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PREFACE

During the past few years Professor E. W. Titt and his students
have been concerned with the problem of developihg a method for de-
riving integration formulae for all types of linear second order partial
differential equations, In this work they have developed a theory of
distributions for normal hyperbolic equations which pro_r-_ni‘se's to be
valuable in obtaining general integration formulae. This paper is an
extension of this theory of distributions to apply to ultra.hyperboiic
equatioﬁs. Specifically this paper is an extension of portions of three
papers by Professor Titt and others. These papers are listed in the
bibliography as nu»mb‘ers 3, 5and 6.

My thanks are due to Professors R, B, Dea,l and E. W, Titt
who served as my advisers during the preparation of this paper and
to Professor L, W. Johnson for his sound counsel and kind interest
given me in all matters pertaining to my work. Indebtedness is also
acknowledged to the Office of Naval Research and the National Science

Foundation for financial support of this work,
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I. INTRODUCGTION

This paper is concerned with the general linear second order
partial differential eéquation with constant coefficients. If one utilizes
the summation convention, as is done extensively in this paper, this

equation and its homogeneous adjoint can be written

(a) L (u) '="A1‘]ui.+ Blu,-[- Cu = f(xl)
(1.1 & 1

(b) L*(v)= AlJviJ.-Blvi; Cv=0 (1, j=1,...4 n)

where a subscript i indicates differentiation with respect to the var-
iable xi. There is no restriction in assuming the matrix Aij to be
symmetric. In order to restrict the discussion to non—parabolic equa-
tions the matrix Aij is assumed to be non-singular,

In order to classify the differential equation (l la) one con-
siders the characteristic form Ai'jy’iy‘j, By a real non-singular
linear transformation, n; = a‘gyj, it is possible to resolve the charac-

teristic form into the canonical form,

i 2 2 2 2 2 2
(1. 2) AVyiys = I emge . ea e g ome e ).

For definiteness it is assumed in this paper that p £ n/2. For con-
venience in writing, n-p is replaced by q so that in what follows p and

g are subject to the restrictions



{1.3) p+q=nand p<Lq.

The non~parabolic equations are classified according to the value of p.
If p = 0 then L{u) is elliptic. If p =1 then L(u) is normal hyperbolic,
If p 2 2 then L{u) is ultrahyperbolic.

This paper is part of an attempt to develop Green's [1] ideas into
a method for treating all types of linear second order partial differen-
tial equations. ! In any attempt to apply Green's ideas to linear partial
differential equations difficulty with divergent integrals seems to be
inherent, In treating the normal hyperbolic equation in three dimen-
sions, Volterra [7] escapes this difficulty by first distributing the
Green potential along a line, Partly because of the obscurity of the
origin of Volterra's distributions, Hadamard [2] uses the Green poten-
tial as his integrating factor but he is forced to develop a calculus for
dealing with the finite part of a divergent integral. The school of
thought represented by this paper is related to the ideas of Volterra
and Hadamard in that it incorporates ideas from both,

In treating the normal hyperbolic equation Professor E. W. Titt
and bis students have developed chains of distributions which include
not only quantities with line discontinuities employed by the Volterra
school but also quantities with finite jump discontinuities at a non.-
characteristic hypersurface, The origin of these distributions lies
in a weighted non-Euclidean area of the hypersurface, the weight
factor being a retarded potential distinct from the Green potential.

The analytical treatment of this weighted area is facilitated by the

1Nmnbers in brackets refer to the bibliography at the end of the
paper,



reduction of the (n-1)-tuple integral to a single integral., This single
integral is in the nature of a transform of the original potential, the
kernel of which varies in analytical form with the dimension. This
single integral has the property that n-2 applications of a differential
operator consisting of certain terms of the adjoint operator changes
it into the first or second type Green potential depending on whether
the number of dimensions is even or odd. This property enables one
to set up a chain of distributions which links the Green potential to the
transform of the retarded potential, In the derivation of integration
formulae the starting point is the same as Hadamard's except that it
is not necessary to invoke an abstract theory of the finite part. The
procedure is to delete the cone from the region of integration with an
approximating quadric and then to use integration by parts to prepare
the equation for passage to the limit. The above-mentioned chain of
distributions is used in the integration by parts, These distributions
are obtained by differentiation processes and so are used in the oppo~
site order in the integration.

The problem considered in this paper is the extension of this
theory of distributions to apply to ultrahyperbolic equations, The
completion of this program would lead to a theory applicable to all

types of non-parabolic equations with constant coefficients.



II. VECTOR SYSTEMS FOR ARBITRARY SUBS PACES

To construct a theory of distributions applicable to ultrahyper-
bolic equations it is first necessary to extend certain portions of the
paper [5] Specifically it is necessary to define and develop some of
the properties of vector systems for arbitrary subspaces. The dimen-
sionality of the subspaces is dictated by the metric defined by the coef-
ficients of the second order terms of the differential equation. The
letters p and q are used to denote the dimensionality of these subspaces
and are determined by the type of equation as in (1.2), After defining
the basic system and developing some of its properties it is necessary
to define a non~parabolic, non-degenerate vector system and to derive
rules of indices and Pythagorean identities for this system,

A basic vector system deals with two sets of n vectors each in
n dimensions., In conformity with the tensor notation one of the sets,
consisting of covariant vectors, is designated by L?‘ and !oi where
i=1,...,m3a=1l.,., panda=1,..., q. The other set, consist-
ing of contravariant vectors, is designated by L: and !i. In working
with these vectors the indices i, j, k, m have a range 1,..., n; the
indices a, b, c have a range 1, ,,., p; and the indices a, B, y have a
range 1,..., q. The integers p and q are subject to the restrictions
(1.3). When and only when one of these indices appears in a term
as a subscript and a superscript it is understood that this index is
summed over the appropriate range,

A set of 2n vectors LE;, !a'i and Lai, !: constitutes a basic vector

system when the vectors satisfy the conditions given in (2.1).

4



(a) LirLP= 4P
a 1
1B, 5P
(b) £ ¢ = 6"
ia
(c) Lgf=0
(d) La'iﬂl =0
(2.1 1L
1
LP
i
(e) Either 21 or
i
9
14

In the above column notation for determinants the index i indicates

has the value unity,

the column. This definition is actually just a renaming of the basic

algebra defined in [5].

As a consequence of the conditions (2.1) one has that beth

determinants in (2.le) are unity as is demonstrated below.

1 i 14
L] |1y LiL; .
. i .
LB Lt LB,
1, pl 111
(2.2) 1= g
Lh 4Ly
RN 241
"1 q i

&
1

i 11
. L.L, Liﬂl <

Lot
P iq

CLPLY LRt L LBl
i1 iq| __

i~p
i 1.4 1 i
LN ¥ R A e
Lot
iq




Since the product of the two determinants is unity and one of them is

unity by hypothesis, the value of the other must alse be unity,
Another property of a basic system is that each of the covariant

vectors is the cross product vector for n-l contravariant vectors and

similarly for the contravariant vectors,

j j 1
L %] L L;
! LJ p2-! LP
a-l P J 13
j j i
‘a% f 5 £
1.7 pa+l
(2 3) La: a+1° 10. = R Liiz J llz B
T [ ! a ’ Ta a1
20.“—1 ‘ej
L’ 59 P 5
p i j j .
J J a4+
21 'e;a+ 1 £ zj
I3 ¢! 4 09
j j

The proof of (2. 3) is exactly the same as the proof of the correspond-

ing theorem in [5].

The column rule of indices completes the properties of the basic

system.

arj . ,a,d _ .
(2. 4) LiLd 4 o) = 6.

To establish this, one notices that by (2. 3) L; is the cofactor of Lj.‘

in the determinant of the covariant vectors and 2: is the cofactor of



Eaj in the same determinant, Hence L?Li + EC;EDJ: is the sum of the pro-
ducts of the elements of the i-th column by the cofactors of the corres-
ponding elements of the j-th column in this determinant, Since the
value of this determinant is one, (2.4) follows,

In a restricted vector system one deals with a symmetric matrix
AfLj as well as a basic system of 2n vectors, If the matrix Aij is non=

singular one can form the matrix Aij of normalized cofactors so that
(2.6) AA =5,

The matrix AV determines two positive integers p and q as in
(1.2) and (1.3), Consider any set of p vectors Mai. If this set of

vectors satisfies the condition
ij, ca, b
(2.7) |A MiMjlyéO

then it is said to be a non-degenerate set,

A non-parabolic, non-degenerate vector system is a restricted
vector system in which AY is non~singular, the Lai are non-degenerate
and condition {2.8) is satisfied,

a ab, i

¥
(2.8) AJLJ.z_ gL,

where gab is defined by

ab
g

(2.9) = AijLa’L?.



The rules of indices for a non-parabolic, non-degenerate system
. . .. ab, . e s
are derived next, Since the matrix g~ is non~singular, its inverse

gy, exists and satisfies the condition

bc c
(2.10) g g~ 6a.

Multiplying {2.10) by AikLc1 and using (2.8) and (2.6) one obtains the

T i
rule for lowering indices on La'

i b

(2.11) ApLy= gLy

Multiplying (2.11) by Llc( and using (2.la) one obtains

= A,.LLJ

(2.12) €4b ijTa b’

In order to complete the rules of indices one defines the quantities

ho‘B and ha as follows:

B

(2.13)  (a) B%P= Aijﬁ‘;ﬁg? () b= Aijlilg_.

If one multiplies (2.13a) by (2.13b), sums on a Greek index and then

uses (2.4), (2.6), (2.8), (2.11) and (2.1) there results

ap _ <G
(2.14) h hﬁY—éy.

k or l{i into (2.13a) or (2.13b) respectively and

P
using (2.4), (2.8), (2,11) and (2.1) one obtains

Introduc'img the factor §



(2.15) (a) AT = noPyg
i B
or (b) Apdi=h .

