate a value for a given attribute of a

certain type

def generateattribvalue(self , key , value , values):

t = ’float’

if ’type’ in self.params[key].keys ():

t = self.params[key][’type’]

if t == ’string ’:

return ’randomstring ’

elif t == ’int’:

l = 0

u = 0

try:

l = int(self.checks.getlowerbound(key , values))

except OverflowError:

l = -1000000000000000000

try:

u = int(self.checks.getupperbound(key , values))

except OverflowError:

u = 1000000000000000000

return random.randint(l, u)

elif t == ’boolean ’:

r = random.random ()

34

return r < 0.5

else:

l = self.checks.getlowerbound(key , values)

u = self.checks.getupperbound(key , values)

return random.uniform(l, u)

Verify that parameter values follow their listed type

def validatevalue(self , key , value):

t = ’float’

if ’type’ in self.params[key].keys ():

t = self.params[key][’type’]

try:

if t == ’string ’:

v = str(value)

elif t == ’int’:

v = int(value)

elif t == ’boolean ’:

v = bool(value)

else:

v = float(value)

except Exception:

return False

return True

Create n parts from template

def generateparts(self ,

n=1,

params ={},

groupname=None ,

changeoptionalparams=False ,

createcontracts=False ,

contractlocation=’’):

35

name = groupname

if name is None:

name = self.abstractpart.getname ()

for k, v in params.items ():

if k in self.params.keys ():

validated = self.validatevalue(k, v)

if not validated:

return False

i = 1

index = 0

parts = []

outnames = []

partnames = []

Create one part per loop

while i <= n:

index += 1

if self.debug:

print(’Creating part "’ + name + str(i) +

’", try ’ + str(index))

p = {}

Set values of attributes

for k, v in self.reqparams.items ():

if k in params.keys ():

p[k] = params[k]

else:

p[k] = self.generateattribvalue(k, v, p)

for k, v in params.items ():

if k not in p.keys ():

if k in self.params.keys ():

p[k] = v

if changeoptionalparams:

for k, v in self.optparams.items ():

36

if k not in p.keys ():

p[k] = self.generateattribvalue(k, v, p)

Write part to file

outname = None

if self.output is not None:

partname = name

outname = self.output + ’/’ + name

if n != 1:

outname += str(i)

partname += str(i)

outname += ’.xml’

if not createcontracts:

result = self.abstractpart.createpart(

p,

outname ,

name=partname)

else:

result = self.abstractpart.createpart(p,

None ,

partname)

outnames.append(outname)

partnames.append(partname + ’.xml’)

if result != False:

i += 1

index = 0

parts.append(result)

Publish parts to blockchain

if createcontracts:

partstosend = []

for i in range(len(parts)):

parttosend = {

’owner’: int(parts[i]. getroot ().get(’owner ’)),

37

’cost’: float(parts[i]. getroot ().get(’price’)),

’children ’: []}

partstosend.append(parttosend)

response = requests.post(

’http :// localhost :3001/ publish ’,

json.dumps({’parts ’: partstosend }),

headers ={’Content -Type’: ’application/json’})

Write parts with contract addresses to files

addresses = response.json ()[’addresses ’]

for i in range(len(parts)):

part = parts[i]

owner = part.getroot ().get(’owner’)

part.getroot (). attrib.pop(’owner’)

part.getroot ().set(’address ’, addresses[i])

part.write(outnames[i])

part.write(contractlocation + ’/’ + owner + ’/’ +

partnames[i])

return parts

For generating assemblies

class CompoundPartGenerator:

def __init__(self , folder , output=None , debug=False):

if folder [-1] is not ’/’:

folder += ’/’

folder += ’*.xml’

files = glob.glob(folder)

self.parts = []

for f in files:

self.parts.append(et.parse(f))

self.output = output

38

self.debug = debug

Generate position of a part in the assembly

def getrandomposition(self , unit):

pos = [0, 0, 0]

for i in range (3):

if unit == ’millimeter ’:

pos[i] = random.uniform (-100, 100)

elif unit == ’centimeter ’:

pos[i] = random.uniform(-50, 50)

elif unit == ’meter’:

pos[i] = random.uniform(-10, 10)

elif unit == ’kilometer ’:

pos[i] = random.uniform(-.5, .5)

return tuple(pos)

Generate the rotation of a part in the assembly

def getrandomrotation(self , unit):

rot = [0, 0, 0]

for i in range (3):

if unit == ’degree ’:

rot[i] = random.uniform(0, 360)

if unit == ’radian ’:

rot[i] = random.uniform(0, 2 * math.pi)

return tuple(rot)

Generate n assemblies

def generatecompoundparts(self ,

n=1,

groupname=’compoundpart ’,

maxparts=3,

minparts=1,

units={},

createcontracts=False ,

39

contractlocation=’’):

i = 1

index = 0

parts = []

outnames = []

partnames = []

compoundparts = []

Generate one assembly per loop

while i <= n:

index += 1

if self.debug:

print(’Creating compound part "’ + groupname +

str(i) + ’", try ’ + str(index))

c = cp(units , (groupname + str(i)))

Use random number of parts/assemblies

within constraints

num = random.randint(minparts , maxparts)

for a in range(num):

pos = self.getrandomposition(c.units[’length ’])

rot = self.getrandomrotation(c.units[’angle ’])

partindex = random.randrange (0, len(self.parts))

c.addpart(self.parts[partindex]. getroot(),

pos ,

rot)

outname = None

if self.output is not None:

partname = groupname

outname = self.output + ’/’ + groupname

if n != 1:

outname += str(i)

partname += str(i)

outname += ’.xml’

40

result = c.tree

if not createcontracts:

result = c.write(outname)

else:

outnames.append(outname)

partnames.append(partname + ’.xml’)

compoundparts.append(c)

i += 1

index = 0

parts.append(result)

Publish assemblies to blockchain

if createcontracts:

partstosend = []

for i in range(len(parts)):

parttosend = {

’owner’: int(parts[i]. getroot ().get(’owner ’)),

’cost’: compoundparts[i].cost ,

’children ’: compoundparts[i]. children}

partstosend.append(parttosend)

response = requests.post(

’http :// localhost :3001/ publish ’,

json.dumps({’parts ’: partstosend }),

headers ={’Content -Type’:

’application/json’})

addresses = response.json ()[’addresses ’]

Write assemblies to files with contract addresses

for i in range(len(parts)):

part = parts[i]

owner = part.getroot ().get(’owner’)

part.getroot (). attrib.pop(’owner’)

part.getroot ().set(’address ’, addresses[i])

41

compoundparts[i]. write(outnames[i])

compoundparts[i]. write(contractlocation + ’/’ +

owner + ’/’ + partnames[i])

return parts

A.1.2 part.py

from .units import transformunits

import xml.etree.ElementTree as et

from xml.etree.ElementTree import TreeBuilder as tb

from xml.etree.ElementTree import Element

import xml.dom.minidom as md

import copy

import random as rand

class ParameterException(Exception):

pass

class CheckException(Exception):

pass

Used to store any constraints listed in the part

template file

class CheckList:

def __init__(self , params):

self.checks = []

self.params = params

def add(self , c):

self.checks.append(c)

42

Verify that all constraints are met

def evaluate(self , values):

for check in self.checks:

if not check.evaluate(values):

raise CheckException(’Check failed: ’ +

str(check))

Determine lowest possible value for a value based

on constraints

def getlowerbound(self , k, values , minimum = -100):

lower = minimum

for c in self.checks:

l = c.getlowerbound(k, values)

if l > lower:

lower = l

return lower

Determine highest possible value for a value based

on constraints

def getupperbound(self , k, values , maximum =100):

higher = maximum

for c in self.checks:

u = c.getupperbound(k, values)

if u < higher:

higher = u

return higher

Used to store and validate information on one constraint

class Check:

def __init__(self , expr , params):

self.expr = expr

tok = expr.split(’ ’)

