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OSCILLATION PHENOMENA FOR LINEAR

DIFFERENTIAL SYSTEMS IN A B*-ALGEBRA

1. Introduction. In recent years many results have been established

concerning properties of solutions of the self-adjoint: linear matrix

differential system

Ul

A(E)U + B(t)V,
(1.1)

V' = C(t)U - A*(t)v,

and the associated Riccati differential equation
(1.2) W'+ WA(E) + A®(£)W + WB(E)W - C(t) = 0,

where A(t), B(t), and C(t) are matrix valued functions. Many results
concerning disconjugacy and oscillation phenomena, and Sturmian-type
comparison theorems, are presented in books by Hartman [2] and Reid [11].
More recently, Hille [5] has considered nonoscillation properties for éhe
self-adjoint linear differential system where the functions A(t), B(t),
c(t), U(t), and V(t) assume their values in a B*—algebra.

The principal objective of this paper is to extend results for the
matrix differential systems (1.1) and (1.2) to corresponding differential
equations wherein the coefficient functions and solutions assume their
values in a B*—algebra. In Sections 2 and 3 we examine elementary proper-
ties of B*-algebras and solutions of the linear differential system and

the Riccati differential equation in a B*—algebra. In Section 4 several
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preliminary results concerning nonoscillation of the linear differential
system on a compact interval are presented, and the relationship of non-
oscillation properties to the existence of solutions of the two-point
boundary value problem is discussed. In Section 5 we consider disconjugacy
properties of solutions of the linear system and their relation to a
particular hermitian form on the B*-algebra, which is a generalization of
the Dirichlet functional frequently employed in the study of matrix dif-
ferential systems. The hermitian form is also employed in Section 6 to
establish necessary and sufficient conditions for the linear differential
system to be nonoscillatory on a compact interval. Also in this section
several Sturmian—-type comparison theorems are proved. In Section 7 we
consider cases wherein solutions of the nonlinear Riccati differential
equation exist on an infinite interval, and establish bounds on the growth
of solutions, Necessary and sufficient conditions for the linear system
to be nonoscillatory for large t are presented in Section 8. Finally, in
Section 9 we consider sufficient conditions for the linear differential

system to be oscillétory for large t.

2. Properties of a B*-algebra. In this section we define a

B*—algebra, and consider several elementary properties which are required
in the proofs within this paper.

A Banach space is a normed linear vector space over a scalar field,'

which is complete in the metric determined by its norm. A Banach algebra

is a Banach space with an associative multiplication defined, and such.
that the inequality [xy| < |x| |y] holds for all elements x,y in the
space. A Banach algebra is said to be unital if there exists an element

e such that xe = ex = x for each element x in the algebra, and He" = 1.
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Furthermore, in a unital Banach algebra, an element x is said to be non-

singular, or regular, if there exists an clement x-'1 in the algebra such

that xx_l = x—lx = e; if an element fails to be nonsingular, it is said
to be singular. If B is a unital Banach algebra over the complex scalar

field T and x is an element of B, the spectrum of x is defined to be

o(x) ={rerT | e - x is singular}.

A complex unital Banach algebra B is said to be a B*-algebra if it
has an involutory operation ( )* possessing the following properties:

(1) For each x € B there exists a unique x* e B, and (x*)* = X,

(ii) <+ y)* = x* + y*.

(iii) (ax)* = Ex*, where @ is the complex conjugate of an element

o in the complex scalar field.

(v) )* = y%*.

@ [l = =]

. . . o *
An element x € B is said to be symmetric, or hermitian, if x = x .

Furthermore, we require that the following additional properties hold: -

(vi) Each symmetric element has a real spectrum.

(vii) The collection of symmetric elements with non-negative real '

spectra forms a positive cone, i.e., the set is closed under

addition, multiplication by positive scalars, and passage to

the limit.

(viii) Each element of the form x*x has a non-negative real spectrum.

For convenience, the notation x > 0, [x > 0], will be employed
whenever x is symmetric and has a positive, [non-negative], spectrum; in

this case, x is said to be a positive, [non-negative], element. It is
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élear that x is a nonsingular element whenever x > 0. Furthermore, the
notation x > y, [x > y], will be used whenever x and y are symmetric and
x-y >0, [x~-y >0]. It is easily verified that the relation x > y,

[x > y], determines a partial ordering on a B*-algebra.

The definition given above for a B*—algebra is that employed by
Hille [5; p. 110]. One example of a B*—algebra is the algebra of n by n
matrices with complex entries. For this B*—algebra the involution opera-
tion is defined so that A* denotes the conjugate transpose of a matrix A.
Another example of a B*—algebra is the following, which is encountered
frequently in functional analysis. If % is a complex Hilbert space,
then the algebra of all bounded linear transformations on K is a B*—algebra.
In this case, if A is a bounded linear operator, then A* represents the
adjoint transformation. In fact, Richart [12; p. 244] has shown that
every B*—algebra is isometrically *—isomorphic to an algebra of bounded
linear transformations over a complex Hilbert space.

The following theorem concerns the existence of nonsingular elements

in a B*—algebra B and the continuity of the inverse operation.

THEOREM 2.1. If x, € B is nonsingular, and x € B is such that

1l
Ix - x Il < 11,

then x is singular. Furthermore, in this case

-1 -1 - -1
e N e A CEE N e o NN P

so that the inverse operation is continuous.

The first statement in the theorem is proved in Hille [5; p. 107]
and implies that the set of nonsingular elements in B is an open set.

The method of proof is similar to a proof given by Taylor [14; p. 164]
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to show the existence of inverses of transformations on a Banach space.
The second statement in the theorem may be proved by the method given by
Taylor.

The following two theorems concerning the spectrum of an element are
presented in Hille [5]; Theorem 2.2 is evident from the discussion on pages
108~112, and Theorem 2.3 is found on page 486.

THEOREM 2.2. If x is a symmetric element of B, then

"x" = SUPAeG(x)p" .

THEOREM 2.3. The unit element e is positive. The inverse of a

positive element x is positive, and

o(x_l) = {A—l A eo(x)}.
Furthermore, if o(x) c [¢,8], a > 0, then

-1 -
ge £ x<Be, and B e X < a e

Moreover, any integral power of a positive element x is positive. 1In

particular, if o(x) < [a,8], o« > 0, then

Theorems 2.2 may be used to prove the following important result.

THEOREM 2.4. If x is a symmetric element of @, then

= Ixlle < = < [xe.

Furthermore, if x;, x, are symmetric elements of B such that 0 < X) S X,

then [x, || < ||, |

If x is symmetric, then l?\l < "x" for each A € 0(x). Therefore we

IA

must have o(x) c [-||x]|,llx]|]], and hence -”x"e <x s |xfle. IfO0¢< X; £ X

2’

then from the first part of the theorem we have X, £ "x2 lle, and hence
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0 <x; < ||x2]e. This implies that o(x;) [0,||x2 Il and consequently, by

Theorem 2.2, we have ||x1|| < | x2| .
The next theorem demonstrates that certain elements of a B*—algebra
have square roots.

THEOREM 2.5. Let b € B be such that b > 0, [b > 0]. Then there

exists an element m € B such that m > 0, [m > 0], and b = m2.

Hille [5; p. 486] proves the above theorem for the case where b > 0,
by expressing m in terms of an integral in the complex plane. For the
case where b > 0, Rickart [12; p. 183, and p. 231] employs a power series
expansion used in complex variable theory to obtain a non-negative square
root of b. The power series expansion is also employed Ly Reid [9] to
obtain square roots of non-negative hermitian matrices; his method of
proof is easily adapted to prove the above theorem.

The two following theorems are actually corollaries to Theorem 2.5.

THEOREM 2.6. Let b > O be an element of § If a is any element of
8, then a*ba > 0. .

Let m > 0 be the element in B such that m2 = b, Since m is
symmetric, we have a*ba = a*mma = (ﬁa)*(ma). Therefore by property (viii)
of a B -algebra, it follows that a*ba 2 O.

THEOREM 2.7. Let b 2 O be an element of ¥. If a is an element of
b such that a*ba = 0, then ba = 0.

If m is the non-negative square root of b guaranteed by Theorem 2.5,
then a*ba = (ma)*(ma) = 0, By propefty (v), we have |mal] = 0; conse-
quently, ma = 0 and ba = m(ma) = 0.

Like many of the theorems of this sectiorn, the following result is a

generalization of a theorem on transformations in Hilbert spaces.
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THEOREM 2.8. 1If a and b are elements of B such that 0 < a < b,

then 0 < b1 < a L,

If m > 0 is the positive square root of b, then

e - m_lam.-l = mfl(b-a)mfl > 0.

Therefore, 0 < m-']'am_l < e, and by Theorem 2.3 it follows that

e < (m_]'am_l)-1 = ma_lm. Furthermore, we have
a--1 - b"1 = a-1 - (mz)-'1 = m—l(ma—lm - e)m_1 > 0,

so that 0 < b-l < -1

A
[

We will frequently require the use of integrals throughout this
paper. The ordinary Riemann—-type integral, such as discussed in Hille-
Phillips [6; pp. 62-71] is sufficient for the methods in this paper. If
T = {to = a,tl,"-,tn = B] is a partition of the compact interval [o,B],

and the values {Ti}n are chosen so that t_ <71

i=1 1 i

we define
S(bsmea,8) = [T, (t; - £, db(ry),

where b(t) is a B-valued function on [a,8]. Let ||| denote the norm of
the partition, defined as || = max{ti - ti—lli =1,2,*++,n}. The
function b(t) is said to be integrable on [a,B] if S(bjm:c,B) tends to a
limit in B as the norm of the partition approaches zero. The limit is
denoted by Jz b(t)dt, and is called the integral of b(t) on [a,B]. It
is easily shown that b(t) is integrable on {[o,R] whenever b(t) is con-
tinuous or piecewise continuous.

If b(t) is a continuous B-valued function, and w = {to,tl,°--,tn}

is any partition of [a,B], then

< ti for i = 1,2,+++,n,
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As the norm of w approaches zero, the quantity of the left member of this
relation approaches || Iz b(t)dt|, whereas the right term tends to the
Riemann integral of the continuous real-valued function ”b(t) “ Conse-
quently, we have the following result.

THEOREM 2.9. If b(t) is a continuous B-valued function on [a,B8],

a < B, then

B B
IIJ b(t)dt||5j bce)llat.
o

a

THEOREM 2.10. Let b(t) be a continuous B-valued function on the

interval [a,B], o < B. If b(t) >0 on [a,B] then

JB b(t)dt > 0,
o

Furthermore, if b(t) > 0 on [a,B8], then

B
J b(t)dt > 0.

a

If b(t) > 0 on [a,B], then for each partition m we have

Limg (8- £ () 2 0,

by property (vii) of a B*—algebra. Therefore, passing to the limit as
||1r|| approaches 0, we f£ind that Jz b(t)dt > 0. If b(t) > 0 on [a,B], then
b-l(t) < ||b-1(t)||e. Furthermore, since b(t) is continuous on [a,B], by
Theorem 2.1 the inverse operation is continuous so that ||b_1(t) | is a
continuous real-valued function on [a,B]. If A is a positive real number

1

such that [[b1(t)] < A on [,B], then b 1(t) < Ae and 0 < A" e < b(t).

Consequently, we find that
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f -1
J b(t)dt > (B-a)A "e > 0,

a

and the theorem is proved.
We will frequently use the concept of a derivative. If a(t) is a

B -valued function on an open set {5 and t0 € &, the function a(t) is

said to be differentiable at to provided

a(ty+h) - a(ty)

lim h

h=+o

exists; as usual, the limit is denoted by a'(to). In particular, if b(t)
is a continuous function on [a,B] and a(t) is defined as equal to

t
J b(s)ds on [a,B], then for each t € (a,B) the derivative a'(t) exists
a

and is given by b(t); the above statement is, of course, a form of the
fundamental theorem of integral calculus.

THEOREM 2.11. Let b(t) > 0 be a continuous, B-valued function on

B
the interval [o,B8]. EJ b(s)ds = 0, then b(t) = 0 on [a,B].
a a—

t .
If a(t) is defined to be the integral f b(s)ds, then clearly
o

a(t) = 0 on [a,B], and consequently a'(t) = 0 on (o,B). Therefore,
b(t) = a'(t) = 0 on (a,8), and by the continuity of b(t) we have b(t) = 0
on [a,B].