The relations (2,15}, (2.11) and (2.8) constitute the A rules of indices
for a non-parabolic, non-degenerate system.
In order to derive Pythagorean identities for the non~parabolic,

non-degenerate system the following definitions are introduced,

‘ ij  ab_ i j. _ a.b,
(a) G~ =g L_L;; (b) Gy; =g Ll
(2.16)
(c) mi o poBtpd. (d) H,, =h %P
t fatp ij = Tap ity

Starting from the definition of Hij and using various rules of indices

as follows

H,.=h %P
1] apB i)
_ k,B
k _k_a
(2.17) Apd65-L, L)
= A -A, LEL2
ik a
‘ b, a
= A"‘“gabLiLj



one finds

(2.18) A,. = H.+G...

In a similar fashion one obtains
(2.19) AY = gl Y,

Introducing the factor Xin into (2.19) and the factor X'x7 into (2.18)
one obtains the Pythagorean identities,
{(a) APX.X, = HIX.X.+GYX X, and
1] 1) 1]

(2.20)
(k) AJXXJ HJXXJ GJXXJ

The H and G rules of indices given below follow directly from

the definitions (2,16) and the basic conditions (2.1).

(a) H“JIf;l = 0; (b) Hi_ng = 0;
- (c) Hijz‘} - h‘lﬁzg; (d) Hijﬁi - haﬁyzf

() Gijfj = 0; (f) Gljﬂi = 0;

@ cUi3=gLy w6l Lt

By calculations similar to the following,

i Al P
AYH = AYR p£k£1

_ By,a,J
(2.22) fhaﬁh /zkzy

Y
—zkzy

10



1

(2.22) continued

one obtains the following relations between A and H and A and G. .

g oa mde gdpipa
(a) aYH =a HY=6]-LlL7

N N IS
(b) AVG, = A GY =600

(2.23)

¥
() A JHij = q

(d) a¥ Gy =P

Using (2.16d), (2.15a) and (2. 21f) one obtains the following re-
lation between A, H, and G,
(2.24) AlJHi

kCim ¥ 0

This completes the properties of a non~parabolic, non-degenerate
vector system as far as the needs of this paper are concerned.

To show that it is possible to construct a non-parabelic, non-
degenerate vector system when given the matrix A‘ij one could con=~
sider the following example. Since Aij is a non-singular symmetric
matrix there exists a proper orthogonal matrix C’g where i indicates

row and j indicates column such that

(2.25) | A"Jclzc“; = oK k™
k N . . ij a
where p are the characteristic roots of A™¥. For the vectors Ly

one could choose any p columns of the matrix C‘z and for the vectors

Zqi“ one could choose the remaining g columns of C'i.



12
(a) L= Cia where ja assumes any p values from 1 to n,
(2.26) j
a_ ~a . s
(b) £;=C;" where j # iy

Then

{a) Al"]La,;L?'%:: 0 when a = b and

= 0 when a % b,

(2.27) (b) Aij'@aj{ﬂ? s 0 when a = p and

1

0 when a # B,

§
o

{cy AYL%*C =
. 1]
Having the covariant vectors one could determine the matrices gab and
ha’?’ and then determine the matrices €1 and huﬁ as their inverses, Then
the contravariant vectors could be defined by the following relations,
. i_ ij. b
{a) La. = gabA Lj and

{2.28)

i_ ij,p
(B) £, = AL

B
To show that this system of 2n vectors is a non-parabolic, non-
degenerate system one must show that the basic conditions (2.1) are
satisfied, that gab is non~singular and that (2,8) is satisfied, With
this choice of L?{ and ﬁ? condition (2.le) is satisfied since C'i"il is a4 pro~-

per orthogonal matrix. Further the matrices gab and h®P are non-

singular so one can determine their inverses 2.b and ha Having

. B
these matrices one can determine the L; and E: by (2.28). With the

L; and 2@1 determined in this fashion the first four of conditions (2,1)



are satisfied as is demonstrated below.

i.b _ ij,c. b _ cb _ b
(a) Lol =gy A LjLi". Bac® T 05

iB_ ij,¥,B _ YB_ (B
(b) £t = haYA ﬁjﬂi-hayh =P,

(2.29) .
ia ij. ba _ /
(e) Lt} =g, AVLYG = 0.
a,i_, ijr 2,8 _
() L3¢, =n, AYLIE= 0.

The last two are zero by (2.27c). Condition (2.8) is satisfied as is

demonstrated below.

ab.i_ ab ij,c_ .a,ij,c_ ,ij.a
(2.30) g Ly =8 g A Lj—écA LJ.¢A Lj'

As a consequence of this particular example one sees that it is
possible to choose the vector system so that the quadratic forms

gabyayb and haﬁq . are definite. This could be accomplished by

j

i

o,
choosing the Laé’ as the columns of C, corresponding to the p positive
characteristic roots of AY and choosing for the !Zoi' the columns of C‘z

corresponding to the q negative characteristic roots of AY.

13



III. POTENTIALS

In general, potentials are solutions of the adjoint equation (1.1b)
which are functions of differences Xi = xi-»gi where §i is any point in-
terior to the region where the value of u is desired. In order to con-
struct the potentials desired here, one selects a nen-parabolic, non-
degenerate vector system using the matrix Aij of the coefficients of
the second order terms in thé differential equation (1.1a). The vector

system chosen is such that the matrix ha is given by

B
010 0...0
1000...0
0 0-10...0

(3.1) ' h .=
a® o0 0-1...0

2 - . -

1000 0. . -1

«

To obtain a vector system in which condition (3.1) is satisfied one
could proceed in the following manner. Since the matrix 'Aij‘-lirs nane
singular one could determiné its inverse Aij From the matrix Aij
one could detéermine an orthegonal matrix C? where i indicates row
and j indicates column such that

i~J _

where the p, are the characteristic roots of Aij’ Now p of these

14
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characteristic roots are positive and g of them are negative. Consider
any one of the positive roots and any g-l of the negative roots. Denote
the positive root by pkl and the g<l negative rioot s by pk y pk sre s Py

g
Define the quantities D as follows:

. C
Di: _kl
/Py
(3.3) :
cl
i k
e T a for 1 € a g q.
V=P
| a
Then 1 00...0
0"’1 0.4-\0
i 0 0~1,, .0
(3.4) : AIJDaDB : ,
000.. .4
but the product
llo 0-1—100 6-”110 0]
W;W . 'n‘v VT‘W o 5 »
1 1 -1 1
e 0, . ,0{{0=10.,.0| e O, . .0
VZ2© VZ V2 vZ
(3. 5) 0 0 1...0/j00-...0 |0 0 1 . 0
0 0. 1]j000...-]|0 0 1)

is equal to the matrix desired for h__ in (3.1)!: Henc: one could define

ap

the E; as follo“ws,
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i i
) < c
L S o) [pf] oL . 2 ]
11 ol Ipt et .2
v : 2| fox cr
(3.6) =10 0 1 SR o [ I S 2
: a : e f-2p
: V“Pr, %Pk,
. i
0 0 0 BIRLS Cx
i 4L 3

and condition (3.1) would be satisfied. The L; could be chosen as the
remaining p columns of the matrix C; after adjusting the magnitude to
make the determinant of the L; and 2(11 equal to one. The covariant vec-

tors could be defined in terms of these contravariant vectors as follows:

a_ ab J
L1 =g A,iij
(3.7)
A e J
lﬂi = Aijzﬁ.

The proof that a vector system chosen in this fashien is a non-parabolic,
non-~degenerate system is similar to the proof given in section II that the
éﬁ:ample given there is a non-parabolic, non~-degenerate system,

The quantities R, S, and T, related to the terms of the Pythagorean

identity {2.20b), are defined by
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=\ia, X%
Yo
(3.8) s =J7u, .x'x

ij

T\/GX’XJ

where j, J iamd‘j‘ are subject to jz = j'\z\.-:?‘?'.: 1 and are chosen to make
R,' S and T real. The value of j depends on the position of the point
Xi relative to the characteristic cone with vertex at §’i‘, In a similar
fashion the values of J and j depend on the pasition of the point xi res

lative to the cylinders H,.X'X’ = 0 and GinlXJ = 0. In this paper the

i
values of x" considered are such that j = 7 = <J = 1. so that the

Pythagorean identity (2. 20b) becomes
(3.9 R =5 -T".

The Green potentials are those solutions of (1.1b) which are
exponentially damped functions of R alone. The retarded potentials
are solutions of (1.1b) which are exponentially damped functions of R
and S. Since the potentials are functions of differences and are exl»

ponentially damped one tries for a solution of (1.1b) of the form
X’ i

{(3.10) v= e 1 g(xY).

For a function of the form (3.10) equation (1.1b) becomes

i L. .
- wfs X ij R 1 -
(3.1 "% |A, (a,0;@~0,8;a; 8.+ &;.)~B(-a; B+ 8,)+ ca|=o0.

J

a

Equation (3.11) can be written
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4 | .. L .
(3.12) A %iﬁ @i(EZAuajaBl)-;- B(A »Jaiqﬁ Bla,i+ C) = 0.

In order to simplify (3.12) one defines constants a; and § as

follows:

(3.13)

2 . . 1 .
6 = J(Aljaiaj+ Blai+ C) = J(~ z— Aij' IIB‘J’+ Q).

The symbel J is subject to JZ = 1 and is chesen to make § real. With

these censtants (3.12) becomes
' ij 2
(3.14) A +75%2 = 0.

