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Abstract

Currently, NEXRAD provides weather radar coverage for the contiguous United

States. It is believed that a replacement system for NEXRAD will be in place by

the year 2040, where a major goal of such a system is to provide improved temporal

resolution compared to the 5–10-min updates of NEXRAD. In this dissertation,

multiple projects are undertaken to help achieve the goals of improved temporal

resolution, and to understand possible scanning strategies and radar designs that

can meet the goal of improved temporal resolution while either maintaining (or

improving) data quality. Chapter 2 of this dissertation uses a radar simulator to

simulate the effect of various scanning strategies on data quality. It is found that

while simply reducing the number of pulses per radial decreases data quality, other

methods such as beam multiplexing and radar imaging/digital beamforming offer

significant promise for improving data quality and/or temporal resolution. Beam

multiplexing is found to offer a speedup factor of 1.7–2.9, while transmit beam

spoiling by 10◦ in azimuth can offer speedup factors up to ∼4 in some regions. Due

to various limitations, it is recommended that these two methods be used judiciously

for rapid-scan applications.

Chapter 3 attempts to quantify the benefits of a rapid-scan weather radar sys-

tem for tornado detection. The first goal of Chapter 3 is to track the development

of a common tornado signature (tornadic debris signature, or TDS) and relate it to

developments in tornado strength. This is the first study to analyze the evolution

xiii



of common tornado signatures at very high temporal resolution (6 s updates) by

using a storm-scale tornado model and a radar emulator. This study finds that the

areal extent of the TDS is correlated with both debris availability and with tornado

strength. We also find that significant changes in the radar moment variables occur

on short (sub-1-min) timescales. Chapter 3 also shows that the calculated improve-

ment in tornado detection latency time (137–207 s) is greater than that provided by

theory alone (107 s). Together, the two results from Chapter 3 emphasize the need

for sub-1-min updates in some applications such as tornado detection. The ability to

achieve these rapid updates in certain situations will likely require a combination of

advanced scanning strategies (such as those mentioned in Chapter 2) and adaptive

scanning.

Chapter 4 creates an optimization-based model to adaptively reallocate radar

resources for the purpose of improving data quality. This model is primarily meant

as a proof of concept to be expanded to other applications in the future. The result

from applying this model to two real-world cases is that data quality is successfully

improved in multiple areas of enhanced interest, at the expense of worsening data

quality in regions where data quality is not as important. This model shows promise

for using adaptive scanning in future radar applications.

Together, these results can help the meteorological community understand the

needs, challenges, and possible solutions to designing a replacement system for

NEXRAD. All of the techniques studied herein either rely upon (or are most easily

achieved by) phased array radar (PAR), which further emphasizes the utility of PAR

xiv



for achieving rapid updates with sufficient data quality. It is hoped that the results

in this dissertation will help guide future decisions about requirements and design

specifications for the replacement system for NEXRAD.
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Chapter 1

Introduction and Background

1.1 Background and Motivation

Currently, high-resolution weather radar data is collected across the United States

by the Next-Generation Radar system, or NEXRAD (Fig. 1.1). This system was

designed in the late 1980s, and was installed nation-wide in the early 1990s to provide

weather radar data for the majority of the Continental United States (CONUS). As

of the year 2020, NEXRAD is approaching the end of its lifecycle. There is currently

a service-life extension program (SLEP) underway to ensure that NEXRAD can

persist through 2040. If a new radar system is to replace NEXRAD in the late

2030s, a design decision will need to be made by approximately 2028 (Weber et al.

2019). To meet this goal, there is fundamental research ongoing into polarimetric

calibration for phased array radar (PAR; Ivić 2018; Ivić and Schvartzman 2020),

data collection from similar, prototype-style systems (Weber et al. 2020; Torres et al.

2020), assessment of rapid-scan PAR benefits (Heinselman et al. 2012; Wilson et al.

2017; Cho and Kurdzo 2019; Kurdzo et al. 2020), and research of potential signal

processing techniques (Yu et al. 2007; Melnikov et al. 2015; Zrnić et al. 2015). The

research in this dissertation is designed to provide insight into some of the design

1



Figure 1.1: NEXRAD coverage of the CONUS. Figure adapted from the NOAA

Radar Operations Center (ROC).

considerations for a replacement system (hereinafter referred to as ‘NexPAR’, in

reference to the relatively high likelihood of a NEXRAD replacement system being

a PAR).

It is a stated goal of the National Weather Service (NWS) to improve the tem-

poral resolution relative to NEXRAD. According to the initial performance require-

ments for a similar system (Federal Aviation Administration 2017), desired tem-

poral resolution is 1 min. This represents an approximate 5-fold improvement in

2



full-volume update time, as NEXRAD volumetric update times are generally ∼4–

7 min for precipitation modes (NOAA OFCM 2017). Such a significant reduction

in volumetric update time is believed to offer many advantages for meteorological

operations. For example, Heinselman et al. (2012) and Wilson et al. (2017) have

shown that the introduction of rapid scans with a phased array radar (PAR) leads

to increased warning lead time, improved forecaster confidence, a higher probability

of detection, and a lower false alarm ratio for tornadoes in a simulated operational

setting. Wolfson and Meuse (1993) found that higher temporal resolution (3 min to

1 min) also improves warning lead time for low-level wind shear detection for avia-

tion applications (2.2 min to 5.2 min). Also, data assimilation studies have shown

the benefit of assimilating rapid-scan weather radar data to improve short-term

numerical weather prediction (NWP) model accuracy (Yussouf and Stensrud 2010;

Sun et al. 2014; Supinie et al. 2017), which could have important implications for

future warning paradigms such as Warn-on-Forecast System (WoFS Lawson et al.

2018).

While the introduction of NEXRAD greatly improved warning lead time (Polger

et al. 1994; National Research Council 1995; Bieringer and Ray 1996; Simmons and

Sutter 2005), the lead time for warnings has remained largely stagnant since the mid-

2000s, and has even decreased since 2012, likely due to an increased NWS emphasis

on reducing false-alarm ratio (Brooks and Correia Jr. 2018). A lack of improvement

in lead time is an issue for the NWS, as it has been shown that there is a statistically

significant link between increased tornado warning lead time and a lower number of
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injuries caused by tornadoes (Simmons and Sutter 2008). Because severe storms and

tornadoes tend to evolve on timescales much faster than the 4–7-min VCP update

time of NEXRAD (e.g., Carbone et al. 1985; French et al. 2013; Wurman and Kosiba

2013; French et al. 2014; Houser et al. 2015; Wakimoto et al. 2015; Tanamachi and

Heinselman 2016; Kurdzo et al. 2017; Mahre et al. 2018; Bluestein et al. 2019; Griffin

et al. 2019; Wakimoto et al. 2020), improved temporal resolution is a priority for the

NWS for accurately issuing warnings and advisories. For example, rapid updates

are especially important for accurate quantitative precipitation estimation (QPE),

because urban flood and flash flood predictions rely on fast volumetric updates,

as watersheds can respond rapidly to changes in rainfall (Wang and Chandrasekar

2010).

High-temporal-resolution weather radar data has also been shown to be essential

for many research applications. As previously stated, tornadoes evolve on much

faster timescales than the typical NEXRAD volumetric update time. Several radar-

based studies on the dynamics of tornadoes (e.g., French et al. 2013; Wurman and

Kosiba 2013; French et al. 2014; Houser et al. 2015; Kurdzo et al. 2017; Mahre

et al. 2018; Bluestein et al. 2019; Griffin et al. 2019; Mahre et al. 2019) have shown

that the dynamics of tornadoes can change significantly in less than a minute. For

example, Mahre et al. (2018) found that debris lofting in and around an EF-3

tornado occurs rapidly, such that significant changes are observed at ∼30 s updates

(Fig. 6 of Mahre et al. 2018). Using the same radar, Griffin et al. (2019) observed

changes in tornado intensity and tilt at ∼10 s temporal resolution (their Figs. 5
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and 8). French et al. (2013) also found that changes in tornadogenesis occur on

very rapid timescales, by using 10 s volumetric data from a mobile radar to track

the vertical development of a tornado. Additionally, Mahre et al. (2019) found

that in several tornadoes, there appears to be a statistically significant oscillation in

tornado intensity with a period of approximately 60–90 s. To properly observe this

phenomenon (following the Shannon-Nyquist sampling theorem), the radar update

time must be no longer than 30 s. Despite the evidence that many meteorological

phenomena such as tornadoes require an update time of less than 1 min for proper

observations, even 1-min updates would be more helpful for research applications

than the current ∼5-min updates offered by NEXRAD. However, the results of these

studies do underscore the point that in certain situations, updates faster than 1 min

are desirable. With a PAR, adaptive scanning could allow for even faster updates

if the need arises.

As a result of the growing body of evidence that improved temporal resolution

(beyond 5-min updates) is essential for both research and operations, the NWS has

expressed a desire to have volumetric updates on the order of 1 min. However, a 5-

fold reduction in update time presents several challenges regarding the design of the

NexPAR system. For example, a reduction in volumetric update time corresponds

to poorer data quality (Mahre et al. 2020) and/or reduced volumetric coverage

(Chrisman 2009; Heinselman and Torres 2011). This represents a challenge, as

other techniques will have to be employed in order to achieve rapid updates without

sacrificing data quality while still scanning the full volume. The exact speedup
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factor necessary will depend upon radar architecture and the percentage of scan

timeline available for weather observations, but initial estimates speculate that a

scan speedup factor of 1.25–5x will be necessary relative to NEXRAD (Zrnić et al.

2015; Weber et al. 2017; Mahre et al. 2020).

To achieve these speedup factors, significant changes will have to be made to

the design and signal processing of a NexPAR system. For example, mechanical

limitations would not allow for a single radar (either PAR or parabolic dish) to

be mechanically rotated at the rate necessary to achieve 1-min volumetric updates

without significantly modifying the signal processing techniques or the volume cov-

erage pattern. For example, the Rapid-Scan X-Pol Radar (RaXPol; Pazmany et al.

2013) uses a technique called frequency hopping to increase the number of indepen-

dent samples per radial by transmitting pulse pairs in rapid succession, with each

pulse pair shifted in frequency by a minimum of the pulse bandwidth to increase

sample independence.

To achieve desired data quality, techniques other than simply altering the me-

chanical rotation rate need to be used to achieve the desired scan speedup. More

information about possible radar architectures and scan techniques is provided in

the following section.
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1.2 Previous and Ongoing Research on Rapid-

Scan PAR and Signal Processing Techniques

1.2.1 Weather Radar Testbeds and Demonstrators

To test the potential for a PAR solution as a NEXRAD replacement, multiple real-

world radar systems have been used. One of the first PARs used for meteorological

observations was the National Weather Radar Testbed (NWRT; Forsyth et al. 2005).

The NWRT was an S-band PAR, where the antenna (SPY-1A) was originally de-

ployed on a U.S. Navy ship. The NWRT became fully available to the research com-

munity in May 2004, and was the first PAR available to the meteorological research

community on a full-time basis (Forsyth et al. 2005). The NWRT collected data on

multiple meteorological cases, including tornadoes, intense storms, and other cases

in which rapid-scan PAR data are useful (Forsyth et al. 2005; Zrnić et al. 2007; Hein-

selman et al. 2008; Newman and Heinselman 2012; Tanamachi et al. 2015; Kuster

et al. 2016). These studies have shown the importance of rapid scanning radar for

case studies of various phenomena, and much of the analysis conducted in those

studies are only made possible by ∼1-min volumetric update times. Forecasters

have evaluated the rapid-scan radar data and have generally determined that the

faster updates are useful for operations. Perhaps most importantly, the NWRT

was used to test various scanning strategies, algorithms, and signal processing tech-

niques (e.g., Yu et al. 2007; Heinselman and Torres 2011; Curtis and Torres 2011;

7



Lakshmanan et al. 2013); the results from some of these studies will be discussed in

Section 1.2.3.

The SPY-1A antenna was decommissioned in 2016, and the pedestal and radome

which formerly housed the NWRT has been used to house the Advanced Technology

Demonstrator (ATD; Torres et al. 2020). This demonstrator is the first full-scale,

active, polarimetric, electronically scanned PAR for meteorological observations. It

is a goal of the ATD to properly characterize PAR polarimetric performance and

calibration, technology maturity, and the ability for a similar PAR system to meet

the needs of the NWS (Torres et al. 2020). This work is especially important, as

the exact design for a NexPAR system is still unknown (Weber et al. 2019; Weber

and Herd 2019). For example, it is unknown if a NexPAR system would consist of a

dense network of smaller radars, a NEXRAD-style network comprised of single-faced

mechanically rotating PARs, or a NEXRAD-style network of four-faced PARs that

electronically beamsteer, without any mechanical rotation in azimuth or elevation.

By using the ATD, we can better assess the feasibility for a PPAR system for a

full-scale, nationwide network of radars.

1.2.2 Potential Radar Design Architectures

As previously stated, the improvement in temporal resolution from ∼5 min to

∼1 min provides some challenges to preserve data quality while achieving fast up-

dates. In this section, some of the research and techniques that have been studied
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for rapid-scan PAR systems are detailed, and their feasibility for obtaining rapid

updates for weather radars are discussed.

While it is unclear what the design of NexPAR will entail, it is assumed that

a NEXRAD replacement system will be a PAR, rather than a parabolic dish. The

assumption of a PAR architecture is made because of the many advantages of PAR,

including (but not limited to) significant scan flexibility, graceful degradation (i.e.,

fewer single-point-of-failure components), and lower maintenance and operations

costs. The NEXRAD system uses a parabolic dish, which mechanically rotates in

azimuth and can tilt in elevation to provide a full volume of data every ∼5 min (‘pre-

cipitation modes’) to ∼10 min (‘clear air modes’). The NEXRAD data has 250 m

range resolution and 1◦ azimuthal resolution, and data are collected at successive

elevation angles as prescribed by a pre-defined volume coverage pattern (VCP).

NEXRAD can collect both single-polarization data (e.g., radar reflectivity factor,

radial velocity, spectrum width) and polarimetric data (e.g., differential reflectivity,

copolar correlation coefficient, and differential phase information).

The first iteration of a system that was proposed to replace NEXRAD was the

Multifunction Phased Array Radar (MPAR; Weber et al. 2007; Reinoso-Rondinel

et al. 2010; Zrnić et al. 2015; Weber et al. 2017). The idea of the MPAR sys-

tem was to share design and operating costs between several partners; namely, the

Department of Defense (DoD), the Federal Aviation Administration (FAA), and

the National Oceanic and Atmospheric Administration (NOAA). Under the MPAR
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paradigm, the radar needs of all these agencies would be met with a single na-

tional radar network, where each radar devotes a portion of the scan timeline to

meteorological scanning, and the remainder to aviation and defense needs.

Much of the MPAR concept was rolled into a new concept called SENSR in

2016/2017. SENSR, or Spectrum Efficient National Surveillance Radar, is a planned

national radar network similar in concept to MPAR. The goal of the SENSR project

was originally to consolidate weather, aviation, and defense radar into a single band

in the electromagnetic spectrum, and selling the then-vacated spectrum to private

industry to pay for the new radar system. One distinct difference between MPAR

and SENSR is that SENSR does not have as stringent requirements on the system

design. For example, a possible SENSR solution could be a ‘system of systems’,

rather than a single nationwide system of radars. In September 2018, NOAA made

the decision to remove the high-resolution weather requirements from the SENSR

requirements (Federal Aviation Administration 2017; Weber et al. 2019). For phased

array weather radar research, this change effectively ensured that the weather radar

system to replace NEXRAD will be a ‘weather-only’ system, such that the sole focus

will be meteorological observations.

Because the architecture of an MPAR or SENSR system would likely be a four-

faced stationary PAR, the withdrawal of NOAA/NWS requirements from SENSR

re-opened the discussion about the design of a NexPAR system. As discussed in

Weber et al. (2019) and Weber and Herd (2019), several designs can satisfy the
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preliminary goals of NOAA and/or NWS. A subset of possible NexPAR designs is

shown in Fig. 1.2.

Figure 1.2: A subset of possible designs for the NexPAR network. PD-1 and PD-2

represent a more dense network of smaller radars, similar in concept to the CASA

system (McLaughlin et al. 2005). PD-3 closely resembles NEXRAD and the WSR-

88D radars, and would essentially replace the parabolic dishes in NEXRAD with a

planar PAR. PD-4 is a four-faced PAR, where each face covers a 90◦ sector. Figure

from Weber et al. (2019).

Another design solution that is not shown in Fig. 1.2 is a cylindrical PAR. A

cylindrical PAR has a distinct advantage in its polarimetric capability, in that the

transmit beam does not need to be steered off of broadside; rather, the columns

of radiating elements are commutated sequentially around the array. This feature
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ensures that there is no induced cross-polar radiation due to beamsteering off of

broadside. The difficulty in achieving sufficient cross-polar isolation is a signifi-

cant challenge for planar PAR (hereinafter PPAR), and this challenge has been a

significant hurdle in the design of a four-faced PPAR (i.e., PD-4 in Fig. 1.2). In

support of the cylindrical PAR design, a prototype has been built at the University

of Oklahoma. This radar, called the Cylindrical Polarimetric Phased Array Radar

(CPPAR; Zhang et al. 2011; Karimkashi and Zhang 2015; Fulton et al. 2017), has

been used as a proof of concept for the cylindrical PAR design. Further testing is

still ongoing to assess whether or not such a design could be feasible for a full-scale

radar network.

1.2.3 Signal Processing Techniques and Scanning Strategies

In addition to the research ongoing to determine the design and architecture of a

NexPAR system, there has been significant effort ongoing into examining the ability

of PAR to improve data quality and/or achieve faster scans by using relatively novel

signal processing techniques and scanning strategies. The techniques described in

this section are the following:

• Beam multiplexing (BMX; Yu et al. 2007), where successive transmit pulse

pairs are steered in different directions before returning to the original trans-

mit direction in order to allow for more decorrelation of the received signals,

increasing the number of independent samples per unit scan time; drawbacks
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include a lack of support for ground-clutter filtering and staggered pulse rep-

etition time (staggered PRT) processing;

• Radar imaging & digital beamforming (e.g., Isom et al. 2013), where the trans-

mit beam is spoiled in azimuth and/or elevation in order to cover a larger area

simultaneously at the expense of higher two-way sidelobes, lowered sensitivity,

and a broader mainlobe, while digital beamforming (DBF) is used on receive

to electronically form narrow, individual receive beams;

• Adaptive scanning (e.g., Reinoso-Rondinel et al. 2010; Heinselman and Torres

2011), where the beam is electronically steered toward areas of interest and

away from areas not of interest to the user;

• Multiple-beam technique (MBT; Zrnić et al. 2015; Melnikov et al. 2015), where

N beams (N > 1) are transmitted in N directions in rapid succession, using

digital beamforming on receive.

The first technique described here is beam multiplexing (BMX). By transmitting

successive pulse pairs in different directions, the radar returns between successive

pulse pairs is assumed to be fully decorrelated, such that the pulse pairs are entirely

independent. This increases the number of independent pulse pairs for a given dwell

time, thereby improving data quality. The BMX method was detailed by Zrnić

(1977), and validation of this method by using the NWRT is given by Yu et al.

(2007). As expected, Yu et al. (2007) found that BMX does offer improved data

13



quality for a given dwell time. Furthermore, Yu et al. (2007) estimated that BMX

affords a speedup factor of 2–4. In other words, the scan can be sped up by a factor

of 2–4 without a reduction in data quality. However, there are certain limitations

of BMX, including a lack of support for staggered PRT modes and an inability to

perform ground clutter suppression (Siggia and Passarelli Jr. 2004). The impact of

BMX over a larger area than that tested in Yu et al. (2007) is detailed in Chapter 2,

and a more thorough mathematical treatment of BMX can be found in Section 2.2.2

and Appendix A.

Radar imaging and DBF is a method whereby the transmit beam is spoiled. In

a non-imaging scan mode, the beamwidth is largely dictated by the size of the array

aperture, roughly following

θ(rad) = 1.27
λ

D
(1.1)

where θ is the beamwidth of the radar in radians, λ is the wavelength of the radar,

and D is the diameter of the aperture (Doviak and Zrnić 1993). Note that the

aperture does not have to be square (e.g., ASR-9 radars), such that the beamwidth

may be different in the azimuthal and elevation dimensions; in such a case, the

elevation beamwidth is related to the height of the aperture, and the azimuthal

beamwidth is related to the width of the aperture.

Radar imaging involves changing the amplitude and phase at each transmit ele-

ment of the PAR, such that the transmit beam is wider than that dictated by the

aperture size. The goal of radar imaging is to cover a larger area in a given time (e.g.,
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Figure 1.3: Various scan modes available with PARs: beam multiplexing, radar

imaging and digital beamforming, adaptive scanning, and the multiple-beam tech-

nique.

Isom et al. 2013; Weber et al. 2017). This has several advantages, including overall

scan speedup and improved data quality (as long as the higher two-way sidelobes

do not create a bias in the data). Additionally, the data within a single transmit

beam is collected simultaneously, such that advection does not need to be taken

into account, especially between successive elevations if spoiling in elevation (e.g.,

Mahre et al. 2017). The Atmospheric Imaging Radar (AIR; Isom et al. 2013) is an
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example of a system that uses radar imaging and DBF to collect rapid-scan weather

radar data. Analysis of data collected by the AIR has yielded some insightful results

about rapidly evolving changes in tornado and mesocyclone structure (Kurdzo et al.

2017; Mahre et al. 2018; Griffin et al. 2019; Pittman et al. 2020). Radar imaging

has its own disadvantages, such as relatively high two-way sidelobes. This can cause

an issue when there is a strong reflectivity gradient present in the same area and

dimension in which the transmit beam is being spoiled. Additionally, the spoiled

transmit beam has reduced sensitivity due to the lower incident power density at the

scatterers. An assessment of using radar imaging in a radar simulator is included in

Chapter 2.

The concept of adaptive scanning (and, more broadly, cognitive radar) has

been applied rather extensively in defense and other non-meteorological applica-

tions (Capraro et al. 2006; Haykin 2006; Guerci 2010). Adaptive scanning in a

PAR sense often involves using data from a ‘surveillance scan’ and an optimization

framework to decide how to reallocate the resources of the radar. For example, a

scan of the volume could be completed, and the radar can be electronically beam-

steered toward areas of interest, and away from areas not of interest. NEXRAD has

a mode called Automated Volume Scan Elevation Termination (AVSET; Chrisman

2009) that terminates all elevation angles above which there is minimal areas of high

reflectivity.