If B is a Banach algebra, it will have a nonempty subset of
elements which are called completely continuous or compact. An element
¢ € 8B is said to be compact if for each bounded sequence {xn} in B the
sequence {cx,} contains a convergent subsequence. If T, is defined to
be the bounded linear operator on the Banach algebra B such that
Tc(x) = cx for each x € B, then clearly c is a compact element of B if

and only if the bounded linear operator Tc is a compact operator.
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Therefore results pertaining to compact operators on a Banach space may
be translated to obtain results for compact elements of a Banach algebra.
Results found in Taylor [14; pp. 274-281] and Narici—Baéhman [8; pp. 286~
295] enable us to establish the following theorem.

THEOREM 2.12. Let B be a Banach algebra. Then the following

properties are valid:

(a) If =1 and ¢, are compact elements of B and o,B are scalars,

+ i .
then acy 8c2 is compact

(b) If c is compact and a & B, then ac and ca are compact.

(¢) If {cn} is a sequence of compact elements converging to an
element ¢ € B, then ¢ is compact.

(d) If b is nonmsingular, and c is compact, then the element b + c

is such that e’ther b + ¢ is nonsingular, or there exists an

x # 0 such that (b+c)x = O.

As a consequence of Theorem 2,12, we are able to prove the follow-
ing result which will be used in Section 5.

COROLLARY. Let a(t) and c(t) be continuous B-valued functions on

the interval [o,B]. If c(t) is compact for each t € [a,B], then the

integrals

B 8
J a(t)c(t)dt, and I c(t)a(t)dt
a a

are compact elements of B.

3. Basic properties of solutions of the linear differential system

and the Riccati equation, Let I be a real interval of the form (ao,w),

where @ 2=, and let a(t), b(t), and c(t) be continuous B-valued
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functions on I such that b(t) and c(t) are symmetric for each t € I.
This section will be concerned with properties of solutions of the self-

adjoint differential system

L lu,vl(e) = =v' +e(e)u - a¥(t)v

li
o
-

(3.1)

L2[u,v](t) u' - a(t)u - b(t)v

Il
o

for t € I. We shall also consider properties of solutions of the associ-

ated Riccati differential equation
(3.2) K[w](t) = w' + wa(t) + a*(t)w + wb(t)w - c(t) = 0,

on subintervals of I.

A pair of B-valued functions (u(t),v(t)) is said to be a solution
of system (3.1) if both u(t) and v(t) are continuously differentiable on
the interval I, and satisfy the differential equations (3.1) for each
value t € I. Similarly, a ®-valued function w(t) is said to be a
solution of the Riccati equation (3.2) on a subinterval Io of T if w(t)
is continuously differentiable on Io and equation (3.2) is satisfied for
each t E'Io'

As a special case of system (3.1), we also consider the linear

second-order differential equation
(3.3) [x(t)u' + q(t)ul’ - [¢*(t)u' + p(t)ul =0, tEL.

It is assumed that r(t), q(t), and p(t) are continuous B-valued functions
on I, r(t) and p(t) are symmetric, and r(t) > 0 on I. A continuously
differentiable function u(t) is said to be a solution of (3.3) if
r(t)u'(t) + q(t)u(t) is also coﬁtinuously differentiable on I, and equa-

tion (3.3) is satisfied for each t € I. If u(t) is a solution of (3.3),
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and v(t) is defined as r(t)u'(t) + q(t)u(t) on I, then it may be easily
verified that (u,v) is a solution of system (3.1) under the identifica-
tion a(t) = -r—l(t)q(t), b(t) = r_l(t), and c(t) = p(t) -~ q*(t)r-l(t)q(t)-
Since r(t) and p(t) are symmetric, the corresponding functions b(t) and
p(t) are also symmetric as required in system (3.1); in addition, we have
b(t) = r-l(t) >0 on I. Finally, a particﬁlar condition is said to hold
for equation (3.3) if and only if the condition holds for the system
written in the form of system (3.1); therefore, all the results of this
paper given for system (3.1) also apply to any equation of the form (3.3).

The following theorem shows that solutions to the initial value
problem exist, and are unique for system (3.1).

THEOREM 3.1. If u,v € 8 and 1 € I, then there exists a unique

solution (u(t),v(t)) of system (3.1) on I such that u(r) = u and v(t) = Ve
It may be verified readily that (u(t),v(t)) is a solution of (3.1)
determined by the initial values u(t) = u s v(t) = Vs if and only if the

integral equations

rt
u(t) = u + J [a(s)u(s) + b(s)v(s)lds,
T
(3.4)
[t %
v(t) = v + [e(s)u(s) - a" (s)v(s)]lds,
‘T

are satisfied for each t € I. Moreover, to show that solutions of (3.4).
exist and are unique on I, it suffices to prove the existence and unique-
ness of solutions on each compact subinterval [a,B] of I which contains
T. The classical method of successive approximations may be employed ﬁo
show the existence of a solution (u(t), v(t)) of (3.4) on an interval

fa,B]. The uniqueness of solutions of (3.4) on an interval [o,B] may he



13

demonstrated easily by the use of the well-known Gronwall inequality; see,
for example, Reid [11; p. 13]. It is also to be noted that Theorem 3.1 is
an immediate consequence of a result given by Bourbaki [1; p. 27] for
linear differential equations on the Banach space § > @B where || (x,y)]
is defined as |x| + |y|l for elements x,y € 8.

In the following theorem, we show that solutions of the initial value
problem are continuous with respect to the function c(t).

THEOREM 3.2. Let u ,v, € B and 1 € [a,8]. Let (u(t),v(t)) be the

unique solution of system (3.1) satisfying u(t) = Uy v(t) = Ve If e is

any positive real number, then there exists a positive number § such that

the solution (ﬁ(t) ,T(t)) of the system

a' = a(t)d + b(v)T,
(3.5) ' = &)t - a* (1), t € [o,8],
() =u, () =v,

) o
satisfies ||ﬁ(t) - u(t)] < € on [0,B] whenever leCe) = c(v)] < 6 on [a,R],
With the aid of Gronwall's inequality, it can be shown that for

t € [o,B] we have

lace) - u®ll + 19 - v(e)] < max {126 - el llus)] Yexpl{ (B-a)k}

s €[a,8]
where k is a real number such that
la@ + el + H23(s) - c(s)] < k, and
la@)| + o) < &
for s € [0,B]. The proof of Theorem 3.2 is now immediate from the above
inequality. Moreover, it is to be noted that solutions of system (3.1)
on an interval [a,B] are continﬁous with respect to the initial data T,

u s and v, and the functions a(t), b(t), and c(t); again, the result is
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established by the use of Gronwall's inequality.

If (ul(t),vl(t)) and (uz(t),vz(t)) are solutions of system (3.1), it
is easily verified that (uI(t)vz(t) - v;(t)uz(t))' = 0 on I. Therefore,
we have the following result,

THEOREM 3.3. If (u,(t),v,(t)) and (u,(t),v,(t)) are solutions of

system (3.1) on I, then uI(t)vz(t) - vi(t)uz(t) = constant on I.

Two solutions (ul,vl) and (uz,vz) of system (3.1) are said to be

mutually conjoined, or simply conjoined, if ui(t)vz(t) - v;(t)uz(t) =0
on I. Furthermore, a solution (u,v) of system (3.1) is said to be self-
conjoined whenever u*(t)v(t) = v*(t)u(t) on I.

The following theorem establishes thé relationship of solutions of
the linear differential system (3.1) with solutions of the Riccati dif-
ferential system (3.2). A similar theorem for matrix differential equa-
tions may be found in Reid f[1l; p. 101}.

THEOREM 3.4. Suppose (u(t),v(t)) is a solution of system (3.1) on I

such that u(t) is nonsingular on a subinterval Io of I. Then w(t) =

v(t)u-l(t) is a solution of the Riccati equation (3.2) on I. Conversely,

if w(t) is a solution of (3.2) on a subinterval I, of I, then there exists

a solution (u(t),v(t)) of system (3.1) on I such that u(t) is nonsingular

on I and w(t) = v(t)u-l(t). In each case,

it

u (O w(e) - w*(E)Tu(t) = u*(E)v(t) - v¥(E)u(t), for t €T,

so that w(t) is a symmetric solution if and only if (u,v) is self-conjoined.

If (u,v) is a solution of (3.1) on I, and u(t) is nonsingular on Io’
then u—l(t) is continuously differentiable on I0 and [u-l(t)]' =
-u_l(t)u'(t)uhl(t). It can be verified directly that w(t) = v(t)u-l(t)

satisfies equation (3.2) on I,.
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Suppose w(t) is a solution of (3.2) on I, Lett€el, and let u(t)
be the unique solution of the initial value problem u'(t) = h(t)u(t),
t e Io’ and u(t) = e, where h(t) = a(t) + b(t)w(t). The function u(t) is

nonsingular on Io’ with its inverse determined by the solution of the

system [u-l(L)]' = —u‘l(t)h(t), u-l(r) = e. One now defines v(t) = w(t)u(t)
on Io; substitution of (u,v) into the differential system (3.1) shows that
(u(t),v(t)) is indeed a solution on Io with u(t) nonsingular. The domain
of definition of the functions u(t) and v(t) can be extended to I in a
manner such that (u(t),v(t)) is a solution of system (3.1) on I. The
last statement of the theorem follows from the equation w(t) = v(t)u-l(t).
The previous theorem can be used to prove the local existence and
uniqueness of solutions to the Riccati differential equation.

THEOREM 3.5. Let v, € ¥ and T € I. Then there exists a positive

real number § and a B -valued function w(t) defined on (t-8,7+38) such

that w(t) is the unique solution of the Riccati equation (3.2) on the

interval (1-8,T +68) satisfying w(r) = LA

Let (u(t),v(t)) be the solution of system (3.1) on I such that
u(t) = e, v(t) = LA Since u(t) is nonsingular, there exists a § > 0 such
that u(t) is nonsingular on (t-8,t+ 8). By Theorem 3.4, we have that
w(t) = v(t)u_l(t) is a solution of that Riccati equation on (t-§,T+3§)
which satisfies w(t) = W To show uniqueness, suppose that w(t) is a
solution of the Riccati equation on a subinterval Io of (t-§,t+ §) such
that Q(r) =V . By Theorem 3.4, there exists a solution @,%) of system
(3.1) such that Q(t) = G(t)ﬁ-l(t). Furthermore, we have F(A(r) = LA
so that V(1) = WOG(T) = v(t)a(t). However, by the uniqueness of solutions

of system (3.1) it follows that ﬁ(t) = u(t)d(r) and Q(t) = v(t)G(T) on
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the interval Io. Therefore, we find that a(t) = G(t)ﬁ_l(t) = v(t)u-l(t) =

w(t) on Io’ and hence solutions of the Riccati equation are locally unique.
The following lemma is used to establish the nonsingularity of u(t)

at certain points in I and will be employed in Theorem 3.6.

LEMMA 3.1. Let u(t) be a continuous B -valued function on the finite

interval [o,B] such that u(t) is nomsingular on [@,B). Then u(t) is non-

singular at t = 8 iﬁ_ggg_gglz_i£|hfiﬂjn is bounded on [a,B).

If u(B) is nonsingular, then u—l(t) and Hu-l(t)” are continuous
functions on the compact interval [oa,B], and therefore ”u_l(t)" is bounded
on [a,B). Conversely, suppose that ”u_l(t)” is bounded by a positive
real number « on [a,B). By the continuity of u(t), there exists a

T € [a,B) such that ”u(r) - u(B)" < K-l, and consequeritly
la() = w@® | < 1/ ).

By Theorem 2.1 we conclude that u(B) is nonsingular,‘and the lemma is
proved,

The following result is established readily, and will be employed in
Section 6.

LEMMA 3.2. Let u(t) be a continuous function on [a,B] such that

u(t) is nonsingular on [a,B). If u(B) is singular, then for each e > 0

there exists an x € B with ||x| = 1 and such that |ucg)x| < €.

