GRROR-DETECIING RACE-FRTE SEQUBNTIAL

SWITCHING CIROUTS

By
CLARHITGE D. DEAS
Bachelor of Science
Onipersity of Oklahoma
Nomnan, Oklahoma1949
Submitted to the faculty of the Graduate School of the OkJahoma Agricultural and Mechanical College in partial fulfillment of the requirements
for the degree of MASTER OF SCIPING
August, 1954

HPROR-ITRTHCTING RACE-FRBEI SEQUENTIAU SWI YOHI NG CIRCUITS

Thesis Approted:

337385

PRTFACH

From the field of switching circuits various automatic control systems have arisen, examples of which are the nodern large-scale digim tal computers and the automatic telephone switching systems. These row cent developments have done much to arouse in engineers and mathematicians alike an enthusiastic interest in regard to the unexplored possic bilities inherent in the switching art. Dowbless, this presently held interest will mature in the future into valuable contributions be cause of the efforts of the many who will accept the challenge.

This work is tendered as a small aid for those futwre contribu* tors.

I wish to express my appreciation to David I. Johnson of the Fleo trical Bngineering staff of the Oklahoma Institute of Technology for supervising this work and acknowledge the counsel of Glean Smith, Trade and Industrial Education, Oklahona Agricultural and Mechanical College and Dr. Rog Deal, Mathematics Departaent, Oklahoma Agriculturel and Mechanical College.

TABLE OF CONTESNTS

Chapter Page
I. INIRODUCTION 1
Form and Symbols Used 1
State Type Sequence Diagram 3
Evifman's Index 5
II. TWO TEGHIQUES FOR SOLVING SEQUMNTIAI SWITCHING CIRCUITS 7
Assigning Secondary Relays 9
τ Table 10
5 Table 11
$2 \times \pi$ Table 12
Alternate to Huffiman's $2 S_{0}+1$ 15
III. COMPARISON OF RRROR-DETECTING AND HUFHMANT TECENIQUES 16
Methods Comparison 16
IV. REVIBN OF ERROR-DETIGCTING TPGHNIQUI 24
Purpose 24
Procedure 24
V. STMMARY AND CONCLUSIONS 27
BIBLIOGRAPHY 29

IIST OF ILLUSTRATIONS

FigurePage1. Graphical Symbols for Relays and Contacts 2
2. Sequence Diagram for Frample 1 3
3. Circuit for Example 1 4
4. Alternate Sequence Diagram for Example 1 5
5. Incomplete Flow Table for Example 1 7
6. Flow Table for Example 1 8
7. T Table for Example 1 10
8. S Table for Example 1 12
9. $Z-\mathbb{E}$ Table for Example 1 13
10. Alternate Circuit for Fxample 1 14
11. Tables for Example 2 37
12. Circuit Equations for Example 2 17
13. Huffmen's Flow Table for Example 2 18
14. Circuit for Example 3 19
15. Brror-Detecting Flow Table for Example 3 20
16. τ Table for Example 3 22
1\%. S Table for Example 3 22
17. Z - F Table for Example 3 23
18. Circuit \#quations for Example 3 2%

Chapmar i

TTIRODUCIION

In one sense, the basic trol used in designing switching cirpunts is as old as man himself, for this tool is logic. Howerex, it yan the nineteonth century before a mathomatics, Boolean alyebra, vas deweloped to represent logic. In 1938 0. I. Shannon applied this methematien to electrical switching ciscuits. ${ }^{2}$

Since 1938 much progxoss has been made by many oncinesrs, progress that has dereloped computing mechines able to thane logically and rew menber indefinitely. exable of integrating, differentiating, and anam lyzing with the speed and ease of Atlas mapping a foothpici.

Regardiess of the complexify ow suplferty of these machines, they are still capable of making mistakes. It is with certain phases of these errors that this woris is concerned.

Much of this treatise will be based upon an article by Professor D. A. Huffinan recently puinished in the Journal of the Franicin Instice tute ${ }^{3}$ because the flow table deyeloped by Huffnan was a great stride forward in the synthesis of sequential switching circuits.

Fom and Symois Used

Throughout this treatise input conditions will be desigmatod by Ietters in the alphabet preceding 1 with the one exception of E , which will be used to designate the arrox circuitry. Secondary or memory

[^0] of W_{0} which will designate the output circuitry. Capital letters designate the relays; lower case lotters designate the contacts on the relays. Nomally open contacts are labeled with mprimed lettexs. and the normally closed contacts with the primed letters.

Figure 1. Graphseal Symbols for Relays and Conzacts.

