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Abstract 

 Hearing loss caused by blast exposure is an inherent risk that active Service 

members face due to the operational activities they engage in. With auditory system 

dysfunction dominating service-connected disabilities among Veterans, there is an urgent 

need to better understand the effects of blast exposure on the auditory system, particularly 

the effects of repeated low-intensity blast exposure on progressive hearing loss. 

Furthermore, the analysis of blast wave transmission in the ear is needed.   

 This thesis focuses on an experimental study using chinchilla animal model. 

Chinchilla with and without earplugs were exposed to repeated low-intensity blasts. 

Hearing function tests reflecting the state of the auditory system were measured prior to 

blast, after blast, and were then monitored over 14 days.  

 This thesis also reports the creation of the first finite element model of the entire 

chinchilla ear, including spiral cochlea. A finite element (FE) model of the chinchilla 

cochlea was integrated with our lab’s previously published FE model of the chinchilla 

middle ear. The model was first evaluated for simulating acoustic sound transmission. A 

uniform acoustic pressure applied as an input and harmonic response analysis was 

conducted. The model was then validated by comparing model-predicted movements of 

ear structures with experimental measurements.  

 The FE model of the entire chinchilla ear was then adapted for blast wave analysis. 

Pressure waveforms measured during chinchilla blast exposure studies were applied to the 

model as input. The model-predicted waveforms at locations within the ear were then 

compared with experimental waveforms recorded in the same locations. Movement of 

structures within the ear were also predicted.  



xv 

 

 The work presented in this thesis improves our understanding of the effects of blast 

exposure on the auditory system. Experimental data collected from chinchilla animal 

model provides insight into the effect of low-intensity blasts on hearing damage, which is 

not well studied. Moreover, this study provides information on the central auditory system, 

which is lacking in the literature. Furthermore, this thesis reports the first FE model of the 

entire chinchilla ear. This model provides a computational tool to simulate the sound or 

blast wave transmission through the chinchilla ear, explain experimental observations in 

animal model of chinchilla, and help translate animal experimental data to human 

responses to blast exposure. Future work includes further investigation of different blast 

conditions (e.g. number of blasts, blast intensity, recovery time, etc.) on hearing loss and 

improvement of the FE model for blast wave analysis.  
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Chapter 1: Introduction 

1.1 Motivation 

Auditory system disabilities greatly affect Service members and Veterans. Tinnitus 

and hearing loss are the two most prevalent service-connected (SC) disabilities overall 

among Veterans (Benefits Administration - The Office of Performance Analysis, 

2019).These disabilities not only impose a large economic expense on the part of the 

Veterans Health Administration, with approximately 3.2 million Veterans receiving SC 

auditory disability compensation in FY 2018 (Benefits Administration - The Office of 

Performance Analysis, 2019), but they also affect the quality of life of those who are 

disabled.  

Hearing damage caused by blast waves is an inherent risk among military Service 

members due to the operational activities they perform. Blast overpressure (BOP) is a high 

intensity disturbance in the ambient air pressure (Stuhmiller et al., 1991).  In the military, 

BOP exposure typically occurs from muzzle blast from firing heavy weapons and upon 

detonation of explosives and munitions as in incoming artillery rounds (Patterson & 

Hamernik, 1997).  Blast pressure waves exert forces primarily at air-tissue interfaces within 

the body, placing the auditory system at high risk of damage.  

Animal models such as chinchilla have been established to investigate the effect of 

BOP exposure on hearing loss. However, most studies have focused on high-level BOP 

exposure, though evidence has shown that low-level BOPs may also induce hearing 

damage. Furthermore, few studies have assessed the effect of exposure to repeated blasts, 

which reflects the reality of Service members in combat or in training drills. To provide a 
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more comprehensive understanding of blast-induced hearing damage, these 

underrepresented circumstances should be investigated.  

Finite element (FE) models have been established to buttress experimental animal 

models, serving to link the structure of the ear and its function. While a model that predicts 

the human ear response to pressure waveforms has been developed, no such model exists 

for the chinchilla ear. To improve our understanding of the mechanisms of blast-induced 

hearing loss, a model that can predict the response of the chinchilla ear to BOP waveforms 

must be developed. 

1.2 The Auditory System 

The auditory system is categorized into two parts: the peripheral auditory system 

(PAS) and central auditory system (CAS). This section will provide a brief overview of 

each, including relevant structures and functions.  

1.2.1 The Peripheral Auditory System (PAS) 

The PAS consists of the ear, which may be broken down into three sections: the 

outer ear, middle ear, and inner ear.  The outer ear consists of the pinna (the structure that 

we visually recognize as the ear) and the external ear canal, which ends at the tympanic 

membrane (TM) or eardrum. The main function of the outer ear is to collect and funnel 

sound waves towards the TM. The middle ear consists of the TM, which is connected by 

the manubrium to the ossicles. The ossicular chain itself is composed of the malleus, incus, 

and stapes, and terminates at the oval window of the cochlea or inner ear. These middle ear 

structures are held in place by several suspensory ligaments. When the sound waves meet 
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the TM, the TM vibrations cause the ossicles to move. The ossicles, which may be thought 

of as a compound lever, are able to amplify these vibrations and transmit them to the 

cochlea through the piston-like motion of the stapes. The cochlea or inner ear is filled with 

fluid and contains the organ of Corti, which is composed of the basilar membrane, upon 

which mechanosensory hair cells reside (Figure 2). The piston-like motion of the stapes 

causes the fluid in the cochlea to move, exciting the hair cells in the organ of Corti, which 

produces electrical signals that are then processed by the brain. The anatomy of the human 

ear is shown in Figure 1 in a schematic diagram.  

 

Figure 1. Anatomy of the human ear. The outer ear, middle ear, and inner ear segments 

and their respective structures are labeled. (https://www.hearinglink.org/your-

hearing/about-hearing/how-the-ear-works/) 
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Figure 2. Cross-section of the cochlea with enlarged organ of Corti. Electrical signals are 

created in the cochlea due to the interaction of the basilar membrane, hair cells and 

associated stereocilia, and tectorial membrane. Note that the basilar membrane is found 

above the scala tympani. (https://www.researchgate.net/figure/Cross-section-of-the-

cochlea-with-enlarged-organ-of-Corti-40_fig1_330111901) 

1.2.2 The Central Auditory System (CAS) 

The structures and processes discussed thus far belong to PAS. The electrical 

signals that result from the excitation of hair cells in the organ of Corti exit the PAS via the 

cochlear nerve to the (CAS), which includes the auditory pathway from the cochlear 

nucleus up to the primary auditory cortex. The CAS is responsible for processing and 

interpreting the auditory information from the cochlea. A schematic diagram of the 

auditory pathway from the cochlea to the auditory cortex is shown in Figure 3. 



5 

 

 

Figure 3. Schematic diagram of the auditory pathway from the cochlea, including 

auditory structures within the brainstem (1), midbrain (2), and cortex (3). Auditory 

information from the cochlear is transmitted to the cochlear nucleus via the cochlear 

nerve (A). Further processing occurs in an ascending auditory pathway: ventral cochlear 

nucleus to superior olivary complex (B1), superior olivary complex to inferior colliculus 

(B2), dorsal cochlear nucleus to inferior colliculus (C) inferior colliculus to medial 

geniculate nucleus (D), and medial geniculate nucleus to auditory cortex (E) (Hall, 2012). 

1.3 Blast-Induced Hearing Loss in Animal Models 

 A variety of animal models, including rat, guinea pig, non-human primate, and 

chinchilla, have been used to study blast-induced hearing loss (Le Prell et al., 2019). 

Literature has shown that BOP induces damage to both the PAS and CAS. Studies in 
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chinchilla and pig animal models, as well as human case studies, have demonstrated that 

exposure to BOP can result in the rupture of the TM and fracture or dislocate the middle 

ear ossicles, resulting in conductive hearing loss (Gan et al., 2016; Hirsch, 1968; Patterson 

& Hamernik, 1997). Sensorineural hearing loss, or hearing loss associated with damage to 

the inner ear, may also result from blast exposure. Cho et al. (2013) reported significant 

loss of hair cells and spiral ganglion neurons in mice after exposure to high-intensity blast 

(186 kPa) (Cho et al., 2013). Excitotoxicity of the spiral ganglion neurons disrupts the 

synaptic communication between the hair cells and cochlear nerve fibers, leading to 

auditory dysfunction (Liberman & Kujawa, 2017). The CAS is also vulnerable to blast. 

Blast waves travel through the air and pass through the skull, transferring kinetic energy 

from the blast into the brain. This causes a sudden change in intracranial pressure, resulting 

in shearing and stretching forces that damage regions such as the brainstem and auditory 

cortex (Fausti et al., 2009). Even low-intensity blast exposure has been shown to induce 

ultrastructural brain abnormalities (Song et al., 2018).  

 Recently, Smith et al. (2020) studied the effects of repeated exposure to high-

intensity BOP (15-20 psi) on hearing damage in chinchillas. This study demonstrated that 

ears with hearing protection devices (HPDS, e.g. earplugs) could recover from 2 high-

intensity blasts after 7 days. However, 3 blasts under the same conditions resulted in 

hearing loss that had not recovered after 14 days (Smith et al., 2020). In a similar study, 

Chen et al. (2019) investigated the effects of repeated exposure to low-intensity BOP (3-5 

psi) on hearing damage in chinchillas. This study found that 3 repeated blasts caused 

temporary damage in protected ears, but permanent hearing impairment in unprotected ears 

remained 7 days post-blast (Chen et al., 2019). However, the hearing damage caused by 
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low BOP in relation to the number of blasts (e.g. more than 3 blasts) and the post-blast 

recovery time (e.g. more than 7 days) is unclear. Moreover, most studies have focused on 

the effects of exposure to moderate to high BOP levels (DeKosky et al., 2010; DePalma & 

Hoffman, 2018; Song et al., 2018), while few animal studies have investigated outcomes 

from low-level blasts. In addition, the protection mechanism of HPDs to the CAS injury 

during blast exposure needs further studies.  

 In this thesis, progressive hearing damage after exposure to 6 repeated low-intensity 

(3-5 psi or 21-35 kPa) blasts and the protective mechanism of earplugs was investigated.  

1.4  Finite Element Models for Blast Wave Transmission in the Ear 

The finite element method (FEM) is a powerful method for solving problems of 

engineering models. Complex geometries are discretized into smaller, simpler parts known 

as finite elements, which are governed by equations that simulate engineering phenomena. 

Of interest to this thesis are finite element models that have been developed for blast wave 

analysis in the ear.   