Since ”u_l(t)” is unbounded on [o,B), and u{t) is continuous on
[a,B], there exists a T € [a,B) such that ”u_l(r)” > 2/e and
lu¢t) - u(® ] < e/2. If x is defined as u-l(T)/”u—l(T)", then clearly

|xl| = 1 and

luxll = Juu @t @) = @] < o2,
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Furthermore, we have

lu(m)x = u@)x|| < Jux) - u@®)| x| < /2,

and hence it follows from the triangle inequality that [u(B)x|| < e.

The following result concerns the extendability of solutions of the

Riccati equation.

THEOREM 3.6. Let w(t) be a solution of the Riccati equation (3.2)

on a finite interval [a,B). lﬁ_”w(t)” is bounded on [o,B), then there

exists a positive real number & such that w(t) can be extended to the

interval [a,B + §).
Let k be a positive real number such that
lw(t)a(t) + a*(t)w(t) + w(t)b(t)w(t) - c(t)] < « on the interval [a,B).
Since w(t) is a solution of the Riccati equation (3.2), it follows that
s
w(t) - w(s) = J (wa + a*w + wbw - c)dr,
t

and consequently [[w(t) - w(s)|| < |t -s|k for s and t values on [a,B).

N

Therefore the limit of w(t) as t approaches B exists, and will be denoted
by W Theorem 3.5 guarantees that there is a § > 0, and a solution w(t)
of the Riccati equation on (B-6,8+ §), satisfying #(B) = W Defining
w(t) to be W(t) on the interval [B,8+ ), we find that w(t) is a solution
on the interval [c¢,B+§).

The final theorem of this section is similar to a result of Hayden
and Howard [3], where the elements are endomorphisms on a Banach space.

THEOREM 3.7. Let (u(t),v(t)) be a solution of system (3.1) on I

such that u(t) is nonsingular on a finite subinterval [a,B) of I. Then

"u-l(t)llig_bounded on [a,B) if and only if_"v(t)u-l(t)" is bounded on
[@,B).
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1f ”u-l(t) | is bounded on [e,B), then clearly "v(t)u-l(t)” is

bounded as a result of the inequality ||v(t:)u—l(t)|| < v ]Iu-l(t)" .
Conversely, if Hv(t)u-l(t)" is bounded on [a,B), the function w(t) defined
by w(t) = v(t)u_l(t) is a solution of the Riccati equation‘ (3.2) on [a,B),
and ||w(t)|| is bounded on this interval. By Theorem 3.6, w(t) can be
extended as a solution of the Riccati equation to an interval [a,R+ §)
where § > 0, and Theorem 3.4 guarantees the existence of a solution (ﬁ,\';)
of system (3.1) such that G(t) is nonsingular on [a,R+ &) and

w(t) = \?(t)ﬁ_l(t) on the interval. As in the proof of Theorem 3.5, it
can be shown that u(t) = ﬁ(t)ﬁ—l(a)u(a) and v(t) = C'(t)ﬁ_l(a)u(oz) on

[¢,B). Furthermore, we have
-1 -1 A A=l
(3.6) Ju™ ol < v @u@)] |87 ()], for t € [a,B).

However, the function 2(t) is nonsingular on [a,B], so that ﬂﬁ-l(t)” is
bounded on [a,B). From equation (3.6) it then follows that ||u-l(t)|| is

bounded on [0,B) and the theorem is proved.

4. Preliminary ncnoscillation theorems for the linear differential

system, and the two-point boundary value problem. In this section we

examine necessary and sufficient conditions for the linear differential
system (3.1) to be nonoscillatory on a compact interval [a,B]. These
preliminary results will be employed in the proofs of the nonoscillation
theorems presented in Section 6. Theorems 4.6 - 4.8 relate nonoscillation
properties of the linear differential system to the existence and
uniqueness of solutions of the t;wo-point boundary value problem. As in
Section 3, we require that the coefficient functions a(t), b(t), and c(t)

of system (3.1) are continuous B-valued functions, and that b(t) and
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and c(t) are symmetric for each t € I,

The linear differential system (3.1) is said to be nonoscillatory on

a compact interval [a,B] if there exists a self-conjoined solution (u,v)
of system (3.1) with u(t) nonsingular on [a,B]. 1In this terminology,
Theorem 3.4 is a nonoscillation theorem. It states that system (3.1) is
nonoscillatory on [a,B] if and only if there exists a symmetric solution
w(t) of the Riccati equation.

The following lemma is essential in proving the nonoscillation
theorems in this section. The result may be found in a more general form
in Reid [11; p. 308]}. Although Reid establishes the result for linear
matrix differential systems, the method of proof is the same for the
B*—algebra case.

LEMMA 4.1, Let (u(t),v(t)) be a self-conjoined solution of system

(3.1) on I such that u(t) is nonsingular on a subinterval Io of I, If

T € Io, then the unique solution (uT(t),vT(t)) of system (3.1) satisfy-

mut('r) =0, VT(T) = e, is given by

u(t)¢(t,t3w)u(r),

v(£)o(t, T3u)u¥ (1) + u¥ L(E)u* (1),

uT(t)

(4.1) ter,

[o]

vT(t)

where

t

o(t,Tyu) = J u_l(s)b(s)u*—l(s)ds.

T

THEOREM 4.1. Suppose that system (3.1) is nonoscillatory on a finite

interval [o,B], and let (ua,va) be the solution of system (3.1) satisfy-

ing ua(a) = 0, va(a) = e. Then for t € (a,B] the function ua(t) is non-

singular if and only if ¢(t,o;u) is nomsingular. In particular, if

b(t) > 0 for each t € [a,B], then u,(t) is nonsingular on (a,B].
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By hypothesis, there exists a self-conjoined solution (u,v) of system
(3.1) with u(t) nonsingular on the interval Io = [a,B]. We now use Lemma

4.1 with 1

a. Since u(t) is nonsingular ocn [¢,B] and u*(t) 1is nou~
singular, it follows from equations (4.1) that uT(t) is nonsingular if
and only if ¢(t,o;u) is nonsingular. In the case that b(t) > 0 on [a,B],
we have that u-l(s)b(s)u*_l(s) > 0 on [a,B], and therefore ¢(t,aju) > 0
for t € (a,f]. Hence, ¢(t,a;u) and ua(t) are nonsingular for t € (a,B].

The following result is analogous to Theorem 4.1, and will be used in
the proofs of Theorems 4.3 and 4.4,

THEOREM 4.2. Suppose that system (3.1) is nonoscillatory on a finite

interval [a,B], and let (UB’VB) be the solution of system (3.1) satisfy-

ing uB(B) =0, vB(B) = e. Then for t € [a,B), the function uB(t) is non-

singular if and only if ¢(8,t;u) is nonsingular. In particular, if

b(t) > 0 for each t € [a,B], then uB(t) is nonsingular on [a,B8).
The following theorem presents -an interesting property of solutions
of the linear differential system whenever b(t) > 0 on I.

THEOREM 4.3. Suppose that we have b(t) >0 on I and T € I, and let

(uT,vT) be the solution of system (3.1) such that uT(T) =0, VT(T) = e,

Then there exists a § > 0 such that uT(t) is nonsingular on

(t=8,7) U(ty,t +8).

Let (u,v) be the solution of system (3.1) such that u(r) = e, v(r) = 03
clearly this solution is self-conjoined since u*(T)V(T) - v*(T)u(T) = 0,
Furthermore, the function u(t) is nonsingular at t = T so that there
exists a § > 0 such that u(t) is nonsingular on [t ~§,7+6]. Therefore,
system (3.1) is nonoscillatory on each of the intervals [t~-&,t] and

[t,T+68]. It follows from Theorems 4.1 and 4.2 that uT(t) is nonsingular
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on the intervals {t-6,t) and (1,T+68], which is the desired conclusion.
The following result is employed in Section 6, wherein nonoscillation
properties of the linear differential system are studied in further
detail.

THEOREM 4.4, Suppose that b(t) > 0 on [a,B], and let (ua,va) be the

solution of system (3.1) satisfying ua(a) = 0, va(a) =e. If ua(t) is

nonsingular on (a,8], then system (3.1) is nonoscillatory on the interval

[o,B8].
Let € be any positive real number, and define new functiomns ﬁ(t),

%(t), and S(t) on the interval [a,B +¢] as follows:

a a(t) on [a,B8],
a(t) =
a(B) on [B’B+€]’
A b(t) on [o,B],
(4.2) b(t) =
b(B) + (t-B)e on [B,B+¢],
c(t) on [a,8],
e(t) =
c(B) on [B,B+¢].

Let (u(t),v(t)) be the extension of (ua,va) to the interval [o,B+¢€],

which is a solution of the differential system

_ u' = A(t)u + b(t)v,
(4.3) o t € [o,B+¢€].
v' = ¢(t)u - a*(t)v,

Since u(B) = ua(B) is nonsingular, there exists a positive number § < ¢
such that u(t) is nonsingular on the interval (o,t]}, where t = B + 6.
If (uT,VT) is the solution of system (4.3) satisfying uT(T) = 0,

VT(T) = e, then for t € (a,'r]“we have
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T 1, & *~1 %
(&.4) uT(t) = -u(t)[] u (s)b(s)u (s)d{]u (7).
t

Clearly, we have that u—l(s)g(s)u*-l(s) >0 on (a¢,7], and moreover, since
g(s) > 0 for s € (B,7], we have u-l(s)g(s)u*_l(s) > 0 on (B,t]. Therefore,
T
-1, o %=1
u (s)b(s)u” “(s)ds > 0 for t € [B,T).
t

If t € (a,B], we also have

T
J o Le)d (s)u* " L(s)ds >

T
> J u-l(s)%(s)u*—l(s)ds > 0.
t

B

T
Therefore, since u*(r) is nonsingular, and u(t) and J u—l(s)%(s)u*-l(s)ds
t

are nonsingular for t € (a,t), it follows from equation (4.4) that uT(t)
is nomsingular on (a,T). Furthermore, by Theorem 3.3, the function
ut(t)v(t) -~ vi(t)u(t) is constant on [o,t]. Evaluating this function at
t =aand t = T, we find that u:(a) = —u(t); since u(r) is nonsingular,
uT(a) is also nonsingular. Therefore (uT,vT) is a self-conjoined solution
of system (4.2) on [a,t] with uT(t) nonsingular on [a,t). If (uT,vT) is
restricted tec the interval [a,B], then clearly it is a self-conjoined
solution of system (3.1) with uT(t) nonsingular on [a,B], and therefore
system (3.1) is nonoscillatory on [o,B].

it should be noted that the converse of Theorem 4.4 is in general
r.5t true. For example, if a(t) = b(t) = c(t) = 0 on I, then
{u(t) = e,v(t) = 0) is a self-conjoined solution with u(t) nonsingular on
I; however, the solution (ua,va) satisfying ua(a) = 0, va(a) = e is given
by ua(t) = 0 on I. A partial converse of Theorem 4.4 is given in Theorem
4,1 under the restriction that b(t) > 0 on the interval [a,B]. To obtain

another partial converse of Theorem 4.4, we will consider linear
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differential systems which satisfy the following hypothesis on an interval

[o,B].

(H) For each point 7 € [a,B], the solution (uT,vT) of system

(3.1) satisfying uT(T) = 0, VT(T) = e, is such that there
exists a § > 0 so that uT(t) is nonsingular on
{[T—G’T) U (T’T+6]} n[a,B]-

If b(t) > 0 on [a,B], Theorem 4.3 guarantees that condition (H) holds for
the linear differential system. The following result shows that the
converse of Theorem 4.4 holds whenever hypothesis (H) holds.

