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Abstract 

Additive manufacturing (AM), commonly referred to as 3D printing, is a quickly growing field 

with numerous techniques available to manufacture parts which are stronger, lighter, and more 

complex than those which could be traditionally manufactured. With the goal of creating stronger 

parts, a new 3D printing technique was developed which combined properties of several different 

methods in order to print continuous carbon fiber-reinforced thermosets. This new method is called 

continuous fiber direct writing (CFDW). The process works by extruding continuous fiber and 

ultraviolet (UV) curable resin out of a syringe simultaneously and curing the resin immediately 

upon extrusion via UV lasers aimed at the extrusion point. This was created using the principles 

behind direct ink writing (DIW), stereolithography (SLA), and fused deposition modeling (FDM). 

It utilizes DIW technology to extrude liquid resin out of the syringe, SLA technology to cure the 

resin in situ, and FDM technology to deposit the fiber and resin onto the print path. In order to test 

this novel method, a custom extrusion system and print head was designed and adapted onto an 

existing consumer FDM printer. The developed printer is able to successfully print continuous 

fiber-reinforced samples with control over the fiber direction and fiber volume fraction. Several 

experiments were conducted in order to characterize the various printing parameters. The largest 

focus was on the two most important parameters: deposition speed and extrusion pressure. The 

deposition speed, or feed rate, describes how quickly the print head moves across the build plate, 

while the extrusion pressure describes how much pressure is applied to extrude the resin out of the 

syringe. These two parameters together greatly affect the resulting width and shape of a printed 

line of fiber. In general, increasing the pressure or decreasing the feed rate creates a larger line 

width. This is very important as it affects the hatch spacing which in turn affects the fiber volume 

fraction. Additionally, these factors can affect the top surface finish of the resulting part. In 
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addition to these parameter-based studies, bulk rectangular samples and complex samples were 

printed in order to demonstrate the capabilities of the printer. The CFDW method works well and 

is fairly consistent with the proper printing parameters. Through future development of this 

process, composite samples can be made with individual tows of fibers oriented according to the 

geometry of the part, allowing for reduced weight and increased strength of the additively 

manufactured components.  
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CHAPTER 1: INTRODUCTION 

1.1: Additive Manufacturing Processes for Polymer Materials 

The field of additive manufacturing describes a wide variety of manufacturing methods used to 

manufacture polymers, metals, ceramics, composites, and biomaterials [1-4]. There are several 

different methods of AM which are used to create parts layer-by-layer. One method may be chosen 

over another due to its suitability for a certain material, advantages in precision, print speed, or 

cost-effectiveness [5]. The most common methods of AM are shown in Table 1.  

Table 1: Overview of common AM processes [6]  

Method Similar Processes Materials 

Binder jetting Ink-jetting 

Metal powders 

Polymer powders 

Ceramic powders 

Direct energy 

deposition 
Direct metal deposition 

Metal powders 

Metal wires 

Direct ink writing 
Bioprinting 

Robocasting 

Biomaterial inks 

Polymer inks 

Fused deposition 

modeling 
Fused filament fabrication Polymer filaments 

Material jetting Inkjet printing Photopolymer inks 

Selective laser 

sintering 

Selective laser melting 

Electron beam melting 

Powder bed fusion 

Metal powders 

Polymer powders 

Ceramic powders 

Sheet lamination Ultrasonic additive manufacturing 

Hybrid sheets 

Metal sheets 

Ceramic sheets 

Vat 

photopolymerization 

Stereolithography 

Digital light processing 

Continuous liquid interface production 

Photopolymer resins 
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As polymer additive manufacturing continues to evolve, new methods are being developed to 

increase the strength of printed parts. One method to do this is to use reinforcing fibers in the 

polymer. Using continuous fibers to reinforce 3D prints makes them much stronger and stiffer, 

leading to their potential use in many engineering applications. Several new techniques for 

manufacturing continuous fiber-reinforced polymers have been developed and are based upon the 

principles of fused deposition modeling, stereolithography, directed energy deposition (DED), and 

direct ink writing [7-14]. These forms of additive manufacturing are described in greater detail in 

the following sections.  

1.2: Fused Deposition Modeling 

One of the most widely used methods of AM is fused deposition modeling. First patented in 1989 

by S. Scott and Lisa Crump, this process has become widespread in both the consumer and 

industrial markets [15].  The patents for FDM expired in 2005, allowing many new manufacturers 

to start producing these printers, many of whom open-sourced their technology [15]. FDM works 

by heating a thermoplastic to a viscous state and extruding it out of the nozzle of the print head 

[16]. In doing so, the printer builds up a part layer-by-layer until it is complete. Recently, several 

manufacturers have released novel FDM 3D printers for the additive manufacturing of multi-

materials using multi-nozzle printing system. Due to the high spatial resolution, these printers can 

achieve high surface smoothness and overall quality. Figure 1 shows a diagram of an FDM printer 

with two nozzles: one to extrude print material and the other to extrude support material. This is 

common in high end printers, as it allows for the support material to be easily dissolved in a solvent 

to remove it after the print is completed.  
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Figure 1: Illustration of FDM process [17] 

The plastic is usually kept on a spool in the form of filament approximately 1.75 mm in diameter. 

Some printers, however, take in pellets or powder and melt it down as needed. There are a wide 

variety of filaments available, with the most common being polylactide acid (PLA), which is 

regarded as the easiest material to print with, and acrylonitrile butadiene styrene (ABS) which is 

much tougher but is more difficult to print due to its higher melting temperature [18]. The printers 

themselves have heated nozzles to heat the filament, and heated beds to improve bed adhesion by 

significantly reducing thermal gradients.  FDM is great for prototyping and is very cost effective 

and simple to use.  

The downsides to FDM are the thermoplastics the method is limited to printing. Printed 

thermoplastics parts cannot perform in high-temperature environments and are generally low 

strength and are moderately anisotropic. Additionally, it can be difficult to print large parts as 

internal stresses generated in the part as material cools and shrinks coming out of the nozzle can 

warp the part and pull it off of the build plate [19]. Post-processing for FDM includes removing 
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support materials if used, and sanding or vapor smoothing (using a vaporized solvent to slightly 

dissolve the surface layer) to improve the surface finish. 

1.3: Stereolithography 

SLA is another commonly used AM method. This method became the first patented 3D printing 

method when Charles Hull patented it in 1986 [20]. SLA uses a pool of liquid photopolymer and 

an ultraviolet laser to cure the material. In SLA, the laser scans the pattern of a single slice, the 

bed lowers to allow fresh liquid to flow on top of the print, and the laser scans the next slice until 

the part is complete [21]. Figure 2 shows two common methods of SLA. The left illustration shows 

the laser curing material from the top and the platform lowering in the bath, while the right 

illustration shows the platform raising up out of the bath with the laser curing the material from 

the bottom. 