1.4.1 FE Model of the Human Ear 

In 2004, the Biomedical Engineering Laboratory at the University of Oklahoma, 

Norman, constructed a FE model of the human ear based on histological section images of 

a left ear temporal bone. This model was validated by comparing experimental 

measurements of the stapes footplate (FP) and TM displacements and model-predicted 

displacements of the two structures. This was the first FE analysis to use acoustic-structure 

coupled behavior (Gan et al., 2004). The model originally included the fluid domains of 
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the ear canal and middle ear cavity, TM and TM annulus, the middle ear ossicles and 

associate suspensory ligaments, and a mass block and dashpot to simulate the cochlear load 

at the stapes FP. This model evolved to include hyperelastic materials and a simplified two-

chamber straight cochlea with the basilar membrane, which was used to predict sound 

transmission from the ear canal into the cochlea (Gan et al., 2007). Since its creation, the 

FE model of the human ear has been used to predict middle ear function after TM 

perforation (Gan et al., 2009) simulate ear damage and disease (Zhang & Gan, 2013), and 

evaluate a totally implantable hearing systems (Gan et al., 2010). 

Recently, Leckness et al. (2018) reported the adaptation of this model to simulate 

blast wave transmission through the ear. Blast pressure waveforms recorded external to the 

ear in human cadaver temporal bone studies were applied as an input pressure (P0) at the 

entrance of the ear canal in the model. The pressure waveforms in front of the TM in the 

ear canal (P1) and behind the TM in the middle ear cavity (P2) were calculated. The model 

used and location of the pressure monitors in the model are shown in Figure 4. The model 

was validated by comparing the predicted pressure waveforms and experimentally 

recorded waveforms, which were found to be in close agreement (Leckness et al., 2018). 

The model was further validated by comparing model-derived TM displacement under 

BOP and experimental measurements of the TM under BOP (Jiang et al., 2019). A current 

limitation of this model is that the cochlea is simplified using a mass block dashpot.  
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Figure 4. FE model of the human ear used to simulate blast wave transmission. (A) 

Shows the pressure monitor locations P0, P1, and P2 in the model. (B) The middle ear 

structures isolated (Leckness et al., 2018). 

1.4.2 FE Model of the Chinchilla Middle Ear 

 As mentioned previously, chinchilla is a commonly used animal model for hearing 

research. In 2016 the Biomedical Engineering Laboratory at the University of Oklahoma 

developed a FE model of the chinchilla ear to fully understand experimental observations 

through theoretical analysis. The model was based on X-ray micro-computed tomography 

(µCT) images and included the fluid domain in the ear canal and middle ear cavity, and the 

structural components consisting of the TM and TM annulus, ossicular chain and 

associated joints and suspensory ligaments, and mass block and dashpots to simulate the 

cochlear load. The septa, which are thin bony plates dividing the middle ear cavity and are 

unique to chinchilla, were also included. The FE model of the chinchilla ear is shown in 

Figure 5.  
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Figure 5. 3D FE model of the chinchilla ear developed by Wang & Gan (2016). This 

model was used to characterize middle ear functions in the frequency domain. Note that 

the cochlea was simulated by a mass block and dashpot system. 

The model calculated the middle ear transfer function and middle ear admittance 

when a uniform sound pressure was applied in the ear canal. Acoustic-structure coupled 

behavior, similar to that used in the FE model of the human ear, was included in this model. 

The model-predicted TM displacement, stapes FP displacement, and middle ear admittance 

were validated with experimental data reported in the literature. This model was the first 

FE model of the chinchilla ear and was a step towards developing a comprehensive model. 

However, this model is limited by the lack of an anatomically correct cochlea, which would 

provide important information concerning the basilar membrane. Moreover, this analysis 

was handled in ANSYS APDL and studied middle ear functions in low-pressure conditions 

in the frequency domain.  

In this thesis, the integration of a FE model of the chinchilla spiral cochlea with the 

model established by Wang & Gan (2016) was achieved. Harmonic analysis in ANSYS 
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Workbench was conducted to calculate middle ear functions. In addition, the geometry of 

this integrated model was extracted and modified to create a new model for the analysis of 

blast wave transmission in the transient domain.  

1.5  Objectives 

Service-connected auditory disabilities are prevalent among active Service 

members and Veterans and have a tremendous impact on quality of life. For these reasons, 

our understanding of the cause of hearing damage must be improved. Towards this goal, 

further studies investigating the effect of key blast parameters such as blast intensity, 

number of blast exposure, and recovery time are needed. To achieve this, a chinchilla 

animal model was established to investigate the effect of repeated low-intensity blast on 

progressive hearing loss in open and protected ears. Knowledge gained from this study 

may provide guidance for clinical evaluation and future research in blast-induced auditory 

dysfunction.  

In addition, the creation of a FE model of the entire chinchilla ear, including spiral 

cochlea, would facilitate understanding of the anatomy and function relationship. Such a 

model is lacking in the literature and would be useful in future theoretical analyses. 

Moreover, this model may have future applications in translating experimental data from 

chinchilla exposed to blast to predict human response to blast.  
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Chapter 2: Auditory Dysfunction Induced by Repeated Low Intensity 

Blast Exposures in a Chinchilla Model 

Repeated exposure to blast overpressure (BOP) waves is an inherent situation faced 

by Service members involved in many operational activities, especially the low-level 

military occupational blasts (MOBs) that do not result in loss of consciousness. Currently, 

the majority of studies on blast-induced hearing damage focus on relatively high intensity 

blasts. However, few studies have investigated the effects of repeated, low-intensity blast 

exposures on auditory function changes. This chapter reports our recent study to investigate 

the progressive hearing damage measured in chinchillas after repeated exposures to low-

intensity blast.  

2.1 Animal Model – Chinchilla  

The chinchilla is a well-established animal model for investigating the effects of 

hearing loss and auditory function. The use of chinchilla as an animal model for hearing 

science is justified by numerous anatomical, behavioral, and physiological advantages. 

First and foremost, the chinchilla hearing sensitivity and frequency range overlaps 

significantly with humans, with an average hearing range of approximately 50 Hz to 33 

kHz (Trevino et al., 2019). Other rodent models, such as mice and rat, can hear in the 

ultrasound. Furthermore, the chinchilla ear anatomy is similar to that of humans. Though 

the chinchilla does have an enlarged auditory bulla, this feature provides ease of access to 

the middle ear and cochlea, allowing for experimental manipulations to quantify sound 

transmission through the middle ear and into the cochlea (Trevino et al., 2019). Finally, the 

relatively docile and durable nature of the chinchilla permits the collection of a wide range 
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of physiological measurements. For these reasons, the chinchilla has seen widespread use 

in hearing research. 

Healthy, young chinchillas (Chinchilla laniger) weighing between 500 and 800 g 

were included in this study. The study’s protocol was approved by the Institutional Animal 

Care and Use Committee (IACUC) of the University of Oklahoma and met the guidelines 

of the National Institutes of Health (NIH) and the US Department of Agriculture (USDA). 

All animals were checked to be clear of disease in the ear upon arrival.  

2.2 Experimental Design 

Fourteen chinchillas were randomly divided into two groups (N = 7 each). Group 

1 had standard foam earplugs (3M, Inc. St. Paul, MN) inserted deeply into the ear canal 

prior to blast, while no such hearing protection devices (HPDs, e.g. earplugs) were used in 

Group 2 animals. Both groups underwent a progressive study over 14 days with 6 blasts 

(5-10 min intervals between blasts) on Day 1. Figure 6 is an overview of the experimental 

procedures for the two groups.  

Figure 6. Timeline of experimental procedures. Key experimental procedures (e.g. blasts, 

function tests, and euthanasia) are labeled at the time points they occurred. 
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The animals were anesthetized with 35 mg/kg Ketamine and 7 mg/kg Xylazine to 

ensure the chinchilla was sedated throughout the duration of the experiment. Each ear was 

examined using a surgical endoscope (Straight Endoscope, Stryker, MI) to verify that no 

TM or middle ear abnormalities existed. The auditory brainstem response (ABR), 

distortion product optoacoustic emissions (DPOAE), and middle latency response (MLR) 

function tests were conducted prior to blast exposure to measure the baseline of the hearing 

function of each animal.  

After pre-blast function tests were conducted, the animal was placed in a 

specifically designed L-shape animal holder and fixed using straps. The animal’s body was 

positioned so that the top of the animal’s head faced the blast source (Figure 7). A pressure 

sensor (Model 102B16, PicoCoulomB Piezotronics, Depew, NY) was fixed on the animal 

holder near the canal entrance to monitor the blast pressure at the entrance of the ear canal. 

A standard foam earplug (3M, Inc. St. Paul, MN) was then inserted into both ears of Group 

1 animals. It should be noted that the sensor at the entrance of the ear canal was not in 

contact with the earplug in the canal.  

A well-controlled compressed nitrogen-driven blast apparatus located inside an 

anechoic chamber in the Biomedical Engineering Laboratory at the University of 

Oklahoma (Figure 7) was used to create BOPs in this study (Engles et al., 2017). 

Polycarbonate films (McMaster-Carr, Atlanta, GA) of 0.25 mm were utilized to generate 

the BOP level. In this study, animals were exposed to a BOP level of 3-5 psi (21-35 kPa). 

Animals were exposed to 6 repeated blasts, with approximately 5 minutes between blasts.  
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Figure 7. Schematic of animal experimental setup with blast apparatus. The animal was 

held in place in a specifically designed holder and exposed to 6 repeated low-level BOPs. 

BOP level was monitored by the pressure transducer near the animal ear (Smith et al., 

2020). 

The pressure sensor signals were collected by a cDAQ 7194 and A/D converter 

9215 (National Instruments Inc., Austin, TX) with a sampling rate of 100k/s (10 ms dwell 

time). The LabVIEW software package (NI Inc) was used for data acquisition and analysis. 

The waveform of each blast was saved to a PC for further analysis. Note that the sampling 

rate is sufficient for the waveform recorded in this study. After the completion of blast 

exposure, the status of the chinchilla TM was examined using an endoscope before post-

blast auditory function tests were conducted. Animals were then observed for fourteen 

days.  
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2.3 Hearing Function Tests  

Auditory function measurements including auditory brainstem response (ABR), 

distortion product otoacoustic emissions (DPOAE), and middle latency responses (MLRs) 

were recorded pre- and post-blast on Day 1 and then again on Days 4, 7, and 14. During 

the function tests, animals remained under anesthetic as described above. 

 2.3.1 Auditory Brainstem Response (ABR) 

Differences in ABR threshold reflected hearing level changes after blast exposure 

in chinchillas. An increase in ABR threshold is indicative of hearing damage. The ABR 

measurements were recorded in both ears using a TDT system III (Tucker-Davis 

Technologies, Alachua, FL) following protocol previously established in our studies (Gan 

et al., 2016). Briefly, chinchillas were placed under anesthesia and stainless steel needle 

electrodes were inserted subcutaneously at the vertex of the skull and ventrolateral surfaces 

of the ear, while a ground electrode was positioned in the rear leg. Tone burst stimuli of 1 

ms rise/fall time at frequencies of 0.5, 1, 2, 4, 6, and 8 kHz were generated, which is in 

accord with a widely-accepted frequency range for chinchilla studies (Gan et al., 2016; 

Zhong et al., 2014) . The ABR waveforms were recorded in descending 5 dB SPL intervals 

from the maximum amplitude of 100 dB SPL until no waveform could be identified. If an 

ABR response was not detected at the maximum acoustic stimulation, the threshold was 

set to 100 dB.  
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2.3.2 Distortion Product Otoacoustic Emissions (DPOAE) 

DPOAE was measured using the TDT system III to evaluate the cochlear outer hair 

cell function as described in Chen et al. (Chen et al., 2019). In this study, the DPOAE level 

shifts after blast exposure were measured in Group 1 animals (i.e., chinchilla with HPDs). 