THEOREM 4.5. Let b(t) 2 0 on [0,B] and suppose that property (H)

holds on the interval [a,B]. Furthermore, suppose that system (3.1) is

nonoscillatory on {a,B]. If t € [o,R] and (uT,vT) is the solution of
system (3.1) satisfying uT(T) = 0, VT(T) = e, then uT(t) is nonsingular
on [a,7) U (1,8]. |

We prove that for v < t < B, the function uT(t) is nonsingular; a
similar argument holds for t < 1. Let (u,v) be a self-conjoined solution
of system (3.1) with u(t) nonsingular on [a,B]. By Theorem 4.1 it follows
that uT(t) is nonsingular if and only if ¢(t,t;u) is nonsingular. Since
b(t) > 0 on [a,B], we have that unl(s)b(s)u*_l(s) > 0 and therefore
¢(tyT3u) > 0 for t > 1. By property (H) we have that uT(t) is nonsingular
on an interval of the form (t,T+8], and consequently ¢(t,t3u) > 0 on this

interval. Furthermore, for t € (t+68,8] it follows that
o(t,T3u) 2 ¢(t+8,T3u) > O,

Hence ¢(t,t3u) is nonsingular for t € (t,B], and uT(t) is also nonsingular

on this interval.
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The final theorems of this section concern the two-point boundary
value problem and its relationship with nonoscillation properties on a
compact interval. Solutions of the two-point boundary value problem are
said to exist and be unique on arbitrary subintervals of [a,B] if for
each pair of distinct points Ty Ty of [a,B], and for arbitrary elements
Uy Uy of the B*-algebra, there exists a unique solution (u,v) of the
system

LllusV] (t) = 0, LZ[U:V](t) = 0,

(4.5)
u('rl) = u;, u('tz) = Uy

The principal result cocncerning solutions of the two-point boundary value
problem is given in the following theorem.

THEOREM 4.6. For distinct Tys Ty belonging to [a,B], and arbitrary

ugs U, € P, there exists a unique solution of the two-point boundary

value problem (4.5) if and only if for each 7 € [a,B], the solution

(uT,vT) of system (3.1) satisfying uT(T) = 0, VT(T) = e is such that uT(t)

is nonsingular for t distinct from T on the interval [a,B].

Suppose that u_r(t) is nonsingular for distinct points t1,t of the
interval [o,B]. If Tys T, are distinct points of [a,B] and up, u, are

elements of B, then it may be easily verified that

u(t)

-1 -1
u,[l(t)u,rl(Tz)u2 + u,r2 (t)uTz(Tl)ul,

v(t)

I

-1 -1
vfl(t)url(TZ)UZ + sz(t)uTz(Tl)ul’

is a solution of system (3.1) satisfying u(Tl) =u and u('rz) =u To

2I
show the uniqueness of the solution suppose that (4,%) also satisfies

G(Tl) = uy and G(TZ) = u,. Then the function u(t) - #(t) vanishes at
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both t = Tl and t = 12.

initial value problem we must have

Therefore, by the uniqueness of solutions of the

u(t) - 4(t)

ur (O)[v(r;) - ¥(r))],

4.6) .
v(t) - v(t)

le(t)[v(Tl) - Q(Tl)],

for t € [a,B]. Since u(TZ) - ﬁ(rz) = 0, and uTl(TZ) is nonsingular, it

follows from equations (4.6) that v(rl) = Q(Tl). Consequently, we have

that u(t) = u(t) and v(t) = 9(t) and the solution of (4.5) is unique.
Conversely, suppose that solutions of the two-point boundary value

problem (4.5) exist and are unique. Let 1 be distinct points of the

1’ "2
interval [a,8]. Then there exists a solution (u,v) of system (3.1) such
that u(rl) = 0 and u(tz) = e. Again by the uniqueness of solutioms to

the initial value problem, we have that

u(t)

]

url(t)V(Tl)’

t € [a,B],
v(t) = le(t)V(Tl),

and consequently u. (TZ)V(Tl) = e. To show that uTl(t) is nonsingular at
1
t = 1,, it suffices to show that v(t,)u. (t,) = e. Now consider the
2 1%t T2

solution (ﬁ,o) of system (3.1) defined by

a(t)

“Tl(t)[V(Tl)uTl(TZ) - e],

%) = v @Iv(rpug (1)) - el.

It is easily seen that G(Tl) =0 = G(TZ). However, the solution
(uo(t) = O,VO(t) = 0) also satisfies the conditions uo(Tl) =0 = uo(Tz).
Therefore, by the uniqueness of solutions of the two-point boundary value

problem, it follows that A(t) =20 and ¥(t) = 0. In particular, for t = L
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we find that 0 = G(Tl) = e[v(rl)url(rz) - e], so that V(Tl)uTl(Tz) = e,

and consequently utl(t) is nonsingular at t = Tye
The following results follow directly from Theorems 4.4 and 4.5 by
employing the criteria established in Theorem 4.6.

THEOREM 4.7. Let b(t) > 0 on [a,B], and suppose that solutions of

system (4.5) exist and are unique for distinct T € [0,B] and

1’ "2
u,5u, € 8. Then system (3.1) is nonoscillatory on the interval [a,B8].

THEOREM 4.8, Let b(t) > 0 on [a,R], and suppose that property (H)

holds on [a,B]. If system (3.1) is nonoscillatory on [a,8], then there

exists a unique solution of system (4.5) for distinct

€ 8.

14175 € [a,B] and

ul,uz

5. Disconjugacy properties of the linear differential system and an

associated hermitian form. This section is concerned with a property of

solutions of system (3.1) termed disconjugacy. Two distinct points t

1’
t2 of the interval I are said to be (mutually) conjugate with respect to

system (3.1) provided there exists a solution (u(t),v(t)) of (3.1) such
that u(t) # 0 on [tl’tZ]’ while u(tl) =0 = u(tz). System (3.1) is said

to be disconjugate on an interval [a,B] provided no two distinct points

of [a,B] are conjugate. The first results of this section concern pro-
perties of a hermitian form associated with system (3.1); the relation-
ship of the hermitian form to disconjugacy and nonoscillation properties
isvconsidered in Theorems 5.1 - 5.4. In Section 6 this hermitian form is
employed to establish necessary and sufficient conditions for the linear
differential system (3.1) to be nonoscillatory. For the case of matrix
differential equations, results similar to Lemmas 5.1 ~ 5.3 may be found

in Reid [11; pp. 322-325].
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A B-valued function £(t) is said to be piecewise continuous on an

interval [a,B] if £(t) is continuous on [a,B] except for at most a finite
number of points and the right-hand and left-hand (deleted) limits exist
at the points of discontinuity. A B-valued function n(t) is said to be

piecewise smooth on [a,B] if n(t) is continucus, while its derivative

n'(t) exists on [o,B] except for at most a finite number of points and is
piecewise continuous. The set D{a,B] is defined as the collection of
B -valued functions n(t) which are piecewise smooth on [a,R] and such
that there exists a piecewise continuous 7B-valued function £(t) satisfy-

ing the differential equation

n'(t) - a(t)n(t) = b(L)g(t)

4

whenever n'(t) exists on [a,B]. The notation n € D[a,R]:£ is used to
indicate that n(t) is associated in this manner with a function £(t).
Furthermore, the set Do[a,B] is defined to be the collection of n € D{a,B]
such that n(a) = 0 = n(B).

If ny € D[a,B]:gl and n, 3 D[G,B]=€2, we define J[nlzgl,nz:gz;a,ﬁl
to be

B
J [£5(s)b(s)E, () + nj(s)e(s)n, (s)1ds.

a
The function J is clearly a mapping from D{a,B] >< D[a,B] into the
B*-algebra B. If b(t) is singular at points in [a,B], then the functions

(t) associated with n

3 (t) € D[a,B], j = 1,2, may not be uniquely

J 3

determined. However, it may be verified readily that the value of J is

independent of the particular function £,(t). Therefore, we employ the

3

simpler notation

B
J[nl,nz;a,B] = Ja [E;(S)b(S)El(S) + n;(S)c(S)nl(S)]dS-
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For the linear differential system (3.1), it is required that b(t)

and c(t) be continuous symmetric functions on I. Consequently, several
elementary'properties of the mapping J may be established readily. In

particular, if nj € D[a,B] for j = 1,2,3, then

*
(1) J[nl,nz;a,B] = (J[nz,nl;a,B]) ’
(ii) J[Anl,nz,a Bl = AJ[nl,nZ,a B], where A is a complex number,

(iii) J[n1+n2,n3;a,B] = J[nl’n3’ sB] + J[nzsn H B]

As a result of the above properties it is easily seen that J is a
hermitian form on the set D[a,R].

If n € D[a,B], for convenience we define
J[n;a,8] = J[n,n;a,B].

From property (i) above it follows that for each n € D[a,B] we have that
Jn;a,B] 1;3 symmetric element of the B -algebra B. In the event that
J[n;a,B] has a non-negative spectrum, we can write J[n;o,8] > 0, as
defined in Section 2. In particular, in Theorems 5.1, 5.2 and 5.4 of this
section we will be interested in the cases wherein the following property
holds.

(H ) J[nja,B] > 0, for each n €D [a B] and J[n;a,B8] = 0

only if n(t) = O

The following lemmas establish several important properties of the
hermitian form J which will be required in the proofs of theorems in this
section and in Section 6. The proof of Lemma 5.1 is immediate from the
definition of the hermitian from J.

LEMMA 5.1. Let nj e D[a,B]:Ej for j = 1,2, Ef_gl(t) is continuously
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differentiable on [a,B], then

B (B
+ J nZ(S)Ll[nl,Ell(S)dS-
o o

*

The following lemma shows that if system (3.1) is not disconjugate
on [0,B] then J[njo,B] will vanish for some non-identically vanishing
ne Do[a,B].

LEMMA 5.2. Suppose there are distinct points t

1€ tzigg [a,B] which

are conjugate with respect to system (3.1). Then there exists an

ne Do[a,B] such that n(t) # 0 on [tl,tzl and J[n;a,B] = 0.

Suppose that t] <ty and (u,v) is a solution of system (3.1) such
that u(t) # 0 on [tl;tzl, while u(tl) =0 = u(tz). Define n(t) as equal
to u(t) on [tl’tZ]’ and to O elsewhere on [a,B]; correspondingly, let
g(t) equal v(t) on [tl,tZ] and 0 otherwise. Then n € Do[a,B]:E with

n(t) # 0, and by Lemma 5.1 we have
t2
Jlnse,8] = Jlnsey,t,] = n*gl = 0.
t
If u(t), v(t), n(t), £(t) and h(t) are differentiable functions such

that n(t) = u(t)h(t), then we have the following identity:

£*bE + n*en = (£-vh)*b(E-vh)

- v)*L,[n,E] - L,n,E1" (vh)
(5.1)

+ 0 (v L, [u,v] + u*L [u,v]h
- h*(u*v-v*u)h' + (h*u*vh)'.
For the case of matrix differential systems, (see, for example, Reid
11; p. 325]), the result of the following lemma is that of the so-called

Legendre or Clebsch transformation of J[n;o,B8]. The result is proved
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easily with the aid of (5.1).

LEMMA 5.3. Let (u,v) be a self-conjoined solution of system (3.1)

on [a,B] and n € D[a,B]:E. If there exists a piecewise smooth function

h(t) such that n(t) = u(t)h(t), then

B B
(5.2) Jnsa,B] = n*vh +J (e-vh) *b (£-vh)ds.

o a

We are now able to establish relations between properties of the
hermitian form J and disconjugacy and nonoscillation properties of the
linear differential system (3.1). As an immediate consequence of Lemma
5.2, we have the following result.

THEOREM 5.1. If the hermitian form J[n;a,B] satisfies condition

(Hl) on an interval [a,B] then system (3.1) is disconjugate on this inter-

val.
The following result provides a partial converse to Theorem 5.1.

THEOREM 5.2. Let b(t) > 0 on [a,B], and suppose that system (3.1)

is nonoscillatory on the interval [a,B]. Then the hermitian form J[n;a,B]

satisfies condition (Hl).

Let (u,v) be a self-conjoined solution of system (3.1) with u(t)
nonsingular on the interval [a,B]. If ne€ Do[a,B], define h(t) =
u-l(t)n(t) on [a,B]. Therefore h(a) = 0 = h(B), and by Lemma 5.3 it

follows that
8 *
(5.3) J[n;a,B] = J (¢-vh) 'b(g~vh)ds.
a
However, b(s) = 0 on [a,B], so that by Theorem 2.10 we have that
J[n;a,B] 2 0. If n € Do[a,B] is such that J[nja,8] = 0, then

B
J (g-vh)*b(g—vh)ds = 0 and by Theorems 2.7 and 2.11 it follows that
o
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b(t) (E(t) - v(t)h(t)) = 0 on [a,B]. Consequently, we have
uh' + u'h - auh = n' - an = bE = bvh,

and therefore h' = (u—lau + u_lbv - u-lu')h. Since h(a) = 0, it follows
that h(t) = 0 on [0,B], and therefore n(t) = u(t)h(t) = 0 on [a,B].

