
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DECENTRALIZED RESOURCE ALLOCATION FOR

INTERDEPENDENT INFRASTRUCTURE NETWORKS

RESTORATION: A GAME THEORY APPROACH

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

KATHERINE BARNETT

Norman, Oklahoma

2020



DECENTRALIZED RESOURCE ALLOCATION FOR

INTERDEPENDENT INFRASTRUCTURE NETWORKS

RESTORATION: A GAME THEORY APPROACH

A THESIS APPROVED FOR THE

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Shima Mohebbi, Chair

Dr. Theodore Trafalis

Dr. Olufemi Omitaomu



c© Copyright by KATHERINE BARNETT 2020

All Rights Reserved.



Acknowledgement

I am extremely grateful to my advisor, Dr. Shima Mohebbi, for her

incredible support, unfailing encouragement, and countless opportunities

that she gave me. This research would not exist without her constant belief

in my success. I would also like to thank my committee members for their

time, knowledge, and guidence that they provided along the way.

Additionally, I would like to thank the long list of people who pushed me to

excellence throughout my life, whether it be family, friends, or professors.

Lastly, this work was partially supported by the National Science Foundation

under Grant Number 1638301. Any opinions, fi

ndings, and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of the National

Science Foundation.

iv



Contents

Acknowledgement iv

Abstract ix

1 Introduction 1

2 Literature Review 5

2.1 Optimization in Interdependent Infrastructures . . . . . . . . 5

2.2 Cooperative Game Theory in Interdependent Infrastructures . 7

3 Analytical Modeling 9

3.1 Game Formulation . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Unanimity Game . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Restricted Weighted Graphs . . . . . . . . . . . . . . . 11

3.1.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . 14

3.2 Optimization Model . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Restoration of Coalitions . . . . . . . . . . . . . . . . . 14

3.2.2 Interdependent Networks Optimization . . . . . . . . . 16

4 Validation and Performance Evaluation 22

5 Conclusion 31

v



References 34

vi



List of Figures

1 Sample Coalition for co-located water and transportation net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Interdependent water-transportation networks . . . . . . . . . 24

3 Optimal Values for Both Methods . . . . . . . . . . . . . . . . 29

4 Met Demand in the Water Infrastructure at 5% Disruption . . 30

5 Met Demand in the Transportation Infrastructure at 5% Dis-

ruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



List of Tables

1 Subset of Coalitions in Order of Repair from Tampa, FL . . . 26

2 Results from Case Study . . . . . . . . . . . . . . . . . . . . . 28

viii



Abstract

Critical infrastructures are governed by several sectors working to-

gether to maintain social, economic and environmental well-being. These

infrastructures are interdependent and rely on a complex schedule of

repair after a disruptive event. Decision makers seek to restore the in-

frastructure networks as quickly as possible while balancing time and

resource constraints. Although many models focus on a centralized view

for networks, rarely is there only one decision maker for the infrastruc-

ture networks, making decentralization a more realistic view. In decen-

tralized decision-making paradigm, individual decision makers need to

decide how to prioritize areas of the network and eventually improve

the aggregated infrastructure systems resilience. Existing literature ad-

vocates cooperative management strategies to enhance infrastructure

systems resilience. However, there is a dearth of quantitative studies

analyzing resource allocation decisions considering both decentralized

and cooperative aspects. In light of cooperative game theory, inter-

dependent infrastructure systems can be modeled as coalitions of ser-

vice providers pooling their resources to meet the global performance.

This work relies on coalitional game theory to address decentralized

resource allocation for interdependent water distribution and road net-

works. Coalitional game theory addresses the fair allocation of resources
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for nodes that surround an important area to the infrastructure and the

need to decentralize the overall interdependent network. In particular,

combining coalitional game theory with weighted graphs creates an or-

der of repair for each node in the coalitions. Subsequently, the decision

makers can pass information on to the master problem, reducing the

complexity of the resource allocation problem for the interdependent

networks. The proposed approach is applied to water distribution and

transportation networks in the City of Tampa, FL. We compare the

decentralized solutions to centralized solutions in different scenarios to

demonstrate the feasibility of our approach for the city-scale networks.

Keywords— Game theory, Interdependent infrastructures, Graph weighting,

Network optimization, Resource allocation
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1 Introduction

Cities are comprised of many subsystems that focus on one critical element, known

as infrastructures. Department of Homeland Security has identified sixteen critical

infrastructure sectors necessary for the functionality of the city (DHS, 2003). After

a disruptive event such as a natural disaster, these infrastructures must be repaired

in a timely manner to restore the city and maintain social and economic well-being.

Resources such as work crews, money, and supplies must be used to repair the city.

Decision makers for the city need to decide where resources should be allocated to

minimize the total time it takes for the infrastructures to be repaired. Traditional

resource allocation models use the centralization approach, which assumes that all

geographical areas and infrastructure types share one decision maker, one set of

resources, and one aggregated goal (Sharkey et al., 2015). However, infrastruc-

tures are governed by several sectors and are interdependent, such as the physical

interdependency of the water and transportation infrastructures. Many pipelines

run underneath roads; if a pipeline breaks, the road must be damaged in order to

repair the pipeline. This leads to competing interests between the transportation

infrastructure and the water infrastructure, along with separate goals for different

physical locations. Hence, it is imperative to understand the collective behavior of

decision makers for managing infrastructure systems.