Cubic 2f1-f2 DPOAE levels were recorded using two primary tones, f1 and f2, presented 

at primary tone levels of L1 = 70 dB SPL and L2 = 65 dB SPL (Daniel et al., 2007). A 

probe tipped microphone (ER-10B, Etymotic Research) was sealed in the animal’s external 

ear canal to capture DPOAE recording at 2f1-f2 (f2 = 1.22xf1). The DPOAE levels were 

defined as the signal/noise ratio of the 2f1-f2 distortion product for the 70 dB and 65 dB 

SPL of f1 and f2 primaries, respectively, and were calculated by subtracting the 2f1-f2 

distortion product form the surrounding noise. DPOAE level shifts were calculated by 

subtracting post-exposure from pre-exposure values.  

2.3.3. Middle Latency Responses (MLR) 

Middle latency responses provide insight into the neurological function of the 

higher CAS, reflecting part of the central auditory cortex function (Torre & Fowler, 2000). 

Four characteristic components of MLR waveforms include two negative voltage waves 

(Na and Nb) and two positive voltage waves (Pa and Pb). The latencies and amplitudes of 

the Pa (positive) and Na (negative) peaks reflect the neural conduction velocity from the 

peripheral auditory nerve to the central auditory nervous system. The Pa component of the 

MLR originates from the inferior colliculus within the midbrain region, while the Na 

component arises from the subcortical and cortical regions of the auditory system. Thus, 
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MLR tests were used as an indicator of damage to the central auditory nerve pathway after 

blast exposure.  

MLRs were recorded using short click and tone stimuli presented at a rate of 4/sec 

and with a 100 ms long recording window (TDT system III). Thus, early components (< 

10 ms) of the wave form collected under the MLR acquisition settings were responses from 

ABR generator regions, while later responses correspond to the more central generators in 

the thalamus and cortex (Arnold, 2000). Chinchillas show an acoustic MLR wave with one 

negative peak (Na) with a high amplitude wave at 14-18 ms and one positive peak (Pa) 

with a high amplitude wave at 19-35 ms in response to the click sound. MLRs recorded 

from the interaural line (channel 2) were analyzed. Brief 0.5 kHz tones (2 ms in duration) 

of alternating polarity were used in MLR recording (Race et al., 2017). 

2.4 Statistical Analysis 

 The ABR, DPOAE, and MLR measurement data were expressed as the mean ± 

SEM and plotted in GraphPad Prism (GraphPad Software Inc., Version 8). The unpaired 

t-test was used to compare the ABR threshold shifts, MLR latencies (Na and Pa), and 

MLR amplitudes of the protected ear and unprotected ear groups. The paired t-test was 

used to compare the DPOAE level shifts measured on D1 and D14. Values of P < 0.05 

were considered statistically significant.  

2.5 Results 

2.5.1 BOP Waveforms 

Figure 8 shows a typical waveform of BOPs in units of psi (1 psi = 6.9 kPa) 

measured at the entrance of the ear canal over a time of 10 ms. The waveform shown 
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illustrates a single positive overpressure peak at a level of 4.0 psi. After reaching the sharp 

positive peak, the pressure quickly decreased to a level of -1.6 psi and then returned to 0 

psi. The BOP waveforms were repeatable for each blast test.  

 

Figure 8. A recorded BOP waveform at the entrance of the ear canal from an animal test 

with earplugs with a peak pressure of 4.0 psi. 

2.5.2 ABR Threshold Shifts 

The mean and SEM of the ABR threshold shifts measured from animals in Group 

1 (N = 7) and in Group 2 (N = 7) over a 14-day period after blast exposures are shown in 

Figure 9. The ABR threshold shifts measured from plugged ears immediately after blasts 

on Day 1 (D1), and those measured after 4 days (D4) and 14 days (D14) post-blasts are 

shown in Figure 9A. The greatest threshold shift occurred on Day 1, ranging from 

approximately 30 dB at 1 kHz to around 50 dB at 8 kHz, and decreased over time. By Day 

14, the ABR threshold shift level was roughly 10 dB across all frequencies.  
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 Figure 9B shows the ABR threshold shifts recorded from unprotected or open ears 

at the same time points as those seen in Figure 4A. Similar to the ABR threshold shifts of 

the plugged ears, the ABR threshold shifts of the open ears were also the greatest on Day 

1, ranging from about 37 dB at 1 kHz to approximately 50 dB at 8 kHz, and also decreased 

over time. However, the ABR threshold shifts of the open ears were greater than those of 

the plugged ears on Days 4 and 14, indicating greater damage in open ears than in protected 

ears. Moreover, while the threshold shift of plugged ears had decreased to about 10 dB 

across all frequencies by Day 14, the threshold shift of open ears ranged from 15 dB at 1 

kHz to 30 dB at 8 kHz.  

 The data from plugged and open ears on Days 1, 4, and 14 are compared in Figure 

9C. As shown in Figure 9C, the hearing threshold shift in plugged ears (dashed lines) 

slowly decreased over the 14-day time period. However, some hearing loss was still 

observed at Day 14 (bottom dashed line). Open ears (solid lines) exhibited some recovery 

by Days 4 and 14, but the ABR threshold shift remained elevated at 20-35 dB on Day 4 

and 15-30 dB on Day 14. The ABR threshold shifts were significantly different between 

the two groups at 4 kHz on Day 4 and at 4, 6, and 8 kHz on Day 14. Overall, this data 

suggests that permanent hearing damage occurred in both unprotected and protected ears, 

but to a greater extent in unprotected ears.  
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Figure 9. (A) ABR threshold shifts (mean ± SEM, n = 14 ears) measured in plugged ears 

after 6 blasts on Day 1, Day 4, and Day 14. (B) ABR threshold shifts (mean ± SEM, n = 

14 ears) measured in open ears after 6 blasts on Day 1, Day 4, and Day 14. (C) 

Comparison of ABR threshold shifts in plugged and open ears on Days 1, 4, and 14.  
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2.5.3 ABR Wave I Amplitudes 

The ABR wave I amplitudes (peak-to-peak amplitudes) measured from animals 

with and without earplugs on Day 1 (pre- and post-blast), Day 4, and Day 14 after blast 

exposures are shown in Figure 10. The mean and SEM values were plotted against the 

level of acoustic stimulus from 40 to 100 dB SPL measured in chinchilla ear canal. ABR 

wave I amplitudes measured at frequencies of 1, 2, 4, and 8 kHz from plugged and open 

ears were presented in different subplots. The top row of Figure 10 for unprotected ears 

indicates a considerable reduction in wave I amplitude post-blast across all frequencies. 

The curves for Day 4 and Day 14 demonstrate some recovery from damage from 1-4 kHz 

but remained slightly lower than the pre-blast curve. The difference between pre-blast and 

Day 4 and 14 curves is more pronounced at 8 kHz, suggesting some permanent damage of 

the wave I amplitude at high frequencies in open ears.  

 The bottom row of Figure 10 for plugged ears also displays a decrease in post-blast 

wave I amplitude across all frequencies, though not as substantial as the difference shown 

in open ears for the same time points. Furthermore, the results obtained on Days 4 and 14 

show little difference from the pre-blast data from 1-4 kHz, and only a slight difference at 

8 kHz. These results indicate that repeated blasts at this BOP level induced a temporary 

reduction in the wave I amplitude in protected ears. In contrast to open ears, Day 14 results 

for protected ears show recovery to pre-blast conditions, demonstrating that earplugs may 

have prevented permanent damage to cochlear ribbon synapses, spiral ganglion neurons, 

and auditory neural fibers.  
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Figure 10.  ABR wave I amplitude in response to stimulus level from 40 to 100 dB SPL 

measured from (top) open ears (mean ± SEM, n = 14 ears) and (bottom) plugged ears 

(mean ± SEM, n = 14 ears). Measurements were taken at frequencies of 1, 2, 4, and 8 

kHz. 

2.5.4 DPOAE Level Shifts 

The mean and SEM of DPOAE level shifts (reductions) measured from animals in 

Group 1 on Day 1 (D1) and Day 14 (D14) at frequencies of 1-14 kHz is shown in Figure 

11. The mean values of the DPOAE level shifts increased from about 7 dB SPL at 1 kHz 

to a peak of 33 dB at 11 kHz on Day 1. The shift decreased substantially on Day 14 to 

around zero dB at 1 kHz and below 10 dB over the rest of the frequency range. The DPOAE 

results on Day 1 and Day 14 were significantly different across all frequencies. The results 

obtained from plugged ears indicate that the protection of earplugs may have facilitated the 
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recovery and prevented the permanent loss of the outer hair cells in the cochlea to some 

degree.  

 

Figure 11. DPOAE level shifts (mean ± SEM, n = 14 ears) measured from protected ears 

on Days 1 and 14. 

2.5.5 Assessment of Central Auditory System Damage (MLRs) 

Representative curves of MLR signals in unprotected ears over the 14-day time 

period are shown in Figure 12. MLR traces were recorded at 80 dB SPL with the stimulate 

frequency of 0.5 kHz. The pre-blast waveform is comprised of a negative peak (Na peak) 

at 14-18 ms and a positive peak (Pa peak) at 19-22 ms. The amplitudes and time latencies 

of the Pa and Na peaks reflect the condition of the central auditory nervous system.  
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Figure 12. Representative MLR traces from chinchilla with unprotected ears taken (A) 

pre-blast (B) post-blast and (C) Day 14. Traces were recorded at 80 dB SPL with a 

stimulate frequency of 0.5 kHz.  The Na peak and Pa peak are indicated by arrows. 
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The mean ± SEM peak-to-peak amplitude measured from Na to Pa, Na latency, and 

Pa latency for the protected and unprotected ears are summarized in Figure 13. Figure 

13A shows the peak-to-peak amplitude for protected and unprotected ears pre-blast to be 

2.71 ± 0.28 µV and 2.29 ± 0.16 µV, respectively. After the blast exposures, the average 

peak-to-peak amplitude in protected ears and unprotected ears decreased to 2.09 ± 0.49 µV 

and 1.85 ± 0.39 µV, respectively. On Day 14 (D14), the peak-to-peak amplitudes for 

protected and unprotected ears had further reduced to 1.43 ± 0.12 µV and 1.53 ± 0.27 µV, 

respectively. There were no significant differences between the peak-to-peak amplitudes 

of the protected and unprotected ears. This data indicates that there was damage to the CAS 

in both protected and unprotected ear groups that was not resolved over 14 days.  

 Figure 13B shows the average Na peak latency in protected and open ears. Before 

blast exposure, the average Na peak latencies in protected and open ears were determined 

to be 15.70 ± 0.83 ms and 16.33 ± 0.22 ms, respectively. The Na latencies for both plugged 

and open ears increased after blast to 18.50 ± 0.30 ms and 18.17 ± 0.76 ms, respectively. 