 

Figure 2: Illustration of SLA process [22] 

SLA is a subset of the vat polymerization category, which includes similar methods such as digital 

light processing (DLP) and continuous liquid interface production (CLIP). DLP and CLIP utilize 

a projector sitting under a photopolymer bath as a light source which can cure an entire slice 

simultaneously, instead of having a laser trace out the image [23]. SLA prints with photopolymer 



   

 

5 

 

materials, which are formulated specifically for SLA printers. Like FDM, these prints also suffer 

from issues of bed adhesion and warping, as the material shrinks when it is cured [24]. Some of 

the benefits of SLA are that it prints thermosets, the resolution can be very fine since it is cured 

with the laser, and the parts can be made transparent or translucent, which is not done in any other 

form of 3D printing. Post-processing for these prints involves post-curing the print under 

ultraviolet lights to ensure it is fully cured.  

1.4: Directed Energy Deposition 

DED is a process in which metal or polymer is fed in the form of wire or powder and is melted 

with lasers to deposit liquid material on the part [25]. The laser and the material meet at the same 

point to melt the material, which quickly solidifies as it cools. An illustration of this process is 

shown in Figure 3. 

 

Figure 3: Illustration of DED process [26] 

This process is less precise than other methods, and results in a near-net finished part which 

requires machining to improve the surface finish [25]. DED is one of the two main methods for 

metal AM parts. Metal parts are more often manufactured by selective laser sintering (SLS), which 

uses a laser to sinter a bed of fine powder to melt particles together until it can be post-cured to 
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achieve full strength [27]. The benefit of DED is that it is much quicker than laser sintering, and it 

is able to produce much larger parts without wasting excess powder in a bed. DED is not widely 

used for polymers due to the much better methods of FDM or SLA to create those parts, but it does 

share similarities with the CFDW process.  

1.5: Direct Ink Writing 

Direct ink writing, sometimes referred to as robocasting or bioprinting, is a method in which 

viscous inks are printed onto a substrate. This is done by loading material into a syringe and using 

pneumatics, hydraulics, or mechanical displacement to force the material out of the syringe in a 

controlled manner [28]. Materials in this method are very wide ranging, as anything with a high 

enough viscosity can be printed, such as nanocomposite inks, photopolymers, biomaterials, 

ceramic slurries, and more [8, 29-32]. Figure 4 shows this process creating 2D lines and 3D lattice 

structures. 

 

Figure 4: Illustration of DIW process [33] 

The method for curing is dependent on the material. For a material which cures via heat, often a 

full print is completed and the entire sample is then cured in an oven [34, 35]. The material is still 



   

 

7 

 

able to be printed in this way since it has high enough yield strength so as not to deform excessively 

after it is deposited from the nozzle [36]. DIW can also be achieved with UV curing to solidify the 

material in situ as it comes out of the nozzle. The benefits of this 3D printing method are that it 

can use a very small amount of material if needed and can print almost any viscous liquid or gel. 

This method can also be used to embed a print inside a material bath. An illustration of this novel 

manufacturing process is shown in Figure 5. This figure shows embedded printing of a 

nanocomposite ink inside an elastic material to create highly stretchable strain sensors. 

 

Figure 5: Embedded DIW printing 

Embedded sensors are a growing field which rely on the use of DIW to print one material within 

another [37]. The downside of DIW is that there is not a way to cure in situ, meaning it may be 

difficult to print large or complicated geometries. Other material processing technologies, such as 

microwave curing, can also be integrated with the DIW 3D printing for the rapid manufacturing 

of nanocomposites [38-40].  

1.6: Continuous Fiber-Reinforced 3D Printing  

In order to 3D print continuous fiber-reinforced parts, there are currently two main printing 

techniques. The first is to reinforce FDM prints with fibers by feeding a tow of fiber through the 
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melted polymer in the print head and out the extrusion nozzle with the melted polymer [41]. An 

illustration of this process is shown in Figure 6. 

 

Figure 6: Illustration of continuous fiber FDM process [42] 

These prints use the same materials found in typical FDM printing, mainly PLA and ABS. These 

parts are stronger than normal FDM parts, but still have the downsides associated with using 

thermoplastic matrices, such as lower strength and poor performance at elevated temperatures 

compared to thermosets. A similar technique was developed in which continuous fiber was coated 

in a viscous epoxy and fed through a printer as a filament [43]. As the filament reached the 

extruder, it was heated to decrease its viscosity so it could be printed, then was thermally post-

cured to reach full strength [43]. This resulted in strong continuous fiber thermosetting 3D prints.  

Another method is to use UV curing of a liquid resin on the fiber. The company Continuous 

Composites developed the method of continuous fiber 3D printing (CF3D) [44]. This company 

uses this method to create large composite structures out of carbon fiber, fiberglass, Kevlar, and 

more [44]. CF3D works by extruding dry fiber out of one nozzle and a photopolymer out of 

another. Right after the two materials meet, an ultraviolet light cures the polymer, giving it enough 
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yield strength to create freestanding structures. Using this process on large robotic arms has given 

the ability to create large high-performance composite structures without the use of molds or 

autoclaves, and with fewer geometric constraints [45]. One major benefit of this method is that it 

allows for the control of the fiber directions throughout the parts, meaning that some areas can be 

reinforced more if needed. Additionally, since the parts are created directly from the printer it is 

quicker than traditional composite manufacturing and does so with less material waste [44].  

1.7: Polymer AM Materials 

Polymer additive manufacturing includes a wide variety of materials including both thermoplastics 

and thermosets. The primary difference between these two categories is that thermoplastics can be 

melted and reshaped multiple times to form parts, while thermosets cannot be reshaped once they 

are formed [46]. This makes thermoplastics ideal for applications in which strength and 

temperature resistance are not of high importance, as they are generally cheap and easy to process. 

The two main thermoplastic printing methods are FDM, which melts and extrudes a filament, and 

SLS, which melts fine powder to fuse particles together. For applications in which higher strength 

or temperature resistance is needed, thermosets are better suited. Vat photopolymerization methods 

use a bath of photopolymer thermoset which is cured by the path of a UV laser. DIW methods can 

use UV curing, but also can use thermally cured epoxies which are printed and then post-cured in 

an oven. These thermally cured epoxies reach the highest strength of polymer AM prints. For fiber-

reinforced 3D prints, a few materials have been used including PLA, ABS, UV resin, and epoxy. 

A comparison of the material properties of these materials is shown in Table 2.  
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Table 2: Comparison of polymer material properties used in CF 3D printing 

 
Makerbot 

PLA [47] 

Makerbot 

ABS [48] 

CPS PR-48 

UV Resin [49] 

E-20 Epoxy 

[43, 50] 

Tensile yield 

strength (MPa) 
62 43 28 60-77 

Tensile 

modulus (MPa) 
3,600 2,400 1,400 N/A 

Elongation at 

break 
>4.4% >5.6% 3% 3.5-5.2% 

 

Reinforcing fibers used in polymer AM are typically short fibers mixed into the material before 

printing [51]. Short carbon fiber-reinforced PLA and ABS filament can be purchased and printed 

on a normal FDM printer. It is also simple to mix fibers into an epoxy for use in DIW printing. 