However, the use of adaptive scanning and cognitive radar concepts have been

relatively limited in weather radar, likely due to the fact that PARs are a relatively
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new innovation for weather applications, and most cognitive radar techniques rely

upon agile scanning capabilities of PAR. In recent years, machine learning, opti-

mization, and other cognitive radar concepts have been used to redistribute radar

resources toward a specific goal such as waveform design (Kurdzo et al. 2014, 2015b;

Mitchell et al. 2018; Kurdzo et al. 2019), improved target tracking (Romero and

Goodman 2013; Bell et al. 2019), or for the improvement of temporal resolution

(Chrisman 2009; Reinoso-Rondinel et al. 2010; Heinselman and Torres 2011). For

weather radars, Reinoso-Rondinel et al. (2010) showed that the scheduling system

for a multifunction PAR can be altered to revisit regions of interest more frequently

by scanning adaptively, and Heinselman and Torres (2011) showed that adaptive

scanning can be used to achieve faster updates of severe local storms. Both of

these studies have achieved promising results, but they do not rely on mathematical

optimization to achieve the goal of rapid updates. It is believed that mathemat-

ical optimization (especially multi-objective optimization, or MOO) can lead to

improved results in cognitive and fully adaptive radar systems, such as in Mitchell

et al. (2018).

Finally, the Multiple-Beam Technique, or Multibeam Technique (MBT; Zrnić

et al. 2015; Melnikov et al. 2015) is another scanning strategy that offers promise

of improving data quality and/or volumetric update time. MBT is somewhat sim-

ilar to radar imaging and DBF, except than in MBT, N narrow (‘pencil’) beams

are transmitted sequentially in rapid succession–rather than one wide simultaneous
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beam–and the pointing direction for each beam is chosen such that there is mini-

mal sidelobe overlap between the N transmitted beams. As in radar imaging, DBF

is performed on receive to electronically form narrow receive beams. Unlike radar

imaging, the incident power density is not necessarily reduced at the scatterers,

because the radar beam is still focused, rather than being spoiled in azimuth or

elevation. However, duty cycle limitations still apply, such that additional accom-

modations need to be made, such as a reduction in power for each individual beam

or a longer PRT. Because MBT should theoretically produce similar results to radar

imaging (except with improved sidelobes and likely improved sensitivity), MBT is

not explicitly simulated in this research.

1.3 Goals

The goals of this study are threefold: first, the impact of scanning strategy selection

on simulated phased-array weather radar data quality is assessed in Chapter 2. To

achieve this goal, a radar simulator with NWP data is used, and the expected root

mean square error (RMSE) of moment data is calculated for multiple scan strategies.

This research is undertaken in order to assess which scanning strategies and signal

processing techniques can best achieve desired data quality in a rapid-scan PAR

system. A paper based on this research is currently in peer review (Mahre et al.

2020).
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Second, the benefits of a rapid-scan weather radar are quantified, as related

to tornado detection latency time (Chapter 3). This is done to assess the direct

impact of volumetric update time on a proxy for tornado warning lead time. The

results from Chapter 3 also show that the tornadic debris signature (TDS) forms

and evolves extremely rapidly, on timescales of less than 1 min, which is a novel

result.

Finally, the ability to adaptively scan with a phased-array weather radar is as-

sessed, with the goal in mind of improving expected data quality for radial veloc-

ity and radar reflectivity factor. This is achieved by mathematical optimization–

somewhat similar in design to Mitchell et al. (2018). This research is largely de-

scribed in Chapter 4. Finally, a summary of the conclusions of this paper and the

implications of the results of this study are given in Chapter 5.
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Chapter 2

Effect of Scanning Strategy Choice on PAR Data

Quality

2.1 Introduction to Data Quality Assessment

2.1.1 Background and Previous Research

For the proposed NexPAR network for high-resolution weather observations in the

United States, a primary goal of NOAA/NWS is to improve temporal resolution

(∼1 min) with respect to the current ∼5 min update time offered by the current

national network of Weather Surveillance Radar-1988 Doppler (WSR-88D) radars

(Weber et al. 2019). While the deployment of WSR-88Ds that comprise NEXRAD

and subsequent technology upgrades have improved warning performance and lead

times (Polger et al. 1994; National Research Council 1995; Bieringer and Ray 1996;

Simmons and Sutter 2005), many observations of weather phenomena require even

faster update times. The primary reason why rapid-scanning radar is necessary in

meteorology is that many weather phenomena evolve on the order of tens of seconds

or less, rather than on the order of several minutes (e.g., Carbone et al. 1985; Wolfson

and Meuse 1993; French et al. 2013; Wurman and Kosiba 2013; French et al. 2014;
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Houser et al. 2015; Wakimoto et al. 2015; Kurdzo et al. 2017; Mahre et al. 2017, 2018;

Bluestein et al. 2019; Griffin et al. 2019). For forecasting and operational purposes,

Heinselman et al. (2012) and Wilson et al. (2017) have shown that the introduction

of rapid scans with a phased array radar (PAR) leads to increased warning lead

time, improved forecaster confidence, a higher probability of detection, and a lower

false alarm ratio for tornadoes in a simulated operational setting. Additionally, data

assimilation studies have shown the benefit of assimilating rapid-scan weather radar

data to improve short-term numerical weather prediction (NWP) model accuracy

(Yussouf and Stensrud 2010; Sun et al. 2014; Supinie et al. 2017). In practice,

however, consideration must be given to the fact that improvements in update time

often come at the expense of degraded data quality or reduced total coverage volume

(Heinselman and Torres 2011). An attempt to scan faster simply by decreasing dwell

time per radial (i.e., rotating the radar dish faster in a non-phased array system)

will result in deleterious effects on data quality, if all other scan parameters are held

constant. In this chapter, ‘data quality’ is used to refer to expected errors from

statistical fluctuations in radar variables, rather than other aspects of data quality

such as biases.

One major factor that significantly impacts data quality is the radar design and

architecture. While it is likely that a NEXRAD replacement network will utilize

phased array technology, the aperture size, transmit power, and scanning mode

(mechanical or electronic) are still undetermined (Weber et al. 2019). Additionally,

the desired missions of the radar system (i.e., multifunction or weather-only) will
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determine the scan timeline percentage that can be devoted to weather observations.

Because of these system and network uncertainties, this study intends to investigate

a representative subset of the possible radar architectures of the final system (e.g.,

PD-3 and PD-4 in Weber and Herd 2019, which are notional 6-7 m diameter high-

resolution weather radars that are possible designs for a NexPAR system) using

simulations, rather than attempting to account for all possible design architectures.

Additionally, this study only analyzes data quality impact on horizontal reflectivity

factor (ZH) and radial velocity (vr), as they are important non-polarimetric radar

variables for operational forecasters. Polarimetric variables are not considered in

this study, because polarimetric biases and considerations from radar architecture

and system design are believed to play a larger role in overall polarimetric data

quality than statistical fluctuations. However, we propose studying polarimetric

statistical fluctuations as a possible future route of research. The conclusions herein

are intended to provide a general framework for a discussion of the advantages and

disadvantages of various scan techniques and radar design architectures.

It has been previously documented that speeding up a scan simply by reducing

the number of samples per radial will inevitably lead to poorer data quality (Doviak

and Zrnić 1993; Yu et al. 2007; Reinoso-Rondinel et al. 2010). This presents an

obvious challenge when considering that an overall scan speedup of 1.25–5x is desired

for NexPAR compared to NEXRAD, in order to achieve the NexPAR goal of 1-min

volumetric updates (Weber et al. 2017, 2019). Thus, to achieve acceptable data
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quality, other scan methods will need to be employed. A description of the scan

methods tested in this chapter is given in section 1.2.3.

The purpose of this chapter is to quantify the effects of various scanning strate-

gies on radar data quality by using RSim (described in section 2.2.1), a flexible

dual-polarization radar emulator. This study is novel in that it quantifies and com-

pares data quality from multiple scanning strategies and data collection methods

for a large area, allowing for a direct comparison of data quality between scanning

strategies. This is only achievable with a large-scale radar simulator (rather than

an actual radar system) because the same simulated thunderstorm is used for each

case, enabling direct comparisons. For this study, a supercell in the 31 May 2013

Central Oklahoma environment is used (Wurman et al. 2014; Wakimoto et al. 2015,

2016; Tanamachi and Heinselman 2016; Bluestein et al. 2018, 2019). This case was

chosen because data quality is especially important for high-impact events where

significant life and property are lost, and accurate forecasts are imperative.

Using a large-scale radar simulator like RSim with realistic weather inputs for

data quality assessment is novel, and this method offers multiple advantages over

other methods. First, it allows for assessment of data quality for a realistic case,

offering insight into the full distribution of data quality over a large area and ac-

counting for the spatial distribution of spectrum width and signal-to-noise ratio

(SNR) and any dependence between these two variables. Second, RSim uses model

data with an update time of 1 min; this offers advantages compared to simulators

that use data with coarser temporal resolution as their basis. The reason why using
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rapidly updating model data is advantageous is that the update time of the micro-

physical and velocity fields is on the order of the full volumetric update time for

the envisioned NexPAR system. As such, no assumptions need to be made about

vertical advection or temporal/spatial interpolation between scans.

The results from this study expand upon previous studies such as Yu et al. (2007)

and Weber et al. (2017). For example, the achievable scan speedup factor with BMX

is calculated using simulated radar data quality over a large area and at multiple

times and several elevation angles, as opposed to calculating data quality over a

small area or along one radial (e.g., Fig. 5 and Fig. 7 of Yu et al. (2007)). This

should yield a more accurate estimate of speedup factor for a NexPAR-style system.

Additionally, this paper focuses on the entire histogram of data quality estimates,

rather than simply calculating the number of pixels which have ‘unacceptable’ data

quality estimates, such as in Weber et al. (2017). Finally, the effect of beam spoiling

on mesocyclone intensity calculation capability is shown for the first time. While

it has previously been shown that changing the effective beamwidth of the radar

by altering the azimuthal sampling can affect tornado detection capability (e.g.,

Brown et al. 2002), this is the first study to research the effect of changing the radar

transmit pattern on measured rotation intensity.

Many of the scan speedup techniques tested in this study are only easily achiev-

able with a fully flexible, all-digital phased array radar architecture (e.g., Palmer

et al. 2019). The conclusions on error estimation and data quality can help deter-

mine which scanning strategies are viable for achieving full-volume updates on the
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order of 1 min without sacrificing data quality. The results herein should be appli-

cable to a wide range of NexPAR designs (e.g., four-faced stationary PAR, one-faced

mechanically rotating PAR, etc.).

In this study, data quality is estimated from a simulated rapid-scan weather radar

by comparing expected RMSE of radar variables. Data quality is then compared

between multiple scan scenarios, where various methods are employed to achieve

faster PPI scans. Comparisons of data quality include 1) altering the number of

pulses per radial, 2) BMX and non-BMX data collection modes, and 3) varying

levels of transmit beam spoiling with DBF on receive (i.e., imaging).

2.2 Methods

2.2.1 Radar Simulator (RSim)

For the analysis conducted herein, a radar simulator is used. Simulators can reveal

important information regarding the expected fields from a number of controlled

input scenarios, and can allow for direct comparison of data quality between scan

methods because of the ability to re-analyze the same simulated weather event with

different scanning strategies. This chapter utilizes output from a large-domain radar

simulator–RSim–in order to assess and quantify the data quality of a rapid-scan

weather radar system. Here, we assume that the radar being tested is a single-

faced, mechanically rotating PAR.
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RSim uses WRF model data (Skamarock et al. 2008) as an input, and computes

moment data in the radar domain based on the number concentration and radial

velocity of each hydrometeor type at each model grid point. RSim uses T-matrix

scattering for four hydrometeor types: rain, graupel, snow, and ice. The T-matrix

method relates scattering amplitudes to the particle size distribution (PSD) for each

hydrometeor type (Mishchenko et al. 1996; Mishchenko 2000). More information

about the T-matrix scattering method and polarimetric variable estimation can be

found in Zhang et al. (2001) and Jung et al. (2008). The radar emulations derived

through RSim account for angular and range weighting functions, by weighting

the microphysical contributions at each model grid point based on the range and

antenna weighting patterns. Each model grid point in RSim is weighted and summed

to derive the expected moments at each azimuth, elevation, and range combination

in the radar scan domain. Range weighting patterns and antenna beam patterns

(proportional to sinc2r and sinc2θsinc2φ, respectively) used in this study are based

on established patterns in Doviak and Zrnić (1993) and Orfanidis (2016), where r

is the range, θ is the azimuth angle, and φ is the elevation angle. RSim provides

significant scanning flexibility, in that radar imaging can be simulated using spoiled

beams on transmit and pencil beams on receive; non-sequential beam positions can

also be simulated.

For this study, the model parameterizations used for WRF are identical to those

used in Bodine and Rasmussen (2017); the parameterizations are listed in Table 2.1.

Two-way nesting is used between the grids, and 0.25◦ GFS data is used to initialize
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Table 2.1: A list of the WRF model parameterizations used in this study.

Parameterization Type Parameterization Name

Microphysics scheme Morrison

Land surface scheme Noah (Chen and Dudhia 2001)

Cumulus parameterization Kain-Fritsch (at 27-km and 9-km grids)

PBL scheme Yonsai University (YSU; Hong et al. 2006)

Longwave radiation scheme RRTM (Mlawer et al. 1997)

Shortwave radiation scheme Dudhia (Dudhia 1989)

the simulations. Additionally, 44 vertical grid points are used with maximum vertical

resolution in the boundary layer. WRF was run at 1 km horizontal resolution and 1-

min temporal resolution for a supercell in the 31 May 2013 Central OK environment,

and larger 27-km, 9-km, and 3-km domains are used outside this innermost mesh to

downscale from larger-scale conditions.

To estimate spectrum width, local thermodynamic data and radial velocity esti-

mates are used. While the contribution of larger-scale shear on spectrum width can

be estimated as the local standard deviation of velocity (σs; Doviak and Zrnić 1993),

this does not capture smaller-scale turbulence, which has a significant contribution

to the overall spectrum width of the resolution volume (Brewster and Zrnić 1986;
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Doviak and Zrnić 1993; Nastrom and Eaton 1997; Zhang et al. 2009). The overall

spectrum width can be estimated as

σ2
v = σ2

s + σ2
t (2.1)

where σv is the spectrum width observed by the radar and σt is the turbulence

contribution. Other contributions to spectrum width, such as antenna motion, hy-

drometeor vibrations, and differential hydrometeor fall speeds are ignored. With

the shear contribution being estimated by the local spatial standard deviation of

velocity (Doviak and Zrnić 1993), the turbulence contribution can be estimated by

using a rearranged version of Equation (2) from Nastrom and Eaton (1997):

σ2
t =

εA3/2

fBV
(2.2)

where ε is the turbulent eddy dissipation rate, A = 1.6 is the Kolmogorov constant,

and fBV is the Brunt-Väisälä frequency, where fBV =
√

g
θ
dθ
dz

, g is gravitational

acceleration, and θ is potential temperature. The turbulent eddy dissipation rate

used in this study is 0.02 m2 s−3; this is lower than in most literature sources (0.06 or

0.10 m2 s−3 in Frisch and Strauch (1976) and Doviak and Zrnić (1993), respectively).

However, the value of 0.02 m2 s−3 is used in this study to produce spectrum width

values that are consistent with NEXRAD observations (Fang et al. 2004). Brunt-

Väisälä frequency is estimated using thermodynamic data from each grid point in

the WRF domain.
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2.2.2 Data Quality

For the purposes of this study, data quality is defined as the expected RMSE of

radar variables in question. For signal power and radial velocity estimates with

non-BMX data collection mode (also called contiguous pulse sampling, or CPS)

and a pulse-pair processor, the variance of the velocity estimator is given by Zrnić

(1977), Doviak and Zrnić (1993), and Yu et al. (2007):

var(ŜC)

S2
=

1

M + 1

[ M∑
l=−M

M − |l|+ 1

M + 1
ρ2(lTs) +

N2

S2
+ 2

N

S

]
(2.3)

var(v̂C) =
λ2

32π2Mρ2(Ts)T 2
s

[
(1− ρ2(Ts))

M−1∑
l=−(M−1)

M − |l|
M

ρ2(lTs)

+
N2

S2
+ 2

N

S

[
1− M − 1

M
ρ(2Ts)

]] (2.4)

where λ is the radar wavelength, M is the number of pulse pairs (equal to the

number of pulses minus one for contiguous pulse pairs), Ts is the pulse repetition

time (PRT), ρ is the normalized autocorrelation function, S is the signal power,

N is the noise power, and Ŝ and v̂ are the estimators for signal power and radial

velocity, respectively. The signal power S (and by extension signal-to-noise ratio, or

SNR) is derived from the ZH calculated from the forward operator. The correlation

between samples as a function of time, ρ(T ), is given by Doviak and Zrnić (1993):

ρ(mTs) = exp[−8(πσvmTs/λ)2],where m = 0, 1, 2, ...(M − 1) (2.5)

where σv is the spectrum width, and m is equal to 1 for CPS mode. For BMX ap-

plications (also called independent pulse sampling, or IPS), in which pulse pairs are
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independent rather than contiguous, the variance of the velocity estimator reduces

to the following equation from Yu et al. (2007):

var(ŜI)

S2
=

1

2L

[
1 + ρ2(Ts) +

N2

S2
+ 2

N

S

]
(2.6)

var(v̂I) =
λ2

32π2Lρ2(Ts)T 2
s

[
1− ρ2(Ts) +

N2

S2
+ 2

N

S

]
(2.7)

where L is the number of pulse pairs, equal to the number of total pulses divided by

two in BMX data collection mode. To obtain the standard deviation of reflectivity

factor, the following equation is used:

SD(ẐH) = 10 log10(1 +
SD(Ŝ)

S
) (2.8)

where SD(ẐH) is the standard deviation of horizontal reflectivity factor. For this

study, RMSE is calculated as follows:

RMSE(X̂) =

√
SD(X̂)2 + (X̂ −Xref )2 (2.9)

where X̂ is the estimated radar variable, and Xref is the value of X in the reference

field, such that RMSE is equal to the square root of the statistical fluctuation squared

plus the bias (relative to the reference field) squared. Note that this definition of

bias is not the statistical definition of a biased estimator, but rather is intended to

compare the difference between a ‘baseline’ scan truth value and the ‘new’ truth

value. For all scanning strategies except for radar imaging, the bias values are

assumed to be zero, such that the RMSE is equal to the standard deviation(s)

calculated in (2.3)-(2.8).
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Figure 2.1: Improvement factor for ZH (panel a) and vr (panel b) as a function

of SNR using BMX. The 3 lines represent spectrum width of 1 m s−1 (black line),

3 m s−1 (blue line), and 5 m s−1 (red line).

In practical weather applications, moment variance depends on 1) the number of

pulses or pulse pairs, 2) spectrum width, and 3) SNR, defined as S
N

. Additionally,

data collection mode (BMX versus non-BMX) affects moment variance by changing

the equation(s) used. The number of pulses per radial and data collection mode are

the variables over which the radar operator has control, through VCP and scanning

strategy design. In BMX, the number of pulse pairs for velocity estimation is reduced

by a factor of M
L

= P−1
P
2

= (2 − 2
P

) compared to CPS, where P is the number

of pulses along each radial. Thus, it is possible for velocity estimates to worsen,

especially in areas of high spectrum width and/or low SNR (e.g., Fig. 4b in Yu

et al. (2007)) due to the decrease in the number of pulse pairs. Fig. 2.1 shows

a plot of both reflectivity and velocity improvement factor as a function of SNR

for three values of spectrum width, where reflectivity (velocity) improvement factor
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Table 2.2: A summary of the SENSR PPR for reflectivity factor, radial velocity,

and spectrum width maximum standard deviation for a specified SNR and true

spectrum width (σv).

SNR σv Standard Deviation Requirement

ZH > 10 dB 4 m s−1 < 1 dBZ

vr > 8 dB 4 m s−1 < 1 m s−1

σv > 10 dB 4 m s−1 < 1 m s−1

is defined as the ratio between expected statistical standard deviation of ZH (vr)

using CPS ((2.3)–(2.4)) divided by the statistical standard deviation of ZH (vr) using

BMX/IPS ((2.6)–(2.7)). At low SNR, generally less than 10-15 dB, improvement

factor is less than 1 for vr, indicating that CPS yields better velocity estimates

compared to BMX/IPS. Also, the improvement factor reaches a different asymptote

at high SNR for each spectrum width value. For the high spectrum width case,

the improvement factor at high SNR for ZH (vr) generally does not exceed 1.28

(1.23). Thus, the improvement in data quality by using BMX is very limited for

high spectrum width. However, it should be noted that under no circumstances is

RMSE for ZH or differential reflectivity factor (ZDR) negatively affected by using

BMX instead of CPS.
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For the data quality requirements used in this study, the preliminary program

requirements (PPR) for the SENSR program are used (Federal Aviation Administra-

tion 2017), which are similar to current NEXRAD data requirements. A summary

of the data quality requirements in the PPR is given in Table 2.2. For this study,

the 1 m s−1 velocity RMSE requirement and the 1 dBZ reflectivity RMSE require-

ment are used for expected data quality in a rapid-scan system, although the final

NexPAR design may alter the data quality requirements listed in Table 2.2. This

study will focus on the effect of scanning strategies on the expected RMSE of the

ZH and vr estimators.

2.3 Results

2.3.1 Data Quality and Error Estimation

In this section, RSim is used to examine expected RMSE of radar variables in a

supercell case. Errors for different scan modes are examined based on estimates of

data quality from (2.3)–(2.8). This analysis is performed on moment data output

from RSim and is conducted for 15 PPIs: 0124, 0126, 0128, 0130, and 0132 UTC at

0.5◦, 4.0◦, and 8.0◦ in elevation. All results from this section use a WRF supercell

case from 31 May 2013 in Central Oklahoma; PPIs of relevant radar variables at

0124 UTC are shown in Fig. 2.2. The selected times and heights were chosen to

capture multiple times where the tornado was near its strongest intensity, and the

heights were chosen to sample the low-, mid-, and upper-levels of the storm (near
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Figure 2.2: PPIs showing a) horizontal reflectivity factor (ZH , in dBZ), b) radial

velocity (in m s−1), c) estimated spectrum width (in m s−1), and d) signal-to-noise

ratio (SNR, in dB). All PPIs are shown at 0124:00 UTC. Mean spectrum width is

2.48 m s−1. The black contour corresponds to the region where ZH is greater than

38 dBZ.

250 m, 2 km, and 4 km AGL, respectively). The simulated radar has a beamwidth

of 1◦, oversampled to 0.5◦ in azimuth. The data shown are thresholded at 3 dB

of SNR, and a range resolution of 1 km is assumed. While this range resolution is
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Table 2.3: A list of RSim scan parameters used in this study.