Since a switch is either open or closed, it is a birexy varinole to which Boolean algebra may be applied. ${ }^{4}$ A closed path will bo ree presented by 1 , an open path by O. The plus (+) sign fill indicate parallel paths; the times sign (o) will be used for series paths In put infomation will be assumed to be in the form of grounding or unc
 Oix ers fan
gromaing input leads conaeted directy to the input relays. As seen in figure 1 , primary relays are externally ontrolled, secondary relays are internally controlled. Simply because primary relays are externally controlled does not insure that they will always operate as prescribed.

State-Type Sequence Diegram

A sequential switching circuit is one in which the output is de pendent on the sequence of inputs as well as the combination of inputs. The circuit must be able to remerber what has happoned in the past, digest this with what is happening at the present and decide what is to happen in the future,

At the present tine, no practical system exists whereby we can designate sequentiml circuits by mothematies alone; therefore refer ence is made quite frequently to charts or diagrams. One such diagran is the state type sequence diagram. ${ }^{5}$

Consider the following Example 1 . Two wires bring in information in the following manner. Wire B is grounded with recurring pulses. If wire A is grounded at the end of a polse on B and lasts until the end of the succeeding pulse, there is to be an output during the third pulse on B. See figure 2.

Figure E. Sequence Diagran for Hxample 1.
${ }^{5}$ W. Keister, A, R. Ritchie, and S. Vashburn, The Design of Switcho ing circuits, 1. 253 .

This cireuit has identical imput intervals on each side of the output; therefore two secondary releys will be required. 6 These were selected as shown in figure 2. The $X_{0} Y_{0}$ and Z circuits are shown in figure 3.

Figure 3. Circuit for Example 1.
Notice that this solution is not peculiar to this problem. For one thing, the resulting action is not dependent on the first pulse of B or on anything prior to interval three, as far as that goes. This may or may not be critical, but as the problem was originally stated it most probably would be. Also, the inputs have to come either from a human operator or from some previous switching circuit, and both of these are capable of making mistakes. The solution, not being peculo iar, might work for some other sequence of A and B. If such sequence can be found, then the solution may be of little practical velue. One such sequence is shown in figure 4.

This particular sequence was chosen to illustrate two thinge:
(1) that to find a particular peculiax solution to a sequential gritcho

Tbid. p. 259.
 and (2) that race conditions are hazardous and sometimes lothal.

Figure 4. Aiternate Sequence Digeram for wrmple 1.

The race condition is indicated by the circle in interval three of ペigume 4. Relar F is operated in interval two by the combination ab. At the end of interral two, B releases, which wond release Y, since Y is held by ($x+a^{0} b$). However, relay X operates in interval three by the conbination abl. Therefore, if X operates before Y is released, Y will remain operated, and an invalid oubput will occur.

Huffrnan's Index

Fundamentally, pace conditions exist becanse of the finite interm val between the instant a relay coil is connected to its source and the instant its contacts are operated. Digesting tire might be an apm propriate phrase, Since this time does exist, notice of it nust be posted in the mathematics section.

It has previously been mentioned thai 1 meant a elosed path and 0 meant an open path. In these texms the following conditions are posm sible for any given relay R and its nomaly open contacts F.

```
\(R=0\)
            relay menergized, contacts open
\(T=0\)
\(\mathrm{R}=1\)
    relay energized, contacts not yet
    closed. (unstable)
\(\mathrm{R}=1\)
    relay energoized, contacts closed.
\(T=1\)
\(R=0\)
    relay unenergized, contacts not
\(r=1\) yet open. (unstable)
```

Notice that two of the conditions are labeled unstable. Therefore a relay has four states, two of wich are stable and two of which are unstable.

Huffman has introduced a new vaioable? ${ }^{7}$ called the transition index, which indicates the condition of a relay. If R and r are alike, the relay is stable and $\mathscr{Z}=0$. If R and r are unlike, the relay is unstable and $\mathcal{T}=1$. This is equivaient to saying that

$$
\begin{aligned}
& T=R+T \quad(\bmod 2) \\
& R=T+r^{\text {or }}(\bmod 2)
\end{aligned}
$$

Addition mod 2 may be characterized by giving its addition table. That is,

$$
\begin{array}{ll}
0+0=0 & (\bmod 2) \\
0+1=1+0=1 & (\bmod 2) \\
1+1=0 & (\bmod 2)
\end{array}
$$

[^1]
CHAPTER II

TWO THCEIIIQUS FOR SOLVING SEQUENTIAL SWITCHING CIRCUITS

Next, reconsider the previous problem step by step, and rearrange the state-type diagram. In this new arrangement, each row will corves pond to an interval in the statempe diagram. Since each interval of time in the incoming sequence is to be discreet, encircle the number designating that interval or row The complete reasoning for this will be explained shortly. Across the top will be placed the four possible combinations of inputs to designate four colum of the resulting diam gran. See figure 5.