Carbon fiber, glass fiber, and Kevlar have also been used as continuous fibers in 3D prints, which 

results in stronger prints [52]. A comparison of the material properties of these continuous fibers 

is shown in Table 3. These properties are given for a specific material and will vary depending on 

the actual fibers chosen. 

Table 3: Comparison of common reinforcing fibers 

 Carbon Fiber [53] Glass Fiber [54] Kevlar Fiber [55] 

Tensile strength 

(MPa) 
4,650 3,450-3,790 3,000 

Tensile modulus 

(GPa) 
231 72.4 112 

Elongation at break 1.8% 4.8% 2.4% 

Density (g/cc) 1.78 2.54-2.60 1.44 
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As seen from the material properties of these fibers, there is a benefit to each one. Using carbon 

fiber will result in the highest strength and stiffness. Glass fiber will provide the highest elongation 

at break, as well as the lowest cost. Lastly, using Kevlar will give the lowest weight, while still 

having a high modulus. Kevlar is also known for its toughness, making it ideal for applications in 

which this is needed.  

1.8: Thesis Outline 

The purpose of this thesis is to affordably create and analyze continuous carbon fiber samples 

manufactured via desktop UV laser-assisted 3D printing.  Chapter 2 describes the design and 

construction of a 3D printer capable of printing such samples, which involves modifying an 

existing FDM printer, creating a pneumatic extrusion system, a new print head, and a continuous 

fiber reservoir. Chapter 3 discusses the process of creating samples and the printing parameters 

which can be adjusted. Chapter 4 provides a description of the analyses performed on the printing 

process, which includes a study of the printing parameters and capabilities of the printer. Finally, 

Chapter 5 presents the conclusions and future work for this project.  
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CHAPTER 2: DESIGN OF CONTINUOUS FIBER DIRECT WRITE PRINTER 

2.1: Introduction 

In order to additively manufacture continuous fiber composites, an FDM printer was purchased 

and converted to work as a direct ink write printer. This printer was first altered with a new print 

head with UV lasers and a new extrusion system to become an ultraviolet laser-assisted direct ink 

write 3D printer. Once this was done, it was found that fiber could be extruded through the printer, 

and a fiber chamber was added to allow the printer to manufacture continuous fiber composite 

parts. This method is unique from existing methods and is best described as continuous fiber direct 

writing. 

2.2: Printer Conversion 

The 3D printer used in the construction of the CFDW printer was a Creality CR-10 Mini, shown 

in Figure 7. This was a widely popular consumer FDM printer which moved the extruder in the X-

axis, moved a heated build plate in the Y-axis, and raised the extruder in the Z-axis. The extruder 

could travel up to 300 mm in the horizontal directions, and 220 mm in the vertical direction [56]. 

 

Figure 7: Creality CR-10 Mini as purchased [56] 
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This printer was chosen as the base due to its simple construction and rigid frame. It also provided 

a platform on which various modifications could be made. The printer was open source and had 

plenty of information available online regarding modifying the printer. The existing computer-

aided design (CAD) 3D model was downloaded from the Creality open source files in order to 

design the new assembly [57]. The CAD model of the modified printer is shown in Figure 8. Due 

to the need for the printer controls to be accessed outside of an enclosure, the electronics were 

removed from the printer itself and moved outside of the enclosure. They are therefore not shown 

in the model. 

 

Figure 8: CAD model of CR-10 with modified print head assembly 

Since UV light is dangerous to human eyes, the entire printer was operated inside of a metal 

enclosure with a small tinted window to view the prints. This enclosure was constructed using 

aluminum extruded bars attached together to build the frame, with sheet metal panels attached on 

the sides and top. The front panel was hinged like a door in order to access the printer. The 

completed printer in the enclosure is shown in Figure 9. 
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Figure 9: Image of completed printer inside enclosure 

As seen in Figure 9, risers were added for the power supply to be mounted underneath the printer. 

A dial caliper was also added onto the Z-axis so that the distance from the extrusion nozzle to the 

plate could be consistently measured.  

2.3: Pneumatic Extrusion System 

In order to extrude liquid material out of a syringe, a pneumatic system was created and 

implemented on the printer. A pneumatic system was initially chosen over a mechanical plunger 

system due to issues seen on mechanically based extruders of pressure build-up during print 

moves, causing the material to continue to extrude during non-print moves. Using a pneumatic 

system solved this issue due to its ability to immediately apply and release pressure. This pressure 

system also allowed for the continuous fiber to be used, as it would not work with a mechanical 

plunger or screw since there would be no path for the fiber to travel. The system used on the CFDW 
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printer consisted of a pressure regulator, an electronic solenoid valve, and a syringe adapter. These 

components were mounted outside of the enclosure, so that they could be controlled and adjusted 

without opening the enclosure door. Pressurized air came into the printer (at about 600 kPa) via an 

air hose and flowed through a pressure regulator. This regulator, shown in Figure 10, regulated 

from 0-400 kPa, which was sufficient for extruding materials of much higher viscosities than were 

used in this study. 

 

Figure 10: Image of pressure regulator mounted on wall outside of enclosure 

This regulator allowed for the pressure seen at the syringe to be adjusted, which affected the rate 

of material flow out of the nozzle. From the regulator, the air flowed to a 12 volt (V) direct current 

(DC) normally closed electronic solenoid valve. The air from the solenoid valve output directly to 

the print head. Mounted with the solenoid was the voltage regulator used to control the power 

supplied to the lasers Additionally, a switch was mounted in order to turn off power to the laser 

from outside the printer to act as a kill switch, and to allow the printer to function as a direct ink 

write printer without the lasers turned on, should it be needed for other experiments. This 

electronics assembly is shown in Figure 11, and was also mounted to the wall outside the enclosure. 



   

 

16 

 

 

Figure 11: Image of pneumatic and laser electronics assembly 

Both the solenoid valve and the lasers were wired to the motherboard, in parallel, using the “fan” 

output on the board. This allowed the printer to send current to the solenoid and lasers during the 

print using the g-code commands for “fan on” (M106 S255) and “fan off” (M107). The M106 

S255 command opened the air valve and turned on the lasers, while M107 shut the valve and 

turned off the lasers. These commands could be used anywhere in the code to allow for starting 

and stopping prints, as well as doing non-print moves in which no material would be extruded or 

cured.  

2.4: Print Head Design 

In order to achieve in situ curing of the resin, ultraviolet lasers were placed in close proximity to 

the extrusion point of the material. These lasers were aimed at the center of the extrusion point, 

with the nozzle tip being adjustable vertically to align the extrusion point with the area of highest 

UV intensity. Several prototypes were 3D printed out of PLA and tested on the printer to ensure 

the system would work. One of these prototypes is shown in Figure 12. 
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Figure 12: Image of final 3D printed prototype print head mounted on printer 

The final version of the print head was machined out of 6061-T6 aluminum in order to more 

precisely align the lasers and allow for better adjustability. This version added the ability to finely 

adjust the syringe height by rotating a lead screw and used a jam nut to lock it in place. This method 

was much better for adjusting the syringe height relative to the lasers. The alignment of the lasers 

to focus on the same point was also improved due to the higher precision of the machined part. 