For a function ®&(R,S, T) equation (3.14) becomes

(3.15) @ AljRiRj-x.—@

ij
RR A™R, T,

i ij ij
g8 88+ 2 AV T Tt 28, GAVR S+ 280 . ;

T

2

i i iig i _
+2¢STA SiTj+ @RA Rij+ @S_A Sij+@ A Tij,-l-.]'é =0,

Using the definitions of R, S and T and various rules of indices from
section II one computes the sums appearing in (3.15). Differentiating

the expressions for RZ, SZ and T2 from (3, 8) with respect to x" one

obtains
_ J
{a) RRi = Ai’X
- _ J
{3.16) (b) SSi = Hin
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Using (3.16} and rules of indices one obtains

ij w2 ij k m
(a) AVRR,=R™“AYA, xA, xT =1 (2.6)
ij w2 ij. k m
(b) A Jsisj = 57°AYH, X H X =1 (2.23a and 2. 2la)
ey allr 1 - 77%a0g xFg, ¥ - a1 (2.23b and 2. 21b)
i) ik jm

i RPN BT K, m_ S «
(d) AYRS, = (RS)TAVA, XTH, X7 =2 (2.6)

ij _ -1, ij k m_ T
(e} A RiTj = «(RT) "A AikX GJmX =5 (2.6)

(f) AiJSiTj = —.(ST)"lAl*"Hi XijmX,m: 0. (2.24)

k

To compute the sums involving second derivatives one uses the re-
sults on first derivatives. Differentiating the relations (3.16) with

respect to x? one obtains the following:

() RR+RR;= A,

(3.18) (b) SS;;+5,S; = Hy,

(c) TT,+T,T, = -G

] J ij’

Using the relations in (3.18), (3,17) and rules of indices one obtains

the following results for second derivatives,

(@) Ainij = _I%l_
(3.19)

(b) As; = J
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(3.19) continued ij p-1

(e) AVT; = -—p—
If one substitutes the results froem (3.17) and (3.19) into equation (3.15)

it becomes

(3. 20)

n-1 p-1 2
R+¢SS TT*Z“QRs“fZ ? T+T R+‘is_.<1> ~-—¢>T+Jé 3= 0.

In the solutions designated as the Green potentials and the re-

tarded potentials, the function & has the form
(3.21) 3 = SPF(R).

T QRT and <I>T do not pccur

when one uses this form for & in (3,20). Substituting the value for &

Since @ does not involve T explicitly &

given in (3. 21) into (3. 20) one obtains
TR p-2_ st m =2
(3.22)  STEM p pal)ST TF4 2 pF "R‘S Fly(q-1)pS Ft J6°F = 0

where the primes indicate differentiation with respect to R. Using
the second and fifth terms of the left member of (3. 22) to determine

i one has the following equation for .

(3.23) wp=)+(q=p = 0
from which p= 0 or p= 2=q.

s and <I>S

ordinary differential equation for F as follows:

After using the & S terms to determine | one is left with an
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(3.24) Fsv+.2-EiRP:.1_F‘+J52F: 0.
In treating the differential equation,

(3.25) Py S FieJ5°F = 0,

if one makes the substitution

(3.26)  FiR) = (aR) I 2z00R) = p-R/ 27

then {3.25) becomes

2
(3.27) o=l 1)/2{pz"+ Z'4 z[Jp-(l%.lf_) 13} -

where the primes indicate differentiation with respect to p, From

equation (3.27) one sees that Z is a Bessel function of order (1-k)/2,

(1-K)/2

Hence F(R) = (6R) Z 2((SR The Bessel function is os-

(1-k)/
cillating or non-oscillating according as J =1 or J = ~1 where J is
determined in {3.13).

Comparing equations (3. 24) and (3.25) one sees that k = 2pt+n-1.
Corresponding to each of the two values of u from (3.23) one has a
value of k. If = 0 then k = n-1 and (1-k)/2 = (2~n)/2. If p= 2-q
then k = n-2g+ 3 and {1-k)/2 = (2q-n-2)/2. For these values of k one
has |

(@) FR) = (6R) Dz (sR)

(3. 28)

(b} F(R) = (5R)(zq‘n“2)/zz(Zq_n_z)/z(aR)’.
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The Green potentials are obtained by using (3.28a), which corresponds
to p= 0, in {3.10). The retarded potentials are obtained by using
(3.28b), which corresponds to p = 2-q, in (3.10). With these values

of F and u (3,10) becomes

caixt Z(n-2)/2(6 R)
(3.29) : (2q-n-2)/2
1 (6R) Z (6 R)
(by v= e"c"lXl =z (Zq-“n‘z)/z —, retarded.
S

The Green potentials are classified as first or second type according
as the Bessel function used is first or second type. When m is an
odd integer the symbol an/2 means J-m/Z‘ The function & for the

Green potentials for the oscillating case is given below.

First type Second type

1 (n—Z)/Z s (n-Z)/Z
(3'30)('5?:‘) Tn-2)/2(8R): (TF) - Y(n-2)/2(8R)-

The retarded potentials from (3. 29b) are classified as first or
second type retarded potentials in the same manner as the Green
potentials except for the first three values of n for each value of p.
The function & for the retarded potentials for the oscillating case

is given in (3. 31).

First type v
n = 2p | S-(qnz)(—l-g-—) Y1(6R)
n = 2p+l s7(a-) (—{37) ¥) /,(6R)
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(3.31l) continued First type (continued)

n = 2p+ 2 S-(q'&‘z) [?fo(éR) = In 6J0(6R)]"

n2 2ps3 S-(q-Z) (’_&)(Zq'—n—z)/z

5 J(2q-n-2)/2(8R)

Second type

n=2p -(q-2)<6R)J (6R)
n=2psl s 2)(75-1-{)1 i 31 /56 R)
= 2p42 s‘(q‘z);ro(a R)

n> 2p4 3 5-19-2) (5 g)(29-0-2)/2y

(2q-n-2)/2{¢R)

When g = n-p = 2, which is the case for normal hyperbolicn = 3
and ultrahyperbolic n = 4, p = 2, the two solutions in (3, 29) are the
same. For the desired results in this paper for n = 4, p = 2 the se-
cond type retarded potential is used} however, it may be interesting

to note that for this case if one looks for a solution of the form .

2
® = F(R) In S + G{R) as is done in [5] one obtains & = iz- 1In —R—— when
2
6 = 0, This is similar to the q_ua,ntlty —lR- In -%— used by Volterra for

n = 3; normal hyperbolic and region of integration exterior to the cone,
The following list of values of & for first type retarded poten-

tials with § = 0 for small values of n and p may be of interest,
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IV, DISTRIBUTION OF POTENTIALS

This section is concerned with the problem of integrating a re-
tarded potential over a portion of a q-dimensional subspace, The

g-dimensional subspace used is the subspace whose equations are
(4. | L - €)= 0

where the Li{ are from the non+parabolic, non-degenerate vector sys-
tem used in the construction of the potential. The X" are the current
coordinates., The portion of this g-dimensional subspace used as the

region of integration is that part of (4.1) cut out hy the two cones

(a) Aij('ii- Y@ - &) = 0 and
(4.2) o ‘
(b) Aij(SEl- )~ %) = 0.

This region of integration is designated by Qq.

Except for the cases n = 2p and n = 2p+ 2 the potential which is
distributed aver the g-dimensional subspace is the first type re=-
tarded potential without exponential damping. In these exceptional
cases the potential which is distributed over the q-dimensional sub=
space is the second type retarded potential without exponential damp-

ing. In all casés the potentials are given by

Zq-n-Z
. - g-(a-2)( R
(4.3) =5 T JZS%n-Z._ (6R)
For the case n = 2p one must multiply the second type retarded

25



potential given in (3. 31) by -§ 2 to put it in the form given in (4. 3)
The gq=-tuple integral is a weighted non~Euclidean area of the

region Qq; the weight factor being the potential (4.3). In the inte-

grand the variables xi - gi in @ are replaced by xi-s Ei so that the

weighted area is given by

(4.4) T- ”{)‘ [ ex- Thaa.
9

In order to explain the parametric representation used in the

region Q{1 the quantities

(1) A= x5,

(4. 5) (b) w :\/Hij(xisa F)L-F)  and
() = £3='- £}

are introduged. From (2.16d) Hij = hu. !‘;2?, hence Hij(xi.-. §i)(vxj- SEJ)

g
= haﬁﬂdi'(xl-_n -}ZL)E?(XJ‘*-‘ %)), If one uses (3.1) this becomes
Z _ 5y a2 32 N
{4.6) o= lexz—}\3->\4-...-}\q

where for convenience in writing, subscripts have been used on the
X's. This practice of using subscripts is followed in the succeeding
work on both the X's and the t's. It can be shown that the \* suffice
for a parametric representation in Qq’ however, for parameters in
the g-dimensional subspace the quantities }‘2’ )\;3, cas ’)Sq; and p are

used,

26
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Since the region of integration is bounded by the cones (4,2) it is
necessary to convert the equations of these loci into conditions on the
parameters. If one uses (2.20b), (2.16b), (4.5) and (3.8) the two equa-~
tions (4. 2) yield

{a) p.z-.i- SZ-»Zt by

N m2tp M+ 2t

)\3+ 2t , N\ A2t A =0 and

3 40hqt e qq

{4.7)
{(b) p=T.

