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Abstract

Nonlinear systems leveraging the effects of negative stiffness can exhibit beneficial

qualities for passive seismic mitigation in structures. Such systems can be achieved

by placing nonlinear devices displaying negative stiffness in parallel with linear posi-

tive stiffness systems such as a structure or spring. This thesis presents research into two

such systems: (i) a device which causes apparent weakening in a structure subjected to

horizontal ground motions and (ii) an isolation system to protect building contents from

vertical seismic effects.

Apparent weakening is the softening of a structure’s apparent stiffness by adding

negative stiffness to the overall system via negative stiffness devices. Apparent weak-

ening is an elastic effect that has the benefit of reducing the peak accelerations and base

shears induced in a structure due to a seismic event without reducing the main struc-

tural strength. The smooth negative stiffness device (SNSD) presented in this thesis

consists of cables, pulleys, and extension springs. A nonlinear mathematical model of

the load-deflection behavior of the SNSD was developed and used to determine the op-

timal geometry for such a device. A prototype device was designed and fabricated for

installation in a bench-scale experimental structure, which was characterized through

static and dynamic tests. A numerical study was also conducted on two other SNSD

configurations designed to achieve different load-deflection relations for use in an in-

elastic model building subject to a suite of historic and synthetic ground motions. In

both the experimental prototype and the numerical study, the SNSDs successfully pro-

duced apparent weakening, effectively reducing accelerations and base shears of the

xiii



structures.

The buckled-strut vertical isolation system (BSVIS) presented in this thesis com-

bines the non-linear behavior of a laterally-loaded buckled strut with a linear spring.

The lateral load-deflection relation for a buckled strut, which is nonlinear and displays

negative stiffness, was investigated for various conditions to two- and three-term ap-

proximations of the deflected shape of a strut. This relation and the linear positive

effect of a spring were superimposed to give the load-deflection relation of a BSVIS.

An experimental prototype was fabricated and subjected to static tests. These tests con-

firmed the validity of the model and the effectiveness of adding a spring in parallel with

a buckled strut to achieve isolation-level stiffness. Based on the theoretical and experi-

mental findings, a design guide is proposed for the engineering of a BSVIS to protect a

payload from vertical seismic content.

xiv



Chapter 1

Introduction

1.1 Overview

Seismic activity has historically resulted in large amounts of damage to structures lack-

ing proper seismic detailing or seismic mitigation systems (Moroni et al., 2012), and

the threat of large earthquakes always looms, even in states such as Oklahoma which,

until recently, have not been considered areas of high seismic activity (Harvey et al.,

2018). Whether a structure is a bridge, a building, or a transmission line tower, protect-

ing the structure and the people who use it is of utmost concern to engineers involved in

seismic design. Also important is protecting sensitive equipment and components such

as server towers or microscopes from vibrations induced by earthquakes. The use of

negative stiffness to cause nonlinear-elastic behavior for seismic mitigation is attested

to in the literature, and is reviewed in the remainder of this chapter.

1.2 Previous Approaches to Seismic Mitigation

Many advanced techniques to mitigate a structure’s response to seismic loading take one

of two approaches: supplemental damping or base isolation; and these can be active,

passive, or systems somewhere in between. Other approaches have gained popularity

recently, among them the use of negative stiffness in seismic applications. The need for

effective vertical isolation has also become of greater interest. Traditional methods of

seismic mitigation, alternative methods, and the recent development of negative stiffness
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devices (NSDs) and vertical isolation systems (VISs) as an answer to these methods’

shortcomings are reviewed in the following sections.

1.2.1 Passive Approaches to Seismic Mitigation

Typical approaches to mitigating the seismic response of a structure are passive seismic

dampers and base isolation. Seismic mitigation techniques are part of the subject of

structural control, which is the design of building systems to dissipate or redirect energy

in a way in which the structure is not damaged (Saaed et al., 2015). Structural control

can be broken into four broad categories: passive, semi-active, active, and hybrid sys-

tems. This research will focus on passive systems, which can be further divided into

the subgroups of seismic isolation and energy dissipation devices (Saaed et al., 2015).

While some dampers and isolation techniques bleed over into the semi-active or active

categories, damping and isolation are largely encompassed within the two subgroups of

passive systems.

Many seismic dampers have been developed, characterized, and implemented in

practice since the 1970s (Kelly et al., 1972; Robinson and Tucker, 1976). Passive damp-

ing devices come in many forms including, but not limited to, viscous fluid dampers,

viscoelastic solid dampers, metallic dampers, and friction dampers (Symans et al.,

2008). Adding supplemental damping is a popular and efficient means of dissipating en-

ergy from seismic loading that may otherwise lead to damage in the structure (Symans

et al., 2008).

Base isolation for the seismic protection of structures consists of placing flexible de-

vices at the base of a structure to decouple its motion from the ground’s motion (Warn

and Ryan, 2012). This decoupling shifts the structure’s natural period to a longer pe-

riod, which reduces floor accelerations and inter-story drifts caused by an earthquake.

Common types of isolation systems can be divided into elastomeric and sliding devices

(Warn and Ryan, 2012). Rolling-type isolation systems are also common base isolation

2



solutions, but are typically limited in application to equipment isolation, rather than

used in structures (Harvey and Kelly, 2016).

These traditional techniques have their disadvantages. As effective as damping may

be in seismic mitigation, large damping ratios can increase base shears within structures

(Pasala et al., 2013). While shifting the period of a structure through base isolation can

protect it from high frequency seismic content, this can lead to increased displacements

at the isolation interface (Warn and Ryan, 2012). This is often remedied by the applica-

tion of a damper, but large damping ratios have the adverse effect of increasing absolute

acceleration in such systems (Iemura and Pradono, 2009).

1.2.2 Alternative Approaches to Seismic Mitigation

Other approaches to mitigate seismic effects include active, semi-active, and hybrid

control systems. Active control techniques are those “in which the motion of a structure

is controlled or modified by means of the action of a control system through some ex-

ternal energy supply” (Soong, 1988). High costs and high power demands are obstacles

to the viability of active control (Spencer and Sain, 1997). Semi-active control uses an

actuator to modify the behavior of a passive device (Saaed et al., 2015). Semi-active

systems still need a power supply for sensors and actuators, but the demand is much

less than that in active systems, because the actuators of semi-active devices do not ap-

ply forces directly to the structure. Hybrid control systems implement combinations of

passive, semi-active, and active devices in series or in parallel to leverage the benefits of

each group (Saaed et al., 2015). Each of these schemes of alternative structural control

has its own shortcomings for seismic mitigation.
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Figure 1.1: Drawing of the friction-based negative stiffness damper; Source: Iemura and Pradono
(2009)

1.3 Negative Stiffness Devices

1.3.1 Negative Stiffness for Apparent Weakening

New approaches, including using negative stiffness to achieve apparent weakening, have

been investigated to avoid the adverse effects and insufficiencies of active, semi-active,

and passive devices (Pasala et al., 2013). Negative stiffness assists rather than resists

deflection of the structure. Negative stiffness devices (NSDs) are devices with geometric

configurations such that negative stiffness is added to the structure when it displaces.

An early attempt to make an NSD was the proposal of pseudo-negative stiffness

dampers (PNSDs) which produce negative stiffness hysteretic loops (Iemura and

Pradono, 2009). The PNSDs are not true NSDs because a damper is unable to assist

the motion of the structure, but rather they produce behavior similar to the addition

of negative stiffness. An example of such a PNSD is a friction-based passive negative

stiffness damper (Iemura and Pradono, 2009). This device, pictured in Fig. 1.1, was

able to produce negative stiffness hysteretic loops without active or semi-active control

(i.e., a passive system) due to the convex shape of the friction plate.

Linear passive NSDs have been developed for varying applications. When com-

bined with passive supplemental damping, the NSD of Chen et al. (2015) was proven

to increase the amount of damping in a vibrating cable. This NSD consisted of a pre-

compressed spring which had approximately linear negative stiffness. Such an NSD can

be thought of as a weakening device, since its purpose is to increase displacement, in
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this case across the damper to allow an increase in damping.

PNSDs and linear NSDs have beneficial results, but NSDs with variable stiffness

can provide greater passive control of the structure’s behavior while avoiding weak-

ening the system under small displacements. Variable stiffness devices also allow for

the development of apparent weakening. The current practice of designing buildings

for seismic events, even with supplemental damping or other mitigation approaches,

allows for inelastic (post-yield) action to reduce structural accelerations and interstory

drifts. Apparent weakening is defined as “the softening of the structure’s apparent stiff-

ness through the addition of negative stiffness at a displacement that is smaller than the

structure yield displacement” (Walsh et al., 2018). Apparent weakening achieves the

benefits of a yielding structure (reduced structural accelerations and interstory drifts)

without requiring the main structure to undergo yielding, altering the original structural

system, or permanently damaging the structure (Pasala et al., 2013). Idealized force-

displacement curves of a structure equipped with a variable (nonlinear) NSD are shown

in Fig. 1.2. The light gray curve describes the behavior of a typical structure, without

modification from an NSD, that weakens at its yield displacement, uy. The dark gray

curves describe the behavior of the NSD, which—under small deflections—adds nei-

ther negative nor positive stiffness. As the structure begins to deflect further, the NSD

has a negative stiffness past u′y, the prescribed apparent yield displacement. The black

curves illustrate the behavior of the structure-device (SD) system. The apparent weak-

ening behavior is clearly shown by the change in total stiffness at u′y. The two profiles

show different design possibilities of NSDs: (a) shows an NSD that adds positive stiff-

ness to, or strengthens, the structure after a certain deflection has been reached (here, at

the structure’s yield point uy), while (b) shows an NSD that adds no negative or posi-

tive stiffness after uy. Various NSDs have been designed to try to attain these idealized

curves, and some examples are reviewed below.
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Figure 1.2: Idealized force-displacement curves of NSD behavior; Source: Walsh et al. (2018)

A variable passive NSD was developed and dubbed the adaptive negative stiffness

system (ANSS) (Pasala et al., 2013, 2014; Sarlis et al., 2013). The ANSS, pictured in

Fig. 1.3, consists of a pre-compressed spring, a toggle arm, and two other compression

springs, all fit within a double-chevron brace configuration. When the structure under-

goes deflection, the toggle arm rotates, causing the pre-compressed spring to produce

a moment. This is the negative stiffness action of the device. The two compression

springs at the bottom of the device, termed the gap-spring assembly (GSA), serve to

cancel the negative stiffness contribution at small deflections. The force-displacement

profiles of the pre-compressed spring, the GSAs, and the complete ANSS are shown

in Fig. 1.4. The structure-ANSS assembly was subjected to Kobe earthquake ground

motions and produced the experimental force-displacement curves shown in Fig. 1.5.

The structure-ANSS assembly achieves apparent weakening before the structure’s true

yield point, which is shown by the dotted black line in Fig. 1.5 as it follows a relatively

flat path beyond 0.5 in. of deflection (Pasala et al., 2014).

Another approach to achieving negative stiffness in structures is found in the

rotation-based mechanical adaptive passive (RBMAP) device (Attary et al., 2017). The

device, pictured in Fig. 1.6, consists of three geared wheels with internal pre-torqued
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Figure 1.3: Adaptive negative stiffness system; Source: Pasala et al. (2014)

Figure 1.4: Force-displacement curves of components of the ANSS; Source: Sarlis et al. (2013)

torsional springs. The middle wheel is connected to one floor of the structure through

a pinned connecting arm, and the outer wheels are fixed to another floor. Under small

deflections, the wheels are not engaged, allowing the structure to respond naturally.

When the structure experiences larger inter-story drift, the middle wheel moves over

and engages one of the two outer gears, which then assists the deflection of the

structure and adds negative stiffness. An analytical model of the RBMAP was used in

simulations, and initially undesirable results were obtained. The engagement of the

negative stiffness was too abrupt, and excessively large negative stiffness occurred at
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Figure 1.5: Experimental force-deformation loops of the ANSS, experimental structure, and the
structure-ANSS assembly subjected to Kobe earthquake ground motions; Source: Pasala et al.
(2014)

Figure 1.6: Small-scale prototype of RBMAP device; Source: Attary et al. (2017)

large deflections. The model was modified to include additional springs that would

cancel out the unwanted behavior, and simulations were again performed. The resulting

force-displacement profiles are shown in Fig. 1.7. The profile of the modified device

resembles the behavior represented in Fig. 1.2(a).

A third NSD was designed with geared wheels and extension springs (Walsh et al.,

2018). As shown in Fig. 1.8, this NSD uses two pre-tensioned springs on two pairs of

geared wheels. The “N-N Gear Pair” provides negative stiffness, and the “N-P Gear

Pair” negates the negative stiffness at small deflections, and then aids the N-N pair in
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Figure 1.7: Simulated force-displacement profiles of an isolated bridge (IB), the bridge equipped
with the RBMAP, and the bridge equipped with the modified RBMAP; Source: Attary et al. (2017)

Figure 1.8: Variable negative stiffness device prototype in test assembly; Source: Walsh et al.
(2018)

providing negative stiffness. The relative sizes of the gears and springs of this device

were modified to produce both force-displacement curves shown in Fig. 1.2. This NSD

was experimentally tested in the set-up shown in Fig. 1.8 and the experimental results,

as well as theoretical curves, are shown in Fig. 1.9(a). It was also analytically modeled

in a structure, and the resulting hysteretic curves are shown in Fig. 1.9(b).

