A PHASE SHIFT METER, ITS
DESIGN AND PERFORMANCE

By
JOSEPH D. EISIER
Bachelor of Science
Massachusetts Institute of Technology
Cambridge, Massachusetts
1932

Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
1954

A PHASE SHIFT METER, ITS

 DESIGN AND PERFORMANCE

Thesis and Abstract Approved:

ii

329849

PREFACE

Within the past several years, great technological strides have been made in the fields of Electrical Engineering and Electronics. The engineer engaged in these fields of endeavor is continuously called upon to perform more and more precise measurements of electrical response characteristics of numerous and varied components and devices. He is, therefore, of necessity forced to provide or improvise suitable equipment to carry out such measurements.

In general, the behavior of any electrical network, electrical or electromechanical device can be fully described in terms of amplitude and phase response to a steady state sinusoidal signal covering a broad frequency spectrum. While a number of precise and adequate schemes are available to carry out amplitude response measurements, the number and quality of phase measuring devices is correspondingly small and lacking in precision.

Recognizing this lack of availability of suitable precise phase measuring devices, the author of this thesis embarked upon the development of a Phase Shift Meter designed to fill this important gap in the realm of electrical measurements. The work reported herein was
carried out as a research project by the author while employed in the Research Department of the Stanolind Oil and Gas Company, Tulsa, Oklahoma. The Phase Shift Meter, whose design and performance will be described in detail in the body of this thesis, has been instrumental in solving numerous problems in the design and performance of various electrical devices and networks and has been since its original development in continuous use by the various members of the Research Staff engaged in such work.

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to Professors H. L. Jones and D. L. Johnson, both of the Electrical Engineering Department of the Oklahoma Agricultural and Mechanical College, for their invaluable assistance and criticism in the preparation of this thesis. He is likewise greatly indebted to the Stanolind Oil and Gas Company for granting permission to publish this material.

TABLE OF CONTENTS
CHAPTER PAGE
I. INTRODUCTION 1
II. PRINCIPLE OF OPERATION 6
III. CIRCUIT DIAGRAM AND PHYSICAL EMBODIMENT. OF THE INSTRUMENT. 15
IV. OPERATIONAL PROCEDURE. 27
V. OPERATION, DESIGN AND PERFORMANCE OF THE COMPONENT . PORTIONS OF THE PHASE SHIFT METER. 30

1. Automatic Volume Control 30
2. Inverter Stage 38
3. Mixer Stage. 40
4. Full Wave Rectifier and Indicating Meter 42
VI. CALIBRATION OF THE PHASE SHIFT METER 46
VII. PERFORMANCE OF THE PHASE SHIFT METER 49
VIII. SUMMARY AND CONCLUSIONS. 56
BIBLIOGRAPHY 58
APPENDIX A 59
APPENDIX B 63
APPENDIX C 64

LIST OF TABLES

Table Page

1. List of Components. 18, 19
vii

LIST OF ILLUSTRATIONS

Figure Page

1. Vector Relations used in Measuring Phase Angles. 7
2. Theoretical Calibration of the Phase Shift Meter . .Scale. 9
3. Basic Block Diagram of the Phase Shift Meter 11
4. Schematic Block Diagram of the Phase Shift Meter . . 14
5. Circuit Diagram of the Phase Shift Meter 17
6. Top View of the Meter Chassis. 21
7. Bottom View of the Meter Chassis 22
8. Front View of the Phase Shift Meter 23
9. Closeup View of the Phase Shift Meter Scale 24
10. Schematic Block Diagram of the Automatic Volume. . . Control Circuit. 31
11. Suppressor Characteristic. 33
12. Gain Vs. Suppressor Bias 34
13. Calculated and Measured A.V.C. Characteristic. . . . 37
14. Equivalent Circuit of the Inverter Stage 39
15. Equivalent Circuit of the Mixer Stage 41
Figure Page
16. Detector Circuit. 43
17. RC Circuit used for Calibrating the Phase Shift . . . Meter 46
18. Calibration of the Indicating Meter 47
19. Circuit Diagram of a Simple Antiresonant Network. 49
20. Phase Shift Characteristic of the Antiresonant. . . . Network . 50
21. Variation of Inductance and Q of the Choke withFrequency 53

CHAPTER I

Introduction

At the inception of the art of Electrical Engineering, the measurement of phase angle was limited to power applications and effective phase measuring techniquesl were developed concurrently with ever increasing use of alternating currents in power generation, transmission and use. As the art developed to include Telegraphy, Telephony, and Electronics, the necessity for precision and flexibility of phase measuring techniques grew.

Present day measurements technology offers the Electrical Engineer many and varied means for carrying out phase measurements by means of oscillographic and oscilloscopic techniques as well as by means of complex electronic instruments capable of indicating phase angle over a wide range of the frequency spectrum.

Particularly in the Electronics branch of the Electrical Engineering art, the measurement of phase angle assumed great importance in determining the behavior of characteristics of a variety of circuit components such as resistors, condensers, and inductors as well as of electrical, electromagnetic and electro-

[^0]acoustic devices, including electrical filters, amplifiers, servomechanisms, and a host of other devices whose steady state and transient responses are of prime importance in their design and use.

Mathematical theories have been developed which not only relate the steady state response to the transient response ${ }^{2}$ of a particular network or apparatus, but likewise relate the steady state amplitude response to the phase response or vice versa ${ }^{3,4}$.

The measurement and knowledge of phase response is of extreme importance to the communication engineer, since having such information, he can predict the quality of performance of long transmission lines carrying voice and other signals. The measurement of phase likewise offers a very sensitive means for evaluating the performance and lining up of multichannel equipment of great variety in which identical response among the individual channels is one of the important specifications. Multichannel telemetering equipment belongs to this class.

In order to appreciate fully the significance of phase angle, or phase shift measurement, and its relation to electrical measurements in general, it is in order to define this quantity. Phase angle is defined as the magnitude and sign of the transit time of

[^1]a steady state sinusoidal signal of a particular frequency between the input and output terminals of a network. The transit time may be positive (lag) or negative (lead) and is caused, broadly speaking, by the temporary storage and/or release of electrical energy by the various circuit parameters comprising such a network. This transit time, if related to the period of the sinusoidal signal, can be expressed in electrical degrees. Thus, for any particular frequency, the time delay is given by
\[

$$
\begin{equation*}
t=\frac{\theta}{360 f} \tag{I}
\end{equation*}
$$

\]

where t - delay in seconds
θ - phase angle in degrees
f - frequency in cycles per second
Expressed differently, the phase angle is proportional at any given frequency to the time difference between corresponding phase points on the sinusoidal input and output signals.

One of the most commonly employed methods in measuring phase of phase difference is the oscilloscope method 5,6 . While this method is simple and reliable from the instrumental point of view, it nevertheless suffers seriously from lack of precision, particularly

[^2]when the difference in phase between two quantities lies in the neighborhood of $\pm \frac{n \pi}{2}$ where n is an odd integer. A number of variants are available which attempt to circumvent this difficulty?. But these again are capable of determining phase angle to approximately $\pm 5^{\circ}$ up to frequencies of about 4 kilocycles.