The complexity of centralized approaches and the need for decentralized solu-

tions have sparked a huge growth in the decision science literature that aims to find
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low complexity and distributed algorithms (Arnold and Schwalbe, 2002; Mohebbi

and Li, 2015). In decentralized decision-making paradigm, individual decision mak-

ers need to decide how to prioritize areas of the infrastructure networks and eventu-

ally improve the aggregated infrastructure systems resilience. There are several stud-

ies in the literature advocating cooperative management strategies to enhance the

resilience of infrastructure systems facing of disruptive events (see Bel et al. (2013);

Hophmayer-Tokich and Kliot (2008); Whittington et al. (2005)). Nonetheless, there

is a paucity of quantitative studies modeling the co-existence of cooperation and

decentralization for infrastructure networks restoration. Hence, in this work, we

propose a decentralized resource allocation framework for restoring interdependent

infrastructure networks based on cooperative game theory.

In light of cooperative game theory, interdependent infrastructure systems can be

modeled as coalitions of service providers pooling their resources to restore network

components and meet the global performance. A coalition is a group of connected

actors / network components which fully cooperate with one another in the coali-

tion. In addition, the coalitions are mutually disjoint; hence, no one actor is in two

coalitions. All resources that belong to each actor now belong to the group, and the

actions of the actors in each coalition are decided based on the cooperative game

solutions. In this work, the actors are the nodes of the various infrastructure net-

works. Important nodes for each infrastructure, or key nodes, are identified resulting

in forming coalitions that are focused on important aspects of the network. Due to
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the interdependent nature of infrastructure networks, the coalitions sometimes have

nodes from multiple infrastructures. Figure 1 demonstrates a sample coalition for

interdependent water and transportation networks, with the key node being a water

valve. The coalition is comprised of the two water nodes that are directly connected

to the valve and the co-located transportation node.

Figure 1: Sample Coalition for co-located water and transportation networks

After the coalitions are formed, each node’s individual contribution to the in-

terdependent networks can be calculated based on the cooperative game solutions.

Fairness criteria for cooperative games can be determined using the concepts of

the core, and the Shapley value. The core and Shapley value are the main solu-

tion concepts in cooperative games that are analogous to the Nash Equilibrium in

non-cooperative games (Myerson, 1991). The core can be empty or quite large mak-

ing the selection of a suitable core allocation difficult. This drawback motivated

the search for a unique payoff vector known as the Shapley value. Hence, we use

Shapley value to calculate the individual contribution of every node to the entire
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networks.

Shapley values can be calculated based on the number of key nodes in the coali-

tion and their interaction with non-key nodes; however, this calculation does not

consider the characteristics of the nodes. A significant characteristic of each node

in the water or transportation infrastructures is the amount of flow that a node

can handle (Gonzalez-Aranguena et al., 2014). For instance, the amount of water

that a pump station pumps through it every day varies, and the importance of the

pump station to the surrounding area is related to the amount of flow the pump

services. A transportation intersection also can be defined by the amount of traffic

that flows through the intersection every day, and the importance of the intersection

to the surrounding area is dependent upon the amount of flow in the node. In order

to capture this important characteristic in our model, a method of weighting each

node in a coalition can be used to identify those nodes that have more flow and

are therefore more important to the network. The coalition itself can then allocate

resources in an order that is based on the Shapley values.

With the addition of coalitions, the resulting optimization of resource alloca-

tion problem is reduced in complexity. Grouping nodes together into cooperative

coalitions allows each coalition to allocate its own resources to the nodes in a decen-

tralized manner. The restoration plan from each coalition is then passed on to the

master problem, which allocate resources to restore the whole interdependent net-

works. As a result, the amount of nodes that are considered in the master problem
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is reduced which subsequently influence the computational complexity.

Following this section, the remainder of this thesis is organized as follows: In

section 2, the literature on two main streams of interdependent infrastructure mod-

eling including game theory and optimization techniques is reviewed. Section 3 is

devoted to defining the methodology and the proposed decentralized resource allo-

cation framework. Section 4 provides the performance evaluations of the proposed

framework applied to water distribution and transportation networks in the City

of Tampa. Finally, section 5 will give insights and discussion about the proposed

framework and will provide concluding remarks, limitations, and the future research

directions.

2 Literature Review

The two key components of this study are optimization and game theory techniques.

Each modeling approach has been applied to interdependent critical infrastructures

in prior research, although the assumptions and applications vary between prior

research and this study.

2.1 Optimization in Interdependent Infrastructures

Many resource allocation optimization problems in interdependent infrastructure

networks rely on assumptions of centralized decision making (Kong et al., 2019; Rong

et al., 2018; Sharkey et al., 2015; Zhang et al., 2018). This assumption presumes
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that one decision maker chooses the actions for the entire network and there is

perfect knowledge of all resources and flow by the decision maker (Rong et al.,

2018). In small scale disruptions, this decision maker can be the infrastructure

managers; in large scale disruptions, this can be the local government (Zhang et al.,

2018). The decision maker must understand the entire network that is under their

jurisdiction, including resources, disruptions, interdependencies, and length of repair

for each node. This is impractical in larger-scale networks. In such centralized

optimization models, most models seek to maximize the resilience of the network.