All the presented NSDs share some important characteristics. First, under small

deflections, the NSDs do not affect the response of the structure. This is important so

that excessive deflections are not induced when relatively small lateral loads, such as

small wind loads, act on the structure. Second, the NSDs achieve apparent weakening
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(a) (b)

Figure 1.9: (a) Experimental and theoretical results of the VNSD; (b) Analytical force-displacement
profiles for the structure, the VNSD (ZNZ1), and the structure-device system; Source: Walsh et al.
(2018)

at a certain prescribed deflection. Third, this apparent weakening does not continue into

very large deflections, and the structure-device systems eventually stiffen.

These NSDs show promise for implementing apparent weakening, but more

progress can be made. Of the devices presented, only the ANSS has been characterized

in a full-scale experimental test. Additionally, these devices each have geometry

that rely on complicated spring configurations or geared parts, which may impede

constructability, reliability, or serviceability of these designs. The ANSS and RBMAP

also have components which physically engage and disengage, which raises a durabil-

ity concern because of repeated impacts due to an excitation, and the VNSD uses a

rack-and-pinion design to transfer the linear motion of the structure into the rotation of

the device. Rack-and-pinion applications are not widespread in structural contexts.

1.3.2 Negative Stiffness in Vertical Isolation

Another potential application of negative stiffness for structural control is in the function

of vertical isolation. Vertical isolation is a form of base isolation that, rather than de-

coupling a structure or piece of equipment from horizontal ground movement, seeks to

decouple it from the vertical component of ground motion. Vertical ground motion has

previously been relatively unconsidered in structural design, but it has been explicitly
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incorporated into the load combinations in the latest version of ASCE Minimum Design

Loads and Associated Criteria for Buildings and Other Structures (ASCE, 2017). Verti-

cal accelerations can have significant impacts on buildings as well as equipment within

buildings. Additional motivation for vertical isolation has arisen from some horizon-

tal isolation techniques that have been shown to impart vertical accelerations that are

not negligible (Harvey, 2015). Vertical accelerations have also been shown to be sig-

nificantly amplified through horizontal isolation systems (Ryan et al., 2016). Negative

stiffness has been used to achieve vertical isolation in commercial applications (Platus,

1992).

Linear vertical isolation systems (VISs) have been difficult to develop as an

isolation-level (very low) stiffness at small deflections leads to undesirable settling due

to the gravitational self-weight of the isolated body. An example of this is work done

by Lee and Constantinou (2018), who tested triple friction pendulum (FP) horizontal

isolators in combination with vertical isolators consisting of coil springs and linear

viscous dampers, pictured in Fig. 1.10. The system, which had a vertical frequency of

2 Hz, had a static vertical displacement of 60 mm and a capacity for an additional 40

mm of dynamic displacement. Experimental testing found this 2 Hz frequency to be

undesirable, but reducing the frequency of the VIS further would have increased the

static displacement, thereby limiting the dynamic displacement capacity and rendering

the device not as effective (Lee and Constantinou, 2018).

The inherent difficulties of linear vertical isolators necessitate the development of

nonlinear VISs. A VIS having piecewise-constant restoring force was developed using

two sets of constant-force springs supporting two different platforms (Fig. 1.11(a)), re-

sulting in two different regions of very low stiffness (Fig. 1.11(b)) (Araki et al., 2009).

The platforms are described as a bar and a table in Fig. 1.11(a). This system showed

large reductions in peak responses without excessive static deflections and had a self-
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Figure 1.10: Spring-damper vertical isolator and dimensions (left) and view of experimental set up
on shake table of triple FPs on the spring-damper (right); Source: Lee and Constantinou (2018)

(a) (b)

Figure 1.11: (a) Schematic of piecewise-constant restoring force vertical isolator and (b) force-
deflection profile of the isolator about its static equilibrium position; Source: Araki et al. (2009)

centering capacity. A major drawback of this design is the impact between the bar and

the table, which was the main source of measured peak response accelerations even

when different mitigation strategies such as placing a flexible rubber layer between the

platforms were tried (Araki et al., 2009). Additionally, while the constant-force springs

that provide the vertical restoring force are compact, the need to hang the isolated ob-

ject from column supports does not provide a low-profile system and could cause issues

with horizontal motion responses.

Cimellaro et al. (2018) developed a three-dimensional isolation system that uses an

NSD for the vertical isolation component. A schematic of the NSD, which highly re-

sembles the ANSS, is presented in Fig. 1.12. The pre-compressed spring causes further

deflection when vertical displacements occur across the device, and this effect is can-
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(a) (b)

Figure 1.12: Views of the VIS of the 3D isolation device of Cimellaro et al. (2018): (a) A 3D view of
the vertical isolator; (b) A radial section through the device showing the spring and lever assembly;
Source: Cimellaro et al. (2018)

celed by a gap-spring assembly (GSA) at low deflections to prevent unwanted settling

from gravity loads. The horizontal isolators for this 3D system were rubber bearings

in parallel with the NSD. Numerical simulations of this device showed reduced vertical

accelerations when this device was installed compared to when a structure was only

horizontally isolated (Cimellaro et al., 2018). This device was effective in reducing ver-

tical accelerations, but it does rely on a similar GSA configuration as did the ANSS.

This means that the GSA must engage and disengage when the device is excited, and at

the high frequencies under consideration for vertical isolation, this could cause greater

concerns than in the horizontal motion of the ANSS.

Another recent nonlinear VIS is a quasi-zero stiffness (QZS) vertical isolator con-

sisting of linear springs in parallel with disk springs which have nonlinear stiffness,

proposed by Zhou et al. (2019). The disk springs have a region of negative stiffness,

which is balanced by the linear spring to provide a sufficient static deflection at the

static equilibrium point with a near-zero stiffness under a dynamic vertical excitation

either side of equilibrium. The system stiffens at large deflections, and contact is never

lost between the parts of the system (Zhou et al., 2019). The system and corresponding

force-deflection profile is presented in Fig. 1.13. This system presents an effective and
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(a) (b)

Figure 1.13: (a) Schematic of the quasi-zero stiffness system and (b) force-displacement profile of
the components of the QZS vertical isolator; Source: Zhou et al. (2019)

low-profile solution for nonlinear vertical isolation.

1.4 Summary

Negative stiffness can be effectively used to produce nonlinear-elastic systems. Appli-

cations of nonlinear negative stiffness for seismic protection in apparent weakening and

vertical isolation are attested to in the literature. Previously developed NSDs present

effective solutions to limitations in other seismic mitigation strategies, yet many draw-

backs are still present in these designs. This thesis presents research into the develop-

ment of a novel smooth negative stiffness device (SNSD) intended to reduce damage to

a structure from an earthquake (Chapter 2), as well as a buckled-strut vertical isolation

system (BSVIS) intended to achieve effective vertical isolation of equipment within a

building (Chapter 3). Both devices exploit elastic nonlinear behavior, induced by the

integration of negative stiffness, to achieve beneficial responses to an earthquake ground

motion. The SNSD developed in the present thesis attempts to overcome some of the

drawbacks found in other NSDs for apparent weakening. The nonlinear BSVIS devel-

oped using a laterally-loaded, post-buckled strut—consistently shown to be a source of

nonlinear negative stiffness (Thompson and Hunt, 1983; Lee et al., 2007; Kashdan et al.,

2012; Harvey and Virgin, 2015)—in parallel with linear springs can achieve effective

vertical isolation. This thesis is concluded by a summary of the work presented and
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suggestions on future directions for research on these topics (Chapter 4).
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Chapter 2

Smooth Negative Stiffness Device*

2.1 Overview

This chapter lays out the development of a novel smooth negative stiffness device

(SNSD) as another alternative to effecting negative stiffness and apparent weakening

within a structure. This device is so named because it smoothly transitions between the

different stages of stiffness modification. It does so with a system of cables and pulleys

to transfer translational motion from the structure to the device, rather than the rack-

and-pinion design of Walsh et al. (2018). The load-deflection relationship of the SNSD

is described first (Section 2.2), followed by a description of the design and fabrication

of an experimental prototype of such an SNSD (Section 2.3). The prototype was sub-

ject to experimental testing and the results of static, harmonic, and white noise testing

are presented (Section 2.4). Numerical simulations were conducted for an SNSD in an

inelastic building subject to multiple ground motions, and these results are presented

(Section 2.5) before this chapter is concluded (Section 2.6).

2.2 Load-Deflection Relation of Smooth Negative-

Stiffness Device

The proposed SNSD, which would be in parallel with a structure of elastic stiffness Ke,

is composed of a positive-negative-positive (PNP) stiffness device (Fig. 2.1(a)) and a

*This chapter is published as Cain et al. (2020).

16



Figure 2.1: Geometry and configuration of (a) PNP and (b) NP devices.

negative-positive (NP) stiffness device (Fig. 2.1(b)). The combined resisting force of

the SNSD can be expressed as

FSNSD(u) = FPNP(u) + FNP(u) (2.1)

where FPNP and FNP = forces provided by PNP and NP devices, respectively, for a given

horizontal deflection u of the structure. To find FPNP and FNP, consider the geometries

of the two devices shown in Fig. 2.1. The devices are driven by independent systems

of cables and pulleys that convert translational deflection u to rotations θ1 and θ2 (�+)

in the PNP and NP devices, respectively; the relationships θi(u) are discussed below.

These rotations in turn stretch and contract springs that are attached at one end to the

floor and at the other end to lever arms (of lengths L1 and L2) connected to the pulley.

The height from the center of the pulley to the spring attachment point on the floor is h

in both devices. In the PNP and NP devices, the lever arm is initially oriented vertically
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downward and upward, respectively.

Expressions for the potential energy stored in the PNP and NP springs are given by

VPNP(u) = 1
2k1

(
s1,0 −

√
(h − L1 cos θ1)2 + (−L1 sin θ1)2

)2
(2.2a)

VNP(u) = 1
2k2

(
s2,0 −

√
(h + L2 cos θ2)2 + (L2 sin θ2)2

)2
(2.2b)

where ki = stiffness of the ith spring and si,0 = unstretched length of the ith spring. The

restoring forces provided by the PNP and NP devices are given by the gradient of the

potential energies with respect to the lateral deflection u, as follows:

FPNP =
∂VPNP

∂u
≡
∂VPNP

∂θ1

∂θ1

∂u
and FNP =

∂VNP

∂u
≡
∂VNP

∂θ2

∂θ2

∂u
(2.3)

where

∂VPNP

∂θ1
= −k1hL1 sin θ1

s1,0 −
√

(h − L1 cos θ1)2 + (−L1 sin θ1)2√
(h − L1 cos θ1)2 + (−L1 sin θ1)2

(2.4a)

∂VNP

∂θ2
= k2hL2 sin θ2

s2,0 −
√

(h + L2 cos θ2)2 + (L2 sin θ2)2√
(h + L2 cos θ2)2 + (L2 sin θ2)2

(2.4b)

Evaluation of the derivatives ∂θi/∂u appearing in Eq. (2.3) requires the cable and

pulley kinematics. The cables extend from the ceiling above (with attachment points

spaced at B), wrapping around and driving the pulleys. The height from the cable

attachment points on the ceiling to the spring attachment points on the floor is given by

H. The lengths of the cables on either side of a pulley are approximated by the distance

from the cables’ ends (pinned to the ceiling above) to the center of the pulley (i.e.,

neglecting the radius of the pulley, which is assumed small compared to the geometry

H × B and pulley height h):

`(u) =
√

(H − h)2 + (B/2 ∓ u)2 (2.5)

for the left (−) and right (+) cables. The change in cable length (neglecting axial de-

formation in the cable), from the undeformed to deformed device configuration, corre-
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Figure 2.2: (a) Theoretical normalized load-deflection relation of an SNSD in parallel with a linear-
elastic structure having stiffness Ke. (b) The associated rotations in the PNP and NP devices based
on Eq. (2.8), with the nonlinear relationships (—) given by Eq. (2.6) for comparison

sponds to a rotation of the pulley given by

θi(u) =
∓[`(u) − `(0)]

Ri
, i = 1, 2 (2.6)

where Ri = radius of the ith pulley. Therefore, the necessary derivatives are as follows:

∂θi

∂u
=

1
Ri

∂`

∂u
≡

1
Ri

B/2 ∓ u√
(H − h)2 + (B/2 ∓ u)2

(2.7)

Note that ∂`/∂u is different (in magnitude) for the left and right cables, except for at

u = 0. For small deflections, the following linearized expression can be assumed:

∂θi

∂u
≈
∂θi

∂u

∣∣∣∣∣
u=0

=
1
Ri

B/2√
(H − h)2 + (B/2)2

(2.8)

The second fraction on the right hand side of the equation is recognized to be the cosine

of the angle the cable makes with the ceiling.

Having established the geometric relationships that relate the structure’s motion u

to the SNSD’s restoring forces FPNP and FNP, a theoretical load-deflection relation can

be created. Representative load-deflection and rotation-deflection relations are shown

in Fig. 2.2, where the reference deflection uo corresponds to one revolution in the PNP

device based on Eq. (2.8) [i.e., 2π = (∂θ1/∂u)|u=0 × uo]. Shown in Fig. 2.2(a), the com-

bined load-deflection relation demonstrates little modification to the structure’s linear
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stiffness at small deflections since the PNP and NP devices largely cancel each other’s

effects. At larger deflections, the relation exhibits clear apparent weakening as the PNP

device transitions to providing negative stiffness. The PNP device’s contribution to

negative stiffness helps to reduce the size of springs required in both devices. This is a

benefit over the ANSS system of Pasala et al. (2013) and is similar to the relationship

between the N-P and N-N discs in Walsh et al. (2018). This transition from the linear

structure behavior to the apparent weakening behavior is smooth as the PNP lever arm

crests its rotation and begins moving downward. As the structure continues to deflect,

both the PNP and NP devices smoothly begin to stiffen, mimicking post-yield stiffening

in the system. The combined load-deflection relation shown in Fig. 2.2(a) represents

an SNSD with zero-negative-positive (ZNP) stiffness per the nomenclature of Walsh

et al. (2018); a ZNP-type SNSD is considered in the experimental portion of this work.