With the rapid advance of the electronic art, a need arose for a precise measurement of phase angle over a broad range of the frequency spectrum by direct meter indicating means. Frequently, the measurements have to be performed on circuits of high impedance and at low power levels. Therefore, the phase indicating meters are designed to produce minimum loading of the circuits under test. Phase shift measurement precision requirements are often of the order of one electrical degree. Oftentimes it is necessary to visualize the shape of the entire phase shift characteristic over a relatively wide band of frequencies such as, for example, the phase characteristic of a filter network; therefore, it is desirable to employ phase measuring instruments which are substantially independent of amplitude variation of the input or the output signals over the band of frequency of interest. This requires that the instrument undergo a minimum of adjustment throughout the measurement. Direct phase reading

[^3]devices are likewise preferable which do not involve the necessity of computation or interpretation.

With these ideas in mind, the author of this thesis was able to design a suitable electronic phase meter which meets the above specifications in almost every respect. The phase shift meter to be described was designed specifically for sub-audio and audio range and its performance, with some slight modifications, could relatively easily be extended into supersonic range.

CHAPTER II

Principle of Operation

The phase shift meter under discussion is designed for determining the phase difference between two sinusoidal voltages of like frequency. The principle of this meter is as follows: If two sinusoidal vector voltages V_{1} and V_{2}, which are displaced from each other in time phase by an angle θ, are subtracted vectorially, then their difference by the law of cosines is

$$
\begin{equation*}
V_{\text {diff }}=\sqrt{V_{1}^{2}+v_{2}^{2}-2 V_{1} V_{2} \cos \theta} \tag{2}
\end{equation*}
$$

If V_{1} and V_{2} are not only made equal to each other, but also equal to a certain preselected magnitude V_{0} so that $V_{1}=V_{2}=V_{0}$ then,

$$
\begin{equation*}
V_{\text {diff }}=2 V_{0} \sqrt{\frac{1-\cos \theta}{2}} \tag{3}
\end{equation*}
$$

from which

$$
\begin{equation*}
V_{\text {diff }}=2 V_{0} \sin 1 / 2 \theta \tag{4}
\end{equation*}
$$

The vector representation of this operation is shown in Figure la.

(a)

(b)

(c)

Figure 1. Vector Relations used in Measuring Phase Angle。

If, however, V_{1} and V_{2} are added vectorially, their sum will be

$$
\begin{equation*}
\nabla_{\mathrm{sum}}=\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}-2 \mathrm{~V}_{1} V_{2} \cos (180-\theta)} \tag{5}
\end{equation*}
$$

Furthermore, if $V_{1}=V_{2}=V_{0}$, as before

$$
\begin{equation*}
V_{\text {sum }}=2 V_{0} \sqrt{\frac{1+\cos \theta}{2}} \tag{6}
\end{equation*}
$$

from which

$$
\begin{equation*}
V_{\text {sum }}=2 V_{0} \cos 1 / 2 \theta \tag{7}
\end{equation*}
$$

The vector representation of this operation is shown in Figure lb.
By proper choice of magnitude V_{0}, the design of the indicating meter scale and its calibration are immediately established. However, if equation (4) were solely used for establishing this calibration, the meter scale would be unduly compressed for phase angles θ lying close to $\pm \pi$. For this reason relation (4) is used for angles lying between 0 and $\pm \frac{\pi}{2}$ radians and relation (7) for angles lying between $+\frac{\pi}{2}$ and $+\pi$ or between $-\frac{\pi}{2}$ and $-\pi$. The vector diagram for the example of the latter case is shown in Figure lc. Using such a scheme, a single calibration scale may be used for the sum and the difference of V_{1} and V_{2} (both adjusted to magnitude V_{0}) covering all quadrants. The calibration of the indicating meter is so chosen as to give full scale deflection when θ corresponds to $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}$ etc. radians and zero scale deflection when θ is equal to $0, \pm \pi, \pm 2 \pi, \pm 3 \pi$, etc. Since

Figure 2. Theoretical Calibration of the Phase Shift Meter Scale。
only half angles of the actual phase difference between V_{1} and V_{2} are determined, the scale is compressed at its upper end by approximately 30%. Such a theoretical scale calibration is illustrated in Figure 2. While the plot describes the indicating meter deflection for phase angles in the first and second quadrants, identical characteristic is valid for phase angles in the third and fourth quadrants. For this case, the right ordinate is used for the angles in the third quadrant and the left ordinate for the angles in the fourth quadrant. Since in the design of the phase meter the vector sum or vector difference of $a_{1} c$. voltages V_{1} and V_{2} is rectified to permit the use of a sensitive d.c. microammeter for final phase angle indication, the actual calibration characteristic departs slightly from the ideal given in Figure 2. The principle of operation of the phase shift meter can be most easily understood by reference to the basic block diagram presented in Figure 3. Here, the two sinusoidal voltages V_{1} and V_{2} having a phase shift angle θ between them are fed separately to two identical automatic control circuits A_{1} and A_{2} which compensate precisely for the variations in magnitudes of V_{1} and V_{2} as a function of frequency. For example V_{1} may be an input voltage to a network or an apparatus and V_{2} the output voltage. These equalized voltages are then suitably attenuated by manually adjustable potentiometers P_{3} and P_{4} so that $V_{1}=V_{2}=V_{0}$, where V_{0} is again a certain preselected magnitude designed to make the

Figure 3. Basic Block Diagram of the Phase Shift Meter.
indicating precalibrated meter scale read directly in degrees phase. One of the equalized vector voltages V_{2} is fed directly to a mixer amplifier stage A_{4} and thence through a full wave rectifier circuit A_{5} to a d.c. indicating meter M. The other vector voltage V_{1} upon equalization by the automatic control stage A_{1} and potentiometer P_{3} is fed to an inverter stage A_{3} of unity gain to the mixer stage A_{4} and thence to a full wave rectifier A_{5} and indicating meter $M_{\text {. The inverter stage is }}$ inserted into the circuit by means of switch S only when the difference of two vector voltages is read on the indicating meter and is bypassed again by means of switch S when the sum of the two vectors is read on the indicating meter. The "difference" or the "sum" position of switch S is determined at any frequency, automatically, by noting the deflection of the indicating meter M. The possible ambiguity between the first and fourth and again between the second and third quadrants is avoided by inspection of the circuit or the device under test and determining the expected phase shift either at low or high end of the operable frequency spectrum and then following the deflection of the meter either up or down the angle scale as a function of frequency. Frequently, it is possible to determine zero phase shift from the circuit considerations, e.g. at resonance and departing from that point either up or down on the setting of the test oscillator supplying the input signal to the network
or the device under test. Methods likewise exist by means of which it is possible to determine whether the phase angle is leading or lagging, but this will be discussed at length in a subsequent chapter.

Figure Ho Schematic Block Diagram of the Phase Shift Meter.

CHAPTER III

Circuit Diagram and Physical Embodiment of the Instrument

Before proceeding with the detailed description of the actual wiring diagram of the instrument, it is helpful to consider a functional block diagram shown in Figure 4. This diagram is a further amplification of the basic block diagram shown in Figure 3, and includes certain pertinent portions of the instrument which are necessary to its satisfactory operations. In particular, the automatic volume control feedback loops are shown which equalize the variable magnitudes of input voltages V_{1} and V_{2} which are then manually adjusted to a voltage V_{0} This voltage is kept substantially constant throughout the phase shift measurement.