One approach to maximize resilience is to simply make the resilience metric the

focus of the optimization model (Zhang et al., 2018). More complex models can

be conceptualized and capture different aspects of the network, such as creating a

two-stage optimization model that first restores the minimum level of service before

minimizing the losses in the network (Kong et al., 2019). This complexity, although

realistic, increases the amount of knowledge that a decision maker must know in

order to make a decision.

Some studies in the literature have addressed the decentralized network op-

timization problem for infrastructures (e.g. see He et al. (2017); Talebiyan and

Duenas-Osorio (2020)). Nonetheless, the resulting models are mainly applicable to

small or county-level networks. This is due to the assumption that all actors are

individually making decisions (Talebiyan and Duenas-Osorio, 2020). In addition,

the interdependent nature of the infrastructures must be considered to accurately
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capture the true complexity of the network. Previous optimization models that

account for decentralization do not always account for the interdependent nature

of the infrastructures (He et al., 2017). This leaves a gap for models that include

both decentralization and practical computational times for large-scale networks.

To tackle this issue, we propose a decentralized optimization model for city-scale

interdependent infrastructure networks. Optimizing a decentralized network allows

decision makers to run the model without exceeding time constraints, thus allowing

the model to be more broadly applicable.

2.2 Cooperative Game Theory in Interdependent In-

frastructures

Cooperative game theory has been applied to many fields, such as economics, gov-

ernment policy, genetics, and healthcare systems (Choi et al., 2020; Mohebbi et al.,

2020; Moretti et al., 2010). The main feature of such games is that decision makers

are looking to optimize a common goal such that decisions / actions do not degrade

their individual goal and performance. In order to optimize a common goal in net-

works, particularly one related to restoration, the characteristics of components and

nodes must be understood. One key characteristic of a node can be the importance

of the node in relation to the interdependent network, referred to as the Shapley

value of the node. Shapley values are central to many cooperative games in a vari-

ety of scenarios (Borm et al., 2001) which provide a unique solution and allow the
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decision makers to make informed choices.

Decentralization of the network allows for the different sectors to cooperate while

retaining their own decision making power and resources, in addition to reducing the

computational complexity of the resource allocation problem (Ellinas et al., 2015).

In order to decentralize the network, a way of dividing the graph must be used. One

such division is based on node location. This method uses previously identified im-

portant nodes, known as key nodes, to create coalitions (Moretti et al., 2010). Thus,

as the coalitions are restored, the repairs will be focused on these key nodes. There

are many ways to identify important nodes in interdependent networks. However,

a smaller set of key nodes can be identified by the characteristics of the physical

nodes. In the water infrastructure, these key nodes are easily identified as nodes

with different characteristics than others, such as reservoirs, pumps, valves, and

tanks. The other nodes in a water network are simply demand nodes or pipeline

junctions, neither of which control flow throughout the network. In the transporta-

tion infrastructure, these key nodes might be difficult to identify due to the lack

of distinct characteristics for each node. Some work has been done in identifying

key nodes such as bridges, highway intersections, and other important intersections

(Vidrikova et al., 2011), but in data sets these nodes may not be clearly identified

and other methods can be used as a proxy for the transportation infrastructure.

Finally, in order to accurately capture the characteristics of the network com-

ponents, the networks must be weighted in some way. Weighting the network em-
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phasizes the parts of the network that carry more importance to the city. There are

multiple ways to weight a network; one approach is to weight the network by the

cost of transportation (Allen and Arkolakis, 2019). However, this technique is used

when plotting routes through an infrastructure. A better way to weight the infras-

tructures is for flow between the links in the infrastructure, which assigns weights

based on existing flow (Gonzalez-Aranguena et al., 2014).

Our proposed model combines both the key-node based coalition formation and

the flow-based weighting of a graph which creates a unique network that addresses

both the relative importance of a node to significant areas in the interdependent

infrastructures and the importance of the node characteristics. This approach is

vastly different from previous approaches mentioned, due to the dual approach of

weighted graphs and game theory. After the weighted coalitions are formed, the

master problem of optimizing resource allocation must be addressed.

3 Analytical Modeling

The proposed decentralized resource allocation framework utilizes cooperative game

theory and network optimization techniques. We first present the cooperative game

formulation, solution, and then present the optimization model for interdependent

infrastructure networks.
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3.1 Game Formulation

3.1.1 Unanimity Game

The basic cooperative game can be defined as < N, v >, where N is the set of

players and v is the characteristic function. In this work, N is the set of all non-

key nodes and the characteristic function is a measure of the connectedness of the

non-key nodes to the key nodes. Given a subset E ⊆ N , the characteristic function

v(E) ∈ R and v(∅) = 0. A group of nodes C can form a coalition if C ⊆ N .