Other load-deflection relations, e.g., zero-negative-zero (ZNZ) stiffness (Walsh et al.,

2018), can also be achieved through proper tuning of the PNP and NP devices, which is

described in Section 2.5.

Fig. 2.2(b) shows the associated rotations θ1 and θ2 in the PNP and NP devices, re-

spectively, corresponding to the load-deflection relations in Fig. 2.2(a). The PNP device

completes one full revolution, whereas the NP device completes a half of a revolution.

For comparison, the nonlinear relationship given by Eq. (2.6) and the linear relation-

ship based on Eq. (2.8) [i.e., θ ≈ (∂θi/∂u)|u=0 × u] are both shown. For the geometry

considered, the linearization is sufficiently accurate.

2.2.1 A Note on Scalability

From the preceding development, a few important scaling laws can be found. Namely,

if the device geometry (H, B, h, Li, and si,0) is scaled by a constant factor γgeom and

the deflection u is scaled by a constant factor γdefl (e.g., if a smaller deflection operating

range is desired), then the stiffnesses ki and radii Ri would need to be scaled respectively
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Figure 2.3: Experimental prototype of an SNSD: Left, the NP device in the foreground; Right, the
PNP device in the foreground.

by γ−2
geomγdefl and γdefl to maintain the desired load-deflection relation. These scaling

laws provide a redundancy in the selection of the SNSD parameters to achieve a desired

load-deflection relation FSNSD(u), which is beneficial in the design of such a system.

2.3 Experimental Prototype

An SNSD was fabricated for installation within a bench-scale, one-story experimental

structure, as shown in Fig. 2.3. The experimental structure was approximately 270

mm tall, 300 mm wide, and 108 mm deep (10 in. by 12 in. by 4.25 in.), and made of

two stiff polycarbonate floors and four 3D-printed columns attached with rigid moment

connections. The columns were flexible and capable of undergoing large drifts (greater

than 10%) within the elastic range (Porter et al., 2019). Braided line was used for the

cables to transfer the translational motion of the top floor of the structure to the SNSD.

The cables were wrapped around the pulleys of the devices and secured to the top floor

so that the proper orientation of the lever arms was maintained when at rest (u = 0).

The springs were attached to the lever arms and then stretched to the base of the device.

Note that two cables were used for each device, as opposed to using a single contin-

uous cable wrapping around the pulley; this was done to prevent the cable from slipping

due to the differential lengthening of the cables on either side of the pulleys (cf. Eqs.

(2.5)–(2.7)). As a result, only one of the cables was engaged at a given deflection, de-
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pending on what stage the respective device was in; i.e., for u > 0, the right cable for

a device providing positive stiffness and the left cable for a device providing negative

stiffness. In this configuration, force was transferred from the lever arm shaft to the

cable by the connection of the cable to the pulley rather than by friction on the pulley.

The length of the lever arms, radii of the pulleys, and properties of the springs

were determined using a mathematical model of the device in Mathematica. While the

experimental structure could withstand larger deflections, a maximum desired deflection

was set at 25.4 mm (1 in.) for the design of this SNSD. For designing the parameters of

the device, two criteria were sought. The first criterion was for the SNSD to have zero

stiffness at u = 0, so it would not modify the structure’s linear elastic stiffness Ke at

small deflections. The second criterion was to achieve the maximum negative stiffness

in the SNSD at half of the maximum deflection uo; this maximum negative stiffness was

determined as a percentage of the stiffness of the elastic structure. These criteria can be

expressed mathematically as follows:

Criterion 1: KSNSD

∣∣∣∣
u=0

= 0 (2.9a)

Criterion 2: KSNSD

∣∣∣∣
u=uo/2

= (α̃ − 1)Ke (2.9b)

where KSNSD ≡ ∂FSNSD/∂u = the tangential stiffness of the SNSD and α̃ = the apparent

post-yield stiffness ratio.

The dimensions of the structure and the devices are shown in Fig. 2.4. For clarity,

only one device is shown, and the dimensions and properties of the SNSD components

are tabulated in Table 2.1. 3D printing was used to produce the frames, arms, and pul-

leys, and springs were selected from a supplier. The spring stiffnesses in Table 2.1 were

determined experimentally by hanging masses and measuring the resulting deflection.

The PNP and NP devices were fabricated and installed in the structure opposite one

another (see Fig. 2.3). This experimental prototype was subjected to static and dynamic
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Figure 2.4: Dimensioned drawings of experimental prototype (with only one device shown).

tests in order to characterize its behavior and performance, which is described in the

next section.

2.4 Experimental Results

2.4.1 Characterization Tests

The load-deflection behavior of the combined structure-SNSD system was first charac-

terized by static tests. The device was fixed to a table and a universal testing machine

was used to apply a lateral load at a constant displacement rate of 50 mm/s to a maxi-

mum deflection of 25 mm. This test was performed for each combination of spring at-

Table 2.1: Experimental SNSD dimensions and parameters.

PNP Device NP Device

Variable Value Variable Value

R1 [mm] 3.18 R2 [mm] 6.35
L1 [mm] 8.26 L2 [mm] 44.5
s1,0 [mm] 47.6 s2,0 [mm] 63.5
k1 [N/m] 21.8 k2 [N/m] 9.14
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Figure 2.5: (a) Experimental and (b) theoretical load-deflection relations of the elastic structure,
SNSD component devices, and combined structure-SNSD system.

tachments: all springs attached, only the NP spring, only the PNP spring, and no springs

attached. The setup was then rotated 180° to apply the lateral load in the opposite direc-

tion. The results from these tests are shown in Fig. 2.5(a), where the lines represent the

average of six tests (three in each direction). The case of no springs attached is denoted

as “Structure,” and “Combined” is the case of all springs attached. The experimental

PNP and NP curves were determined by testing the system with the respective springs

attached and then subtracting the structure’s stiffness from those results.

For comparison, the theoretical load-deflection relation from Fig. 2.2(a) without

normalization is given in Fig. 2.5(b). Good agreement can be seen between the shapes of

the experimental and theoretical curves, clearly demonstrating that apparent weakening

was achieved. The combined structure-SNSD system curve closely follows the linear

structure at low deflections. Initially, a slight stiffening effect can be seen, but from 5 to

10 mm, the stiffnesses are almost exactly the same. The structure softens smoothly yet

quickly to exhibit apparent weakening after 11 mm of deflection. A gradual stiffening

begins at 17 mm of deflection and increases as the maximum deflection is reached.

The cause of the SNSD effect can be clearly seen in how the NP and PNP devices

performed. At small deflections, the PNP device had a slightly greater positive stiffness

than the magnitude of the NP device’s negative stiffness. This resulted in a slight in-

crease in the combined system stiffness over the first 5 mm of deflection. Between 5 and
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10 mm, the loads of both devices plateaued at loads equal in magnitude, which slightly

deviates from the expected theoretical results (Fig. 2.5(b)); however, it still provided the

desired cancelling effect for these small deflections. These deviations are believed to be

related to flexibilities in the cables and 3D-printed parts that are not represented in the

theoretical model. The NP device develops some additional negative stiffness around 11

mm before reaching a minimum load and turning positive again at 17 mm. This initiates

the apparent weakening in the combined system, and just as the NP device transitions

from negative to positive stiffness, the PNP device reaches a maximum negative stiff-

ness, which continues the apparent weakening region of the combined system until 17

mm. As the PNP device transitions to positive stiffness, the NP device provides positive

stiffness. For the last few millimeters of deflection, both devices add positive stiffness

to the combined system, resulting in the steep positive slope from 21 to 25 mm.

The nominally linear structure displayed some slight nonlinearities, especially as

the maximum deflection was approached. Even when the springs were not attached,

the cables remained wound around the pulleys, so the flexibility of the components of

the SNSD and the way the cables spooled around the pulleys could have contributed to

this. Additionally, these tests pushed the structure to extreme drifts (25 mm or approx-

imately 10% of the structure’s height), which could have introduced further geometric

nonlinearities. Some uncertainty also exists in the precision of the 3D-printed parts.

2.4.2 Harmonic Excitation

The experimental system was connected to a shake table for dynamic characterization.

This experimental setup of the combined structure-SNSD system on the shake table is

depicted in Fig. 2.6. The acceleration of the table and of the top floor of the structure

(hereafter referred to as “table acceleration” and “structure acceleration,” respectively)

were measured by rigidly attached piezoelectric accelerometers (393B04, PCB, Depew,

NY). The system was subjected to sine sweeps through frequencies from 2 to 10 Hz. A
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Figure 2.6: Experimental system installed on shake table with connected accelerometers.
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Figure 2.7: Transmissibility under harmonic excitation of varying peak ground acceleration, ago:
(a–c) experiments for ago = (a) 5, (b) 10, and (c) 15%g and (d) theory.

sweep increasing and a sweep decreasing in frequency (“sweep up” and “sweep down”)

were performed for varying table acceleration amplitudes (5, 10, and 15%g) in order to

capture the nonlinear behavior of the device. The results of these tests are summarized

in the transmissibility plots (peak structure acceleration to peak table acceleration) of

Fig. 2.7.
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In a nonlinear system, the frequency response is distinctly different than that of a

linear system. Frequency shifting due to a change in stiffness of the system allows for

more than one steady-state response at some frequencies. Depending on the amplitude

of the ground excitation and the preceding excitation (i.e., hysteresis), the system may

“jump” to a higher response from a lower one, or conversely “fall” from a higher to a

lower. These jumps are indicated in Fig. 2.7 by arrows. Softening behavior is apparent

in all the experimental sweeps, characterized by the transmissibility curve bending to

the left (lower frequencies). On the sweeps up, the response increases with an increase

in frequency as a typical linear system would approaching resonance. When the sys-

tem deflects enough to begin to engage the softening effects of the SNSD, the response

shows an abrupt jump up in transmissibility. On the sweeps down, the system—already

excited enough for the softening effects to be present—continues to exhibit a large re-

sponse until it eventually falls when the higher branch of the response vanishes. This

hysteretic effect is clearly observed for the case of a peak table acceleration of 10%g

(Fig. 2.7(b)). Interesting to note in the 15%g plot (Fig. 2.7(c)) is that the system jumped

up to yet another higher response. This third stable branch is present because of the

stiffening effect at large deflections (20–25 mm; see Fig.2.5)

The governing equation of motion for the experimental structure-SNSD system can

be represented as

mü(t) + cu̇(t) + Ff sgn[u̇(t)] + FSNSD(u) + Keu(t) = −müg(t) (2.10)

where m and c = the structure’s mass and damping coefficient, respectively; Ff = fric-

tion force amplitude; and üg(t) = ground acceleration. Note that friction, which may be

attributed to slipping of the cables on the pulleys, was incorporated into the numerical

model to better match the experimental results, in particular for the lowest peak ground

acceleration (ago = 5%g, Fig. 2.7(a)), for which friction had the greatest influence. The
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friction force [0.228 N (0.0512 lb)] and damping coefficient [1.28 N·s/m (7.3 × 10−3

lb·s/in.), which is 2.5% of critical damping for the structure] used in the numerical

model were fit to most closely resemble the experimental results (Figs. 2.7(a–c)). The

mass m and elastic stiffness Ke were determined to be 0.748 kg (4.27×10−3 lb·s2/in.) and

877 N/m (5.01 lb/in.), respectively. The numerical model of the structure-SNSD system

was subjected to sine sweeps at 5, 10, and 15%g peak ground acceleration. The model

used the as-built parameters and properties of the device and the structure (Table 2.1).

The resulting frequency response curve, shown in Fig. 2.7(d), showed good agreement

with the experimental results. The softening effect is exhibited by the bending over of

the response curves and the jumping and falling of the response. The tertiary stable

branch due to the stiffening effect (cf. previous paragraph) is also present in the theoret-

ical results (Fig. 2.7(d)), and the system jumps to a higher response for ago = 15%g on

the sweep down.

2.4.3 White Noise Excitation

White noise excitation was also used to understand the structure’s response to excita-

tion similar to that of an earthquake. To study the response of the system under different

input energy levels, bandpass (1–20 Hz) filtered white noise was linearly scaled to in-

creasing peak ground accelerations and applied to the experimental system. An example

of the white noise excitation time history is shown in Fig. 2.8(a), and the system’s re-

sponse to this excitation is shown in Fig. 2.8(b). The results of the white noise tests are

summarized in Fig. 2.9. A softening effect can be observed in the system’s response

beginning around 40%g, continuing until just below 80%g. Above 80%g, the system

shows a stiffening response with an increase in acceleration.