The automatic volume control circuits involve an identical pentode input stage T_{1} (or T_{2}) for each of the two channels of the device. The transconductance of this stage is varied by changing the suppressor bias. This stage, therefore, represents the control element in the negative feedback loop of the control circuit. This control stage is followed by additional a.c. amplification, stage $T_{3}\left(\right.$ or $\left.T_{4}\right)$. The negative feedback portion of the automatic control circuit consists of an a.c. amplifier
stage $T_{5}\left(\right.$ or $\left.T_{6}\right)$ a half wave rectifier $T_{7}\left(\right.$ or $\left.T_{8}\right)$, an R.C. filter, and a stage of a d.c. amplifier $\mathrm{T}_{9}\left(\right.$ or T_{10}). The voltage output of the latter is impressed on the suppressor electrode of the control stage T_{1} (or T_{2}). The action of the automatic volume control will be treated at length in Chapter V. The remaining portions of the block diagram are identical to those shown in Figure 3, and consist of an inverter stage T_{11} of unity gain in one of the channels, a mixer stage T_{12} and T_{14}, driver stage T_{15}, a full wave rectifier stage T_{16} and an indicating $d_{0} c$. meter $M_{\text {。 }}$

The complete wiring diagram is shown in Figure 5 and the various portions thereof can be directly related to the block diagram in Figure 4. The circuit parameter values used in this design are listed in Table I. There are, however, two features which require further explanation. One of these are potentiometers A-1 and A-2 and the second is a mechanically ganged switch labeled $S_{1} S_{2} S_{3}$. The purpose of potentiometers $A-1$ and $A-2$ is to prevent overload and grid rectification of the input stages T_{1} and T_{2}. These potentiometers are set manually at the beginning of phase measurement and the input level is determined on the indicating meter for either or both input signals. The input level for each channel, as well as the value of adjusted magnitude V_{0} for each channel is applied to the respective inputs of mixer stage $\mathrm{T}_{12} \mathrm{~T}_{14}$ by means of ganged selector switches

Figure 5. Circuit Diagram of the Phase Shift Meter.

TABLE I
List of Components

TABLE I (Continued)

$\mathrm{T}_{1}, \mathrm{~T}_{2}$	-6J7
$\mathrm{T}_{3}, \mathrm{~T}_{5}$	- 6C8-G
$\mathrm{T}_{4} \mathrm{~T}_{6}$	- 608-G
$\mathrm{T}_{79} \mathrm{~T}_{8}$	-6H6
$\mathrm{T}_{9} \mathrm{~T}{ }_{10}$	-605
$\mathrm{T}_{11}, \mathrm{~T}_{12}$	- 608-G
T_{14}	- 1/2 608-G
T_{15}	- 76
${ }^{\text {P }} 16$	- 646
B_{1}	- 90 volts \& 135 volts
B_{2}	- 45 volts
B_{3}	- 1-1/4 volts
B_{4}	- 6 volts

Note: Condenser C_{1} to C_{11} inclusive - paper or mica; Condensers C_{12} to C_{22} inclusive - electrolytic.
$\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3}$ in the following sequential switching: Switch position No. I connects voltage V_{1} to the grid of T_{12}; switch position No. 2 connects voltage V_{2} to the grid of $T_{1_{4}}$; switch position No. 3 monitors the adjusted value V_{0} of channel No. I by connecting it to the grid of T_{12}; switch position No. 4 monitors the adjusted value V_{0} of channel No. 2 by connecting it to the grid of T_{14}; switch position No. 5 combines the adjusted voltages in the mixer stage $\mathrm{T}_{12} \mathrm{~T}_{14}$ for phase difference determination. A separate switch S_{o} selects either the sum or the difference of two voltages depending upon the magnitude of the phase angle.

The instrument is self contained and is entirely battery powered to eliminate difficulties with power line frequency pickup. This is particularly advantageous when phase shift measurements are being performed on circuits operating at low levels. This feature also permits the use of such an instrument outside the laboratory or under field conditions. The internal construction is presented in Figures 6 and 7 which shows the top and the bottom view of the chassis, respectively. Figure 8 shows the outside view of the instrument with all controls conveniently mounted on the sloping front panel. A screw driver adjustment is provided for setting the gain of the inverter stage to exactly unity. Figure 9 shows a close-up view of the indicating meter which is, in this case, a 50 microampere d.c. meter manufactured by Sensitive Instrument Research Corporation.

Figure 6. Top View of Phase Shift Meter Chassis.

Figure 7. Bottom View of the Phase Shift Meter Chassis.

Figure 8. Front View of the Phase Shift Meter.

Figure 9. Close-Up View of the Phase Shift Meter Scale.

The degrees scale was prepared by the manufacturer on a special order according to the calibration supplied. It may be seen that phase angle of the order of one electrical degree or better can be easily read. A battery test push button S_{4} is provided which checks the "B" battery voltage. Filaments are normally supplied by an external 6-volt storage battery. Under normal operating conditions one of the input terminals of both channels is at ground potential. This arrangement is generally satisfactory when measuring phase shift characteristics of amplifiers on other four terminal networks having a common low or ground bus. In those cases when the four terminal networks have all four terminal independent electrically, isolation transformer must be inserted into one of the channels of the phase meter. In such a case the phase characteristics of the transformer is determined as a function of frequency and algebraically subtracted from the overall phase measurement. The input impedance of the meter is 1 megohm for the range of frequencies for which the meter was designed.

CHAPTER IV

Operational Procedure

Abstract

At the start of phase shift measurement, the filament leads of the phase meter are connected across a 6-volt storage battery without regard to polarity. The meter is then turned on by means of main power switch which not only completes the filament circuit, but also connects the main 135 volt "B" battery. (See Figure 8 for location of the various control knobs). Battery test push button is next operated. This tests the condition of the main "B" battery. The reading of the meter should come up to the red mark on the meter face. The red mark is placed opposite 60° on the difference scale and is used for certain other settings of controls prior to the phase measurement. The circuit under test is connected to the input terminals of Channel I and Channel II, observing the polarity with respect to the grounded terminals (lower post of each input pair). The input voltage to the circuit under test may be connected to Channel I and the output voltage of the circuit to Channel II, or vice versa. The main selector switch is placed in position marked $A-1$. The frequency of the source supplying the sinusoidal voltage to the circuit or the device under test is varied over the required range. Control A-1

is adjusted so that at no time does the deflection of pointer of the meter exceed full scale meter deflection. The main selector switch is placed into position marked A-2 and the above process is repeated. In this case, however, the control knob marked A-2 is varied until the maximum deflection of the meter does not exceed full scale meter deflection. These two adjustments normally take a very short time and their purpose is to keep the levels of the input signals to both channels of the Phase Meter within safe levels so as not to overload the various amplifying stages. Next step is to place the main selector switch in position V-1 and adjust control V-1 so that meter pointer is exactly on the red mark at 60° point. This adjustment sets the value of vector voltage of Channel I to V_{0} (see Chapter II). The automatic volume control of Channel I is now operating and is keeping the value of V_{0} constant despite the variation of the magnitude of the input voltage to Channel I. The action of the automatic volume control is to preserve the magnitude of V_{0} to within 5% for amplitude variations of the input voltage to Channel I of 26 db . Next, the gain of the inverter stage is checked by changing the position of toggle switch marked "SUM" and "DIFF" back and forth and observing the meter deflection. If the "DIFF" reading does not equal exactly to the "SUM" reading on the meter, the gain of the inverter stage is changed by turning screw driver adjustment marked "INVERTER ADJ。" The
main selector switch is then placed in V-2 position and the meter pointer is brought to the red mark by adjustment of knob marked V-2. Carrying these processes through as described above, two voltages of equal magnitude V_{0} are created and are substantially independent of the variation of the original voltages under test over the required frequency range. The main selector switch is placed next into "PHASE" position. The reading of the meter then represents phase angle difference in degrees between the input voltage to Channel I and input to Channel II of the Phase Meter. The SUM-DIFF switch is so positioned that the indicating meter pointer is on scale. If the switch is in the "DIFF" position, the difference scale of the meter is read. If the switch is in the "SUM" position, the sum scale is read. Improper switch position results in the meter pointer going off scale and can be brought back on scale by changing the position of SUM-DIFF switch. Improper position of this switch cannot damage the meter because of the overload characteristics of the final triode stage driving the full wave rectifier. The proper quadrant for phase angles is determined either from the consideration of the circuit under test either for very low or very high frequency, from resonance points at which phase angle is equal or nearly equal to zero, or by the Lissajous figures of a monitoring oscilloscope, if such is used, across the input terminals of Channels I and II.