For a unanimity game, the coalitions are represented by uE(C) = 1 if E ⊆ C

and uE = 0 if E * C, where ∅ 6= E ⊆ N . Cooperative games can be written as

a linear combination of unanimity games in a unique way. The coefficients of the

characteristic function are λE(v) for all subsets E ∈ 2N \ ∅. Thus, the unanimity

game characteristic function v is

∑
E⊆N,E 6=∅

λE(v)ue (1)

We use Shapley value to solve the game. This solution can be described in several

ways, and we use the following formula (Shapley, 1953):

φi(v) =
∑

E⊆N :i∈E

(|E| − 1)!(|N | − |E|)!
|N |!

[v(E)− v(E \ {i})], ∀i (2)

In our model, the Shapley value is based on the number of key nodes that are

exclusively connected to the coalition (see Moretti et al. (2010)). The specific co-

efficients of the characteristic function must reflect this definition. To find this

characteristic function, the links between key nodes and nodes must be identified
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as LE ⊆ {{i, k}|i ∈ E, k ∈ K} where K is the set of all key nodes. A single key

node that is directly connected to a subset E can be calculated through ME = 1 if

{i, k} ∈ LE and equal to zero otherwise. This function needs to be summed over all

of the key nodes to ensure that there are not multiple key nodes in one coalition,

represented as λE(v) =
∑
k∈K

ME . The characteristic function v remains the same as

Equation 1. It should be noted that coalitional structures can be determined by the

vectors formed by the same function as ME ,

Ck(i) = 1 if {i, k} ∈ LE , ∀k ∈ K,∀i ∈ E, or Ck(i) = 0 otherwise (3)

3.1.2 Restricted Weighted Graphs

Having identified coalitional structures for the interdependent networks, we need to

calculate the Shapley value vector for each coalition. In addition to nodes character-

istics, the flow on certain links of infrastructure networks is important in calculating

the Shapley value. This is due to the fact that such links might contribute more to

a key node than others.

In order to allow for weighting different non-key nodes in the individual coalition,

the overall network must be restricted to a graph that contains coalition C. The new

set of restricted players R is simply R ⊆ N,R 6= ∅, where C ⊆ R. The connections

in the entire graph, IN = {{i, j}i, j ∈ N, i 6= j}, is restricted to I|R or the set

of connections that include only those connections in R. Thus, a restricted graph

is presented as < R, I|R >. From this restricted graph, a subgraph that contains
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strickly the connected components of coalition C. The set of links η ⊆ I|R where C is

connected in η and the set of players D(η) = {i ∈ N such that ∃j ∈ N where {i, j} ∈

η} form the new connection subgraph. Finally, the weighted graph < N, Iw > is

comprised of the set of players N and the weighted links Iw = {I, {wA}A∈I}.

However, the weighted graph must be transformed before it can be used to calculate

the Shapley values of the coalition. To measure contribution, α(Iw), the set of

proportional contribution that each coalition C contributes after the graph has been

weighted, is used. For each coalition, the proportional contribution is equal to

{αRC({wA}A∈I) ∈ [0, 1]}. The exact value of αRC depends on the type of weight that

best fits the current situation for the overall network. In our model, flow between

nodes is used to weight the graph, due to the fact that the flow of water and traffic

are important measures to capture in a graph. In other words, wA is the flow

on arc A and must be within [0,∞]. Thus, (α)RC can be calculated as below (see

Gonzalez-Aranguena et al. (2014)):

(α)RC = max
i=1...t(R)

{
1

1 + max
L∈ηC,R

i

wA

}
for |C| ≥ 2 and = 1 if |C| = 1 (4)

Gonzalez-Aranguena et al. (2014) demonstrated that the α-weighted restricted

graph is decomposable on unanimity games. Hence, the modified characteristic

function for the restricted weighted graph is

vIw,α(R) =
∑
∅6=C⊆R

λC(v)αRC({wA}) (5)

This characteristic function measures the level of maximum flow that can pass be-
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tween each group of connected nodes, or route to the key node, in the coalition.

According to Equation 5, the computation of the Shapley value for the correspond-

ing game is straightforward as below.

φi =
∑

i∈C⊆N

λC(v)

|C|
,∀i (6)

Simply put, this is the value that each node contributes, measured by the amount

of flow that goes through the node and accounting the number of routes to the key

node that the node is a part of, resulting in a vector for each coalition. It should

be noted that this value will not add to one similar to other unanimity games, due

to the restricted nature of the graph. Each coalition can find the Shapley value

vector for itself and determine the allocation of resources and order of restoration

based on this value. The allocation of resources will be fair, due to the fairness

property and axioms of Shapley values. These axioms are intrinsic to the Shapley

value and ensure the fairness of the result. The efficiency axiom represents the group

rationality, the symmetry axiom ensures that if two players have equal contribution,

they will have equal payoffs, the dummy axiom awards no payoff to players that

do not add anything to the coalition, and the additivity axiom forces the combined

Shapley value for two coalitions to be the same regardless of the order that they are

added.
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3.1.3 Proposed Algorithm

In summary, the general flow of the problem starts with the formation of the coali-

tions. The key nodes were previously identified; hence, the coalitions are formed

around them using the direct links in the physical network and the interdependency

links. Characteristic function can be calculated using weighted links for each coali-

tion. Afterwards, the Shapley value vector can be calculated and used to create

a unique order of restoration for each coalition. The coalitions can then send the

order of repair to the network-wide optimization problem (i.e. master problem).

The procedure is outlined below.