The numerical model was subjected to the same white noise excitations, and these

results are also presented in Fig. 2.9. The simulation shows a similar response to the

experiment, especially at the lower amplitudes below 70%g. Above this, the experi-
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Figure 2.8: (a) Time history of the white noise excitation to which the experimental structure-SNSD
system was subjected, and (b) response of the system.
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Figure 2.9: Peak structure acceleration under white noise excitation of varying intensity.

ments and theory diverge slightly, with the simulations predicting higher accelerations,

but overall reasonable correspondence between the experiments and theory is observed,

especially with regard to softening/stiffening behavior.

2.5 Simulated Earthquake Response

2.5.1 Simulated Structure and Device Parameters

To investigate the performance of the SNSD in a realistic building under an earthquake,

a model was developed based on the one-third scale experimental structure of Pasala

et al. (2014). This structure is a three-story experimental frame with cross braces on

the top two stories. It was modeled as a single degree-of-freedom (SDOF) structure

with a floor weight of 114.7 kN (25.8 kips), elastic stiffness Ke of 1909 kN/m (10.9

kip/in.), and an inherent damping ratio of 1.6%. Inelastic effects were incorporated into
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the simulated system using the Bouc-Wen model with a post-yield stiffness of α = 1/6.

The structure’s yield deflection was uy = 2.79 cm (1.1 in.). The governing equation of

motion for this SDOF system was

mü(t) + cu̇(t) + FSNSD(u) + αKeu(t) + (1 − α)Kez(t) = −müg(t) (2.11)

where

ż(t) = Au̇(t) − β|u̇(t)||z(t)|n−1z(t) − γu̇(t)|z(t)|n (2.12)

and A = 1.0, β = γ = 0.5, and n = 20 (Walsh et al., 2018). Pasala et al. (2013) reported

that a viscous damper was added to limit excessive deflections, which resulted in an

effective damping ratio of 22.1%, which is included in some cases for comparison.

SNSDs were configured for modeling in this structure by developing two desired

load-deflection relations that follow the zero-negative-positive stiffness (ZNP) and zero-

negative-zero stiffness (ZNZ) configurations proposed by Walsh et al. (2018). For each

configuration, three different relations —the ideal relation (“Ideal”), the modified rela-

tion used as the target for optimization (“Target”), and the fitted relation found through

optimization (“Fitted”)—are presented in Fig. 2.10. The ideal curve is based on values

taken from Pasala et al. (2014), with yield deflection uy = 2.79 cm (1.1 in.), appar-

ent yield deflection u′y = 0.25uy = 0.699 cm (0.275 in.), and effective stiffness of the

SNSD after apparent yielding of KSNSD = −Ke. When this relation was written into a

Levenberg–Marquardt (Levenberg, 1944) algorithm in MATLAB (Gavin, 2017), there

were convergence issues caused by trying to fit a smooth transition from zero to nega-

tive stiffness in such a small deflection window (u < 0.25uy); Gibbs phenomenon-like

behavior was also observed, resulting in excessively large negative stiffnesses. To ac-

commodate these issues, uy and u′y were adjusted and the target stiffness of the device

was reduced. These adjusted values—uy = 3.18 cm (1.25 in.), u′y = 0.4uy = 1.27 cm

(0.3125 in.), and Keff = 0.82Ke—are represented by the target relation, which is ulti-
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mately what was fit to in the parameter optimization. The optimization algorithm was

run multiple times for both configurations from randomly seeded initial parameter val-

ues, and the global optima of the parameters were selected. The optimized parameters

of the two different devices are tabulated in Table 2.2. The resulting fitted relations are

acceptable approximations to the ideal relations. The negative stiffness (slope in Fig.

2.10) produced by the fitted relations matches the negative stiffness of the ideal relation

(and that of the structure), and both fitted relations smoothly transition from zero to

negative to their final stiffness successfully.

The relations are designed for an operable range up to 2uy. Deflections in excess of

this are expected to cause significant changes to the stability and dynamics of the struc-

ture and device that are not captured in this model. Performance outside this range of

±2uy is therefore not considered as representative of the performance of these devices.

In order to make the spring sizes more realistic, h, the distance from the center of the

pulley to the spring attachment point, was reduced. This in turn limited the maximum

lengths of the springs and lever arms. This geometric reduction resulted in a quadratic

increase of the spring stiffnesses used (see Section 2.2.1).

2.5.2 Ground Motions used in Numerical Simulations

The mathematical model of the SNSD-structure systems were subjected to a suite of

historic and synthetic ground motions (GMs). The historic GMs, which give a range of

inelastic response (Walsh et al., 2018), are summarized in Table 2.3, and the first thirty

Table 2.2: Dimensions and parameters of the fitted SNSDs.

NP Device PNP Device

Variable ZNP Value ZNZ Value Variable ZNP Value ZNZ Value

R1 [cm] 2.04 3.91 R2 [cm] 0.452 0.466
L1 [cm] 36.8 38.1 L2 [cm] 6.21 8.15
s1,0 [cm] 38.1 2.54 s2,0 [cm] 35.6 32.0
k1 [N/cm] 75.1 137 k2 [N/cm] 67.3 37.9
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Figure 2.10: Comparison of ideal, target, and fitted load-deflection relations used in the SNSD
simulations: (a) ZNP and (b) ZNZ configurations

seconds of the time histories are shown in Fig. 2.11. The synthetic GMs were generated

using the statistical models from Gavin and Dickinson (2011). These synthetic GMs

are characteristic of the suites of GM records developed for the SAC Steel Project,

representing GMs with an exceedance probability of 10% or 2% in 50 years for Los

Angeles or Seattle for a site class D (firm soil), in addition to near-fault GMs near Los

Angeles. Ten synthetic GMs were generated for each of the five data sets: Los Angeles,

10% and 2% in 50 years (“la10in50” and “la2in50”); Seattle, 10% and 2% in 50 years

(“se10in50” and “se2in50”); and near-fault (“nrfault”). Only one component of each of

the bidirectional synthesized GMs was used.

The 5%-damped acceleration response spectra for the historic and synthetic GMs

are presented in Fig. 2.12. For the synthetic GMs, the individual spectra are presented,

as well as their mean (µ) and mean plus/minus one standard deviation (µ ± σ). Based

on similitude for the third scale structure, the records were scaled in time by a factor of

3−1/2. The GM records and spectra shown in Figs. 2.11 and 2.12 are unscaled.

2.5.3 Simulation Results

The performance of the ZNP and ZNZ SNSDs is evaluated by comparing the response

for the following cases: (1) the base structure (BS); (2) the base structure with the

supplemental viscous damper (BS+VD); and (3) the base structure, viscous damper,
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Figure 2.11: Historic ground motion time histories (unscaled).

and SNSD assembly (BS+VD+ZNP and BS+VD+ZNZ). Each case was subjected to

all GMs. To measure the performance of the devices, the modified performance indices

of Pasala et al. (2013) were adopted. These are defined in Table 2.4, where V(t) is base

shear in the structure and FR(t) is the total restoring force in the structure-SNSD system

given by

FR(t) = FSNSD(u) + αKeu(t) + (1 − α)Kez(t) (2.13)

It is worth noting that both J1 and J4 are dependent on the deflection of the structure,

while J2 and J3 are dependent on acceleration.

The performance indices obtained for the simulations are presented in Tables 2.5

and 2.6 for the historic and synthetic GMs, respectively. Immediately apparent from

the simulation results is the reduction in deflections (J1) in all cases due to the ad-

ditional damping (BS+VD) when compared to the base structure (BS). The addition

Table 2.3: Summary of historic earthquake motions (unscaled).

Earthquake event / Station / Component PGA (g) PGV (cm/s) PGD (cm)

1992 Erzincan, Turkey / Erzincan / NS 0.387 107 32.0
1994 Northridge / Rinaldi Receiving Sta. / 228 0.874 148 41.9
1994 Northridge / Sylmar - Converter Sta. / 52 0.623 116 39.4
1994 Northridge / Newhall - Fire Sta. / 360 0.590 96.5 34.3
1992 Landers / Lucerne / 260 0.725 133 114
1979 Imperial Valley / El Centro Array #5 / 230 0.383 96.9 75.2
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Figure 2.12: Linear elastic response spectra (5% damped) for (a) historic and (b–f) synthetic
ground motions (GMs)

of damping also reduced accelerations (J2) in about half of the cases. Therefore, the

BS+VD results—instead of the BS results—are used to benchmark the performance of

the SNSDs (BS+VD+ZNP and BS+VD+ZNZ).

For the historical GMs (Table 2.5), the SNSDs performed as expected, reducing

accelerations and increasing deflections in almost all cases. At deflections less than uy

(J1 < 1), both configurations (BS+VD+ZNP and BS+VD+ZNZ) had similar responses,

since the load-deflection relations are not substantially different until after yielding has

Table 2.4: Definitions of the performance indices.

Performance index Description Formula

J1 Normalized peak deflection maxt |u(t)|/uy

J2 Normalized peak acceleration maxt |üg(t) + ü(t)|/maxt |üg(t)|
J3 Normalized peak base shear maxt |V(t)|/(Keuy)
J4 Normalized peak restoring force maxt |FR(t)|/(Keuy)
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Figure 2.13: Normalized load-deflection responses for (a) Lucerne, (b) Erzincan, and (c) Rinaldi

occurred (see Fig. 2.10). This is shown in the results from the Lucerne GM, presented in

Fig. 2.13(a), where the systems with ZNP and ZNZ devices track almost identically with

one another resulting in reduced base shears and larger deflections than the BS+VD

system. For more intense GMs, such as Erzincan (Fig. 2.13(b)), the difference in the

ZNP and ZNZ responses is more pronounced. Both SNSD systems produced smaller

peak base shears than the BS and BS+VD systems, and the BS+VD+ZNZ response

clearly illustrates the further increase in deflection and reduction of forces without the

stiffening in the ZNP device. As a consequence, the resulting residual deflections for the

ZNP and ZNZ systems (1.16uy and 1.39uy, respectively) were larger than the BS+VD

system (0.28uy), which was observed for most of the historical GMs. The only case

in which an SNSD decreased peak deflections was for the ZNP device under the Ri-

naldi GM (Fig. 2.13(c)), but this was occurring at over three times the structure’s yield

deflection, well outside the intended operating range of the SNSDs (Fig. 2.10). While

the BS+VD+ZNP had a smaller peak deflection than the BS+VD, the response does

show reduced peak forces and increased residual deflections. The increased deflections

resulting from the addition of SNSDs remained less than the deflections of the BS for

all cases except the ZNZ SNSD under the Sylmar GM.

Fig. 2.14 shows the average changes in performance due to the addition of a SNSD.

In general, peak deflections (J1) and restoring forces (J4) are increased due to the SNSD,
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while peak accelerations (J2) and base shear (J3) are decreased. Simulations were also

run using the target load-deflection relations used for the optimization and design of the

fitted devices (see Fig. 2.10), and the results (not shown) matched closely for both the

historic and synthetic GMs.

2.6 Summary

This chapter presented an investigation of a novel smooth negative stiffness device

(SNSD) for the seismic mitigation of structures through apparent weakening. The load-

deflection relation of the SNSD was developed, and an experimental prototype was

fabricated for testing. This prototype was subjected to static, harmonic, and white noise

loading to characterize the effect of the SNSD. The static tests proved that the desired

load-deflection relation was indeed obtained in the prototype. The harmonic loading

showed the highly nonlinear behavior of the structure-SNSD system under dynamic

loading, and the white noise testing confirmed the deflection-amplitude dependence of

the nonlinear response. Numerical simulations were conducted with two configurations

of SNSDs—(1) zero-negative-positive (ZNP) stiffness, similar to the prototype relation,

and (2) zero-negative-zero (ZNZ) stiffness—in an inelastic building with supplemen-

tal damping, subjected to multiple earthquake ground motions. Both SNSD configu-
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rations were optimized to closely match the desired (target) load-deflection relations.

These simulation results showed that the SNSDs were effective at reducing peak base

shears and limiting peak deflections to less than deflections in the base structure without

supplemental damping. When comparing the two configurations of SNSDs, the ZNP

configuration increased peak deflections and restoring forces to a lesser degree than the

ZNZ configuration, but the ZNP configuration was less effective at limiting peak accel-

erations and base shears than was the ZNZ configuration. Both configurations closely

matched the targeted load-deflection relation in both their respective load-deflection re-

lations and in their peak results. These results show that the proposed SNSD can be

effective in producing desired apparent weakening in a structure.

Finally, the relationships between the geometry and the load-deflection relation of

the device is readily scalable (see Section 2.2.1). This could be beneficial in the con-

struction of a full-size device for implementation in a structure, because the sizes of the

lever arms can be reduced to limit risks of highly stretched springs.
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Chapter 3

Buckled-Strut Vertical Isolation System

3.1 Overview

This chapter presents the development of a buckled-strut vertical isolation system

(BSVIS). The system consists of a buckled strut in parallel with linear springs to

support and isolate a mass. A schematic of such a BSVIS is pictured in Fig. 3.1. When

the strut is loaded laterally, its snap-through behavior results in negative stiffness, and

linear springs in parallel with the buckled strut provide a stable region of isolation-level

stiffness, which can be tuned to provide proper vertical support of a mass. The

development of the load-deflection relation of buckled struts is presented in Section

3.2. The effect of a linear spring is added to the buckled strut to give the load-deflection

relation of a BSVIS in Section 3.3. A prototype was developed to characterize the

behavior of the BSVIS (Section 3.4), and a proof-of-concept experimental study was

conducted through static tests (Section 3.5). Based on the theory and confirmation

from the experimental results, a guide for designing a BSVIS is presented (Section 3.6)

before the conclusion of this chapter (Section 3.7).