This print head was designed to accept 3 mL Luer-lock syringes. The print head could use these 

syringes on their own with a pneumatic syringe adapter as a direct ink write printer, or it could use 

the syringes with the fiber chamber discussed in Section 2.5 to print continuous fiber-reinforced 

parts.  

The lasers used were 1.5-watt 405 nm ultraviolet LED lasers. Three lasers were used in order to 

ensure that the resin was being cured more evenly, regardless of the direction the print head was 

moving. The lasers were aimed down towards the extrusion point at a 45° angle. The voltage 
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regulator was added in order to adjust the laser voltage from 2-5 V to alter their intensity. An image 

of the completed print head is shown in Figure 13, with a syringe and syringe adapter mounted.  

 

Figure 13: Image of completed print head assembly installed on printer 

The focusing lenses were removed from the lasers so that the light was not focused on a point but 

spread out to a larger area. This helped the lasers to cure larger areas of the print, rather than 

focusing on a single point. Since the light covered a larger area including the nozzle itself, a shield 

was made to prevent the material from curing directly on the tip and clogging the nozzle. This 

shield was 3D printed out of PLA plastic and simply slid over the nozzle tip to block the light. A 

CAD image of this shield is shown in Figure 14. 
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Figure 14: CAD image of syringe with laser shield attached 

The printer was also able to function well without this shield. For continuous fiber printing, clogs 

were prevented since the fiber was pulled through the nozzle, ensuring that any material partially 

cured on the tip was pulled off the nozzle by the fiber. In doing so, the fiber often dragged small 

pieces of cured material with it as it came out, resulting in a poor top surface finish. Adding the 

nozzle shield prevented this from happening, and resulted in a smooth, consistent surface finish. 

Since the prints were all completed on a glass substrate, the bottom surface for each printed sample 

was very smooth. Although the surface finish was negatively affected, removing the nozzle shield 

resulted in slightly greater accuracy since the resin was always curing immediately upon extrusion 

rather than having a delay. With this delay, as the fiber was pulled by the nozzle tip it would drag 

away from the intended print path around curves in the print. Since the nozzle tips and syringes 

were translucent, all prints required a cover to prevent light from curing material inside the exposed 

parts of the syringe. This cover is shown in Figure 15. 



   

 

20 

 

 

Figure 15: CAD image of syringe with cover attached 

As seen, this shield did not prevent light from reaching the nozzle tip, but simply acted to prevent 

premature curing in the syringe.  

2.5: Continuous Fiber Chamber Design 

In order to print continuous fiber, a chamber was designed and built which would hold the fiber 

before it was pulled through the resin. Since the system needed to apply pressure to the resin to 

extrude it, the fiber chamber also needed to be held under pressure. The chamber was built around 

a clear polycarbonate tube, which was chosen in order to see the amount of fiber left as well as if 

any tangles occurred which would cause print failures. At the top of the chamber was a metal 

adapter so that a plug with a rubber O-ring could be screwed in to seal the chamber. The plug was 

a threaded cap with a hollow tube in the center for the fiber to be wrapped around. The tube was 

hollow to allow air flow from a pneumatic 4 mm push-to-connect fitting in the plug down into the 

chamber and out into the syringe. At the bottom of the chamber was a built-in syringe adapter. 

This adapter had an O-ring on the stem going into the syringe itself. It also had a small bracket 

which bolted on to the adapter with two screws in order to prevent the syringe from sliding off 

when pressurized. A cross-sectional CAD image of this assembly is shown in Figure 16. 
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Figure 16: Cross-sectional CAD image of full fiber chamber assembly 

Since the chamber was placed under no more than 60 kPa, there were no safety concerns regarding 

the chamber. The various parts of the assembly were held together using a two-part epoxy in order 

to adequately seal and bond the pieces together. The completed assembly is shown in Figure 17. 

 

Figure 17: Image of completed fiber chamber with syringe attached 

The completed fiber chamber mounted to the printer by simply sliding the syringe into the print 

head. The syringe was held tightly enough to hold the entire fiber chamber in place during prints.   
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2.6: Post-Curing Chamber Design 

Once the prints were completed on the printer, they were post-cured to further solidify the resin. 

To do this, a post-curing chamber was designed and built to allow the samples to be fully exposed 

to high intensity UV light. Figure 18 shows the completed chamber. 

 

Figure 18: Image of completed UV post-curing chamber 

The chamber featured two 405 nm wavelength UV lamps fixed directly above and below the 

sample. The samples were placed on a glass Petri dish and slid through the opening on the front, 

where they sat over an opening to allow light to fully the cure samples from the top and bottom. 

Reflective metal tape covered the inside walls so that light was reflected and helped cure the sides 

of the print as well. The entire chamber was covered in tape in order to prevent UV light from 

coming out. 

2.7: Printing Process 

The novel CFDW process worked by applying air pressure to the resin in order to extrude it out of 

the syringe. As the resin flowed out, it pulled the fiber with it due to friction, extruding both 
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materials simultaneously. The UV lights cured the resin in place immediately upon extrusion, 

hardening around the fibers. A schematic of this process is shown in Figure 19.  

 

Figure 19: Cross-sectional schematic of CFDW printing process 

An up-close image of a sample being printed is shown in Figure 20.  

 

Figure 20: Image of printer creating a sample  

This image shows the line width test being printed. The nozzle shield can be seen blocking the UV 

light from the area just around the needle tip. This image was taken behind the orange light filter 

of the enclosure, which is why the light appears yellow rather than violet.   
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CHAPTER 3: SAMPLE PRINTING 

3.1: Material Selection 

The materials involved in this project were carbon fiber tow and UV-curable 3D printing resin. 

Carbon fiber was chosen as the fiber material due to its high strength-to-weight ratio and 

availability to purchase in a roll. Other fibers such as fiberglass or Kevlar were more costly to 

purchase in rolls of tow and were less commonly used in 3D printing. The fiber came on a large 

spool, such as that shown in Figure 21, where it was unwrapped and re-spooled into the fiber 

chamber to print.   

 

Figure 21: Roll of 3k carbon fiber tow [58] 

In order to achieve the best print resolution possible, the syringe tip size was reduced to minimize 

the internal diameter (ID). This was limited by the fact that in order to initially feed the fiber 

through the syringe tip, the fiber had to be attached to a sewing needle and passed through the 

syringe tip, resulting in a minimum syringe tip size of 18 gauge (0.838 mm ID) [59]. The length 

of these syringe tips was approximately 12.7 mm. The length and diameter of the tip had a large 

effect on the pressure required to flow liquid through the needle. If the nozzle were to drip resin 
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with no pressure applied, the length could have been increased, or the diameter decreased, in order 

to increase the force required to induce material flow. The resin used was viscous enough, 

however, that the material did not drip at this nozzle size. The needle tip used is shown in Figure 

22. The needles had Luer-lock threads to easily screw onto the syringes. 

 

Figure 22: 18 gauge Luer-lock syringe tip [60] 

The resin used for printing was commercially available Colorado Polymer Systems PR-48 resin. 