To determine whether the phase angle is leading or lagging, a simple RC network may be inserted at the input of, say, Channel I, so arranged that the voltage across the resistor leads the voltage across the RC combination. If the meter reading increases, it means that the input voltage to Channel I was leading the input voltage to Channel II before the RC network was introduced. If the meter reading decreases, it means that the input voltage to Channel I was initially lagging the input voltage to Channel II.

CHAPTER V

Operation, Design, and Performance of the Component
Portions of the Phase Shift Meter

For study and analysis purposes, the entire Phase Shift Meter circuit can be conveniently separated into several descrete portions as follows:

1. Automatic Volume Control Circuit.
2. Inverter Stage.
3. Mixer Stage.
4. Full Wave Rectifier Detector
5. Indicating Meter

Of these, the automatic volume controls are identical in the two channels comprising the meter, the inverter stage is inserted at will into Channel I and the remaining items are common to both channels.

1. Automatic Volume Control Circuit.

The automatic control circuit of either Channel I or Channel II consists of a variable gain pentode stage T_{1} whose gain is varied by changing the value of the suppressor bias. The output of this stage is further amplified by two stage resistance-condenser coupled amplifiers T_{3} and T_{5}. The output of T_{5} is rectified by a

Figure 10. Schematic Block Diagram of the Automatic Control Circuit.
half wave rectifier stage T_{7} which is followed by an RC filter to smooth out the rectifier ripple. The d.c. voltage thus produced is further amplified by a stage of direct coupled amplifier T_{9} and is then applied to the suppressor grid of stage T_{1}. The block diagram of this arrangement is shown in Figure 10 and the actual circuit in Figure 5. The controlled voltage is derived at the junction of stages T_{3} and T_{5}. Thus the automatic control amplifier section proper consists of stages T_{1} and T_{3} and the negative feedback portion of the automatic control circuit consists of stages T_{5}, T_{7}, and T_{9}. The automatic volume control. is identical in Channel II of the Phase Shift Meter.

In analyzing the action of this automatic volume control, certain voltage measurements were made to determine the gain of the various portions of the negative feedback circuit. The results of these measurements were then applied to the theoretical formulae describing the action of this control and the overall performance was computed. The computed performance was then compared to an actual control characteristic of the circuit.

Referring to Figure 10, it may be seen that for such a negative feedback circuit

$$
\begin{equation*}
e_{0}=\mu K_{1} e_{1} \tag{8}
\end{equation*}
$$

Figure 12. Gain Vs. Suppressor Bias
where e_{o} - output voltage
μ - variable gain of the pentode stage T_{1}
K_{1} - gain of stage T_{3}
e_{1} - input voltage.

From an actual measurement on the circuit, the following relation is established.

$$
\begin{equation*}
E_{s}=K_{2}\left(e_{0}-e\right) \tag{9}
\end{equation*}
$$

The plot of this relation is shown in Figure 11 which demonstrates the relationship between the suppressor bias E_{s} applied to pentode stage T_{I} and the output voltage e_{0}. In this case e is the intercept of the characteristic on the abscissa. The method of obtaining this characteristic as well as the original data are given in Appendix A.

Another relation obtained experimentally is shown in Figure 12. This characteristic shows the variation of the gain of the pentode stage T_{1} as a function of the suppressor bias E_{S}. The method of determining this characteristic and the original data are also given in Appendix A. The characteristic can be approximated mathematically by a relation

$$
\begin{equation*}
\mu=\mu_{0}-\frac{\mu_{U}}{E_{0}} E_{S} \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu \text { - gain of stage } T_{1} \\
& \mu_{0} \text { - gain of this stage with } E_{s}=0 \\
& E_{0} \text { - } \text { suppressor bias necessary to produce } \\
& \quad \text { zero gain of stage } T_{1} .
\end{aligned}
$$

Combining equations (8), (9), and (10)

$$
\begin{aligned}
& e_{0}=K_{1}\left(\mu_{0}-\frac{\mu_{0}}{E_{0}} E_{s}\right) e_{1} \\
& e_{0}=K_{1}\left[\mu_{0}-\frac{\mu_{0}}{E_{0}} K_{2} e_{0}+\frac{\mu_{0}}{E_{0}} e\right] e_{1} \\
& e_{0}=K_{1} \mu_{0} e_{1}-K_{1} K_{2} \frac{\mu_{0}}{E_{0}} e_{0} e_{1}+K_{I} K_{2} \frac{\mu_{0}}{E_{0}} \text { eel } e_{1}
\end{aligned}
$$

From which

$$
\begin{equation*}
e_{0}=\frac{\left(K_{1} / \mu_{0}+K_{1} K_{2} \frac{\mu_{0}}{E_{0}} \text { e) } e_{1}\right.}{1+K_{1} K_{2} \frac{\mu_{0}}{E_{0}} e_{0}} \tag{11}
\end{equation*}
$$

From Figures 11 and 12, the various constants may be determined as follows:

$$
\begin{aligned}
\mu_{0} & =65 ; E_{0}=14 \text { volts; } e=0.210 \text { volts. } \\
K_{2} & =\frac{15}{0.385-0.210}=85.7 \text { de volts /a.c. volts } \\
K_{1} & =11.9 \text { by separate measurement of gain of stage } T_{3} .
\end{aligned}
$$

By substituting the above constants into equation (11), the following relation is obtained

$$
\begin{equation*}
e_{0}=\frac{1775 e_{1}}{1+4750 e_{1}} \tag{12}
\end{equation*}
$$

which relates the controlled voltage e_{0} to the input voltage ${ }^{e}{ }^{-}$

Equation 12 is converted in decibel form such that e_{I} is plotted in db below 100 millivolts which is the maximum input signal tolerated by each channel of the Phase Shift

Figure 13. Calculated and Measured A.V.C. Characteristic.

Meter, so that

$$
\begin{equation*}
\mathrm{db}=20 \log _{10} \frac{e_{1}}{100} \tag{13}
\end{equation*}
$$

values of e_{1} being selected in millivolts.
The plot of equation (12) on the above basis is shown in Figure 13. The actual measured control characteristic obtained with the automatic volume control circuit is also plotted in Figure 13. The calculations and measurement data are included in the Appendix A. The comparison of the computed and measured characteristics shows a good correspondence indicating correctness of the analysis of the negative feedback circuitry. The discrepancy between the two curves is caused by the departure of $e_{0} V s, E_{s}$ characteristic from the assumed straight line. From these plots, it may be seen that the automatic volume control preserves the magnitude of e_{0} (and therefore V_{0}) to about 5% within the range of variation of the input voltage from zero to 26 db below 100 millivolts. This control characteristic was found to be adequate in normal type of phase measurement on filters and other types of networks where the amplitude variations from the peak of the filter response characteristic is of the order of ten or twenty to one.
2. Inverter Stage.