3.2 Lateral Load-Deflection Relation of a Buckled Strut

The negative stiffness behavior of the BSVIS is contributed by a laterally loaded buckled

strut. The development of the load-deflection relation of such a strut largely follows the

development in Harvey and Virgin (2015) of an arch unilaterally constrained. Here,
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m

k

Figure 3.1: A schematic of an assembled BSVIS consisting of a buckled strut and a linear spring
of stiffness k supporting a payload of mass m

(b)

(c)

H
v0(x)

(a)

A

x

x

x

L

0

v(x)

Figure 3.2: Geometry and description of a buckled strut: (a) an initially undeformed strut of length
L; (b) the strut after an end shortening of ε = ε0 resulting in the initial deflected shape v0(x) with
lateral rise H; (c) the strut when a lateral constraint is enforced such that v(x̄) = A.

consider an initially straight, inextensible strut of length L, shown in Fig. 3.2(a) as

simply-supported. When this is subjected to an initial end shortening of ε0 (Fig. 3.2(b)),

a shallow lateral deflection v0(x) results, with an associated rise of H. Now a lateral

constraint is imposed at a point x̄ along the length of the strut such that the lateral

deflection v(x̄) = A (Fig. 3.2(c)), where v(x) is the general deflected shape and A is

the amplitude of the deflected shape at x̄. This constraint can be “knife-edge” (Fig.

3.2(c)), where the rotation at x̄ is not hindered, or “clamped” (not shown), where a fixed

condition is created at x̄.

For a general deflected shape v(x), the total elastic strain energy U in the beam can

be expressed as (Thompson and Hunt, 1983)
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U =
1
2

EI
∫ L

0
[v′′(x)]2 {

1 + [v′(x)]2 + [v′(x)]4 + · · ·
}
dx ≈

1
2

EI
∫ L

0
[v′′(x)]2 dx (3.1)

corresponding to a total end shortening ε of

ε =

∫ L

0

{
1
2

[v′(x)]2 +
1
8

[v′(x)]4 +
1
16

[v′(x)]6 + · · ·

}
dx ≈

1
2

∫ L

0
[v′(x)]2 dx. (3.2)

Since the strut buckles to a shallow rise H, only the leading terms of both expressions

need to be retained as a suitable approximation. Stable equilibria exist when the min-

ima of the strain energy occur, and this minimization is constrained by both the end

shortening and the lateral constraint, which can be expressed as follows:
min
v(x)

U =
1
2

EI
∫ L

0
[v′′(x)]2 dx

subject to
1
2

∫ L

0
[v′(x)]2 dx = ε0

v(x̄) = A

(3.3)

where ε0 = ε|v(x)=v0(x) = constant since the strut is inextensible and the support will be

held stationary after the initial end shortening ε0 is applied.

Generally, the buckled shape of the strut can be approximated in the form of

v(x) =

N∑
j=1

Q jψ j(x) (3.4)

where ψ j(x) are shape functions consistent with the boundary conditions and the lateral

constraint which are scaled by multipliers Q j. Substituting this form of v(x) into Eq.

(3.3), the minimization problem becomes
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min
Q1,Q2,...

U =
1
2

EI
∫ L

0

 N∑
j=1

Q jψ
′′
j (x)


2

dx

subject to
1
2

∫ L

0

 N∑
j=1

Q jψ
′
j(x)


2

dx = ε0

N∑
j=1

Q jψ j(x̄) = A

(3.5)

which can be rewritten as

min
Q1,Q2,...

U =
1
2

N∑
i=1

N∑
j=1

ki jQiQ j

subject to
N∑

i=1

N∑
j=1

ai jQiQ j = ε0

N∑
j=1

Q jψ j(x̄) = A

(3.6)

where ki j = EI
∫ L

0
ψ′′i (x)ψ′′j (x) dx and ai j = 1

2

∫ L

0
ψ′i(x)ψ′j(x) dx.

A solution to the minimization problem is sought using a multiplier method, wherein

multipliers µ and λ are used to enforce the constraints. The end shortening equation is

multiplied by µ and the lateral constraint equation by λ; the physical interpretation of

these multipliers is discussed later. These equations are then appended to the strain

energy equation to provide an augmented strain energy function, Ua, which will be

maximized over the multipliers and minimized over the coefficients, as described in Eq.

(3.7):

min
Q1,Q2,...

max
λ,µ

Ua =
1
2

N∑
i=1

N∑
j=1

ki jQiQ j

− µ

ε0 −

N∑
i=1

N∑
j=1

ai jQiQ j

 + λ

A −
N∑

j=1

Q jψ j(x̄)

 (3.7)

To find these optima, derivatives of Ua with respect to each variable are set equal to
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zero (i.e., the necessary conditions for optimality), leading leads to the following ex-

pressions:

∂Ua

∂Qi
= 0 :

N∑
j=1

ki jQ j +

2 N∑
j=1

ai jQ j

 µ − ψi(x̄)λ = 0, i = 1, . . . ,N (3.8a)

∂Ua

∂µ
= 0 : ε0 −

N∑
i=1

N∑
j=1

ai jQiQ j = 0 (3.8b)

∂Ua

∂λ
= 0 : A −

N∑
j=1

Q jψ j(x̄) = 0 (3.8c)

The roots of these N + 2 equations in terms of the coefficients (Q1, . . . ,QN) and multi-

pliers (µ, λ) are sought.

It is desirable to select the shape functions ψ j(x) such that, when A = H, where H

is the initial rise of the buckled strut, ψ1(x̄) = 1 and all other ψ j(x̄) = 0. This results

in Q1 = A, since v(x̄) = A = H = Q1ψ1(x̄), and the initial deformed shape of the strut

v0(x) becomes v0(x) = Hψ1(x). Therefore, the initial end shortening ε0 can be written

in terms of H as follows:

ε0 =
1
2

H2
∫ L

0
[ψ′1(x)]2dx ≡ a11H2 (3.9)

Since the lateral deflections are of interest for a BSVIS, it is convenient to express Eq.

(3.8b) in terms of H rather than ε0, as follows:

a11H2 −

N∑
i=1

N∑
j=1

ai jQiQ j = 0 (3.10)

Thompson and Hunt (1983) observed that even though there are an infinite number

of terms to the approximation of v(x) (i.e, N → ∞), retaining only two or three pro-

vides good agreement with experimental observations. In the following section (Section

3.2.1), two terms are retained to develop the stiffness of the negative stiffness region, and

in the subsequent section (Section 3.2.2) three terms are retained for further exploration
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of the load-deflection relation of the buckled strut.

3.2.1 Negative Stiffness Approximation with Two Terms

Retaining only two terms in the approximation of v(x), Eq. (3.8a) can be written as a

system of N = 2 equations in terms of µ and λ as follows:[
−ψ1(x̄) 2a11Q1 + 2a12Q2

−ψ2(x̄) 2a12Q1 + 2a22Q2

] {
λ
µ

}
= −

{
k11Q1 + k12Q2

k12Q1 + k22Q2

}
(3.11)

This system can be solved for λ, which is the value of the lateral force applied at x̄ (Fig.

3.2(c)), and µ, which is the value of the axial force applied to induce end shortening ε0.

As stated earlier, it is convenient to select ψ1(x) and ψ2(x) such that ψ1(x̄) = 1 and

ψ2(x̄) = 0. For the following discussion, a mid-span constraint is considered, that is,

x̄ = L/2. It is additionally helpful to select ψ1(x) and ψ2(x) orthogonal to each other so

that the cross-terms of the integrals (e.g., k12 and a12) become zero and only the pairing

of a shape function with itself (e.g., k11 and a11) are left. If this is done, the system

(3.11) simplifies to [
−1 2a11Q1

0 2a22Q2

] {
λ
µ

}
= −

{
k11Q1

k22Q2

}
(3.12)

Similarly, a solution for Q2 in terms of Q1 can be found from Eq. (3.10) as

Q2 = ±

√
a11

a22
(H2 − Q2

1) (3.13)

which describes an ellipse in (Q1,Q2) space. Solutions for Q2 therefore can take a

positive or negative value for a given A.

From Eq. (3.12), a value is found for µ, which is the force required to impose the

end shortening ε0:

µ = −
k22

2a22
(3.14)

This value is used to solve for λ, which is the value of the force applied at x̄ to cause the
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lateral deflection A, as a function of solely Q1:

λ = −

(a11k22

a22
− k11

)
Q1 (3.15)

Since Q1 = A, the terms in parentheses of Eq. (3.15) is the slope (or stiffness) of the

negative stiffness portion of the lateral load-deflection (λ-A) relation, termed kneg. Val-

ues of kneg have been evaluated and are tabulated in Table 3.1 for different conditions,

referenced in the following as Cases a–d.

The combinations of boundary conditions and lateral constraints for Cases a–d are

depicted in Figs. 3.3(a)–(d), respectively. Likewise, the ψ j(x) appearing in Table 3.1

are presented in Fig. 3.4. These shapes were selected based on the buckled shapes of

columns with matching boundary conditions. In each case, ψ1 corresponds to the first

buckled mode shape of a column with fixed-fixed (Cases a and b) or pinned-pinned

(Cases c and d) boundary conditions. For Cases b and c, ψ2 corresponds to the second

buckled mode shape of the respective columns. The ψ2 chosen for Cases a and d is

the first buckled mode shape of a pinned-fixed column for each half of the strut (0 6

x 6 L/2). In Figs. 3.4(b) and (d), the right half of ψ2 is mirrored below the support

line (labeled as (ii)) because in the case of a perfect clamped constraint, there would

be no communication between the two sides and they could theoretically take opposite

orientations to one another. This is impossible with a knife-edge constraint since the

constraint does not affect the slope of the strut, i.e., v′(x̄−) = v′(x̄ +).

The solution of the system for Cases a–c was relatively straightforward and yielded

closed-form expressions for kneg. Plots of Q2 versus Q1 are shown for each case in

Fig. 3.5. The negative portion of the ellipse would correspond to an inverted ψ2 in Fig.

3.4. The plots on the left of Fig. 3.5 show that as the lateral constraint is pushed down

starting A = H, v(x) would be expected to smoothly transition between values of Q1

and Q2, resulting in the load-deflection relations shown on the right of Fig. 3.5 with a
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(a) (b)

(c) (d)

(i)

(ii)

(i)

(ii)

Figure 3.3: Boundary conditions and lateral constraints considered: fixed-fixed boundary condi-
tions with (a) knife-edge and (b) clamped constraints, and pinned-pinned boundary conditions with
(c) knife-edge and (d) clamped constraints. For cases b and d, the strut can assume either (i) sym-
metry or (ii) rotational symmetry about the clamped constraint at midspan.

(a) (b)

(c) (d)

(i)

(i)

(ii)

(ii)

Figure 3.4: Shape functions ψ1(x) ( ) and ψ2(x) ( ) assumed in two-term expansion: fixed-
fixed boundary conditions with (a) knife-edge and (b) clamped constraints, and pinned-pinned bound-
ary conditions with (c) knife-edge and (d) clamped constraints. For cases b and d, ψ2(x) can be either
(i) symmetric or (ii) rotationally symmetric about midspan.

constant slope of −kneg. For these relations, the origin is at the level of the supports and

the graphs begin at A = H, where the load is initially zero; i.e., these figures should

be read from right (A/H = +1) to left (A/H = −1). As soon as load is applied, it

jumps to the critical snap-through load found by a two-term approximation, which can

be expressed as

λcr = −knegH (2-term approx.) (3.16)

When the constraint is moved down (decreasing A), the magnitude of the load reduces

as A approaches zero and then becomes a positive load (i.e., the constraint must pull on

the strut) after the constraint passes below the support line. Since the strut is inextensi-

ble and the supports do not translate after the initial end shortening, any movement of

the constraint beyond H would take an infinite load, either in compression or tension
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depending on the direction of movement, as shown by the vertical lines at A/H = ±1.

The solution for Case d proved more difficult to resolve. The Q2 versus Q1 ellipse,

shown in Fig. 3.5(c), is slightly rotated. This is because the shapes ψ1 and ψ2 for Case

d(i) are not orthogonal in the end-shortening equation (i.e., a12 = a21 , 0). This yields

two solutions for Q2 when Q1 = H: one in which ψ2 = 0, and another where ψ2 is

nonzero. The load-deflection curves of Fig. 3.5 appear to cross, and one might expect

a transition to be possible as in the other cases, but the two branches are completely

detached from one another. When the solutions for the typical cases with ψ1 and ψ2

orthogonal to each other (e.g., Case c) and Case d(i) are plotted in (Q1,Q2, λ) space

(Figs. 3.6 and 3.7, respectively), the unique behavior of Case d(i) becomes more appar-

ent. While the two branches of the solution for the typical cases are connected, no path

connects the branches of the solution for Case d(i). Since the solution cannot go from

one branch to the other, ψ2 cannot disappear at Q1 = A and it becomes infinitely stiff.

This solution is sensible when explained in terms of the moments and shears associated

with Case d(i). In order to satisfy equilibrium when v(x̄) = 0 (i.e., Q1 = 0), the supports

must provide a vertical reaction to balance the moment induced by the constraint. To

balance these reactions, λ must be non-zero, which is shown in Fig. 3.5(d) for Case d(i).

When ψ2 for Case d(ii) is analyzed, these problems are resolved. The rotational

symmetry results in the global orthogonality of ψ2 to ψ1. Also, equilibrium is now

satisfied with λ = 0 when v(x̄) = 0, because the configuration of the strut is such that

any shears produced on the left side of the constraint are balanced by those on the right

side. The resulting stiffness for Case d(ii) is reported in Table 3.1.