By D14, the Na latencies for protected and open ears had reduced to 17.1 ± 0.13 ms and 

17.1 ± 0.46 ms, respectively. However, these values were slightly elevated in comparison 

to their respective pre-blast values, suggesting that there may still be damage to the CAS. 

It should be noted that there were no significant differences between the Na latencies of 

the protected and unprotected ears.  

 The average Pa peak latency in open and protected ears over a 14-day time period 

is displayed in Figure 13C. Prior to exposure to repeated blasts, the Pa latencies for 

protected and open ears were determined to be 21.71 ± 0.81 ms and 21.14 ±  0.26 ms, 

respectively. After blast, the latency of the Pa peak increased to 22.80 ± 0.44 ms and 22.76 
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± 0.87 ms for protected and unprotected ears, respectively. The Pa peak latencies for both 

plugged and open ears returned to roughly pre-blast levels by D14, however, at 21.38 ± 

0.61 ms and 21.43 ± 0.55 ms, respectively. There were no significant differences between 

the Pa latencies of the plugged and open ears.  

 

Figure 13. MLR results at 500 Hz at 80 dB SPL in open (mean ± SEM, n = 6 ears) and 

protected ears (mean ± SEM, n = 4 ears) after exposure to 6 consecutive low-intensity 

blasts of 21-35 kPa (3-5 psi). (A) Peak-to-peak amplitude measured from Na to Pa. (B) 

Na latency and (C) Pa latency. 

2.5.6 Discussion 

2.5.6.1 Hearing Damage Induced by Repeated Low-Intensity BOPs 

 In this study, the ABR thresholds for animals in both Group 1 and Group 2 were 

substantially elevated after repeated blast exposures. While the ABR threshold shifts did 

decrease with time over 14 days in both protected and unprotected ears, they did not recover 

to their respective pre-blast levels (Figure 9). These findings suggest that the hearing 

recovery was limited in both protected and unprotected ears.  

 The MLR measurements are a reflection of the recovery process of the CAS after 

repeated blast exposure. As shown in Figure 13A, after blast the peak-to-peak MLR 

amplitudes were reduced for both groups, indicating that some damage to the CAS had 

occurred. By D14, the amplitude levels of both groups were still less than the pre-blast 
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levels, suggesting that the CAS had not fully recovered. The Na latency values for both 

groups increased after blast. However, the latency times for both groups demonstrated a 

gradual decrease over 14 days. The Pa latency values for both groups exhibited a similar 

trend, rising sharply after blast but then returning to roughly the original pre-blast values.  

There were no significant differences between the MLR measurements for the plugged and 

open ear groups. Collectively, these results suggest that exposure to 6 repeated low-

intensity blasts induced some degree of dysfunction in the CAS and indicate that the 

protective mechanism of earplugs may be limited for the CAS when exposed to repeated 

low-intensity blasts.  

 ABR wave I signal, which is a predictive indicator of cochlear synaptopathy 

(Hickman et al., 2018; Liberman & Kujawa, 2017), was also measured in this study. In 

open ears, decreased wave I amplitudes were observed after repeated blast exposure. Wave 

I amplitudes for open ears were lower than the pre-blast amplitudes even after 14 days, 

indicating that there may have been strong acute cochlear synaptopathy that was not 

resolved completely in the long-term. Wave I amplitudes for protected ears also suggested 

acute cochlear synaptopathy, though not to the degree of that observed in open hears. 

However, wave I amplitudes for protected ears appeared to recover over 14 days.  

2.5.6.2 Effect of Number of Blasts and HPDs 

 Recently, a similar study in which chinchillas with and without HPDs were exposed 

to 3 BOPs of 3-5 psi and evaluated for progressive hearing damage over 7 days (Chen et 

al., 2019). The results reported in this study and in Chen et al. (2019) are compared to 

investigate the effect of the number of blasts and HPDs. As seen in Figure 14, chinchillas 
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without HPDs that were exposed to 6 repeated blasts experienced a greater ABR threshold 

shift than their counterparts exposed to 3 repeated blasts. This trend is also reflected in the 

ABR threshold shifts of chinchillas with earplugs after exposure to 3 or 6 repeated blasts 

(Figure 15). Thus, ABR threshold shifts indicate that chinchillas exposed to 6 repeated 

blasts, regardless of hearing protection condition, experienced greater hearing damage than 

those exposed to fewer blasts.  

 

Figure 14. ABR threshold shifts (mean ± SEM) measured in open ears on Days 1, 4, and 

7 after exposure to low-intensity blasts of 21-35 kPa (3-5 psi). (A) 6 consecutive blasts 

(n=14) and (B) 3 consecutive blasts (n=7) (Fig. 5B, Chen et al. 2019). 

 

 

Figure 15. ABR threshold shifts (mean ± SEM) measured in protected ears on Days 1, 4, 

and 7 after exposure to low-intensity blasts of 21-35 kPa (3-5 psi). (A) 6 consecutive 

blasts (n=14) and (B) 3 consecutive blasts (n=7) (Fig. 5A, Chen et al. 2019). 
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 Comparison of the results from Chen et al. (2019) and those presented herein 

provide insight into the ability of earplugs to reduce hearing damage. In comparing Figure 

14A and Figure 15A, results demonstrate that the hearing threshold of animals with 

protected ears recovered to a greater extend by D7 than those without earplugs after 

exposure to 6 repeated blasts. Chinchillas with and without HPDs exposed to 3 repeated 

blasts also demonstrated a similar trend (Figure 14B vis Figure 15B).  

 ABR wave I results from both studies suggest that both 3 and 6 repeated blasts were 

enough to induce cochlear synaptopathy in chinchillas without earplugs (Figure 16A-B). 

By D7, the ABR wave I amplitudes for open ears exposed to 3 and 6 blasts were still 

reduced at 8 kHz. In contrast, the ABR wave I peak-to-peak value for chinchillas with 

earplugs (Figure 16C-D) from both studies had recovered to a greater degree than their 

respective unprotected counterparts. However, those exposed to 6 repeated blasts 

demonstrated a greater acute ABR wave I decrease than those exposed to 3 repeated blasts, 

which aligns with the results from the ABR threshold shifts.  

 

Figure 16. ABR wave I amplitude (mean ± SEM) in response to stimulus level from 80 

to 100 dB SPL measured from (A-B) open ears and (C-D) protected ears after exposure 

to low-intensity blasts of 21-35 kPa (3-5 psi). (A, C) 6 consecutive blasts (n=14) and (B, 

D) 3 consecutive blasts (n=7) (Fig. 6, Chen et al. 2019). Measurements were taken at 8 

kHz. 
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 Finally, differences in DPOAE results measured from animals with earplugs may 

be attributed to differences in the number of blast exposures. Results from Chen et al. 

(2019) and the study reported herein indicate that chinchilla exposed to 6 repeated blasts 

had slightly greater disruption of outer hair cell function than those exposed to 3 repeated 

blasts, as evidenced by the greater increase in DPOAE level shifts shown in Figure 17.  6-

blast animals demonstrated greater acute damage on D1, particularly in the 3-6 kHz region 

than 3-blast animals. By D7, the DPOAE level of 3-blast animals had recovered to a greater 

degree than 6-blast animals, especially at mid-frequencies.  

 

Figure 17. DPOAE level shifts (mean ± SEM) measured from protected ears on Days 1, 

4, and 7 after exposure to (A) 6 consecutive blasts (n=14) and (B) 3 consecutive blasts 

(n=7) (Fig. 7A, Chen et al. 2019). 

2.6 Chapter Summary 

This study aimed at investigating the progressive hearing damage in chinchillas 

when exposed to repeated low-intensity blasts. Animals with and without earplugs were 

exposed to low-level blast overpressure of 3-5 psi (21-35 kPa). ABRs, DPOAEs, and 

MLRs were measured pre- and post-blast and over a time period of 14 days for the 

progressive study. Major findings from this study include: 1) overall, 6 blasts were able to 
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induce permanent hearing damage in both open and protected ears, suggesting that HPD 

function was limited under conditions of repeated low-intensity blast; 2) hearing function 

tests indicate dysfunction in both the peripheral and central auditory systems; 3) 6 low-

intensity blasts induced greater hearing damage in protected and unprotected ears than in 

protected and unprotected ears exposed to 3 low-intensity blasts of equal BOP level. 
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Chapter 3: 3D FE Model of Chinchilla Ear for Acoustic Sound 

Transmission  

 The FE model of the chinchilla ear previously reported in literature focused on the 

middle ear. While the outer and middle ear portions of this model were based on X-ray 

(µCT) images, the cochlea itself was simulated by a mass block and dashpots. 

Furthermore, the FE analyses of this model used ANSYS APDL (ANSYS Classic) to 

calculate the response of the middle ear to a uniform acoustic pressure in the frequency 

domain. 

 This chapter will discuss the creation of the chinchilla cochlea model and its 

integration with the existing middle ear model. Furthermore, the transition from ANSYS 

APDL to ANSYS Workbench to simulate acoustic sound transmission will be detailed. 

The applied boundary conditions and material properties will be described as well. The 

results obtained from the model will be presented and compared with published data for 

model validation.  

3.1 Creation of 3D FE Model of Chinchilla Ear 

 This section will discuss the previously published 3D FE model of the chinchilla 

middle ear. Then, the creation of the FE model of the chinchilla cochlea will be described. 

Finally, integration of both models into one cohesive model will be detailed.  

3.1.1 3D FE Model of the Chinchilla Middle Ear 

Harmonic analysis over the auditory frequency range of 100-10,000 Hz was 

conducted in a 3D FE model of the chinchilla middle ear (Wang & Gan, 2016). Based on 

X-ray (µCT) images of an adult chinchilla bulla (Figure 18), the 3D FE model included 
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the TM, ossicular chain and associated suspensory ligaments (C1, C3, C5, and C7), bony 

septa, and middle ear cavity. The air in the ear canal and middle ear cavity were meshed 

by acoustic elements, while the middle ear structures were meshed by solid elements. All 

elements in this model were four-node elements. The FE model of the chinchilla middle 

ear is shown in Figure 19. 

 

Figure 18. (A) A typical µCT image of a chinchilla left ear with (B) bony structure 

outlined in blue (Wang & Gan, 2016). Characteristic structures of the ear such as the 

cochlea are labeled. 
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Figure 19. 3D FE model of the chinchilla middle ear (Wang & Gan, 2016). Key 

structures of the chinchilla ear are labeled. Note that this model did not include an 

anatomically accurate model of the cochlea. 