The inverter stage of the Rhase Shift Meter is designed to have gain of exactly unity. Its purpose is to invert the phase of voltage V_{l} after the latter has been adjusted to the magnitude
V_{0} by the action of the automatic volume control described in the preceding section. The circuit comprising this stage is given in Figure 5 and consists of tube T_{11} having an unbypassed cathode and a tapped plate resistors.

In designing such a stage, the following analysis is used:
If e_{1} - input voltage to the stage
e - voltage grid to cathode
e_{0} - output voltage
μ - amplification factor of the tube
R_{c} - cathode bias resistor
$R_{1}+R_{2}$ - total plate load resistance
R_{2} - Resistor across which e_{0} is derived
then

$$
\begin{align*}
& e=e_{1}-i R_{c} \tag{14}\\
& i=\frac{\mu_{e}}{R_{1}+R_{2}+R_{c}} \tag{15}\\
& e_{0}=i R_{2} \tag{16}
\end{align*}
$$

These relations are evident from Figure 14

Figure 14. Equivalent Circuit of the Inverter Stage.

From equations (14), (15), and (16)

$$
\begin{equation*}
\epsilon_{0}\left[R_{1}+R_{2}+(1+\mu) R_{c}\right]=\mu e_{1} R_{2} \tag{17}
\end{equation*}
$$

If it desired to make $\frac{e_{0}}{e_{1}}=1$,
Then

$$
\begin{equation*}
\frac{\mu R_{2}}{R_{1}+R_{2}+(1+\mu) R_{c}}=1 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{c}=\frac{(\mu-1) R_{2}-R_{1}}{1+\mu} \tag{19}
\end{equation*}
$$

If we choose to make $R_{1}=100 \mathrm{~K}$ ohms and $R_{2}=25 \mathrm{~K}$ ohms and for the type of tube used $\mu=36$, then the value of R_{c} becomes, using equation (19)

$$
\begin{equation*}
R_{c}=\frac{(36-1) \times 25,000-100,000}{36+1}=21 \mathrm{~K} \text { ohms } \tag{20}
\end{equation*}
$$

In order to allow some adjustment of the stage gain, the cathode resistor is made up of fixed 15 K resistor and a variable 10 K resistor. This adjustment is effected through the front panel of the instrument by means of a screw driver. This stage is removed from the circuit by means of switch S_{0} (see Figure 5).
3. Mixer Stage。

This stage consists of two triode sections T_{12} and T_{14} (see Figure 5) which have a common plate load resistor. It serves to add algebraically the outputs of the automatic volume
controls of Channel I and II after the input voltages V_{l} and V_{2} have been adjusted to value V_{0}.

The equivalent circuit of the mixer stage is shown in Figure 15.

Figure 15. Equivalent Circuit of the Mixer Stage.

If e_{1} and e_{2} are two input voltages to be added,
R_{L} - common plate resistor,
R_{c} - individual cathode bias resistors,
e_{o} - output voltage across resistor R_{L},
e^{\prime} - grid to cathode voltage of tube T_{12},
$e^{\prime \prime}$ - grid to cathode voltage of tube T_{14},
μ - amplification factor of tubes T_{12} and T_{14}
then

$$
\begin{align*}
& e_{0}=R_{L}\left(i_{1}+i_{2}\right) \tag{21}\\
& e^{\prime}=e_{1}-i_{1} R_{c} ; e^{n}=e_{2}-i_{2} R_{c} \tag{22}\\
& \left(i_{1}+i_{2}\right) R_{L}+i_{1} R_{c}=\mu e^{\prime} \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\left(i_{1}+i_{2}\right) R_{L}+i_{2} R_{c}=\mu e^{\prime \prime} \tag{24}
\end{equation*}
$$

Adding equations (23) and (24) and substituting (22),

$$
\begin{align*}
& 2 R_{L}\left(i_{1}+i_{2}\right)+R_{c}\left(i_{1}+i_{2}\right)=\mu\left(e_{1}-i_{1} R_{c}\right) \\
& +\mu\left(e_{2}-i_{2} R_{c}\right) \tag{25}
\end{align*}
$$

Substituting equation (21) into equation (25) and reducing,

$$
\begin{equation*}
e_{0}=\frac{\mu R_{L}\left(e_{1}+e_{2}\right)}{2 R_{L}+R_{c}(1+\mu)} \tag{26}
\end{equation*}
$$

If we choose $R_{L}=100 K \quad R_{c}=5 K$ and $\mu=36$

$$
\begin{equation*}
e_{0}=\frac{36 \times 100,000\left(e_{1}+e_{2}\right)}{200,000+5,000(1+36)}=9.3\left(e_{1}+e_{2}\right) \tag{27}
\end{equation*}
$$

From equation (27) it is at once evident that the output voltage e_{0} is the sum of the two input voltages e_{1} and e_{2}. The net voltage gain of this stage is 9.3. Actual gain, as measured, is 10.0 。
4. Full Wave Rectifier Detector and Indicating Meter.

Having obtained at the output of the mixer stage either $\mathrm{V}_{\text {SUM }}$ or $\mathrm{V}_{\text {DIFF }}$ vector, the magnitude of which is a function of the phase angle, the next step is to provide a meter indication which reads directly in degrees phase. This is achieved by further amplification of the mixer stage output by means of driver stage T_{15} (see Figure 5) which feeds a full wave rectifier circuit consisting of two resistors R_{29} and R_{29} and two half wave rectifiers T_{17} and T_{18} connected in a bridge circuit. A
d.c. microammeter is connected between the junction of resistors R_{29} and R_{29} and joined cathodes of tubes T_{17} and T_{18}. Diagram of this bridge is shown in Figure 16.

Figure 16. Detector Circuit of the Phase Shift Meter.

To enable coupling of the rectifier circuit to the driver stage by a condenser-resistance network, one corner of the bridge is at ground potential. The meter itself is, therefore, above ground.

If a sinusoidal voltage is applied across resistors R_{29} and R_{29}, current i_{1} flows through meter M during the half cycle in the direction shown when the instantaneous voltage is positive with respect to ground. Current i_{2} flows through the meter M during the half cycle when the voltage across $R_{29} R_{29}$ is negative with respect to ground. In addition to currents i_{1} and i_{2}, current io flows through the meter due to the contact potential
of rectifier tubes T_{17} and T_{18}. Normally the zero of the meter is mechanically depressed so that the pointer is on zero when no a.c. voltage is applied across R_{29} and R_{29}. The meter reads the average value of rectified sinusoidal currents i_{1} and i_{2}.