Figure 5. Incomplete flow table for Example 1.
Bach of these circled entries represents an input condition and. regardless of the complexity of the circuit, must be a stable circuit condition. This means that the transition index for each and every relay must be 0 for these combinations.

If the circuit is to be stable in each circled entry as mentioned
gove, a change in the imput will be required in order to make axy cism cuit changes. A change in the ingut cerrespands to a horsmontal mote in the diagram of figure 5. Accordingly, the following rules may be stated. 8

1. Dach circled entry in a row of a flow table indicater a stable cireuit condition, and no forther changes will ccur uniess the input stabe is modified.
2. Wach circled circuit condition within a row of a flow table can lead to any other cranit condition in the same row.

To move from entry 1 to eatry 2 zequires a horizontai morenent from colum 00 tolum OL, and then a revtical mofeaent from row one to row two. Since colum 02 row one inmediately leads to stable entry 2, it will be designated by an unciscled 2. See figure 6.

$\begin{gathered} 20 \\ 5 x y \end{gathered}$	00	10	11	01
000	(1)			2
010		3		(2)
110		(3)	4	
200	5		(${ }^{\text {a }}$	
108	(B)			6
0021	2			(6)

Figure 6. Flow Table for Txaple 1.
If the requirement is made that each change in iuput conditions has a pecuina intemal ox secondmy relay change, each uncincled entry will be an unstable stets. This mans that at least one getay mist

8Ibia. P. 173.
have $T=1$ for this combination of relays. It in nevessary and suffo cient that one and only one relay be unstable at axy given time. If two relays are simulaneousy unstable a reace condition will result. To asm sure that one and oniy one relay be unstable at a given time requires an individual secondary relay conbination for each row.

Assigning Seconday Relays.

The assigning of secondary relays requires onity that they foxm, on an S - dimensional cube, a losed gequence line thet returns to the origin with the last move. A closed sequence line of length L is any path which, starting at a given perter of the cube, goes through I textices of the cube subject to the condstrons: (1) no vertex of the cubs is entered by the Iine more than once, (2) the Ifne tratels only along edges of the eube, and (3) the two ende coincide. This assignment cam be done in any table haring an even number of rows. The number of secm ondexy relays (S) requited may be determined by the following rule.

In a table of n rows, S secondary relays will be re
quired such that

$$
2^{5 \infty 2}<n \leqq 2^{s}
$$

For example, if a taile has seven rcus, three secondary relays will be required sinee

$$
2^{2}<7<2^{3}
$$

Howerer, seren is an meren number and a closed sequence line cans not hare length seren. In this case one wow woud be added. Since 2 will always be an sren number, adding a row to an unerenoyow tablo will not require an additionz secondary relas.

The table of fisgur 6 has an orex nmber of wors, and three seco ondary relays will be required.

$$
2^{2}<5<2^{3}
$$

One closed sequence line assigmant is show in figuse 6. Notice that the combination 117 was aroided driex 211 eight possible types of sequence lines had been tried, and no one 1 ine showed an adrantage, it was decided to aroid having all secondary relzy on in zny part of the sequence, thexeby reducing power consmption. Of course, when the S table has $n=2$ rows this is not posmible。

工 Tablo
Since, as previously mentioned, ach meircled entry it an unstable state, there must be one and oxly one $\mathcal{T}=1$ cormesponding to each un circled entry. The vaderitied antries in inguo 9 correspond to the unm circled entries in figura 6. The 0, 000 entry in figure 6 is an uro circled two, which indicates an watable state that will change to eipo cled two or 01,010.

				00
000	000	000	000	012
020	000	100	000	000
120	000	000	010	000
100	001	000	000	000
102	000	000	000	100
001	002	000	000	000

Frgxe q. τ roble fox xxaple 1.
To change from the Lirst row to the second row requires a chage in reley X_{0} When the efmination 0,000 comes along X will be energixed,
 combination is 01.010 which is the circied entry two and the circuit in again staig.

If the solution is to be pecultar, only the uncireled entries in figure 6 should be ungtoble. All of the blank spaces in figure 6 arg combinations that are not supposed to occur, In may instances, thowgh, if they do occur there should be some waming This cea be accomplished by making all blant spaces stable conditions and the controlling combina tions for an exrox relay. Thus ail ontries in the τ table will be wero with the exception of one $\mathbb{T}=1$ in each entury preceding each interval of the original problem.