This resin was initially formulated by Autodesk for use with the Autodesk Ember 3D SLA printer, 

and is shown in Figure 23 [61].  

 

Figure 23: PR-48 Standard Clear photopolymer resin [62]  

This material was chosen due to its open-source formulation, common availability, and ability to 

cure under the 405 nm wavelength provided by the lasers. 
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3.2: Printer Setup 

The printing process worked by first wrapping the continuous fiber onto the spool of the fiber 

chamber and screwing the spool into the chamber to seal it. The end of this spool was fed out of 

the chamber and through an empty syringe and dispensing needle. This step only needed to be 

repeated when the fiber depleted. If the resin ran out first, the syringe could simply be refilled. If 

the fiber broke in the syringe, a new syringe and dispensing needle would be required so that the 

fiber could be threaded through the dry needle. Once the fiber was fed through the empty syringe 

and needle, the resin was placed in the syringe using a pipette. The syringe was then attached to 

the fiber chamber and fastened in. Figure 24 shows the fiber chamber set up and ready to be placed 

onto the print head.   

 

Figure 24: Image of carbon fiber wrapped onto spool and set up on printer 

The entire fiber chamber assembly was then placed onto the print head, and the tubing from the 

pneumatic system was attached to the chamber. Lastly, the nozzle shield was attached to the 

syringe, and the print head assembly was ready.   
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The next step was to set the gap between the lasers, tip, and plate. First the lasers were turned on 

and brought to the Z-height where they were focused on the same point. This value was read on 

the dial indicator. Then, the gap from the syringe tip to the laser center point was set by lowering 

the syringe tip to the desired location using the adjustment lead screw on the print head. This step 

only needed to be completed once. Then, for every print, the gap from the needle tip to the print 

bed (which determined the base layer thickness) was set by touching the tip to the bed, reading the 

value on the dial indicator, and then raising the print head up by desired base layer height. Once 

this was set up, any changes to the air pressure and laser voltage could be made. These parameters 

only needed to be changed as needed for each print. The printer was then fully set up and ready to 

print. 

3.3: Processing Parameters 

There were many parameters to be considered, as with any additive manufacturing process. In 

order to fine-tune these parameters, they were initially varied starting with the most important and 

working towards the least important. The printing processes were repeated until the printer was 

able to produce satisfactory samples by progressively fine-tuning several parameters including the 

extrusion pressure, print speed, laser intensity, etc. The most important of these printing parameters 

are described in the following subsections.  

3.3.1: Extrusion Pressure & Feed Rate 

The most important aspect of achieving a high print quality was to characterize the relationship 

between the extrusion pressure and feed rate. Extrusion pressure describes the air pressure applied 

to the resin, which affected the flow rate of resin out of the nozzle. Feed rate describes the speed 

at which the print head moved in the XY-plane. In order to print successfully, a balance had to be 

achieved between these two parameters. For example, a low feed rate required a low extrusion 
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pressure or to avoid excess resin flow, while a high feed rate required a high extrusion pressure to 

have sufficient resin flow.  

This relationship was complicated by the fact that the fiber extruding out of the syringe tip affected 

the flow rate of resin. While moving in a straight line, the fiber exited the syringe at a rate equal 

to the feed rate of the printer. This resulted in a more complex relationship in which the rate of 

resin flow could not be easily calculated. Since the fiber was coated with the resin as it came out 

of the syringe, the printer could print the fiber with no pressure applied. This was possible because 

the fiber stuck to the build plate as the resin was cured, and it was pulled out of the nozzle as the 

print head moved. While the printer could print in this way, it resulted in an asymmetric and 

insufficient coating of the fiber, as the top layer of resin was scraped off as the fiber exited the 

syringe. In contrast, the extrusion pressure could also be set too high for the given feed rate. In this 

case, the fiber was laid down normally, but the resin flowed out more around the fiber. This 

resulted in a very large and uneven coating of resin. Another consideration to be made with these 

parameters was that the quicker the speed, the less exposure time there was for the lasers to cure 

the material. This meant that it was generally better to choose a slower feed rate and lower pressure 

even though quicker prints were possible.  

3.3.2: Layer height & Hatch spacing  

The next most important printing parameters were the layer height and hatch spacing. Layer height 

describes the vertical distance between layers, while hatch spacing describes the horizontal 

distance between printed lines. Figure 25 shows a schematic of this relationship.  
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Figure 25: Illustration showing hatch spacing and layer height 

The layer height could be set to any value from approximately 0.5 mm to 1 mm. As the nozzle 

moved across the part, it laid the fiber down and the resin predominantly flowed radially in relation 

to the vertical syringe axis. This meant that the layer height was not greatly affected by other 

parameters but was simply set by the starting height and g-code. It was found that the base layer 

adhered best at a layer height of 0.5 mm, so this value was used for all the test prints. Bulk samples 

were printed with this base layer height of 0.5 mm and subsequent layer heights of 0.8 mm. This 

value was kept at a minimum in order to increase the fiber volume fraction.  

The hatch spacing was largely dependent on the extrusion pressure, deposition speed, layer height, 

and nozzle size. All these parameters affected how much resin flowed radially, which set the hatch 

spacing. From testing this experimentally, it was found that 1.2 mm was the lowest this value could 

be, as the nozzle itself (18 gauge needle) had an outer diameter of 1.27 mm and would deflect 

under smaller hatch spacings [59]. The hatch spacing also was minimized to increase the fiber 

volume fraction.  

 

Layer height 

Base layer height 

Hatch spacing 
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3.3.3: Laser Parameters 

Each of the test prints was carried out with the same laser settings. Three 405 nm wavelength LED 

lasers were aimed directly at the center of the extrusion point at a 45° angle. Each laser was a 5V, 

1.5W laser but was only powered at 3V in order to reduce the intensity and slow the curing time 

slightly. These parameters were still sufficient to cure the resin almost immediately upon extrusion. 

Although these parameters were not varied in these experiments, they would be important factors 

to study further as they affected the rate and extent of the cure. The prints were also post-cured in 

the UV-curing chamber for 20 minutes in order to further cross-link the polymer.  