43

self.tokens = []

subexpr = []

self.subexpr = []

left = True

lastcomp = ’’

for t in tok:

token = {’value ’: t, ’type’: ’unknown ’}

if t in params.keys ():

token[’type’] = ’parameter ’

subexpr.append(token)

elif t in [’<’, ’>’, ’>=’, ’<=’, ’==’]:

token[’type’] = ’comparison ’

lastcomp = t

s = {’expr’: subexpr , ’comparison ’: t}

if left:

s[’position ’] = ’left’

else:

s[’position ’] = ’right’

p = []

for subtoken in subexpr:

if subtoken[’type’] == ’parameter ’:

p.append(subtoken[’value ’])

s[’params ’] = p

s[’tokens ’] = subexpr.copy()

self.subexpr.append(s.copy ())

subexpr = []

left = False

elif t in [’+’, ’-’, ’/’, ’*’, ’^’, ’)’, ’(’]:

token[’type’] = ’operator ’

subexpr.append(token)

else:

token[’type’] = ’constant ’

subexpr.append(token)

self.tokens.append(token)

44

s = {’expr’: subexpr , ’comparison ’: lastcomp}

if left:

s[’position ’] = ’left’

else:

s[’position ’] = ’right’

p = []

for subtoken in subexpr:

if subtoken[’type’] == ’parameter ’:

p.append(subtoken[’value’])

s[’params ’] = p

s[’tokens ’] = subexpr.copy()

self.subexpr.append(s.copy ())

Get lower bound of one constraint

def getlowerbound(self , k, values):

expr = None

for s in self.subexpr:

if k in s[’params ’]:

expr = s

if expr is None:

return -float(’inf’)

if expr[’position ’] == ’left’:

otherexpr = self.subexpr [1]

if expr[’comparison ’] in [’<’, ’<=’]:

return -float(’inf’)

else:

otherexpr = self.subexpr [0]

if expr[’comparison ’] in [’>’, ’>=’]:

return -float(’inf’)

returnval = self.evaluatesubexpr(otherexpr , values)

if returnval is None:

return -float(’inf’)

else:

return returnval

45

Get upper bound of one constraint

def getupperbound(self , k, values):

expr = None

for s in self.subexpr:

if k in s[’params ’]:

expr = s

if expr is None:

return float(’inf’)

if expr[’position ’] == ’left’:

otherexpr = self.subexpr [1]

if expr[’comparison ’] in [’>’, ’>=’]:

return float(’inf’)

else:

otherexpr = self.subexpr [0]

if expr[’comparison ’] in [’<’, ’<=’]:

return float(’inf’)

returnval = self.evaluatesubexpr(otherexpr , values)

if returnval is None:

return float(’inf’)

else:

return returnval

Determine if the constraint has been met

def evaluate(self , values):

ex = ’’

for tok in self.tokens:

if tok[’value’] in values.keys ():

v = values[tok[’value’]]

if isinstance(v, str):

ex += ’\’’ + v + ’\’ ’

else:

ex += str(v) + ’ ’

else:

46

ex += tok[’value ’]

return eval(ex)

Evaluate any subexpressions that occur in a constraint

statement

def evaluatesubexpr(self , subexpr , values):

ex = ’’

for tok in subexpr[’tokens ’]:

if tok[’value’] in values.keys ():

v = values[tok[’value’]]

if isinstance(v, str):

ex += ’\’’ + v + ’\’ ’

else:

ex += str(v) + ’ ’

else:

ex += tok[’value ’]

try:

return eval(ex)

except Exception:

return None

def __str__(self):

return self.expr

Contains information on a template

class AbstractPart:

def __init__(self , path , debug=False):

self.path = path

self.tree = et.parse(path)

root = self.tree.getroot ()

self.params = {}

for param in root.iter(’parameter ’):

47

p = param.attrib

n = p[’name’]

p.pop(’name’)

self.params[n] = p

self.debug = debug

self.checks = CheckList(self.params)

for param in self.params.values ():

if ’check ’ in param.keys ():

c = param[’check ’]

c = c.split(’;’)

for check in c:

self.checks.add(Check(check , self.params))

Get parameters that must be met (have no default

value)

def getrequiredparams(self):

required = {}

for k, v in self.params.items ():

if ’default ’ not in v.keys ():

required[k] = v

return required

Get parameters that are optional (have a default

value)

def getoptionalparams(self):

optional = {}

for k, v in self.params.items ():

if ’default ’ in v.keys ():

optional[k] = v

return optional

Get the name of the template

def getname(self):

t = self.tree.getroot (). attrib

48

return t[’name’]

Change string information in XML tree to value of

required type

def transformvalue(self , key , value):

param = self.params[key]

if ’type’ in param.keys ():

t = param[’type’]

if t == ’string ’:

return str(value)

elif t == ’int’:

return int(value)

elif t == ’boolean ’:

return bool(value)

else:

return float(value)

else:

return float(value)

Create a part based on the associated template

def createpart(self , params , output=None , name=None):

tree = copy.deepcopy(self.tree)

tree.getroot (). remove(tree.find(’parameters ’))

paramstoadd = []

for k in self.params.keys ():

paramstoadd.append(k)

values = {}

tree.getroot ().set(’owner’, str(rand.randint(0, 9)))

tree.getroot ().set(’price’, str(rand.randint(1, 8)))

Substitute values for parameters

try:

49

while len(paramstoadd) > 0:

param = paramstoadd.pop(0)

if param in params.keys ():

values[param] = self.transformvalue(

param ,

params[param])

else:

if ’default ’ not in self.params[param]:

raise ParameterException(

’There is no value for parameter: ’ +

param)

else:

if self.params[param][’default ’][0] == ’$’:

lookup = self.params[param][’default ’][1:]

if lookup in values.keys ():

values[param] = values[lookup]

else:

paramstoadd.append(param)

else:

values[param] = self.transformvalue(param ,

self.params[param][’default ’])

Check constraints

self.checks.evaluate(values)

for tag in tree.getroot (). iter ():

for k, v in tag.attrib.items ():

if v[0] == ’$’:

value = values[v[1:]]

tag.set(k, str(value))

except (ParameterException , CheckException) as e:

if self.debug:

print(e)

50

return False

tree.getroot ().tag = ’part’

if name is not None:

tree.getroot ().set(’name’, name)

if output is not None:

tree.write(output)

return tree

An assembly

class CompoundPart:

def __init__(self , units={}, name=None):

self.units = {’length ’: ’meter’,

’angle’: ’degree ’,

’mass’: ’kilogram ’}

for k, v in units:

self.units[k] = v

self.tree = et.ElementTree ()

self.tree._setroot(Element(’compoundpart ’))

root = self.tree.getroot ()

###

root.set(’owner ’, str(rand.randint(0, 9)))

root.set(’price ’, str(rand.randint(1, 8)))

self.cost = float(root.get(’price’))

self.children = []

###

if name is not None:

root.set(’name’, name)

meta = Element(’meta’)

51

units = Element(’units’)

units.append(Element(’mass’,

{’unit’: self.units[’mass’]}))

units.append(Element(’length ’,

{’unit’: self.units[’length ’]}))

units.append(Element(’angle’,

{’unit’: self.units[’angle’]}))

meta.append(units)

root.append(meta)

self.parts = Element(’parts’)

root.append(self.parts)

Add a part to the assembly

def addpart(self ,

part ,

position =(0,0,0),

rotation =(0 ,0 ,0)):

part = copy.deepcopy(part)

pos = ’’

for i in position:

pos += str(i) + ’,’

self.tree.getroot ().set(’price’,

str(int(self.tree.getroot ().get(’price ’)) +

int(part.get(’price ’))))

part.set(’position ’, pos [0: -1])

self.children.append(part.get(’address ’))

part.attrib.pop(’address ’)

part.attrib.pop(’price’)

rot = ’’

for i in rotation:

rot += str(i) + ’,’

part.set(’rotation ’, rot [0: -1])

self.parts.append(part)

transformunits(part , self.units)