Using (4. 6) to eliminate N from (4.7a) and then multiplying the result

by t,\, one has

2.2 2,2
~tyhg - =EoN ok 2t ta) x3+2t2t4x2x4+,..+2t2th2xq

2 2 2 2
+ (1 H STt N, -t 2t t sz = 0,

If one completes the squares in the terms of the first line.of (4. 8) and

makes use of the relation S = 2t1t2-t3-t4~. .o -té equation (4.8) becomes

(4.9) 8224, (0 8PN, o P (E 050 t5)

| 2 2
‘(tz)\4")\2t4) e .H(tz)\q-)\th) = 0,

Thus the region of integration is bounded by (4.9) and p = T,
In order to express (4.4) as a repeated integral it is necessary
to determine the limits of integration for the parameters, The limits

for )\q are found by solving (4. 9) for )\q obtaining
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1 (2,2 2
{4.10) >y xzq [s )\2+t2(p +S )xz toR" (N 52N, )
1
. 212
O L

To determine the limits for )‘q.-:l one equates the discriminant in
(4.10) to zero and solves for )\q__l. This process is repeated to deter=~

mine the limits for )‘r from the limits for N One obtains

r4l°

1 ) 2 2. 22 2
(a) )\I‘ = -E-Z {)\,Ztrﬂ [--S )\2+t2(l~t + S ))\Z-tz}i *(tz)\3—)\2t3)

1
~(E 0N, ) o, ..-.-(tz)\r_l-)\ztrgl)z]z} for r> 3,

1
(4.11) 1
_ + Z 22 (
(b) Ay = ;C-Z-{)\Zt:,) [S )\2+t2(|.t +S )xz N :[ } and
P-Z
{c) Lz = t-Z_EZ and )\2 = tZ‘
: 2
The other limit for p is obtained from the intersection of A, = ¢t Ll
2"t
and \, = t,. This yields u = S, hence the limits for p are
(4.12) m=Tand u=S.

The non-Euclidean element of q-dimensional area is given by

(4.13) dA =V & lhaﬁli ih%‘ dvlay?. .. dyd

where the v are the parameters and h‘3 = ﬂo‘a—x— [4:] Using (4. 5a)
Loy
and (4. 6) one finds



N AN
BN, Ay
.10
0 -l

(4.14) lhl =
0 0

From (3.1) one sees that lhaﬁl is ¥1, hence (4.13) is

- M
(4.15) dA = > ar A

Using (4. 5b), (3.8), (2.16b) and (4.1) the potential & becomes
2q-n-2

-1

q-‘l. .

Ldh dN

3

o Z2 2
(4.16) @(xl_gzl) - H“(q-z)(/u -T

6

= @{p, T).

2

(6V p~=T7)
gan -2
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Collecting the results from (4.10), (4.11), (4.12), (4.15) and (4.16)

the integral (4.4) becomes

S t2 )\3 hq
-~ M .
(4.17y T= Jr J > J J B(p, T)-rdxq. L dhgdh,dp
T Ve MOy x 2
2g2 73 q

where Tr and )‘r are used to denote the two branches of the surfaces

(4.10) and (4.11a),

The analytical treatment of the integral (4.17) is facilitated by

reducing it to a single integral, This is done in the succeeding work.
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If one performs the )\q integration (4.17) becomes

2

—

_ Bu 2.2 2 2 2 2
(4.18) T = ZJJ.. J;-\;G [—-S Ao+ tz(}l +S ))\Z—tzu —(tz)\3-)\2t3)

1
, 2 ) 212
=(th =Mt ,) ,-...‘(tzxq_lfxth__l) ] dxq_l., .‘d)\zdp.

If one performs the )\qml integration (4.18) becomes

- Bu 1 2,2 2 2 2 2 2
S22
BN, Aot )2 =(Eh . =Mt 5)2] A dx,d
2472ty T g a2 2 g2 ] ge2° " T2tk
With each integration one loses the last term in the brackets, increases
the exponent of the factor in the brackets by —12-', increases the exponent

of tz in the denominator by 1, and multiplies the integral by a constant

factor. After r integrations one has for gq-r 2 3

- D 2.2 2 .2 2 2 2
{(4.20) I = CJJ‘{\ . [.—S )\2+t2(u +S ))\z-tzp -.»(tzx3~)\2t3)
2
r
2 , 2972
~(toh =Nt ) -...—(t2)\q_‘r.~>\2tq_r) ] dxq*r...dxzdp
\ ) I’»—‘l r
where C = fv ' when r is odd and C = —% when r is even.

(3]

After =2 integrations one has

S t, gq=-2
- du 2,2 2 2, 2272
(4.2) T = cj[ zﬁ?&'["’s Mot b (174 STIN, =5 | dx,dp
T tzﬂ.z_ 272
S

where C is given by the expressions following (4.20) with r = g-2.
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When q is odd one has after the Ay integration

J4-2[a:3], 4 s

Lo @l 2 2p 4
T
+{=1) uq*S(S )T(wl)T a= 7( .‘ ) 3.:.,1 .....

2(5%-u” qu(’ 6)(q-8)...3.1 (s° Z"61_3( 4)(q-=6). ..3,1
> =1 g=6)(g-8)...3.1 (S"-p’) q-4)(q-6)...3..
TR ( 25 ) (¢=5){g-7)... 42" (_25‘“) W A

When q is even one has after the A, integration

Lo ;2 Lt st
(423 T = 20— j' o {(~1)Tuq””2ms S5 [( )
1 vr
q-6 3 q-8 5
T asb(sten® 2 ST q-85P-uf) 4.2
+(-1) 7 p ~—g— | 3+ T e g

2 q_=»5 2 2 q~3
w8k ) (g-6)(q-8)...4.2 (S -p") (g-4)(q-6)...4.2} 4
w (525 (@5)(q-7)...5.37( 728 (@-3Na-5)...5.3 | [ 4

In both (4.22) and (4.23) the agreement is that the sum in the braces

terminates with the term in which the exponent of u is zero. Equations
(4.22) and (4.23) express the integral (4.4) as a single integral which

is the desired result in this section,



V. THE KERNEL

Equations (4.22) and (4. 23) express the integral (4.4) as a single
integral which is a transform of the potential &, The kernel of the
transform is given below in (5.1). The sum in the braces terminates
as before with the term in which the exponent of p is zero. The con-
stant C' is the same as the constant before the integral in the corres-

ponding case,

g+l g-1 5 q=3 2 2 2
2 - =n5 > - 1
L3, B Oy SHEIN S—g?g“'—[(—l) 2 u33 ) T (35) 2

7/s 2431 zszzqas( 6)(q-8). ..3.1
: a- s . , - q-6)(q-8)...3.
+ (=1) M (T ) Z’—z+...+l‘-l' ( A ) (Q=5)(q-‘-7)...4.2
| 0-3
(5.1) ) Sz*u"‘) (q-4>(q-6>,...3.,1}}
h oS (q-3)(q-5)...4.2
92 2 9—2— 2 2
b K= cm{«awTﬁ‘ZmiTS +i [( SRR G
q even [ 25 ,

q-6 > 23 -8 5
T2 q-6/S8"-p") 2 TqBS 4,2
() (7

N!en

it

v
™

~z5— ) 3+ (=) .3t
=5 q-3

q
] Z(Szmp- ) (Lfas.. sz, 522\ (a-4)(q-6). .
L S {a=5){q-7)...5.3 Z5 (a=3)(q-5).. 3

In order to obtain a more compact form for the kernel, one first

makes the transformation given below.

(5.2) s = e, C u=ed,

32
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(5. 2) continued

SZ 2 SZ__ 2
+.: . = cosh(t-a), __ZS%,— = sinh(t-a).
After making this substitution in (5,1), if one differentiates the result=

ing expressions with respect to t, one finds

-1
- EZT\'] (q'"l)asinhq“z(té‘-a) for q odd and
(5. 3) *2
292
Ky = [:4'3)' (q'l)asinhq’z(t-a) for q even,

Transforming back to the original variables S and u and using the

fact that KS =K ts -S— one obtains

| 2 2 q-2
(5.4 Ky = o ()
. -2
_ -—q';.%l- 3%2]" 11'32_'

where CY = -—-——%—t——-g-]—- when q is odd and C" =————-(—-—-3T,——— when q is

even, Solving the differential equation (5.4) subject to the condition
K = 0 when S = p one has the following expression for K after discard-
ing a constant factor.

S 2 292
(5. 5) K(S, u) :j 5(9 - ) ds.

The chain of distributions developed in this paper is based on

the integral

-
|
(5.6) L= e"‘“xf K(S, 1) 8(k, T) du
' T
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where K{S, u) is given by (5.5) and ®(u, T) is given by (4.16). This inte-
gral is essentially the integralT of (4.22) and (4.23) multiplied by the

L1
=03 X

exponential factor e For such an exponentially damped function

of S and T the adjeint operator takes the form

{5.7) L*I= Lat:[ @zﬁlX T

ris, )]
= [Aij(D +a, ){D.+a )+ J62] [e’-aiX'i_I-(S T)]
USRS M HE N

- "‘%X
s e [DSS —g—D DTT T D+ 76 j"(s T).

The operator A used in the construction of the chain of distributions

consists of certain terms of the adjoint operator as follows:

g i
(5.8) Ae caix’ FiS) = H{D+ a.i)(Dj+u.j)[e'“1X F(S)]
el .
S EDsst‘q‘sl‘Ds] F(S)
" =a1X AF(S)
g-1

where A = Dgg+-#g—Dyg.

Before proceeding to the discussion of the chain of distributions
it is necessary to develop some of the properties of the kernel K,
First it should be pointed out that except for a constant factor the
kernel K reduces to the kernel given by Kainen [3] when q is replaced
by n=l which is the case for the normal hyperbolic equation. The ker-

nel K satisfies the conditions



(5.9) BK = 2(@*2)»—%:-7(82=p2)q'ﬁ3 and K = K = 0 when p = S for q> 2;
S La

S

AK =0and K=0, K,=1when p=Sfor q = 2.