3.3.4: Other Parameters 

Among the various other parameters which could be altered, three of the most important were 

nozzle size, fiber size, and material viscosity. Nozzle size was minimized in order to reduce hatch 

spacing and improve the print resolution, with the drawback of increased print time. The fiber size 

was dependent on the nozzle size, as the more it filled of the internal diameter, the easier it was to 

be pushed out as the resin flowed. T300 carbon fiber 3k tow was chosen for this purpose. Smaller 

carbon fiber such as1k tow would have resulted in a small fiber volume fraction, and 6k tow would 

have likely torn as the fibers scraped the needle tip. Material viscosity could also be altered with 

additives or by varying temperature to change the flow characteristics. The viscosity of the resin 

as determined by the manufacturer was 300 centipoise [63]. Altering the viscosity of the resin 

would affect the flow out of the nozzle as well as change its ability to penetrate the fiber tow.  
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3.4: G-Code Generation Using MATLAB 

The g-codes used to manufacture sample prints were created using various MATLAB programs 

developed to take input parameters regarding sample geometry and to export g-code for the printer. 

While the g-codes were very similar to those created by a normal slicer, the use of continuous fiber 

dictated that the print path be continuous. It was therefore easier to create simple programs for 

print paths which would need to be altered often. Three main programs were created for the 

samples: one which created bulk rectangular shapes, one which created hollow cylindrical and 

conical shapes, and one which followed a set of coordinates. The program used most often was for 

creating bulk rectangular samples. The inputs to this program are shown in Figure 26. 

 

Figure 26: Input parameters for MATLAB program 

This program took the width, length, height, stepover, layer height, and feed rate desired and 

exported the g-code. When the program was run, it exported a g-code file which could be uploaded 

directly to the printer. Figure 27 shows the results of opening the g-code file with the parameters 
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from Figure 26 in the 3D printing software Repetier-Host. This program was used to create the 

samples made in Sections 4.1-4.5. 

 

Figure 27: Repetier-Host screenshot showing the output file from the MATLAB code 

The program for creating cylinders and cones was used to create more complex samples. This 

program took the base diameter, tip diameter, height, number of coils, feed rate, and resolution as 

inputs. The resolution affected how many vertices would lie on a circle, so using a small number 

of vertices resulted in the creation of a polygon, but as the number increased it approximated to 

become a circle. This program was used to create the print path for the sample created in Figure 

48. The last created program followed coordinate points from a given .txt file, and could alter the 

number of layers, layer height, and feed rate. It also had the ability to scale and translate the 

coordinates as needed. This program was useful for creating more complex shapes, such as the 

airfoil in Figure 47. 

3.5: Sample Processing 

The first samples created were simple lines used to characterize the width of a printed line, 

followed by single and multilayer bulk rectangles. To achieve this, one layer of the pattern was 

printed using g-code created from the MATLAB program described in Section 3.4. The rectangles 
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were completed with either a single layer to characterize the base layer, or multilayer to 

characterize a bulk sample. Complex samples were also printed in order to demonstrate the 

capabilities of the printing process. These samples included a horizontal overhang test, vertical 

printing test, complex print path, hollow airfoil structure, and hollow cone structure. These results 

are further discussed in Chapter 4.  
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CHAPTER 4: SAMPLE ANALYSIS 

4.1: Line Width Measurements 

One of the most important parameters for achieving a high print quality was to determine the 

relationship between the print speed and extrusion pressure. By varying these two parameters, the 

width of a single printed line varied significantly. These parameters affected how much resin 

flowed out and covered the fiber, which therefore affected the fiber volume fraction of a single 

line. Information regarding the width of each line was also an important factor for setting the hatch 

spacing of multi-line prints. In order to test this relationship, single lines were printed at speeds 

ranging from 0.5 mm/s to 2 mm/s and at pressures ranging from 0 kPa to 50 kPa. Table 4 shows 

the printing parameters used in this study.  

Table 4: Printing parameters for line width tests 

Parameter Value 

Feed rate 
0.5, 0.75, 1, 1.25, 1.5, 1.75, 

& 2 mm/s 

Extrusion Pressure 0, 10, 20, 30, 40, & 50 kPa 

Base layer height 0.5 mm 

Number of layers 1 

 

A single sample was printed for each pressure, with the speed increasing progressively during the 

print. The print pattern is shown in Figure 28. Each vertical line in the print path is printed at a 

different speed. 
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Figure 28: Print path for line width tests 

The nozzle height relative to the bed was held constant for each test. This was important because 

it ensured a consistent base layer height, meaning that all the resin flowing out was doing so in the 

radial direction relative to the nozzle. A printed sample is shown in Figure 29. 

 

Figure 29: Resulting sample printed to measure the line widths 

The cross-section of each line did not have a constant width. They tended to be wider at the base, 

where each measurement was taken. Figure 30 shows an illustration of this cross-sectional shape. 

 

Figure 30: Illustration of a typical cross section of a single printed line 

Once each print was complete, the width of each line was measured, with the sample still on the 

print bed, using dial calipers. Measurements were taken near the beginning, middle, and end of 

each line. Figure 31 shows the average values for these results.  

Measured line width 
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Figure 31: Line width as a function of deposition speed and extrusion pressure 

As seen in the figure, both speed and pressure dramatically affected the width of a single printed 

line sample. As expected, having a high pressure with a low feed rate resulted in a large line width 

with excess resin, while having a low pressure with a high feed rate resulted in a small line width.  

Also of note in this experiment was the relationship of line width vs feed rate at 0 kPa. With no 

applied pressure, all the resin that came of the nozzle was pulled by the fiber itself. As the feed 

rate was increased, the fiber was pulled out of the nozzle more quickly, which resulted in more 

resin flow as well. This was why there was an increase in line width for an increase in feed rate at 

zero applied pressure.  

4.2: Effect of Extrusion Pressure on Print Quality 

To further study the effects of extrusion pressure and deposition speed, both parameters were tested 

independently. Single-layer rectangular samples were printed at a constant speed in the path shown 

in Figure 32. 
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Figure 32: Print path for constant feed rate tests 

The print parameters for these tests are shown in Table 5. 

Table 5: Printing parameters for constant feed rate tests 

Parameter Value 

Feed rate 1 mm/s 

Extrusion Pressure 10, 20, 30, 40, & 50 kPa 

Base layer height 0.5 mm 

Hatch spacing 1.2 mm 

Number of layers 1 

 

The first goal of these samples was to see if any significant changes in top surface quality were 

found. The top surface of each sample is shown in Figure 33. Since all samples made with this 

printer were printed on the same glass print bed, the surface was extremely smooth on the bottom 

and was therefore not studied.  

     
10 kPa 20 kPa 30 kPa 40 kPa 50 kPa 

Figure 33: Top surface finish results from varying extrusion pressure 
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The results of this study were that the surface was high quality for each of the samples. This was 

because the resin flowing out filled gaps between adjacent lines and resulted in a smooth surface. 

The second goal was to get an adequate coating of the fibers in each layer. Figure 34 shows cross-

sectional images of each sample. 

 

10 kPa 

 

20 kPa 

 

30 kPa 

 
40 kPa 

 
50 kPa 

Figure 34: Cross-sectional images of samples with varying extrusion pressure 

As seen in the figure, at high extrusion pressures the resin coated the fiber much more than at lower 

extrusion pressures. This resulted in a thicker layer, but also a more consistent coating of the layer. 