52

for element in part.iter(’meta’):

part.remove(element)

Print assembly to file in readable format

def prettyprint(self ,

element ,

indentlevel ,

hasmorechildren):

indent = "\n"

if indentlevel > 0:

indent += (indentlevel - 1) * ’ ’

numchildren = len(element)

if numchildren > 0:

if not element.text:

element.text = indent + ’ ’

if indentlevel > 0:

element.text += ’ ’

x = 0

for child in element:

self.prettyprint(

child ,

indentlevel + 1,

x < numchildren - 1)

x += 1

if not element.tail:

element.tail = indent

if hasmorechildren:

element.tail += ’ ’

else:

if indentlevel > 0 and not element.tail:

element.tail = indent

if hasmorechildren:

element.tail += ’ ’

53

Strip assembly XML of whitespace

def strip(self , element):

element.tail = ’’

if element.text:

element.text = element.text.strip ()

for c in element:

self.strip(c)

Write assembly to XML file at path

def write(self , path):

self.strip(self.tree.getroot ())

self.prettyprint(self.tree.getroot(), 0, False)

self.tree.write(path)

return self.tree

A.1.3 units.py

attributelookup = {

’position ’: ’position ’,

’rotation ’: ’rotation ’,

’radius ’: ’length ’,

’height ’: ’length ’,

’lead’: ’length ’,

’pitch’: ’length ’,

’major_diameter ’: ’length ’,

’minor_diameter ’: ’length ’,

’pitch_diameter ’: ’length ’,

’thread_angle ’: ’angle ’,

’thread_height ’: ’length ’,

}

massconstants = {}

massconstants[’milligram ’] = {

’milligram ’: 1,

54

’gram’: 1000,

’kilogram ’: 1000000

}

massconstants[’gram’] = {

’milligram ’: 0.001,

’gram’: 1,

’kilogram ’: 1000

}

massconstants[’kilogram ’] = {

’milligram ’: 0.000001 ,

’gram’: 0.001,

’kilogram ’: 1

}

lengthconstants = {}

lengthconstants[’millimeter ’] = {

’millimeter ’: 1,

’centimeter ’: 10,

’meter’: 1000,

’kilometer ’: 1000000

}

lengthconstants[’centimeter ’] = {

’millimeter ’: 0.1,

’centimeter ’: 1,

’meter’: 100,

’kilometer ’: 10000

}

lengthconstants[’meter’] = {

’millimeter ’: 0.001,

’centimeter ’: 0.01,

’meter’: 1,

’kilometer ’: 1000

}

lengthconstants[’kilometer ’] = {

’millimeter ’: 0.000001 ,

55

’centimeter ’: 0.00001 ,

’meter’: 0.001,

’kilometer ’: 1

}

angleconstants = {}

angleconstants[’degree ’] = {

’radian ’: 57.2958 ,

’degree ’: 1

}

angleconstants[’radian ’] = {

’radian ’: 1,

’degree ’: 0.0174533

}

Transform measurements in a file to another unit

def transformunits(part , newunits):

currunits = {

’mass’: ’gram’,

’length ’: ’meter’,

’angle’: ’degree ’}

for meta in part.iter(’meta’):

for units in meta.iter(’units’):

for unit in units:

name = unit.tag

value = unit.get(’unit’)

currunits[name] = value

for parts in part.iter(’parts’):

for element in parts.iter ():

for k, v in element.attrib.items ():

if k in attributelookup:

typ = attributelookup[k]

if typ == ’position ’:

56

positions = [float(s) for s in v.split(’,’)]

for i in range(len(positions)):

newlength = newunits[’length ’]

lengthconstant = lengthconstants[newlength]

u = currunits[’length ’]

positions[i] *= lengthconstant[u]

pos = ’’

for i in positions:

pos += str(i) + ’,’

element.set(’position ’, pos [0: -1])

rot = ’’

elif typ == ’rotation ’:

rotations = [float(s) for s in v.split(’,’)]

for i in range(len(rotations)):

newangle = newunits[’angle ’]

angleconstant = angleconstants[newangle]

u = currunits[’angle’]

rotations[i] *= angleconstant[u]

rot = ’’

for i in rotations:

rot += str(i) + ’,’

element.set(’rotation ’, rot [0: -1])

elif typ == ’mass’:

value = float(v)

newmass = newunits[’mass’]

massconstant = massconstants[newmass]

value *= massconstant[currunits[’mass’]]

element.set(k, str(value))

elif typ == ’length ’:

value = float(v)

newlength = newunits[’length ’]

lengthconstant = lengthconstants[newlength]

value *= lengthconstant[currunits[’length ’]]

element.set(k, str(value))

57

elif typ == ’angle’:

value = float(v)

newangle = newunits[’angle’]

angleconstant = angleconstants[newangle]

value *= angleconstant[currunits[’angle’]]

element.set(k, str(value))

for features in part.iter(’features ’):

for element in features.iter ():

for k, v in element.attrib.items ():

if k in attributelookup:

typ = attributelookup[k]

if typ == ’position ’:

positions = [float(s) for s in v.split(’,’)]

for i in range(len(positions)):

newlength = newunits[’length ’]

lengthconstant = lengthconstants[’length ’]

u = currunits[’length ’]

positions[i] *= lengthconstant[u]

pos = ’’

for i in positions:

pos += str(i) + ’,’

element.set(’position ’, pos [0: -1])

rot = ’’

elif typ == ’rotation ’:

rotations = [float(s) for s in v.split(’,’)]

for i in range(len(rotations)):

newangle = newunits[’angle ’]

angleconstant = angleconstants[newangle]

u = currunits[’angle’]

rotations[i] *= angleconstant[u]

rot = ’’

for i in rotations:

rot += str(i) + ’,’

58

element.set(’rotation ’, rot [0: -1])

elif typ == ’mass’:

value = float(v)

u = currunits[’mass’]

value *= massconstants[newunits[’mass’]][u]

element.set(k, str(value))

elif typ == ’length ’:

value = float(v)

lc = lengthconstants[newunits[’length ’]]

value *= lc[currunits[’length ’]]

element.set(k, str(value))

elif typ == ’angle’:

value = float(v)

ac = angleconstants[newunits[’angle ’]]

value *= ac[currunits[’angle’]]

element.set(k, str(value))

Transform measurements in part to match units in

parts_with_units

def transformunitsfrompart(part , part_with_units):

newunits = {’mass’: ’gram’,

’length ’: ’meter’,

’angle’: ’degree ’}

for meta in part_with_units.iter(’meta’):

for units in meta.iter(’units’):

for unit in units:

name = unit.tag

value = unit.get(’unit’)

newunits[name] = value

transformunits(part , newunits)

59

A.2 Tree Search

A.2.1 parttree.py

One node in a tree

class PartNode:

def __init__(self ,

element ,

levels ={},

parent=None ,

frompart=False):

Set up necessary information for nodes for both

isomorphism and homeomorphism search and attribute

information for node matching and distance measure

calculation

self.discovered = False

If node is being created from XML

if not frompart:

self.id = ’’

self.element = element

self.parent = parent

self.levels = levels

if self.parent is not None:

self.level = parent.level + 1

else:

self.level = 1

if self.level not in levels.keys ():

levels[self.level] = []

levels[self.level]. append(self)

self.tag = self.element.tag

self.children = self.generate_children(levels)

self.attributes = self.element.attrib

if len(self.children) == 0:

60

self.label = 0

self.s = set()

self.h = set()

self.marked = True

self.child_labels = [0]

else:

self.label = None

self.s = set()

self.h = set()

self.marked = False

self.child_labels = None

If node is being copied from an already existing

node

else:

part = element

self.id = part.id

if part.ids is not None:

self.ids = part.ids.copy()

else:

self.ids = None

self.element = part.element

self.parent = parent

self.levels = levels

if self.parent is not None:

self.level = parent.level + 1

else:

self.level = 1

if self.level not in levels.keys ():

levels[self.level] = []

levels[self.level]. append(self)

self.tag = self.element.tag

self.children = self.generate_children(

levels , True , part.children)

self.attributes = self.element.attrib

61

self.label = part.label

self.s = part.s.copy()

self.h = part.h.copy()

self.marked = part.marked

if part.child_labels is not None:

self.child_labels = part.child_labels.copy()

else:

self.child_labels = None

Merge a node with its child and absorb child’s

attributes

def merge_child(self):

if len(self.children) != 1:

return

child = self.children [0]

self.children = child.children

self.attributes = self.attributes.copy()

for k, v in child.attributes.items ():

if k not in self.attributes.keys ():

self.attributes[k] = v

self.ids = self.ids.copy()

if self.ids is not None:

self.ids.extend(child.ids)

if len(self.children) == 0:

self.label = 0

self.s = set()

self.marked = True

self.child_labels = [0]

else:

self.label = None

self.s = set()

62

self.marked = False

self.child_labels = None

for c in self.children:

c.decrement_level ()

Lower level of all lower nodes during child merging

def decrement_level(self):

self.level -= 1

for c in self.children:

c.decrement_level ()

Create children from XML

def generate_children(self ,

levels ,

frompart=False ,

children =[]):

if not frompart:

node_with_children = []

if self.tag == ’part’:

node_with_children = self.element.find(’features ’)

elif self.tag == ’compoundpart ’:

node_with_children = self.element.find(’parts’)

else:

node_with_children = self.element

return [PartNode(c, levels , self , False) for

c in node_with_children]

else:

return [PartNode(c, levels , self , True) for

c in children]

Assign identification to a node

63

def identify(self , prefix , i, nodes):

self.id = prefix + str(i)

self.ids = [self.id]

nodes[self.id] = self

i += 1

for c in self.children:

i, nodes = c.identify(prefix , i, nodes)

return i, nodes

Assign edintification to node and children

def identify_nodes(self , prefix):

i, nodes = self.identify(prefix , 0, {})

return nodes

Remove all nodes with one children for use in

determining if two trees are homeomorphic

def compress(self):

while len(self.children) == 1:

self.merge_child ()

for c in self.children:

c.compress ()

Get all ids of current node and any children

that have been compressed

def getids(self , ids=set ()):

ids = ids.union(set(self.ids))

for c in self.children:

ids = c.getids(ids)

return ids

def tostring(self , level =0):

s = ’’

s += ’ ’*level + self.tag + ’ ’ +

self.element.get(’name’, ’’) + ’\n’

64

for c in self.children:

s += c.tostring(level + 1)

return s

Representation of part or assembly as tree

class PartTree:

def __init__(self , part , frompart=False):

if not frompart:

self.levels = {}

self.root = PartNode(part , self.levels)

self.height = len(self.levels.keys ())

self.element = self.root.element

self.level = self.root.level

self.tag = self.root.tag

self.children = self.root.children

self.attributes = self.root.attributes

else:

self.root = part

self.levels = part.levels

self.height = len(self.levels.keys ())

self.element = self.root.element

self.level = self.root.level

self.tag = self.root.tag

self.children = self.root.children

self.attributes = self.root.attributes

Assign identity to all nodes of tree

def identify_nodes(self , prefix):

i, nodes = self.root.identify(prefix , 0, {})

return nodes

def tostring(self):

65

return self.root.tostring ()

A.2.2 partisomorphism.py

from .parttree import PartTree as pt

from .parttree import PartNode as pn

from partstree.units import transformunitsfrompart

import xml.etree.ElementTree as et

import math

import networkx as nx

Update labels of parents

def updateparents(l):

for n in l:

if n.parent.child_labels is None:

n.parent.child_labels = []

n.parent.child_labels.append(n.label)

n.parent.child_labels.sort()

Create labels for a node

def createchildlabelsdict(nodes):

labels = {}

for n in nodes:

if n.label == 0:

continue

if tuple(n.child_labels) not in labels.keys ():

labels[tuple(n.child_labels)] = []

labels[tuple(n.child_labels)]. append(n)

return labels

Create the list of nodes at a given level of the tree

def createnewlevellist(s, scontents , level):

l = []

66

k = 0

for childlabels in s:

k += 1

for n in scontents[childlabels]:

n.label = k

l.append(n)

for n in level:

if n.label == 0:

l.insert(0, n)

return l

Determine if two trees are isomorphic

def structuralisomorphism(querytree , patterntree):

if not isinstance(querytree , pt):

querytree = pt(querytree.element)

if not isinstance(patterntree , pt):

patterntree = pt(patterntree.element)

is_isomorphic = False

if querytree.height is patterntree.height:

is_isomorphic = True

l1 = querytree.levels[querytree.height]

l2 = patterntree.levels[patterntree.height]

for level in range(querytree.height - 1, 0, -1):

updateparents(l1)

updateparents(l2)

s1contents = createchildlabelsdict(

querytree.levels[level])

s2contents = createchildlabelsdict(

patterntree.levels[level])

s1 = sorted(set(s1contents.keys ()))

67

s2 = sorted(set(s2contents.keys ()))

if s1 != s2:

is_isomorphic = False

break

else:

l1 = createnewlevellist(s1 ,

s1contents ,

querytree.levels[level])

l2 = createnewlevellist(s2 ,

s2contents ,

patterntree.levels[level])

if is_isomorphic:

if (len(querytree.root.child_labels) ==

len(patterntree.root.child_labels)):

if (querytree.root.child_labels !=

patterntree.root.child_labels):

is_isomorphic = False

return is_isomorphic

Find structural isomorphisms of pattern tree

in query tree

def structuralisomorphisms(querytree ,

patterntree ,

isomorphisms):

is_isomorphic = structuralisomorphism(querytree ,

patterntree)

if is_isomorphic:

isomorphisms.append(querytree)

else:

for c in querytree.root.children:

68

structuralisomorphisms(pt(c.element),

pt(patterntree.root.element),

isomorphisms)

Find the lowest location of a homeomorphism on a branch

def lowesthomeomorphisms(tree , root , homeomorphisms):

if root not in tree.s:

return False

lowest = True

for c in tree.children:

if root in c.s:

lowest = False

lowesthomeomorphisms(c, root , homeomorphisms)

if lowest:

homeomorphisms.append(tree)

Determine if two trees are isomorphic

def isisomorphic(tree , pattern):

if isinstance(tree , pt):

tree = tree.root

if isinstance(pattern , pt):

pattern = pattern.root

if len(tree.children) != len(pattern.children):

return False

for c in tree.children:

for d in pattern.children:

if isisomorphic(c, d) and not d.discovered:

c.discovered = True

d.discovered = True

break

i = True

69

for c in tree.children:

if not c.discovered:

i = False

break

for c in tree.children:

c.discovered = False

for d in pattern.children:

d.discovered = False

return i

Determine if two trees are homeomorphic

def ishomeomorphic(tree , pattern):

if isinstance(tree , pt):

tree = tree.root

if isinstance(pattern , pt):

pattern = pattern.root

tree = pt(pn(tree , fromquery=True), True).root

tree.compress ()

pattern = pt(pn(tree , fromquery=True), True).root

pattern.compress ()

return isisomorphic(tree , pattern)

Find all structurual homeomorphisms of a pattern tree

within a query tree

def structuralhomeomorphisms(querytree ,

patterntree ,

homeomorphisms =[]):

T = querytree.identify_nodes(’T’)

P = patterntree.identify_nodes(’P’)

Step 1: get all leaves of P and set them to Sr(v)

for all leaves in T

parents = set()

70

tleaves = set()

pleaves = set()

for k,v in P.items ():

if len(v.children) == 0:

pleaves.add(k)

for k, v in T.items ():

if len(v.children) == 0:

tleaves.add(k)

parents.add(v.parent.id)

v.s = pleaves.copy()