For the finite dimensional matrix case it has been shown, (see [11;
p. 337]), that the following conditions are equivalent whenever b(t) 2_0
on [a,B]:

(i) the linear differential system (3.1) is nonoscillatory on [a?B];

(ii) the hermitian form J satisfies property (Hl) on [a,B];

(iii) system (3.1) is disconjugate on the interval [a,B].
The following example, given by Heiﬁes [4], illustrates that these condi-
tions are not equivalent for the B*—algebra case, even under the restric-
tion that b(t) = e > 0.

Let % be the Hilbert space by, and for n 2 1 let e =
(0,+++,0,1,0,+++) be the usual comple;e orthonormal set. The B*—algebra
will be the collection of bounded linear operators on H. Let b(t) = e
and a(t) = 0 on the interval [0,1], and let c(t) be the constant operator
defined by c(en) = - kﬁen where kn is the real number nnv/(n+1). Since

v'(t) = u(t), system (3.1) may be written in the form
u"(t) = cu(t), t € [0,1].

If T € [0,1], then the solution ut(t) of this equation satisfying uT(T) = 0,

u%(r) = e is defined by the relation
u_(Be. = (K- lsin[k_(t-1)]le_.
T n n n n
If x = anen is an element of °N such that uT(t)x = 0 for some t # T on

[0,1], then clearly x = 0; consequently the differential system is
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disconjugate on the interval [0,1].

The solution of the differential system satisfying uo(O) =0,

ué(O) e is defined by
u (t)e ='{k—lsin(k t)le .
0 n n n n
For t = 1, we find that
u (e ='{k-1sin(k Yle .
o n n n’ " n
The linear operator uo(l) is not onto for 2(1/n)en is not in its range;
and consequently uo(l) is singular. Since b(t) > 0 on [0,1], it follows
from Theorem 4.1 that the linear differential system fails to be non-
oscillatory on the interval [0,1].

By Theorems 5.1 and 5.2, it follows that nonoscillation implies
disconjugacy on an interval [a,B] provided that b(t) > 0. The preceding
example shows that the concepts of nonoscillation and disconjugacy are
not equivalent in the B*-algebra case. However, the property which
unifies the concepts of nonoscillation and disconjugacy in the matrix
case is eésily isolated. An element u € B is said to have property (P)
if either u is nonsingular or there exists a nonzero element x € B such
that ux = 0. We now have the following result relating disconjugacy and
nonoscillation properties.

THEOREM 5.3. Let b(t) > O on [o,8], and suppose that property (H)

holds on [a,B]. If system (3.1) is disconjugate on the interval [a,B8],

then this system is nonoscillatory on [o,B] if and only if for each

v € [a,B] the solution (ur,vT) of (3.1) satisfying UT(T) = 0, VT(T) = e,

is such that uT(t) has property (P) for each t € [a,B].

If system (3.1) is nonoscillatory on [a,B], it follows from Theorem



33

4.5 that uT(t) is nonsingular for t # T on [a,8]. Furthermore uT(T) =0
so that for any x € B, we have uT(T)x = 0. Therefore uT(t) has property
(P) for all t € [a,B]. |

Conversely, suppose that system (3.1) is disconjugate on [¢,B] and
that uT(t) satisfies property (P) for t € [a,R]. In particular,
consider the solution (ua,va) satisfying ua(a) = 0, va(a) = e, To show
that system (3.1) is nonoscillatory on [a,B], it suffices by Theorem 4.4
to show that ua(t) is nonsingular ~n (a¢,B]. Suppose that there exists a
T € (a,B] such that ua(T) is singular; then, by hypothesis, there exists
a nonzero element x € ® such that ua(T)x = 0. Therefore, (ua(t)x,va(t)x)
is a solution of system (3.1) such that ua(a)x =0 = ua(r)x. However,
system (3.1) is disconjugate on [a,B], and it follows that ua(t)x = 0 on

[e,t]. By property (H) we know that ua(t) is nonsingular on an interval

(a,0. +68), where § is chosen so that o + 8§ < T. Since ua(t)x 0 on
(e,a+8), it follows that x = 0. Therefore we conclude that ua(t) is non-
singular on (a,R], and hence system (3.1) is nonoscillatory on this
interval.'

The precediﬁg theorem illustrates why the concepts of disconjugacy and
nonoscillation are equivalent for matrix differential systems. That is,
if u is any finite dimensional square matrix then either u is nonsingular
or it has zero divisors so that property (P) holds for all such matrices.
In the following result we exhibit one set of conditions where the
concepts of nonoscillation and discoﬁjugacy are equivalent for the

B*—algebra case.

THEOREM 5.4. Let b(t) > 0 on [a,B], and suppose that a(t), a*(t),

and c(t) are compact for each t € [a,B]. Then the following conditions are
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equivalent:

(1) system (3.1) is nonoscillatory on the interval [a,B];

(i1) the hermitian form J satisfies condition (Hl) on the interval

[a,B];

(iii) system (3.1) is disconjugate on the interval [o,B8].

By Theorems 5.1 and 5.2, we know that (i) implies (ii), and that
(ii) implies (iii). Therefore it suffices to show tha; (iii) implies (1).
This result is obtained with the aid of Theorem 5.3. For 1t € [a,B] let
(uT,VT) be the solution of (3.1) satisfying uT(T) =0, VT(T) = e. We now
show that uT(t) has property (P) for each t € [a,8]. For each s € [a,B],

define

s
kl(s) = JT (cuT - a*VT)dr,

so that VT(S) = e + kl(s). Moreover, it follows that for t € [a,B] we have

t
uT(t) = JT (auT + va)ds

t t
= j bds + J (bkl-FauT)ds.
T T

As the elements a(s), a*(s), and c(s) are.compact for s € [a,B], we have
t
by the Corollary to Theorem 2.12 that kl(s) and k(t) = J (bkl + auT)ds

T

are also compact for each t € [a,B]; furthermore, for t > 7, we have that
t t
J b(s)ds > 0 so that J b(s)ds is nonsingular. Therefore, by Theorem

T T

2.12 it follows that for t > T the function uT(t) is either nonsingular,
or there exists a nonzero element x € B such that uT(t)x = 0. Hence for
t > T we have that uT(t) has property (P). It can be shown in a similar

manner that uT(t) has property (P) for t € [a,7], and it then follows from

Theorem 5.3 that system (3.1) is nonoscillatory on the interval [«,B].
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6. Nonoscillation and comparison theorems for the linear differen-

tial system on a compact interval. In this section we use a generalization

of a method employed in variationél theory to establish necessary and
sufficient conditions for system (3.1) to be nonoscillatory on a finite
subinterval [o,B] of the interval I = (ao,W). The use of variational
techniques will also enable us to establish generalizations of certain
Sturmian-type comparison theorems. In particular, Theorems 6.1 and 6.2
are generalizations of ciassical nonoscillation theorems for finite dimen-
sional matrix differential systems; see, for example, Reid [11; p. 328].
We shall be concerned with the set of real numbers A such that
B & x
J[n;a,B] = J [£'bE + n"cnlds
(6.1) :

B *
2 XJ n'nds, for n eDo[a,B],
o

where J[n;a,B] is the hermitian form defined in Section 5. The following
result shows that this set is nonempty if b(t) = 0 on [a,B].

LEMMA 6.1. If b(t) > 0 on [a;B], then there exists a real number Ao

such that (6.1) holds with A = Ao.
Let —Ao be defined as the maximum of ||c(t)|] on the interval [a,B].
Then we have that Aoe < ce(t) < —Aoe, and consequently c(t) - Aoe > 0, on

[¢,8]. Furthermore, since b(t) =2 0 on [a,B], it follows that

B8
J [S*bE + n*(c -_koe)n]ds >0
a .

for each n € Do[a,B]:E, and therefore inequality (6.1) holds for A = Ao.
We will be particularly interested in those cases wherein there exists

a positive real A such that (6.1) holds. In fact, Theorems 6.1 and 6.2

establish that under certain hypotheses system (3.1) is nonoscillatory on
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[a,B] if and only if there exists a positive real Ao such that inequality
(6.1) is satisfied for A = Ao.

THEOREM 6.1. Let b(t) 2 0 on [a,B], and suppose that system (3.1)

is nonmoscillatory on this interval. Then there exists a positive real

A, such that (6.1) holds with A = A _.
Since (3.1) is nonoscillatory on [a,B], there exists a self-conjoined

solution (u,v) of this system such that u(t) is nonsingular on [o,B].

Let M be a positive real number such that "u-l(t)” < M on [¢,8]. Now

consider solutions of the linear differential system

4' = a(t)d + b(L)V,
(6.2) . A t € {o,B],
[e(t) - relld - 2™ 1)V,

<>

where A is a real number. From Theorem 3.2 it follows that there exists
a § > 0 such that for any A with |Al < § the solution (G,@) of system
(6.2) satisfying 8(a) = u(a), 9(a) = v(a) has the property that
luCe) - G(t)|| < 1/M on [o,B]. Therefore we have that |u(t) --8(t)|| <
1/||u'1(t)|| for all t € [a,B], and by Theorem 2.1 it follows that u(t) is
nonsingular on [a,B]. In particular, this property holds for a posiéive
real Ao chosen so that 0 < Ao < §, Furthermore, the solution (ﬁ,%) is
self-conjoined, since ¥ () () - Y*@)E@) = u*(@)v() -v¥(@)u() = 0.
The associated hermitian form for system (6.2) with A = Ao is given
by

B * .
Jy [n;a,B] = [E7BE + 1 (c-—Aoe)n]ds.
° a
Since system (6.2) is nonoscillatory in [a,B] for A = Ao’ it follows from
Theorem 5.2 that

B
J [£*bE + n*(c- A,e)nlds 2 0, for n €D [a,B],
a
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and therefore inequality (6.1) holds for the positive real number Ao.
The following result shows that the converse of Theorem 6.1 is valid
whenever condition (H), as introduced in Section 4, holds.

THEOREM 6.2. Let b(t) 2 0 on [a,B] and suppose that property (H)

holds on the interval [c¢,B]. If there exists a positive real number Ao

such that inequality (6.1) holds for X = Ao’ then system (3.1) is non-

oscillatory on the interval [o,B].

To show that (2.1) is nonoscillatory on the interval [¢,B], it is to
be noted that by Theorem 4.4 it suffices to show that the solution (ua,va)
satisfying ua(a) =0, va(a) = e is such that ua(t) is nonsingular on
(a,B]. Now, by hypothesis, there exists a § > 0 such that'ua(t) is non-
singular on (a,a+8]; suppose that (a,7), where 1 < b, is the maximal
interval on which ua(t) is nonsingular. Let (uT,vT) be the solution of
(3.1) satisfying uT(T) =0, VT(T) = e, and choose s € (a,T) so that uT(t)

is nonsingular on [s,T). Suppose x € B and define n € Doia,Bltﬁ as

follows:
ua(t)x on [o,s],
n(t) = uT(t)uzl(s)ua(s)x on [s,t],
0 on [7,B],
(6.3)
va(t)x on [a,s),
g(t) = VT(t)ugl(s)ua(s)x on (s,T),

0 on (t,B].

Since (n,£) is a solution of system (3.1) on the intervals [a,s) and (s,T),

it follows from Lemma 5.1 that
(6.4) Jnsa,s] = n"()E(s7) = x*u¥(s)v, ()%,

and that



38
(6.5) Jnss,tl = -n*(@)E(s) = <" (v (s)ul (s)u (o)x.
By Theorem 3.3, we know that u:(t)vr(t) - v:(t)uT(t) is equal to the

constant u:(T) on [a,T]. Consequently, we have the relation
(6.6) u:(s)vr(s)u;l(s)uu(s) = v:(s)ua(s) + u:(r)u;l(s)ua(s).
From equations (6.4) - (6.6), we find that
. = «¥[y* R ok -1
Jlnsa,8] = x"[u (s)v (s) - v_(s)u (s) u (Du "(s)u (s)]x.