S Table

The S table is to show in exactiy what conbinations each secondary relay is to opewate. Since

$$
\begin{aligned}
& \tau=R+z(\bmod 2) \\
& \mathbb{B}=\boldsymbol{T}+\Phi(\text { mod } 2)
\end{aligned}
$$

each entry in the S table can be found by ading cyclically mod two eakh entry in the τ table with the secondary pelay state for the same row, For example, in figure the 02,000 entry is 010. Adding 000 and 010 cyclically mod two gives OIO, and this then is the 01,000 entry in the Stable.

After harimg complated the S table itit the abore manner, the vnused combinations of secondary relays moy be added as "don" care condition if desired. This winl usually simplify the circuitry for the secondery relays. These may bo used as "don" caress ony beegse they are mandre tory in the error espeutry, oss will be seen Iatex. They ewe not sup posed to hapen, but in they do the exrow circuitry will taix care of
them.

$x \times 2$		10	11	02
000	000	000	000	010
010	010	210	010	020
110	120	120	100	210
200	107	200	200	100
309	102	101	201	001
00%	000	001	002	001
012	DONT ${ }^{\text {T }}$ CART			
212				

Figure 8. SToble for Exampie 1.
These "don" carel conditions we a.s incicated in figure 8.

$\underline{Z}-\underline{T}$ Moble

Severai tries in this gwicie refexence has been made to exror: and peculiar solutions. In many design problens it is essential that these be taken into account. This articke is intended to show a technim que of synthess. in such cases. One can not say as an solute rule that this systom will always require additional relays, although generalm Iy this is true. It will in most justances, requise addinionel contasty on the relritw, but a problen will be presented later in this artiche that will require neithex ertra relays now extra sprigg.

Since any combination of primaxy and socondury relays represented. by the blank spaces in figure 6 are unwated conditions, the erxow we Lay should operate when and if they occur. Thus an II is placed in each space corresponding to the blank or orror conditions of itgure 6. This is show in ingure s. Aiso, any tura the wrusod combinations of

$\begin{gathered} 68 \\ +x y y \end{gathered}$	0	10	11	02
000		\%	[
020	If		318	
120	(1)			\%
200		\$		W
20.		[\% ${ }^{3}$	
001		\%	\%	2
022	E	R	B	需
212	E	I	IT	E

Figure 9. $2 \sim \mathrm{E}$ Table さor Trample 1.
In this particular provieu, sn ouphut was desired only in inter val six. Therefore the Z eatry wid be the gingle combination 01,002. If er contacts re insarted in series with the z network, output will be obtained only in there hare been no erross.

From the S and Z - Thenes to the linal cipeuitry is but a matter of synthestying combinationai cixcuits. Following is one solution, not. however, the ompy one as anyone fomilar with combinational circuitw will realize.

Figure 10. Alternate Circuit for Example 1.

Alternative to Huffman's

Although many problems in sequential switching circuits are se arranged that the presences of an error is not critical, one should not abandon the foregoing procedure and start merging rows.

Huff men states that any flow table with n row can be designed which uses exactly $2 S_{0}+1$ secondary relays, where S_{0} is the least in Leger that satisfies the condition

$$
n=\mathscr{Z}_{2} \mathbb{S}
$$

In other word, after possible merging, a condensed flow bible with n rows may not satisfy the requirements necessary to make each ko set cor o nected with $\log _{2} n$ secondary relays. If this is so, it can still be synthesized with $25_{0}+2$ secondary relays. By the procedure of this article any problem may be solved with $\mathrm{S}+1$ secondary relays, where S is such that

$$
2^{S-1}<n<2^{6}
$$

in the primitive flow fable. Certainly, if errors are not critical, whichever system yields the minimum number of relays and contacts show d be used. Caution must be observed in maximizing relay though, since it is possible that in so doing a much greater number of spring u may be required.

TIbIA, , D. 2\%5.

CHAPTIER III

COMPARISON OF RRROR-IINTETING AND RUFHMANT TTCHITIQUES

Methods Comparison

Huffmen describes and neaty solres a problem of remembering. 10 For comparison of methods, the problem will be presented, solved by this authoris procedure and compared with Huffmanis.

The eircuit of Example 2 to be synthestaed has two output leads, each somewhat under the direct control of its respective input. Starbo ing from condition one ffor which neither of the imputs and medther of the outhits ais grounded) grounding of the A ixput grounds the Z_{I} output; grounding of the B input gromds the Z_{2} output. But simultaneous grounding of bowh A and B results in no ground at the output. In the latter case, no possibility of an output ground exists until the circuit is returned to condition one by the ungrounding of both input leads.