Step 2 already done; step 3: use set of nodes to look

into to see if they have all children marked

while len(parents) > 0:

childrenmarked = []

for v in parents:

allmarked = True

for c in T[v]. children:

if not c.marked:

allmarked = False

break

if allmarked:

childrenmarked.append(v)

for v in childrenmarked:

#compute Sr(v)

Step 1

vchildren = [c.id for c in T[v]. children]

for c in T[v]. children:

T[v].s = T[v].s.union(c.s)

Step 2

for k, u in P.items ():

uchildren = [c.id for c in u.children]

bpgnodes = vchildren + uchildren

71

bpg = nx.Graph()

for i in range(len(bpgnodes)):

bpg.add_node(i)

for y in uchildren:

for x in vchildren:

if y in T[x].s:

bpg.add_edge(bpgnodes.index(x),

bpgnodes.index(y))

if (len(

nx.algorithms.matching.maximal_matching(bpg))

== len(uchildren)):

T[v].s.add(k)

T[v]. marked = True

if T[v].id[1:] != ’0’:

parents.add(T[v]. parent.id)

parents.remove(v)

Final step: determine lowest nodes such

that the root of P is in Sr(v)

root = querytree

if isinstance(querytree , pt):

root = querytree.root

lowesthomeomorphisms(root , ’P0’, homeomorphisms)

if len(homeomorphisms) > 0:

return True

Get set of all possible node matchings between two

matched isomorphic or homemorphic trees

def getmatchednodes(querychildren ,

patternchildren ,

level ,

debug=False):

72

if not isinstance(querychildren , list):

querychildren = [querychildren]

if not isinstance(patternchildren , list):

patternchildren = [patternchildren]

if ((querychildren is None or len(querychildren) == 0)

and (patternchildren is None

or len(patternchildren) == 0)):

return [[]]

allpossiblematches = []

for pc in querychildren:

if isinstance(pc, pt):

pc = pc.root

matches = []

for sc in patternchildren:

if isinstance(sc, pt):

sc = sc.root

querychild = pn(pc, {}, fromquery=True)

patternchild = pn(sc , {}, fromquery=True)

checkformatches = False

if level == 0:

checkformatches = True

elif ishomeomorphic(querychild , patternchild):

checkformatches = True

if (len(patternchild.children) !=

len(querychild.children)

and (len(patternchild.children) == 1

or len(querychild.children) == 1)):

querychild = pn(querychild , {}, fromquery=True)

patternchild = pn(patternchild ,

{}, fromquery=True)

while (len(patternchild.children) !=

len(querychild.children)):

73

if (len(patternchild.children) == 1

and len(querychild.children) != 1):

patternchild.merge_child ()

elif (len(patternchild.children) != 1

and len(querychild.children) == 1):

querychild.merge_child ()

else:

checkformatches = False

break

else:

checkformatches = False

if checkformatches:

match = getmatchednodes(

querychild.children ,

patternchild.children ,

level+1,

debug=debug)

for i in range(len(match)):

if match[i] is None:

match[i] = []

match[i]. insert(0,

{’querynode ’: querychild ,

’patternnode ’: patternchild ,

’level’: level})

matches.extend(match)

allpossiblematches.append(matches)

finalmatches = []

for i in range(len(allpossiblematches)):

m = allpossiblematches[i]

for j in range(len(allpossiblematches)):

if i != j:

for listofnodesx in m:

74

for listofnodesy in allpossiblematches[j]:

xids = set()

yids = set()

for n in listofnodesx:

xids = xids.union(set(n[’patternnode ’].ids))

xids = xids.union(set(n[’querynode ’].ids))

for n in listofnodesy:

yids = yids.union(set(n[’patternnode ’].ids))

yids = yids.union(set(n[’querynode ’].ids))

if len(xids.intersection(yids)) == 0:

listofnodesx.extend(listofnodesy)

finalmatches.extend(m)

return finalmatches

Calculate ratio distance

def calculateratios(matchednodes , jaccard , debug=False):

totalsum = 0

for m in matchednodes:

intersection = 0

union = 0

ratiosum = 0

samekeys = []

Determine size of intersection and union of

attribute keys

for key in m[’querynode ’]. attributes.keys ():

if not (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or key == ’position ’))):

union += 1

if key in m[’patternnode ’]. attributes.keys ():

75

intersection += 1

samekeys.append(key)

for key in m[’patternnode ’]. attributes.keys ():

if (key not in m[’querynode ’]. attributes.keys() and

not (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or key == ’position ’)))):

union += 1

Add to total sum of ratios for numerical attributes

for key in samekeys:

a = m[’querynode ’]. attributes[key]

b = m[’patternnode ’]. attributes[key]

try:

if (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’

or key == ’position ’))):

raise Exception ()

a = float(a)

b = float(b)

except:

union -= 1

intersection -= 1

continue

ratiosum += min(a, b) / max(a, b)

if intersection != 0:

76

if jaccard:

totalsum += (1 - (ratiosum / intersection)

* (intersection / union))

else:

totalsum += 1 - (ratiosum / intersection)

elif union != 0:

totalsum += 1

return totalsum / len(matchednodes)

Calculate cosine distance

def calculatecosine(matchednodes , jaccard , debug=False):

totalsum = 0

for m in matchednodes:

intersection = 0

union = 0

a_ = 0

b_ = 0

samekeys = []

Determine size of union and intersection of

attribute keys

for key in m[’querynode ’]. attributes.keys ():

if not (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or

key == ’position ’))):

union += 1

if key in m[’patternnode ’]. attributes.keys ():

intersection += 1

samekeys.append(key)

for key in m[’patternnode ’]. attributes.keys ():

77

if (key not in m[’querynode ’]. attributes.keys() and

not (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or

key == ’position ’)))):

union += 1

ab = 0

Calculate dot product of vector of numerical

attributes for matched nodes

for key in samekeys:

a = m[’querynode ’]. attributes[key]

b = m[’patternnode ’]. attributes[key]

try:

if (key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or

key == ’position ’))):

raise Exception ()

a = float(a)

b = float(b)

except:

union -= 1

intersection -= 1

continue

a_ += math.pow(a, 2)

b_ += math.pow(b, 2)

ab += a * b

78

a_ = math.sqrt(a_)

b_ = math.sqrt(b_)

if intersection != 0 and union != 0:

if jaccard:

totalsum += ((2 - (intersection / union)) *

(1 - (ab / (a_ * b_))))

else:

totalsum += 1 - (ab / (a_ * b_))

return totalsum / len(matchednodes)

Calculate euclidean distance

def calculateeuclidean(matchednodes , jaccard , debug=False):

totalsum = 0

for m in matchednodes:

if m[’level ’] == 0:

continue

intersection = 0

union = 0

s = 0

samekeys = []

Determine intersection and union for attribute

keys

for key in m[’querynode ’]. attributes.keys ():

if not (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or key == ’position ’))):

union += 1

if key in m[’patternnode ’]. attributes.keys ():

intersection += 1

79

samekeys.append(key)

for key in m[’patternnode ’]. attributes.keys ():

if (key not in m[’querynode ’]. attributes.keys() and

not (key == ’name’ or

key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or

key == ’position ’)))):

union += 1

for key in samekeys:

a = m[’querynode ’]. attributes[key]

b = m[’patternnode ’]. attributes[key]

try:

if (key == ’owner’ or

key == ’price’ or

key == ’address ’ or

(m[’level’] == 0 and

(key == ’rotation ’ or

key == ’position ’))):

raise Exception ()

a = float(a)

b = float(b)

except:

union -= 1

intersection -= 1

continue

s += math.pow(a - b, 2)

s = math.sqrt(s)

if intersection != 0 and union != 0:

80

if jaccard:

totalsum += (2 - (intersection / union)) * s

else:

totalsum += s

return totalsum / len(matchednodes)