Since (ua”va) is a self-conjoined solution of (3.1), it follows that

u:(s)va(s) = v:(s)ua(s), and therefore we have
(6.7) I[n30,8] = -x*u*(0)u 1 (s)u_(s)x
* > o T o >

for the n(t) constructed in (6.3).
Since ua(t) is nonsingular on (o,s], it follows that u:(t)ua(t) >0
s
on (a,s] and hence J u:uads > 0. Therefore there exists a positive real
a

number k such that

S =%
J uuds > ke > 0.
o 0o -

Consequently, if x is any element of B with [x| = 1, then for n(t)

defined as in (6.3) we have

b * S & * S %
J n'nds 2> J n‘nds = x J uauads X
o o o

B &
and therefore |2 J n*nds| > A k > 0.
" o

w

kx*x > 0,

Let K = "U;I(S)ua(s)"- Since u (t) is singular at t = T, by Lemma
3.2 there exists an x € B with |[x| = 1 and such that ”ua(r)x“ < Aok/K.~
Consequently, for such an x it follows from (6.7) that ||J[n;a,8l] < Aok,

B .
whereas "AOJ n*nds" > Aok. This clearly violates the condition that
a
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B
J[n;o,B] 2 AOJ n*nds, for all ne Do[a,B].
o

Therefore it follows that ua(t) is nomsingular on (a,B]; accordingly,
system (3.1) is nonoscillatory on the interval [o,B].

If Ao is a real number such that inequality (6.1) hglds, it follows
trivially that for any A < Ao the inequality remains valid. Therefore
there exists a largest A, denoted by AB, such that inequality (6.1) is
valid. It is easily seen that if Do[a,B] contains any element other than

n(t)

0, then AB must be finite.
With the aid of Theorem 6.2, we are able to establish some non-
oscillatory properties of the linear differential system (6.2).

THEOREM 6.3. Let b(t) > 0 on [a,B], and suppose AB is the largest

real number such that inequality (6.1) holds. Then for each A < AB the

system (6.2) is nonoscillatory.

If A < AB, then clearly AB - A >0 and

B * %
JA[n;a,B] = I [E"bE + n"(c - Ae)nlds
o

B
2 (A - k)j n*nds, for n €p_[e,8].
a

From Theorem 6.2, it follows immediately that system (6.2) is nonoscilla-
tory for the chosen A. One would expect the conclusion of the theorem to
remain valid under the weaker hypothesis of b(t) > 0 on [a,B], and
property (H). However, property (H) is a property of system (6.2) with

A = 0, and we have not shown that the property is sustained for other
values of A. The requirement that b(t) > 0 on [oa,R] assures that
property (H) holds for system (6.2) for any real A.

As in the discussion preceding Theorem 6.3, for each t € (a,») C I,
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there exists a largest value At such that
t *
Jn;o,t] 2 lt J n°nds, for ne€ Do[a,t].
a
Clearly At is a monotone, nonincreasing function of t. The following

result shows that Xt is continuous from the right.

THEOREM 6.4. Let b(t) > 0 on [a,B], and let € be an arbitrary posi-

tive real number. Then there exists a 6§ > 0 such that
B+
Jlnsa,BH8] 2 (A - E)J n’nds
o

for n € Do[“’6+615.iﬂ articular, At > A, -¢c for t € [B,Bt+6].

B
8
Since J[n;a,B8] 2 AB J n*nds on Do[a,B], by Theorem 6.3 there exists
a
a self-conjoined solution (G,G) of system (6.2) with A = AB - ¢ such that
8(t) is nonsingular on [a,B]. Therefore u(t) must be nonsingular on a

larger interval [a,B+6], where § > 0. By Theorem 5.2, we have that
B+3§ . .
J [£bE + n'{c - (AB-e)e}n]ds >0
a

on Do[a,B+6]. Therefore,

B+68 x * B+8 *
J[n;o,B+8] = J [E"bE + n'enlds 2 ()‘B -e)J n nds
[+ ] o

for n e Do[a,8+6], and the theorem is proved.

In the remainder of this section we will establish several compari-
son theorems for linear differential systems by applying the results of
Theorems 6.1 and 6.2. Our attention will be restricted to the case where
b(t) > 0 on [0,B]. In this case, if n € Do[a,B]:E, then £(t) is uniquely

determined by the relation

E(t) = b L(e) [n' (1) - a(e)n(t)]
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whenever n'(t) exists. Therefore the set DO[a,B] consists of all piece-
wise smooth functions n(t) such that n(a) = 0 = n(B). Furthermore, for
n e.Do[a,B] we can write

B

J[n;a,B] = J [(n'- an)*b—l(n'- an) + n“cnlds.

a

Consider the two linear differential systems

u au + ij,

(6.8,)
3 ! cju - a*v,

1}

v

for j = 1,2, where bl(tj, bz(t), cl(t), and cz(t) are continuous symmetriec
B-valued functions, and a(t) is continuous. Corresponding to the two
differential systems are the hermitian forms

B

J [n;a’B] = J

v _ * -1 " _ * =
j [(n' -an) bj (n'-an) +n cjn]ds, j =1,2,

o
defined on the common domain Do[a,B]. We also define an additional

hermitian form

Jl’zln;a,B] = Jl[n;a,B] - J2[n;a,B]

B
Iu [(n'- an)*(bi1 - bgl)(n'- an) + n*(cl-cz)n]ds

on the set Do[a,B]. As in the discussion preceding Theorem 6.3, there

exist largest values A,, j = 1,2, such that

j’
B

Jj[n;a,B] > Aj IG n*nds, for n € Do[a,B].

Furthermore, in the case where bIl(t) > b;l(t) > 0, (equivalently
bz(t) > bl(t) > 0), on [a,B], it follows that there exists a largest real

number Al 9 such that

’
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B &
[ nnds, for n € Do[a,B].

Jl’zln;a,B] > Ja

A1,2
We can now establish easily the following result.
THEOREM 6.5. Let b,(t) 2 b,(t) > 0 on [a,8]. If A;, A,, and A

are the real numbers defined in the preceding discussion, then

1,2

Ay 2 Ay + Al,2' In particular, if A, + Al,Z > 0 then system (6.81) is

nonoscillatory on [a,B].

Clearly,

Jy[nse,8] = J,[n50,8] + Jl,zln;a,B]

B
Z ()‘2 + A_-l-’z)fa ﬂ*ﬂds,

for all n € Do[a,B], and by the definition of Al it follows readily that

Al > AZ + 11’2.
Although the preceding result is seemingly trivial, it manifests the
basic idea involved in several Sturmian-type comparison theorems. The

following result is such a comparison theorem.

THEOREM 6.6. ng.bz(t) > bl(t) >0 on [a,B], and suppose that

Jl’z[n;a,B] > 0 for each n € Do[a,B]. If system (6.82) is nonoscillatory

on [a,B], then system (6.81) is also nonoscillatory on [o,B].

Since J; 2[n;a,B] > 0 on Dyfa,B], it follows that A 0. 1If
9

1,2 2

~ system (6.82) is nonoscillatory on [o,B8], then A, > 0, and by the

2

preceding theorem we have A, 2 A, - 0. Therefore, by Theorem 6.2,

122 %% 7
system (6.81) must be nonoscillatory on [o,B].
-1 -1
If cl(t) and c2(t) are such that cl(t) > cz(t), and b1 (t) > b2 (t)
on [o,B], then clearly Jl 2[n;a,B] >0 forne Do[a,B]. Therefore we have
]

the following result.

COROLLARY. Let b,(t) 2 b,(t) > O and c1(t) 2 c,(t) for t € [a,B].
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If system (6.82)_15 nonoscillatory on [o,B], then system (6.81) is also

nonoscillatory on this interval.

The final thecrem of this section concerns linear second-order dif-

ferential equations of the form
(6.9) [r(e)u' + q(t)u]" = [q*(t)u' + p(t)u] = 0,

as introduced in Section 3. In particular, we establish a comparison
theorem for two differential equations of the form (6.9) where q(t) = 0

on [a¢,8]. For j = 1,2, consider the differential equations
(6.10,) [rj<t)u'1' - py(u=0, t€ a8l

We now have the following result.
THEOREM 6.7. Let rl(t) > r2(t) > 0 and pl(t) > Pz(t) on [a,B]. If

equation (6.102) is nonoscillatory on [o,B], then so is equation (6.101).

In the corresponding linear differential systems we have bj(t) =
-1 . -
rj (t), and bz(t) > bl(t) > 0; furthermore, cl(t) c2(t) =
pl(t) - pz(t) > 0. The conclusion of the theorem is now immediate from

the Corollary to Theorem 6.6.

7.. Properties of solutions of the Riccati differential equation and

resulting comparison theorems. In Theorem 7.1 of this section there is

established a result which guarantees the existence of solutions of the
Riccati differential equation (3.2) on an infinite interval [a,x).
Theorems 7.2 and 7.3 are comparison and existence theorems for (3.2), and
are proved with the aid of Theorem 7.1.

It is to be noted that for Riccati matrix differential equations a
result similar to that of the following Theorem 7.1 is to be found in

Reid [10]. However, the method of proof used by Reid does not appear to
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be adaptable to the present general situation, and the method of proof
given here differs greatly from that used in the matrix case.
THEOREM 7.1. If b(t) 20 and c(t) 2 0 on [a,®), and q > O, [q = O],

then there exists a symmetric solution w(t) of the Riccati equation (3.2)

on the interval [a,~) which satisfies w(a) = q. Furthermore, w(t) > O,

[w(t) 2 0], on [a,=).

We first consider the case where q > 0. Let (u,v) be the solution
of system (3.1) satisfying u(a) = e, v(a) = q. It follows from the
me;hod of proof of Theroem 3.5 that the solution w(t) of (3.2) satisfying
w(e) = q exists on an interval [a,7) if and only if u(t) is nonsingular
on [a,T), and that w(t) = v(t)u-l(t) on this interval. Suppose that
[2,T) is the maximal right interval of existence of w(t) and that 7 < =,
Since (u,v) is a solution of system (3.1), by Lemma 5.1 it follows that

t t
I (v*bv + u¥cu)ds = u*v for t € [a,T).
a a
Furthermore, since b(t) > 0 and c(t) > 0, we have that 0 g u*tt)v(t) - q

and therefore

(7.1) 0<qzs o*(t)v(t), for‘ t € [a,T).

Since u(t) is nonsingular on [o,T), it follows from inequality (7.1) that

(7.2) 0 < v B ) < v L) = w(t),

and therefore w(t) is nonsingular on [a,T). In addition we have that
v(t) = w(t)u(t) is also nonsingular on [a,T). The solution (u,v) of
system (3.1) is self-conjoined, so that inequality (7.1) may be written
also as 0 < q < v¥(t)u(t). By Theorem 2.8, it follows that

0 < u-l(t)v*"l(t) < q_l, and consequently
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(7.3) 0 <w(t) = v(t)u 1(e) < v()qg ¥ (1), for t € [a,T).
By inequality (7.3) we find that [lw(t)|| < ”v(t)q_lv*(t)”, and therefore
”w(t)” is bounded on [a,T). It then follows from Theorem 3.5 that w(t)
can be extended to a larger interval [a,T+§) where § > 0, which contra-
dicts the maximality of the interval [a,T). Hencg the solution w(t)
exists on the infinite interval [a,»), and by (7.2) we have w(t) > 0 on
this interval.

. Now consider the case where q 2 0, and suppose thét the maximal
right interval of existence of w(t) is [o,T), where T < =; it follows

that u(t) is nonsingular on this interval. In this case we find that

(7.4) 0 < ¥ Le)quie) < vio)u(e) = w(t)

on [a,7). For £ > 0, let wE(t) be the solution of the Riccati equation
determined by the initial condition we(a) = q + ce > 0. From the preced-
ing result we have that we(t) exists on the entire interval [a,®). For
z(t) defined by z(t) = we(t) - w(t) on [a,T), it is to be noteéd that z(t)

satisfies z(a) = ce > 0, and
(7.5) z' + zao(t) + azﬁﬂz + zb(t)z - co(t) =0

on [a,T), where ao(t) = a(t) + b(t)w(t) and cy(t) = 0. As a result of the
first part of the theorem applied to (7.5), it follows that z(t) > 0 on
[a,T). Consequently, we have that 0 < w(t) < We(t) on [a,T). If T < o,

then for t € [a,t) we have |w(t)| < max "ws(s)" < @ so that [lw(t)| is
sefa,t]

bounded on [¢,T). Again, in view of Theorem 3.6, this contradicts the.
maximality of the interval [o,T). Therefore the solution w(t) exists on
the infinite interval [¢,»), and w(t) > O on this interval.