In case a ground on the Z_{1} output lead was originally obtained it will remain until such time as it is remored by the appearance of a ground signal on the B inpuib only. Siminajy. in case a ground on the \mathbf{z}_{2} output lead was osiginaily obtained. 跎 will remain until such time as it is remored by an appearance of a ground on the A input onisf.

Since thit is a selecting sequathal problem, f.e., one which gifes an output depending upon which requence the input follows, socm ondary relay is odded across the top of the plov table. The addrtion

[^2] an unstable state.

$x^{2 b x} 000$		100	102	111	110	020	011	001	
0	(1)	2	9	(8)	\pm	$6^{\text {H }}$	(6)	(7)	FLOW
1	(3)	(2)	(9)	(10)	(4)	$5{ }_{H}$	(5)	\%	TABLTS
0	00	02	01	00	00	20	00	00	
1	00	00	00	00	00	10	00	00	
0	00	02	2.	20	00	20	20	20	
1	01	0.	11.	21	02	11	21	21	
0	0	2_{2}^{2}	0	z_{2}	T	z_{2}	z_{2}	Z_{2}	
1	Z_{3}	2	0	0	Z 2	0	0	E	

Figure 11. Tables for Example 2.
Thus, as seen in figure 11, the two input sequerces may be disw tinguished by the relay X, one being with X, the other without.

From the S and $\bar{Z} \mathrm{~F}$ tables the following circuit equations may be derited.

$$
\begin{aligned}
& f(y)=a b^{8}+y \\
& f(X)=a^{\prime} b+x \\
& f\left(Z_{q}\right)=x^{\prime}\left(x y+b^{8} y+a b^{\prime}\right) \\
& f\left(Z_{Z}\right)=y^{\prime}\left(b x+a^{\prime} b+a^{\prime} x\right) \\
& I\left(\mathbb{D}^{\prime}\right)=2 x^{\prime} y^{\prime}+a^{\prime} b^{\prime} x y
\end{aligned}
$$

Figure 12. Gireunt Equations for Exemple 2.
The resulting cixcuits new easily be draw, and will be left fox the reader.

In general, then, selscting sequential gixeuits may be designed. by the above procedurg with the adition of secondary welays across
 top depends upon the nuwex of woquexces to be distroguished. ome adtuo tional reley on top wigl distinguigh between two input sequencem, two will distinguish between iouso throe will distinguish betwoen eight, etc.

In Huffman s solution of this problem three secondaxy relays were fequired. His flow table is as shown in iigue lis.

P20	00	01	10	22
000	(3)	2	3	10
002	(6)	(2)	8	(4)
080	(7)	8	(3)	(5)
012				
300	1	(8)	(3)	6
201			9	
220		8		
212				

Figure 13. Huffnais Flow table for Example 2.
There are sereral possibilities of error in this ilow table. If oxaginaliy a ground on was obenned by juput 10 , and then the ins put changer to 21, the oubput is to werain as $Z_{1 .}$. But if the circujo try of relay I wexe to have a farly causing y to becone I. the ralu conditions change to 11,011. Thxs Is a blanir entry in the flow foive and can only lead to blank extyiew. In proctice an extra relay to xe set the circuit would probaby be required. But this weva tais to fow the nuber of relays requiped, where the crepractecting methec onfy requires throe. Adrathediy this in an sdeal problem for the
erroxdefecting method becuse fewer relays are requiwed which is the exception and not the rule. An example will be shown later where the orrox detecting method requireg more equipment than Huffman's method.

The preceding problem was labeled by Huffman as a "non-ideal" situation. ${ }^{11}$ The following problem, Example 3, was labeled os an "ideal" situation. ${ }^{12}$

This circuit is to have two inputs and four outputs. The input restrictions are such that ong one input lead may be grounded at a time, and such that neither input lead may be grounded unless both are first ungrounded. This latter restriction prohibits the transitions in input state from 01 to 10 and vice rersa. This may or may not be a strict restriction but if it is, some warning system should be provided should this condition occur.

Of the four output leads, one and only one is to be grounded at a time. With the second input ungrounded, each grounding of the first input lead is to adrance the position of the oufput ground by one step. See figure 14.

Figure 14. Cireait of Txample 3.
Remoral of the input ground is to hare no effect upon the ortput. For example, if initially both input leads are ungrounded and the num ber 2 ortput lead is the one grounded, gromding of the first input

$$
\begin{aligned}
& 11_{\text {Ibid }}, ~ p .280 . \\
& 12_{\text {Ibid, }}, ~ p .276 .
\end{aligned}
$$

Lead is to remore the ground from the numbew 2 output Lead and in press the ground instead upon the number 3 output Lead. Subsequent re moval of the input ground is to have no further effect on the output.