3.1.2 Chinchilla Cochlea Model 

 The chinchilla cochlea model was constructed in a similar manner to the middle ear 

model. X-ray (µCT) slices were used to identify the cochlea and a geometry model was 

built in Amira. The surfaces of the geometry model built in Amira were then translated into 

HyperMesh (Altair Computing, Inc., Troy, MI) to generate FE meshes of the cochlea. As 

shown in Figure 20 and Figure 21, the FE model of the chinchilla cochlea is comprised of 

two fluid filled chambers, the scala tympani and scala vestibule, which are separated by 

the basilar membrane and connect at the helicotrema. The two and a half turn cochlea 

consisted of a total of 28,170 elements, with the scala tympani and scala vestibuli 
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composed of 12,816 elements and 12,834 elements, respectively. Figure 21 depicts the 

basilar membrane and its bony supports, which in total consisted of 1,602 elements. The 

basilar membrane was approximately 16 mm in length. Figure 22 shows the basilar 

membrane within the cochlear fluid.  

 

Figure 20. FE model the chinchilla cochlea with middle ear components (stapes, 

stapedial annular ligament, and round window membrane) to illustrate connection points 

to the middle ear model. The global coordinate system is shown (x – red, y – green, z – 

blue). The scale bar is 0.001 m. 
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Figure 21. Basilar membrane structure and associated bony supports of the FE model of 

the chinchilla cochlea. The basilar membrane was approximately 16 mm in length. The 

scale bar is 0.0009 m. 

 

Figure 22. Basilar membrane and associated bony supports surrounded by cochlear fluid 

(transparent). Note that the basilar membrane separates the scala tympani and scala 

vestibuli. These two fluid filled chambers connect at the helicotrema. The scale bar is 

0.001 m. 
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3.1.3 Creation of 3D FE Model of Chinchilla Ear 

 The FE models of the chinchilla middle ear and chinchilla cochlea were integrated 

into one cohesive model in HyperMesh. The stapes and round window membrane 

structures of the middle ear were connected to the cochlea and the nodes at the interfaces 

were equivalenced. The integrated 3D FE model of the entire chinchilla ear is shown below 

in Figure 23. Note that the septa (thin bony plates that divide the middle ear cavity into 

two chambers) are omitted for viewing purposes. Figure 24 emphasizes the septa structures 

found in the middle ear cavity. The TM, ossicular structures and associate supporting 

ligaments, and cochlea components of the model are shown in Figure 25.  

 

Figure 23. Posterior view of the 3D FE model of the chinchilla ear including the external 

ear canal. Note that the bulla is rendered transparent for ease of viewing. Scale bar is 

0.006 m. 
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Figure 24. Medial view of the FE model of the chinchilla ear including the ear canal, 

TM, ossicular chain and supporting ligaments, septa, and cochlea. Bulla is excluded for 

viewing purposes. The scale bar is 0.004 m. 

 

 

Figure 25. Posterior view of the middle ear structures and cochlea. The connection 

between the TM and cochlea through the ossicular chain is prominently displayed. Note 

the emphasis on suspensory ligaments. The scale bar is 0.002 m. 
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The whole FE model consisted of 234,919 elements and 75,885 nodes. The air fluid 

in the ear canal and bulla, as well as the liquid fluid in the cochlea were composed of 

FLUID30 elements. FLUID30 elements are 3D acoustic fluid elements used for modeling 

fluid medium and the interface in fluid/structure interaction problems. FLUID30 has four 

degrees of freedom: translations in the nodal x, y, and z directions, and pressure. This 

element type is particularly suited for applications in sound wave propagation (ANSYS 

Inc., 2013). The fluid in the ear canal were 4-node tetrahedral elements, while the fluid in 

the cochlea were 8-node hexahedral elements.  

 The septa, ossicular chain, and suspensory ligaments in the middle ear were 

modeled by 4-node tetrahedral elements (SOLID45), while the TM was modeled by 8-node 

hexahedral elements (SOLID45). The basilar membrane and bony supports of the cochlea 

were modeled by 8-node hexahedral elements (SOLID45). SOLID 45 elements have three 

degrees of freedom: translations in the nodal x, y, and z directions. This element type has 

large deflection and large strain capabilities (ANSYS Inc., 2007).  

 3.2 Generating Model for Harmonic Response Analysis 

 This section will provide a general overview of ANSYS Workbench before 

detailing the analysis system and briefly discussing the associated theories used in 

generating the 3D FE model of the entire chinchilla ear. The boundary conditions and 

material properties used in this acoustic simulation are also detailed.  
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3.2.1 ANSYS Workbench 

 Founded in the 1970s, ANSYS initially offered a single commercial general-

purpose finite element program. Since then, it has become a giant in the engineering 

simulation industry, providing engineering simulation software that spans the entire range 

of physics. Currently, there are two primary ways to access the suite of ANSYS products. 

The first is through the original ANSYS environment, ANSYS Mechanical APDL 

(ANSYS Classic), which has a primitive graphical user interface (GUI) but primarily relies 

on the input of the ANSYS Parametric Design Language (APDL) commands. This is the 

platform that was used for the 2016 publication of the 3D FE model of the chinchilla middle 

ear. The second platform available is ANSYS Workbench, which consolidates ANSYS 

simulation products in a more user-friendly environment. All of the ANSYS, Inc. products 

can interface with each other in the Workbench environment. This platform still accepts 

APDL commands, but its drag-and-drop system modules and improved GUI allows the 

user to rely less on APDL code, facilitating the creation of analysis systems. The model 

presented in this thesis was generated in the ANSYS Workbench environment using 

harmonic response system analysis.   

3.2.2 Structural Analysis in ANSYS Mechanical: Harmonic Response 

 Harmonic response analysis calculates the response of a system as a function of 

frequency. This type of analysis was used by Wang & Gan (2016) in characterizing middle 

ear functions using the 3D FE model of the chinchilla middle ear. Gan et al. (2007) also 
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used this analysis method to model sound transmission from the ear canal to the cochlea in 

a 3D FE model of the human ear.  

 Harmonic response analysis solves the general equation of motion for a structural 

system undergoing steady-state vibration (1):  

[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝐹𝑎} (1) 

where [M] is structural mass matrix, [C] is the structural damping matrix, [K] is the 

structural stiffness matrix, {ü} is the nodal acceleration vector, {u̇} is the nodal velocity 

vector, {u} is the nodal displacement vector, and {Fa} is the applied load vector (ANSYS 

Inc., 2009). The discretized structural mechanics equation models each finite element in 

the model, accounting for element shape, material properties, and boundary conditions, and 

are assembled into a larger system of equations that models the entire problem.  

[𝑀]{𝑢̈} + [𝐶]{𝑢̇} + [𝐾]{𝑢} = {𝐹𝑎} (1) 

 

3.2.3 Equations Governing Acoustic Elements 

 The air in the ear canal and middle ear cavity, operating under the assumptions that 

air is compressible and inviscid with uniform mean pressure and density, were governed 

by the simplified lossless acoustic wave equation (2): 

1

𝑐2
(

𝜕2𝑃

δt2
) − ∇2𝑃 = 0 

(2) 

Where 𝑃 is the acoustic pressure, 𝑐 is the speed of sound (√𝑘/𝜌 ) in fluid medium, 𝜌 is the 

mean fluid density, 𝑘 is the bulk modulus of fluid, and 𝑡 is time (ANSYS Inc., 2009; Gan 
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et al., 2007). The density and speed of sound of the air were assumed as 1.21 kg/m3 and 

346.1 m/s, respectively.  

 Equations 1 and 2 must be considered simultaneously in fluid-structure interaction 

problems. In the case of this model, there were fluid-structure interactions between acoustic 

elements that interfaced with movable structures such as the TM, ossicles, and basilar 

membrane.   

3.2.4 ANSYS Harmonic Response Analysis Setup 

The External Model component system was used to import the “.CDB” mesh file 

of the chinchilla ear into the ANSYS Workbench environment. The boundary conditions 

applied were based on those used by Wang & Gan, 2016. Briefly, the displacement 

boundaries of the TM annulus, stapedial annular ligament, and suspensory ligaments were 

fixed at the middle ear cavity wall. The bony support structures on either side of the basilar 

membrane were also assumed to be fixed.  

The material properties used in the FE model of the chinchilla ear were adapted 

from literature. The mechanical properties of the middle ear structures were assumed as 

those used in Wang & Gan, 2016. Currently, no experimental data exists for the mechanical 

properties of the chinchilla basilar membrane from base to apex. However, studies in mice 

and gerbil have reported that stiffness of the basilar membrane generally decreases from 

base to apex (Emadi et al., 2004; Teudt & Richter, 2014). The Young’s modulus of the 

basilar membrane in the FE human ear model (Gan et al., 2007) was assumed as 50 MPa 

at the base and linearly decreased to 15 MPa at the middle and further decreased to 3 MPa 

at the apex. The basilar membrane stiffness gradient assigned to the chinchilla model 
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reported in this thesis was 50 MPa at the base and 2.5 MPa at the apex. The β damping 

coefficient was 5 x 10-7 s at the base and increased to 0.3 x 10-3 s at the apex. The Young’s 

modulus and damping coefficient β gradients are displayed in Figure 26 and Figure 27, 

respectively.  

 
Figure 26. Young’s modulus gradient from base to apex. The elastic modulus was 50 

MPa at the base and decreased to 2.5 MPa at the apex. 

 

Figure 27. β damping coefficient gradient from base to apex. The β damping coefficient 

was 5 x 10-7 s at the base and increased to 0.3 x 10-3 s at the apex. 
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In order to model the air and cochlear fluid in the FE model, an Acoustics ACT 

Extensions was employed to define acoustics properties and apply acoustic boundary 

conditions and loads in mechanical without the need for APDL. The acoustic elements in 

the ear canal and middle ear cavity, as well as those in the cochlea, were designated as 

Acoustic Bodies. The density and sound speed of air were assumed as 1.21 kg/m3 and 346.1 

m/s, respectively. The cochlear fluid, known as perilymph, found in the scala vestibuli and 

scala tympani was modeled as a viscous, incompressible fluid with a density of 1,000 

kg/m3, sound speed of 1,500 m/s, and viscosity of 0.001 Pa·s. Fluid-structure interfaces 

(FSIs) where the acoustic pressure was coupled into structural analysis were defined in 

surfaces next to a movable structure (e.g. the TM, ossicles, basilar membrane, and RWM). 

Surfaces next to the ear canal wall and middle-ear cavity wall (both of which were fixed) 

were assigned an acoustic impedance value of 150,000 Pa·s/m3 and assumed to be fixed. 

A sound pressure of 90 dB SPL (0.632 Pa) was applied in the ear canal at 2 mm 

away from the TM at the umbo. The displacements of the stapes FP and TM were 

determined from the harmonic response analysis over the auditory frequency range of 100 

Hz to 15 kHz. The basilar membrane displacement from base to apex was also determined.  

3.3 Results and Validation 

 The magnitude of the TM and stapes FP displacement in the direction normal to the 

FP was normalized by the input sound pressure (0.632 Pa). The TM displacement and 

stapes FP displacement were compared to the analysis results from the 3D FE Model of 

the chinchilla middle ear model (Figure 28). These results were also compared to 

experimentally derived data (Figure 29).  