For the case of sinusoidal input to the bridge $i_{1}=i_{2}$ in magnitude. Then

$$
\begin{equation*}
i_{a v_{0}}=\frac{2}{T} \int_{0}^{\frac{T}{2}} I \sin \frac{2 \pi}{T} t d t \tag{28}
\end{equation*}
$$

where I is the maximum value of current and T is the period of the sine wave input

$$
\begin{equation*}
i_{\text {av }}=\frac{2}{T}\left[-\frac{I T}{2 \pi} \cos \frac{2 \pi}{T} t\right]_{0}^{\frac{T}{2}}=\frac{2 I}{\pi} \tag{29}
\end{equation*}
$$

If $E_{\text {in }}$ is the $r_{0} m_{0} s_{0}$ value of voltage input across resistors R_{29} and R_{29}, then $E_{\text {max }}=\sqrt{2} \quad E_{\text {in }}$

$$
\begin{equation*}
I=\frac{\sqrt{2} E_{i n}}{\mathbb{R}_{29}+2 R_{m}+2 R_{r}} \tag{30}
\end{equation*}
$$

where $R_{M}=$ resistance of the meter

$$
R_{r} \text { - forward resistance of the rectifier. }
$$

In this design $R_{29}>2 R_{M}+2 R_{F}$ and therefore from equations (29) and (30)

$$
\begin{equation*}
i_{a v_{0}}=\frac{2 \sqrt{2} E_{i n}}{\pi R_{29}} \tag{31}
\end{equation*}
$$

Since $R_{29}=2.5 \times 10^{5}$ ohms, theoretical ratio of $\frac{\text { inv }_{\text {av }}}{\mathrm{E}_{\text {in }}}$

$$
=\frac{2 \sqrt{2} 10^{6}}{\pi \times 2.5 \times 10^{5}}
$$

$=3.6$ microamperes/rolt $a_{0} \varepsilon_{0}$
The measured ratio of $\frac{\dot{I}_{\text {aw }}}{\mathrm{E}_{\mathrm{in}}}=3.4$ micromperes/wolt $a_{0} c_{0}$

CHAPTER VI

Calibration of the Phase Shift Meter

The calibration of the Phase Shift Meter can be most readily carried out by using a simple RC network shown in Figure 17. The purpose of the calibration is to prepare a meter scale which reads directly in degrees phase. Since the detector response departs slightly from linearity and moreover includes quiescent diode current, the meter scale (in degrees) departs slightly from a theoretical conversion scale computed on the basis of equations (4) and (7).

Figure 17. RC Circuit Used for Calibrating the Phase Shift Meter.

The meter scale is calibrated at a fixed frequency. The value of the phase angle is varied by shifting the value of condenser C of Figure 17. Since the generator impedance is much less than the value of resistances R_{1} and R_{2} chosen, the phase difference θ between input V_{1} and V_{2} is given by

$$
\begin{equation*}
\theta=\tan ^{-1} \frac{1}{R_{1} \omega C} \tag{32}
\end{equation*}
$$

In carrying out the calibration, each vector voltage V_{0} is adjusted to read 35 microamperes on the scale of a 50 microampere d.c. meter which prior to the measurement was depressed to read zero with both input voltages V_{1} and V_{2} set to zero. The theoretical and actual calibration curves are shown in Figure 18. It may be noted that the maximum departure between the two curves for a given angle θ amounts to 0.5 microamperes. Using the experimentally determined angle to microampere conversion, a meter scale was engraved which has been shown in Figure 9. Since the readings of the meter scale are dependent only on the settings of V_{O}, the calibration is quite stable and theoretically depends only upon the characteristic of the bridge detector driving the meter. Since the value of resistors R_{29} and R_{29} is large, experience has shown that no recalibration of the meter scale was ever necessary. The calculated and measured values of $\theta \mathrm{Vs}$ 。 meter current are given in Appendix B.

CHAPTER VII

Performance of the Phase Shift Meter

In evaluating the performance of the present design of the Phase Shift Meter, it was deemed desirable to present an example of phase shift measurement on a network whose phase characteristic could be readily calculated. The comparison between the calculated and measured phase characteristic could then be made. Consequently, a simple antiresonant network was built up from available circuit components, as shown in Figure 19. To facilitate the measurement, the network was connected to an audio oscillator through a high resistance. This resistance was then considered

Figure 19. Circuit Diagram of a Simple Antiresonant Network.

Figure 20. Phase Shift Characteristic of Antiresonant Network.
as a part of the network. The phase shift of this four-terminal network was determined by connecting Channel I of the Phase Shift Meter across terminals 1 and 2 and Channel II of the Phase Shift Meter across terminals 3 and 4 . Obviously the connections between Channels I and II could have been interchanged without affecting the results. The frequency of the oscillator was varied in discrete steps from $10 \mathrm{c} . \mathrm{p}_{\circ} \mathrm{s}_{\mathrm{o}}$ to $200 \mathrm{cop.s}$. and the phase angle between the input and the output of the network determined according to the operational procedure described in Chapter IV. As was pointed out previously, care was taken to connect terminals 2 and 4 which constitute the comnon bus of the network to each of the lower binding posts of the meter input, marked ground. The phase shift characteristic of the network as a function of driving frequency is shown in Figure 20. It may be noted that for frequencies approaching zero, the phase shift between input and output approaches zero since the capacitive reactance is high and voltage across the effective resistance of the choke is in phase with the current through it. At high frequencies the inductive reactance is high and the voltage across the capacitance lags the current through it by $\frac{\pi}{2}$. Since a high resistance is connected in series with the antiresonant portion of the network, the oscillator voltage is essentially in phase with the current through the capacitive reactance. At resonance, the phase characteristic goes through zero. The data used in plotting this phase shift
characteristic is given in the Appendix C. In order to obviate a possible ambiguity in the choice of the phase angle quadrant, the frequency for which the phase shift was zero was determined and the oscillator setting was shifted first toward the low frequency end and then toward the high frequency end of the spectrum.

In order to compare the measured phase shift characteristic of the antiresonant circuit of Figure 19 to the theoretical phase shift characteristic, the following relations were derived:

The expression for the three complex impedances in parallel may be written as

$$
\begin{equation*}
Z_{34}=\frac{\frac{1}{j \omega C}\left(j \omega L+R_{L}\right) R_{2}}{\frac{1}{j \omega C}\left(j \omega L+R_{L}\right)+\left(j \omega L+R_{L}\right) R_{2}+\frac{1}{j \omega C} R_{2}} \tag{33}
\end{equation*}
$$

The ratio of voltage in el to voltage out e_{2}

$$
\begin{gather*}
\frac{e_{2}}{e_{1}}=\frac{Z 34}{R_{1}+Z 34} \\
\frac{e_{2}}{e_{1}}=\frac{\left(j \omega L+R_{L}\right) R_{2}}{R_{1}\left(j \omega L+R_{L}\right)+j \omega C R_{1} R_{2}\left(j \omega L+R_{L}\right)+R_{1} R_{2}+\left(j \omega L+R_{L}\right) R_{2}} \tag{34}
\end{gather*}
$$

Rationalizing and taking the ratio of imaginaries to reals,
$\theta=\tan ^{-1} \frac{\omega L R_{1} R_{2}-\omega^{3} I^{2} C R_{1} R_{2}-\omega C R_{1} R_{L}{ }^{2} R_{2}}{R_{1} R_{L} R_{2}+w^{2} L^{2} R_{1}+w^{2} L^{2} R_{2}}$
Since $\mathrm{R}_{1}>\mathrm{R}_{2}>\mathrm{R}_{\mathrm{L}}$
$\theta=\tan ^{-1} \frac{R_{2}\left(\omega L-w^{3} L^{2} C-w C R_{L}{ }^{2}\right)}{R_{2} R_{L}+w^{2} L^{2}}$

Figure 2l. Variation of $L_{g} \mathrm{R}_{\mathrm{L}}$ and Q of the Choke with Frequency

The calculation of θ as a function of ω is also given in Appendix C. In calculating the phase characteristic, the variation of the inductance and effective resistance of the choke with frequency was taken into account. Experimentally determined variation of inductance, effective resistance and Q of the choke is shown in Figure 21, and the data is given in Appendix C. The calculated phase shift characteristic of the given network in Figure 20. It may be seen that the agreement is quite good. This example demonstrates the performance of the meter over a substantial frequency spectrum. It may be noted that, in general, phase measurements become more difficult as the frequency approaches zero. At very high frequencies effects of distributed capacities of networks under measurement likewise pose a problem.