The grounding of the second input lead, on the other hand, is to make the position of the output ground retreat by one step.

Since this is a selecting sequential circuit with two possible input sequences, one secondexy relay will be needed across the top of the flow table. See figure 15.

$\begin{gathered} \text { Bio } \\ \text { - } \end{gathered}$		100	101	111	011	010	110	001
000	(1)	${ }^{10} \mathrm{HC}$	$20 \% 2$	π	\#	84	E	1 H
100	1.	\#	(12)	W	꼬	(2)	$\underline{\text { E }}$	2
210	(2)	11_{3}	11_{3}	\#	2	5_{1}	T	${ }^{2}$
010	22	E	(12) 3	\#	\#	(6)	E	$3{ }_{3}$
011	(3)	lim_{4}	${ }^{12} 4$	E	\#	62	\mathbb{E}	${ }^{3}$
111	3_{3}	\mathbb{H}	(12) ${ }^{2}$	E	\#	(9)	T	4_{4}^{4}
101	(4)	${ }^{9}$	9	\mathbb{T}	\#	${ }^{7} 3$	\#	4_{4}^{4}
00%	44	\#	(2)	III	E	(8)	\#	${ }^{181}$

Figure 15. Frror-Detecting Flow Table for Example 3.
If output lead numbex i is grounded at condition one, a change in input state to 10 will mote to colum 100 in the flow table where an wer stable ten is entered winch causea a move to another ten, circled or uncircled, in either the same column or the seme row and adjacent to 1 t. For the ten in column 100, the next move would be to coluran 101, where another unstable ten is entered. This ten then will cause a vertical move to the next row. Hotice that the secondaxy relays are again as signed so that they would form a closed sequence line on an s-dimen sional cube.

A change in input frou 00 to 10 is to adyance the output ground by one, so condition ten must be a gromd on ouppiz lead number 2. The sub sequent removal of the grown on ingut A will change the top relay state from 101 to 001, then to 000. This was not to affect the outpert, so entry two in colum 000 will retain the ground on output lead number 2. Should the input then change to 01, the top selay state will be 010 where an unstable fire is entered. This causes a chenge rextically to colum 010 row 100.

Hach change in input state to 01 is to retreat the output growed by one step so condition sive must represent a ground on output lead number 1.

If the input changes aron 01 to 10 or vice rexsa, the top relay state will change from 200 to 010, or from 101 to 011, or the rererse of these two. There are no stable ontries in the 100 colum so a change from 100 to 010 will not happen undess it goes through the \mathbb{I} entry first. Likewise any one of the mwated chenges winl result in passing through an tientry or stopping in one.

The τ and S tables were deritred in the usual manner with the top secondaxy relay being Ifsted first. Thus the entry 1000 in the τ table means that the top or \bar{X} secondary relay is in an unctable condim tion and a horizontah note will result. See figure 16 on page 22.

From the 5 and Z - \mathbb{B} tables, figures 9% and 18 on pages 22 and 25, the final circuit may be designed by neans well established.

One possible solution is given by the algebraic expressions show in figure 19 on page 23.

[^3]| 6 | 000 | 200 | 107 | 271 | 028 | 010 | 120 | 001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 0000 | 2000 | 0100 | 0000 | 0000 | 0002 | 0000 | 1.000 |
| 100 | 0100 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0010 |
| 110 | 0000 | 1000 | 0100 | 0000 | 0000 | $00 \% 0$ | 0000 | 1000 |
| 010 | 0100 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0001 |
| 011 | 0000 | 1000 | 0100 | 0000 | 0000 | 0002 | 0000 | 1000 |
| 112 | 0100 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0020 |
| 101 | 0000 | 1000 | 0100 | 0000 | 0000 | 0010 | 0000 | 1000 |
| 001 | 0100 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0002 |

Figuae $16 . \tau$ Henqe for Pxample 3.

\%xy	000	100	201	111	011	010	110	001
000	0000	1000	1200	1000	1000	0001	0000	0000
100	0000	0100	1200	1200	1200	0100	0200	1110
120	0110	1210	1010	1120	1110	0100	0110	0110
010	0120	0020	2010	1010	1020	0010	0010	1011
011	0021	1021	1111	1011	1012	0020	0011	0011
111	0011	1211	2117	1111	1117	0111	0111	1108
101	0101	1201	1001	120%	2101	0111	0102	0101
001	0101	0001.	1001	2. 002	1002	0002	0001	1000

Figure 1\%. STable ior Pxample 3.

