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PREFACE 

During the. p~$t few years. Pro.fessol" E· •. W. Titt and his students 

have been concerned wi.th the problem, of developing a method for de­

riving :integratton .fol."mulae;t. for all types of lbiea.r second order. pa.rt~al 

differential f;!CJ.Uatic,ns. In this WOJ:"k they ha.ve developed a theol'y of 

distdbutiona- for norm.a,! hype:rbolic eq•ti~s wbi.ch prop:,.ises t.<> be 
. . . . . ' 

valuable in obtain.ing general integration formulae. 'l'his paper .is ~ 

extension of this theory Qf distributiens to apply tt;, ult~a.hyperlllolic 

e'lua~ions. Specifically this .. paJ>er is an extensi.on Qf portions of three 

papers by Profes,or Titt and others. The11e ~pere are listed in the 

bi'blio graphy as numl>er s 3, 5 and 6. 

My thanks are due to Professors R. B. De-.1 and E. W. Titt 

who served as my advisers during th~ preparation of this paper. and 

to Professor L. W. Johnson £or his sound counsel and kind intereat 

given me in all matters perta.ining to my work.. Ind~btedness is also 

acknowledged to the Office of Naval Research and the National Science 

Foundation for fma.ncial S\l.pport of t~s work, 
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I. INTRODUCTION 

This paper is concerned with the general linear second order 

partial differential ~uation with constant cpefficients. I£ one utilizes 

the summation convention, as is done extensively in this paper, this 

equation and its homogeneous adjoint can be wi:itten 

(l. l) 

_ij i. i 
(a) L (u) = A uij+ Bu.ft Cu= f(x) 

i. i . 
(b) L *(v) ~ A JvirB vi+ Cv = 0 (i, j = 1, .•. ~ n) 

where a subscript i indicates differenttation with respect to the var­

iable xi. There is no restriction in assuming the matrix Aij to be 

symmetric. In order to restrict th.e discussion to non-parabolic equa­

tions the matl;'ix Aij is assumed to be non-sing1:1lar .. 

In order to classify the differential equation (1. la) one con­

siders the charactet'istic fo:r;m A ijy i yj, By a real non-singular 

linear t11ansformation, "1i = a{yj, it is possible to resolve the charac .. 

teristic form into the canonical form, 

(1. 2} 

For definiteness it :i.s assumed in this paper that p ~ n/2. .For con­

venience in writing, n ... p is replaced by q so that i11 what fol.lows p and 

q are subject to the restrictions 

l 
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(L 3) P+ q = n and p ~ q. 

The non-parabolic equations are classified according to the value of p. 

If p = 0 then L(u) is elliptic. If p = l then L(u) is normal hyperbolic. 

If p ~ 2 then L(u) is ultrahyperbolic. 

This paper is part of an attempt to develop Green1 s [ 1] ideas into 

a method for treating all types of linear second order partial differen-· 

tial equations. 1 In a.ny attempt to apply Green1 s ideas to linear partial 

differential equations difficulty with divergent integrals seems to be 

inherent. In treating the normal hyperbolic equation in three dimen-

sions, Volterra. [7] escapes this difficulty by first distributing the 

Green potential along a line. Partly because of the obscurity of the 

origin of Volterra's distributions, Hadamard [2] uses the Green paten-

tial as his integrating factor but he is forced to develop a calculus for 

dealing with the finite part of a divergent integral. The school of 

thought represented by this paper is related to the ideas of Volterra 

and Hadamard in that it incorporates ideas from both. 

In treating the normal hyperbolic equation Professor E. W. Titt 

and his students have developed chains of distributions which include 

not only quantities with line discontinuities employed by the Volterra 

school but also quantities with finite jump discontinuities at a non-

characteristic hyper surface,. The origin of these distributions lies 

in a weighted non-Euclidean area of t:he hyper surface~ the weight 

factor being a retarded potential distinct from the Green potential. 

The analytical treatment of this weighted area is facilitated by the 

1Numbers in brackets refer to the bibliography at the end of the 
paper, 



reduction of the {n-1) - tuple integral to a single integral. This single 

integral i s in the nature of a transform of the original potential, the 

kernel of which vari es in analytical form with the dimension. This 

s ingle integral has the property that n-2 applications of a differential 

operat or consisting of certain terms of the adjoint operator changes 

it into the first or second type Green potential depending on whether 

the number of dimensions is even or odd. This property enables one 

to set up a chain of d i stributions which links the Green potential to the 

transform of the retarded potential. ln the derivation of integrati on 

formulae the starting point is the same as Hadamard's except that it 

is not necessary to invoke an abstract theory of the finite part. The 

procedure is to delete the cone from the region of integration with an 

approximating quadric and then to use integration by parts to prepare 

the equation for passage to the limit. The above-mentioned chain of 

distributions i s used in the integration by parts. These distributions 

are obtained by differentiation processes and so are used in the oppo­

site order in the integration. 