S
If one replaces g by n-l in (5.9) there results

— M o2 2n-4
(5.10) AK = 2{n 3)51-1-:—3(5 )
and this is the same as the expression given by Kainen except for the
factor 2(n-3).
In order to compute higher orders of A7K one makes the ex-
ponential change of variable given by (5.2). The operator A becomes

q-1 = e—Zt[Dtt+(q—Z)Dt]

(5.11) Dge+35=Dg

and AK in {5.9) for g> 2 becomes

-(t-a)

(5.12) AK = 2(q-2){2eM2" e sinhqﬁ?)(t‘-a)?

For reference the following rules for operators are given,

{a) (Dt y)smhy(te-a) = yet (tpa)sinhyﬁl(tna),
(5.13)
(b} (DZ-c?)sinhY(t-a) = (vZ-c%)sinhY(t-a)+ y{y-1)sinh Y~ 2(t-a).

35

Using (5.13a) and well known rules for D operators one calculates

ZZ’K as follows:

2.

(5.14)  A%K = " 2'D(Ds q-2)2(q-2)(26%) 33 ~{E-2)

sinh®" 3(t-a)
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(5.14) continued

2(a-2)(26 2% "3 2(p_1) (D4 q-3)5inh %" (t-a)

i

3e=3t+a

1]

2{q-2)(2e%)4" (D-1)(q-3)e’ " ®sinh® % (t-a)

-2t

20q-2)1q-3)(2e*) 973" %D sinh9"%(t-a),

i

In a similar fashion one calculates

2K = 2(q-2){q-3)(q-4){2e12 3632 (D 1) (Ds 1)sinh %3 (t-a),
(5.15)
2K = 2(q-2){q-3}{g-4)(q-5){2e )2 e "4t *22(D. 2y D(D4 2) sinh®"Oft-a).

By an induction process one obtains the following expression for ATK.
(5.16)

3, ~mt-(m-2)a

APK = 2(q+2}{q-3). .. (qg-l-m)(26™)%" £(D)sinh®" "™ (t.2)

where (D) = D[Dzmzzj [Dsz}zj ca 'EDZ-(m'-Z)ZIfor m even and greater
than 2 and £(D) = [Dzwlz_] [DZ-'-32] N [DZ-(m-Z) 2] for m odd and great=
er than 1, ‘

One observes in (5.16) that when m = q-1 the expression for ATK
has a zero factor and so is zero. One can sharpen this statement when
q is even; in this case Zq/ZK = 0. In verifying this, one notices that

when m = q/2 (5.16) contains the factor
-4
2 q
(5.17) {Dza(ﬁgf) :[sinh 2 (t-a).

If one uses formula (5.13b) to evaluate (5.17) one has y = ¢ in the
formula, hence the effect of performing the operation indicated in

(5.17) is simply to bring in a constant factor and decrease the exponent
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of sinh(t-a) by 2, After performing this operation one has the factor

2 q-8
(5.18) [DZ»(S:SE) :llsinhT(taa)

in (5.16). This is the same type of operation as (5.17), hence suc-
cessive applications of (5.13b) lead either to the factor D [((—li—%) ’.] when
g/2 is even or to the factor [Dzmlz:] sinh{t-a) when q/2 is odd. In view

of the preceding argument one has the following results:

A7K = 0 for m> g-1 when q is odd and

15.19)

ATK = 0 for m = q/2 when q is even.

If one collects factors in {5.16) it becomes

=2
_m_, 2%97%qg-2)! (q-1-m)a_-mt_ . ,q-2-m,
((5, 2:0) A K ;‘W e e I(D)Slnh (t“‘a)
where (D) is given following (5.16).
To obtain another form of A 'K one makes use of the following
differential expressions for Legendre and Tschebyscheff polynomials

given in [67].

(5.21)
) 1
P)\(cosh t) = Y (20! AN D(D [D “{p=-\-1) :[sinhp"" M
K 2™l p-N)isinh <M
et 2

2 2 29 . L=\
=nmyrzr DD -2 [P (e a1 ] sinnt T,

{(2\)}
Y 2)\, \ ‘:l )(

.. [DZ.,.(W-)\al) stinh““’xt,
2"\ i{p-2)! sinh '

P)‘(cosh t) =
18



{5, 21} continued

Ash y -
=1)" 27N 2 2,2 .2 2 , 2n . -
= ﬁiﬁz“W(D <1} D"=37)... l:D =t A -1) ]s1nhp' )Nt,

(p_.e.)\: 2‘9 4, -

PI‘L (cosh t) = 2=l coen ts PM{cosh t) = (%l""“l)}' .
2F Tyt " A (P
oy A A=l _1%8 ) : .
Tx‘(cash t) = 12 ()‘213;1 D((DZeZZ), e [D2=(Hﬁ)g~l)2]smhpf+)‘ lt,
R (=N isink®™ " ¢

{e=X =3, 5, ...), 3 0;
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ne ;
T(cgsht) AD p?a%yp®-39).. . [Di (w-2-1) 2] sinnbt Ml

(- X)“sm@zxélt

(P-‘S)\':Zy 4” o-a)g )\=/=0;

Tﬁm'}‘"(cosh t) = melm{cosh t; Tﬁ(cbsh t) = Zunlp.‘. .

In (5. 21) Pﬁ and T:‘L indicate derived polynomials, for instance P:: is

the A-th derivative of Pp.'

if one uses (5. 21) equation {5.20 becomes
(5.22)

. g-1-Zm g=1-2m v
APK = ¢t (2522 5%.° P 5%
a) aga-z ooH 28 a-3 |\ "ZS
=z

14 m¢<(q-1)/2, q odd;

Zm-q+l > 2
q-2-m o, 2 (S +

Pe-3 S
v
{q-1)/2 £m & q-2, ¢ odd;

(b) ATK = c:bﬁ:z(zsm

;. q-1-2m g-2m , ,

2
_ w2 -
() A7K=C cga%z((lsmq‘ m(—zgw-s - Tg-2 (‘S'Zﬁéﬁ )
_ A=

14&m< (q-2)/2, q ever;
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(5.22) continued
q-l

T2 -l
2 (mul)'.(qWZ)'.l:g—lzﬂ:lL
where C_ = .
a (q-2-m)i(q-1-2m)}
2m-q-1 q -1
, z
_ (-1 (Zrn -q+1)(g-2)!
Cy, = [ Zm 1T and
—=]
4m-q+ 4
2 % (m-l)iq-3)

Co® “2-2m
(g-2-m)! [A222200,
Another form of A K is obtained by replacing the hyperbolic
function in {5,20) by exponentials and then expanding by the binomial
theorem. The result is given below in (5. 23).

5.23 =2 S . .
( ) g2 q. m ‘q_z-m 2a q-2~-m-=i 24 1
Z.mK - 2 (g~2) (q -1-m)a 'mtf(D) 1(-e ) (e )

(q-2 ~m5’ s i (2ete?)d- -

If one arranges f(D) in the form (D-m+ 2)(D-m+4}....(D+m-4)(D+m-2)

and performs the differential operations in (5.23) one has

(5. 24)
27K = m:qz%i}y; e (4-2p_gy 4)(D-q+6). ..
g-2-m
q-2-m) 24 q-2-m-i 2t)i
(D-q+2m—2)(D-q+2m)§ . (-e™) (e
1=
v q- me .
q-2-
- E el e 2:) ( ; )(Zi-q+4)(2i-q+6)..
1=
(2it 2m-q-2)(2it Zm_q)(_eZ,a)q-Z—ln-i(eZt)i
g=-2-m ‘
;——— q-2-m
m, 5, P
:zz'q;(égrﬁzl%f. ( i )(‘1)q N 2i-q4 4)(2i-q+ 6). ..
1i=0

(2i4 2m-q-2){2it 2m-q)el 24" 3-2m=2i)a (2i-q+ 2)t



VI THE CHAIN OF DISTRIBUTIONS

The chain of distributions is based on the integral (5. 6) which is
repeated here,
. WS
. it
(6.1) (s, T) = e j K(S, ) &k, T) dp.
T

In the construction of the chain of distributions one uses the operator
A given in {5,7). The first link in the chain of distributions is the in-
tegral (6.1). The second link in the chain is obtained by applying the
operator A to the first link, The third link is AZI and the r-th link/
is AT, The last link is A%711,

For the case n = 2p+1, the integral {6.1) is improper! however,
the differentiation processes used here can be justified in this case.
For the case q = 2, the kernel is such that KS(S,S) = 1 and so is not
included in the general case, For g = 2 the chain of distributions con-~
sists of the two links given below in (6. 2).

. S
1 .
1= e %% f " ln% __‘5__) Jl(aJ }lz—Tz) du
(6.2) T V- T |
i

Al = o %X (_—g—\) J,(5R)

If one multiplies the expression for Al in (6.2) by l—-z- then it becomes
. ) 6
L
-aiX (Sl_R)Jl(aR) which is, for this case, the first type Green potential

given in (3. 30) since for q = 2, n must be 4 for ultrahyperbolic equations.