Scan Parameter Value(s)

Scan times 0124, 0126, 0128, 0130, 0132 UTC

Elevation angles 0.5◦, 4.0◦, and 8.0◦

Radar wavelength 0.107 m

PRT 1 ms

Range resolution & sampling 1 km

Azimuthal sampling 0.5◦

Noise floor -7.5 dBZ at 50 km

SNR threshold 3 dB

coarser than NEXRAD, it should be noted that this range resolution is constant

across all cases studied herein, such that comparisons should hold at any realistic

range resolution. A list of relevant RSim scan parameters are shown in Table 2.3.

For an estimation of expected RMSE, several assumptions are made regarding

the radar system. Representative parameters for a notional NexPAR system are

used as inputs into RSim; for example, a radar wavelength of 0.107 m and a PRT

of 1 ms are used, with a similar noise floor estimate (-7.5 dB at 50 km) to that of

NEXRAD. Here, a relatively short (1 ms) PRT is used to simulate a ‘velocity cut’

in NEXRAD. Additionally, a desired azimuthal sampling of 0.5◦ is assumed. These

values are used as input into (2.3)–(2.7), along with the PPIs of SNR and spectrum
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width at a given time, to generate a PPI of signal power, reflectivity factor, and

velocity error estimates in both BMX and non-BMX data collection modes. Holding

these system parameters constant, it is then possible to alter the scanning strategy

to assess the data quality impact on each radar variable of interest.

2.3.1.1 Radar Reflectivity Factor (ZH)

First, this study will analyze the effect of scanning strategy choice on data quality

for ZH . Data quality is assessed by using (2.3), (2.6), and (2.8), where the scanning

strategies used are described below. Different scanning strategies are used to assess

the impact on data quality, and to calculate any possible scan speedup, where scan

speedup is the ability to complete a scan more quickly while maintaining the same

level of data quality. Fig. 2.3 shows the RMSE of ẐH under four scanning strategies,

analyzed at one time (0124 UTC) and one elevation angle (0.5◦). Panel a) is a

NEXRAD-style ‘reference’ scan, to which the other data collection techniques are

compared. This NEXRAD-style scan transmits a ‘pencil beam’ (1◦ x 1◦), collects

a full PPI in 20 s (similar to the low-level scan rate in VCP 215), and uses CPS

data collection mode. The data collection strategy in panel b) is identical to the

technique in panel a), except that the time to complete the PPI is decreased from

20 s to 10 s by reducing the number of samples per radial. Panel c) transmits a

pencil beam with a scan time of 20 s, but uses BMX (IPS) data collection mode

rather than CPS data collection mode. In panel d), imaging (10◦ in azimuth) is

used with a scan time of 20 s; this has the effect of increasing the number of samples
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Figure 2.3: PPIs showing the calculated RMSE of ZH for a) a pencil beam using

CPS with a scan time of 20 s per PPI, b) a pencil beam using CPS with a scan

time of 10 s per PPI, c) a pencil beam using BMX (IPS) with a scan time of 20 s

per PPI, and d) a 10◦ fan beam using CPS with a scan time of 20 s per PPI. All

PPIs are at 0124:00 UTC, at 0.5◦ in elevation. The RMSE listed in each panel is

the mean RMSE for 15 realizations of each scan method; these values may deviate

from the mean RMSE of the PPI shown by up to 0.01 dBZ.
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per radial, at the expense of higher two-way antenna sidelobes in azimuth. Note

that because the reference fields for panels a)-c) are identical, the RMSE plotted in

Figs. 2.3 and 2.4 is simply equal to the statistical standard deviation.

Figure 2.4: Histogram of mean ZH RMSE estimates at 5 times and 3 elevation

angles (0.5◦, 4.0◦, and 8.0◦). The black vertical line represents the 1 dBZ suggested

requirement (see Table 2.2).

To achieve rapid scans for a weather radar system, the most straightforward

method is to decrease the number of samples along each radial (assuming a con-

stant PRT). This decreases the number of pulses available for moment estimation
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(i.e., a decrease in M in (2.3) and (2.4), and a decrease in L in (2.6) and (2.7)).

For a mechanically rotating radar system, this could correspond to an increased

rotation rate of the antenna. For a stationary (electronically scanning) system, such

a change could come as the result of changing from a weather-only radar system

to a multifunction system. The change in data quality for a simulated supercell

on 31 May 2013 is shown in panels a) and b) of Fig. 2.3, where PPIs of calculated

RMSE are shown for ẐH . As is shown in Fig. 2.3, data quality is degraded (i.e.,

RMSE increases) when the scan time decreases (panel b compared to panel a).

To examine these errors with a larger sample size of data, mean RMSE(ẐH)

is computed for all four scan scenarios for five different times and three different

heights (∼500,000 points). The effect on data quality is evident in Fig. 2.4, as the

red curve, representing the histogram of RMSE values from 10 s PPIs, is clearly

shifted to the right of the dark blue curve, representing the distribution of RMSE

values from 20 s PPIs in CPS mode. The mean RMSE(ẐH) values for the set of

∼500,000 points are 1.77 dBZ (2.26 dBZ) for PPIs lasting 20 s (10 s), corresponding

to a 28% increase in RMSE when the number of samples is reduced by a factor of

2. This is expected, as var(ẐH) is roughly inversely proportional to the number of

pulses in (2.3). This difference in data quality can be seen qualitatively in Fig. 2.5,

when comparing panels a) and b), as Fig. 2.5b shows increased granularity and a

‘coarser’ appearance than Fig. 2.5a.

The next scan speedup method tested in this study is BMX. By qualitatively

analyzing Fig. 2.3, there is clear spatial homogeneity in the PPI of RMSE(ẐH)
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Figure 2.5: PPIs showing the reference ZH fields with the expected standard devia-

tion added as AWGN. Note that the underlying reference field is different in panel

d), due to the lowered sensitivity and higher antenna sidelobes.

values, reflected in the distinct histogram shape of BMX RMSE(ẐH) data (green

curve in Fig. 2.4). A mathematical explanation of this phenomenon can be derived
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by expanding all terms in (2.3) and (2.6), and making use of (6.12) in Doviak and

Zrnić (1993):

1

MI

=
M∑

l=−M

M − |l|+ 1

M + 1
ρ2(lTs) (2.10)

where MI is the total number of independent samples, and all other variables are

as defined in (2.3). Then, (2.3) and (2.6) can then be separated into similar and

dissimilar terms, and values plugged in for ρ(TS) show that the range of error esti-

mates yielded by (2.3) is wider than error estimates yielded by (2.6), especially at

high SNR. This explains the difference in histogram shape between the BMX error

estimates (green curve in Fig. 2.4) and all other histograms plotted in Fig. 2.4; a

more complete mathematical explanation of this phenomenon can be found in Ap-

pendix A. For the collection of ∼500,000 data points (example PPI in Fig. 2.3c), the

mean RMSE(ẐH) is equal to 1.05 dBZ. This shows a significant improvement over

the 1.77 dBZ mean RMSE(ẐH) value obtained for CPS (non-BMX) data collection

in the 15 PPIs analyzed.

Because (2.6) is inversely proportional to the number of samples, it is concluded

that the expected mean RMSE(ẐH) is 1.48 dBZ when the scan time is reduced from

20 s to 10 s per PPI. This number is calculated by multiplying the standard deviation

of ZH in BMX/IPS data collection mode by the square root of the difference in scan

time (
√

2). Thus, it can be said that BMX can offer improved data quality, even

in situations where the total scan time is decreased by a factor of 2. Working

backwards, the inverse proportionality between variance and number of samples
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can be leveraged to determine an ‘equivalent speedup factor’. This corresponds

to the factor by which the number of samples per radial can be reduced, while

still maintaining the same data quality (as determined by mean RMSE(ẐH) of the

NEXRAD-style scan). For a comparison between RMSE(ẐH) for CPS and BMX,

the speedup factor is equal to the ratio of mean RMSE(ẐH) squared. For this

comparison, the equivalent speedup factor is
(
1.77
1.05

)2
= 2.84. Thus, it can be said

that when switching from CPS to BMX/IPS data collection mode, the scan time

can be decreased by a factor of 2.84, while keeping data quality for ZH constant.

Finally, radar imaging (10◦ azimuthal beam spoiling on transmit) is evaluated as

a possible scan speedup method. Beam spoiling while keeping the scan time constant

(i.e., 20 s per PPI) increases the number of samples per radial, while decreasing the

SNR at each point because of the reduction in incident power density; this was

simulated by decreasing antenna gain on transmit. This has the effect of generally

improving data quality in areas where there is minimal reflectivity or radial velocity

gradient in the direction of beam spoiling, because in this area, the increase in the

number of pulse pairs improves data quality more than higher two-way sidelobes

and lower SNR reduce data quality. This is seen in Fig. 2.3d, where many of the

estimates of RMSE(ẐH) are shown to be significantly improved (cyan colors in

Fig. 2.3d), compared to Fig. 2.3a-c. However, there is a significant reduction in

data quality around the edges of the supercell, especially to the southwest of the

hook echo, where a sharp horizontal gradient in ZH is present. This results in very

poor data quality (e.g., RMSE(ẐH)> 15 dBZ), because the values derived with the
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spoiled beam are biased with respect to the pencil beam due to higher sidelobes.

This is represented by the dark red area on the western side of the PPI in Fig. 2.3d;

the colorbar in Fig 2.3d is capped at 3 dBZ for consistency with the other panels in

Fig. 2.3, but some of the values in panel d) exceed 15 dBZ. The histogram appears

to show that beam spoiling performs better than BMX for improving data quality

(Fig. 2.4), but the area of extremely high RMSE(ẐH) values (not shown in Fig. 2.4)

creates a situation where the mean RMSE(ẐH) is 1.17 dBZ, which is higher than

that of BMX (1.05 dBZ). This underscores the point that beam spoiling should be

applied in an adaptive manner (e.g., Weber et al. 2017).

Based on mean RMSE(ẐH) alone, the speedup factor compared to a NEXRAD-

type scan is 2.29 for beam spoiling to 10◦ in azimuth. However, many meteorologists

may find the regions with extremely high RMSE (bias, in this case) to be unaccept-

able, despite the apparent ‘improvement’ in data quality when simply considering

the mean RMSE over the whole domain. Additionally, the loss in sensitivity that is

apparent in Fig. 2.5d is a consideration, especially when trying to detect weak radar

echoes such as developing precipitation, light precipitation, and fine-line features

such as cold fronts and gust fronts.

For radar imaging, it is clear that the method does a good job of improving the

data quality in the heavier precipitation cores and away from large reflectivity/radial

velocity gradients, but creates a situation where data quality may be extremely poor

in regions near reflectivity and radial velocity gradients as a result of higher antenna

sidelobes and where the loss of sensitivity reduces available data for forecasters.
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Thus, it is likely that the ‘best’ method for utilizing beam spoiling is to adaptively

spoil the beam, in order to avoid spoiling across areas of sharp reflectivity and/or

radial velocity gradients.

2.3.1.2 Radial Velocity (vr)

In addition to analyzing the data quality impact on ZH , this study also analyzes the

impact on vr using the same approach and methods described in Chapter 2.3.1.1.

Again, data quality is compared between four scan strategies: 20 s PPIs with a

pencil beam on transmit in CPS mode, 10 s PPIs with a pencil beam on transmit

in CPS mode, 20 s PPIs with a pencil beam on transmit in IPS (BMX) mode, and

20 s PPIs with a 10◦ azimuthally spoiled transmit beam in CPS mode.

The RMSE of v̂r is calculated using (2.4), (2.7), and (2.9) for each scanning

strategy; an example for one PPI per scan method is plotted in Fig. 2.6. Qualita-

tively, decreasing the scan time to 10 s (example in Fig. 2.6b) produces poorer data

quality than for 20 s PPIs in CPS mode (Fig. 2.6a). For the collection of 15 PPIs,

this corresponds to an increase in RMSE(v̂r) from 0.76 m s−1 to 1.06 m s−1 (39%

increase in RMSE; histogram shown in Fig. 2.7). The difference in data quality can

be seen qualitatively in Fig. 2.8, where panel b) appears to be noisier than panel

a). This phenomenon is most pronounced along and near the zero-isodop in the

northeastern quadrant of the PPI.

By analyzing the distribution of the RMSE histogram in Fig. 2.7, it is also

possible to compare the percentage of pixels that are of ‘acceptable’ data quality

44



Figure 2.6: As in Fig. 2.3, but for RMSE of vr. RMSE values listed are the mean

values from 15 PPIs, and may deviate from the mean RMSE of the PPI shown by

up to 0.01 m s−1.

under different scanning strategies. For the NEXRAD-style scan, 94.3% of pixels

are of acceptable data quality for v̂r (i.e., RMSE(v̂r)< 1 m s−1). When the scan time

is decreased from 20 s to 10 s, the percentage of pixels with acceptable RMSE(v̂r)

estimates decreases to 49.5%. So, for a 10 s PPI collecting data in CPS mode,
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Figure 2.7: As in Fig. 2.4, but for a histogram of vr. The black vertical line represents

the 1 m s−1 suggested requirement (see Table 2.2).

over half of the estimates of vr are not acceptable–and nearly 45% of estimates

change from acceptable to unacceptable when moving from 20 s PPIs to 10 s PPIs,

based on the 1 m s−1 requirement from the initial SENSR PPR (Federal Aviation

Administration 2017).

Panel c) in Fig. 2.6 plots RMSE(v̂r) for a 20 s PPI where BMX/IPS mode is

used. As expected, data quality is generally improved in BMX/IPS mode, compared

with data quality in CPS mode. For all 15 PPIs analyzed in BMX mode, the mean
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Figure 2.8: As in Fig. 2.5, but for vr.

RMSE(v̂r) is 0.45 m s−1; the corresponding histogram is plotted in Fig. 2.7. The

equivalent speedup factor for BMX in this case is 2.85 when comparing the mean

RMSE(v̂r) of the two scanning methods. In this case, it is also possible to calculate

speedup factor based on the percentage of pixels in the domain with acceptable data

quality. This is achieved by multiplying the RMSE estimates using BMX by the

square root of the speedup factor, and then calculating the percentage of pixels that
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have ‘acceptable’ data quality. Using this method, BMX offers a speedup factor of

1.69 compared to CPS.

An interesting phenomenon that is present in Fig. 2.6c (BMX) that is not present

in any of the other panels of this figure (or any panels in Fig. 2.3) is the relatively

poor data quality around the periphery of the precipitation echo. Notably, the area

along the edge of the storm (to the south and west of the radar) has worse data

quality than in CPS mode, in Fig. 2.6a. This result is expected, and is caused by

the fact that the number of pulse pairs–and, by extension, the number of samples

for estimation of vr–is reduced by approximately a factor of 2 for BMX, compared

to CPS. For example, a scan where 50 pulses per radial are transmitted would result

in 50 ZH samples in both CPS and BMX/IPS modes, 49 vr samples in CPS mode,

but only 25 vr samples in BMX/IPS mode, although all 25 vr samples are entirely

independent. If inter-pulse correlation (ρ(TS)) is low (as can be the case in low-SNR

regions), then it is possible that CPS mode could yield more independent vr sam-

ples than BMX/IPS mode. In this scenario, BMX/IPS data collection mode could

produce poorer data quality than CPS data collection mode. This phenomenon cor-

responds to the portion of Fig. 2.1b for which the improvement factor is less than 1.

However, this is dependent on several variables, including spectrum width and the

number of pulses used, in addition to SNR. The reduction of vr data quality in low-

SNR environments may be mitigated by adaptive application of BMX in relatively

high SNR areas only.
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Finally, the difference in data quality between a pencil beam and a 10◦ az-

imuthally spoiled beam is analyzed. In Fig. 2.6d, it is clear that most of the domain

shows improved data quality when compared to the other three methods. However,

there are regions of very poor data quality around the edge of the storm, especially

to the south and west of the mesocyclone. Despite this area, the mean RMSE(v̂r)

for 10◦ of beam spoiling is 0.41 m s−1 (cyan curve in Fig. 2.7). The corresponding

speedup factor is 3.44. However, as mentioned in Chapter 2.3.1.1, the higher two-

way antenna sidelobes may produce regions where data quality is unacceptable for

forecasters. This is exemplified by analyzing the percentage of pixels with acceptable

data quality; as previously stated, the 20 s PPI with CPS data collection resulted in

94.3% of the pixels having acceptable data quality for vr (i.e., RMSE(v̂r)< 1 m s−1).

For a 10◦ azimuthally spoiled transmit beam with all other scan parameters held

constant, the percentage of ‘acceptable’ pixels is 94.1%. As a result, no significant

improvement in the percentage of pixels with acceptable RMSE(v̂r) estimates can

be found via beam spoiling in azimuth, due to the introduction of bias from the

higher two-way sidelobes.

One interesting feature in Fig. 2.6 compared to Fig. 2.3 is the relative RMSE in

the areas of high spectrum width. In Fig. 2.3, RMSE(ẐH) tends to decrease in the

areas of high spectrum width, such as those near the mesocyclone and inflow region

of the supercell. This is because each estimate of ZH is produced by a single pulse

(i.e., a lag-0 estimator), such that decreased inter-pulse correlation within a pulse

pair improves the number of independent samples, thereby improving data quality.
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For BMX/IPS, this is reflected mathematically in (2.6) by the fact that in the high-

SNR limit, the var(ŜI) is directly proportional to (1 + ρ2(TS)), such that decreasing

sample correlation decreases the expected statistical variance. Conversely, RMSE

of v̂r tends to increase in areas where spectrum width is larger. For the variance of

radial velocity in (2.7), in the high-SNR limit, var(v̂r) is proportional to
(

1
ρ2(TS)

−1
)
,

such that decreasing inter-pulse correlation within a pulse pair increases the resulting

variance. The increase in the number of independent samples is why data quality

improves for ZH in areas of high spectrum width, but data quality is degraded

for vr in areas of high spectrum width due to decreased inter-pulse correlation. A

more complete mathematical explanation of this phenomenon can be found in Zrnić

(1977).

2.3.2 Effect of Beam Spoiling on Mesocyclone Intensity

Observations

To assess the impact that radar imaging has on observed mesocyclone intensity,

PPIs of vr with varying degrees and directions of beam spoiling have been simulated.

The two-way beam pattern is simulated by multiplying a transmit beam of 1◦, 5◦,

10◦, and 20◦ in azimuth (1◦ in elevation), and a narrow (∼1◦ x 1◦) receive beam.

Each of the four two-way beam patterns are used to scan the mesocyclone, and

the mesocyclone strength is calculated by using ∆V , the difference between the

maximum inbound and outbound vr in the mesocyclone.
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Figure 2.9: This figure plots the underlying ZH reference fields for a pencil beam

(top left), as well as those for a beam spoiled by 5◦, 10◦, and 20◦ in azimuth. Note

the loss in sensitivity as beam spoiling is increased.

The results of spoiling the transmit beam to 1◦, 5◦, 10◦, and 20◦ in azimuth

are shown in Figs. 2.9 and 2.10. As beam spoiling increases in the azimuthal di-

rection, the measured ∆V begins to decrease; the calculated ∆V values are listed

in each panel of Fig. 2.10. With a 1◦ pencil beam on transmit, the measured ∆V
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Figure 2.10: As in Fig. 2.9, but for vr. The value for ∆V in each panel corresponds

to the measured mesocyclone intensity with each amount of beam spoiling.

is 51.06 m s−1. When transmit beam spoiling is increased, however, the measured

∆V value continually decreases. When spoiling by 20◦ on transmit, measured ∆V

is 46.49 m s−1. The 4.4–9.0% underestimation in mesocyclone intensity for 5-20◦ of

beam spoiling is caused by ‘smearing’ of the velocity couplet signature, which can

be thought of in similar terms to a low-pass filter.
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Figure 2.11: The azimuthal radial velocity profile across the rotational couplet at

0.5◦ in elevation (approximately 300 m AGL). Note that increasing the beam spoiling

factor tends to decrease the measured ∆V velocity shear.

This effect can be observed in a radial velocity profile across several angles at

a given range (Fig. 2.11). The magnitudes of the extrema are generally smaller for

the cases with more beam spoiling (i.e., green curve in Fig. 2.11) compared to the

pencil beam case (i.e., dark blue curve in Fig. 2.11). This agrees with Brown et al.

(2002), where tornado detection capability is assessed under native and enhanced

resolution for a simulated WSR-88D. The results from Brown et al. (2002) show that

Doppler velocity signatures generally appear stronger when the azimuthal sampling
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is reduced from 1.0◦ to 0.5◦. Our study is different, however, in that a full beam

pattern is simulated for a notional phased array radar (i.e., wide beam on transmit

and narrow beam on receive).

Figure 2.12: As in Fig. 2.10, but for spoiling in elevation, rather than azimuth.

This procedure is also performed for 1◦, 5◦, 10◦, and 20◦ of spoiling in the eleva-

tion dimension. The interesting result for this supercell case is that the calculated

∆V values in and around the mesocyclone do not change appreciably when spoiling

is increased in elevation (Fig. 2.12). It is hypothesized that this result is due to
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the fact that for this case, the primary ZH and vr gradients are in the azimuthal

dimension, rather than the elevation dimension. While the result in this study in-

dicates that spoiling in elevation may be favorable compared to spoiling in azimuth

for correctly assessing mesocyclone strength, this is only one application of assessing

the effect of radar imaging. This result may change for a different case, if stronger

vertical gradients in ZH and/or vr are present. For example, the Atmospheric Imag-

ing Radar (AIR; Isom et al. 2013) operates by transmitting a 1◦ x 20◦ (azimuth

x elevation) beam; artifacts from vertical sidelobes and/or grating lobes have been

shown in some datasets collected by the AIR (Kurdzo et al. 2017; Mahre et al. 2018).

2.4 Conclusions

In this study, data quality in and around a simulated supercell is assessed by using

a large-domain weather radar simulator. This research is done in order to inform

decisions about which scan speedup strategy (or combination of strategies) can

provide the highest quality data and is shown here for a prototypical high-impact

weather event (tornadic supercell). The results of this study can be used to guide

the design of VCPs for a NexPAR system, and can be used to assess the expected

data quality for various volumetric update times. Scanning strategies tested include

CPS data collection mode, BMX/IPS data collection mode, decreasing the number

of samples per radial, and transmit beam spoiling (radar imaging).
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The results in this study show that meeting a rapid-scan timeline simply by de-

creasing dwell time offers extremely poor data quality compared to typical sampling

rates, as expected. When decreasing the number of samples per radial by a factor

of 2, the mean RMSE(ẐH) increased from 1.77 dBZ to 2.26 dBZ, while the mean

RMSE(v̂r) increased from 0.76 m s−1 to 1.06 m s−1. This reduced the percentage

of pixels with acceptable data quality (with respect to vr) from 94.3% to 49.5%.

This result is consistent with expectations, such that other data collection and scan

speedup methods need to be employed to preserve data quality.