3.2.2 Load-Deflection Relation with Three Terms

In this section, the more-general development of the lateral load-deflection relation of

a buckled strut presented in Section 3.2 is carried out for a three-term approximation

of v(x) for a pinned-pinned strut subjected to a knife-edge lateral constraint (Case c).
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Figure 3.5: (left) Solutions for Q1 and Q2 normalized by rise H, and (right) the resulting load-
deflection relations for Cases a–d (a–d). For Case d, both the symmetric (—) and rotationally sym-
metric ( ) solutions are shown, corresponding to Cases d(i) and d(ii), respectively, in Fig. 3.4(d).
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Figure 3.6: Load-deflection relations for Case c.
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Figure 3.7: Detached load-deflection relations for Case d(i).

The effects of a linear spring are then incorporated into the system to give a model of a

BSVIS in Section 3.3.

To obtain ψ1, ψ2 and ψ3, a sum of Fourier harmonics is assumed for the lateral de-

flected shape:

v(x) =

∞∑
n=1

Qn sin
(nπx

L

)
. (3.17)

Retaining only the first three terms, Eq. (3.17) becomes

v(x) = Q1 sin
(πx

L

)
+ Q2 sin

(2πx
L

)
+ Q3 sin

(3πx
L

)
(3.18)

which relates to the first, second, and third buckling mode shapes of a pinned-pinned
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column. Substituting this form of v(x) into Eqs. (3.1) and (3.2), the integrals can be

evaluated so that they become

U =
1
2
π4EI
2L3

(
Q2

1 + 16Q2
2 + 81Q2

3

)
(3.19)

and

ε =
1
2
π2

2L

(
Q2

1 + 4Q2
2 + 9Q2

3

)
. (3.20)

It is important to note that, since the functions chosen for ψn(x) are orthogonal to each

other, the cross-terms of the general derivation all reduce to zero as in the two-term

solutions.

The initial deformed shape of the buckled strut before the lateral constraint is im-

posed is a half sine wave, i.e., v0(x) = H sin(πx/L). The corresponding end shortening

ε0 is

ε0 =
1
2
π2

2L
H2. (3.21)

As in the general solution, the end shortening constraint is now expressed in terms of H

as follows:

1
2
π2

2L

(
Q2

1 + 4Q2
2 + 9Q2

3

)
=

1
2
π2

2L
H2. (3.22)

With the assumed deflected shape of Eq. (3.18), the minimization problem of Eq. (3.6)

now becomes 
min

Q1,Q2,Q3
U = 1

2C1

(
Q2

1 + 16Q2
2 + 81Q2

3

)
subject to 1

2C2

(
Q2

1 + 4Q2
2 + 9Q2

3

)
= 1

2C2H2

s1Q1 + s2Q2 + s3Q3 = A

(3.23)

where C1 ≡ k11 = π4EI/(2L3), C2 ≡ a11 = π2/(2L), and sn = sin(nπx̄/L). The constant

C2/2 is retained on either side of the end shortening equation because it is needed to
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obtain the correct µ, i.e., the axial force needed to produce the end shortening.

The constraints are augmented to the strain energy function using Lagrange multi-

pliers λ and µ as before. For N = 3 terms, the necessary conditions for optimality in

Eqs. (3.8a)–(3.8c) become

0 = C1Q1 + C2µQ1 + λs1 (3.24a)
0 = 16C1Q2 + 4C2µQ2 + λs2 (3.24b)
0 = 81C1Q3 + 9C2µQ3 + λs3 (3.24c)

1
2C2H2 = 1

2C2

(
Q2

1 + 4Q2
2 + 9Q2

3

)
(3.24d)

A = s1Q1 + s2Q2 + s3Q3. (3.24e)

Solutions of this system of equations are equilibria which lie on the interface of the

ellipsoid of Eq. (3.24d) and the plane of Eq. (3.24e), in (Q1,Q2,Q3) space. These can

be found by solving Eqs. (3.24a)–(3.24c) for the Fourier coefficients, which yields

Q1 =
λs1

C1 + C2µ
(3.25a)

Q2 =
λs2

4(4C1 + C2µ)
(3.25b)

Q3 =
λs3

9(9C1 + C2µ)
(3.25c)

These can be substituted into Eqs. (3.24d) and (3.24e) to eliminate λ, resulting in a quar-

tic polynomial in µ. The roots for µ can be found and used to solve for the corresponding

λ and Qn.

A test of stability is performed by analyzing the eigenvalues of the bordered Hessian

matrix:

H(Ua) =


0 0 −a11Q1 −a22Q2 −a33Q3

0 0 −ψ1(x̄) −ψ2(x̄) −ψ3(x̄)
−a11Q1 −ψ1(x̄) k11 + a11µ 0 0
−a22Q2 −ψ2(x̄) 0 k22 + a22µ 0
−a33Q3 −ψ3(x̄) 0 0 k33 + a33µ

 (3.26)

If more than two eigenvalues are less than zero, then the solution is unstable. For stable
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solutions, the two negative eigenvalues of the bordered Hessian matrix correspond to

the multipliers λ and µ, over which the augmented strain energy is maximized (see Eq.

(3.7)).

The resulting lateral load-deflection (λ–A) relationship of the buckled strut is shown

by the curves in Figs. 3.8(a)–(c) for varying x̄. Stable branches are distinguished from

unstable branches by the line style. These results can be interpreted similarly to the λ–A

plots of Fig. 3.5, beginning at A = H and λ = 0 and progressively decreasing A. The

load λ decreases sharply to some minimum value, before snap-through (negative stiff-

ness) behavior initiates. As x̄ is placed further from midspan, this transition becomes

more gradual and the minimum load is reduced in magnitude. No matter the location

of x̄, the minimum load is less than the λcr found in the two-term approximation (i.e.,

3π4EIH/2L3), and because some deflection occurs before the negative stiffness por-

tion is reached, the negative stiffness found by the three-term approximation, denoted

k̃neg, is greater than the kneg found with two terms (Table (3.1)). The stiffness with the

three-term approximation is given by

k̃neg =
β

α
kneg (3.27)

where α is the portion of H over which the strut exhibits snap-through (negative-

stiffness) behavior in the three-term approximation, and β is the reduction (in

magnitude) of the peak load relative to λcr. For x̄ ≈ 0.5L (Fig. 3.8(a)), these values

are found to be 0.915 and 0.981, respectively, giving a 3-term negative stiffness of

k̃neg = 1.072kneg. These values will be used in the subsequent discussion of the BSVIS.

As A approaches −αH, the load follows the curve of the branch it began on until a

vertical tangency is reached. At this point, the solution becomes unstable and it must

“snap” to the nearest stable branch, which results in the path allowing a return to λ = 0

when A = −H. When x̄ is very close to the center of the span (Fig. 3.8(a)), there is little
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Figure 3.8: Normalized lateral load-deflection relation of a buckled strut for x̄ = (a) 0.499L, (b)
0.49L, and (c) 0.45L using a three-term approximation of v(x), as well as the two-term approximation
for x̄ = 0.499L (d). The black and gray lines are detached equilibria, each with stable (—) and
unstable (– – –) branches.

jump to speak of, but the jump is more severe for larger eccentricities (Figs. 3.8(b) and

(c)). For A > H and A < −H, the load greatly increases due to the inextensibility of the

strut.

3.3 Buckled-Strut Vertical Isolation System

To produce the desired BSVIS lateral load-deflection relation, a linear spring of stiffness

k = κk̃neg, where κ is the relative stiffness of the spring to the negative stiffness of the

buckled strut, can be added in parallel with the strut (Fig. 3.1). With the addition of a

spring, the total strain energy of the system becomes

U =
1
2

EI
∫ L

0
[v′′(x)]2 dx +

1
2

k[v(x̄) − v0(x̄)]2. (3.28)

Considering that the Fourier coefficients would appear in the spring energy term, this
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Figure 3.9: Normalized load-deflection relations of BSVISs composed of a pin-ended buckled strut
(Case c with x̄ ≈ 0.5L) in parallel with linear springs having different relative stiffnesses, κ = k/k̃neg.
Unstable solutions are not shown.

formulation requires a more-involved solution than what has been presented. However,

the effect can be assumed to be small and it is considered a reasonable approximation

to superimpose the spring force to the solution for λ to attain the force produced by a

BSVIS λBSVIS as follows:

λBSVIS = λ + k(A − H) ≡ λ + κk̃neg(A − H) (3.29)

This effect is plotted in Fig. 3.9 for springs of varying κ, and the results are discussed

here.

Starting again at A = H, the constraint is moved down (decreasing A), and the

load decreases sharply. The load where the snap-through behavior begins is relatively

unchanged by κ. Therefore, this transition load will be assumed constant, taken to be

λcr = 3π4EIH/2L3, in the following discussion. Beyond this load, the load-deflection

relation is approximately linear given by

λBSVIS = −k̃negA + k(A − H) ≡ (κ − 1)k̃negA − κk̃negH, −αH 6 A 6 αH (3.30)

Recall α is the portion of H over which the strut exhibits snap-through (negative-

stiffness) behavior. The introduction of the spring results in an effective stiffness for
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the snap-through portion of the curve of

kBSVIS = k − k̃neg ≡ (κ − 1)k̃neg (3.31)

If κ = 1, the system has zero effective stiffness for the snap-through portion. A system

with κ & 1 has low positive stiffness, desirable for vibration isolation (Calhoun and

Harvey, 2018). If κ < 1, the negative stiffness of the snap-through behavior of the strut

still dominates, and the system would not be able to effectively support or isolate a

mass.

It is apparent in Fig. 3.9 that the load at which snap-through (negative-stiffness)

behavior ends (i.e., at A = −αH) is shifted downwards as relative stiffness κ increases.

This transitional load is equal to

λBSVIS

∣∣∣∣
A=−αH

= −(κ − 1)k̃negαH − κk̃negH ≡ −[(κ − 1)α + κ]k̃negH (3.32)

Considering a payload of mass m to settle vertically to the center (A = 0) under its dead

weight, the settlement would be H, and the balancing load from the BSVIS would equal

λBSVIS

∣∣∣∣
A=0

= −mg⇒ mg = κk̃negH ≡ kH (3.33)

The device would have a displacement operating range of Y = ±αH about A = 0 and

a tolerance to changes in weight of the payload of ±(κ − 1)k̃negαH. Note that for κ = 1

(kBSVIS = 0), there is no tolerance for misidentifying the payload weight, which is not

practical; therefore, κ should be taken to be greater than 1.

3.3.1 BSVIS Benefits

Consider the schematic of the BSVIS load-deflection relation shown in Fig. 3.10, where

the BSVIS stiffness kBSVIS has been determined to be effective for vibration isolation.

The benefit of the BSVIS can be demonstrated by considering the vertical settlement of

a linear spring with similar effects (settlement or effective stiffness). First, consider a
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Figure 3.10: BSVIS load-deflection relationship.

spring that would achieve the same low-profile settlement as the BSVIS (i.e., the initial

rise of the strut H) for a payload of mass m. Such a spring would need to be selected to

have a stiffness of

k1 =
mg
H

= κk̃neg =
κ

κ − 1
kBSVIS (3.34)

This would result in an undesirably stiff system for isolation purposes. For example,

for a value of κ = 1.5, the required stiffness would be k1 = 3kBSVIS, corresponding to

a 73% increase in frequency; these results are more dramatic as κ approaches unity.

Alternatively, consider a spring having the desired stiffness k2 = kBSVIS. To support the

same payload mass, this spring would settle (or compress)

∆A =
1
k2

mg =
1

(κ − 1)k̃neg
κk̃negH =

κ

κ − 1
H (3.35)

This would result in undesirably large settlements, requiring an isolation system not

possessing a low-profile. For example, for a value of κ = 1.5, the settlement would be

3H, corresponding to a profile that is three times taller. From these results, it is clear

that a BSVIS provides the desired low stiffness with a small settlement allowing for a

low-profile design.
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3.4 BSVIS Prototype

A prototype, pictured in Fig. 3.11, was developed to experimentally characterize the

behavior of the BSVIS, validate the theory of Section 3.3, and prove the attainability

of this device. 3D-printed beams of length L = 177.8 mm whose flexural rigidity EI

were determined in our previous work as 83,000 N·m2 (see Porter et al. (2019), Spec-

imen 3) were used for the strut. The expected negative stiffness k̃neg with these values

is 2.31 N/mm. Connections were designed to approximate the behavior of a pin and

used to hold the strut in a rigid frame consisting of T-slotted framing that allowed for

easy manipulation of the end shortening. The uprights of the frame were held in place

by brackets and 0.794-mm (1/32-in.) shims. One of these shims could be removed

from each side of the uprights to allow for increments of 1.588 mm (1/16 in.) of end

shortening while keeping the device centered. A platform was fabricated using 3D

printing to interface with a universal testing machine for static testing or support a pay-

load for dynamic testing (see Section 4.2). The platform was also designed to connect

to linear springs to provide the counteracting positive stiffness while avoiding collision

with the strut during testing. Two extension springs were chosen for the prototype for

the sake of constructability since it was relatively easy to attach extension springs to

the T-slotted framing and a compression spring would have presented a greater chal-

lenge. Each spring had a stiffness of 0.215 N/mm, resulting in a total spring stiffness

k = 0.430 N/mm and κ = 0.186. The spring-to-platform connections were designed so

the platform could be centered and the T-slotted framing could act as a linear guide and

prevent excessive rotation of the platform. The platform connected to the strut through

a 3D-printed piece designed to approximate the knife-edge lateral constraint condition.