3.2 Optimization Model

After the coalitions are identified and the Shapley value vectors are calculated, the

results can be used to optimize the resource allocation in a decentralized manner.

The optimization of the resource allocation is best described as two problems: one

sub-problem for coalitions and one master problem that accounts for the entire

network.

3.2.1 Restoration of Coalitions

Within each coalition, the Shapley value vector can be utilized to finalize the order

of restoration and the amount of resources to use. The order of repair is strictly

based on the Shapley value: the damaged node with the largest Shapley value will

14



Procedure: Coalitional Game

for all coalitions do

Calculate the flow equation for each link;

Compute the characteristic function ;

Use the unanimity game formulation to calculate the Shapley

value vector for the coalition;

Formulate an order of repair for disrupted nodes based on the

Shapley value vector;

Send order of repair to ’Master Problem’ Procedure;

end

Algorithm 1: The proposed algorithm for fair allocation of resources

within coalitions

15



be repaired first, then the second largest damaged node, and so forth. However, if

the key node itself is damaged, the key node automatically is the first to receive

repair resources. If the coalition has resources available to use, such as local funds,

the available resources will be applied in that order.

Although the Shapley values are calculated for nodes, disruptions most often

occur in the arcs of the network. To model disruption at the node level, the as-

sumption can be made that a node is disrupted when a connected arc is disrupted.

When a node receives resources from the coalition, all arcs connected to the node

are restored during the time frame. If the coalition does not have enough resources

or has no available resources, the order of repair will be sent to the master problem,

the network-wide optimization model. Once the resource is assigned to the coali-

tion, the nodes will be restored, still following the predetermined order of repair. If

there is not enough resources to repair all nodes, the sub-problem will send the level

of disrupted flow remaining back to the master problem. This cycle repeats until

the coalition is fully restored. The proposed sub-problem for restoring coalitions is

outlined below.

3.2.2 Interdependent Networks Optimization

The master problem received the order of repair from the coalitions and integrates

it into the overall optimization model. The following network optimization problem

is formulated which is mainly based off the work presented by Sharkey et al. (2015).
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Sub-problem: Coalition Repair

for each coalition Ck do

Order list of disrupted nodes by decreasing Shapley value;

Send order to ’Master Problem’;

Receive resources if needed from network;

if received resource is equal to cost of repairs then

Repair all nodes;

end

Repair list in order;

Send total remaining disrupted flow to ’Master Problem’;

end

Algorithm 2: The proposed algorithm for restoring coalitions

17



• M : Set of all infrastructures

• Nm: Set of all nodes in infrastructure m

• Sm: Set of all supply nodes in infrastructure m

• Tm: Set of all transshipment nodes in infrastructure m

• Ēm: Set of all arcs that can be installed in the network in infrastructure m

• Em: Set of all initially available arcs in infrastructure m

• C: The set of all coalitions, with 0 being the centralized coalition set

• A: The set of all arcs that connect to key nodes and are therefore a part of a

coalition

• Q: Set of all nodes not in a coalition in the network

• Dm: Set of all demand nodes in infrastructure m

• smi : The amount of supply available at node i ∈ Sm in infrastructure m

• dmi : The amount of demand at node i ∈ Dm in infrastructure m.

• wmi : The weight associated with meeting one unit of demand at node i ∈ Dm

in infrastructure m.

• umi : The capacity of node i in infrastructure m.

• umij : The capacity of arc (i, j) in infrastructure m.

18



• F (m,n) ⊆ Dm ×Nm: The set of all parent/child node pairs in parent infras-

tructure m and child infrastructure n.

From these sets, the decision variables can be created. The first three decision

variables are solely for the master problem which include remaining nodes that are

not in coalitions. However, the other two variables gain extra indices to represent

the coalitional nodes as well. For α, the decision variable that determines when the

arc is repaired, an additional binary index was added to represent if either of the two

nodes in the arc are in a coalition. For β, the decision variable that displays that an

arc is restored, two extra indices were added. The first is the same binary index as

in α, while the second represents the repair order determined by the Shapley value.

• xmijt: The amount of flow on arc of node (i, j) ⊆ Em ∪ Ēm in infrastructure m

at time t.

• vmit : The amount of demand met at node i ⊆ Dm in infrastructure m at time

t.

• ym,in,j,t: A binary variable for (i, j) ⊆ F (m,n) representing whether sufficient

demand is met at node i in infrastructure m so that node j in infrastructure

n is operational at time t.

• αmk,i,j,c,t: The binary variable which is equal to 1 if arc (i, j) ∈ Em in infras-

tructure m is completed by work crew k at time t where c is equal to 0 if the

node i and j are not in a coalition and the number of the coalition otherwise.
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• βmi,j,c,o,t: The binary variable which is equal to 1 if arc (i, j) ∈ Em in infras-

tructure m is available at time t where c is equal to 0 if the node i and j

are not in a coalition and the coalition number otherwise and o is the order

number from the game theory solution.

The objective function is to maximize the met demand.

Max Z1 =
T∑
t=1

∑
m∈M

∑
i∈Dm

vmit (7)

Now, the constraints can be added to the model. The first three constraints are to

ensure that the flow in and out of supply nodes, transshipment nodes, and demand

nodes match the needed outflow. The third constraint does have an extra value that

can be utilized to ensure that the model follows the proper interdependency rules.