The following result is obtained from inequalities (7.2) and (7.3),
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which were used in the proof of the preceding theorem.

COROLLARY. Let b(t) 2 0 and c(t) 2 0 on the interval [a,~), and

suppose that w(t) is the solution of the Riccati differential equation

(3.2) satisfying the initial condition w(a) = q > 0. If (u,v) is the

solution of the linear differential system (3.1) satisfying u(a) = e,

v(a) = q, then
0 < ¥ H)qu(e) < w(t) < v(t)g v (p) for t e [a,®).
CO
The following result is a comparison theorem, which establishes the

ho g

existence of solutions to certain Riccati differential equations.

THEOREM 7.2. Suppose that b(t) 2 0 on [a,=), and suppose that w(t)

is a symmetric solution of the Riccati differential equation (3.2) on

the interval [a,«). }f_cl(t) is a continuous symmetric P-valued function

satisfying cl(t) > c(t) on the interval [a,«), and wl(t) is a solution of

the Riccati differential equation

Kl[wll = wi + wla(t) + a*(t)w1 + wlb(t)w1 - cl(t) =0

with wl(a) > w(o), [wl(a) > w(a)], then wl(t) exists on the entire

interval [a,®) and wl(t) > w(t), [wl(t) > w(t)], throughout this interval.
To prove the above theorem, we consider the auxiliary Riccati
equation

= 1 * - =
KZ[WZ] = W, + wzaz(t) + a2(t)w2 + wzb(t)w2 cz(t) 0,

\'

where az(t) = a(t) + b(t)w(t) and cz(t) = cl(t) - c(t) 2 0. Theorem 7.1

guarantees the existence of a solution wz(t) of K2[w2] 0 on [a,»)
satisfying the initial condition wz(a) = wl(a) - w() >0, [wz(a) > 0];
in addition, we have that wz(t) >0, [wz(t) > 0], on the interval [a,x).

If wl(t) is defined as wl(t) = w(t) + wz(t), it may be verified readily
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that wl(t) satisfies Kl[wl] = 0 on [0,®). Furthermore, wl(t) - w(t) =
wz(t) >0 for t € [a,»), so that wl(t) >w(t), [wl(t) > w(t)], on this
interval.

Theorem 7.1 assures the existence of solutions of the Riccati equa-
tion (3.2) on [a,~) only when b(t) > 0 and c(t) > O. However, Theorem
7.2 can be used to demonstrate the existence of solutions on [a,®),
although the function c(t) may not satisfy c(t) > 0. This is illus-
trated in the following example. Consider the Riccati differential equa-
tion

(7.6) w' + w2 +--!;-e =0

4t
on [1l,°). It may be verified easily that w(t) = (1/2t)e is a solution of
(7.6) on [l,») satisfying w(l) = (1/2)e. If cl(t) is a continuous
symmetric B-valued function such that cl(t) > -(1/4t2)e on [l,~), then
Theorem 7.2 implies that there exists a solution of the differential
equation

2
' - =
Wy + vy cl(t) 0

on [1,~) satisfying any initial condition of the form wl(l) > (1/2)e,

\"

(wl(l) > (1/2)e]l. Furthermore, we have that wl(t) > (1/2t)e,

v

[wl(t) > (1/2t)e], for t > 1.

Corresponding to well-known results for the case of finitebdimen-
sional matrix differential equations, we have the following necessary and
sufficient condition for the existence of solutions of the Riccati dif-
ferential system (3.2).

THEOREM 7.3. Let b(t) 2 0 on [a,») and let q be a symmetric element

of B. Then there exists on [a,») a symmetric solution w(t) of the

Riccati equation K[w] = O satisfying the initial condition w(a) = q if
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and only if there exists a continuously differentiable symmetric function

w_(t), t € [a,), such that K[v_](t) < 0 on [4,®) and w_(a) < q.

It shoﬁld be noted that the hypothesis of the theorem does not
require that q > 0, or that c(t) > 0 on [a,»). Clearly if w(t) is a
solution of (3.2) satisfying w(a) = q, then K[w](t) < 0 for t € [a,»),
and w(a) < q. Conversely, suppose that there exists a continuously dif-

ferentiable function wo(t) such that
' * - =
wy + woa(t) + a (t)w0 + wob(t)wo c(t) = m(t) <0

on [a,x)., If co(t) is defined by co(t) = ¢(t) + m(t), then c(t) 2 co(t)

and wo(t) is a solution of
*
1 - =
W, + woa(t) + a (t)wo + wob(t)wo co(t) 0

for t € [a,®). An application of Theorem 7.2 guarantees the existence of

a solution of the Riccati differential equation
Klw] = w' + wa(t) + a*(t)w + wb(t)w - c(t) =0,
satisfying the initial condition w(a) = q 2 wo(a). In addition, it

follows that w(t) > wo(t) on [a,»).

8. Nonoscillation theorems for large t. System (3.1) is said to be

nonoscillatory for large t whenever there exists a self-conjoined solu-

tion (u,v) of this system on [a,*) such that u(t) is nonsingular on an
infinite interval [B,~) with B 2 a. In the previous section it was
proved that (3.1) is nonoscillatory for large t whenever b(t) > 0 and
c(t) > 0 on [e,#). Theorems 8.1 and 8.2 of this section involve the
cases where b(t) > 0 and c(t) < 0 on [a,»). These theorems are simple

generalizations of nonoscillation results for differential systems in a
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B*-algebra presented by Hille [5; pp. 487-490]. The comparison theorems

of Section 6 are employed in Theorem 8.3 to prove that the linear dif-
ferential system is nonoscillatory for large t under certain hypothesis.

In this section we consider the linear differential system

A

u g(t)v,
(8.1) t € [a,),
v' = -f£(t)u,

where £(t) and g(t) are continuous symmetric B-valued functions. This is
a special case of system (3.1) under the identification a(t) = 0,
b(t) = g(t), and c(t) = -f(t) on [a,x).

If 1 € [a,~), let h(t) be a solution of the system

h'(t)

h(t)

a(t)h(t),
te [a’“’),

e’
where a(t) is the coefficient function in (3.1). If (uo,vo) is a solution

of (3.1), then it may be verified readily that
u(t) = W (B)u (1), v(t) = k¥ (v (o),

is a solution of (8.1), where f£(t), g(t) are the continuous symmetric
functions defined by £(t) = ~h*(t)c(£)h(t), g(t) = h F(t)b(e)h* L(t).
Moreover, it can be shown that (uo,vo) is a self-conjoined solution of
system (3.1) if and only if (u,v) is a self-conjoined solution of system
(8.1). Cogsequently, the results of this section dealing with system
(8.1) may also be applied to system (3.1) after the anpropriate trans-
formation has been made.

We now have the following result for system (8.1).

THEOREM 8.1. Let f(t) > O and suppose that 0 < g(t) < e on the

interval [o,») where o« > 0. If for each t € [a,~) the integral
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h(t) = tjw £(s)ds
t

exists and h(t) < (1/4)e, then (8.1) is nonoscillatory for large t.

The method of proof is similar to that used by Hille in the case
where g(t) = e on [a,»). Define a sequence of W -valued functions on

[a,2) as follows:

zl(t) = h(t) ?

(8.2)
zn+l(t) =t J

00

. [%—zzn(s)g(s)zn(si]ds + h(t), n.= 1,2,3,¢¢.,

Let o, = 1/4 and for n > 1 define S 41 by the recursive relation 041 =
oi + Oy It can be shown by induction that‘{cn} is a monotone non-

decreasing sequence and that

Iz (0] <0,
lz (&) -z I <0 -0
ENOLOINORENNOHOLNNG! NN

for n2 1 and t € [0,»). Furthermore, if m, n are positive integers with
m > n, then ”zm(t) - zn(t)" < oy = O It is established easily that the
sequence {on} converges to ¢ = 1/2. Therefore, for each t € [0,») the

sequence {zn(t)} is a Cauchy sequence, and consequently has a limit z(t).
Indeed, on [a,») the sequence {zn(t)} is bounded and converges uniformly

to z(t) on this interval. By (8.2) it then follows that

o0

(8.3) z(t) =t J [s-zz(s)g(s)z(s)]ds + h(t)
t

on [a,®). If k is the constant element defined by

(o]

Kk = Jw [s 22(s)g(s)z(s) 1ds + J £(s)ds,

a a

the eqdation (8.3) can be written as
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t t

[s 22(s)g(s)z(s) ]ds - t J £(s)ds
6

z(t) =tk - t J

o
for t € [a,»)., If w(t) is defined as t-lz(t) on [a,®), then we have that
t

t
[w(s)g(s)w(s)]ds - f f(s)ds,
o Jo

w(t) =k - J

and therefore w(t) satisfies the associated Riccati differential equation
w' (t) + w(t)g(t)w(t) + £(t) =0

on [@,®) and w(a) = k. Furthermore, the solution w(t) is symmetric since

each of the functions £(t), h(t), zn(t) and z(t) is symmetric. By Theorem

3.4, there exists a self-conjoined solution (u,v) of system (8.1) with u(t)

nonsingular on [o0,»), and hence system (8.1) is nonoscillatory for large t.
In the following nonoscillation theorem we employ the concept of

limit inferior and limit superior of a symmetric B-valued function h(t),

with norm ||h(t)|| bounded on [a,»). If h(t) is such a function, then

lim inf h(t) is defined as h,e, where

h, = sup{A a real number | there exists a T € [a,x)

such that Ae < h(t) on [1,®)}.

Similarly, lim sup h(t) is defined as h*e, where

h* = inf{)A a real number | there exists a T € [a,®)

such that h(t) £ e on [T,»)}.

According to the above definitioms, if
lim sup h(t) = h*e, and
lim inf h(t) = hee,
.then for each € > 0, there exists a 7 € [a,®) such that

(h,-€)e < h(t) ¢ (hW*+e)e for t € [1,%).
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Furthermore, the inequality lim inf h(t) < (1/4)e means that if A is any
real number such that Ae < h(t) on a subinterval [7,*) of [a,»), then
A2 1/4.
The following theorem is presented by Hille [5; p. 487] for the case
where g(t) = e on [a,~). The method of proof is similar to the proof of
Hille's result.

THEOREM 8.2. Let g(t) > e and £(t) > O on [a,®), where a > 0,

Suppose that there exists a self-conjoined solution (u,v) of system (8.1)

with both u(t) and v(t) nonsingular on an infinite interval [B,»), where

B > a. Then for each t € [a,») the improper integral

j“ f(s)ds
t

exists and

lim su#}t

J f(s)ds ¢ e
lim inf t (1/4)e.

Since (u,v) is a self-conjoined solution of (8.1) with u(t) nonsingu-
lar on [B,®), it follows that w(t) = v(t)ual(t) is a symmetric solution of

the Riccati differential equation
(8.4) w' + wg(t)w + £(t) = 0, for t € [B,»).

Furthermore, since by hypothesis we have that v(t) is nonsingular on [8,%),

it follows that w_l(t) = u(t)v_l(t) exists on [B,®) and satisfies

(w-l)' = w-'lf(t)w:-1 + g(t).

Therefore,

t t
w ) = w i) + I g(s)ds + I v T(s)£(s)w (s) 1ds
8

B

on [B,»). Moreover, since g(t) 2 e and £(t) > 0 on [B,~), it follows that
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wl(e) 2 wHe) + (e-B)e
on this interval. 1If t is defined by 7 = B8 + IW-l(B)"s then
-1
w (B) + (1-B)e 2 0.