Calculate distance between sets of matched nodes

def calculatedistance(matchednodes ,

measure ,

jaccard ,

debug=False):

if measure == ’ratio’:

return calculateratios(matchednodes ,

jaccard , debug), measure

elif measure == ’euclidean ’:

return calculateeuclidean(matchednodes ,

jaccard , debug), measure

elif measure == ’cosine ’:

return calculatecosine(matchednodes ,

jaccard , debug), measure

else:

return 1, measure

Calculate distances on attributes given set of

isomorphisms/homeomorphisms

def attributeisomorphisms(isomorphisms ,

pattern ,

measure ,

jaccard ,

debug=False):

isomorphisms_with_distances = []

x = []

81

for i in isomorphisms:

a = pn(i, fromquery=True)

b = pn(pattern.root , fromquery=True)

a.compress ()

b.compress ()

if not isisomorphic(pt(a, fromquery=True),

pt(b, fromquery=True)):

continue

i.identify_nodes(’P’)

pattern.identify_nodes(’S’)

matchednodes = getmatchednodes(i,

pattern ,

0,

debug=debug)

iids = i.getids ()

patternids = pattern.root.getids ()

if debug:

print(’Matchings: ’ + str(len(matchednodes)))

distance = float(’inf’)

Determine lowest distance for possible matchings

of nodes

for m in matchednodes:

sids = set()

pids = set()

for n in m:

sids = sids.union(set(n[’querynode ’].ids))

pids = pids.union(set(n[’patternnode ’].ids))

82

if (len(sids) != len(iids) or

len(pids) != len(patternids)):

continue

d, y = calculatedistance(m,

measure , jaccard , debug=debug)

x.append(y)

if d < distance:

distance = d

if distance != float(’inf’):

isomorphisms_with_distances.append(

{’distance ’: distance , ’part’: i})

return isomorphisms_with_distances , x

Get isomorphisms/homeomorphisms of a pattern tree

within a query tree

def partisomorphisms(query ,

pattern ,

measure ,

jaccard ,

debug=False ,

verbose=False):

isomorphisms = []

querytree = pt(query)

patterntree = pt(pattern)

structuralhomeomorphisms(querytree ,

patterntree ,

isomorphisms)

if debug:

print(’Found ’, len(isomorphisms), ’isomorphisms ’)

83

isomorphismswithdistances , m = attributeisomorphisms(

isomorphisms ,

patterntree ,

measure ,

jaccard ,

debug=debug)

if debug:

for d in isomorphismswithdistances:

print(’Distance: ’ + str(d[’distance ’]))

for i in isomorphismswithdistances:

i[’owner’] = int(

querytree.root.element.get(’owner ’, ’-1’))

i[’price’] = int(

querytree.root.element.get(’price ’, ’0’))

return isomorphismswithdistances , m

Get isomorphisms/homeomorphisms from query and pattern

file paths

def isomorphisms(queryfile ,

patternfile ,

measure ,

jaccard ,

debug=False ,

verbose=False):

query = et.parse(queryfile). getroot ()

pattern = et.parse(patternfile). getroot ()

transformunitsfrompart(pattern , query)

return partisomorphisms(query ,

pattern ,

84

measure ,

jaccard ,

debug=debug ,

verbose=verbose)

Get isomorphisms/homeomorphisms from query filepath

and pattern in XML string

def isomorphismsfromstring(queryfile ,

pattern ,

measure ,

jaccard ,

debug=False ,

verbose=False):

query = et.parse(queryfile). getroot ()

pattern = et.fromstring(pattern)

transformunitsfrompart(pattern , query)

return partisomorphisms(query ,

pattern ,

measure ,

jaccard ,

debug=debug ,

verbose=verbose)

Get isomorphisms/homeomorphisms from query and pattern

XML strings

def isomorphismsfromstrings(query ,

pattern ,

measure ,

jaccard ,

debug=False ,

verbose=False):

query = et.fromstring(query)

pattern = et.fromstring(pattern)

85

transformunitsfrompart(pattern , query)

return partisomorphisms(query ,

pattern ,

measure ,

jaccard ,

debug=debug ,

verbose=verbose)

Get isomorphisms/homeomorphisms of subtrees of a pattern

tree within a query tree

def subtreeisomorphisms(isomorphisms ,

query ,

patternchildren ,

measure ,

jaccard ,

debug=False ,

verbose=False):

m = []

for c in patternchildren:

i, m = partisomorphisms(query ,

c.element ,

measure ,

jaccard ,

debug ,

verbose)

for subi in i:

subi[’partialmatchedpattern ’] = c.element

isomorphisms.extend(i)

subtreeisomorphisms(isomorphisms ,

query ,

c.children ,

measure ,

jaccard ,

86

debug ,

verbose)

return isomorphisms , m

Get isomorphisms/homeomorphisms of all subtrees of a

pattern tree within a query tree from filepaths

def isomorphismspartial(queryfile ,

patternfile ,

measure ,

jaccard ,

debug=False ,

verbose=False):

query = et.parse(queryfile). getroot ()

pattern = et.parse(patternfile). getroot ()

transformunitsfrompart(pattern , query)

pattern = pt(pattern).root

isomorphisms = []

i, m = subtreeisomorphisms(isomorphisms ,

query ,

pattern.children ,

measure ,

jaccard ,

debug=debug ,

verbose=verbose)

return isomorphisms , m

Get isomorphisms/homeomorphisms of all subtrees of a

pattern tree from XML string within a query tree from

filepath

def isomorphismspartialfromstring(queryfile ,

pattern ,

measure ,

87

jaccard ,

debug=False ,

verbose=False):

query = et.parse(queryfile). getroot ()

pattern = et.fromstring(pattern)

transformunitsfrompart(pattern , query)

pattern = pt(pattern).root

isomorphisms = []

i, m = subtreeisomorphisms(isomorphisms ,

query ,

pattern.children ,

measure ,

jaccard ,

debug=debug ,

verbose=verbose)

return isomorphisms , m

Get isomorphisms/homeomorphisms of all subtrees of a

pattern tree in a query tree from XML strings

def isomorphismspartialfromstrings(query ,

pattern ,

measure ,

jaccard ,

debug=False ,

verbose=False):

query = et.fromstring(query)

pattern = et.fromstring(pattern)

transformunitsfrompart(pattern , query)

pattern = pt(pattern).root

isomorphisms = []

88

i, m = subtreeisomorphisms(isomorphisms ,

query ,

pattern.children ,

measure , jaccard ,

debug=debug ,

verbose=verbose)

return isomorphisms , m

A.2.3 partsearch.py

from .parttree import PartTree as pt

from partstree.partisomorphism import (

isomorphisms as partisomorphisms ,

isomorphismsfromstring ,

isomorphismspartialfromstring)

from partstree.units import transformunitsfrompart

import xml.etree.ElementTree as et

from glob import glob

Search for isomorphisms/homeomorphisms given a filepath

for pattern tree and a directory to search for query

trees

def searchisomorphisms(directory ,

partpath ,

measure="euclidean",

jaccard=True):

parts = glob(directory)

isomorphisms = []

for part in parts:

returnedisomorphisms , m = partisomorphisms(part ,

partpath ,

measure ,

jaccard)