Another scan speedup method evaluated in this study is beam multiplexing

(BMX). This method shows considerable promise for obtaining rapid-scan weather

radar data with acceptable data quality. For RMSE(ẐH), it is shown that a speedup

factor of 2.84 is achievable, such that the scan can be sped up by a factor of 2.84

without an increase in the mean RMSE(ẐH) value. For a similar assessment of

vr data quality, the expected speedup factor is 1.69–2.85. This result of BMX

offering a speedup factor of 1.69–2.85 is generally consistent with results in Yu et al.

(2007), which posited that a speedup factor of 2–4 should be possible with BMX.

The results of this study show significant promise for BMX as a viable option for

meeting a rapid-scan timeline. While this technique must be used judiciously at

low levels and in low SNR regions, and is not compatible with staggered PRT data

collection or ground clutter filtering, it generally offers a significant improvement in

data quality, and the time in which a full volume can be scanned without degrading

data quality.

56



In addition to using BMX to improve volumetric update times, beam spoiling

has previously been shown to be a viable option for speeding up total volumetric

update time. When calculating the speedup factor associated with a 10◦ azimuthally

spoiled beam, each scan can be sped up by a factor of 2.29–3.44 when considering

the mean RMSE value to be the metric for data quality. However, this does not

fully capture the effects that a region of extremely poor data quality might have

on an operational forecaster. For vr considerations, the speedup factor reduces to

approximately 1 when calculating the percentage of ‘acceptable’ pixels between the

two methods, such that no net gain is afforded. Additionally, regions of extremely

biased data may be present, and sensitivity to weak echoes is reduced. Thus, radar

imaging should not be applied to an entire domain without first analyzing which ar-

eas are most susceptible to negative effects of beam spoiling (i.e., areas with a strong

reflectivity or radial velocity gradient). This is one area where adaptive scanning

and/or cognitive radar may help to realize benefits of beam spoiling. Because both

BMX and radar imaging are most easily achievable with an all-digital phased array

radar, the results presented in this study can help to inform decisions about possible

radar architectures for a future NEXRAD replacement system.

Finally, the effects of radar imaging on the calculated mesocyclone strength are

analyzed and discussed. It is shown that the derived mesocyclone strength decreases

as beam spoiling increases in azimuth. This is expected, and echoes results in Brown

et al. (2002). An interesting result from this study is that the magnitude of change

in derived ∆V is 4.4–9.0% when spoiling in azimuth by 5◦ to 20◦. Additionally, ∆V
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is calculated for 1◦, 5◦, 10◦, and 20◦ of spoiling in elevation; for the case analyzed in

this study, there is no appreciable effect on ∆V . It is believed that this is due to a

lack of strong reflectivity or velocity gradients in the vertical dimension, and the fact

that the rotation (mesocyclone) is vertically aligned. Based on these results alone,

spoiling in elevation is favorable compared to spoiling in azimuth for examining

trends in rotational characteristics. However, further study will be necessary to

examine if spoiling in elevation is better for estimating ∆V for mesocyclones and

tornadoes in most or all cases.

In the future, we plan to extend this study to cover adaptive scanning and

its effects on data quality. One advantage of a fully digital phased array radar

is the ability to control the location and shape of the radar beam. Controlling

the radar beam location can allow for more pulses to be sent out along radials

of interest, as fewer pulses are sent out along radials of lesser interest. Adaptive

reallocation of receive beam clusters (adaptive radar imaging) has been explored in

Weber et al. (2017) to speed up scans while minimizing effects on data quality from

higher sidelobes on transmit. It would be a goal of such a study to adaptively re-

allocate pulses to improve data quality for a set scan time, or to maintain a certain

level of data quality while decreasing scan time. Additionally, it would be beneficial

to test these scanning strategies on an all-digital phased array radar system (i.e.,

Horus; Palmer et al. 2019) to verify the simulated results, and to compare simulated

results to observed cases of various weather phenomena. This would be especially

beneficial for assessing polarimetric data quality under various scanning conditions;
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polarimetric data quality is not considered in this study because the contributions

of the phased array radar architecture to the expected radar variable errors could

be larger than the contributions due to the statistical fluctuations alone. However,

addressing the statistical fluctuations of polarimetric data is still an area which will

have to be addressed for a NexPAR system in the future. For future uses of a radar

simulator such as RSim, the effects of the radar architecture and design on radar

data quality should be considered.

This study can also be expanded to other methods of scan speedup. For example,

the multiple-beam technique (MBT) proposed in Zrnić et al. (2015) can be imple-

mented under various conditions (varying the number of beams, the pulse length,

etc.). Additionally, this framework can be used to compare the changes in expected

data quality when pulse compression techniques are used to increase the number of

independent samples in the along-range direction. Finally, this simulation frame-

work can be applied to multiple meteorological events to evaluate if these findings

are representative of scenarios beyond the supercell case considered in this study

(e.g., different convective modes such as squall lines or ordinary convection, flash

flooding, and quantitative precipitation estimation).
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Chapter 3

Quantifying the Benefits of a Rapid-Scan PAR for

Tornado Detection

3.1 Rapid-Scan Introduction

In Chapter 2, the primary focus is on ensuring that fast updates can be achieved

on a rapid-scan PAR for weather observations, with special attention paid to the

specific scan strategies and signal processing techniques that can provide high quality

radar data in a relatively short scan time. This portion of the dissertation research

is intended to quantify the benefits of a rapid-scan weather radar system in an

objective manner.

There are two primary goals in this chapter: the first is to use a tornadogene-

sis simulation and a tornado detection algorithm to show how rapidly changes in

tornado intensity and debris lofting occur, while classifying changes between differ-

ing heights and debris counts with time. This is the first study of the correlation

between tornado intensity and the amount of debris lofting by using a storm-scale

simulation. The second goal is to measure how changes in tornado detection latency
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time are affected by radar update time, by simulating a mature tornado while ar-

tificially changing the debris contribution. More succinctly, as it relates to faster

updates, Chapter 2 is intended to answer the question of ‘how?’, whereas this chap-

ter is intended to answer the question of ‘why?’, for a subset of cases where rapid

updates are believed to be useful.

3.1.1 Background

As stated in Chapter 1, a primary goal of NOAA/NWS for a NEXRAD replacement

system is an improvement in the volumetric update time for the radars. While

NEXRAD offers volumetric updates on the order of ∼5 min, this is not sufficient for

complete analysis of many rapidly evolving phenomena such as tornadoes (French

et al. 2013; Wurman and Kosiba 2013; French et al. 2014; Kurdzo et al. 2015a;

Wakimoto et al. 2015; Houser et al. 2015, 2016; Kurdzo et al. 2017; Mahre et al. 2018;

Bluestein et al. 2019; Griffin et al. 2019), severe storms (Carbone et al. 1985; Zrnić

et al. 2007; Heinselman et al. 2008; Newman and Heinselman 2012; Tanamachi et al.

2015; Tanamachi and Heinselman 2016; Kuster et al. 2016), and QPE applications

(e.g., 1-min updates assessed in Wang and Chandrasekar 2010).

In an operational setting, there are multiple methods that can be used by fore-

casters to detect a tornado for warning issuance. During the advent of Doppler radar

for research and operational use, a tornado vortex signature (TVS, roughly defined
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as a region of significant shear in radial velocity indicating strong vorticity) was the-

orized to be useful for tornado detection (Donaldson Jr. 1970); this was confirmed

for use by Burgess et al. (1975) and Brown et al. (1978). With the development

(and now operational use) of polarimetric weather radar, the use of polarimetric

signatures for tornado detection has been studied in the past 15 years. A primary

polarimetric signature for tornado detection is a tornadic debris signature, or TDS.

A TDS is generally defined as a co-location of a tornado vortex signature, ele-

vated radar reflectivity factor, and a region of lowered co-polar correlation coefficient

(ρhv), indicative of lofted debris (Ryzhkov et al. 2005; Bluestein et al. 2007; Kumjian

and Ryzhkov 2008). In previous studies, TDS characteristics have been leveraged to

achieve both automated tornado detection (by fuzzy-logic algorithms (Snyder and

Ryzhkov 2015) or by neuro-fuzzy algorithms (Wang et al. 2008; Wang and Yu 2015))

and manual tornado detection. The presence of a TDS is indicative of a tornado

that is strong enough to loft debris, and is therefore more common for stronger tor-

nadoes (Schultz et al. 2012; Bodine et al. 2013; Van Den Broeke and Jauernic 2014).

Schultz et al. (2012) and Bodine et al. (2013) found that the characteristics of a

TDS (e.g., height and area) were correlated with EF-scale damage. Expanding on

these smaller sample size studies, it has been shown in Van Den Broeke and Jauer-

nic (2014) and Thompson et al. (2017) that changes in the TDS may correlate with

changes in tornado intensity based on analysis of hundreds of cases. Conversely,

debris loading can affect the tornado dynamics (and, subsequently, the strength of

the tornado). Lewellen et al. (2008) and Bodine et al. (2016a) examined the effect
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of debris loading on low-level tornado dynamics; Lewellen et al. (2008) found that

the low-level wind speeds could be reduced by as much as 50%, and Bodine et al.

(2016a) found that wind speeds below 10 m AGL could be reduced by 30–60% under

high debris loading.

It has previously been shown that TDSs can improve tornado detection and lead

time. In fact, Van Den Broeke (2015) found that about 10% of tornadoes have

a TDS prior to tornadogenesis. Furthermore, Van Den Broeke (2017) found that

tornado warning lead times could be improved by using TDSs in negative lead time

scenarios (i.e., when a tornado is present but unwarned), as well as in cases where

no warning is issued at all. TDSs are usually observed at close range (<100 km) due

to beam broadening effects and poorer low-level sampling at longer radar standoff

ranges (Kumjian and Ryzhkov 2008; Bodine et al. 2013). Previous studies have

shown that tornado strength, tornado path length, debris type and availability, and

distance between the tornado and the radar have the most bearing on whether or

not a TDS is detected (Van Den Broeke and Jauernic 2014). Additionally, Van

Den Broeke and Jauernic (2014) show that TDSs typically extend to 1 km to 4 km

above ground level (AGL), such that scans in the lowest few km AGL are necessary

to properly detect a TDS. Taken alongside the fact that tornadoes typically evolve

on the order of a minute or less, this would indicate that rapid re-sampling of the

lowest elevation angles is paramount to early detection of tornadoes.
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3.1.2 Previous Research on Rapid-Scan Benefits

Tornadoes in particular require rapid radar updates for timely detection and sub-

sequent warning issuance. It has been shown that NEXRAD has improved tornado

warning lead times (Polger et al. 1994; National Research Council 1995; Bieringer

and Ray 1996; Simmons and Sutter 2005), and that there is a proven link between

tornado warning lead time and the number of injuries caused by a tornado (Simmons

and Sutter 2008).

The utility of rapid-scan weather radar data (i.e., finer temporal resolution than

NEXRAD) for both operations and research has been previously demonstrated. For

forecasting and operational purposes, Heinselman et al. (2012) and Wilson et al.

(2017) have shown that more rapid radar updates leads to increased lead time,

improved forecaster confidence, a higher probability of detection, and a lower false

alarm ratio for tornadoes in a simulated operational setting. In a more climatological

study, Cho and Kurdzo (2019) developed a benefit model for tornado detection

across the CONUS. Their study found that NEXRAD provides a tornado-based

benefit of about $490 million per year, and moving to a rapid-scanning radar system

could coincide with an additional benefit of $157 million per year. It is important

to note, however, that this benefit is specific to tornadoes; additional benefits are

associated with flash flood detection (Cho and Kurdzo 2020) and other radar-based

warnings such as those for hail and severe winds.
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Wolfson and Meuse (1993) also showed the utility of rapid updates in operations;

they found that reducing the scan time from 3 min to 1 min in a Terminal Doppler

Weather Radar (TDWR) significantly increases the lead time for automated mi-

croburst detection (2.2 min to 5.2 min of lead time), leading to improved capability

of aircraft to avoid hazardous areas on takeoff and landing. Additionally, data as-

similation studies have shown the benefit of assimilating rapid-scan weather radar

data to improve short-term numerical weather prediction (NWP) model accuracy

(Yussouf and Stensrud 2010; Sun et al. 2014; Supinie et al. 2017; Huang et al. 2020).

Thus, it is believed that decreasing the volumetric update time to ∼1 min would be

extremely beneficial for a future national weather radar network.

3.2 High-Resolution Observations of TDS & TVS

Growth

As stated in section 3.1, the first goal of this chapter is to attempt to quantify the

timescales on which a major signature of tornadoes (a TDS) grows and evolves. This

is analyzed as a function of time, height, and debris concentration, and is compared

with changes in the TVS, where herein ∆V is used as a proxy for TVS. This is

done in order to assess the necessary temporal resolution for proper observations

of tornadoes for both research and operations. The methods and techniques for

assessing the TDS and TVS are described within section 3.2.1, and the results of

this portion of the study are described in section 3.2.2.
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3.2.1 Methods

3.2.1.1 SimRadar

In the absence of a radar testbed where meteorologists can evaluate the collected

data, a radar simulator may be used. Radar simulators can reveal important in-

formation regarding the expected derived fields from a number of controlled input

scenarios. This is especially important, as a radar simulator can recreate the same

scenario, such that the effect of radar and environment variables (scan time, debris

concentration, etc.) can be evaluated directly. This study utilizes output from a

radar simulator (“SimRadar”) designed for tornado-scale simulations to assess and

quantify the benefits of a rapid-scanning weather radar system.

SimRadar (Cheong et al. 2017) is a dual-polarization radar emulator that com-

bines high-resolution numerical model input with dual-polarization electromagnetic

scattering data. A unique feature of SimRadar is the ability to accurately simu-

late trajectories and radar cross-sections (RCSs) for various debris types, including

leaves and wood boards (2” x 4” x 12” in size) which are used in this study. The

debris trajectories are computed using a 6 degree-of-freedom model that is based on

drag and moment coefficients derived from wind tunnel measurements, while debris

RCSs are computed from a lookup table based on the orientation angle of the debris.

SimRadar simulates in-phase and quadrature (I/Q) data by applying realistic range

and angular weighting functions, and coherently summing the point scatterers. The

I/Q data can then be used to compute moment data, including reflectivity factor
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(both horizontal and vertical), differential reflectivity, copolar correlation coefficient,

radial velocity, and spectrum width. More information regarding SimRadar can be

found in Cheong et al. (2017) and Umeyama et al. (2018).

For this study, various concentrations of debris are used; the two types of debris

simulated herein are leaves and wood boards. Other debris types such as metal

sheets and bricks are also supported by SimRadar. Additionally, raindrops are sim-

ulated with a Marshall-Palmer drop-size distribution (DSD). The resulting proba-

bility density function (PDF) is one that simulates five sizes of raindrops: 1, 2, 3, 4,

and 5 mm in diameter. Each size within a hydrometeor distributions is simulated

as a point scatterer, where each scatterer has the same DSD at the beginning of

the radar simulation. The initial PDF values (i.e., at t = 0 s) for each of the five

raindrop sizes are as follows: 90% of the drops are 1 mm in size, 9% are 2 mm in

size, 0.9% are 3 mm in size, 0.09% are 4 mm in size, and 0.009% are 5 mm in size. At

each timestep of the radar simulation, the DSD at each point can change, and the

resulting RCS contribution from hydrometeors is recalculated. The changing DSD

is a result of different sizes of hydrometeors having different trajectories; for exam-

ple, this method allows for larger hydrometeors to be centrifuged when advecting

around a tornado.

In this simulation, the RCS of debris is scaled below 50 m AGL. The exact

scaling follows the equation

σ′ =
σ

1 + e−(h−25)/3
(3.1)
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where σ is the inherent RCS, σ′ is the scaled RCS, and h is the height of the

debris AGL, in meters. A plot of the RCS scaling factor as a function of height is

Figure 3.1: RCS factor as a function of the height of the debris above ground level.

Note that above ∼30 m AGL, over 90% of the RCS factor is ‘activated’.

shown in Fig. 3.1. This RCS scaling is done in order to ensure that debris moving

across/near the ground do not affect the measured radar variables, as debris are

populated in the domain prior to tornadogenesis. Debris are generated at 10 m AGL,

and at a random location in the x-y plane within an inner domain of N m by N m

(where N = 400 m or 1000 m) around the center of the scan domain. Debris are

generated at 10 m in height (rather than a more realistic height of 1–2 m AGL) to

increase the efficiency of the debris lofting within the model.
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The simulations in the first goal of this study use the Cloud Model 1 (CM1;

Bryan and Fritsch 2002), described further in section 3.2.1.2. The CM1 model used

herein provides a realistic wind field before, during, and after tornadogenesis of a

rapidly evolving, violent tornado at 10 m resolution (Orf 2019). A visualization of

SimRadar using the CM1 model wind field is shown in Fig. S1 (https://drive.

google.com/open?id=1ebWLGJtVX7CRIsLds4xmzaFWi1Hgtyf1), where the tornado

is in the mature stage.

The scan pattern for this study uses 25 pulses per radial, with a pulse repetition

time (PRT) of 0.25 µs. Such a short PRT is chosen to avoid velocity aliasing,

which could affect TDS detection, because the TDS classification uses velocity shear

(described in more detail in section 3.2.1.3). The center of the analysis domain is

located approximately 14.75 km away from the radar, and spans 1.44 km in range

and approximately 2.4 km in azimuth (-5◦ to 5◦). The CM1 domain is restricted to

2 km x 2 km x 700 m in the zonal, meridional, and height dimensions, respectively.

The radar uses a beamwidth of 1◦ in azimuth and elevation, and is oversampled

to 0.5◦ in azimuth, with a range resolution of 30 m. Each individual plan-position

indicator (PPI) is assumed to take 1 s, and 6 PPIs are sampled for each volume scan

(i.e., a 6 s volumetric update time).

An example of output from SimRadar is shown in Fig. 3.2, where 350,000 leaves

and 150,000 wood boards have been released into the scan domain, along with hy-

drometeors. The debris are placed in the domain at the beginning of the simulation,

and new pieces of debris are replenished whenever a piece of debris exits the scan
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Figure 3.2: Example output from SimRadar. Panels show radar reflectivity factor

(ZH), radial velocity (vr), HCA class, and correlation coefficient (ρhv).

domain; however, these pieces of debris are not lofted initially because of weak

vertical motion such that they do not reach the altitude of the radar beam and

are artificially suppressed by the RCS scaling (Fig. 3.1). The example shown in

Fig. 3.2 closely coincides in time with tornadogenesis and with initial debris lofting.

A rotational couplet can be observed in the vr field, and a region of high ZH and

lowered ρhv is observed (∼14.6 km in meridional range, near the center in the zonal

dimension). As debris are lofted by the tornado, the area of high ZH and lowered

ρhv grows with time. This causes an increase in the total area identified as a TDS

(dark red pixels in Fig. 3.2). This behavior of increasing ZH and decreasing ρhv and

ZDR (not shown) is consistent with the observed evolution of TDSs during and just
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after tornadogenesis (Ryzhkov et al. 2005; Bodine et al. 2013; Van Den Broeke and

Jauernic 2014). However, these studies have used NEXRAD data which lacked the

temporal resolution to document the time scales over which this occurs.

3.2.1.2 Cloud Model 1 (CM1)

To realistically simulate tornadogenesis, version 16 of the Cloud Model 1 (CM1;

Bryan and Fritsch 2002) is used, with a 10 s temporal resolution. CM1 is a three-

dimensional, nonhydrostatic cloud model that is primarily used for idealized simu-

lations of storms and tornadoes (Orf et al. 2017; Orf 2019). For the simulation used

in this study, a sounding in the environment of the 24 May 2011 El Reno, OK EF-5

tornado is used (French et al. 2015; Houser et al. 2015; Tanamachi et al. 2015; Orf

et al. 2017). The near-storm environment is associated with very large instability

and shear (SBCAPE of 4893 J kg−1 and 27 m s−1 0-6 km wind shear). Other en-

vironmental parameters (528 m LCL, 371 m2 s2 SRH) are also very favorable for

supercells and tornadoes. The sounding and hodograph used is shown in Fig. 1 of

Orf et al. (2017). The near-storm thermodynamic conditions from the re-analysis

data are used as an input into the CM1 model, which then produces a simulated

violent tornado.

3.2.1.3 Hydrometeor Classification Algorithm with Tornado Class

To assess the presence of a tornado, a hydrometeor classification algorithm (HCA) is

used. An HCA is a fuzzy-logic algorithm that uses input from several radar moment
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variables–reflectivity factor, differential reflectivity, correlation coefficient, etc.–and

uses a set of membership functions to determine the most likely class at each radar

pixel.

A membership function is a trapezoidal class- and variable-specific function,

which maps a variable into a probabilistic space (zero to one) based on its correlation

with a specific class. For example, the membership function for ZH for the ‘rain’

class is 0 below 5 dBZ, linearly increases to a value of 1 between 5 dBZ and 10 dBZ,

remains at a value of 1 between 10 dBZ and 45 dBZ, and linearly decreases back to

0 between 45 dBZ and 50 dBZ. An example membership function for variable x of a

given class is shown in Fig. 3.3. In the notation of the example membership function

of Fig. 3.3, 5, 10, 45, and 50 dBZ are the x1, x2, x3, and x4 values, respectively.

That notation of xi values, where i = 1–4, will be used herein.

Each class and variable has its own membership function, as well as its own

weight between 0 and 1. At each pixel, there is an aggregation value for each

potential class, which is then normalized by the sum of the weights for each potential

class. This yields a value of 0 to 1 for each potential class; the class with the highest

‘score’ from the HCA is then determined to be the most likely class at a given radar

pixel. Because of the varying sums of weights, ‘ties’ between multiple classes for

the most likely class are uncommon. In real-world data, ties would be resolved by

the use of confidence vectors (Q). However, in the simulations in this study, ‘ties’

are rare enough even without confidence vectors (<0.1% of pixels) that they are not

believed to significantly alter the results of this study.
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Figure 3.3: A generalized membership function for variable x for a random class.

Figure adapted from Snyder and Ryzhkov (2015).

The operational version of the HCA is defined in Park et al. (2009), and uses six

variables (ZH , ZDR, ρhv, KDP , and spatial variance of ZH and ΦDP ) to discriminate

between 10 possible classes: ground clutter and anomalous propagation (GC/AP),

biological scatterers (BS), dry snow (DS), wet snow (WS), ice crystals (CR), graupel

(GR), large raindrops (BD), light/moderate rain (RA), heavy rain (HR), and rain

& hail (RH). Since these simulations do not include frozen precipitation classes, the

classes involving ice, snow, or hail (DS, WS, CR, GR, and RH) are not considered

in this study, as well as the ‘large hail’ and ‘giant hail’ classes that have been

added to the operational HCA in recent years. Additionally, because 1) the number

of pulses per radial in this simulation is relatively small, and 2) specific differential
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phase (KDP ) generally requires significant averaging in range, KDP is not considered

in this implementation of the HCA. This only affects the HR class; without KDP

measurements, the weights of the RA and HR classes are identical, and only the

membership functions of ZH and ρhv differentiate the two.