The samples printed at the lower pressures were not sufficiently coated with resin and resulted in 

very fragile samples.  

It was also found in this experiment that the fiber and resin require a certain pressure to begin 

flowing out on their own. This was tested by holding the print head well above the print bed and 

finding the pressure at which the material would begin to extrude. At pressures below 30 kPa, the 

fiber did not extrude from the nozzle on its own. This meant that the fiber was dragged out of the 

nozzle by the portion adhered to the print bed as the print head moved. At pressures of 30 kPa or 

above, the pressure was enough to force the materials to flow out on their own. This was the 



   

 

39 

 

preferred condition, as it was less likely to tear fibers if the fibers were not pulled against the 

sidewall of the nozzle as it extruded.  

4.3: Effect of Feed Rate on Print Quality 

The effects of varying feed rate were also studied independently of extrusion pressure. Since 

pressure was not being varied, samples could be printed on the same build plate. The print path for 

these samples is shown in Figure 35. 

  

Figure 35: Print path for constant pressure tests 

The print parameters for these tests are shown in Table 6. 
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Table 6: Printing parameters for constant pressure tests 

Parameter Value 

Feed rate 
1, 1.25, 1.5, 1.75, & 2 

mm/s 

Extrusion Pressure 30 kPa 

Base layer height 0.5 mm 

Hatch spacing 1.2 mm 

Number of layers 1 

 

The completed print is shown in Figure 36. 

 

Figure 36: Completed print for constant pressure tests 

As with the constant speed tests, the first goal was to see if any significant changes in surface 

quality were found. The top surface of each sample is shown in Figure 37. 
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1 mm/s 1.25 mm/s 1.5 mm/s 1.75 mm/s 2 mm/s 

     

Figure 37: Top surface finish results from varying feed rate 

The results of this were that, like the previous test, the surface was only minimally affected. The 

resulting surfaces were consistent and smooth regardless of the feed rate. The second goal was to 

see the coating of the fibers in each layer. Figure 38 shows cross-sectional images of each sample. 

 

1 mm/s 

 

1.25 mm/s 

 

1.5 mm/s 

 
1.75 mm/s 

 

2 mm/s 

Figure 38: Cross-sectional images of samples with varying feed rate 

As seen in the figure, at low feed rates the resin coated the fiber much more than at higher feed 

rates. This resulted in a thicker layer, but also a more consistent coating of the fiber. The samples 

printed at the higher feed rates were not sufficiently coated and resulted in very fragile samples 

with exposed fibers on the top surface.  
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4.4: Cross-sectional Imaging of Multilayer Samples 

In order to analyze the voids and fiber volume in bulk samples, a multilayer sample was printed 

and the cross-section was imaged. A five-layer rectangular sample was created for this purpose, as 

seen in Figure 39. 

 

Figure 39: Illustration of rectangularly stacked tow cross-section 

This print was carried out at 30 kPa and 1 mm/s, which was found in the line width experiments 

to provide a consistent amount of resin. Table 7 shows the full print parameters. 

Table 7: Printing parameters for multilayer sample tests 

Parameter Value 

Feed rate 1 mm/s 

Extrusion Pressure 30 kPa 

Base layer height 0.5 mm 

Hatch spacing 1.2 mm 

Number of layers 5 

Layer height 0.8 mm 

 

The resulting cross-sectional image for this sample is shown in Figure 40. 
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Figure 40: Cross-section of 5-layer rectangularly stacked sample 

There were multiple conclusions to be made from this image. The first was that the narrow hatch 

spacing caused the lines to be slightly slanted. As the print moved from the left to the right on each 

layer, the printed fiber stacked partially on top of the adjacent printed line. The second realization 

from this was the void content. While there were no large voids seen in the matrix, the tows 

themselves had regions in which the resin did not fully cure, resulting in loose fibers (seen as the 

darkest areas of the fiber in Figure 40). This was an issue which could likely be fixed with better 

printing parameters, as it did not occur in every tow, and occurred less often in those where the 

tows were more flattened.  

An estimate for the fiber volume fraction was found using the image analysis software ImageJ. 

The fiber volume fraction was estimated by assuming the fibers were densely packed together. 

This resulted in a fiber area shown in Figure 41, where the black areas (excluding the area above 

and below the sample) were assumed to be carbon fiber. The software measured the area of each 

of the tows and that of the entire sample. Dividing the total area of the tows by the total area of the 

sample gives an estimate for the fiber volume fraction.  
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Figure 41: ImageJ analysis of fiber volume 

From this, the fiber volume fraction was found to be approximately 37%. Since this approximation 

was made assuming there was no resin within each tow, it was an overestimate. Although the void 

fraction could theoretically be calculated in this same way, the images did not have high enough 

resolution to differentiate the voids from the cured areas within each tow.  

4.5: Samples without Nozzle Shield 

In each of the previous samples mentioned, the nozzle shield was placed on the nozzle so that the 

UV light from the lasers was blocked immediately surrounding the nozzle. This was done in order 

to prevent clogging of the nozzle to improve the surface finish. Several prints were completed, 

however, without the nozzle shield. A comparison of samples printed with and without the nozzle 

shield are shown in Figure 42. 
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Figure 42: Sample printed at 30 kPa and 1 mm/s with and without nozzle shield 

Similar tests were carried out as in Sections 4.2 and 4.3 to characterize the surface improvements 

and resin distribution. It was found from these experiments that the surface quality appeared better 

as less resin was used (i.e. less extrusion pressure or higher feed rate). From examining the cross-

sections, however, it was found that the surface only appeared better because there was less resin 

in total. This phenomenon was likely due to the partially clogged nozzles producing a poor surface 

finish. Excess resin was necessary to achieve any strength in the prints. This meant that the samples 

with a smooth surface finish were very fragile and were actually much lower quality than their 

counterparts printed with the nozzle shield.  

Printing samples without the nozzle shield was beneficial in some cases due to its improved 

dimensional accuracy. Since the resin began to cure immediately as it exited the nozzle, the printer 

could print more accurate turns and curves. This extra curing time immediately out of the nozzle 

resulted in the fiber being laid down closer to the actual print path rather than dragging further 

away as the curing was delayed. With an improved nozzle shield, it would be possible to minimize 

the delay in curing while still preventing nozzle clogs during the print.  

Not shielded Shielded 



   

 

46 

 

4.6: Complex Samples 

Several more complex objects were printed to demonstrate the capabilities of the CFDW printing 

method. First, a 150 mm line was printed horizontally through free space without support to show 

its ability to span a gap. This is shown in Figure 43. 

 

Figure 43: Print spanning 150 mm gap with no support 

This method worked under the conditions that the pressure was low and the feed rate was high. 

This way the fiber was held in tension by the nozzle and pulled out as the print head moved until 

it reached the other side of the gap. A larger gap could likely be spanned in this method with a 

larger print bed. 

A 100 mm vertical line was also printed, to show the printer’s ability to print vertically. This is 

shown in Figure 44. 