For the purpose of illustrating certain properties of the chain of
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distributions, the result of the process of successive applications of
the operator A to the integral I is given below for two cases, For the
potentials one is referred to {5.9). The kernel is obfained from (5, 6)

but it is arranged here for comparisen with (5.1),

(6. 3)

V)
. .S
aain [ ‘
I=e ™ K(S, p) ®(p, T) dj.
“T
_— »ain - . :
Al =e AK(S, p) @(p, T) dp
Y. T .
.
c 2 =@ X —2
AT = 7ML ROKIS, p) @(p, T) dp
J o :
: ,S .
ir . i 1/2
3 caiX | =3 m ~aiX"[1 (5
Al=e “i A K(Ss H)Q(Hng)dN'-i- 48 e @i [-;2(—?() Yl/z((SR)
\Y T B
1/2
1 /R
-L(8) o)
i 5/2
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{6.4) continued

I= »aixl
=¢€ K(Ss F") ‘MM» T)d“'
T

- » i ——
Al = eﬂalx fAK(Ss p) @(p, T)dp
T

.S |
1 - :
A1 = e'aixf ZZK(S,M@(M; T)du
T
i 1
3. -a;X" 1 (R
A’1 = 384 e ?(75') J,(6R)

i 1 0 '
4. X 1 s 2 (R
AL = 384 e ["—Sz(ﬁ Jl(éR)-?[(-g-) Jo(aR):l

i 3
5 X'/ 6
A’ = =384 ™% (‘Rf\ J3(6 R)

In the two examples, (6.3) and (6.4), one should notice first that
g-l applications of the operator A to the integral I results in the first
type Green potential for n even and the second type Green potential
for n odd. Another property of the chain of distributions is that for
q odd the first {q+1)/2 links of the chain consist of integrals only and
that for g even the first g/2 links of the chain consist of integrals only,
Another characteristic of the chain of distributions is that the integral
disappears with the (q/Z)ath application of the operator A when q is
even but does not disappear until the last application of the operator
when q is odd. This last property is a consequence of the property of
the kernel given in (5.19).

The remainder of this paper is concerned with the problem of
writing expressions for the links of the chain of distributions for the

general case and with demonstrating that the g~th link is the Green
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potential which is the principél result of this paper.
For q odd the first {q+1)/2 links of the chain and for q even the
first q/2 links of the chain are given by
. WS
m —aiX’ —m
(6.5) Al=e 1 ATK(S, ) ®(u, T)dp
T
where m < (g-1)/2 when q is odd and greater than one, and where
m < (g~2)/2 when q is even and greater than two, This is proved by
mathematical induction, That (6,5) is true for m = 1 follows from the
fact that K(S, S) = KS(S, S) = 0. Assuming that (6.5) is true for m = r-1
one has the following expression for _ArI;
; S
(6. 6) ATT = pe”%i% f Ak (s, ) @(p, T)dp

T
S

»a-Xi—- =1
=e 1A A K(S, ].L)@(]J., T)d}.!,
T

To determine the value of the right member of (6. 6) one needs

. S
o 1 — Py :
(6.7) e %% DS} A" IK(S, W ok THdp
. |
-»XiL > Tl 0 Xi —Tr=l
= e j DgA" “K(S, p) B(p, T)dp + e [A K(S, 1) & (1, T)]
T p=3S

That the last term on the right in (6.7) is zero for r < (q-1)/2 when q
is odd and for r< (q-2)/2 when q is even follov%is from:.the fact that
N m]'K contains (Saﬂp.z)quz’r'i“l as a factor as is seen in (5,22a) and

{5.22c). In addition to (6.7) one needs the value of the second derivative
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of the integral in (6, 6),

S

2 i e i
T
i S
“ay —~r=l —=T=-
= o X J Dggd ~ K(S, ) @(p, T)dp + I:DSAr 1K(S,u)@(M,.T)1}
d , w=
T

That the last term in the right member of (6.8) is zero for r £ (q-1)/2
when g is odd and for r < (g-2)/2 when q is even follows frem the ob-
servation made following (6.7). For the values of r considered here,
q=2r+1=2 2 and so Dg [ZralK(Ss p)] contains the factor Sz-pz which is
zero for p = S. In view of the preceding arguments there are no con~
tributions from the limits of integration in the first or second deriva-
tives of the integral, The operator A is DSS'*'gé}iDS’ hence if the first
derivative is multiplied by (qwl)/S and added to the second derivative

one has

R
k3 1 —_—
(6.9) ATr= TR I ZTK(S, 1) @(p, T)dp
T

where r is subject to the restrictions following (6.7). Therefore (6. 5)
is true.

In the consideration of A™I for m= (g+1)/2 when ¢ is odd and for
" m 2 q/2 when q is even the expressions are quite different for q even
and g odd, consequently the cases are considered separately. The case
of g even is presented first.

i
In preparation for the A operation on
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16.10) Afr= e"‘_‘iXI A % K(S, u)®(p, T)du
T q-2

one considers the following form of A “ K obtained from (5.24) by re-

placing e by u, et by S and m by (g-2)/2.

e 9%3 g E%E q- gq~2~21
(6.11) ZTK :'2—[—@:%‘3%21}&" ( 2, )“I)T(Zl-q+4)(21_q+6)...
zd4° o ¢t
(21-4}(2i~2) IUL<:_|,~-a1F--Zi‘,:,’Ziea-q.;. 2
q-4

Now (2i-qs 4){2i-q¢ 6). . . (2i-4){2i-2) = 2 % (i ~%é)(i~.%é), . {(i2){i-1)

so (6. 11) can be written

g=2
(6.12) A “ K =

q_ :°»2
q-2-2i

2

2(1@3(‘%,%2)‘1, ' -2 2 . gq=4.,. q-6 . . q-1=2i_2i-q4+ 2

W} i )b (1-239(1-22) ., L E-2)(i-D)p s ,
1=

From {6.12) it is seen that the only terms in the sum which are not

zero are the terms for i = 0and i = 3%5 Therefore
q':'z =3 .1
S 297 .2yt dq 2 wde
(6.13) & “ k=22 ofacAe e,
[q ]u , s
- 2

1

‘ =1
Zqéz((q'@3>“{*——zpq — + P]
3 M Sq=

‘=‘Z ' Y =-2, az
= 2% «qvaa»e—sfgtz<sq -p37%),
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Using the results from (6.13) and performing the A operation on
(6.10) one has
Zq-fn—Z
Ay

9 i
gLs =2 1 R

2 € asX 24 (‘-1."2)’-?2(_[5_) 'JZq—n—Z(éR)"
8 7z

(6.14) A“1=

Lo

The integral disappears in this step because ZK(S, p.) = 0 when q is

even by (5.19).
In the following work with higher orders of A™1 the following

notation is used.

T R\"
(6.15) o= (—6—) J_(6R)
The r on the left is simply a symbol for identification and does not
represent an exponent. In performing further A operations on (6.14)

one needs the following rules for differentiation.

@ ks (3) 75w -
(6.16) _ Fr F =2 r-—l Fr
b A i = 2 - e
(b) SY EW + (g~ Y) SY v{q Y)SYTZ

Because of the repeated occurrence of the factor e*ainzg‘ﬁz(Q“Z)i
in the following work, this factor is replaced by the symbol E for con=~
venience in writing, If one introduces the notation of (6.15) into (6.14)
and then applies the A operator to the result using (6,16) one has

a2 2¢q-n-6 2q=n~-4

"z F 2 (q-4F °2
(6.17y A “1I=E = v’ ~ 1
sqg_ SQ“ ’
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(6.17) continued

a4 4 2q-~n-10 2q9-n~8 2q-n=~6
N E[F __.21a-0)F MECRDICE 4)F and
~b -4 by
s s 54-4
" 2q-n-14 2g~n=12 2q-n-10
A 2 I=E F - 3(q.'“8)F + 3(q'8)(q 6)F ,
Sq*S sq.‘6 sq."
2q-n=8
S
<q—8>(q-6>(q~4>F | ] .
54
g+ 2k
. . Y
The foregoing leads to the general expression for A I,
(6.18)
q+ 2k Zq-éns-4é<+ 2i~2
I- E ( l)i (q~2k-4)(gq~2k=-2).. (q—2k+ 2i-4)F .
(a-2k-4) T ga-Zke 272

To prove (6.18) one again uses mathematical induction, Assum-

ing that (6.18) is true for k = r-1 one has

(6.19)
q+ 2(r~1) 2q~nﬁé‘21r+ 2i4 2
Z r-1\ 1i(q-2r-2){g~2r)..:(g=2r4 2i-2)F
A = E> ( )( V(=) S4-2r+ 21

Applying the operator A to (6.19) and using (6,16) one has

(6. 20)
q+ 2r r-l ' - 261~n+142r+ 2i-2
A 215N r*l)(_l)i(q-Zr:ﬁZ)(q-Zr)..,(q -2r4 2i-2)F
E i /07 (q=2r=-2) Sq =214 21-2
1=
r-l 2g-n=4r+ 2i
«l i+l “(g=2r-2)(q-2r)...(q=2r4 2i-2)F . '
+.5 (i )(’1) (q-4r+ ) ey — Rt
i=0
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(6.20) continued

(r )( -1) (Q“Zl"+ 2i)(2-2r+ 21)(q-2r—2)(q -2r)..

ﬂ%z

(q=27=2)
I
‘ 2q~n-4r+ 2it 2
(q-2r+2i-2)F __ *
Sq-—2r+ 214 2

In combining like terms in the right member of (6.20) one notices that
there is no term to combine with the first term of the first sum and
that the second term of the first sum combines with the first term

of the second sum, These first two terms of A(q"' Zr)/ZI are

2g-n-4r-2 2q~-n=4r
F (q-.Zr—Z)F
(6.21) E ,
Sq-Zr-Z Sq—Zr

In general the k-th term of the first sum combines with the (k-~1)-th
term of the second sum and the (k=2)=th term of the third sum. To
obtain the next r-2 terms of A(q"" Zr)/ZI one considers the following

terms of (6. 20).