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(i,j)∈Em∪Ēm

xmjit = smi , t = 1, ..., T,∀i ∈ Sm,∀m ∈M (8)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(i,j)∈Em∪Ēm

xmjit = 0, t = 1, ..., T,∀i ∈ Tm, ∀m ∈M (9)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(i,j)∈Em∪Ēm

xmjit = −vmit −
∑

((i,m),(a,b),n)∈NTP

vminabt,

t = 1, ..., T,∀i ∈ Dm,∀m ∈M

(10)

The next two constraints address demand and capacity limits for the nodes and the

arcs.

0 ≤ vmit ≤ dmi , t = 1, ..., T,∀i ∈ Dm, ∀m ∈M (11)

0 ≤
∑

(i,j)∈Em∪Ēm

xmijt ≤ umi , t = 1, ..., T,∀i ∈ Tm, ∀m ∈M (12)
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The following constraint addresses the initially available node capacity due to the

arcs that are undamaged by the disruption.

0 ≤ xmijt ≤ umij , t = 1, ..., T,∀m ∈M, ∀(i, j) ∈ Em (13)

The next constraint links the β value to the flow. If the β value is not 1, then the

arc is not available and so no flow should exist.

0 ≤ xmijt ≤ umijβmi,j,0,o,t, t = 1, ..., T,∀m ∈M, ∀(i, j) ∈ Ēm (14)

The following constraints correspond with α. The first ensures that each arc is only

started to be fixed by one work crew in one time period over the entire time period.

The second ties α to β, so that the arc is available after it is restored.

∑
(i,j)∈Ēm

min{T,t+pmij−1}∑
s=t

αmkij0s ≤ 1, t = 1, ..., T,∀m ∈M, ∀c ∈ C, k = 1, ...,Km (15)

βmi,j,0,o,t − βmi,j,0,o,(t−1) =
Km∑
k=1

αmkij0t, t = 2, ..., T,∀m ∈M, ∀(i, j) ∈ Ēm (16)

Three constraints, shown below, ensure that the binary node operation variable y

is linked to the demand, transshipment, and supply nodes.

0 ≤ dmi − vmit ≤ (1− ym,in,j,t)(d
m
i ), t = 1, ..., T,∀(i, j) ∈ F (m,n), j ∈ Nn, i ∈ Dm (17)

∑
(j,h)∈Ēm∪Ēm

xnjht ≤ snj y
m,i
n,j,t, t = 1, ..., T,∀(i, j) ∈ F (m,n), j ∈ Sn, i ∈ Dm (18)

∑
(j,h)∈Ēm∪Ēm

xnjht ≤ dnj y
m,i
n,j,t, t = 1, ..., T,∀(i, j) ∈ F (m,n), j ∈ Dn, i ∈ Dm (19)

The next constraints were added to handle the coalitions (i.e. sub-problem). The

previous constraints were only applied to those decision variables with a coalitional
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binary variable of 0, meaning the arcs are not connected to a node in the coalition.

However, all constraints with α or β were replicated to connect the demand with

β. The first additional constraint is the only constraint that directly applies only to

the coalitional nodes. It ensures that the higher order nodes from any coalition get

repaired before the lower order nodes. For example, all first ranked damaged nodes

across all coalitions must be fixed prior to any second ranked nodes.

βmi,j,c,o,t ≥ βmk,l,c,o+1,t, ∀(i, j), (k, l) ∈ Ac, ∀c ∈ C (20)

∑
(i,j)∈Ēm, 6∈Q

min{T,t+pmij−1}∑
s=t

αmkijcs ≤ 1, t = 1, ..., T,∀m ∈M, ∀c ∈ C, k = 1, ...,Km

(21)

βmi,j,c,o,t − βmi,j,c,o,(t−1) =

Km∑
k=1

αmkijct, t = 2, ..., T, ∀m ∈M,∀(i, j) ∈ Ēm 6∈ Q,∀c ∈ C

(22)

0 ≤ xmijt ≤ umijβmi,j,c,o,t, t = 1, ..., T,∀m ∈M,∀(i, j) ∈ Ēm 6∈ Q,∀c ∈ C (23)

After the model is run and the results are received, the master problem can send

out the order of repair for the non-coalitional damaged nodes, and work crews will

begin to restore the network. The proposed procedure is summarized below.

4 Validation and Performance Evaluation

This study used data from a simplified version of the water distribution and road in-

frastructure networks in the City of Tampa, Florida. Existing tanks, pump stations,

and reservoirs from the data were used as key nodes for the water network. Valves
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Procedure: Master Problem

Receive order of repairs for coalitions from the sub-problem;

Run optimization model for all nodes ;

Send resources to nodes based on results;

if there is not enough resources to repair all disrupted nodes then

Receive disrupted flow from coalitions;

Add penalty for unrepaired remaining flow;

Redo optimization problem;

end

Algorithm 3: The proposed algorithm for optimization of the entire net-

work
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were simulated by finding water nodes where at least four pipelines intersected. For

the transportation network, there were no previously identified key nodes; thus, the

betweenness centrality measure was used to simulate traffic flow, and all nodes that

exceeded a certain amount of flow were considered key nodes. This assumption is

based on previous work on traffic flow (Kazerani and Winter, 2009). Physical co-

location was used to determine interdependencies for the water and transportation

networks. The overlaid networks are illustrated in Figure 2, with the brown being

the water infrastructure and the blue being the transportation network.