89

for p in returnedisomorphisms:

p[’file’] = part

isomorphisms.extend(returnedisomorphisms)

return sorted(isomorphisms ,

key=lambda x: x[’distance ’], reverse=True), m

Search for isomorphisms/homeomorphisms given an XML

string for pattern tree and a directory to search for

query trees

def searchisomorphismsfromstring(directory ,

partstring ,

measure="euclidean",

jaccard=True):

parts = glob(directory)

isomorphisms = []

for part in parts:

returnedisomorphisms , m = isomorphismsfromstring(

part , partstring , measure , jaccard)

for p in returnedisomorphisms:

p[’file’] = part

isomorphisms.extend(returnedisomorphisms)

return sorted(isomorphisms ,

key=lambda x: x[’distance ’]), m

Search for isomorphisms/homeomorphisms given an XML

string for pattern tree and a directory to search for

query trees looking at all subtrees of pattern tree as

well

def searchisomorphismsfromstringpartial(

directory ,

partstring ,

90

measure="euclidean",

jaccard=True):

parts = glob(directory)

isomorphisms = []

partialisomorphisms = []

for part in parts:

returnedisomorphisms , m = isomorphismsfromstring(

part , partstring , measure , jaccard)

partial , m = isomorphismspartialfromstring(

part , partstring , measure , jaccard)

for p in returnedisomorphisms:

p[’file’] = part

for p in partial:

p[’file’] = part

isomorphisms.extend(returnedisomorphisms)

partialisomorphisms.extend(partial)

return (sorted(isomorphisms ,

key=lambda x: x[’distance ’]),

sorted(partialisomorphisms ,

key=lambda x: x[’distance ’]), m)

A.3 Server - Search

A.3.1 server.py

from flask import Flask , request , jsonify

import json

import partstree.partsearch as partsearch

import xml.etree.ElementTree as et

from glob import glob

import time

91

app = Flask(__name__)

Determine owner of a subtree

def getowner(result):

if result.element.get(’owner’) is not None:

return result.element.get(’owner’)

return getprice(result.parent)

Determine price of a subtree

def getprice(result):

if result.element.get(’price’) is not None:

return result.element.get(’price’)

return getprice(result.parent)

Determine contract address of a subtree

def getaddress(result):

if result.element.get(’address ’) is not None:

return result.element.get(’address ’)

return getaddress(result.parent)

Determine children parts of a node

def getchildren(result):

children = []

for c in result.children:

if c.tag == ’part’ or c.tag == ’compoundpart ’:

children.append ({’price’: getprice(c),

’owner’: getowner(c),

’children ’: getchildren(c)})

else:

children.extend(getchildren(c))

return children

@app.route(’/search ’, methods =[’POST’])

92

def search ():

data = request.get_json ()

directory = ’Data/Parts/Test/Compound /*.xml’

partstring = data.get(’part’)

measure = data.get(’measure ’)

start = time.time()

results , partialresults , m = (

partsearch.searchisomorphismsfromstringpartial(

directory , partstring , measure))

print(time.time() - start)

parts = [{’part’: et.tostring(r[’part’].element ,

encoding=’unicode ’),

’address ’: getaddress(r[’part’]),

’price’: getprice(r[’part’]),

’distance ’: r[’distance ’],

’file’: r[’file’][(len(directory) - 5):]}

for r in results]

partialparts = [{’part’: et.tostring(r[’part’].element ,

encoding=’unicode ’),

’address ’: r[’part’]. element.get(

’address ’, ’’),

’price’: getprice(r[’part’]),

’distance ’: r[’distance ’],

’file’: r[’file’][(len(directory) - 5):],

’partialmatchedsubpart ’: et.tostring(

r[’partialmatchedsubpart ’],

encoding=’unicode ’)}

for r in partialresults]

return jsonify ({’results ’: parts ,

’partialresults ’: partialparts })

93

A.4 User Interface

A.4.1 index.js

import React from ’react ’;

import ReactDOM from ’react -dom ’;

import ’./index.css ’;

import App from ’./App ’;

import * as serviceWorker from ’./serviceWorker ’;

ReactDOM.render(<App />, document.getElementById(’root ’));

serviceWorker.unregister ();

A.4.2 App.js

import React , { useState } from ’react ’;

import Web3 from ’web3 ’;

import { BuyABI } from ’./PurchaseABI ’

import { bc } from ’./bc’

import Header from ’./ components/Header ’

import Upload from ’./ components/Upload ’

import Results from ’./ components/Results ’

import axios from ’axios ’

import "./ App.css";

const web3 = new Web3(new

Web3.providers.HttpProvider ("HTTP ://127.0.0.1:7545"));

web3.eth.defaultAccount = web3.eth.accounts [0];

const acc = [

’0x1d0ef33691fd358A9E3289842935E48946f52b8d ’,

’0x081BCa6b9D81cca11E2b4e3D7f00E205b19fE769 ’,

94

’0xb7b0Fd435DbFb7616523Eb3a41a31525802B7507 ’,

’0x6051517c02e5B2fB3EA9f705a6DF4645E4AD64d4 ’,

’0x9a6BBD72dC73782f53692615B44300Ae62741e80 ’,

’0x480F12fcfb966a344bd90704f957ebaDa7bd034C ’,

’0x73B9a084F104dCca7e5a318216e4300bC5234B5c ’,

’0xC54Ad0e63d5Fc3571222CCa9401Edf008B3eF933 ’,

’0x8D2D3eb9CB5c288BD203f0B230B029C962ef33aC ’,

’0xB071F65dbbE83895D6ce5f6D19c3C077421783E7 ’

]

const getPrice = (owner , price , children , prices) => {

children.forEach ((child) => {

price -= getPrice(child.owner , child.price ,

child.children , prices)

})

prices[owner] += price

return price

}

class App extends React.Component {

constructor () {

super()

this.state = {

results: undefined ,

path: ’’,

file: null ,

searching: false ,

purchasing: false

}

}

buy = async result => {

const accounts = await window.ethereum.enable ()

95

const account = accounts [0];

const BuyContract = new web3.eth.Contract(

BuyABI

);

const address = result.address

this.setState ({ purchasing: true})

var gas = await BuyContract.deploy ({data: bc,

arguments: [address]}). estimateGas ()

var newContract = await BuyContract.deploy ({data:

bc , arguments: [address]}). send(

{from: account , gas })

const cost = web3.utils.toWei(result.price.toString(),

’ether ’)

gas = 6721975

const res = await newContract.methods

.transfer ()

.send({ from: account , gas: gas ,

value: cost.toString () }). then (() => {

alert(’Purchased successfully !’)

this.setState ({ purchasing: false})

}, res => {

alert(’Transaction unsuccessful ’)

this.setState ({ purchasing: false})

})

}

submitSearch = () => {

const measure = ’ratio ’

const part = this.state.file

this.setState ({ searching: true , results: undefined })

96

axios.post(’/search ’, {part , measure }). then(res => {

console.log(res.data)

this.setState ({ results: res.data.results ,

searching: false})

}, res => {

this.setState ({ searching: false})

})

}

setFile = (path , file) => {

var reader = new FileReader ();

reader.onload = e => {

this.setState ({

path ,

file: reader.result

})

};

reader.readAsText(file);

}

resetFile = () => {

this.setState ({

path: ’’,

file: null

})

}

render () {

return (

<div className ="App">

<Header />

<Upload file={this.state.path}

setFile ={this.setFile}

submitSearch ={this.submitSearch} />

97

{

this.state.searching ? <h6 >Searching ...</h6> :

this.state.purchasing ? <h6 >Purchasing ...</h6> :

’’

}

{

typeof this.state.results !== ’undefined ’ ?

<Results path={this.state.path}

results ={this.state.results}

buy={this.buy} /> :

’’

}

</div >

);

}

}

export default App;

A.4.3 Header.jsx

import React from ’react ’

import { AppBar ,

Typography , Toolbar } from ’@material -ui/core ’

class Header extends React.Component {

render () {

return (

<div >

<AppBar position =" static">

<Toolbar >

<Typography variant ="h6">

98

Part Search

</Typography >

</Toolbar >

</AppBar >

</div >

)

}

}

export default Header

A.4.4 Results.jsx

import React from ’react ’

import { Button , Divider ,

List , ListItem , ListItemText ,

ListItemSecondaryAction } from ’@material -ui/core ’

var format = require(’xml -formatter ’)

class Results extends React.Component {

openWindow = result => {

var myWindow = window.open("",

result.file , "width =500, height =300");

const p =

format(result.part). replace (/&/g, ’&’)

.replace (/</g, ’<’)

.replace (/>/g, ’>’)

.replace (/"/g, ’"’)

.replace (/’/g, ’'’);

myWindow.document.write(p);

}

99

render () {

const { results , path } = this.props;

const displayResults =

results.map((result , index) => {

return (<div key={index}>

<ListItem button

onClick ={e => {e.preventDefault ();

this.openWindow(result)}}>

<ListItemText primary ={ result.file} />

<ListItemText

secondary={’Distance: ’ +

result.distance} />

<ListItemText

secondary={’Price: ’ + result.price} />

<ListItemSecondaryAction >

<Button

onClick ={e =>

this.props.buy(result)}>Buy

</Button >

</ListItemSecondaryAction >

</ListItem ><Divider /></div >)

})

const content = results.length === 0 ?