(6.22)
.1 2q-n=4r42i=2
_yHa-2r-2)(a-2r). .. (q-2r4 2i-2)F  *“
(q-2r-2) Sq+2r+ 21=2
ro2 2gq-n=4r4 2i
; iyl (g=2r=2)(q-2r)...(q-2r+ 2i=2)F
+ ( )( =1) (q 4r+41)(q_2ré2) § Sq,_lz-r_'_ 21
i=1 .
o3 2q-n-4r4 2iy 2
j r=1, (g=2r-2)(q-2r)...(q-2r4 2i-2)F
+ ( 1) 1) {g=2r+ 2i)(2=2r4 21)  CEATA) Sq-2r+ 5

i=0

|..|
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The sums in (6.22) can be written

r-l) g»2r4 2i-2 [r-1) q-4r4 4i-4
(6.2 E> (1 ) aszeiez, (o) agtnetics

2q=n-4ry 2i=2
(1) = 22214 21 | (q-2r-4)(q-27~2). , . (q=214 2i-4)F ;
tli-2)Tq-2r=2 [(q-2r-4) 5a- ZZry 2i=2

Considering the factor in (6, 23) immediately following (,-.el)1 one has

| [r=1]g=21r4 2i=2 r-1} q-4r44i-4 r-1\ =2=2r4 2i -
(6. 24) [(1) g=2r=2 +(i—el) q-2r=2 +(i-,2) q‘_—Zr—Z]

( ) [:(q =«2r4 2in2)(r~i) (gq=4r4 41-4)1 ~2=214 21)( ~1)1]
Tl (g-2r=2)r T (q-2r-2)r @ 22 (T~ Dr

If one uses {6, 24) then (6.23) can be written

Zq_ =1+ 4rs 21- 2

_ ra
L=l . 2
r) i (g#2r=4)(q-2r=2)...(q=2r+ 2i-4)F »
{6.25) E; (i)( U Crvrary Tga-2rZicZ

The last term of A(q""" Zr)/ZI is obtained by combining the term-in the
second sum in {6.20) for which i = r-1 and the term in the third sum

in {6,20) for which i = r=»2., This term is

Zq_—n~2r»2
(6.26) E(.,l)r (‘9."21"4)(‘1‘21‘*2). .. (q=4)F Z
. {q-2ar-4) Sq-Z :

That the term of the third sum in (6, 20) for which 1 = r-]l, is zero is
'seen by observing that the factor (2~2r4+ 2i) is zero for i = r=1. .If one

combines the results from (6.21), (6.25) and (6.26) one has the
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following expression for A(q"' Zr)/ZI.

(6.27)
q+ 2r r Zq-.n.‘-“zlr+ 212
A% I=E r)(al)'i (q-2r-4)(q-2r=2),.,(q-21+2i-4)F o

- E i)\ {q=2r=3) IR

1
In view of the preceding argwnent (6,18) is true,

If one sets k = (q«aZ)/Z in (6.18) only the first term in the sum
contributes and one has after replacing E and F by their equivalents

R )~<n—~2>/z
6

i
(6.28) A% = "X 2972(g.2y (R 3 (6R)
i 3 q . -(n-Z)/Z :

Converting the negative index on the Bessel function into a positive

index one has

n-72
. i 2 ,
A%7Y - 2992 510704 (%_) Y__,(6R), n odd;
—
(6.29) . 11.%_2_
Aq.“ll = (=J) 2 zq_~2(q,2).te'a1X (_}é{_) Jn___z(aR), n even,

—5=
The symbol J used in {6.29) before the ez;pression for the case of n
even is the same as the symbol J determined in (3,13), The eipress.ions
:;Ln (6.29) are the final link in the chain of distributions for g even. One
should notice that they are, except for a constant factor, the first type
Green potentials for n even and the second type Green potentials when
n is odd. This is the desired result,

The consideration of AT for m > (q+l)/2 for the case of q odd
follows. As was pointed out previously, in this case the integral does

not disappear until the last A operation bec.a,use of the property of the
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kernel given in (5.19). Because of.this, the treatment of AmI is ex~
pedited by the determination of a formula for the A operation applied
to the integral at any stage., To obtain this formula one needs an ex-
pression for ZHLK(S, i) evaluated at p = S, If one sets p = S in the
formula (5. 22b) it becomes

2m=q+1 3q-2m-5

> > ‘ Zm-~q+1
(6.30) [A™K(s, ] =2 2 (2m-g+ Dig-2) ™ Z
) : R 2m-~g+17, ' “ .
ST AT Gmean g3

By using certain recurrence relations for Legendre polynomials from

[6] one has

(6. 31 pMyy =M N):
) u! 2MN(pen)t

Using (6. 31) in (6.30) one has the desired formula for A K.
2m=~g+ 1 .

6.32) [Fwis,w] -G — 2™ om-qu ig-2)im-1:

p=S ([Zm—q+l],.) (g-m-2)! gem=q+l

To determine the formula for A applied to the integral at any
stage one needs the value of the derivative of the integral, This is
S S
(6.33) Dg I ATK(S, ) ®{p, T)dp = I DGATK(S, p) @, T)dp
T T

+ [A7KS, walw T)] .
=S

In addition one needs the value of the second derivative of the integral,

Preparatory to this computation one determines the value of

[DSZmK(S, W) & {1, T)]S and Dg {[ZmK(S, 1) &1, T)JS} . The first of
B=3 u=
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these is found below using (5. 22b).

(6. 34) D.APK(S, ) =

S
2m-gq+1 q-1

Z é ga2)l q~2-m 2m-g+l 2 2
(-1) 2 " (2m-g+1)4q=2)'p(2p) m o 2 [SSh
[Zm—q+l ], ; Sm"'l q-3 '—Z—_—S]J., ‘

2m=-q+ 3

1 8% Tz 5%y
* Bl 280 T g-3 m
z

hence [DSZmK(S, ) B, T)]Sz *ES— [-ZmK(S, w)@ (., T):l <
p= peEo

If one uses (6, 32) and the F notation introduced in (6.15) the second

expression mentioned above is

(6.35) DS {[ZmK(S, )2, T):l } =

p=3
2q-=n=2
(_l)zm“"iﬂ'122q“2m“3(2m~q+1)2(9_!_’2)'»(111*1){ D ¥
_‘ ‘ >me
[2m-q+1:l»‘ Z( mo2): S S m-]
-—.—2—— . q *
2q-n-2  2q-n-4
(-nZm-arly2a-2m=3 50 g g 2)im-D)! |(-2mehF . F°
. > ; — Zm t T Zmsz
([me"qﬁ‘l]_{) {q-m-2)! ° >
P2 2q-n+4
24l rem —m F .
= S [ATRGS, we (p, T)]  + [ATK(S, 1) 533
peS =S

Using the results from (6.33), (6. 34) and (6, 35) one finds the following

expression for the second derivative of the integral.
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s s
—m —m
(6.36) D APK(S, W&y, Tdp = | Do ATK(S, po(p, T)dp
SS J ¢ oSS |
2q~n=-4
-3m+1
[2K(S, p) 3 (p ]+[AK(SH:]____3__
p= p=S

Multiplying (6. 33) by the factor (g-1)/S and adding (6. 36) to it one has
the formula for A applied to the integral at any stage. In the formula

given for this below use has been made of (6. 32).

S S
(6.37) ZI mes,m@(u,ﬂdu:j APHIR(S, wye(p, T)du

T T
Zm q+l 2q-n-4 2q-n-2
(-1) 22923 om gy ) (a2 m-D! [F_°  (3m-q)F °
- 2m =2 2m
2m=-q+1 . S S
( [__r_{l_z_cl_*‘___].[) (qom-2)! |

Preparatory to writing a general expression for A(q+ Zk-l)/ZI a
few cases are giﬁen belew, These expréssions are based on (6, 5)

with m = (q-1)/2 and are computed by using the differentiation formulae -

(6.16) and (6.37). The symbol E is again used for z‘l-l“z(qaZ)!,e“liXi°
(6q_318 . 2q-n-4 2g-n-2
A% 1= X . K(S p)&(p, T)dp + E qu;s | -}z(q’?f.l
g_—?) Zq*;‘,‘s 2q-n=6
A ° f K(S, 1) 8{p, Tydp + X e —%‘Q‘-";ﬁ‘.s

2q-n-4 2g-n-2
2 -2
L 3las5)(@-)F 2 1 (a-5)(a-3)(a-DF
8 Sqml 16 Sq+l ' | ’
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(6.38) continued . 2g-n-12 - 2q-n-=10
5 S atd A -2z
2 x| B 2R, e, T)de + E|E 2090k
N o 1) @ (1, T —s
T >
2q-n-8 2q-n-6
— s
4 12 (9-7)(q-3)F 5 (9-7){(g-5)(q-3)F
3 Sq_-»3 TT16° g4- -1
2q -n-4 2q-n~2
| :
.3 (9-T)(g-5)(g-3)(q-)F __3 (a=7){a-5)(g~3){g- 1)(q+1)F
28 S_q'+l 256 Sq+

One should recognize the binomial coefficients for fractional exponents

in the preceding expressions, These expressions lead to the general

expression for A(q+ Zk_l)/zl,

g+ 2k-1 S g+ 2k-1
b= 2
(6.39) A Iy K(S, 1)@ (s, T)dp

k-1 249 ~n-4k4 21
E Zk 1 (=1)i (q-2k=3)(q—2k-1) (g~ 2k+ 2i-3)F
* (q-2k=-3) 5a- 2Ky 21-1

In proving (6.39) one uses mathematical induction. Assuming

that (6.39) is true for k = r=1 one has

P

q+ 2r=3 S q+2r ~3
(6.00) & % 1=e0X j A “K(S, p) @{p, T)dp
T

2r-3 2q-n-4r4 2iq 4

B 2r-3 (1)} (g-2r-1){g-2r+1)...(g-2r+2i-)F °
+ ‘ % (qU.ZraI) Sqw2r+2f+1
i=0

Applying the operator Ato (6.40) and then using (6,16) and (6. 37)

one has
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g+ 2r-=1 i S q+2r-1
(6.41) A ° 1=e%¥ Z7R(S, 1) @ (1 T)d
T
2q-~n-2
g+ 2r-5 2q-n-4 q+ 6r-9 2
i Gt i e R P S i s