The intrinsic design of the phase meter is such that the device should be capable of measuring the difference in phase angles of two sinusoidal voltages over a wide frequency spectrum. This theoretical independence with respect to the frequency range can be realized if the two channels involving automatic volume control, the various amplifying stages and the phase inverter have the identical phase characteristic over the desired frequency band. In other words, the phase shift of either channel need not necessarily be zero over the specified frequency range. In a practical case, however, there is an upper frequency limit beyond
which the instrument does not indicate the correct phase angle. This is due to the presence of distributed capacity in the switches and wiring, particularly in the phase inverter stage which is either inserted or removed from the circuit. In the present design the upper frequency limit of operation is about 2000 c.p.s. This is determined in the following wayः The method consists of feeding the same voltage into Channel I and II simultaneously and observing the deflection of the meter on the "difference" scale. This remains zero so long as the differential phase shift of the two Phase Shift Meter channels remains zero. A finite angle is indicated on the meter when this frequency range is exceeded. Since in its present form of the meter is designed for use in the sub-audio range, the upper frequency limit of 2000 c.p.s. is considered adequate. Obviously the operating frequency range of the instrument can be increased greatly by proper attention to the design of coupling circuits, impedances, wiring and switching. The present meter can handle input voltages of several tens of volts down to about 10 millivolt r.m.s. By using proper input attenuators the signal handling capacity can be greatly increased.

CHAPTER VIII

Summary and Conclusions

Abstract

The measurement of phase angle is considered to be an important adjunct to the determination of the steady state behavior of electrical networks and electrical apparatus. This quantity can be easily determined by the instrument treated in this Thesis. The principle of operation, various design factors and the performance of the Phase Shift Meter are treated at length. The operation of the Phase Shift Meter is based upon the measurement of the magnitude of the resultant difference or sum vector which is derived from two other vectors representing the two sinusoidal input signals having an unknown phase angle difference. The two vectors representing the input signals are each equalized to a predetermined magnitude by the action of a precise automatic volume control. Theoretical and actual performance of this control are discussed at length. The performance of the Phase Shift Meter is illustrated by an actual measurement of phase shift of an antiresonant network and this is compared to a theoretically derived characteristic. The methods of calibration and operation are likewise presented.

As the result of the development and the evaluation of the various design factors and performance of the Phase Shift Meter,

it may be concluded that this instrument can serve very adequately in carrying phase shift determinations on a vaxiety of electrical or electromechanical devices. While in its present design it is capable of measuring phase shift in the subwaudio and lower audio range, its performance; can be relatively easily extended to encompass the higher frequency spectrum. The instrument has proven to be reliable and convenient to use in the laboratory as well as in the field. Through its application as a measuring device, many difficult design problems encountered in electronic and electromechanical instrumentation research and development have been carried to a successful solution.

BIBLIOGRAPHY

Arguimbau，L．B．Vacuum Tube Circuits．New York：John Wiley and Sons， 1948.

Bode，H．W．Network Analysis and Feedback Amplifier Design． New York：D．Van Nostrand Company， 1945.

Brown，G．So and Campbell，D．P．Principles of Servomechanisms． New York：John Wiley and Sons， 1948.

Bush，V．Operational Circuit Analysis．New York：John Wiley and Sons，1929．

Everitt，W．L．Communication Engineering。 New York：McGraw－ Hill Book Company，1932．

Glaser，J．L．＂Accurate Phase Difference by Lissajous Figures＂ Electronics II（March 1952）．

Goldman，S．Transformation Calculus and Electrical Transients． New York：Prentice Hall 1949.

Guillemin，E．A．Communication Networks．Vol．I and II． New York：John Wiley and Sons，1931．

Laws，F．A．Electrical Measurements．New York：McGraw－Hill Book Company， 1917.

Manley，R。G。 Waveform Analysis．New York：John Wiley and Sons， 1945.

McLean，W．Ro and Sivian，L。V．＂Direct Reading Audio Phase Meter．＂Journal of the Acoustical Society of America． 25 （April，1931）．

Nyquist，H．and Brand，S．＂Measurement of Phase Distortion＂ The Bell System Technical Journal IX（July，1930）．

Pender，H．and McIlwain，K．Electrical Engineering Handbook （Electrical Communication and Electronics）Fourth Edition． New York：John Wiley and Sons， 1950.

Terman，F。E。 and Pettit，J．M．Electronic Measurements． Second Edition．New York：McGraw－Hill，1952．

APPENDIX A

Suppressor Characteristic

This characteristic was obtained by opening the negative feedback between stages T_{1} and T_{3}, applying variable voltage to the grid of T_{3} at constant frequency ($100 \mathrm{cop} . \mathrm{s}_{\mathrm{o}}$) and measuring voltages e_{0} and E_{S} (see Figure 10).

e_{0} Volts $\alpha_{0} c_{0}$	E_{s} 0.385
0.320	-14.5
0.290	-8.8
0.245	-6.0
0.155	-3.0
	-0.6

APPENDIX A
(Continued)

Gain Vs. Suppressor Bias

This characteristic was obtained by applying a fixed frem quency a_{0} c. signal (100 coposo) to the control grid of either T_{1} or \mathbb{T}_{2} (6J7 pentode) . The $r_{0} m_{0} s_{0}$ voltage input $e_{\text {in }}=0.015$ volts. Variable negative bias E_{S} was applied to the suppressor grid and voltage output e_{0} across load resistor was measured

Gain $=\frac{e_{0}}{e_{i n}}$		
E_{S}	e_{0}	
Volts	$\underline{\text { Volts }}$	$\underline{\text { Gain }}$
0	1.00	66.6
-1.5	0.91	60.6
-3.0	0.82	54.7
-4.5	0.70	46.7
-6.0	0.56	37.4
-7.5	0.39	26.0
-9.0	0.22	14.6
-10.5	0.08	5.3
-12.0	0.023	1.5
-13.5	0	0

APPENDIX A
(Continued)

Calculation of the A_{0} V.C. Characteristic

$$
e_{0}=\frac{1775 e_{1}}{1+4750 e_{1}}
$$

eq Volts	db below $100 \mathrm{~m}_{\mathrm{o}} \mathrm{~V}_{0}$	Volts
0.100	0	0.374
0.050	6	0.374
0.0316	20	0.374
0.020	14	0.371
0.010	20	0.366
0.005	26	0.359
0.00316	30	0.350
0.00158	36	0.330
0.00100	40	0.309
0.0005	46	0.263
0.000316	50	0.224
0.000158	56	0.160
0.000100	60	0.120
0.0000316	70	0.049

APPENDIX A
(Continued)

Measurement of the A.V.C. Characteristic

Input voltage to grid either T_{1} or $T_{2}=0.100$ volt. Frequency $=100$ copos. $A \mathrm{db}$ "T" pad attenuator inserted at the input. Voltage ϵ_{0} (see Figure 10) is measured for various values of the input voltage to the grid.