<h2 >No results </h2 > :

<List >

{displayResults}

</List >

return (

<div >

{content}

</div >

)

}

100

}

export default Results

A.4.5 Upload.jsx

import React from ’react ’

import { makeStyles } from ’@material -ui/core/styles ’;

import { AppBar , Button , Typography , Toolbar }

from ’@material -ui/core ’

import Dropzone from ’react -dropzone ’

const style = {

backgroundColor: ’#e0e0e0 ’,

cursor: ’pointer ’,

width: ’fit -content ’,

height: ’fit -content ’,

padding: ’5px ’,

margin: ’auto ’,

borderRadius: ’3px’,

marginTop: 10

}

class Upload extends React.Component {

constructor () {

super()

}

onDrop = files => {

this.props.setFile(files [0].name , files [0])

}

render () {

const file = this.props.file

101

return (

<div >

<Dropzone onDrop ={this.onDrop}>

{({ getRootProps , getInputProps }) => (

<section >

<div {... getRootProps ()}

style={style}>

<input {... getInputProps ()} />

{file === ’’ ?

<h3 >Upload part </h3 > :

<h3 >{file}</h3 >}

</div >

</section >

)}

</Dropzone >

<div style ={{ marginTop: 10}}>

<Button

onClick ={this.props.submitSearch}

disabled ={file === ’’}>

Search

</Button >

</div >

</div >

);

}

}

export default Upload

102

A.5 Server - Publish

A.5.1 index.js

const express = require(’express ’)

const app = express ()

const Web3 = require(’web3 ’)

const PublishABI = require(’PublishABI ’)

const bc = require(’bc ’)

const web3 = new Web3(new Web3.providers.HttpProvider

("HTTP ://127.0.0.1:7545"));

web3.eth.defaultAccount = web3.eth.accounts [0];

const acc = [

’0x1d0ef33691fd358A9E3289842935E48946f52b8d ’,

’0x081BCa6b9D81cca11E2b4e3D7f00E205b19fE769 ’,

’0xb7b0Fd435DbFb7616523Eb3a41a31525802B7507 ’,

’0x6051517c02e5B2fB3EA9f705a6DF4645E4AD64d4 ’,

’0x9a6BBD72dC73782f53692615B44300Ae62741e80 ’,

’0x480F12fcfb966a344bd90704f957ebaDa7bd034C ’,

’0x73B9a084F104dCca7e5a318216e4300bC5234B5c ’,

’0xC54Ad0e63d5Fc3571222CCa9401Edf008B3eF933 ’,

’0x8D2D3eb9CB5c288BD203f0B230B029C962ef33aC ’,

’0xB071F65dbbE83895D6ce5f6D19c3C077421783E7 ’

]

const defaultAccount = acc [0]

app.use(express.json ())

app.use(express.urlencoded ())

app.post(’/publish ’, (req , res) => {

103

const PartContract = new web3.eth.Contract(

PublishABI

);

const addresses = []

const parts = req.body.parts

parts.forEach(async (part , index) => {

const cost = web3.utils.toWei(

part.cost.toString(), ’ether ’)

var owner = part.owner

if (typeof owner === ’number ’) {

owner = acc[owner]

}

const args = [owner , part.children , cost]

var gas = await PartContract.deploy(

{data: bc , arguments: args }). estimateGas ()

var newContract = await PartContract

.deploy ({data: bc, arguments: args})

.send({ from: acc[0], gas })

.then(x => {

addresses.push(x._address)

if (addresses.length === parts.length) {

res.json({ addresses })

}

})

})

})

app.listen (3001, () =>

console.log(’Listening on port 3001 ’));

104

A.6 Smart Contracts

A.6.1 Publish.sol

pragma solidity ^0.5.11;

contract Publish {

address public owner;

address [] public childrenCons;

mapping (address => uint) public contractNums;

mapping (address => bool) public contractExists;

uint public cost;

constructor(address _owner ,

address [] memory _childrenCons ,

uint _cost) public {

owner = _owner;

cost = _cost;

for (uint i=0; i < _childrenCons.length; i++) {

childrenCons.push(_childrenCons[i]);

contractExists[_childrenCons[i]] = true;

contractNums[_childrenCons[i]]++;

Part child = Part(_childrenCons[i]);

address [] memory grandchildren =

child.getChildrenCons ();

for (uint j=0; j < grandchildren.length; j++) {

if (! contractExists[grandchildren[j]]) {

contractExists[grandchildren[j]] =

true;

childrenCons.push(grandchildren[j]);

}

contractNums[grandchildren[j]]++;

105

}

}

}

function getOwner () view public returns (address) {

return owner;

}

function getChildrenCons () view public returns

(address [] memory) {

return childrenCons;

}

function getNums () view public returns

(uint[] memory) {

uint[] memory nums = new

uint [](childrenCons.length);

for (uint i=0; i < childrenCons.length; i++) {

nums[i] = contractNums[childrenCons[i]];

}

return nums;

}

function getCost () view public returns (uint) {

return cost;

}

}

A.6.2 Purchase.sol

pragma solidity ^0.5.11;

contract Purchase {

address public contractOwner;

106

address [] public toPay;

uint[] public costs;

constructor(address contractAddress) public {

contractOwner = msg.sender;

Part part = Part(contractAddress);

address owner = part.getOwner ();

address [] memory childrenCons =

part.getChildrenCons ();

uint[] memory nums = part.getNums ();

uint cost = part.getCost ();

toPay = new address [](childrenCons.length + 1);

costs = new uint [](childrenCons.length + 1);

toPay [0] = owner;

costs [0] = cost;

for (uint i=1; i <= childrenCons.length; i++) {

part = Part(childrenCons[i-1]);

owner = part.getOwner ();

cost = part.getCost ();

toPay[i] = owner;

costs[i] = cost * nums[i-1];

}

}

function transfer () payable public returns (bool) {

address payable owner =

address(uint160(toPay [0]));

for (uint i=0; i < toPay.length; i++) {

owner = address(uint160(toPay[i]));

owner.transfer(costs[i]);

}

107

return true;

}

}

108

	Introduction
	Motivation
	Parts and Assemblies as a Tree
	Assembly Search in a Distributed System
	Contributions

	Theory
	Definitions
	Rooted Tree Isomorphism Search
	Rooted Tree Homeomorphism Search
	Node Matching for Matched Subtrees
	Distance Measures
	Euclidean distance
	Cosine distance
	Ratio distance

	Distributed System Using Blockchain
	Distributed System
	Blockchain and Smart Contracts

	Implementation
	Node Implementation
	Blockchain Implementation
	Dataset Generation

	Analysis
	Speed
	Distance Measures

	Conclusion
	Future Work

	Source Code
	Part and Assembly Generation
	createpart.py
	part.py
	units.py

	Tree Search
	parttree.py
	partisomorphism.py
	partsearch.py

	Server - Search
	server.py

	User Interface
	index.js
	App.js
	Header.jsx
	Results.jsx
	Upload.jsx

	Server - Publish
	index.js

	Smart Contracts
	Publish.sol
	Purchase.sol