Figure 2: Interdependent water-transportation networks

In the simplified networks, there are 4312 nodes in both the transportation and
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water networks. There are 48 key nodes in the water network and 45 key nodes

in the transportation network, based off of a betweenness threshold of greater than

0.07. This value was chosen to limit the transportation key nodes to only the highest

traffic flows. Using the conservative threshold of 0.07 ensures that only the most

traveled roads are chosen as key nodes. In addition, the number of key nodes in

the water network is approximately the same as the number of key nodes in the

transportation infrastructure. With each infrastructure accounting for roughly half

of the nodes, the proportion of key nodes to non-key nodes remains roughly the

same in both infrastructures. Therefore, there is a total of 93 coalitions based off of

the key nodes and an example subset of these coalitions is in Table 1. The variation

in the Shapley values is due to the nature of the characteristic function. Since every

coalition calculates its own characteristic function based on the number of nodes in

the coalition and the flow depends on the type of node, the Shapley values can vary

between coalitions yet remain comparable within the coalition. Hence, although the

Shapley values cannot be compared between coalitions, the coalition can still create

a clear order of repair.

Under the current framework, calculating the characteristic function for the weighted

graphs is limited to direct connections. Given that the coalitions only contain nodes

that are directly connected to the key node, these possible paths are limited to direct

connections and the potential interdependent node. The flow along the interdepen-

dent node is assumed to be the same as the maximum amount of flow on the other
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Key Node Nodes in Coalition Infrastructure Shapley Value

J-103410 7324 Transportation .064

A-58369 Water .042

A-54531 Water .042

A-66147 Water .00076

A-25129 Water .00076

7476 A-66724 Water 1.1839

7493 Transportation 1.1839

7464 Transportation 1.1837

7472 Transportation 1.1203

7503 Transportation 1.1203

HSP HRR Water .000018

J-87510 Water .000018

Table 1: Subset of Coalitions in Order of Repair from Tampa, FL
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links. This is due to the fact that the interdependent node is assumed to be at least

as important as the most important direct connection node.

A percentage of the set of all arcs was randomly selected to be disrupted. Here,

four scenarios chosen were 5% disruption, 10% disruption, 12% disruption, and 15%

disruption. We also assumed that at least half of the selected disrupted arcs belonged

to the identified coalitions. If the arc was connected to a key node or in a coalition,

the proposed methodology was applied and the order of restoration was formed.

As mentioned before, the key node is always placed in the first spot of the order

of repair if it is damaged. To evaluate the performance of the proposed approach,

we compute the time it takes to solve the optimization model for the centralized

versus the decentralized model. Table 2 summarizes the computational time for

both models. It can be observed that there is a significant difference between the

centralized and proposed models in terms of computational time. In addition, when

the objective values are compared (see Figure 3), the proposed method reaches a

higher value for restored flow.

Additionally, the proposed method improves the met demand faster than the

centralized method. In the water network, both methods start at zero demand met,

but the proposed method outpaces the centralized method in rapid demand growth

(see Figure 4). In the transportation infrastructure, the models also both start

at the same demand. The met demand of the proposed model for transportation

increases faster, but does end up slightly below the centralized model (see Figure
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5). However, the overall demand of the proposed method is better.

Percent Method Obj. Value Time (Secs) Optimality Gap

5% Centralized 3797000 2619.41 0%

Proposed 3870000 179.23 0%

10% Centralized 1198000 76098.09 .01%

Proposed 1551000 231.6 .004%

12% Centralized 1053261 28100.16 5%

Proposed 1448000 194.28 4.76%

15% Centralized 750100 135676.08 5%

Proposed 1484000 220.71 4.21%

Table 2: Results from Case Study
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Figure 3: Optimal Values for Both Methods
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Figure 4: Met Demand in the Water Infrastructure at 5% Disruption
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Figure 5: Met Demand in the Transportation Infrastructure at 5% Disruption

5 Conclusion

We proposed a decentralized resource allocation model for interdependent infras-

tructure networks restoration using cooperative game theory. We first identified

coalitional structures in the interdependent networks, and then calculated the or-

der of restoration for network components within coalitions using Shapley values.

Our proposed approach combined coalitional game theory with weighted graphs to

address the fair allocation of resources in a decentralized manner. The restoration

31



plan from coalitions were then passed on to the master optimization problem, which

allocate resources to restore the whole interdependent networks. We applied our

framework to water distribution and road networks in the City of Tampa, FL. To

evaluate the model’s performance, we calculated and compared the computational

time for both centralized and decentralized models where four hypothetical dis-

ruption scenarios were simulated. The results demonstrated that the decentralized

model outperforms the centralized counterpart in terms of computational time and

the trajectory of the system performance (met demand) over time.