Fisure 18. $\quad 4-7$ fronle for Fxample 3.

$$
\begin{aligned}
& A(U)=u\left[a+b+y\left(x^{8} y^{8}+x\right)+y^{8}\left(y^{4} x+\mathbb{W X}^{4}\right)\right] \\
& +2 \omega^{2}\left[y\left(x^{4}+7 x^{4}\right)+y^{8}\left(\mathbb{F}^{8}+x^{8}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \phi^{4}\left(\mathrm{y}^{4}+\mathrm{a}^{4} \mathrm{u}^{8} \mathrm{x}\right) 7 \\
& f(X)=X\left[a+a^{q} y\left(b+u^{t}+y^{s}\right)+a^{2} Y^{2}\left(b y+u+y^{2}\right)\right] \\
& +x^{8} a^{4}\left(b u^{1}+b^{1} u\right) \\
& \mathcal{L}(Y)=y\left[u(a+b+y+x)+u^{i}\left(a+b^{2}+\Psi+x^{2}\right)\right] \\
& \text { + yty } \boldsymbol{y}^{8}\left(0^{1} x+b x^{4}\right)
\end{aligned}
$$

CRIAPTHIR IV

RETIMA OF HRROR-DRTHOTING WEHNIQUE

Purpose.

For some sequental circuits the existence of races or the possico bility of exrors can not be tolerated. This article describes a method for synthesizing eireutis in such a manner that races can not exist, and if an error is made, it in easily debected.

This method wil wsually entail the use of more equipment than is necessary to get just a solution. It then becones the engineery s prem rogative as to which method is the mo

Procedure.

1. From the given information, deteraine the number of disereet time intervais and areage ther in the proper sequential order.
2. Form a flow table with one colum for each possible combina tion of input leads.

If the problen is one of selecting sequeaces, add the needed secondary relays on top so that there will be one colum iow each possico Ble combination of these secondaxy reluys and the primary relays. The numbe of secondary ralays reeded aexsss the bop will be deternined by the number of individual sequencen to be chosen from. One secondary relay on lop will distiguish between two sequences, two between fous, etc. If S_{1} represents the nurber of secondary relayg assigued to the top. the flow table will hate $2^{I}+S_{t}$ colwans, where I is the nuaber of prinaxy qelays.
3. Assign the intervais determined in 1 to the flow tabls so that there is one and only one per ront Gircle each antry. In the selecting
sequentiai riov toble, there may be more thaz one per zow if it in me armaned that a charge sn inpur will not cause a more frou one ciredud entry to another.
4. Assigu an matreled entry to poch circted entry so that they are in the same colum and are in adjarent sows. This requires the man circled entry to be in eithes the rew inmediabely preceding or suceeat
 jasent.

In the solecting flou tably, an uncircled entwy may be in the same row as another entry of the same muber exther circled or ucipm cled. If so, eash uncircled entry of given nuber must be horizorsal Iy adjacent to nother extry of the mane nonbez either circled or an gircied.
5. Assign secondary relays to the rows so that a different comm binabion represents each row, and arrenge the ce combinabions in an ow der so that they would form a closed sequence Jine on an S dimensional cube. This requires an even number of rown; therefore, one row may have to be added to the tebie.
6. Label each unocoupied spaee with an T, indicating the oxrox circuitry. If the tonle has less than 2^{5} rows, the unved combinations
 may not be included as "don" eare" conditions in the S exreutry.
7. Dosite the τ toinle by moking $\tau=0$ for each relay in each entry corresponding to a circled ox \mathbb{F} entry in the flow table. Also in each enky corresponding to ancircled entry in the flow bable, one and only one melay should hate $\tau=1$.
8. By adding τ and z^{2} cyclically mod 2 to obtain \mathbb{R}_{0} form the

Stable.
9. Fom the $Z \infty \mathbb{m}$ table by entering $\%$ in the proper space to gise the required output and I in each space that showl indicate an exror.
10. Solfe by combinational methods the problem presented by the S and $Z=\mathbb{Z}$ tables.

A sequential switcoing einerit is a combantion of two ar mox switches which are either electroncolly, mechanically or menulig cenm Grolled and opergte in a cervain sequence or order to produce some prom scribed output at any given fime The cirouty mush have some method of remembexixg what has happened in the past. Thex the past must be dim gested with the present, and the efrout must decide the future erents. Sewerai methods exisiv og syrthosizing sequenbid switching cix cujts with each method having some adrantage ovex the obhesg. Boweves, two oubstanding disadravtage exist in erasy preview known nethod. One is that the solution to a problen in most cases in not pecuitaw to that problem That is, there exist other sequences tox which the atm cuis woud woris oquaily meli. If thim is so the cixcuit can not usumbo Iy indicate whethex an marar ham been made whese errows could be either interinal ox externat. Another disadrantage of existing methods İ the difficuity in locabing race condicons and ano detemining whe ther these wacem ame hazrudons ow mot. Rave conditions ame causer by two or more switching devices being exergized at the sane time. A race then oceurs between swithies so see which one moke or breaks eon W8ct

A new dethod in jntrodreed in thyswom which graranteen tho iogm 2owing three thing

1. The tincl solvite wit be pecuinai to the pwoblem.

That in, it wil work feq no othem seguences

2 waming will be giten.
3. There axe no possible races.