The non-suppressed classes (GC/AP, BS, BD, RA, and HR) are otherwise as-

sessed using the same thresholds, weights, and membership functions as those in

Park et al. (2009), although confidence vectors (Q) are not considered herein. Hard

thresholds are then used to suppress incorrect class identification, following Table 3

in Park et al. (2009). After the initial HCA is run, a mode filter (5 range gates

x 3 azimuth angles) is run in order to ‘smooth’ the output, suppress some spuri-

ous classifications, and mitigate major effects of any ‘ties’ between classes in the

filtered region. If multiple modes exist in the filtered region, the region is iteratively

expanded by 2 range gates and 2 azimuth angles until only one mode exists.

In addition to these five classes, another class (TDS) is evaluated using the

variables outlined in Snyder and Ryzhkov (2015). The TDS class uses the same six

variables as the operational HCA, as well as a dilated azimuthal shear (AS) variable

(Snyder and Ryzhkov 2015). The TDS class is shown in this study to predict a TDS

in areas near the center of rotation after tornadogenesis, and is generally co-located

with regions of high ZH and/or lowered ρhv, as predicted in section 3.1. The results

from this analysis are shown in sections 3.2.2.2 and 3.2.2.3.
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3.2.2 Results

3.2.2.1 CM1 Evolution: TVS and Vertical Velocity

An analysis of the model-derived maximum and 99.9th percentile vertical velocity

(w) is shown in Figs. 3.4 and 3.5, and an analysis of the radar-derived ∆V is shown

in Fig. 3.6. One of the primary factors that influences debris lofting is the vertical

(updraft) velocity. The 99.9th percentile of vertical velocity is plotted in Fig. 3.5

(rather than maximum velocity) such that a single grid point of high w cannot

bias the w estimate, when a single grid point with large w may not necessarily be

representative of the lofting over a large region. The 99.9th percentile represents the

48 grid points (out of 48,400) with the largest vertical velocities, corresponding to

an area of 4800 m2. In Fig. 3.4, it is clear that between t = 250 s and t = 300 s,

there is a sudden increase in w at all analyzed levels; this phenomenon is still present

(although somewhat muted) in Fig. 3.5. By comparing the increase in w with ∆V

in Fig. 3.6, it is clear that the increase in w coincides with the time at which the ∆V

estimates at 0.5◦ begins to deviate from those at 1.3◦ and 2.4◦. Prior to t = 250 s,

the ∆V estimates between the three elevations correspond closely. After this time,

∆V at 0.5◦ is lower than ∆V at 1.3◦ and 2.4◦, likely because lofted heavier debris

(wood boards) is causing a negative bias in the derived wind field (caused by drag,

such that wood boards will dominate the spectrum and move more slowly than

the background wind). This result of a negative bias in radar-derived wind speed

agrees with previous research (e.g., Dowell et al. 2005), which showed that larger
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debris moves more slowly than the surrounding air motion. These heavier debris

are expected to primarily be lofted after an increase in w.

Figure 3.4: The maximum vertical velocity at 15, 55, and 135 m AGL at each CM1

timestep (10 s apart).

Although an automated TVS algorithm exists, this algorithm is not implemented

in this study. Instead, tornado intensity is quantified in terms of ∆V . As shorthand,

the tornado strength (measured in terms of ∆V ) is sometimes referred to as TVS

strength in this study, such that the development of both the TVS and TDS are

tracked and analyzed as a function of time, height, and debris count. The TVS

is calculated as the magnitude of difference between the maximum inbound and

maximum outbound radial velocities in the vicinity of the tornado at a given time

and elevation angle.
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Figure 3.5: The 99.9th percentile of vertical velocity at 15, 55, and 135 m AGL at

each CM1 timestep (10 s apart).

3.2.2.2 High-Resolution Observations of TDS Growth: Small Debris

Initiation Domain

In this portion of the study, the primary variable analyzed is the areal extent of the

TDS, as determined by the HCA class method described above. Initially, SimRadar

was run using the CM1 model as the input model wind field, with two debris counts:

150,000 leaves and 50,000 wood boards, and 350,000 leaves and 150,000 wood boards,

where debris were initialized in an ‘inner domain’ of 400 m x 400 m in the zonal

and meridional dimensions. The initial location of the tornado was slightly outside

of this inner domain, limiting the amount of debris available for lofting for the first

few minutes after tornadogenesis. These two simulations are hereinafter referred to

as ‘Case I’ and ‘Case II’, respectively. A description of each of the cases in this
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Figure 3.6: An analysis of ∆V near the domain center at 0.5◦, 1.3◦, and 2.4◦. The

∆V is derived for a low-debris case, to minimize debris drag-induced bias. Note

that the elevations/heights in this figure do not correspond to the heights listed in

Figs. 3.4 and 3.5.

study (i.e., the size of the debris initiation domain and the debris amount) is given

in Table 3.1.

These two experiments may be a realistic simulation of a tornado that initially

forms over an area with very little loftable debris, and then moves into an area

with more debris (e.g., a wooded area, a housing development, etc.). To assess how

the debris fields might evolve during tornadogenesis in a region with homogeneous

debris availability, the simulations were run again with the initial debris placement

spread out over a larger domain (1000 m x 1000 m); these results are discussed in

section 3.2.2.3.
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Table 3.1: A summary of the five cases run in SimRadar for this study.

Case Number Debris Initiation Domain Size Debris Amount

1 400 m x 400 m 150,000 leaves, 50,000 boards

2 400 m x 400 m 350,000 leaves, 150,000 boards

3 1000 m x 1000 m 35,000 leaves, 15,000 boards

4 1000 m x 1000 m 150,000 leaves, 50,000 boards

5 1000 m x 1000 m 350,000 leaves, 150,000 boards

The radar simulation were run for 600 s; tornadogenesis and initial debris lofting

occurred ∼150-200 s after the start of the radar simulation. The simulation was

initially run at a temporal resolution of 60 s temporal resolution at each PPI. The

results from before, during, and after tornadogenesis are shown in Fig. 3.7 for an

elevation of 0.5◦ (approximately 140 m AGL) from Case I. The first time (t = 163 s)

occurs shortly before tornadogenesis and subsequent debris lofting, as evidenced by

the relatively low ZH , high ρhv, and broad rotation and the lack of strong gate-to-

gate velocity shear. This is further evidenced by the classification of all pixels in

the HCA as either rain or ‘big drops’. By the time of the next SimRadar scan at

0.5◦ (t = 223 s), a noticeable increase in ZH is present, which is co-located with a

decrease in ρhv and a tightening of the vr couplet. In the HCA, there is a quasi-

circular region of pixels where the HCA has indicated that a TDS is likely present.

This is expected, as this appearance of the TDS coincides with all of the ‘classic’
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Figure 3.7: SimRadar output at 1-min temporal resolution. Note the significant

frame-to-frame increase in ZH (223 s to 283 s), rotational intensity (163 s to 223 s),

and TDS area (163 s to 223 s, and 223 s to 283 s).
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signs of a TDS: increased ZH , lowered ρhv, and a tightening of the vr couplet. At the

following time (t = 283 s), the TDS area has substantially grown, likely owing to the

large area of lowered ρhv from further debris lofting. It should be noted, however,

that the increase in ZH is still primarily centered around the rotational couplet.

We theorize that the large increase in ZH near the center of rotation is primarily

caused by the lofting of wood boards–which require stronger updrafts in order to

be lofted–whereas the more widespread lowering of ρhv is caused mainly by leaves

being lofted and dispersed around the tornado since they take longer to fall out due

to smaller fall speeds. The stronger correlation between TDS and ρhv (relative to

the correlation between TDS and ZH) is likely due to the fact that ρhv, azimuthal

shear, and ZDR are weighted more strongly in the TDS class determination than

ZH . Additionally, the x1 and x2 values for ZH in the TDS class are 30 and 35 dBZ,

respectively (Snyder and Ryzhkov 2015), such that most of the scan domain contains

ZH values at or above these values.

Upon analyzing Fig. 3.7, it is clear that many significant changes occur regarding

the appearance and development of a TDS signature over the course of 1 min,

in less than the time of a full NEXRAD volume scan. While many studies on

tornadoes have suggested that sub-1-min updates may be necessary to properly

observe tornadoes for research purposes, it has not previously been shown whether

or not 1-min updates would be sufficient in an operational setting. The results and

analysis related to Fig. 3.7 indicate that a TDS could appear on faster timescales

than 1 min. As a result of this finding, the temporal resolution of the simulation was
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then improved by a factor of 10 at each elevation (6 s), in order to assess whether

sub-1-min updates can reveal further information about the evolution of the TDS.

Case I An example of the output at 6 s temporal resolution for Case I is available

as supplemental figure Fig. S2 (arrc.ou.edu/~mahre/FourPanel_6s_150k50k.mp4).

This animation shows the rapid evolution of the TDS in ZH , vr, HCA class, and

ρhv. Several frames from this animation are shown in Figs. 3.8 and 3.9, at 0.5◦ in

elevation (left two columns) and at 1.8◦ in elevation (right two columns). Frames

are shown at the full 6-s resolution.

First, the rapid changes at 0.5◦ in elevation in these figures are analyzed. It is

apparent that at 0.5◦ in elevation, a localized region of lowered ρhv is not present

at the first time (t = 199 s), but becomes increasingly evident over the next several

frames. By t = 229 s, this region expands significantly in size, and the lowest

ρhv values become significantly lower. By t = 241 s, there are several pixels with

ρhv less than 0.6, indicating a significant presence of debris. What is particularly

surprising is the rate at which the area of lowered ρhv grows; noticeable, substantial

changes are observed in the ρhv field from one frame to the next. For example,

t = 223 s to t = 229 s in Fig. 3.8 shows that the total area of lowered ρhv has grown

significantly, and the magnitude of the lowering of the ρhv values has increased. This

phenomenon of significant changes occurring in 6 s intervals is also observed for the

total HCA-identified TDS area (Fig. 3.9). The TDS area–defined as the total area

of pixels where a TDS is the most likely class as determined by the HCA–at 0.5◦
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Figure 3.8: SimRadar estimated ρhv for Case I at 0.5◦ and 1.8◦. The time stag-

ger/offset between 0.5◦ and 1.8◦ is due to the time taken to complete the ‘rest’ of

the PPI.

grows from 0 km2 at t = 199 s to an area of 0.34 km2 at t = 217 s, to 1.43 km2

at t = 241 s. The trend in TDS area is plotted for several elevation angles in

Fig. 3.10. While the warning issuance decision is more complex than a simple TDS

area threshold, the rapid growth of the TDS would seem to indicate that forecasters

may significantly benefit from shorter update times than 1 min. This also allows for

faster communication to the public about a confirmed tornado producing damage.

Additionally, having 6 s scans from a PAR may have other effects on forecasters.
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Figure 3.9: As in Fig. 3.8, but for output from the hydrometeor classification algo-

rithm.

For example, having updates every 6 s could ensure that the tornado is detected in

near-real time, and seeing consecutive scans with the same features could improve

forecaster confidence, rather than having to wonder whether a specific feature is

transient and/or an artifact. More specifically, a shorter update time could allow

forecasters to see a consistent trend of TDS area increasing with time with a sub-

1-min scan, whereas a 60 s or 300 s scan would likely show more discrete jumps in

TDS area between scans. Thus, shorter update times could make temporal trends
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easier to extract during real-time operations. Furthermore, changes in TDS area

could indicate a change in tornado intensity (e.g., Thompson et al. 2017), which

could be important information for the messaging that forecasters use to warn the

public.

Figure 3.10: A plot of the area of pixels corresponding to a TDS classification at

various elevations as a function of time, for Case I. Elevations of TDS area plotted

are 0.5◦, 1.3◦, 1.8◦, and 2.4◦ (approximately 140 m, 340 m, 470 m, and 620 m AGL,

respectively). The plotted ∆V is for Case III, such that debris-induced bias of ∆V

is minimized. All times are relative to the start of the simulation.

Next, the simulation is analyzed at 1.8◦ in elevation; this beam height corre-

sponds closer to the lowest height that a radar might observe in/around a tornado

at longer stand-off ranges, albeit with better spatial resolution. Analyzing the same
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simulation at 1.8◦ (∼470 m) in Fig. 3.8 and 3.9, it is observed that while the same

general trend holds true–that changes in the TDS area occur relatively rapidly–the

changes in the ρhv field are more subtle. There is a ∼20 s delay in the initial appear-

ance of lowered ρhv at 1.8◦ in elevation, compared to 0.5◦ in elevation. Additionally,

the lowered ρhv region appears to be more spread out and diffuse at 1.8◦ (i.e., at

t = 243 s) compared to 0.5◦. This is likely due to the fact that debris are initially

generated and lofted in a relatively small region around the tornado center. As the

debris are lofted, the debris disperses radially outward due to centrifuging, leading

to a lower number of pieces of debris per radar pixel, even if the same total amount

of debris reaches that level. Additionally, some debris is prone to ‘falling out’ before

reaching these higher elevations (Dowell et al. 2005; Bodine et al. 2014) and thus

debris concentrations are lower. This is consistent with the TDS observed at 1.8◦

(Fig. 3.10). From t = 250 s to t = 400 s, the TDS area at 0.5◦ holds relatively steady

around 1.25 km2, and the TDS area at 1.8◦ is relatively constant at ∼0.4 km2. After

t = 400 s, the TDS area for the 0.5◦ scan peaks at just above 2.5 km2 while the

maximum TDS area at 1.8◦ is ∼1.75 km2; for reference, the maximum possible TDS

area (based on the size of the scan domain) is approximately 3.5 km2. Thus, it

can be said that the total TDS ‘footprint’ is diminished at higher elevations, which

could possibly make tornado detection based on TDS difficult to predict, especially

in real-world scenarios where debris lofting is more transient, and the debris count

is constantly changing. These types of cases become more common as the range

from the radar to the tornado increases, and low-level radar coverage is reduced.
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After t = 400 s, significant, sustained debris lofting is observed at even higher

elevations, such as 2.4◦ (∼620 m AGL) and 3.1◦ (not shown). It should be noted

that the beam height at 3.1◦ is at ∼800 m AGL, which is above the top of the model

wind field input into SimRadar. As a result, the TDS area values at 3.1◦ in elevation

may not be fully representative of the expected lofting at these levels, and debris

lofting will generally not extend beyond 700 m AGL, and as such the TDS will not

reach the same heights as observed in real-world cases (e.g., Van Den Broeke and

Jauernic 2014). As a result, no in-depth analysis is conducted at 3.1◦ and above in

this study.

One note is that in many of the frames of Fig. 3.9, the outer radials at each

time tend to indicate the presence of ‘big drops’. It is believed that this is simply

an artifact of the domain size; the domain extends to -1 km to +1 km in the zonal

dimension, such that most returns along the outer radials are from the outer portions

of the radar beam, causing anomalously low ZH because of the lack of scatterers in

much of the radar beam. It is believed that this artifact does not adversely affect

the results and conclusions herein. Another artifact that appears in Fig. 3.10 is the

downward trend in TDS area at all elevations between t = ∼525 s and the end of

the simulation (600 s). The cause for this is believed to be somewhat artificial; the

center of circulation moves toward the east during this time, away from the center

of the scan domain (see Fig. S2). As a result, much of the debris is ‘ejected’ out of

the scan domain while circulating the tornado, causing an artificial lowering in TDS

area.
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Case II Some results from Case II are shown in Figs. 3.11 and 3.12. Interestingly,

the debris lofting begins at nearly the exact same time as in Case I; the increased

debris count does not cause the TDS to appear earlier than before. However, as

seen in the simulations with larger debris initiation domains (Cases III to V, in

section 3.2.2.3), this result may not be robust.

Figure 3.11: SimRadar estimated ρhv for Case II at 0.5◦ and 1.8◦. The time stag-

ger/offset between 0.5◦ and 1.8◦ is due to the time taken to complete the ‘rest’ of

the PPI.

The qualitative results remain largely the same with Case II as with Case I; the

area of lowered ρhv appears to grow in a similar manner in Fig. 3.11 as in Fig. 3.8.
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Figure 3.12: As in Fig. 3.11, but for output from the hydrometeor classification

algorithm.

Additionally, the results of the HCA in Fig. 3.12 appear largely unchanged from

those of Fig. 3.9. The area identified as a TDS grows similarly to Case I, but in

analyzing Fig. 3.13, the ‘plateau’ of TDS area between 250 s and 400 s at 0.5◦ is

higher for Case II than Case I (∼1.75 km2 compared to 1.25 km2). Additionally,

the TDS area for 0.5◦, 1.3◦, and 1.8◦ reaches ∼2.75 km2 at a time of ∼500 s,

indicating that nearly the entire scan domain is ‘saturated’ with debris at these
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levels. This would indicate that the ‘true’ TDS area is likely higher than what

SimRadar observes, due to the size of the scan and simulation domains.

Figure 3.13: As in Fig. 3.10, but for Case II. The plotted ∆V is for Case III such

that debris-induced bias of ∆V is minimized.

In multiple frames of Fig. 3.12, the HCA predicts biological scatterers (BS) as the

scatterer type. In SimRadar, no biological scatterers are present, meaning that this

is a misidentification. The most heavily weighted variables in determining the BS

class are ρhv, and standard deviation of ZH and ΦDP . The membership function for

ρhv is maximized for ρhv values between 0.5 and 0.8, and an inhomogeneous spatial

texture for ZH and ΦDP distinguishes the BS class from the analyzed hydrometeor

classes. Because the misidentification of the BS class primarily appears at the

periphery of the TDS region (i.e., t = 211 s and t = 231 s in Fig. 3.12), it is theorized
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that the high spatial variance of ZH and ΦDP causes the spurious identification of

biological scatterers.

After Cases I and II were run, a major question posed by the data was why

the TDS area has a ‘plateau’ between t = 250 s and t = 400 s, when the tornado

strength appears to generally increase in a nearly linear fashion from t = 150 s

to t ∼ 550 s. Once the simulations were analyzed in the visualization software

(e.g., Fig. S1), it was clear that the tornado formed on the periphery of the small

debris initiation domain (400 m by 400 m). Thus, the initial debris lofting may be

delayed. Furthermore, the tornado eventually moved into the center of the small

debris initiation domain, which appears to correspond with the increase in TDS

area between t = 400 s and t = 450 s in Figs. 3.10 and 3.13. As a result, it was

determined that many of the changes in TDS area in Cases I and II are an artifact of

the size of the debris initiation domain, rather than being purely caused by changes

in the tornado strength; the total TDS area calculated is likely a function both of

tornado strength and of debris availability. Again, this phenomenon could occur

in real-world data in a situation where debris availability changes, such as when

a tornado moves into an area with more available debris, such as a wooded area

or a housing development. Therefore, it was decided to run the simulations again

with a larger (1 km x 1 km) debris initiation domain (Cases III–V); Fig. S1 shows

a visualization for this 1 km x 1 km debris initiation domain. The results from the

HCA output and the ρhv field for the three simulations are shown in section 3.2.2.3.
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3.2.2.3 High-Resolution Observations of TDS Growth: Large Debris

Initiation Domain

Case III The results from Case III are shown in Figs. 3.14 and 3.15. As is evi-

dent in the ρhv field for the 0.5◦ elevation scan, a lowering in ρhv begins at roughly

t = 175 s, and becomes more pronounced at t = 193 s. The initial lowering of ρhv

at t = 175 s corresponds with w exceeding 20 m s−1 and ∆V reaching 50–55 m s−1

(Figs. 3.4 and 3.6). Debris lofting coinciding with ∆V reaching 50–55 m s−1 is

consistent with previous studies that have used 55 m s−1 as a threshold for tornado-

genesis (e.g., Houser et al. 2015). Between t = 193 s and t = 211 s, the magnitude

of the ρhv decrease is more pronounced in a region to the southwest of the domain

center. This generally corresponds to an increase in the total TDS area at these

times, where the location of the TDS region corresponds closely with the lowered

ρhv region. Approximately 4 min after the beginning of the lowering of ρhv and

the increase in TDS area, an initial lowering in ρhv is evident at 1.8◦ in elevation.

However, the lowering is significantly more diffuse than at 0.5◦ in elevation, and

the magnitude of ρhv lowering is not as large. As stated in Cases I and II, this is

likely due to a difference in the debris types contributing to the lowered ρhv and

the appearance of a TDS area, as well as a difference in the density of scatterers at

the given elevation. More diffuse scatterers would imply that even for a constant

debris count, the ratio of debris to hydrometeors in the resolution volume would be

reduced, thus causing a less substantial lowering in ρhv (Bodine et al. 2014, 2016b).
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The TDS area in Fig. 3.15 at 1.8◦ appears to be more transient and less consistent

than that at 0.5◦. These types of transient features are better-suited for detection

by a rapid-scan system.

Figure 3.14: SimRadar estimated ρhv for Case III at 0.5◦ and 1.8◦. The time differ-

ence between the 0.5◦ and 1.8◦ scans is due to the delay in debris lofting between

subsequent levels.

One note is the difference in times between the times in the 0.5◦ scans and

the 1.8◦ scans. In Cases I and II, the time between the appearance of a TDS at

successive elevation angles is decreased. This is likely due to the lower effective

debris concentration; when the debris are confined to a smaller initiation domain,
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Figure 3.15: As in Fig. 3.14, but for output from the hydrometeor classification

algorithm.

the number of pieces of debris per unit area increases. When the initiation domain

is expanded from 0.16 km2 to 1 km2, the number of pieces of debris per unit area

decreases by roughly a factor of six. For a fixed updraft area, this means that

effectively, the number of pieces of debris that are ‘loftable’ is reduced by a factor

of six.

From analyzing Fig. 3.16, it is possible to estimate the rate of increase in the total

TDS area in the scan domain. For instance, at 0.5◦, the total TDS area increases
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from 0 km2 at t = 175 s to approximately 1.4 km2 at t ∼ 525 s. This represents an

increase of approximately 4000 m2 s−1 in the total TDS area. At higher elevations

such as 1.3◦, this increase is slower, by roughly a factor of two. This would imply

that at lower heights AGL, the onset of a TDS is more sudden, likely due to the

relative sparseness of debris after significant lofting has occurred. In general, the

total TDS area tends to decrease with height, despite a similar TVS at 1.3◦ and

2.4◦, both of which appear stronger than the TVS at 0.5◦ (Fig. 3.6). This suggests

that the amount of debris lofted tends to decrease with height, likely due to debris

fallout.