Consequently, for t > 1 it follows that

v

wle) 2 wl) + (t-B)e

v 1@) + (1-B)e + (t-1)e

Iv

v

(t-1)e > 0.
Therefore, we have that

0 < w(t) < (t-T)_le for t e (t,»)
and hence

(8.5) lim w(t) = 0.

t> oo

Furthermore, we have

0 < tw(t) < et-1)"te
on (t,®) so that
(8.6) 1lim sup tw(t) < e.

If B < t < y, then by equation (8.4) it follows that

Y Y
(8.7) w(t) - w(y) = J f(s)ds + J [w(s)g(s)w(s)]ds,
' t t
and consequently
| Y
(8.8) w(t) - w(y) > J f(s)ds > 0, for y > t.
t

Y

If for fixed t the function z(y) is defined by z(y) = J f(s)ds, then by
t

inequality (8.8) it follows that

w(yl) - w(YZ) > Z(Yz) - Z(Yl) >0,
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and consequently ”z(yz) - z(Yl)" = "w(Yl) - w(yz)" whenever t < Y S Yy

However, in view of (8.5) we have that w(Yl) and w(YZ) converge to 0 as
Yl and Y2 become infinite, so that z(y) has a limit as y becomes infinite;

© Y
that is, the improper integral J f(s)ds = 1imy_*mJ f(s)ds exists.
t t

x©
Similarly, the improper integral J [w(s)g(s)w(s)]lds exists for each
t
t € [B,»). Since w(y) approaches 0 as Yy becomes infinite, it follows from

equation (8.7) that

w(t) = Jm f(s)ds + Jw [w(s)g(s)w(s)]lds for t € [B,x).
t t

If we define h(t) = tj f(s)ds, then the above equation can be written as
t

(8.9) tw(t) = tf [w(s)g(s)w(s)]ds + h(t).
t

Now let h*, hy, u*, and u, be real numbers such that

*
lim sup h(t) = h'e,
1im dinf h*e s

lim Sup}tw(t) =‘{u*e,

lim dinf u.e.

In view of (8.6), we know that u* < 1, and it follows from equation (8.9)

that h* < u* < 1l. Let e > 0, and choose t > B so that for s € [T,®)

N

(ug - €)e < sw(s) < w* + €)e,

(hg - €)e < h(s) < (h* + ¢)e,

A

where a negative lower bound is replaced by 0. Therefore for s 2 T, we

have that

szw(s)w(s) > (uy - e)ze.
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Furthermore, for s > T we have w(s)g(s)w(s) > w(s)w(s) so that

tI s-z(u* - e)ze ds
t

iv

t J [w(s)g(s)u(s)lds
t

(uy - s)ze.

v

Hence from equation (8.9) it follows that
2 2
tw(t) 2 (u, - €)7e + (hy ~ €)%
for t> 1, and therefore
.. 2 2
lim inf tw(t) 2 (u, - €)7e + (hy - €)7e.

However, lim inf tw(t) = uge so that ux 2 (u, - e)2 + (h, - 8)2. Since €
was arbitrarily chosen, we have u, > ui + hi. This inequality implies
that (u, - 1/2)2 s 1/4 - h,; therefore, we have h, < 1/4 and the theorem
is proved.

The following theorem is a generalization of a result presented by

Reid [9] for finite dimensional matrix differential systems.

THEOREM 8.3. Let g(t) > 0 on [a,~) and suppose that there exists a

continvous positive real-valued function r(t) such that £(t) < r(t)e,

o0
g(t) < r(t)e, and the improper Riemann integral Ja r(s)ds exists. Then

system (8.1) is nonoscillatory for large t.

Let T € [a,») be chosen so that J

r(s)ds < w. If (u_,v_ ) is the
T 7

solution of (8.1) determined by the initial conditions uT(T) = 0,
VT(T) = e, we will show that uT(t) is nonsingular on (1,#). Let B € (1,»)

and consider the system

u'(t)

r(t)v(t),
-r(t)u(t),

(8.10)
v'(t)

on [t,8]. Clearly,
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u(t)

sin(-r° r(s)ds)e,
t

00

cos(-J r(s)ds)e
t

v(t)

is a self-conjoined solution of system (8.10). Moreover,

0 < Im r(s)ds < 7
t

for t € [1,B], so that u(t) is nonsingular on [1,B], and hence system

(S.iO) is nonoscillatory on [t,8]. Furthermore, we know that

0 < g(t) < r(t)e and £(t) < r(t)e so by the Corollary to Theorem 6.6 it

follows that (8.1) is nonoscillatory on [t,B]. Since g(t) > 0 on [T,B],

Theorem 4.1 guarantees that uT(t) is nonsingular on [t,R]. However, B

was arbitrarily chosen, so that uT(t) must be nonsingular on (t,»), and

hence system (8.1) is nonoscillatory for large t.

9. Comparison and oscillation theorems for large t. Hayden and

Howard establish several oscillation theorems for differential systems of
matrices and endomorphisms on a Banach space in [7] and [3]. In this
section we present corresponding results for differential systems in a
B*-algebra.

The first result is a comparison theorem, implicitly used by Hayden
and Howard in their proofs.

THEOREM 9.1. Let g(t) be a symmetric solution of the Riccati

differential equation

9.1) g'(t) = [g(t) + h(e)1£(t) [g(t) + h(t)]

on the interval [a,»), where g(t), h(t), and f(t) are continuous symmetric

B -valued functions. Suppose that k is a positive real number, and ¢(t)
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is a positive real-valued continuous function such that h(t) 2 ke, and

£(t) 2 ¢(t)e on [o,®). If p is a real number such that p + k > 0 and

o)

(¢) > p e, then the solution of the scalar differential system
24 o o2

p'(t) = o(t)[p(t) + k1%,

p(a)

(9.2)

pos

exists on [a,#) and is such that

g(t) > p(t)e for t € [a,»).

Since g(t) and p(t) are continuous functions, and g(a) - p(a)e > 0,
there exists a maximal subinterval [a,t) of [a,») with g(t) > p(t)e on
[a,T). We shall proceed to show that if T < » then g(t) > p(t)e, in which
case an extension argument yields a contradiction to the maximality of
the interval [a,T). Since g(t) > p(t)e and h(t) > ke on [a,r), we have
g(t) + h(t) > [p(t) + k]le. Furthermore, the solution p(t) of system (9.2)
is nondecreasing, so that p(t) + k > p(&) + k > 0. Therefore, by Theorem

2.3, it follows that
2 2
[g(t) + h(t)]™ 2 [p(t) + k]1"e on [a,T).
Moreover, £(t) > ¢(t)e > 0, so that for t € [a,r) we have

() [g(t) + h(t)]?

8Ct) [p(t) + kle.

v

[g(t) + h(t)1£(t) [g(t) + h(t)]

Iv

Hence for each t € [a,T) we have that g'(t) > p'(t)e, and consequently,

T T ' .
g(t) - g(a) = J g'(s)ds > J p'(s)ds = [p(1) - p(a)]e.

a (¢

Therefore, it follows that

v

g(t) - p(r)e > g(a) - p(a)e > 0,
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so that g(t) > p(T)e.

It may be verified easily that the solution of the scalar differen-

tial system (9.2) is given by

t

(9.3) p(t) = [(p  + k)"1 - J tb(S)dS]-l -k

o

t
on the interval where Ja ¢(s)ds < (po + k) 1. Therefore, if there exists
t
a to such that J ° ¢(s)ds = (po + k) 1, then the solution p(t) of system
a

(9.2) becomes unbounded as t apbroaches ts consequently, the maximal
right-hand interval of existence of the solution g(t) of (9.1) cannot
exceed [a,to).

We shall say that system (3.1) is oscillatory for large t if this

system fails to be nonoscillatory for large t. In this connection it is
to be noted that the term "oscillatory" has been used in different
contexts for even the case of finite dimensional matrix differential equa-
tions and for scalar differential equations of higher orxrder. The choice
of terminology'employed here is related to the presence of siﬁgularities
in u(t) for an arbitrary self-conjoined solution (u(t),v(t)) of the
linear differential system on an infinite interval.

In Theorem 9.2 and its corollaries we will be interested in functions

satisfying the following condition. A symmetric PB-valued function n(t)

is said to have property (D) on [y,») if for each real number k there

exists a T € [y,®) such that n(t) 2 ke on [1,#). It is to be noted that
this condition might be expressed as lim inf n(t) = (+)e.

THEOREM 9.2. Let b(t) > 0, and suppose that a(t) is a continuous

symmetric function which commutes with b(t) for each t e [y,x).

Furthermore, suppose that there exists a positive real-valued differentiable
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function A(t) such that for

9.4) m(t) = [(L/2)A'(t)e - A(D)a(t)Ib 1(t)

and

t
(9.5) n(t) = —J [A(s)ec(s) + m(s)A-l(s)b(s)m(s)]ds + m(t),

Y
the function n(t) has property (D). Finally, suppose that there exists a

positive continuous real-valued function ¢(t) such that

(9.6) A" Leb () > o(t)e, for t & [y,®),
and

t
9.7) I $(s)ds » = as t- o,

Y

Then system (3.1) is oscillatory for large t.

Suppose that there exists a self-conjoined solution (u,v) of (3.1)
such that u(t) is nonsingular on [t,») where T > y. It then follows that

w(t) defined as w(t) v(t)u-l(t) satisfies the Riccati differential equa-

tion

(9.8) o w'+wa+avtwbw - c =0

on the interval [t,»). If q(t) is defined as q(t) = A(t)w(t) on [t,x),
then it follows from equation (9.8) that

-lq' = A'A-Zq - A-lqa - A-laq + A-quq - c.

(9.9) A
Equation (9.9) can be written és

A-lq' = [q + m]A—zb[q-+ m] - ¢ - ml_zbm,
where m(t) is defined in (9.4), and hence

(9.10) q' = [q + m]A_lb[q + n] - Ac - mk_lbm

on [t,®). If g(t) is defined on [T,*) as
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t
g(t) = q(t) + J [Ac + mk_lbm]ds,
Y

then the derivative g'(t) exists and
g' =q' + Ac + m)\—lbm.
It follows that equation (9.10) can be written as
' —1
(9.11) g' = [g+ n]r "bl[g + n],

where n(t) is defined in (9.5).

Let p be a real number such that g(t) > R it is clear from equa-
tion (9.11) that g(t) is nondecreasing, so that g(t) > R for each
t € [1,2). Now let k be a positive real number such that k + Py 0.
Since n(t) satisfies property (D), there exists ana € [1,») such that
n(t) > ke for t > a; moreover, for this a we have that g(a) > CHCH By
hypothesis there exists a function ¢(t) such that A—l(t)b(t) 2 ¢(t)e > 0.
With the aid of Theorem 9.1 we have that g(t) > p(t)e on [a,»), where
p(t) is defined in equation (9.3). However, by (9.7) there exists a
to € [a,») such that Jzo $(s)ds = (po + k)-l. Consequently, as t
approaches t, the function p(t) becomes infinite, This contradicts the
possibility that g(t) exists on [a,»); furthermore, neither q(t) nor
w(t) = v(t)u_l(t) can exist on the infinite interval [a,*). Therefore
system (3.1) must be oscillatory for large t.

The above result corresponds to Theorem 5 in [7]; the following two
corollaries correspond to Theorem 3 and Theorem 2, respectively, in the
same article.

COROLLARY 1. Let b(t) > 0 and a(t) = 0 on [y,~). Suppose that

there exists a positive real-valued differentiable function A(t) such that
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t 2 -1, . -1
n(t) = - J [A(s)e(s) + (L/4)(A'(s))™A “(s)b “(s)lds
Y
+ (1/2)A" ()b L)

has property (D) on [y,»). Furthermore, suppose that there exists a

positive continuous real-valued function ¢ (t) such that relations (9.6)

and (9.7) hold. Then system (3.1) is oscillatory for large t.

The following result is a special case of Corollary 1, where b(t) = e
1
(v).

COROLLARY 2. Suppose that there exists a positive real-valued

and ¢ (t) méy be defined as A

differentiable function A(t) such that

t
n(t) = - J [A(s)c(s) + (1/4)(1'(8))2A—1(S)e]ds + (1/2)r'(t)e

Y
has property (D), and that

t a1
I» A (s) »oas t >,
Y
Then the linear differential system

u"(t) + c(t)u(t) =0

is oscillatory for large t on the interval [y,®).
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