46 

 

 

Figure 28. FE model derived displacements of the (A) TM at the umbo and (B) stapes FP 

in comparison to the published FE model of the chinchilla middle ear (Wang & Gan, 

2016). 
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Figure 29. FE model-derived displacements of the (A) TM at the umbo and (B) stapes FP 

in comparison to published experimental data in chinchilla (Guan et al., 2014; Ruggero et 

al., 1990). 
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 The displacement of the basilar membrane from the base to the apex over 

frequencies ranging from 200 Hz to 15 kHz were also derived (Figure 30). The basilar 

membrane displacement (dBM) was normalized by the stapes FP displacement (dFP) across 

the frequency range. This data was compared to the frequency versus position map created 

from published chinchilla experimental data (Figure 31)  (Greenwood, 1990).  

 

Figure 30. BM displacement normalized with respect to the footplate displacement (dBM / 

dFP) at frequencies of 200 Hz – 15 kHz from the base to apex. 
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Figure 31. FE model-derived frequency versus position map in comparison to published 

chinchilla experimental data. The black line represents the line of best fit to data points 

(Eldredge et al., 1981). 

As seen in Figure 28A, the TM displacement predicted by the FE model of the 

entire chinchilla ear was similar to that predicted by the model published by Wang & Gan 

(2016). The umbo displacement derived from this model was about 0.18 µm/Pa at low 

frequencies. While the predicted stapes FP displacement was similar to that predicted by 

the middle ear model at low frequencies, the FP displacement predicted by the whole ear 

model was relatively lower at frequencies of 2,800-10,000 Hz (see Figure 28B). The 

discrepancy may be due to the differences in how the cochlea was modeled. The mass 

block and dashpot system used by Wang & Gan (2016) simulated a cochlear impedance of 
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100 GW. The reduction in movement by the stapes at high frequencies suggests that the 

spiral cochlea in the FE model of the entire chinchilla ear had a greater impedance.  

 The TM displacement predicted by the FE model presented in this thesis generally 

agrees with the experimental data from chinchilla, as shown in Figure 29A. As shown in 

Figure 29A, the model-derived umbo displacement was about 0.18 µm/Pa at low 

frequencies, which was slightly lower than the experimental measurements. However, the 

TM displacement predicted by the model agreed with the experimental data collected by 

Ruggero et al., 1990, falling within ± 1 SD of the average TM displacement.  

 Figure 29B shows that the model-derived FP displacement follows the trend of 

experimental data collected by Ruggero et al. (1990). However, the FE model predicated 

FP displacement was relatively low in comparison at low and high frequencies. As noted 

by Wang & Gan (2016) this may be because the anatomical ossicular lever ratio, or the 

ratio between the length of the manubrium and length of the incus long process, was 3.76, 

which was larger than that of Ruggero’s measurement of 2.94. However, the reported 

anatomical ossicular lever ratio ranges widely in literature, from 2.84 to 3.66 in chinchilla 

(Wang & Gan, 2016).  

 The normalized displacement of the basilar membrane along the longitudinal length 

of the BM from the base to apex shown in Figure 30 indicates that lower frequencies peak 

closer to the apex (x = 16 mm) while higher frequencies peak closer to the base (x = 0 mm). 

The distribution of frequencies in this manner agrees with the well-established knowledge 

that the basilar membrane is organized tonotopically. Tonotopic organization of the basilar 

membrane provides mechanical tuning that provides the frequency sensitivity in the 

cochlea as reported by von Békésy on experimental measurements (Békésy, 1960).  
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 In Figure 31, the FE model predicted basilar membrane displacement is compared 

to an experimentally derived frequency-position map for the chinchilla cochlea (Eldredge 

et al., 1981). In Eldredge et al., 1981, frequencies of tones were mapped on to locations 

along the organ of Corti. The locations were expressed as percentage distance from the 

apex of the cochlea, facilitating comparison of cochlea of different lengths. As seen in 

Figure 31, the FE model predicted frequency-position map agrees with that presented by 

Eldredge et al. At 200 Hz and 15 kHz, the FE model predicted that the traveling wave 

associated with this frequency (see Figure 30) would peak approximately at 12% and 91% 

from the apex, respectively. The FE model results deviated the most from the best fit line 

at 1 kHz, 2 kHz, and 4 kHz. However, Eldredge et al. noted that individual data points 

varied greatly and attributed to this variation to true differences among chinchilla ears 

(Eldredge et al., 1981).  

3.4 Chapter Summary 

 A 3D FE model of the entire chinchilla ear, including the cochlea, was created. A 

uniform acoustic pressure was applied 2mm away from the TM and harmonic analysis was 

conducted using ANSYS Workbench to predict the displacements of the TM, stapes FP, 

and basilar membrane. FE model predicted results were then compared to experimental 

data to validate the model. Comparison of the FE model results and measurements taken 

from animal models demonstrated that the FE model could represent the main 

characteristics of TM displacement, and to a lesser degree stapes FP displacement, in 

chinchilla. Furthermore, the results of the FE model derived basilar membrane 
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displacement indicate that the model can capture the tonotopic distribution of the basilar 

membrane in the cochlea.  

 In summary, the first-ever 3D FE model of the entire chinchilla ear was created and 

used to simulate sound transmission from the ear canal to the cochlea. 
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Chapter 4: 3D FE Model of Chinchilla Ear for Blast Wave 

Transmission  

 As reported in Chapter 3, the FE model of the entire chinchilla ear, including the 

spiral cochlea, was created and used for acoustic analysis. However, the analysis technique 

used in this situation was a linear analysis, which calculated only the steady-state, linear 

response to an applied uniform acoustic pressure in the frequency domain. This technique 

does not adequately represent a blast overpressure waveform, nor the associated nonlinear 

effects. Therefore, a solver method more suitable for blast analysis was needed.  

 This chapter will focus on the adaptation of the newly developed FE model of the 

chinchilla ear for the analysis of blast wave transmission. A brief overview of the solver 

methodology utilized in Leckness et al. (2018) for blast wave analysis of the FE model of 

the human ear and its implementation regarding this model will be described. The boundary 

conditions and material properties ascribed to the model will be detailed. Finally, 

preliminary results and commentary on needed improvements will be provided. 

4.1 Strongly Coupled FSI Analysis Scheme for Modeling Blast Wave 

Transmission 

As mentioned previously, Leckness et al. (2018) reported the use of a strongly 

coupled FSI analysis method to computationally model blast wave transmission through 

the human ear. This method can be found in Leckness’ MS thesis (2016) and utilizes the 

ability of ANSYS to conduct multiphysics analyses to simulate the interaction between 

fluid flow and structural mechanics that occurs during blast wave propagation. FLUENT 

and ANSYS Mechanical (Transient Structural) analysis systems were used to solve the 

fluid and structural domains, respectively (Leckness, 2016). As in Leckness (2016), the 
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fluid domains of this model consisted of the air in the ear canal and middle ear cavity. 

However, the inclusion of the spiral cochlea of this model, which was absent in Leckness’ 

model of the human ear, necessitated the inclusion of the cochlea in the fluid domain as 

well. Likewise, the structural domain of this model was similar to Leckness’ model, 

including the TM, TMA, ossicular chain and associated suspensory ligaments. However, 

the RWM and the basilar membrane and its associated bony supports were also included 

in the structural domain of this model, unlike that of Leckness’.  

In order to accurately simulate the two-way fluid-structure interaction that occurs 

during blast wave transmission through the ear, computational fluid dynamics and 

structural mechanics must be co-simulated.  Tightly integrated coupling of FLUENT and 

ANSYS Mechanical was achieved by system coupling the two analysis systems in the 

ANSYS Workbench user environment (Leckness, 2016). The simulation of the two-way 

fluid-structure interaction is especially important for modeling blast wave transmission 

through the chinchilla ear due to the large volume of air found in the large middle ear cavity 

of chinchilla. Figure 32 below shows the project schematic of the system coupled analysis 

systems as it pertains to the model of the chinchilla ear. The “.CBD” structural mesh file, 

which included the structural domain, were imported into ANSYS Mechanical while the 

.MSH files containing the fluid domains were transferred into FLUENT.  



55 

 

 

Figure 32. ANSYS Workbench project schematic showing data flow from FLUENT and 

ANSYS Mechanical (Transient Structural) to system coupling. 

 The two-way communication between FLUENT and ANSYS Mechanical is 

achieved through the Workbench component system, System Coupling, which handles data 

transfers that occur bi-directionally between the analysis systems. These data transfers are 

determined by the application of FSIs which the user specifies on mesh faces that coincide 

in both FLUENT and ANSYS Mechanical. For example, the interface of the basilar 

membrane with the fluid in the cochlea and the interface of the fluid in the cochlea with 

the basilar membrane were both designated as FSIs. The coupling service and participant 

solvers advance synchronously through a coupled analysis. The execution sequence of the 

System Coupling service controlling the analysis is described in depth in Leckness (2016) 

and, for the sake of brevity, will not be discussed herein. Furthermore, a detailed discussion 

of the solver tactics of FLUENT will not be included in this thesis, as they are similar to 

those reported in Leckness (2016). The solver tactics of ANSYS Mechanical have been 

previously discussed in Chapter 3. 
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4.2 Generating the Model for Blast Wave Simulation 

 This section will focus on the analysis setups for FLUENT and ANSYS 

Mechanical, namely the applied loads and boundary conditions that were used to represent 

the physics of blast wave transmission through the chinchilla ear.  

 4.2.1 Fluid Analysis Setup 

 The analysis in FLUENT was set up for transient, compressible, laminar fluid flow. 

Fluids are classified as incompressible and compressible, where compressible fluids 

undergo significant changes in density as they flow while incompressible fluids do not. 

Generally, compressibility effects are considered significant if the Mach number, or the 

speed of an object in relation to the speed of sound, is greater than 0.3. A blast wave, which 

consists of a shock wave and blast wind (Stuhmiller et al., 1991), creates a sharp change in 

pressure level and necessitates the consideration of compressibility effects. Moreover, the 

velocity of a shock wave is supersonic compared to the local sound speed in the 

surrounding medium. For these reasons, compressibility was considered in this analysis. 

Laminar flow was selected as the flow regime because the high velocity pressure front that 

enters the ear canal quickly loses velocity at the end of the canal, where the total pressure 

measured is primarily static pressure (Leckness, 2016).  

 Standard compressible air properties were used for the fluid in the ear canal and 

middle ear cavity. The fluid in the cochlea was modeled as liquid water. The operating 

pressure was assumed as ambient air pressure at sea level (101,325 Pa) and the effects of 

gravity were neglected. A recorded BOP waveform from a chinchilla animal test was 

applied as an input at the entrance of the ear canal, which was defined as a pressure-inlet 
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(Figure 33). The walls of the ear canal, middle ear cavity, and cochlea were defined as 

rigid, no slip walls. 

 

Figure 33. (A) A recorded BOP waveform at the entrance of the ear canal from an 

animal test with a peak pressure of 4.7 psi. (B) Model image with the entrance of the ear 

canal in light blue. The waveform was applied at the entrance of the ear canal in the 

model in FLUENT to drive the analysis. 