$\begin{aligned} & \mathrm{db} \text { below } \\ & 100 \mathrm{~m}_{\mathrm{o}} \mathrm{v}_{0} \\ & \hline \end{aligned}$	e_{0} Volts	$\begin{aligned} & \mathrm{db} \text { belowf } \\ & 100 \mathrm{~m}_{\mathrm{ov}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { eot } \\ & \text { Volts } \end{aligned}$
0	0.380	40	0.330
6	0.380	46	0.303
10	0.380	50	0.275
14	0.378	56	0.190
20	0.370	60	0.128
26	0.360	66	0.069
30	0.350	70	0.045
36	0.340		

APPENDIX B

Calibration of the Phase Shift Meter
$R_{1}=104$ ohms; $\quad R_{2}=2 \times 10^{6} \mathrm{ohms} \quad f=45.0$ c.p.s. Meter depressed mechanically to zero for $V_{1}=V_{2}=0$

APPENDIX C

Measured Phase Shift Characteristic of an Antiresonant Network

Frequency $c_{0} p_{0} s_{0}$	Phase Shift Angle \qquad
10	+79.0 (1ead)
20	+76.0
25	$+73.5$
30	+71.0
35	+67.5
40	+64.0
50	+53.0
60	$+34.0$
65	+20.5
72.5	0
80	-19.0 (1ag)
90	-38.5
100	-50.5
120	-63.0
150	-71.0
180	-76.0
200	-78.0

APPENDIX C

(Continued)
Calculations of the Phase Shift Characteristic of an Antiresonant Network

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{R_{2}\left(W L-W^{3} L^{2} C-W C R_{L}^{2}\right)}{R_{L} R_{2}+W^{2} L^{2}} \\
& R_{2}=47,600 \text { ohms } \quad C=0.0897 \mathrm{mfd} .
\end{aligned}
$$

$\frac{f}{10}$	$\frac{\omega}{62.8}$	$\frac{\omega L}{3,360}$	$\frac{\omega^{2} L^{2}}{1.13 \times 10^{7}}$	$\frac{\omega C}{56.3 \times 107}$	$\frac{\omega^{3} L^{2} C}{63.5}$	$\frac{\tan }{4.30+77.0}$ (Lead)	
20	126	6,760	4.58	113	516	$3.96+75.8$	
30	188	10,100	10.2	168	1,710	$2.96+71.4$	
40	252	13,400	18.0	226	4,070	$2.07+64.2$	
50	314	16,600	27.6	282	7,800	$1.34+53.2$	
60	377	19,800	39.0	338	13,200	$0.735+36.3$	
73	457	23,900	57.1	409	23,600	0	0
80	503	26,200	68.5	452	$31,000-0.315-17.5($ Lag)		
100	628	32,500	106	563	$59,600-1.18-49.6$		
120	754	39,000	152	676	$102,500-1.94-62.7$		
150	940	48,200	233	845	$197,000-2.99-71.5$		
180	1130	58,000	366	1010	$370,000-4.00-76.0$		
200	1256	64,500	415	1130	$470,000-4.60-77.8$		

> APPENDIX C
> (Continued)

Measured Inductance and Effective Resistance of a Choke as a Function of Frequency

Measurements made using Owen Bridge

$$
\begin{array}{llc}
L=A S C_{u} & R_{L}=\frac{C_{u}}{C_{2}} S-B & Q=\frac{M L}{R_{L}} \\
S=10^{4} \text { ohms; } & C u=I \mathrm{mfd} . & C_{a}=9 \mathrm{mfd} .
\end{array}
$$

$\begin{gathered} f \\ -\mathrm{cps} \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ \text { ohms } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { ohms } \end{gathered}$	$\begin{gathered} \text { L } \\ \text { henries } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}} \\ \text { ohms } \\ \hline \end{gathered}$	Q
10	5350	580	53.5	530	6.35
20	5360	490	53.6	620	10.8
30	5340	420	53.4	690	14.5
40	5306	370	53.1	740	17.8
50	5276	320	52.8	790	21.0
60	5250	290	52.5	820	24.1
70	5230	240	52.3	860	26.4
80	5211	220	52.1	890	29.5
100	5186	170	51.9	940	34.6
120	5167	230	51.7	980	39.8
150	5145	60	51.5	1030	47.0
180	5137	30	51.4	1070	54.3
200	5130	0	51.3	1110	58.0

VITA

Joseph D. Eisler
candidate for the degree of
Master of Science

Thesis: A PHASE SHIFT METER, ITS DESIGN AND PERFORMANCE.
Major: Electrical Engineering.
Biographical and Other Items:
Born: September 19, 1909 at Moscow, Russia. U. S. Citizenship 1938。

Undergraduate Study: Massachusetts Institute of Technology, 1932. B.S. in Electrical Engineering.

Graduate Study: Massachusetts Institute of Technology, 1934. Oklahoma Agricultural and Mechanical College, 1950-54.
Experience: Research on Thompson Effect in Metals, M.I.T. 1932-34; Development of Seismographs, M.I.T. 1934-35. Research and Development Geophysical and Electronic Instrumentation, Stanolind Oil and Gas Company 1936-42; Research in Aircraft to Aircraft Fire Control, the Franklin Institute, Philadelphia, Penn., 1942-44; Applied and Fundamental Geophysical Research, Stanolind Oil and Gas Company, Tulsa, Oklahoma, 1944-. Now Research Section Supervisor, Research Department, Stanolind Oil and Gas Company, Tulsa, Oklahoma.

Senior Member: The Institute of Radio Engineers.
Member: Society of Exploration Geophysicists, Seismological
Society of America, and American Geophysical Union.
Associate Member: The Society of Sigma Xi.
Holder of a number of patents in the fields of Geophysics and Instrumentation.

Author and Co-author of published articles as follows:

1. "Precise Speed Control for D.C. Machines" (with R。H. Frazier and W. P. Frantz), Electrical Engineering 54 No. 3, March, 1935.

VITA

(Continued)
2. MMultichannel Pen Recorder for Electrical Logging Operations" (with D. Silverman) Geophysics XII No. 3, July, 1947.
3. "Vehicle Borne Instrument for Continuously Indicating Road Elevations" (with D. Silverman and J. F. Evans), Geophysics XII No. 3, July, 1947.
4. MAstudy of the Influence of Background Noise on Reflection Picking" (with K. Dyk) Geophysics XVI No. 3, July, 1951.
5. "An Automatically Recording Magnetic Balance" (with G. R. Newton and W. A. Adcock) The Review of Scientific Instruments 23 No. 1, January, 1952.
6. "Studies of a Surface Seismic Distrubance" Geophysics XVII No. 3, July, 1952.

THESIS TITLE: A Phase Shift Meter, Its Design and Performance.

AUTHOR: Joseph D. Eisler.

THESIS ADVISER: Professor Herbert L. Jones.

The content and form have been checked and approved by the author and thesis adviser. Changes or corrections in the thesis are not made by the Graduate School office or by any committee. The copies are sent to the bindery just as they are approved by the author and faculty adviser.

TYPIST: Margaret H. Todd

[^0]: l_{F}. A. Laws, Electrical Measurements, p. 530

[^1]: ${ }^{2} \mathrm{~V}$. Bush, Operational Circuit Analysis, p. 181
 3^{3}. Bode, Network Analysis and Feedback Amplifier Design, p. 312 .
 ${ }^{4}$ Ibid. p. 320 .

[^2]: 5J. L. Glaser, "Accurate Phase Difference by Lissajous Figures," Electronics, II (March, 1952), p. 206.
 ${ }^{6}$ R. G. Manley, Waveform Analysis, p. 243.

[^3]: 7W. R. McLean and L. V. Sivian, "Direct Reading Audio Phase Meter," Journal of Acoustical Society of America, 25 (April, 1931), p. 419.