Finally, for static tests, a bracket was fabricated for connecting the rigid frame to the

base of the testing machine.
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Figure 3.11: Photograph of the prototype of a BSVIS (a) various components labeled and (b)
close-up of the pinned connection and the spring-to-platform connection

3.5 Experimental Results

3.5.1 Static Testing

For static testing, the prototype was connected to a universal testing machine (Fig. 3.12).

The load cell of the testing machine was connected to the platform interface with no load

when the strut was at its initial rise H (approximately 7.5 mm) and the constraint was

centered on the strut (x̄ = 0.5L). This point is the origin of the experimental data, so

experimentally measured deflection would need to be shifted by the rise H to correspond

directly to the theoretical graphs. The BSVIS was loaded at a constant displacement rate

to 11 mm and then reversed to 5 mm. This cycle was repeated five times. This testing

process was conducted twice for the BSVIS without springs connected and twice with

springs connected. For the tests without springs, the test was run out to 15 mm of

extension after the cycles were completed; for the tests with springs, it was stopped after

the cycles. Experimental data from these tests are presented in Fig. 3.13. Stiffness found

by fitting the data of different portions of the load-deflection relations are denoted on

the plots. In Fig. 3.13(a), it is apparent that the buckled strut displayed strong negative

stiffness behavior in the snap-through region and the relation follows the same general

shape that is expected theoretically. It is also apparent that the springs did stiffen the

system when they were connected. The differences in slopes at the start of loading
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Figure 3.12: Photograph of the BSVIS prototype shown connected to the universal testing machine
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Figure 3.13: Experimental load deflection data for tests (a) without and (b) with springs connected.
Slopes for different portions of the relations are denoted on each plot

is 0.23 N/mm due to the springs. The differences in the loops are 0.429 N/mm and

0.443 N/mm for the “top” and “bottom” of the loops respectively. Recall that the total

spring stiffness k used in these tests was 0.430 N/mm, so these differences due to the

connection of the springs prove that the linear superposition of the spring and buckled-

strut forces (Eq. (3.29)) is valid for the snap-through region.

An unexpected effect than what is predicted in Section 3.3 is that the data show a

difference between entering and exiting the snap-through region. Prior to reaching the

snap-through region, the load increases and, rather than smoothly transitioning to snap-

61



through behavior, it exhibits a large jump at a deflection of about 6 mm from a larger-

magnitude load to the smaller-magnitude load in the snap-through region. This jump

corresponded to the deflected shape of the strut suddenly switching from exhibiting

first- and third-mode effects to being second-mode dominated. This is thought to be a

result of the assumption that the strut is inextensible, when in actuality, the strut is able

to undergo small axial deformation. The axial deformation allows the strut to realize

a higher load than is possible in the perfectly inextensible case (Thompson and Hunt,

1983). It is seen that after the strut buckles into the second-mode-dominated shape, the

load-deflection relation is continuous and has a linear slope (stiffness). Also observed

in Fig. 3.13(a) is that the load smoothly transitions out of the negative stiffness region

and quickly returns to zero. If the loading cycles had been conducted across the full

extension range, it is expected that a similar rise in load and subsequent jump down into

the snap-through region would have occurred progressing from maximum deflection to

zero deflection.

An additional difference between the theory and the experiment is the opening up

of the hysteretic loops when the cycles were conducted. Friction between the support

brackets and the ends of the strut could have contributed a portion of this. Additionally,

note that Fig. 3.8 shows a distancing of the stable solutions for increasing x̄. While

the lateral constraint was centered on the strut, some error in the precise location is to

be expected. Fig. 3.8(c) shows a not insubstantial opening of a loop for x̄ = 0.45L,

which could be thought of as being ±5% off-center. For a strut of L = 177.8 mm, the

lateral constraint would only need to be off-center by ±8.9 mm to realize this condition.

The experimental data could show connection between the two stable branches of the

theoretical solution within −αH 6 A 6 αH. This would also explain the difference of

stiffness between the top and bottom of the loops. In Fig. 3.8(c), each branch of the

solution is not linear in the snap-through region, but rather has a slight curvature, with
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the magnitude of the slope increasing along a branch as it nears the vertical tangency

where it becomes unstable. Therefore, for −H 6 A 6 0, k̃neg of the top branch is smaller

than k̃neg of the bottom branch. This effect is observed in Fig. 3.13 when the stiffnesses

of the top and bottom branches are compared. A non-centered loading also may account

for some of the difference in the predicted k̃neg and the measured negative stiffnesses in

that α and β change with x̄.

Discrepancies between theoretical predictions and experimental results can also be

attributed to the relatively high rise of the experimental prototype. Eqs. (3.1) and (3.2)

are simplified considering the initial rise of the strut H to be shallow. In the assembly

of the prototype, the strut attained a relatively large initial rise (about 4% of its length),

potentially rendering this approximation imprecise.

3.6 Design Recommendations

A designer may intend to protect a certain piece of equipment from vertical seismic

motions by engineering an isolation system with a very low stiffness. A simple design

procedure for a BSVIS given the mass of any such payload m, a desired stiffness kBSVIS,

and a desired displacement range Y is presented in this section. The theoretical BSVIS

load-deflection relations of Section 3.3 predict an operating range Y = ±αH about

the static equilibrium point for a BSVIS. While more experimental data will provide

further confirmation of these predictions (see Section 4.2), the data presented in Section

3.5 confirm the negative-stiffness behavior of a buckled strut and that the inclusion of

a positive stiffness spring in parallel with the buckled strut alters the overall stiffness

of the system in a predictable manner. Therefore, a design based on the theoretical

predictions is reasonable.

Using a specified displacement range Y , one can find the necessary rise H = Y/2α.

Eq. (3.33) can now be solved for the required linear spring stiffness k to support the

payload:
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k =
mg
H

(3.36)

Using Eq. (3.31), a required lateral stiffness of the strut k̃neg can be determined as

k̃neg = k − kBSVIS (3.37)

The lateral stiffnesses kneg listed in Table 3.1 can be used to design a strut based on de-

sired boundary conditions and constraint types for the desired BSVIS using Eq. (3.27).

For the design of a pin-ended, knife-edge BSVIS corresponding to Case c (such as the

prototype BSVIS), values of α = 0.915 and β/α = 1.072 are recommended. Values for

α and β can be developed for the other cases following a similar procedure.

To summarize, the design of a BSVIS given a payload of mass m, a desired stiffness

kBSVIS, and an operating displacement range Y follows these steps:

1. Find H = Y/2α.

2. Select a linear spring of stiffness k = mg/H.

3. Determine the required lateral stiffness of the buckled strut k̃neg = k − kBSVIS.

4. Select boundary conditions and a lateral constraint type.

5. Using Table 3.1, design a strut with EI and L such that k̃neg = βkneg/α is satisfied.

The prototype developed should not be thought of as a basis for design, because of

the tall profile the extension springs require. To achieve a lower profile, the positive

stiffness could be provided by compression springs as shown in Fig. 3.1 or leaf springs

supporting the platform for the payload.

3.7 Summary

In this chapter, a buckled-strut vertical isolation system (BSVIS) was proposed. The

lateral load-deflection relation of a buckled strut, which provides the negative stiffness
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for a BSVIS, was developed for a general case, and evaluated for different two-term

approximations to extract values of the negative stiffness provided by such systems. A

three-term approximation was then carried out to more-accurately predict the behavior

of a BSVIS, which was obtained by adding a linear spring into the model. The nonlin-

ear effects of a BSVIS offer considerable benefits for achieving vertical isolation over

using linear springs. A prototype BSVIS was fabricated and subjected to limited static

testing, which proved the validity of the prediction of negative stiffness for a pin-ended

strut subjected to a knife-edge lateral constraint. The experiments also proved that the

approximation in Eq. (3.29), which is that the linear spring force can be superimposed

to provide the force of the BSVIS, is suitable. It is expected that use of springs of larger

relative stiffness κ would likewise alter the stiffness of the system and an isolation-level

positive stiffness is attainable. Based on the theoretical development and experimental

observations, a design guide for a BSVIS to support a given payload was presented.
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Chapter 4

Summary, Conclusions, and Future Work

4.1 Summary and Conclusions

This thesis opened with a presentation of related literature on the topic of seismic pro-

tection and using negative stiffness to induce elastic nonlinearities in Chapter 1. In

Chapter 2, a novel smooth negative stiffness device (SNSD) was presented for the seis-

mic mitigation of structures through apparent weakening. A theoretical load-deflection

relation was developed for this SNSD, and a prototype was fabricated to achieve this

relation. The prototype was installed in an experimental structure, which was subjected

to static, harmonic, and white noise tests, confirming the non-linear behavior induced

by the SNSD. Simulations were conducted for the experimental parameters that showed

good agreement with the experimental results. Simulations were then carried out for dif-

ferent possible configurations of SNSDs in an inelastic structure under various ground

motions. These simulations further proved the effectiveness of an SNSD to achieve

apparent weakening. Chapter 3 presented the development of a buckled-strut verti-

cal isolation system (BSVIS) for the protection of components within buildings from

vertical ground motions. Theoretical stiffnesses were developed for various boundary

conditions and lateral constraints, and the case of a pin-ended strut with a knife-edge

constraint was further developed. The load-deflection relation of a BSVIS was attained

by integrating a linear spring into this model, and an experimental prototype was char-

acterized by static tests, validating the theoretical predictions. The investigations into
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both devices demonstrated that geometric nonlinearities can be engineered to passively

reduce adverse effects of seismic events with advantages over linear systems.

4.2 Future Work

This research is an advancement in knowledge of elastic nonlinear systems for passive

seismic mitigation. As a continuation of this research, the following are several areas

which have the potential for further investigation:

• The requirements of a large pretensioned spring and long rotating lever arms still

exist in the proposed SNSD design, and this may be a drawback in the construc-

tion of a full-scale device. Additionally, while the use of a cable-pulley system

overcomes some of the drawbacks of a rack-and-pinion device (see Section 1.3.1),

the radii of the pulleys is linearly related to the maximum desired displacement of

the structure. In civil structures, desired deflections are relatively small compared

to story height, so the radii of the pulleys according to the current design must

be small, resulting in high stresses in the pulley shaft. Further research should be

conducted into areas of different designs that could reduce these drawbacks.

• The BSVIS proposed here was only characterized by preliminary experimental

tests. The static tests can be expanded to capture the entire hysteresis of the load-

deflection relation, both for the entire range of deflection and for the operating

range in the snap-through portion. Dynamic tests should also be conducted to

characterize the performance of the BSVIS for vertical isolation. The theory can

also be expanded to consider dynamic effects and conduct simulations of an iso-

lated system. Tests can also be performed with alternate boundary conditions and

lateral constraints to confirm the theoretical stiffnesses developed in the two-term

approximations.
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Appendix A

Buckling under Imperfections†

A.1 Background

Euler buckling theory assumes that, among other assumptions, the member is perfectly

straight and that the compressive load is through the neutral axis at every cross sec-

tion. Initial member imperfections and load eccentricities, however, are unavoidable in

practice (Klasson et al., 2016; Madah and Amir, 2018; AISC, 2016, Comm. 1.2). Both

member imperfections and load eccentricity have the effect of inducing bending as soon

as the load is applied, gradually at low compressive load and more rapidly when the

load approaches the critical value for the perfect column (Plaut and Mráz, 1992). While

these two imperfections manifest in a similar manner, they are often treated separately

(Chajes, 1974). In practice, these imperfections can be engineered to produce a soft

post-buckling behavior for isolation as in the study by Fichter and Pinson (1989), but

they considered only the case in which the imperfections compounded to further en-

hance the softening behavior, concluding that the load eccentricity is easier to impose

with accuracy.

This chapter investigates column behavior if member imperfection and load eccen-

tricity are simultaneously present. Pinned members are analyzed assuming linearly

†This chapter is published as Harvey and Cain (2020).
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elastic, slender, uniform, and inextensible columns. A linear analysis based on Euler-

Bernoulli theory is performed to compare the relative significance of member imper-

fections and load eccentricity on the deflected shape. The theoretical results are exper-

imentally validated with the help of additive manufacturing (or 3D printing) (Virgin,

2018a; Porter et al., 2019). 3D printing provides an accurate and versatile means of

seeding imperfections into a test specimen to promote, or control, its buckling charac-

teristics (Virgin, 2018b; Harvey et al., 2019). A series of initially imperfect specimens

with eccentric load application points are tested, exhibiting imperfection amplification

and cancellation. Good agreement is seen between the theoretical predictions and the

experimental results.

The material in this chapter emphasizes phenomenological behavior. Attention is

focused on the canceling effect of initial member imperfections and load eccentricity

in which the direction of the midspan deflection switches. There are a number of ways

the analysis can be made more general (e.g., assuming different forms of the initial im-

perfection (Harvey et al., 2019; Plaut et al., 2006) and/or different boundary conditions

(Ioakimidis, 2018)), but this study focuses on pinned columns with member imperfec-

tions that take the shape of the first buckling mode.