The high pressure caused large deformation of the TM, which in turn led to large 

deformation of the FSIs in the model. Thus, the dynamic smoothing and remeshing scheme 

employed by Leckness (2016) was also used in this model to maintain a level of cell quality 

sufficient for convergence under conditions of large deformation.  

 FSIs on either side of the TM, RWM, and BM were applied to transfer the fluid 

forces acting on these structures into these structures in ANSYS Mechanical and in turn to 

receive the structural displacements. An FSI on the stapes FP was also created to capture 

the interaction occurring where the stapes terminates at the cochlea. The fluid-structure 

interaction between the ossicular chain and air in the middle ear cavity was assumed 

negligible (Leckness, 2016).  
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 There are four pressure-velocity coupling algorithms that may be used to calculate 

a solution: SIMPLE, SIMPLEC (SIMPLE-Consistent), PISO (Pressure-Implicit with 

Splitting of Operators) and COUPLED. Segregated solvers such as PISO, SIMPLE, and 

SIMPLEC are advantageous for large cases in which direct-coupled solvers (e.g. 

COUPLED) become unaffordable due to large resource-demands. PISO is similar to the 

SIMPLE and SIMPLEC algorithms but can drastically reduce the number of iterations 

needed for convergence, particularly for transient problems. PISO also has the advantage 

of reducing convergence difficulties associated with highly distorted meshes. For these 

reasons, PISO was utilized as the pressure-velocity coupling algorithm for this analysis. 

 The analysis duration was set to 4 ms with a time step size of 1 µs. Static pressure 

monitors were initialized at locations of interest to determine the predicted pressure 

waveforms. The locations of interest included in front of the TM in the ear canal (P1) and 

behind the TM in the middle ear cavity (P2), as shown in Figure 34. The pressure in the 

cochlea along its spiral were also desired. Pressure monitors at three locations within the 

scala vestibuli (SV-1, SV-2, and SV-3) and scala tympani (ST-1, ST-2, and ST-3) each 

were used to determine the pressure distribution within the cochlea. SV-1 was located 

approximately 0.6 mm below the stapes FP, while SV-2 and SV-3 were located about 5 

mm and 13 mm from the base, respectively. ST-1 was located roughly 0.9 mm below the 

RWM, while ST-2 and ST-3 were located approximately 6 mm and 13 mm from the base, 

respectively. The locations of the pressure monitors in the scala vestibuli and scala tympani 

are shown in Figure 35.  
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Figure 34. Locations of P0, P1, and P2 pressure calculated in the ear canal and middle 

ear cavity. P1 was located approximately 2 mm lateral to the TM. P2 was located 

approximately 1.5 mm medial to the TM. The cochlea has been removed for ease of 

viewing. 
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Figure 35. Locations of the pressure calculated in the scala vestibuli (SV-1, SV-2, and 

SV-3) and scala tympani (ST-1, ST-2, and ST-3). The outlines of the scala vestibuli, scala 

tympani, basilar membrane, and supporting bony structures in the cochlea are shown for 

context and ease of viewing. 

4.2.2 ANSYS Mechanical Analysis Setup 

 The structural components of the chinchilla ear including the TM, TM annulus, 

ossicular chain and associated suspensory ligaments, septa, and basilar membrane and 

supporting bony structure were imported in ANSYS Mechanical. The material properties 

of these structures in the middle ear were based on those used in Wang & Gan (2016), 

though there did exist slight differences. Notably, the elastic modulus of the TM was 

decreased to 150 MPa and the damping coefficient of some structures were reduced. The 
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Poisson’s ratio of all solid structures was assumed as 0.3. The material properties used for 

middle ear structures in this model are listed in Table 1 below. The material properties of 

the basilar membrane were assumed as those reported in Chapter 3.  

Table 1: Material properties of chinchilla ear model for blast wave analysis 

Structure Parameters 

Tympanic membrane  

Elastic modulus (MPa): Pars tensa 150 

Pars flaccida 15 

Density (kg/m3) 1100 

Damping coefficient   

Pars tensa 1.0 x 10-6 

Pars flaccida 7.5 x 10-5 

Manubrium  

Elastic modulus (MPa) 800 

Density (kg/m3) 1000 

Damping coefficient 7.5 x 10-5 

Incudostapedial (IS) joint  

Elastic modulus (MPa) 10 

Density (kg/m3) 1000 

Damping coefficient 7.5 x 10-5 

Stapedial annular ligament (SAL)  

Elastic modulus (MPa) 0.12 

Density (kg/m3) 1200 

Damping coefficient 1.25 x 10-4 

Anterior malleal ligament (C1)  

Elastic modulus (MPa) 3.2 

Density (kg/m3) 1000 

Damping coefficient 1 x 10-6 

Posterior incudal ligament (C3)  

Elastic modulus (MPa) 2.5 

Density (kg/m3) 1000 

Damping coefficient 7.5 x 10-5 

Posterior stapedial tendon (C5)  

Elastic modulus (MPa) 1.2 

Density (kg/m3) 1000 

Damping coefficient 7.5 x 10-5 

Tensor tympani tendon (C7)  

Elastic modulus (MPa) 2.0 

Density (kg/m3) 1000 

Damping coefficient 7.5 x 10-6 

Malleus-incus complex  
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Elastic modulus (GPa) 14.1 

Density (kg/m3) 2000 

Damping coefficient 7.5 x 10-5 

Stapes  

Elastic modulus (GPa) 14.1 

Density (kg/m3) 1500 

Damping coefficient 5 x 10-5 

RWM  

Elastic modulus (MPa) 0.2 

Density (kg/m3) 1000 

Damping coefficient 5 x 10-5 

  

 

The TM annulus and regions where the ligaments meet the bony structure of the 

middle ear cavity were set as fixed boundary conditions. The bony support structures on 

either side of the basilar membrane were also assumed to be fixed. FSIs on either side of 

the TM, RWM, and basilar membrane, as well as at the interface between the stapes FP 

and scala vestibuli, were established to model the fluid-structure interactions that occur. 

The initial displacement of the structures in the middle ear is driven by the pressure input 

the TM receives from FLUENT via the data transfer managed by System Coupling.  

The displacements of the TM, stapes FP, and basilar membrane were key outputs 

from ANSYS Mechanical. In particular, the movement of the basilar membrane were of 

interest because its movement under blast conditions is not well studied and because 

displacement of the basilar membrane may be useful in predicting damage to the inner ear.  

4.3 Results  

The preliminary results from the FE model of the chinchilla ear for blast wave 

analysis are shown in this section. Few experimental results in chinchilla exist in literature 

to compare with the model predicted values. However, representative experimental BOP 
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waveforms recorded at the entrance of the chinchilla ear canal (P0) and near the TM in the 

canal (P1) exist and provide guidance in evaluating the current model (Figure 36). 

 

Figure 36. Representative waveforms recorded at the entrance of the ear canal (P0) and 

near the TM in the canal (P1) from chinchilla animal model used in blast exposure study 

(Chen et al., 2019). 

As seen in Figure 36, the reported P1 peak pressure was greater than the P0 peak pressure, 

which was due to the amplification function of the outer ear. In comparison to the 

experimental waveforms, the model-predicted P0, P1, and P2 waveforms do not follow the 

trend shown in Figure 36. While experimental measurements indicate that the P1 peak 

pressure should be greater than the P0 peak pressure, the model-derived results 

demonstrated the opposite (Figure 37). Instead, the P1 peak pressure at 3.9 psi was less 

than the P0 peak pressure at 4.7 psi.  
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Figure 37. FE model-predicted pressure waveforms at the entrance of the ear canal (P0), 

in front of the TM in the canal (P1), and behind the TM in the middle ear cavity (P2). 

Note that the peak P0 pressure was 4.7 psi, while the peak P1 pressure was 3.9 psi. 

 In addition to the pressure measurements predicted in the canal and middle ear 

cavity, the pressure distribution in the cochlea was also predicted. Figure 38 shows the 

calculated pressure waveforms at different locations in the cochlea. As mentioned 

previously, SV-1 was located approximately 0.6 mm below the stapes FP, while SV-2 and 

SV-3 were located about 5 mm and 13 mm from the base, respectively. ST-1 was located 

roughly 0.9 mm below the RWM, while ST-2 and ST-3 were located approximately 6 mm 

and 13 mm from the base, respectively.  
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Figure 38. FE model-derived pressures in the cochlea in response to BOP input. Pressure 

was calculated at three different points in the scala vestibuli (SV) and scala tympani (ST) 

each. Note that the pressure was greatest in the SV near the footplate (SV-1) but 

decreased closer to the helicotrema (SV-3) and into the ST. 

The results shown in Figure 38 demonstrate that the pressure closest to the stapes 

in the scala vestibuli (SV-1) was the greatest, with a maximum peak pressure of 

approximately 1,500 Pa. As the location moved closer to the helicotrema, the pressure in 

the scala vestibuli decreased. SV-2 and SV-3 had maximum peak pressures of 3.7 Pa and 

0.04 Pa, respectively. In the scala tympani, the model-predicted pressure was greatest near 

the RWM, with a maximum peak pressure of about 113 Pa. Similar to the trend observed 

in the scala vestibuli, as the location moved closer to the helicotrema the pressure in the 

scala tympani decreased. ST-2 and ST-3 had peak pressures of 3.4 Pa and 0.06 Pa. These 

results indicated that the pressure wave in the cochlea did not distribute to the apex but had 

decreased substantially less than halfway down the cochlea.  
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The displacements of the TM and stapes FP were also predicted by the model in 

response to BOP and are shown in Figure 39 below. The maximum displacement of the 

TM was 1.05 mm. The initial positive displacement value of the TM umbo indicates that 

the TM displaced into the middle ear cavity for roughly the first 0.0005 s. The following 

negative displacement reflects TM movement into the ear canal, which lasted until about 

0.003 s. TM movement was minimal for the remaining time.  

The peak-to-peak displacement of the stapes FP was approximately 12 µm. The 

stapes FP displacement over time demonstrates that the FP displaced in towards the cochlea 

before moving back into the middle ear cavity and then briefly into the cochlea again.  

 

Figure 39. Model-predicted displacements of the (A) TM at the umbo and (B) stapes 

footplate in the normal direction in response to BOP input. 

Finally, the displacements of the basilar membrane at 17 points from the base (near 

the stapes) to the apex (near the helicotrema) were predicted (Figure 40). The 

displacements were calculated in the direction normal to the basilar membrane. Positive 

displacements were established as movement into the scala tympani, while negative 

displacements reflected movement into the scala vestibuli. As movement of the basilar 

membrane in the direction of the scala vestibuli is associated with moving the hair cells 
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closer to the tectorial membrane (and thus can cause damage to the hair cells), displacement 

in the negative direction is the focus of this discussion. 

 

Figure 40. Basilar membrane displacement from base to apex in response to BOP in the 

time domain. (A) Displacements of the basilar membrane up to 5.84 mm from the base. 

(B) Displacements of the basilar membrane from 6.71 mm to 10.20 mm from the base. 

(C) Displacements of the basilar membrane from 11.07 mm to 15.59 mm from the base. 