In Case III, the TDS area appears to directly correlate with the strength of the

tornado as measured by ∆V (Fig. 3.16). The radar-measured ∆V in Fig. 3.16 first

reaches 50 m s−1 at t = 170 s. It is around this time that an increase in w is first

observed in Figs. 3.4 and 3.5. The sudden increase in ∆V and in w would seem to

indicate tornadogenesis; this is consistent with the ∆V value of 55 m s−1 found in

Houser et al. (2015). Thus, it is not surprising that initial debris lofting is observed

at 0.5◦ in elevation at t = 181 s. A TDS signature at 1.3◦ in elevation (∼200 m

higher) initially appears about 75 s later, which would indicate that the upper end

of the lofted debris cloud is ‘moving’ upward at approximately 3 m s−1 in this layer.

The TDS area continues to grow at 0.5◦, 1.3◦, and 1.8◦ until approximately t = 550 s.

Between t = 550 s and t = 600 s, both the TDS area and ∆V are reduced. This

agreement between TDS area and ∆V appears to be more natural–and less prone

to artifacts of the tornado moving relative to the initial debris placement–than the
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Figure 3.16: A plot of the area of pixels corresponding to a TDS classification at

various elevations as a function of time, for Case III. Elevations of TDS area plotted

are 0.5◦, 1.3◦, 1.8◦, and 2.4◦ (approximately 140 m, 340 m, 470 m, and 620 m AGL,

respectively). All times are relative to the start of the simulation.

simulations in section 3.2.2.2. This indicates that debris availability may impact

this correlation, although cases with both a small and large debris initiation domain

show the same general trend.

Case IV In Fig. 3.17 and Fig. 3.18, the ρhv and HCA output from Case IV is

shown at 0.5◦ and 1.8◦. Compared to Figs. 3.14 and 3.15, the times at which initial

lofting is observed (both by ρhv lowering and a detection in the HCA) are earlier.

This is likely due to the higher debris concentration, such that the increased amount
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of debris that is lofted by the tornado and its updraft causes the TDS signature to

be present earlier. As with Case III, the increase in TDS area at 0.5◦ appears to be

more steady and confined to a single area of the scan domain, whereas the TDS area

at 1.8◦ appears to be more sporadic, with larger fluctuations. The sporadic nature

of the HCA-indicated TDS area at 1.8◦ could lead to reduced forecaster confidence;

thus, having several scans could assure forecasters of the general trend, and whether

or not a TDS is forming at this height. This would be especially helpful in cases

where lower-level data is not available due to longer ranges between the radar and

the tornado, and this further reinforces the advantage of having sub-1-min updates

for operational purposes.

As in Case III, the initial appearance of lowered ρhv and a positive TDS detection

occurs to the southwest of the domain center. This could imply that the updraft area

is highly localized, and that only debris in a certain region is lofted. The location

of the region of lowered ρhv in Fig. 3.17 is consistent with that in Fig. 3.14 at 0.5◦.

At 1.8◦, the same pattern holds true for that in Case III: the lowered ρhv is diffuse,

and the magnitude of lowered ρhv is not as large. Additionally, the area in the HCA

that indicates a TDS is once again ‘split’ into a northern and a southern area (e.g.,

t = 297 s, t = 315 s, and t = 327 s in Fig. 3.19). This could be caused the two-cell

nature of the tornado (i.e., multiple updrafts inducing lofting), but further analysis

would be needed to support this hypothesis.

In Fig. 3.19, we can again analyze the rate at which the TDS area grows at

various elevation scans. At the 0.5◦ scan, the rate of increase in Case IV is greater
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Figure 3.17: SimRadar estimated ρhv for Case IV at 0.5◦ and 1.8◦. The time differ-

ence between the 0.5◦ and 1.8◦ scans is due to the delay in debris lofting between

subsequent levels.

than that of the Case III. The TDS area is 0 km2 at t ∼ 150 s, and increases

to slightly greater than 2 km2 at t ∼ 500 s. This corresponds to a growth rate

of ∼6000 m2 s−1, which is approximately 50% faster than that of Case III. This

result is in contrast to those in Cases I and II, where the debris count is not found

to have an effect on the rate at which the TDS grows. The hypothesis is that at

a certain debris concentration (i.e., debris per unit area), the lowest levels of the

scan domain become ‘saturated’ with debris, such that an increase in debris count
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Figure 3.18: As in Fig. 3.17, but for output from the hydrometeor classification

algorithm.

does not change the rate at which the TDS area grows. Additionally, the changes

in availability of debris may play a larger role in the TDS area in cases I and II.

For the larger domain cases (Cases III–V), it is possible that the lower levels (such

as at 0.5◦) have not yet become saturated with debris because of the lower debris

concentration (i.e., the same number of pieces of debris is spread out over a larger

area).
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Figure 3.19: As in Fig. 3.16, but for Case IV. The plotted ∆V is for case III such

that debris-induced bias of ∆V is minimized.

Case V Finally, the simulation is run at a high debris concentration for the large

debris initiation domain (Case V); the ρhv output is shown in Fig. 3.20, and the

HCA output is shown in Fig. 3.21. In general, the output shown in these two

figures is qualitatively similar to that in the output figures of Cases III and IV. A

closer analysis, however, reveals two interesting conclusions. First, the increased

debris count does not change the initial time at which debris are lofted to 0.5◦

(140 m AGL). However, the increased debris count does reduce the time from the

start of the simulation to the time at which a TDS is detected at 1.8◦ in elevation.

Since less debris reaches higher altitudes in tornadoes, having more debris lofted

may aid in producing a TDS at an earlier time. Second, the rate at which the
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TDS area grows continues to increase. An estimate of the rate at which TDS area

increases at the 0.5◦ scan (Fig. 3.22) indicates that the TDS area increases at a rate

of approximately 10000 m2 s−1. This is ∼2.5 times faster than that of Case III, and

∼1.67 times faster than that of Case IV.

Figure 3.20: SimRadar estimated ρhv for Case V at 0.5◦ and 1.8◦. The time differ-

ence between the 0.5◦ and 1.8◦ scans is due to the delay in debris lofting between

subsequent levels.

A limitation of the simulations herein is that debris are placed near the ground

from the beginning of the simulation. When an updraft forms prior to the tornado,

this can cause debris to be lofted (especially lighter debris), when this debris may
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Figure 3.21: As in Fig. 3.20, but for output from the hydrometeor classification

algorithm.

not be loose in a real-world scenario. A solution to this problem is the ability

to create debris as a function of wind speed, where regions of higher wind speed

would generate more debris. Initial implementation of this method has recently

been completed on SimRadar; it is believed that this would offer significant benefit

for enhancing the realism of these simulations going forward.
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Figure 3.22: As in Fig. 3.16, but for Case V. The plotted ∆V is for case III such

that debris-induced bias of ∆V is minimized.

3.3 Estimating Tornado Detection Latency Time

The second goal of this study is to quantify the changes in tornado detection using

an objective algorithm, using this as a proxy for forecaster-based subjective tornado

detection. To assess this, an objective method for tornado detection is created,

and SimRadar (described in section 3.2.1.1) is used. While this clearly does not

supplant the need for a human forecaster to issue warnings based on subjective

criteria, it does provide a metric to directly compare the changes in tornado warning

lead time (referred to as ‘tornado detection latency time’ herein) from multiple

scenarios. The advantage of an objective warning metric for testing is the ability to
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re-run simulations multiple times and directly assess the impact of variables on the

objectively issued warning performance.

3.3.1 Methods

3.3.1.1 Large-Eddy Simulation (LES)

To assess the second goal of this study (i.e., assessing the difference in tornado

detection latency time), an LES is used as the model wind field. The LES is a

relatively steady-state tornado, which does not significantly change in intensity with

time. The LES is run on a stretched grid, such that spatial resolution is finest at

the center of the analysis domain, and becomes coarser when moving outward from

the center. Horizontal grid spacing varies between 2.8 m and 16.8 m, while vertical

grid spacing varies between 2.8 m and 98 m, with the slowest rate of grid stretching

occurring within the radius of maximum winds, which is ∼200 m (Bodine et al.

2016a). The simulation in section 3.3 is 3000 s long, which is longer than the length

of the LES wind table. When the end of the LES table is reached, the model wind

field from the LES starts over from the beginning. Because the LES simulates a near-

steady state tornado (as opposed to the tornadogenesis simulation of CM1), this is

not believed to adversely affect the results. The reader is referred to Maruyama

(2011) and Bodine et al. (2016a) for more information about the LES.

To artificially create a change in the debris present in the simulated radar return

with time, a debris ‘RCS ramp-up’ is used. Using this method, debris are initially
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released into the tornado, and are allowed to advect freely. The RCS is set to

zero at the initial time, and is then linearly increased to the ‘true’ value over an

extended period of time. This does not necessarily reflect an accurate depiction

of tornadogenesis or the debris lofting process. However, this method is somewhat

similar to what one would expect to see if a mature tornado passed from a region

with minimal debris sources to a region where debris such as leaves and wood boards

are more plentiful and readily lofted.

For the purposes of this portion of the study, the debris contributions within

SimRadar change with time in order to assess the TDS latency time. This is achieved

by linearly increasing the debris RCS as follows:

σ = 0, t < t0

σ =
(t− t0)σ0
t1 − t0

, t0 ≤ t < t1

σ = σ0, t ≥ t1

(3.2)

Here, σ is the simulated debris RCS, σ0 is the ‘true’ debris RCS, t0 is the time at

which the tornado begins to loft debris, and t1 is the time after which the tornado

does not loft additional debris. This is done to simulate the lofting of debris by

a mature, violent tornado as it passes over a debris source. Using this method,

the contribution of debris to the overall radar-derived variables will increase over

time. In this portion of the study, the total ramp-up time (t1 minus t0) is 1000 s.

This represents a significantly longer ramp-up time than that of the CM1 model,

and could be more representative of a case where the amount of debris lofting is

changing more slowly with time.
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3.3.1.2 Tornado Detection Latency Time Calculation

One of the goals for this study is to test the performance of a simulated rapid-scan

weather radar, compared to expected performance of the current NEXRAD system

under similar conditions. In simulating a rapid-scan radar, the goal of this portion

of the study is to test scanning strategies with update time and data quality metrics

which would meet or exceed the requirements of a notional NexPAR system.

To quantify the benefits of rapid-scan weather radar, TDS latency times are

computed/simulated for a variety of cases within SimRadar. For this portion of

the study, the debris is ‘released’ into the tornado over a prescribed period of time;

in this case, a ramp-up time of 1000 s is used. Here, latency time for a TDS is

defined as the lag between the time at which RCS ramp-up begins and the time at

which the threshold for a TDS is reached. Each pixel in a PPI is analyzed for the

necessary TDS criteria: horizontal reflectivity factor above 40 dBZ (ZH > 40 dBZ),

copolar correlation coefficient below 0.825 (ρhv < 0.825), and proximal location to a

velocity couplet with minimum ∆V of 60 m s−1. Unlike the first experiment in this

study–where an HCA is used–this portion of the study uses a binary determination

of the presence of a TDS at each pixel. It is believed that while this changes the

total area categorized as a TDS, the final results and conclusions should not change.

The scanning strategy for the simulations uses 25 pulses per radial, a beamwidth of

1◦, and a range resolution of 30 m.
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These TDS thresholds are similar to those used in past observational studies

(Bodine et al. 2013; Kurdzo et al. 2015a), and are evaluated at each elevation angle

for each VCP tested, such that latency time can be analyzed as a function of both

height and VCP update time. A positive detection of a TDS at a given elevation

is defined as the first time at which the area of pixels meeting the TDS criteria

exceeds some area threshold, where area is calculated by summing all of the pixels

where the TDS criteria have been met. For example, if an area threshold is set

at 50,000 m2, the difference between the time of the first scan at which the area

of pixels meeting the TDS criteria exceeds 50,000 m2 and the time at which RCS

ramp-up began is recorded as the TDS latency time for that VCP. To minimize

the sensitivity of the results to a particular threshold, a large range of TDS area

thresholds are used, in a range of nearly continuous values. For the realizations with

a lower debris count, TDS area thresholds between 10,000 m2 and 30,000 m2 are

used, in 100 m2 increments. In higher-debris cases, TDS area thresholds between

10,000 m2 and 150,000 m2 in 100 m2 increments are used. The difference in upper

bounds accounts for the difference in observed TDS areas when lower and higher

debris counts are lofted.

In theory, if there are no fluctuations or variations in TDS area with time, the

difference in TDS latency time between two VCPs should be equal to the difference

in VCP update times divided by two. The tornado detection time for any given VCP

should be uniformly distributed between 0 s and N s, where N is the volumetric

update time in seconds. Therefore, the mean update time for VCP ‘A’ is NA

2
s,
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and the mean update time for VCP ‘B’ is NB

2
s, where VCPs A and B update at

NA s and NB s, respectively. Therefore, the expected (theoretical) difference in TDS

latency time is equal to NA−NB

2
. This theoretical difference in update time is used

as a reference value when making comparisons between VCPs.

3.3.2 Results

For this portion of the study, the latency time between tornado debris release and

detection of a TDS is used as a performance metric for comparing multiple simulated

VCPs. Changes in latency time are recorded for various combinations of debris

counts and types, different debris starting positions (‘seeds’), and different VCPs.

The results in this section show a direct comparison between two VCPs: ‘VCP A’

and ‘VCP B’. VCP A is extremely similar to VCP 215 implemented on NEXRAD;

it scans at identical elevation angles to VCP 215, but with a constant scan rate

to complete each elevation scan every 17.8 s, and no ‘repeating’ elevation scans for

reflectivity versus velocity data collection. VCP B also scans at 17.8 s per PPI, but

only elevation angles of 0.5◦, 0.9◦, and 1.3◦ are scanned. The result is a 5-fold change

in total VCP update time (267 s for VCP A, and 53.4 s for VCP B), with identical

data quality between the two VCPs. As shown later in this section, a difference in

data quality has an appreciable effect on the observed TDS area, leading to spurious

results. Thus, keeping the number of samples per scan constant ensures that the

results are not influenced by changes in data quality between the two VCPs.
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For a given set of SimRadar realizations, the only variable changing between

realizations was random placement of debris. All other input parameters–LES,

debris count, number of pulse pairs used, domain size, TDS criteria, etc.–are held

constant within one set of simulations. At each pixel in the scan domain, emulated

ZH and ρhv are assessed for the TDS criteria, to determine if they satisfy the TDS

thresholds. The sum of the area of pixels meeting the TDS threshold is computed,

and is recorded as a time series for each elevation. This can then be compared

between two VCPs with the same initial random debris placement; an example of

a TDS area versus time plot is shown in Fig. 3.23, where TDS area is plotted as a

function of time for a 0.5◦ elevation scan for both VCP A and VCP B.

In the example area versus time plot in Fig. 3.23, the ‘stair-step’ nature of the

TDS area corresponding to both VCP A and VCP B is indicative of the fact that

no new information about the nature of a TDS is gleaned between radar scans.

As a result, each ‘step’ in TDS area for VCP A lasts for 267 s, and each step in

TDS area for VCP B lasts for 53.4 s. Because the realization for both VCP A and

VCP B uses the same input parameters and the same starting debris locations, each

VCP A scan will align (both in area and time) with a scan collected by VCP B.

This allows for a direct comparison between the two VCPs, as the two VCPs in a

single realization are scanning the same spatial distribution of scatterers at the same

time. To assess whether or not a VCP has ‘detected’ a TDS at a given time, the

area of pixels meeting the TDS criteria are compared to a near-continuum of TDS

area thresholds.
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Figure 3.23: An example showing the TDS area with time for a slow VCP (VCP A;

267 s update time, red line) and a fast VCP (VCP B; 53.4 s update time, green

line). Note the fluctuations in TDS area for VCP B, leading to TDS latency times

greater than the theoretical values.

For each realization, the domain is scanned using both VCP A and VCP B. The

time at which the total TDS area for each VCP reaches each threshold (‘latency

time’) is recorded relative to the beginning of RCS ramp-up, and the mean of these

latency times is calculated. The main interest in this study is the difference in

latency times between the two VCPs, for a direct comparison of the improvement in

lead time in tornado detection. This is then compared to the theoretical lead time

improvement, based on the two VCP update times (NA−NB

2
= 106.8 s for VCPs A

and B).
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The first set of five SimRadar simulations was run at a range of approximately

14.3 km from the radar to the center of the tornado, with 50,000 leaves and 10,000

wood boards, with a linear RCS ramp-up over 1000 s (t0 = 115 s and t1 = 1115 s in

(3.2)). Each realization uses a different initial random placement of debris, but are

otherwise identical. Because the start time of VCP A relative to VCP B is arbitrary,

the start time for VCP A is shifted in 53.4-s increments. This increases the number

of samples for TDS latency time for each realization by a factor of 5, for a total of

25 realizations. To estimate statistical significance, nonparametric ordinary boot-

strap resampling (Efron 1979) was applied using 25 samples with replacement and

conducted 200,000 bootstrap resamples. A histogram of the bootstrapped means are

plotted in panel a) of Fig. 3.24. This entire procedure is then repeated for a set of 5

SimRadar realizations with a higher debris count (250,000 leaves and 50,000 wood

boards); this result is plotted in panel b) of Fig. 3.24. For reference, the ‘theoretical’

TDS latency time improvement of 106.8 s is plotted as a vertical red line in both

panels.

The mean TDS latency time improvement over all 200,000 bootstrapped means

for the low debris count is 207.1 s, and is 136.9 s for the high debris count. It is

believed that the discrepancy between the mean improvement in TDS latency times

in the realizations with low versus high debris counts is due to the fact that fluctu-

ations in TDS area are much greater in the low debris cases, due to more transient

debris lofting. More transient debris lofting should lead to more fluctuations in
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Figure 3.24: Histograms of bootstrapped means for TDS latency time with a low

debris count (panel a) an a higher debris concentration (panel b).

TDS area, which is a situation where faster updates should provide more benefit to

increase the lead time of tornado detections.

The histograms in Fig. 3.24 clearly show that the distribution of bootstrapped

means is generally above the theoretical TDS latency time improvement of 106.8 s.

For the lower debris case (panel a), all of the 200,000 bootstrapped means were

greater than the 106.8 s theoretical value, while for the higher debris case (panel

b), 199,930 (99.97%) of the 200,000 bootstrapped means were greater than 106.8 s.

As a result, it can be conclusively said that the observed increase in TDS latency

time is greater than the theoretical difference expected, based on the difference in

VCP update times, and is statistically significant. This result supports the initial

hypothesis and echoes a similar result in Wolfson and Meuse (1993) for wind shear

detection.

The above results primarily focus on expected benefits in TDS latency time of-

fered by rapid updates. However, when discussing faster radar updates, it is also
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important to consider any possible drawbacks due to detrimental effects on data

quality. For the automated tornado detection algorithm discussed previously, it is

much easier to quantify improvements in TDS latency time, rather than assess any

deleterious effects on the data quality caused by more rapid update times (i.e., false

positives). However, when reducing the number of samples per radial, deteriorat-

ing data quality can cause erroneously low correlation coefficient (ρhv) (Bringi and

Chandrasekar 2001). This can cause TDS criteria to be met, such that erroneously

high values of TDS area are observed even when little or not debris is present. An

example of this phenomenon is shown in Fig. 3.25, where the same observation is

made using (a) 25 pulses per radial, and (b) 5 pulses per radial. The difference in

observed ρhv can be seen in a comparison of panels (a) and (b), where more pixels

of lowered ρhv are evident when the number of pulses per radial is reduced. Data

quality for ρhv is worsened as a result of reducing the number of samples per radial,

creating a scenario in which anomalously high TDS areas and reduced spatial con-

tinuity of the TDS are observed. Poor data quality has a deleterious effect not only

on automated algorithm performance, but also on the ability of a human forecaster

to detect tornadoes using polarimetric data.
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Figure 3.25: A comparison of the changes in ρhv with 25 pulses per radial (panel a)

and with 5 pulses per radial (panel b).

3.4 Conclusions

In this study, the appearance and evolution of a TDS and TVS are analyzed for

multiple heights, debris counts, and debris initiation domains in a simulated en-

vironment. This analysis is conducted for a tornadogenesis case using the CM1

model, where a violent tornado forms. The radar simulator was initially run at

1-min temporal resolution, where very significant changes were observed between

successive scans. As a result, the study was conducted at 6-s temporal resolution.

The results show that noticeable changes in various fields (ρhv, HCA class output,

etc.) occur in as little as 6 s, and that significant changes in the spatial extent

of the TDS are observed on timescales of 12-18 s, especially in cases where debris

availability is limited. This finding motivates the desire to scan more rapidly than
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both NEXRAD (300 s) and the proposed 1-min temporal resolution for NexPAR.

Having polarimetric scans every 6 s ensures that the tornado is detected as early

as possible. Seeing debris for several consecutive scans over ∼20 to 30 s will in-

crease confidence in tornado detection where it might take a few minutes to achieve

similar confidence with 1-min updates; this appears to be especially true at lower

debris concentrations, where greater scan-to-scan TDS area fluctuations may occur.

Additionally, rapid changes in TDS area may indicate a change in tornado intensity.

The results from the TDS evolution simulations with the CM1 model show that

when debris availability is constant, the TDS area is highly correlated with the

strength of the tornado (∆V ). This study is the first to use a storm-scale simula-

tion to analyze the correlation between tornado intensity and TDS characteristics.

Additionally, in the simulations where debris availability changes with time, there

are significant changes in TDS area that correspond to the availability of loftable

debris. This result is expected, but further underscores the point that the areal

extent of the TDS signature depends on a combination of both tornado strength

(e.g., Van Den Broeke and Jauernic 2014; Thompson et al. 2017), and availability

of debris (Van Den Broeke and Jauernic 2014). This could indicate that in some

cases–especially where debris availability is relatively low–using a TVS signature

could be more useful than a TDS.

The results of the simulation also show that higher elevation scan angles tend to

produce smaller TDS areas, despite having a similar TVS as lower elevation angles.

This is likely due to a lack of debris being lofted to these higher heights. This is
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consistent with observations that find TDS area decreasing with height (e.g., Fig. 8

in Bodine et al. 2013). At these elevations, the TDS area largely coincides with

somewhat lower ρhv, but not a significant increase in ZH . This likely suggests that

the debris that are being lofted to these higher elevation angles are primarily lighter

debris (i.e., leaves), rather than heavier debris with a higher RCS (i.e., wood boards).

This agrees with expectations, as heavier debris tends to not be lofted as high as

lighter debris.

Furthermore, the effect of the amount of debris on TDS area is studied. The

primary result found is that increasing the debris count increases the total TDS area

detected, and under some circumstances, the rate at which the TDS area increases.