 

Figure 44: Vertical line printed 100 mm high 
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As with spanning the gap, this method required low pressure applied so that the fiber could be 

pulled out of the nozzle and held in tension to remain straight and upright. Likewise, a longer fiber 

could likely be printed without issue. 

To demonstrate the ability of the printer to print sharp turns, a complex print path was tested. 

Figure 45 shows the print path. 

 

Figure 45: Print path of text spelling the word "Oklahoma" 

The completed print is shown in Figure 46. 

 

Figure 46: Complex print path outlining the word "Oklahoma" 

As seen, the print was able to complete the print path relatively well. Sharp corners result in the 

fiber dragging slightly, but larger radii gave good accuracy. There were also some slight tears in 

the fiber at the sharp turns, seen where the tow split apart in Figure 46. 

A hollow airfoil structure was also printed to demonstrate the printer’s capabilities to print a 

complex shape in multiple layers. The resulting airfoil is shown in Figure 47. 
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Figure 47: Completed hollow airfoil structure 

Lastly, a hollow cone was printed to show the ability to print more than a single slice stacked on 

top of itself. The cone is shown in Figure 48. 

 

Figure 48: Completed hollow cone structure 

This cone was a single layer thick, 45-layer tall structure. This shows the ability of the printer to 

print overhangs without the need for support material underneath. This structure was not printed 

in separate layers, but instead spiraled up as it printed.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

The development of the CFDW method was shown to be a viable additive manufacturing method 

for creating continuous fiber-reinforced thermosetting 3D prints. In order to create continuous fiber 

AM samples, an existing FDM printer was heavily modified with a custom print head and extrusion 

system to extrude fiber and resin out of a syringe. This was achieved through the creation of a 

pneumatic system which applied pressure at the top of the syringe to push material out. To 

effectively operate the printer, custom MATLAB programs were created which could make 

continuous print paths and quickly adjust the geometric parameters of those paths. Once the printer 

was operational, several printing parameters were tested in order to improve the print quality. 

These factors included deposition speed, extrusion pressure, nozzle size, nozzle-plate gap, and 

laser intensity. The primary goal of this was to achieve consistency in printing so that the parts 

would have accurate geometry and minimal print failures. Once initial parameters were set which 

could consistently create samples, deposition speed and extrusion pressure were studied more in 

depth in order to improve the surface finish and strength of the completed samples.  

Through studying the deposition speed and extrusion pressure it was found that the width of a 

single line increased with either a decrease in deposition speed or an increase in extrusion pressure. 

This meant that these two parameters needed to be balanced in order to achieve a desired line 

width. The surface finish and fiber coating were more closely examined in sample sets with varying 

extrusion pressure or deposition speed. It was found in both studies that surface finish was only 

minimally affected, but that the fibers would not be sufficiently coated at high deposition speeds 

or low extrusion pressures. Using these studies, a five-layer sample was printed using the best-

known printing parameters.  An analysis of the cross-section using image analysis software found 

that the fiber volume fraction was approximately 37%. This value could likely be improved 
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through fine-tuning the printing parameters. The printer was also able to manufacture several 

complex shapes to prove its capabilities, including complex print paths and multilayer hollow 

structures. 

The main issues encountered in printing samples were nozzle clogs and lack of bed adhesion.  The 

nozzle clogging issue was solved through the addition of a nozzle shield so that light would not 

cure resin immediately surrounding the extrusion point. This resulted in a slight reduction of print 

accuracy but created better samples overall with drastically improved surface finish and fiber 

coating. The lack of bed adhesion was solved through adjusting the base layer height and tuning 

the print parameters so that the resin cured in an appropriate time in relation to deposition speed. 

Through studying the feed rate and extrusion pressure, parameters were found which could print 

dense multilayer samples with minimal voids and a good surface finish.  

Further research into this project would start with a parameter study of some of these other factors 

that were not altered throughout these experiments. These include such things as UV intensity, 

fiber material, fiber size, nozzle size, resin viscosity, etc. Testing other fibers such as Kevlar or 

glass would also be a way to increase the toughness or reduce the cost of these samples. Mechanical 

testing would also be an important aspect to study, as even without changing materials, simply 

altering the various parameters could increase the fiber volume fraction which would have a large 

effect on the mechanical properties. It could also be beneficial to use a stronger thermally curable 

epoxy resin with some amount of photoinitiator in it. This way, the UV-curing could be used to 

give the part the necessary strength to complete the print, and thermal post-curing could fully 

strengthen the part to a very high strength.  

The area of study which would be the most impactful with this printer would be to study the effects 

of controlling the fiber direction. By 3D printing the continuous fibers, the direction could be 
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printed such that it would follow the geometry of the part (i.e. as it comes to a hole it bends around 

it rather than stopping abruptly) which would allow for specific areas to be reinforced. This would 

reduce stress concentrations and therefore maximize the strength of the part, without adding 

significant weight or volume. Having these reinforcing fibers throughout the prints could result in 

parts which are extremely strong in comparison to other 3D printed components. Using strong 

resins and controlling the direction of the fibers could give this method the possibility of creating 

some of the strongest and stiffest components found in the field of polymer AM.  

Due to the ease at which materials can be altered for the CFDW process, it is possible to further 

tailor the resin’s rheological properties by dispersing nanoscale and transparent particles within 

the resin. Nanoscale cellulose crystals could be one of the nanoparticles dispersed in the UV-

curable resin to increase its viscosity for printing [64, 65]. Other nanoparticles, such as 

piezoelectric ceramics, graphene, and carbon nanotubes, could also be dispersed in the resin [66-

71]. Certain nanoparticles would not only improve the 3D printing capabilities, but also lead to 

benefits such as improved mechanical, thermal, and electrical properties. Nanoparticles could also 

allow for self-sensing capabilities for damage detection during long-term service under complex 

load conditions and harsh environments [72-75].  

The developed CFDW printer could also serve as a platform for the investigation of real-time 

quality assurance. Currently, most 3D printers lack the capability to detect potential material 

imperfections during the printing process. Quality assurance devices could be installed on the 

printer to monitor prints in real-time. For example, pulsed laser-induced acoustic emission systems 

could be included on the printer [76-78]. Ultrasonic signals could be used during the printing 

process to generate 3D images to identify any voids or fiber misalignment. In addition, many 

algorithms and technologies developed for structural health monitoring of composite and metallic 
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structures could be employed for real-time quality assurance during printing [79-85]. Advanced 

ultrasonic analysis methods, such as time domain analysis, frequency domain analysis, and time-

frequency domain analysis, could be employed for the 3D microstructural image generation during 

printing [86-91]. Additionally, the identification of microscale voids could lead to an analysis of 

the service life of the 3D printed composites [92-96]. These monitoring systems could not only 

lead to a better understanding of the quality of the prints, but also provide information regarding 

the improvement of the printing parameters. This information would assist the continued 

improvement of the quality of 3D printed composites. 
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