* [(r—l ] l:q ZrnI:[QZZr—Zi S,q%Zr -5t Sq+2r =3

2g-n-4r4 21
2r=3 23 _ )
), i {g-2r-1){q-2r+l)...(q-2r+2i=1)F
tE > ( ; )‘ R Cermy T
1‘_‘“
2r-=3 ,.. 2q-n-4r4 2i4 2
} “'2"‘217”3 (g<2r-1)(q-2r+1)...(q-2r+ 2i-)F z
+ - (~) (q 4r+41+2)( =3 -] ey
12”
21‘-3(2 ~3)
+ 5 2 - (g-2r-l)(q-2r+1). .,
£ : {-1) (q 2r+ 2i4 1)(3- 2r+21)( 75T
2q-n-4r42i+4
(g-2r4 2i-1)F 2

Sq—2r+ 214 3

The combination of like terms in the right member of (6. 4l) takes place |
in a manner similar to the case of q even, except that the expression

in braces immediately following the integral in (6. 4l) must be taken

into consideration, These two terms contribute to the last two terms

in the final result. If one considers the three sums in brackets one

sees that there is no term to combine with the first term of the first
sum and that the second te‘rm of the first sum and the first term of

the second sum combine to form the second term of the final result,

These first two terms of the sum in the expression for A(q"' Zr;l_)/ZI are
2q-n-4r 2q~-n-4rq 2

F 2r-1(q-2r-1)F
gq-2r=l T2 ga-2r+ 1

(6.42) E



56

In general the k-th term of the first sum combines with the (k-1)-th
term of the second sum and the (k-2)-th term of the third sum. To
obtain the next 2r-4 terms of the sum in the expiession for

A(q+ 21°=-1)/ZI one considers the following terms of (6.4l).

a3 2q-n-+4r4 21
= (2r-3 . « " z
(6.43) E %m (dl)l (q-—Zr-I)(q-Zr+])..‘.(q-2r+ 2i-1)F . .
. (g-2r-1) et 2rq 2i-l
i$2 t
2 -4 2q+n=-4r4 2it 2
2x-3 1t gey 41, 22228 D(@-2r41). . (q-2r4 2i-)F 2
+ [ : {q=-4r+ 4is (q-Zr-1) 5q- 2r4 2141
1 - .
22 (23 (g-2r-1)(g-2r+1), .
+ Z (- 1) (q =2r42i4 1){3-2r+ 2i) (g —2720) oot

2q*n-4r4 2i4 4

(q-2r42i=1)F E
, sq—2r+ 214 3

The sums in (6.43) can be written

2r-3 3 2r-3 ‘
> i q-2r4 2i-1 2 | q~4r+4i-2

(6.44) E ) {=1) <2i ) STl t\ i1 )T
i=2

2q-n-4r4+2i7
223 L2ry 284 | (q-2r-3)(g-2r-1). .. (q-2r4 2i-3)F
5, ) 9FzeT | Tg-2r-3) " 5~ 27+ 21

- Considering the factor in (6.44) immediately following (-1)1 one has

2r-3) gezry2inl (253 drpaicz [2523\ L2py 241
(6.45) g B STt 2, g

| 21 -2i~1 |
(‘Z—rzt'lj (q-2r+ 231@1)[ —7 1+ (q-4r4 4i-2)i - (-2r4 2i-1)(i-1)i
(q-2r -1) [Z5=] (@-ze-1) [ (q-zr-D) [550] [21«_._.143_]

'y
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(6.45) continued

Zr ~=(1
= z .

i

If one uses {6,45) then (6.44) can be written

2g-n-4r4 21

2red —"T——‘
(-1} (Zr l)(cinz:r =3) (q=2r-1) .(q-2r4 2i-3)F

(6.46) E {q=27-3) sq—2r+21-:l )

1=Z

The next to last term of the sum in A(q+ Zr-l)/ZI comes from the first
term in the braces immediately following the integral in (6, 4l), the
term of the second sum in (6, 4l1) for which i = 2r-3 and the term of the
third sum in (6,41) for which i = 2r-4. These terms are

2q-n-4
(-1)% “Y2z-2) [ Zr‘”5:| vF 2

[(rnl) ] E;«Zrd Zr-—qu+ 2T =5

(6.47)

Zg -¢n-4

2r =3 v :
+ ("’“‘2—") (cl)zr“Z(Q+ 4r-10) (q-2r-1){gq-2r+1)...(q+ 2r-7)F

2r=-3 {q-2ar-1) g+ 2r-5
2q-n-4
r=3 S A
: . ey fg=2r-l){g-2r+1)...(q+ 27 -9)F
¥ Zr-=4)( ? (GH 2r=02r-3) gzwn) ga+ 275
- B ﬁ}:gi Cla#2r-5)(2r-3) (gpdr -10)(2r-2)
2rez) | @EENREI T o [Zr—l]
Zq-n—4
{2r-5){2r-2)(2r-3) (q =2r-3){g-2r~l)...(g+ 2r-7)F 2
{g-2r-1) Ezr l][ - LY 5:[ {g-ar-3) o4+ 2T-5
2q-n-4

H

= 2r-1 (-ﬁ]l))zrnz {g=2r-3}{g-2r+1)...{q+ 2r-7)F
YU == ST 25
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(q+ 2r-1)/2

The last term of the sum in A I comes from the second term
in the braces immediately following the integral in (6.41) and the term

of the third sum in (6,41) for which i = 2r=3, These terms are

| 2g-n=2
(1% (2r-2)t [ gf“f’]ﬁ[‘l“‘%r‘g]F 2
(6.48) E A= PV E I s ) a+ 2r-3 |
Hr-ni]” Fs—]w2 S i
'. 2g-n-2
2r-3 2
: or o525 -3) 42720 =1)(g-21+1). . . (g+ 27-T)F
+ (Zra'%)( ) (Gl*’ r-5){ r- )(q Zr=1) Sq_+2r =3
K “ - 2q-n-,2
. Zlfc-l 2ral q+6r9 , 8r+8 (qazr-ﬂ?))(q-le-l)...(qﬂ- 21‘-—5)F
= E{ 2 [{-}) 2 o B Popy s ) | Zr=3
2r -1 4 ’ Arer=iqners s+
29-n-2
o 2r-1 2r=1 {g-2r-3){q-2r-1)...(q+ 2r=-5)F
= E| 727 (b A il ‘
el {q=21=3) g+ 2T =5

Combining the results from (6.42), (6.46), (6.47) and (6. 48) one

has the following expression for A(q"' Zr—l)/ZI.

g+ 2r-1 ‘ S q_+2r -1
(6.49) A 2 1f=e ~aiX 2

T

K(S, p)@ (p, T)dp

2q-n~4r4 2i

2r -1 2p
+ E H L (q 2rk 3){g=2r-l)..,(q~2r4 2i=3)F Z
(crlr 3) Sa-2r+ 27T

In view of the pre‘ceding argument (6.39) is true,
If one sets k = (qf-l)/z in (6.39) the integral drops out because
Aqn"l;[{((s, =0, and with this value of k, only the first term in the sum

contributes. Hence one has after replacing E and F by their equivalents

| . i i i (n- 2)/2
(6. 50) 237 = 297 %(g-2)te ‘“X( 5) T (n-2)/208R) -



Converting the negative index on the Bessel function into a positive

index one has

n-2
-1 ) caixi/sy 2
A% 2 2872 gu2) 700 <§) Y ,(5R), n odd;
(6. 51) | Zh-2
n-2 . ——
-1 w2 ,gq-2 ~0;X7/ 6
AT = (-7 2 (g-2)te 1% <_I—{_) Jn—Z(é_R)’ n even,

These expressions are of the same type as those given in (6.29).
They are the final link in the chain of distributions for q odd. They
are, except for a constant factor, the first type Green potentials for
n even and the second type Green potentials for n odd,

Reviewing the results of this chapter one sees that the desired

chain of distributions is given by the equations listed below,

q even q odd
{6.1) (6.1)
(6. 5) {6.5)
{6.14)

(6.18) (6.39)

{6.29) (6.51)
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VII. SUMMARY

In this paper certain aspects of a theory of distriﬁutigns for
ultrahyperbolic equations have been developed. First, a basic vector
system was defined and some of the properties for such a vector syss=
tem were developed. After the work on the basic vector system a
non-parabelic, non-degenerate vector system was defined and some
properties of this system were developed, Rules of indices and
Pythagorean identities for a non-parabelic, non-degenerate system
were derived,

A non-parabolic, non-degenerate vector system was chosen and
certain selutions of the adjoint equation were determined, These solu-
tions were classified as retarded potentials and Green potentials, A
retarded potential was integrated ever a portien of a g~dimensional
subspace determined by the vector system chosen. The g-~tuple inte-
gral was reduced to a single integral which is in the nature of a trans-
form of the retarded potential, From this single integral the kernel
of the transform was: determined and some properties.. of the kernel
were developed., From the single integral a chain of distributions was
constructed by repeated applications of an operator A consisting of
certain terms of the adjeint operator. Some properties of the chain
of distributions were discussed; in particular it was shown that q-1
applications of the operator A reduces the single integral to either the
first or second type Green potential according as the number of dimen-
sions is even or odd, Thus the chain of distributions links the trans-

form of the retarded potential to the Green potentials,
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