This result is observed at all analyzed elevation angles (e.g., Fig. 3.12). Increased

debris count does not appear to have an effect on the time at which the TDS is

initially observed at low levels when using a smaller debris initiation domain (Cases

I and II), but the simulations with a larger debris initiation domain (Cases III–V)

do indicate that debris count has an effect on the time at which a TDS is observed

at higher heights AGL. It is theorized that this effect is due to a changing debris

concentration (debris per unit area).

For the second goal of this study (changes in tornado detection latency times),

the results show that improving the temporal resolution of a rapid-scanning weather

radar improves the tornado detection latency time by a factor greater than that pre-

dicted by theory alone. The results from this study indicate that the improvement

measured is 1.28–1.93x that of the theoretical lead time gain, likely owing to natural
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fluctuations in the TDS area with time. This would indicate that the benefits of a

rapid-scanning weather radar are greater than initially expected for tornado detec-

tion. This further emphasizes the desire for rapid updates in the next-generation

nationwide weather surveillance radar. However, an example showing a spurious

lowering in ρhv under poor data quality conditions emphasizes the point that rapid

updates need to contain sufficient data quality.

This study is the first to analyze the timescales on which a major signature for

tornado detection (TDS) appears and evolves, and is the first study to simulate a

TDS during tornadogenesis. Because the TDS is observed to evolve on timescales

much shorter than 1 min, a major impact of this study is to motivate the need for

more rapid observations of tornadoes (i.e., every 20 s or less). Sub-1-min update

times would almost certainly need to rely on PAR; 6-s update times like those in this

study would likely require a fixed (i.e., not mechanically rotating) PAR. However,

because of the challenges in meeting the 1 min full-volume update requirement while

still maintaining acceptable data quality, obtaining volumetric updates every 15-20 s

may not be feasible. The following question then arises: how can rapid updates be

obtained for proper and timely tornado detection?

Scan techniques such as beam multiplexing (BMX; Yu et al. 2007) or radar

imaging and digital beamforming (DBF; Isom et al. 2013) offer significant promise

in achieving very rapid scans such as those proposed in this study. It is also believed

that adaptive scanning–in large part only possible with a PAR–would provide the

solution to this challenge. With a fully digital PAR, an area of interest such as a
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tornado could be revisited with a much faster update time than that provided by an

inflexible radar system such as a rotating dish antenna. In the future, one possible

avenue for this research could be testing the tornado detection capabilities for an

adaptively scanned system with that of a radar system with a fixed update time,

while also taking data quality and non-uniform updates into account. Furthermore,

real-world PAR systems such as Horus (Palmer et al. 2019) can be used to verify

the adaptive scan ability for potential NEXRAD replacement applications.
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Chapter 4

Adaptive Scanning and Pulse Reallocation to

Improve Data Quality

4.1 Introduction

With the recent trend toward adopting phased array radar (PAR) in the weather

radar community (Wurman and Randall 2001; Weber et al. 2007; Zrnić et al. 2007;

Bluestein et al. 2010; Isom et al. 2013; Adachi et al. 2016; Kashiwayanagi et al.

2016; Palmer et al. 2019; Weber 2019; Yu et al. 2019), novel methods of improving

both temporal resolution and data quality for weather radar should be explored.

Chapter 2 primarily focuses on ways that scanning strategies can be applied for an

entire scan domain. However, this may not be the most practical way to achieve an

optimal balance between temporal resolution and data quality. Some scan strategies

are shown to perform well in certain scenarios, while others are shown to be ideal

in other areas. In an attempt to show the utility of cognitive radar concepts for

improving data quality and/or temporal resolution, adaptive scanning is applied

to leverage electronic beam steering in this chapter, such that data quality can be

adaptively improved by reallocating radar resources.
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Cognitive radar, in which radar resources are adaptively allocated toward a spe-

cific goal (Haykin 2006; Guerci 2010; Romero and Goodman 2013), provides signif-

icant promise for improving overall radar performance. Cognitive radar is advanta-

geous for multiple reasons. First, it allows for a more efficient method of reallocating

the resources of the radar. In a non-adaptive setting, all scan areas are treated as

equal, even though some areas might have returns that are either unusable or of

little/no interest to the end users of the radar. Second, the adaptive allocation

can be either entirely automated or mostly automated. This has the advantage of

providing superior data without increasing forecaster workload, which can be an

obstacle in implementing new radar technology (e.g., Wilson et al. 2017). Third,

the goals of an adaptive system can be altered to suit the needs of the radar end

users (e.g., McLaughlin et al. 2005). In theory, this could mean that multiple scan

goals are programmed into the system, and forecasters can choose which goal they

would like to achieve with minimal oversight required.

In previous research, cognitive radar and/or adaptive scanning have been used

in radar applications such as adaptive waveform transmission (Kurdzo et al. 2014,

2015b; Mitchell et al. 2018; Kurdzo et al. 2019), deriving human-attention models

(Schvartzman et al. 2017), and adaptive scanning to improve temporal resolution

(Chrisman 2009; Reinoso-Rondinel et al. 2010; Heinselman and Torres 2011). How-

ever, in many regards, the use of cognitive radar for weather radar systems has

largely been unexplored. Possible reasons for this could be the relative novelty

of PAR to the meteorological community, as well as the relatively low number of
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PARs for weather observations currently in operation, thereby limiting the number

of research opportunities. Despite the relative lack of prior research using cognitive

radar techniques for weather radar, it is believed that this is a promising avenue of

potential research moving forward, especially as PARs become more commonplace

in the meteorological community.

One potential method for applying cognitive radar principles to weather radar

observations is by attempting to maximize data quality while maintaining tempo-

ral resolution. This adaptive use of radar resources to improve data quality and

volumetric update time is of great importance, as improved temporal resolution

(compared to NEXRAD) is a primary goal of the NWS, and the ability to maintain

current data quality levels while improving temporal resolution is still being studied

(e.g., Mahre et al. 2020). Conversely, this method can be used in reverse; if a given

level of data quality is desired, adaptive scanning can work backwards to estimate

how much temporal resolution can be improved. This is especially important in

areas where improving data quality beyond the NexPAR specifications may not be

as advantageous as improving temporal resolution, such as in/around tornadoes,

downbursts, or other rapidly evolving phenomena. An advantage of adaptive scan-

ning is that various regions of the PPI can have different update times, depending

on the needs of the end user; however, that is beyond the scope of this study.

Additionally, it is essential to show that such an improvement (or at the very

least maintaining current levels while improving temporal resolution) in data quality

is possible, as the final design decisions for a replacement of the current NEXRAD
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system will be made in the near future. For example, one of the fundamental design

decisions for a NEXRAD replacement system is whether the system will be a PAR

or a parabolic dish system similar to NEXRAD. Prior to making such a decision, it

is imperative that the scientific community has a full understanding of the pros and

cons of a phased array system. As adaptive scanning is a significant advantage of

PAR, it is believed that the ability of PAR to help meet the rapid-scan timeline is

a worthwhile research opportunity.

In this project, the ability of PAR to improve weather radar data quality is

studied by using cognitive radar principles. Herein, an improvement in data quality

is said to correspond to a reduction in the statistical standard deviation of radar

moment variables such as radial velocity (vr); this could easily be expanded in

the future to account for other moment variables such as reflectivity factor (ZH) or

polarimetric variables. In the future, the results of this study can also be generalized

to ‘work backwards’, by starting with a minimum desired data quality and working

to achieve the best possible temporal resolution for the desired level of data quality.

This chapter is organized as follows: section 4.2 describes the methods used in

this study, and details the optimization setup and evaluation. Section 4.3 shows the

results from two cases where adaptive scanning (pulse reallocation, or PR) has been

applied. These results compare the impact of PR for the two cases in regions of

high, moderate, and minimal importance. Finally, section 4.4 discusses the impact

of these results, and their possible implications for the design of a nationwide rapid-

scan weather radar system.
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4.2 Methods

As stated in section 4.1, the purpose of this study is to adaptively reallocate radar

pulses away from radials where either little is gained by dwelling longer, or the

data quality is of minimal importance. For example, if there is a region with either

minimal importance (e.g., a region where no precipitation is occurring or a region

where precipitation is light and/or not rapidly evolving) or where decreasing the

number of samples would not significantly affect the data quality, fewer pulses are

transmitted along that radial.

4.2.1 Overview of Optimization Procedure

The model for optimization and PR proposed in this study is referred to as the

‘ROI2 model’. This is because the model relies on two major factors to decide where

to reallocate radar pulses:

• What areas are of the most importance to the radar end users? In other words,

where is the region of interest (ROI)?

• Where would increased samples have a significant impact on the data quality?

In other words, what is our expected return on investment (ROI)?

Because the decision to reallocate pulses depends on both the region of interest

(ROI) and the return on investment (ROI), the model is referred to as the ROI2

model. A general overview of the procedure for the ROI2 model is shown in Fig. 4.1.
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The procedure begins with a surveillance scan, where the number of pulses trans-

mitted and collected along each radar radial are equal. This is the baseline, to which

all data quality after PR is compared. The surveillance scan is completed to assess

where the areas of interest are, so the forecasters can assess what goals the ROI2

model should focus on.

Figure 4.1: A high-level overview of the procedure for optimization in the proposed

ROI2 model.

After the surveillance scan has been completed, the data quality is estimated at

each point in the PPI where the SNR is above a given threshold. Then, the user

sets the interest level for each radial (either manually or automatically). A cost

function is created for each range gate, and an ‘optimized’ number of pulses per
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radial is estimated. This process then repeats for each of the analyzed range gates,

such that a ‘new’ number of pulses has been calculated for each range and azimuth

combination. These are then combined into a single pulse number per radial; further

details of the optimization and the cost function are detailed in section 4.2.2.

The radar continues to scan in the adaptive (i.e., post-PR) mode for a set amount

of time. In the example flow chart of Fig. 4.1, the amount of time is set to 5 min.

This time limit is arbitrary, and could be changed depending on the situation. If

the time limit has been reached, the radar begins another surveillance scan, and the

process begins again. The reason 5 min is chosen as an example is that the region-

based segmentation should be able to account for expected advection, such that the

extent of each region does not need to be updated every 1 min. However, the choice

of 5 min is somewhat arbitrary and should be evaluated for each application.

4.2.2 Optimization and Cost Function Setup

Prior to optimization, the importance value (one value for each radar radial) is set

and the expected standard deviation of vr for each pixel is calculated under non-

adaptive conditions. The importance value (1–10) is set by the user and is set to be

one value for each radar radial. There are many methods that could be used to assign

importance values; this study uses a region-based segmentation method, where a

connected region is segmented based on a ‘seed point’ and a minimum ZH threshold

chosen by the user. After the seed point and ZH threshold have been set by the user,
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a program is run which iteratively checks whether or not the neighboring points to

the edges of the segmented region also fall within the parameters of the region to be

segmented. An example of this region-growing method is given in Fig. S3 (https:

//drive.google.com/file/d/1-pRofhvji_-CLZbaK7YW-eELJ_rio2hZ), where the

16 May 2015 case (i.e., Case #1 in this study) is analyzed with a ZH threshold of

43 dBZ.

All radials with at least one pixel in the segmented region are prescribed to have

the user-defined importance value. For example, if the user sets the importance

level to a 10 (i.e., high importance), selects a seed point, and the segmented region

is found to span radials 45–120, then radials 45–120 are assigned an importance

value of 10, and all other radials are assigned an importance value of 2 (i.e., baseline

importance). Furthermore, radials within 5◦ of the edges of the segmented region

are assigned the same importance value as the segmented region; this is done to

account for advection between the surveillance scan and the end of the adaptive

scanning period.

To achieve mathematical optimization, the first necessary step is to create a cost

function to be minimized, subject to variable constraints. In this study, the cost

function is centered around the statistical standard deviation of radial velocity (vr).

This equation is written in (2.4), and is re-written here for convenience:
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Here, var(v̂C) is taken to be the variance of the radial velocity estimator for CPS

data processing mode with a pulse-pair processor, λ is the radar wavelength, M is the

number of pulse pairs (equal to the number of pulses minus one for contiguous pulse

pairs), Ts is the pulse repetition time (PRT), ρ is the normalized autocorrelation

function, S is the signal power, and N is the noise power. The square root of var(v̂C)

is taken to be the statistical standard deviation of vr (σvel).

The cost function (J) is set up to be a scaled version of σvel. Here, σvel is

multiplied by the importance level in each radial. This cost function is set up at

each radar range gate, and is set up as follows:

Ji =
D∑
k=1

Ikσvel(k, i) (4.2)

where Ji is the cost function for the ith range gate, Ik is the importance level set

for the kth radial, and σvel(k, i) is the standard deviation (i.e., the square root of

the radial velocity variance in (4.1)) at the ith range gate and the kth radial. This

cost function is calculated for the default number of pulses per radial, where the

default number is assumed to be equal to the total scan time for a non-adaptive scan

(18 s, which is consistent with NEXRAD, is used) divided by the pulse repetition

time (PRT; herein, 1.5 ms is used). In the examples in this study, this allots 12,000
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pulses for each scan, or 33.33 pulses per radial at 1◦ sampling; of course, the final

number of pulses per radial must be an integer, but this conversion from floats to

integers is done after optimization. The values for the total scan time and the PRT

can be varied depending on the scan situation.

For each range gate, the cost function is minimized by changing the number of

pulses along each radial. For example, if the default number of pulses per radial is 33,

and it is found that changing the number of pulses for radial A to 34 and the number

of pulses for radial B to 32 lowers Ji, then the number of pulses per radial is changed.

This is done iteratively by using fmincon (i.e., Find MINimum of CONstrained

nonlinear multivariable function) in MATLAB. The fmincon function uses linear

and nonlinear constraints and upper/lower bounds on the number of pulses for each

radial to constrain the cost function minimization. Herein, a minimum of 8 pulses

per radial and a maximum of 128 pulses per radial are used. The constraints used

are (1) the 12,000 pulse per range gate maximum, and (2) a maximum of 1.25x the

default number of pulses for any given 90-degree sector at 1◦ sampling. This is done

in order to simulate a single-faced PAR that is mechanically rotating. Because the

PAR is mechanically rotating at a fixed rate (and the PAR can only beamsteer a

certain amount off of broadside due to beam broadening and cross-pol contamination

effects), the number of pulses for a given sector is restricted. The factor of 1.25 is

somewhat arbitrary and can be changed in future simulations if desired; for example,

a two-faced or four-faced system could likely have a higher factor than 1.25. Because
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the beam in this experiment does not steer far off of broadside, beam broadening

effects are not taken into account.

Once the constraints and bounds are specified, the minimization occurs in steps

along the direction of greatest descent to find the local minimum of the cost function

at each of the D range gates. While the radar can only transmit an integer number of

pulses per radial, the optimization uses floats. Once the cost function minimization

is complete for a given range gate, each radial has a floating-point decimal number

of pulses. This process is then repeated D times, such that each range and radial

combination have an initial number of (reallocated) pulses. Because the number

of pulses must be constant along each radial, the D values for each radial must be

combined into a single integer number of pulses for each radial, where the initial

constraints from the optimization (no more than 1.25x the default number of pulses

for any 90-degree sector, and no more than 12,000 pulses for the entire PPI) are still

met. This is achieved by taking the X th percentile of pulses in higher importance

regions, and the Y th percentile of pulses in lower importance regions, where X > Y .

4.2.3 Datasets Analyzed

Multiple real-world scenarios are used for this study, where NEXRAD moment data

is used as input for the optimization model. The first scenario tested is a tornadic

supercell case from 16 May 2015 near Tipton, OK. This data is collected by the

KFDR NEXRAD radar, with the supercell approximately 30 km to the northwest
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of the radar. The tornado from this case was rated as an EF-3 (Mahre et al. 2018),

and was on the ground for nearly 90 min. For this study, the case is analyzed at

2302 UTC. The ZH field is shown in Fig. 4.2, where the black contour represents a

signal-to-noise ratio (SNR) of 15 dB, where the noise floor is assumed to be identical

to that of NEXRAD (-7.5 dBZ at 50 km). One of the reasons that this case was

chosen for analysis is that there are two storms of interest: the first is the primary

supercell to the northwest of the radar, and the second is a smaller storm to the

southwest of the radar. Choosing this case allows for an analysis of how the ROI2

model performs when there are two distinct, spatially separated regions of interest.

The second case analyzed in this study is from a mesoscale convective system

(MCS) over South Dakota on 6 July 2015 by the KFSD NEXRAD radar (Bodine and

Rasmussen 2017), which was studied for the Plains Elevated Convection at Night

(PECAN) field campaign (Geerts et al. 2017). The MCS spanned a wide range of

azimuth angles relative to the radar, and was generally moving from northwest to

southeast. A PPI of ZH for this case is shown in Fig. 4.3; as in Fig. 4.2, the black

contour represents 15 dB of SNR. This case was chosen because the segmented

regions extend further out away from the radar, such that any effects from this can

be explored.
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Figure 4.2: A PPI of ZH from 16 May 2015 at 2302 UTC, from the KFDR (Frederick,

OK) NEXRAD radar. The black contour represents an SNR of 15 dB. Only 200 km

x 200 km are plotted, as the example optimization shown herein only analyzes the

nearest 100 km to the radar.

4.3 Results

4.3.1 Case #1: 16 May 2015 ‘Tipton, OK Tornadic Supercell’

The first case analyzed is a tornadic supercell near Tipton, OK on 16 May 2015. The

tornado associated with this storm has been studied in prior publications (Kurdzo
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Figure 4.3: As in Fig. 4.2, but for the case from 6 July 2015 at 0401 UTC, from the

KFSD NEXRAD radar.

et al. 2017; Mahre et al. 2018, 2019) with both NEXRAD data and with high-

resolution mobile radar data. The data in this example is analyzed at 2302 UTC,

when the tornado was approximately 30 km from KFDR (Fig. 4.2).

The data is first segmented into regions based on the input of the user. For

this example, two regions are created by using seed points. The first is the primary

supercell, to the northwest of the radar. This region was created by selecting a seed
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point within the forward flank of the storm, and using the region-based segmen-

tation method with a ZH threshold of 43 dBZ. This region was classified as high

importance (level 10). A second region was created by selecting the storm to the

southwest of the radar; this region used a ZH threshold of 32 dBZ, and was assigned

medium importance (level 7). The two segmented regions are shown in Fig. 4.4.

The remainder of the PPI is assigned to be of minimal importance (level 2). The

importance level for each radial is assigned to be the highest importance level of any

pixel in that radial; the importance level by radial is shown in Fig. 4.5.

Once these parameters are set, cost function minimization begins for each range

gate. Pulses are reallocated subject to the constraints in section 4.2.2. This op-

timization is continually run until a local minimum has been found, subject to a

function tolerance of 0.001 in the cost function. Once this criteria has been met,

the optimization is stopped for that range gate, and optimization begins on the

next range gate. This continues for each range gate to be analyzed. In this ex-

ample, 400 range gates (100 km in range) are used in order to reduce the overall

computational expense. After optimization has completed for all range gates in

the analysis domain, the number of pulses per radial is determined by using the

‘percentile method’ described in section 4.2.2.

After PR has been completed, each radial has an integer number of pulses as-

signed to it (Fig. 4.6), where the number of pulses is subject to the original con-

straints. As mentioned in section 4.2.2, the number of pulses per radial is determined
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Figure 4.4: The regions which were segmented as being either ‘high importance’ or

‘medium importance’ for Case #1. This figure plots ZH (in dBZ) for the high and

medium importance regions only. In this example, the region to the northwest of

the radar was classified as ‘high importance’, and the storm to the southwest of the

radar was classified as ‘medium importance’.
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Figure 4.5: The importance level by radial, after region segmentation has been

performed in Case #1. The storm to the northwest of the radar has been subjectively

classified as high importance (10 out of 10) and the storm to the southwest of the

radar has been classified as medium importance (7 out of 10). All other areas are

classified as minimal importance (2 out of 10).
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Figure 4.6: The ‘new’ number of pulses per radial after PR has been performed for

Case #1.

by using a certain percentile of the reallocated pulses along each radial, where a dif-

ferent percentile is used for each region type. In this example, the number of pulses

per radial in the high and medium importance regions were taken to be the 82nd per-

centile along that radial, and the 62nd percentile is used in the minimal importance
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regions. It is evident in Fig. 4.6 that regions with high and medium importance

have more pulses assigned to them than the remaining region(s). This result is ex-

pected, as in these regions, any decrease in σvel is weighted more heavily in the cost

function because of it being multiplied by a higher importance factor. This makes

it more advantageous to improve regions of higher importance than in regions of

lower importance.

To verify that the data quality has improved, the standard deviation of vr is

plotted both before and after PR (Fig. 4.7). By comparing the two plots, it is

clear that the the data quality has been improved in some regions. A few examples

of these regions are circled in black in Fig. 4.7. For example, in the black circled

region to the southwest of the radar, many of the points with high σvel (i.e., poor

data quality) have lower σvel after PR. Note that both of the black circled regions

are within either a ‘high importance’ or a ‘medium importance’ region.

Conversely, data quality has gotten worse in other regions. This is expected, as

the total number of pulses in the PPI is fixed. Two examples of regions where data

quality has gotten worse are shown in the red circled regions of Fig. 4.7. In both

of the red circled regions, the σvel values are generally higher after PR. It should

be noted that the regions circled in red in Fig. 4.7 are generally in the ‘minimal

importance’ region, where poorer data quality should be expected.

To compare the data quality before and after PR, the difference in σvel is plotted

in Fig. 4.8. In this figure, blue values represent an improvement in data quality

after PR, and red values represent poorer data quality after PR. As expected, the
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Figure 4.7: A comparison of σvel before and after PR has been performed for Case

#1. The black circled areas represent regions where data quality has improved

by using PR, and red circles represent areas where data quality has gotten worse

because of PR (generally in the regions of minimal importance). Black dashed lines

represent the edges of the various regions in Fig. 4.5.
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areas with improved data quality correspond with the regions designated as being of

higher importance in Fig. 4.5 and with more pulses per radial in Fig. 4.6. Compared

with the original σvel values, the post-PR values of σvel are up to ∼35% higher in

the minimal importance region, and are up to ∼35% lower in the medium or high

importance regions.

Figure 4.8: A measure of the difference in σvel before and after PR for Case #1.

Blue (red) regions represent areas where data quality has gotten better (worse).
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A line graph showing the change in mean data quality for the original scan

and the simulated post-PR scan is shown in Fig. 4.9. These values are obtained

by averaging the expected σvel at all points in each region type both before and

after PR. As is evident from this figure, data quality is improved in the high and

medium importance regions by performing PR, at the expense of data quality in

the minimal importance regions. In the minimal importance region, the mean σvel

increases from 0.920 m s−1 to 1.044 m s−1, representing an increase of 13.5%. In the

medium importance region, the mean σvel decreases from 0.822 m s−1 to 0.723 m s−1

(a decrease of 12.0%), and the mean σvel decreases from 0.738 m s−1 to 0.673 m s−1

in the high importance region, representing a decrease of 8.9%. One interesting note

is that greater improvement is seen in the medium importance region than the high

importance region. This result of the medium importance regions having greater

improvement than high importance regions is not believed to be robust.