In future work, more types of interdependence can be used, reflecting the com-

plexity of the infrastructure networks. These additional interdependencies, such

as functional interdependencies, will contribute to the realism of the network for-

mulation without increasing the complexity in a significant manner. Additional

infrastructures can also be incorperated, such as the power infrastructure. With

larger networks, the coalitions perhaps could be expanded, either by introducing

more key nodes or relaxing the direct connections definition. However, future re-

search needs to examine if this model could be scaled up to larger networks. In

addition, this research can be expanded to include resources that are controlled by

the coalitions, giving more control to the decision makers of the coalitions. Depend-

ing on the infrastructure and the geographical area, future work in this direction

might better capture the circumstances around the disruption. The optimization

problem can be expanded to include cost to see if the proposed model could reduce
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the cost of restoring the network.

As large scale disruptions continue to change life in cities, decision makers need

a reliable and rapid way to prioritize different areas of infrastructures and eventually

enhance infrastructure systems resilience. This research can further their efforts and

their resources toward providing a clear restoration plan.

33



References

Allen, T., Arkolakis, C., 2019. The welfare effects of transportation infrastructure

improvements. National Bureau of Economic Research .

Arnold, T., Schwalbe, U., 2002. Dynamic coalition formation and the core. Journal

of Economic Behavior and Organization 49, 363–380.

Bel, G., Brown, T., Marques, R., 2013. Public–private partnerships: infrastructure,

transportation and local services. Local Government Studies 39, 303–311.

Borm, P., Hamers, H., Hendrikx, R., 2001. Operations research games: A survey.

TOP 9.

Choi, T.M., Taleizadeh, A.A., Yue, X., 2020. Game theory applications in produc-

tion research in the sharing and circular economy era. International Journal of

Production Research 58, 118,127.

DHS, 2003. Critical infrastructure identification, prioritization, and protection

URL: https://www.cisa.gov/critical-infrastructure-sectors (Accessed

on March 2020).

Ellinas, G., Panayiotou, C., Kyriakides, E., Polycarpou, M., 2015. Critical infras-

tructure systems: Basic principles of monitoring, control, and security. Intelligent

Monitoring, Control, and Security of Critical Infrastructure Systems , 1–30.

34



Gonzalez-Aranguena, E., Manuel, C.M., del Pozo, M., 2014. Values of games with

weighted graphs. European Journal of Operational Research , 248–257.

He, Y., Yan, M., Shahidehpour, M., Li, Z., Guo, C., Wu, L., Ding, Y., 2017. De-

centralized optimization of multi-area electricity-natural gas flows based on cone

reformulation. IEEE Transactions on Power Systems 33, 4531–4542.

Hophmayer-Tokich, S., Kliot, N., 2008. Inter-municipal cooperation for wastewater

treatment: Case studies from israel. Journal of environmental management 86,

554–565.

Kazerani, A., Winter, S., 2009. Can betweenness centrality explain traffic flow. 12th

AGILE international conference on geographic information science , 1–9.

Kong, J.J., Zhang, C., Simonovic, S., 2019. A two-stage restoration resource alloca-

tion model for enhancing the resilience of interdependent infrastructure systems.

Sustainability 11.

Mohebbi, S., Li, X., 2015. Coalitional game theory approach to modeling suppliers’

collaboration in supply networks. International Journal of Production Economics

169, 333–342.

Mohebbi, S., Li, X., Wyatt, T., 2020. Designing an incentive scheme within a

cooperative game for consolidated hospital systems. Journal of the Operational

Research Society DOI: 10.1080/01605682.2019.1700192.

35



Moretti, S., Fragnelli, V., Patrone, F., Bonassi, S., 2010. Using coalitional games

on biological networks to measure centrality and power of genes. Bioinformatics

, 2721–2730.

Myerson, R., 1991. Game theory: Analysis of conflict. Cambridge, MA: Harvard

University Press.

Rong, L., Yan, K., Zhang, J., 2018. Optimum post-disruption restoration plan of

interdependent critical infrastructures. 2018 IEEE International Conference on

Software Quality, Reliability and Security Companion (QRS-C) , 324–331.

Shapley, L., 1953. A value for n-person games, in: H.W., K., A.W., T. (Eds.),

Contributions to the theory of games II. Annals of mathematics studies, Princeton

University Press. p. 307–317.

Sharkey, T., Cavdaroglu, B., Nguyen, H., Holman, J., Mitchell, J., Wallace, W.,

2015. Interdependent network restoration: On the value of information-sharing.

European Journal of Operational Research, url: www.elsevier.com/locate/ejor ,

309–321.

Talebiyan, H., Duenas-Osorio, L., 2020. Decentralized decision making for the

restoration of interdependent networks. ASCE-ASME Journal of Risk and Un-

certainty in Engineering Systems, Part A: Civil Engineering 6.

Vidrikova, D., Dovrak, A., Kaplan, V., 2011. The current state of protection of crit-

36



ical infrastructure elements of road transport in conditions of the slovak republic.

Transport means .

Whittington, D., Wu, X., Sadoff, C., 2005. Water resources management in the nile

basin: the economic value of cooperation. Water policy 7, 227–252.

Zhang, C., Kong, J.J., Simonovic, S., 2018. Restoration resource allocation model

for enhancing resilience of interdependent infrastructure systems. Safety Science

102, 169–177.

37