As seen in Figure 40A, the greatest basilar membrane displacement occurred 2.17 

mm from the base with a maximum negative displacement of approximately 53 nm. The 

basilar membrane displayed an oscillating pattern of movement along the first 5.84 mm of 

length (Figure 40A). The displacement of the basilar membrane decreased from base to 

apex. After the first 5.84 mm, the basilar membrane movement showed displacement only 

in the negative direction or in the direction of the scala vestibuli (Figures 40B-C). 

Displacements close to the base started close to the time of blast and lasted throughout the 

duration of the simulation (Figure 40A). Though displacements in the middle section of 

the basilar membrane (Figure 40B) began slightly after those closest to the base, they also 
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continued for the duration of the simulation. However, the locations closest to the apex 

(Figure 40C) were not displaced until the latter half of the simulation.  

4.3.1 Discussion 

Experimentally recorded pressure waveforms in the chinchilla ear at the P0 and P1 

locations indicated that the P1 peak pressure was greater than that of P0. Knowledge of 

these waveforms is useful in understanding damage to the TM caused by P1, and thus are 

important outputs of the FE model in simulating blast wave transmission. However, the 

results predicted by the FE model did not agree with the experimental measurements. An 

explanation for this discrepancy may be related to how the input pressure is applied in this 

model. The pressure in this model was applied normal to the surface designated as the inlet 

surface, which was the method used by Leckness (2016) for the FE model of the human 

ear for blast wave analysis. However, the human ear canal anatomy is different from the 

chinchilla ear canal anatomy. While the human ear canal from the opening to the TM is 

straight, the chinchilla ear canal runs dorsal-ventral (i.e., there is a 90° turn in the ear canal 

connecting to the TM). The pinna of the chinchilla serves to funnel sound into the ear canal, 

which may provide some directionality to the incoming pressure wave. Thus, applying the 

input pressure such that it has some degree of directionality may serve to mimic the 

function of the pinna and improve the results. Another method to improve the results is to 

simplify the problem by applying the P0 pressure closer to the TM in the ear canal, 

bypassing the 90° turn.  

Though the TM and stapes FP displacements in response to BOP has yet to be 

experimentally measured in chinchilla, Jiang et al. (2019) recently reported dual-laser 
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measurement of human TM motion under blast exposure. This study used a BOP waveform 

with a peak pressure of about 5 psi, similar to that used in this simulation (Jiang et al., 

2019). While exact TM displacement measurements may differ due to species differences, 

comparison of the overall trend may be useful. In Jiang et al. (2019), the TM started moving 

in response to BOP and then vibrated at an amplitude of 0.4 mm for about two cycles with 

a waveform similar to a sine wave before diminishing in amplitude after 2 ms. The 

chinchilla model-predicted TM displacement did not follow this trend. Instead, of 

oscillating in a sine wave like pattern, the TM reached peak positive amplitude and 

diminished quickly. As the TM and stapes are connected via the ossicular chain, the stapes 

FP predicted displacement also followed this pattern to a degree. The predicted movement 

of the stapes in response to BOP also differed from what was expected. With a peak 

pressure of about 184 dB SPL used as the input for this model, the predicted stapes 

movement is lower than what is reasonable.   

The pressure in the cochlea is driven by the stapes movement. The model-predicted 

pressures in the scala vestibuli and scala tympani revealed that the greatest pressure 

occurred in the scala vestibuli near the base, which is reasonable considering that this 

location is nearest the stapes FP. However, examination of locations closer to the apex 

indicated that the pressure waveform did not travel far from the base, but instead 

diminished about halfway down the cochlea. At the location nearest the helicotrema (ST-

3 and SV-3 located about 13 mm from the base), the pressures in the scala vestibuli and 

scala tympani were approximately equal (0.04 Pa and 0.06 Pa, respectively). The basilar 

membrane displacement at 12.82 mm was close to zero nm, reflecting the role that the 

pressure gradient in the cochlea has on basilar membrane displacement. 
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While the displacement of the chinchilla basilar membrane in response to blast 

exposure has yet to be determined experimentally, studies on basilar membrane 

displacement at different frequencies at lower dB SPL do exist in the literature. A 2011 

study reported gerbil basilar membrane displacement ranging from 0.01-10 nm in response 

to 10-90 dB SPL stimulus (Ren et al., 2011). In a study on basilar membrane mechanics in 

the 6-9 kHz region of chinchilla cochleae, Rhode (2007) noted that the BM operating range 

in sensitive cochleae is 1-200 nm for intensities less than 100 dB SPL. It was also suggested 

that 1 µm displacement would be sufficient to cause hair cell damage (Rhode, 2007). The 

model-predicted basilar membrane displacement from base to apex in the direction of the 

scala vestibule (negative displacement) was greatest at 2.17 mm from the base, with a 

displacement of 53 nm. However, this displacement is not large enough to reflect the 

hearing damage observed in chinchilla animal models after blast exposure. Instead, the 

basilar membrane displacement predicted by the model fell within the range reported by 

literature on basilar membrane displacement in response to low dB SPL stimulus.  

It should be emphasized that the findings presented above are the preliminary 

results from the FE model of the chinchilla ear for blast wave analysis. The current model 

requires many improvements in order to obtain more accurate results. However, this model 

represents a step towards understanding the transmission of BOP from ear canal to cochlea 

in the chinchilla ear, which may improve our understanding of hearing damage incurred by 

BOP.  

4.4 Chapter Summary 

 FE analysis is a powerful tool that helps explain experimental observations or 

permits the simulation of experiments otherwise impossible. This thesis reported the 
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creation of a FE model of the chinchilla ear for blast wave analysis. Preliminary results 

consisting of the pressures in the ear canal, middle ear cavity, and cochlea in response to 

BOP were calculated. The TM, stapes, and basilar membrane displacements in response to 

BOP were also predicted. However, preliminary results indicated that the model needs to 

improve. Future work on the chinchilla FE model must continue, which were briefly 

touched on above and will be discussed further in Chapter 5.  

In the context of this thesis, a FE model of the chinchilla ear to analyze blast wave 

transmission is desirable to augment chinchilla animal studies focused on the effects of 

blast exposure on hearing loss. Furthermore, such a model may facilitate the translation of 

experimental data between animal model of chinchilla and human. The model presented 

herein represents a starting point towards achieving these goals.  
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Chapter 5: Conclusion 

5.1 Research Summary 

 There is an obvious need to fully understand the effects of blast exposure on 

auditory dysfunction and the mechanisms by which it occurs. Towards this goal, this thesis 

reports investigation of blast exposure in chinchilla animal model and a computational 

model of the entire chinchilla ear.  

In the experimental study, chinchillas with and without earplugs were exposed to 

repeated low-intensity BOP. Function tests reflecting the state of the auditory system were 

recorded over a 14 day time period. The main findings of this study were that exposure to 

6 repeated low-intensity blasts induced permanent hearing damage in both protected and 

unprotected ears, indicating that the protective function of HPDs was limited in this 

situation. Furthermore, hearing function changes showed damage in both the peripheral 

and central auditory systems. Finally, comparison with experimental measurements from 

a similar study in which chinchilla were exposed to 3 repeated low-intensity blasts 

demonstrated that 6 repeated blasts resulted in greater hearing loss.  

 To provide a comprehensive understanding of blast wave transmission, a FE model 

of the chinchilla ear for blast wave analysis was desired. However, current literature 

reported only a FE model of the chinchilla middle ear that simulated the cochlea using a 

mass block and dashpot system (Wang & Gan, 2016). As the inner ear is highly vulnerable 

to blast damage, a FE model of the cochlea reflecting the actual anatomy was needed. Thus, 

a FE model of the entire chinchilla ear including the spiral cochlea was developed. 

Harmonic response analysis was conducted to predict structural displacements in response 

to acoustic stimulus. Comparison of the model-predicted displacements and experimental 
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measurements validated the model. The model was able to predict the TM, stapes, and 

basilar membrane movement in response to an acoustic input.  

 The newly created FE model of the entire chinchilla ear was then modified for blast 

wave analysis. Generation of this model was based on the methods reported in Leckness’ 

MS thesis (2016) for modeling blast wave transmission in a FE model of the human ear. 

Outputs from blast wave analysis in the FE model of the chinchilla ear included pressures 

in the ear canal, middle ear cavity, and cochlea, and structural displacements of the TM, 

stapes FP, and basilar membrane in response to BOP. Preliminary results indicated that the 

current model analysis needs to improve for simulating blast wave transmission from the 

ear canal to cochlea.  

5.2 Future Work 

 Future studies using chinchilla animal models are needed to improve our 

understanding of blast-induced hearing loss. Further investigation of key blast parameters 

such as number of blasts, frequency of occurrence, blast intensity, and recovery time may 

provide more insight. Isolation of the PAS and CAS may also clarify the effect of repeated 

blast on the CAS. Knowledge gained from these studies may help in the prevention, 

diagnosis, and treatment of auditory dysfunction caused by blast exposure.  

 Use of the FE model of the entire chinchilla ear to simulate acoustic sound 

transmission from ear canal to cochlea may benefit from further validation. The middle ear 

pressure gain, cochlear impedance, and pressures in the cochlea should be calculated by 

the model and compared to experimental studies. In addition, refinement of the longitudinal 

BM displacement pattern predicted by the model may be pursued.  
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  Improvement of the FE model for blast wave transmission is necessary in order for 

the model to provide accurate predictions. Notably, the application of the pressure input 

may need to be adjusted. In the analysis presented herein, the ear canal domain was 

initialized at rest (0 Pa and 0 m/s). While the pressure-inlet of the canal applied pressure 

and velocity to the system, there was zero momentum. Thus, modification of the ear canal 

domain so that the ear canal can be initialized with velocity may be a desirable modification 

to improve the model. An alternative method may instead apply the P0 pressure input closer 

to the TM. These modifications may improve the model. In addition to improving the 

model, experimental studies to determine the chinchilla TM and stapes displacement in 

response to blast exposure would be useful for validation. Measurement of the cochlea 

pressure and basilar membrane displacement in response to BOP would also facilitate 

validation.  
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Appendix A: List of Abbreviations 

APDL  ANSYS Parametric Design Language 

ABR  Auditory brainstem response 

BM  Basilar membrane 

BOP  Blast overpressure 

CAS  Central auditory system 

DPOAE Distortion product otoacoustic emissions 

FE  Finite element 

FEM  Finite element method 

FSIs  Fluid-structure interfaces or interactions 

GUI  Graphical user interface 

HPDs  Hearing protection devices 

IACUC Institutional Animal Care & Use Committee  

µCT  Micro-computed tomography 

MLR  Middle latency response 

MOBs  Military occupational blasts 

NIH  National Institutes of Health  

PAS  Peripheral auditory system 

PISO  Pressure-Implicit with Splitting of Operators 

SC  Service-connected 

SIMPLEC SIMPLE-Consistent 

SPL  Sound pressure level 

Stapes FP Stapes footplate 
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TM  Tympanic membrane 

USDA  U.S. Department of Agriculture 

 

 