A.2 Initially Bent, Eccentrically Loaded Column

Consider a prismatic pin-ended column of length L with flexural rigidity EI under ax-

ial load P applied eccentrically at e; see Fig. A.1. The column has an initial cam-

ber of amplitude a, assumed to be a half sine wave (i.e., the first buckling mode):

e x

L

y(x)

y0(x)

aδ

P P

Figure A.1: Initially bent column under eccentric load.
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y0(x) = a sin(πx/L). Assuming the slope is small, the differential equation governing

the deflected shape y(x) is given by

EIy′′(x) + Py(x) = −Pa sin(πx/L) − Pe (A.1)

The general solution to this equation is

y(x) = A sin kx + B cos kx +
P/Pcr

1 − P/Pcr
a sin(πx/L) − e (A.2)

where k =
√

P/EI and the Euler buckling load Pcr = π2EI/L2. The coefficients A and

B are found from the boundary conditions y(0) = y(L) = 0, giving

y(x) =
1 − cos kL

sin kL
e sin kx + e cos kx +

P/Pcr

1 − P/Pcr
a sin(πx/L) − e (A.3)

A.2.1 Effect of Imperfections on Midspan Deflection

The total deflection δ at midspan is given by

δ = y(L/2) + y0(L/2) ≡
a

1 − P/Pcr
+ e

[
sec

(π
2

√
P/Pcr

)
− 1

]
(A.4)

Note that, as defined, a positive amplitude a (in the absence of load eccentricity) would

give a positive midspan deflection δ; likewise, a positive load eccentricity e (in the

absence of initial camber) would result in a positive deflection δ. Therefore, if both a

and e are positive, the beam deflection δ surely will be positive (Plaut and Mráz, 1992).

Of interest here is the case in which the signs of the amplitude a and eccentricity e

are opposite, which raises the following questions: What happens if the signs of the

amplitude a and eccentricity e are opposite? Additionally, in which direction would the

column buckle?

To answer these question, the sign of the deflection δ is tracked as the load P ap-

proaches the Euler buckling load Pcr. To wit, consider the following limit:

lim
P/Pcr→1

δ = (a + 4e/π)∞ (A.5)

75



−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

δ/a
P
/
P

c
r

 

 

e/a = −3

e/a = −1

e/a = −π/4
e/a = −1/3
e/a = 1/3
e/a = 1

e/a = 3

Figure A.2: Load-deflection curves of eccentrically loaded, pre-cambered columns.

Clearly, the direction of the deflection depends on the sign of this limit, which depends

linearly on a and e. Of interest is where the sign of the deflection switches, i.e., the zero

crossing of the term in parenthesis:

a + 4e/π = 0⇒
e
a

= −
π

4
≈ −0.7854 (A.6)

As expected, the switching occurs when e and a have opposite sign. At this critical

e/a ratio, the imperfections from load eccentricity and initial camber cancel each other

out, resulting in what is effectively the Euler buckling scenario. The behavior on either

side of this singularity is characterized as follows:

δ


< 0 : e/a < −π/4 (eccentricity controls)
= 0 : e/a = −π/4 (neutralized)
> 0 : e/a > −π/4 (camber controls)

(A.7)

Figure A.2 gives a graphical representation of Eq. (A.4). The variation of δ/a with

P/Pcr is shown plotted for seven values of e/a, including the critical value of e/a =

−π/4. Comparison of the curves shows that for e/a < −π/4 negative deflections result

as P approaches Pcr. Conversely, for e/a > −π/4, the deflections end up positive as P

approaches Pcr.

To better understand how these imperfections manifest in terms of the lateral deflec-
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tion, Eq. (A.4) can be expanded using a Taylor series as follows:

δ = a
1 +

P
Pcr

+

(
P

Pcr

)2

+ · · ·

 + e
π2

8
P

Pcr
+

5π4

384

(
P

Pcr

)2

+ · · ·

 (A.8)

At zero load, the deflection is independent of the load eccentricity, i.e., δ|P=0 = a.

Comparing the coefficients on the linear terms O(P/Pcr), the sensitivity on eccentricity

e (i.e., π2/8) is about 23% greater than that of amplitude a (i.e., 1). Hence, the deflection

δ is more sensitive to eccentricity, which is similarly true for the higher-order terms in

the series; this is why the critical eccentricity-to-amplitude ratio found in Eq. (A.6) is

less than 1. It is worth noting that the critical eccentricity-to-amplitude ratio for the

first-order term is e/a = −8/π2 ≈ −0.8106, which is greater than the value found in Eq.

(A.6). Hence, the deflection δ is less sensitive to eccentricity e as load P approaches the

critical load Pcr.

A.3 Experiments

As discussed in the previous section, as the ratio of load eccentricity e to imperfection

amplitude a increases, the deflection at midspan changes sign, and it is this switching of

sign that is the focus of this study. A series of simple tests was performed to illustrate

this behavior and its dependence on the ratio e/a.

A.3.1 Experimental Setup

Relatively slender columns were fabricated with a consumer-grade 3D printer (Taz 6,

Lulzbot, Loveland, CO). The specimens were printed out of PolyLite PLA (Polymaker,

2017). The “standard” (default) settings were used in the slicing software (Cura v21.08)

for all specimens. The test specimens were designed to easily allow for varying load ap-

plication points and initial imperfection amplitude. The design is shown in Fig. A.3(a).

The clear span length L was held constant for all specimens. Three initial imperfection

amplitudes were used: a = 3.175, 6.350, and 9.525 mm. The three 3D-printed test

77



(a)

PROJECT

TITLE

DRAWN

CHECKED

APPROVED

SCALE WEIGHT SHEET

DWG NO REVCODESIZE

1/11:112/18/18Philip Harvey

B

My First Project
inperfectBeam_sine0.25in

R3.175

190.5

R2.381

7@3.175

2.381

A

A

SECTION A-A

SCALE 1:1

9.525

2.381

varies

5.9535.953

a (varies) units: mm

(b)

Figure A.3: (a) Test specimen nominal dimensions and (b) 3D-printed specimens.

specimen are shown in Fig. A.3(b).

The ends of the columns were integrated into rigid load application mechanisms.

Small fillets were incorporated to avoid stress concentrations at the interface of the col-

umn and load application mechanism, and the height of the interface varied with the

amplitude to ensure a large enough range of eccentricities could be tested. The load

application mechanisms were designed with seven evenly spaced loading points that

mated with rotary loading pins to mimic friction-free pinned boundary conditions (see

Fig. A.4). Each pin fixtures was composed of a loading pin between mounted ball bear-

ings. The pin fixtures were attached to the load heads in a Universal Testing Machine

(5543, Instron, Norwood, MA) equipped with a load cell to measure the applied axial

load. The compressive load was measured simultaneously with the end shortening dur-

ing the displacement-controlled load tests; the load rate was 10 mm/min to a maximum

end shortening of 10 mm. While the lateral deflection δ was not measured, the sign of

the midspan deflection at the end to the tests (10-mm end shortening) was noted, which

is of interest here.
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(a) (b)

Figure A.4: Images of the experimental setup (a) and pin fixture (b).

A.3.2 Experimental Results

The results presented here focus on the sign of the midspan deflection with varying e/a

ratios. As e/a increases, δ is expected to change sign at e/a ≈ −0.7854 (see Eq. (A.6)),

switching from eccentricity controlled (δ < 0) to camber controlled (δ > 0). In Fig.

A.5, the compressive load P is plotted versus end shortening for the three imperfection

amplitudes: a = (a) 3.175, (b) 6.350, and (c) 9.525 mm. The line color distinguishes the

e/a ratio. Note that the e/a resolution varies with the initial imperfection, with incre-

ments of 1, 1/2, and 1/3 for a = 3.175, 6.350, and 9.525 mm, respectively. As the e/a

ratio increases, the load-deflection curves initially stiffen (approaching the “perfect” Eu-

ler buckling case), reaching a stiffest case, and then soften. The stiffest cases correspond

to e/a = −1, −1, and −2/3 for the three cases considered, which is in good agreement

with the theory (see Fig. A.2). For the largest amplitude used (a = 9.525 mm, Fig.

A.5(c)), the stiffness is nearly the same for e/a = −1 and −2/3; this is expected be-

cause these two cases straddle the critical e/a ratio of −0.7854, with e/a = −2/3 being

slightly stiffer (closer to the critical value).
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Figure A.5: Compressive load versus end shortening for imperfection amplitude a = (a) 3.175, (b)
6.350, and (c) 9.525 mm with varying load eccentricity to imperfection amplitude ratio e/a. Sign of
midspan deflection is distinguished by line style: δ < 0 (dashed) and δ > 0 (solid).

The transition from stiffening to softening correlates with the sign of the midspan

deflection. In Fig. A.5, sign of the midspan deflection is distinguished by the line style.

In all cases but a = 3.175 mm (Fig. A.5(a)), the midspan deflection is negative (i.e.,

eccentricity controlled) for e/a 6 −1, while the midspan deflection is positive (i.e.,

camber controlled) for e/a > −1. For the smallest imperfection amplitude (a = 3.175

mm, Fig. A.5(a)), the stiffest case corresponded to a ratio of e/a = −1, with a load-

deflection curve that closely resembles Euler buckling (i.e., almost vertical path).

The data in Fig. A.5 are recast in Fig. A.6 to better illustrate the influence of e/a on

the sign of the midspan deflection. With load eccentricity e plotted against imperfection

amplitude a, the theory (based on Eq. (A.7)) predicts that the sign of the midspan de-

flection will switch at e = −π4 a, separating regions of negative deflection (eccentricity
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Figure A.6: Regions of positive and negative midspan deflection δ in the parametric space (load
eccentricity e versus imperfection amplitude a) based on Eq. (A.7), with comparison to experimental
results (δ < 0: ◦; δ > 0: +).

controlled) and positive deflection (camber controlled). The data (distinguished by the

marker) corresponds well with the theory. The only exception, as previously discussed,

was for the smallest imperfection amplitude (a = 3.175 mm, Fig. A.5(a)), in which the

e/a resolution is coarsest.

A.3.3 A Note on Repeatability

Two additional specimens were printed with imperfection amplitude a = 3.175 mm to

test the repeatability of the results, in particular the case of e/a = −1 which deflected

opposite the theory (see Fig. A.6). The specimens were subjected to the same loading

sequence (positive e/a to negative e/a). For the load case of e/a = −1, one specimen

had a positive deflection, and the other specimen had a negative deflection. Therefore,

1/3 of the specimens deflected according to the theory, while the other 2/3 deflected

opposite the theory.

The original specimen was tested an additional 10 times—5 oriented concave to

the left, and 5 oriented concave to the right—at e/a = −1 with the specimen removed

and reset between each test; in all cases the column’s deflection was controlled by the

eccentricity (δ < 0), as predicted by the theory. Hence, the first test of the original

specimen at e/a = −1 was not in keeping with the average response, indicating better
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agreement with the theory than originally determined. It is worth noting that, after

the numerous tests the original specimen was subjected to, it may have slightly plastic

deformed, resulting in a bias to deflecting repeatedly into the eccentricity-controlled

shape. This highlights the close proximity of this particular test to the cusp between

imperfection-controlled and eccentricity-controlled equilibria.

A.3.4 Circular Arc Initial Imperfection

Tests were also conducted on similar specimen that had imperfections in the form of

circular arcs (instead of the first buckling mode, i.e., half sine) with the same imper-

fection amplitudes. While the geometric imperfection follows a different form than

was assumed in Section A.2, these circular arcs exhibited the same qualitative behavior

shown in Fig. A.6. The results are not presented here, but the theoretical justification for

the similarity is due to a (shallow) circular arc being similar to the first buckling mode,

discussed here.

The equation of a circular arc is

y0(x) =
√

R2 − (x − L/2)2 −
√

R2 − (L/2)2 (A.9)

where R = [a2 + (L/2)2]/(2a). This equation can be expanded in terms of a Fourier

series

y0(x) =

∞∑
n=1

an sin
nπx
L

(A.10)

where the Fourier coefficients are given by

an =

∫ L

0
y0(x) sin nπx

L dx∫ L

0
sin2 nπx

L dx
≡

2
L

∫ L

0
y0(x) sin

nπx
L

dx (A.11)

The even coefficients (n = 2, 4, 6, ...) are all zero because the circular arc is symmetric

about midspan (x = L/2, for the selected origin). The first four odd coefficients are

tabulated in Table A.1 for representative geometries considered in this study. In all
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Table A.1: Fourier coefficients an (n = 1, 3, 5, 7) for a circular arc with span L = 190.5 mm and
varying amplitude a.

a (mm) a1 (mm) a3 (mm) a5 (mm) a7 (mm)

3.175 3.27725 0.121963 0.0263543 0.00960537
6.350 6.55748 0.247533 0.053556 0.0195265
9.525 9.84365 0.380316 0.0824834 0.0300941

three cases, the first Fourier coefficient is about 26 times larger than the third, so the

circular arc can be approximated accurately by the just first term in the series.

A.4 Concluding Remarks

This chapter has considered the combined effects of initial member imperfections and

load eccentricities on static equilibrium configurations of pinned columns. In particular,

the dependence of the sign (direction) of the midspan lateral deflection on the ratio

of load eccentricity e and imperfection amplitude a was studied. At the critical ratio

of e/a = −π/4, the sign of the midspan deflection switches, separating two distinct

responses: eccentricity controlled (e/a < −π/4) and imperfection controlled (e/a >

−π/4). Measurements (compressive load and end shortening) were made on 3D-printed

columns with different load eccentricities and initial cambers. The data were able to

span the range from eccentricity controlled to imperfection controlled, showing good

agreement with the theoretical predictions.
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