4.3.2 Case #2: 6 July 2015 ‘South Dakota MCS’

For the second case in this study, an MCS from South Dakota is examined. A seed

point in the MCS to the north of the radar is selected, and a ZH threshold of 30 dBZ

is used. The segmented region is shown in Fig. 4.10, and all radials with at least one

pixel in the segmented region (or any radial within 5◦ in azimuth of the segmented

region) is classified as being high importance; all other radials are assigned to be

minimal importance.

140



Figure 4.9: A comparison of data quality both before and after PR in each region

type. The red line represents data before PR, and the blue line represents data after

PR.

After optimization has been completed, the pulses are reassigned, and the new

number of pulses per radial is shown in Fig. 4.11. As with Case #1, the number of

pulses per radial in the high importance region was taken to be the 82nd percentile

along that radial, and the 62nd percentile is used in the minimal importance regions.

As expected, the radials containing the segmented region are assigned more pulses

than the other radials. This closely follows the reallocation in Case #1. It is

currently unknown why there is a sharp gradient in the number of pulses due north

of the radar; it is unclear whether this is an artifact or a correct result of PR. Further
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Figure 4.10: The regions which were segmented as being higher importance for

Case #2. This figure plots ZH (in dBZ) for the high importance region only. In this

example, a portion of the MCS was classified as ‘high importance’, while the rest of

the PPI was classified as minimal importance.

testing will be necessary to assess this phenomenon. In general, the reallocation of

pulses follows the outline of the segmented region.
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Figure 4.11: The ‘new’ number of pulses per radial after PR has been performed for

Case #2.

As in Case #1, the data quality is compared both before and after PR. Fig. 4.12

shows the data quality both before and after PR, with black circles highlighting

areas where data quality improved after PR and red circles highlighting areas where

data quality got worse because of PR. The areas where data quality becomes better
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and worse agree with expectations. Areas with increased numbers of pulses observe

better data quality, while areas of minimal importance observe worsened data qual-

ity. This is explicitly shown in Fig. 4.13, where improved data quality (blue regions)

closely correspond with the area of higher importance.

Figure 4.12: As in Fig. 4.7, but for a comparison of σvel before and after PR has

been performed for Case #2.
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Figure 4.13: A measure of the difference in σvel before and after PR for Case #2.

Blue (red) regions represent areas where data quality has gotten better (worse).

Finally, the mean σvel is compared for each region type. In the high importance

region, the mean σvel is 0.758 m s−1 prior to PR; this decreases to 0.657 m s−1 after

PR, representing a decrease of 13.3%. In the minimal importance region, the mean

σvel increases from 0.762 m s−1 to 0.896 m s−1 (increase of 17.7%). This example
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shows the same general result as Case #1: data quality is improved in the region of

interest, while data quality becomes poorer outside of this region.

4.4 Conclusions

In this study, a new adaptive scanning model (ROI2) is created and evaluated. This

model takes in data from a non-adaptive scan (i.e., a surveillance scan) and performs

adaptive PR in an attempt to improve data quality (herein defined as changes in

σvel) in regions of heightened interest. The ROI2 model is tested on two real-world

NEXRAD cases: one is a supercell case where most of the data of interest are within

50 km of the radar (Case #1), while the other case is an MCS that extends further in

range (Case #2). The resulting data quality both before and after PR is compared.

For Case #1, a high importance region and a medium importance region are

defined. It is shown that the optimization model successfully increases the number

of pulses in the higher importance regions by diverting pulses away from the minimal

importance region. It is found that data quality improves by 8.9% in the high

importance region and improves by 12.0% in the medium importance region. This

result is encouraging, as this achieves the overall goal set out by the model. As

expected, data quality gets poorer in the minimal importance regions.

Case #2 examines the effect of PR (based on the ROI2 model) on an MCS

case. In this example, only a high importance and a minimal importance region

are examined. As expected, the number of pulses per radial increases in the high
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importance region, and decreases outside of that region. Qualitatively, the effect is

the same as in Case #1: the data quality is found to improve in the radials marked

as high importance (13.3% decrease in σvel), while data quality becomes poorer

outside of this region (17.7% increase in σvel).

The fact that both cases show similar results from PR and the ROI2 model is

encouraging, as the model successfully improves data quality in the desired regions

in both cases. Because the ROI2 model is only possible with a PAR, these results

show utility of a PAR system for achieving high-quality rapid updates. This is an

important point to consider, as it showcases a major advantage of PAR for a possible

NEXRAD replacement.

In the future, there are multiple ways that this study can be expanded. For

example, the current optimization method is a single-objective optimization, as

the importance level and σvel are combined into a single cost function. An im-

proved method for achieving the optimization is to use a multi-objective optimiza-

tion (MOO), which should do a better job of accounting for multiple, competing

goals. Further, the standard deviation of ZH (σZ) can be considered. This was

not considered in this study for two reasons. First, the use of σvel was primarily

chosen as a proof of concept for the ROI2 model, in order to see if the PR model

would be successful on a general case. Second, considering σZ as the metric for data

quality would present a challenge, as the interest level is generally tied to higher

ZH regions, while the most gain (i.e., return on investment) should be obtained in

the lower SNR regions. Because there is a strong correlation between ZH and SNR,
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these two goals would be nearly directly competing against each other. Thus, it is

believed that including σZ would be difficult while not using a true MOO.

Furthermore, the adaptive scanning paradigm can be expanded in other ways.

In theory, the PRT can be adaptively changed depending on the extent of desired

data in range. For example, if a PRT of 2 ms is used (such that the maximum

unambiguous range is 300 km) but there is no data of interest beyond 150 km in

range, the PRT can be shortened to 1 ms; this would have the effect of doubling

the number of pulses along that radial for a given dwell time. Other scan methods

that can be used adaptively are beam multiplexing (BMX) and radar imaging. As

is shown in Chapter 2, BMX almost always improves data quality, while radar

imaging needs to be used rather judiciously to avoid sharp gradients in ZH . An

adaptive scanning method, similar to that in Weber et al. (2017), would be extremely

beneficial for improving data quality and/or temporal resolution.

Finally, the region-based segmentation can be expanded and/or improved upon if

the forecaster workload is believed to be too high. Storm-tracking algorithms such

as TITAN (Dixon and Wiener 1993) and SPA-MHT (Judy 2020) can be used to

estimate the advection/evolution of the regions of interest with time, such that the

forecaster would not have to re-select the regions of interest after every surveillance

scan. To further automate the segmentation process, automated algorithms for

certain hazards (e.g., hail, wind, tornadoes, etc.) can be used to automatically assign

an importance level to certain storms. Additionally, seed points can be expanded to
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search in three dimensions, as opposed to the two-dimensional search in this study.

This would enable the same storm to be selected at all elevation angles.
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Chapter 5

Conclusions and Future Work

5.1 Summary & Conclusions

In this dissertation, results are presented from various projects that focus on the

goal of improving the temporal resolution of a future replacement for NEXRAD.

In moving from a system with 5-min updates to 1-min updates, it is important

to understand the benefits achieved from such a change. It is equally important to

understand the scanning techniques and methods that can achieve 1-min volumetric

updates, as design requirements and radar architecture decisions will depend upon

the necessary scan modes.

In Chapter 2, the effect of various scanning strategies on data quality in a sim-

ulated 1-min update time scan is assessed. This work is essential to understanding

the scanning strategies that can achieve rapid (i.e., ∼1 min) updates with acceptable

data quality. While Chapter 2 primarily focuses on the specific methods for achiev-

ing faster updates (i.e., the ‘how?’), Chapter 3 is primarily focused on the benefits

achieved from employing rapid scans at sub-1-min temporal resolution for tornado

detection. Finally, in Chapter 4, cognitive radar and adaptive scanning–which has

been largely unexplored for weather radar applications–is considered for improving
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data quality in certain regions based on varying levels of interest. The adaptive

scanning method used in Chapter 4 can be used to either improve data quality in

certain regions where high quality data is essential, or it can be used to improve

temporal resolution in areas where phenomena may be evolving rather quickly (i.e.,

tornadoes, regions of high wind shear, downdrafts, etc.).

Chapter 2 analyzes the data quality for ZH and vr for three techniques: a pure

reduction in the number of pulses per radar radial (i.e., the ‘naive speedup method’),

beam multiplexing (BMX), and radar imaging/digital beamforming. These three

scanning strategies are tested for multiple times and elevation angles, such that the

expected data quality (based on the expected statistical fluctuations) is calculated

at approximately 500,000 points. These results show that compared to a baseline

NEXRAD scan, simply reducing the number of samples per radar radial has a signif-

icant deleterious effect on data quality. This result is expected, but still emphasizes

the point that other scan techniques will need to be employed in order to obtain

rapid updates of 1 min or less. The second technique used is BMX; the results from

the simulations of BMX show that BMX always provides an improvement in data

quality in ZH , and usually provides an improvement in vr. Cases where data quality

in vr is reduced are generally caused by high spectrum width (such that successive

pulse pairs were already highly decorrelated, even before using BMX mode), or in

low-SNR regions, where pulse pairs are already more decorrelated than in high-SNR

regions.
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A disadvantage of using BMX is the lack of ground clutter filter support; this is

because BMX data collection mode only collects two successive pulses at the same

location, while a ground clutter filter requires long dwells to assess whether there is

very long-term correlation over many pulses. Thus, BMX mode is not recommended

for low elevation angles and/or areas where ground clutter contamination is a sig-

nificant concern. However, outside of these areas, BMX offers significant promise

for being able to offer rapid updates for a weather radar system, with calculated

speed-up factors between 1.7 and 2.9.

Finally, radar imaging/digital beamforming is tested as another method to speed

up data collection with high-quality results. The results from this portion of the

study show that while radar imaging does tend to provide better data quality and/or

faster scan times for the domain as a whole, the higher two-way sidelobes from the

spoiled transmit beam cause regions of very poor data quality. The poor data quality

in these regions can cause the average data quality for the whole domain to become

so poor that the ‘net gain’ is completely removed, and the average data quality

is worse than in a pencil beam-scanned mode. From these results, it is clear that

radar imaging should be used judiciously, and should be avoided in regions with a

significant gradient in either ZH or vr.

The results from Chapter 2 show that many of the scan techniques necessary to

achieve rapid updates require a PAR. Both BMX and radar imaging require a PAR,

and these methods combined show considerable promise for achieving the desired

scan times of 1 min. Therefore, it is believed that use of a PAR is essential to
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achieving rapid updates for the NOAA/NWS desired goal of improving volumetric

temporal resolution.

In Chapter 3, the benefits of improving temporal resolution to 1 min or less is

evaluated for tornado detection. Previous literature has suggested that tornadoes

and severe storms can evolve on the order of tens of seconds or less, and that very

rapid updates are necessary for proper research to be conducted. However, the lit-

erature on the operational effects of rapid updates on tornado detection is relatively

scant, with the exception of some human-in-the-loop studies such as Heinselman

et al. (2012) and Wilson et al. (2017). This study is the first to examine possible

operational impacts of radar updates much faster than 1 min, and is also the first

to examine the growth of a TDS and TVS in time using NWP data. To achieve this

goal, a tornadogenesis simulation is used in conjunction with a radar simulator.

The results from this study show that the TDS does evolve on timescales much

faster than 1 min. As a result of this, it appears that sub-1-min updates in and

around a tornado may be necessary for proper and timely detection. Fig. 3.7 shows

that there can be a significant change in the radar moment fields and the HCA

over the 60 s between scans. When improving temporal resolution by a factor of 10

(i.e., 6 s updates), the short-term changes in moment fields and the HCA are more

properly observed. For cases where the debris are initiated in a small domain (such

that the tornado initially starts outside the domain and moves into the domain with

time), the total area identified as a TDS grows by 1.43 km2 in 42 s at the lowest

analyzed elevation angle. This simulation configuration would most closely mimic a
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case where a growing tornado forms in a region with very little loftable debris, before

moving into a region where leaves or pieces of wood would be available for lofting.

When this simulation is repeated for a wider debris initiation domain–where the

tornado is fully contained within the debris domain at all points in its lifecycle–the

rate at which TDS area increases with time is lowered to 4000–10000 m2 s−1. Despite

this reduction in TDS ramp-up rate, there are still significant changes observed in

the various radar fields on timescales less than 1 min. Additionally, even a ramp-up

rate of 10000 m 2 s−1 implies that a TDS can grow from 0 km2 to 0.6 km2 over a 60 s

period. The changes in TDS area are found to closely follow changes in the strength

of the tornado, which is expected based on previous results by Van Den Broeke and

Jauernic (2014) and Thompson et al. (2017). The total TDS area is also found to

change considerably based on availability of debris, so a combination of these two

variables should be considered when trying to assess possible tornado strength from

an ongoing TDS. The rapid updates offered in this simulation are also believed to

be useful for forecaster confidence; seeing the same trend over several scans can help

to assure a forecaster that a trend is real, rather than due to statistical fluctuations.

This should help aid timely and accurate issuance of warnings.

Additionally, changes are observed based on height AGL. At lower heights, the

rate at which the TDS area increases is greater than at higher heights. This would

imply that rapid updates are especially important closer to the ground. However,

many of the common signs of a TDS (e.g., significantly lowered ρhv) are not as

pronounced at higher heights AGL. For example, many ρhv values near the ground
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are clearly lowered due to the presence of heavier debris that cannot be lofted as

high as lighter debris such as leaves. At higher heights, where the debris counts

tend to primarily consist of smaller debris and the ratio of debris to hydrometeors

may be lower, the typical TDS signatures are not as obvious, which could further

drive the need to scan more rapidly at higher heights AGL as well.

Finally, the amount of debris in the initiation domain is examined as possibly

having an effect on the rate at which TDS area increases. It is found that in the

smaller debris initiation domain (400 m x 400 m), the amount of debris does not

significantly affect the rate at which the TDS area increases, whereas in cases with

a larger debris initiation domain (where the debris concentration is lower), there

does appear to be a correlation between the debris count and the rate at which the

TDS area increases. Furthermore, the total observed TDS area does appear to be a

function of initial debris count in all cases. Given the implied correlation between

TDS area and the intensity of the tornado (Thompson et al. 2017), timely updates

may be valuable for forecasters in providing up-to-date information about possible

tornado strength, which could in turn affect messaging for the public.

The study in Chapter 3 is the first to track a TDS as it grows and evolves

during and after tornadogenesis. While previous studies have primarily focused

on the research-related benefits of sub-1-min updates of tornadoes, the results in

Chapter 3 show that sub-1-min updates could be extremely helpful for operations

as well. Changes in TDS area with height and debris count, concentration, and
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availability indicate that rapid updates will be useful for timely, accurate warning

issuance with specific communication language for the public.

In Chapter 4, a novel optimization model for adaptive scanning based on cog-

nitive radar principles is used. This chapter presents the optimization model as a

proof-of-concept for an adaptive scanning method for improving data quality and/or

temporal resolution. The optimization used herein relies on the minimization of a

cost function that takes both data quality (as assessed by the expected standard

deviation of vr) and importance level into account. The optimization is run, and

the results from both a supercell case and an MCS case are shown.

In the first case, a ‘high importance region’ and a ‘medium importance region’

are created. The purpose of these regions is to encourage better data quality, at the

expense of allowing data quality to become poorer outside of these regions. Case

#1 (supercell) decreases the expected RMSE (i.e., improves data quality) by 8.9–

12.0% in the high and medium importance regions. In the second case, only a high

importance region is demarcated; RMSE decreases by 13.3% in this region. These

improvements in data quality in the higher importance regions come at the expense

of poorer data quality in the minimal importance regions; this result is expected, as

the total number of pulses per PPI is fixed. Overall, the ROI2 model is successful

in proving that adaptive PR can be used for improving data quality in the areas of

interest.
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5.2 Future Work

Going forward with this project, there are several areas where further work could

be done. Beginning with Chapter 2, a way that this type of project could provide

even more useful information is to expand the scope of examining the effects of

scanning strategies and radar design on data quality. For example, this study does

not consider any polarimetric variables in its data quality assessment. The reason

for this is that polarimetric bias in planar PARs is considered a much larger obstacle

to obtaining high-quality radar data. Additionally, because radar architecture and

design is currently unknown (with several possible options), the large number of

possibilities precludes an in-depth study for all scanning strategy and radar design

combinations. Therefore, one valuable avenue for future research on this topic is

to examine how the data quality would change for polarimetric variables, when

assuming a few specific radar designs. Furthermore, the effect of radar design is

not considered in Chapter 2, such that these results can be applicable for any PAR

application with a similar (i.e., 1◦) beamwidth. Thus, the effects of steering off of

broadside–such as beam broadening–are not considered herein. It is believed that

a more complete treatment of various radar design ideas (especially as it relates

to polarimetric radar data quality) would be a fruitful continuation of this project.

Testing the scanning strategies of Chapter 2 on a real-world radar system such as

Horus (Palmer et al. 2019) would also be a logical next step for this research.
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Combining the ‘improved data quality’ goal of Chapter 2 and the ‘rapid update’

goal of Chapter 3, another area where future research could be useful is for achieving

a balance between data quality and sub-1-min updates. In some regions, phenomena

may not be evolving quickly, and the primary goal should be longer dwells to assure

that data quality is maximized for a 1-min update time. Conversely, some regions

evolve on timescales much faster than 1 min, so it may be acceptable to sacrifice

data quality for the purpose of obtaining sub-1-min updates in these specific regions.

Additionally, it should be noted that the case examined in Chapter 2 is a high-impact

supercell/tornado case. Most of the time, radars will be scanning other phenomena

that do not evolve as quickly. Therefore, it may be useful to explore the possibility of

adaptively dwelling longer (such that update times exceed 1 min in certain regions)

to achieve even better data quality, especially in regions where data quality from

1-min updates may be poor due to high spectrum width, low SNR, etc.

Combining the results of these two chapters, another area where future research

could be useful is investigation of adaptive beam spoiling. As mentioned in the

conclusions from Chapter 2, radar imaging provides superior data quality for most

of the domain, but causes very poor data quality in certain regions due to higher

two-way sidelobes. As a result, it may be useful to devise a strategy for adaptively

spoiling the transmit beam, similar to Weber et al. (2017), but expanded to meet

multiple goals such as spatially variable data quality and temporal update require-

ments. This could be especially valuable when examining the results from several

different types of cases, rather than just a high-impact supercell.
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Finally, the ROI2 model in Chapter 4 shows utility as a proof of concept for

adaptive scanning. However, there are several ways in which this model can be im-

proved or expanded. First, the current version of the ROI2 model only incorporates

the data quality of vr into the cost function; this could be expanded to evaluate

the data quality of ZH and polarimetric variables. Second, the current version of

ROI2 combines the data quality and importance level into a single cost function. In

the future, a multi-objective optimization (MOO) should be implemented, as this

more accurately balances optimization between multiple (possibly competing) goals.

Third, the examples shown are analyzed at one time only, and in two dimensions

(i.e., at one elevation). This can be expanded to run at several consecutive times

for the same case in order to show spatial and temporal continuity of PR and can

be expanded into multiple elevations, such that the same storm and features are

assigned the same importance value across multiple elevation angles. Finally, other

scan methods such as BMX, radar imaging, and a variable PRT can be assessed

in an adaptive environment. Overall, there are many scan-based applications for

cognitive radar and adaptive scanning, and the results in Chapter 4 are meant pri-

marily as a proof of concept of how cognitive radar and adaptive scanning principles

can improve data quality and/or temporal resolution.
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Appendix A

Effect of Beam Multiplexing on Radar

Reflectivity Factor Variance Distribution

This section is intended to provide a more complete mathematical explanation of

why the histogram shape for RMSE(ẐH) looks distinctly different when scanning

using BMX, rather than CPS data collection mode. By qualitatively analyzing

Fig. 2.4 it is clear that when scanning in BMX data collection mode, the histogram

of RMSE(ẐH) is much narrower than that of the other histograms in Fig. 2.4.

First, we can analyze the right-hand side of (2.3), re-written here:

var(ŜC)

S2
=

1

P

[ P−1∑
l=−(P−1)

P − |l|
P

ρ2(lTs) +
N2

S2
+ 2

N

S

]
(A.1)

As a reminder, P is the number of pulses, Ts is the pulse repetition time (PRT),

ρ is the normalized autocorrelation function, S is the signal power, N is the noise

power, and Ŝ is the estimator for signal power. If we take the high-SNR limit (such

that the last two terms in brackets are treated as negligible), the equation reduces

to

var(ŜC) = S2

[ P−1∑
l=−(P−1)

P − |l|
P 2

ρ2(lTs)

]
(A.2)

However, the term in brackets is simply 1
PI

, where PI is the number of independent

samples obtained, so the equation reduces further, to

var(ŜC) = S2

[
1

PI

]
(A.3)
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where PI is a function of spectrum width and the total number of pulses transmitted.

By performing a similar analysis (i.e., taking the high-SNR limit) of (2.6), we find

that (2.6) reduces to

var(ŜI) = S2

[
(1 + ρ2)

P

]
(A.4)

Now, the two equations can be analyzed in the limit of both high and low inter-

pulse correlation. In the low interpulse correlation regime (i.e., ρ = 0 and PI = P )

where all pulses are entirely independent of one another, (A.3) and (A.4) both re-

duce to var(Ŝ) = S2

P
. This result makes intuitive sense; if all pulses are already

entirely independent, then BMX should not offer any further reduction in variance,

because the number of pulses (P ) is already equal to the number of independent

pulses (PI).

In the high interpulse correlation limit (i.e., ρ = 1 and PI = 1), two pulses in the

same pulse pair are assumed to be entirely correlated, but the time between succes-

sive pulse pairs is long enough such that each pulse pair is considered independent.

Making this assumption, (A.3) reduces to var(ŜC) = S2, while (A.4) reduces to

var(ŜI) = S2( 2
P

).

This has significant implications for the shape of the histogram of CPS data

collection compared to BMX/IPS data collection mode. The variance of Ŝ in CPS

data collection mode is proportional to S2

P
in the low ρ limit, and is proportional to

S2 in the high ρ limit. This corresponds to a P-fold range in values of variance (i.e.,

x to Px). For BMX/IPS data collection mode, the variance of Ŝ is proportional to
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S2

P
in the low ρ limit, and is proportional to 2S

2

P
in the high ρ limit. This yields only

a two-fold range of values in variance (x to 2x), which is significantly smaller than

that of CPS data collection mode (assuming P >> 2). This is the reason why the

histogram shape of RMSE(ẐH) is noticeably narrower for BMX data collection.
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