The method is based on a modufication of the tery important flow toble techniques introduced by D. A. Huffman in the Journal of the Frankin Institute, March 2954. In order to eliminate raceg seconw daxy zelay combnations are assigned to each row of a primstife fiov table sueh that they wovid form a closed sequence line on an S - dinersional cube, where S is the number of secondary relays. Frros deteco tion is achieqed by entering undesirable combinationg in a waming cix cuit.

This method also has its disadrantages. The main one is that it usually requires additional equipnent. Whether its adyantages outw weigh its disedrantages depends on the problen restrictions and the pere cent of extra equipnent required. Its advantages are belieqed to be sufficient to waxrant investigating by thats methed gry problem that axises.

BIBIIOGRAPHY

Birkoff and MacLane. A Survey of Modern Alsebra. New York, The Macmillan Company, 1941.

Boole, George. The Laws of Thought. Queens College, Dublin, 1854.
Huffman, D. A. "The Synthesis of Sequential Switching Circuits. ${ }^{n}$ Journal of the Franklin Institute. Part I vol. 257. No. 3, March 1954, pp. 161-190; Paxt $2-\operatorname{Vol} .257$, No. 4, April 1954, pp. 275-303.

Kamaugh, M. "The Map Method for Synthesis of Combinetional Logic

Keister, W., A. E. Ritehie, and S. Washourn. The Design of Switching Gircuits. D. Van Nostrand Company, Inc. 1951.

Montgomerie, G. A. "Sketeh for an Algebra of Relay and Contactor Gircuits ${ }^{\text {月 }}$. Jous. IRI, Vol. 95, Part III, 1948, pp. 303-312.

Shannon, C. E. "A Symbolic Analysis of Relays and Switching Circuits". Trens. AIEE, Vol. 57, 2938, pp. "13 723.

Shannon, C. T. "The Synthesis of Twowerminal Switching Circuits". Bell System Tech. Joux. Vol. 28, 1949, pp. 59m98.

Veitch, F. E. "A Chart Method for Simplifying Truth Functions". Proc. Assn. for Computing Machinery, May 1952.

TITA

Clarence $\mathrm{D}_{\text {. Deal }}$
candidate for the degree of
Master of Science

Thesis: BRROR DETECTING RACHWRHIS SEQUEIVTIAL SWITOHING OIRCUIS
Major: Electrical Figineering
Minor: Trade and Industroxal Education
Biographical and Other Items:
Born: February 26, 1925 at Weatherford, Oklahoma
Undergraduate Study: Unirexsiby of Okiahoma, 1942-1943, 19461949.

Graduate Study: O. A. M. C. . $1951=1954$
Experienco: Tocational Hlectronics Instructor, Central High School. Oklahoma Oiby, Oxlahoma, 1950mPesent; Chief Enginees, Radio Station KOKH © FM, Oklahona City Board of Education, $1951-$ Present.

Date of Final Txamination: July, 1954.

THESIS TITIA: TRROR - DETECTTMG RACE-FRHE SEQUENTIAI STTTCHING CIRCUITS

AUTHOR: Clarence D. Deal

THESIS ADVISHR: Dewid I. Johoson

The content axd form have been checised and approwed by the author and thesis adriser. The Graduabe School ofipee assumes no responsibiliby for oryors either in form or content. The copies are sont to the bindery just as they are approved by the author and facuity adyispr.

TYPISTS: Tirginia Deni ma Datid Ao Kiine

[^0]: $l_{\text {George Boole, The Liges of Thonst. }}$
 ${ }^{2}$ C. No Shemm, ${ }^{\text {A }}$ Aymbolic Anelysis of Relays and Switching ©9cutis.

[^1]: 7D. A. Huffan, "The Syathesis of Sequentiai Switching Circuitw p. 163.

[^2]: 10
 Thia, p. 280.

[^3]: ${ }^{13}$ W. Reister, A. H. Ritchie, and S. Washburn, The Design of Switcho ing Gircuits, chs. 5 and 6 .