The problem considered in this paper is the extension of this 

theo ry of distributions to apply to ultrahyperbolic equations. The 

completion of this program would lead to a theory applicable to all 

types of non-parabolic equations with constant coefficients , 

3 



II. VECTOR SYSTEMS FOR ARBITRARY SUBSPACES 

To construct a theory of distributions applicable to ultrahyper-

bolic equations it is first necessary to extend certain portions of the 

paper '[s]. Specifically it is necessary to define and develop some of 

the properties of vector systems for arbitrary subspaces. The dimen-

sionality of the subspaces is dictated by the metric defined by the coef-

ficients of the second order terms of the differential equation. The 

letters p and q are used to denote the dimensionality of these subspaces 

and are determined by the type of equation as in (1. 2). After defining 

the basic system and developing some of its properties it is necessary 

to d efine a non-parabolic, non-degenerate vector system and to derive 

rules of indices and Pythagorean identities for this system. 

A basic vector system deals with two sets of n vectors each in 

n dimensions. In conformity wi th the tensor notation .one of the sets, 

c onsisting of covariant vectors, is designated by L?' and l~ where 
1 1 

i = 1, ... , -n; a= 1, ... , panda = 1, . .. , q. The other set, consi st-

ing of contra variant vectors, is designated by Li and t1. In working a a 

with these vectors the indic es i, j, k, m have a range 1, ... , n; the 

indices a, b, c have a range 1, , .. , p; and the indices a, 13, '( have a 

range 1, ... , q. The integers p and q are subject to the restrictions 

(1. 3). When and only when one of these indices appears in a term 

as a subscript and a superscript it is understood that this index is 

summed over the appropriate range. 

a a. d i i b A set of 2n vectors L . , l . an L , l constitutes a asic vector 
1 1 a a 

system when the vectors satisfy the conditions given in (2.1) . 

4 



( 2.1) 

(d) L~li::. 0 
l a. 

I 1 
L. 

l 

LP. Li 
l p 

( e) Either ,e1 or / has the value unity, 
i 1 

In the above column notation for determinants the index i indi~ates 

the column. This. definition is act~ally just a renaming of the basic 
i 

algebra defined in [s]. 

As a consequence of the conditions (2, l) o~e has that bG>.1:h 

determinants in (2. le) are unity as is demonstrated below. 

Ll 
i 

Li 
1' 

LlLi 
:I. 1 ... L~Li 

l p Lili . ·" . L~l i 
l q 1 .•• 0 0 ••• 0 

•. . . . 
• • ... . • . I . . 

L~ Li p i L~Li pi LJ?t i 0 .•. 1 0 ••• 0 
(2. 2) ],, p . LiLl 1 p Lill .•. 1q' 

i i iL1 1 i l~ li 1 i 
~ ... liLp ..• l. J. 0 .•• o 1. .• o 

.1 1 i 1 . 1 q 
. • 
' . ~ . .. 

li lfL~ !'Li 
. q i ll ... J. qi 1 ••• J. .I. 0 ••• 0 0 ••• 1 . i q l .P i 1 l q 

=l 

5 



Since the product of the two determinants is unity and one of them is 

unity by hypothesis, the value of the other must also be unity. 

Another property of a basic system is that each of the covariant 

vectors is the cross product vector for n-1 contravariant vectors and 

similarly for the contra variant vectors. 

Lj 
1 

Lj 
1 

Lj Lj 
a-1 p 

0~ lj 
1 1 

. j 
L 

(2. 3) L ': 
a+l £°: Li= = = 1 1 

.ej 
a 

a.-1 

Lj 0~ 
p 1 

'tj j 
.€ 1 1 a.+ 

L~ 
J 

a-1 L, 
J 

0~ 
J 

L~+l 
J ti= 

a. 

L~ 
J 

l~ 
J 

L~ 
J 

L~ 
J 

i 
J 

a. ... 1 
J.. 
J 

0~ 
J 

1:1+ 1 
J 

t~ 
J 

The proof of (2. 3) is exactly the same as the proof of the correspond­

ing the or em :in [5]. 

6 

The column rule of indices completes the properties of the basic 

system. 

( 2. 4) La.Lj . a. j j 
1 a + t .t · = 6 .• 

1 0. 1 

To establish this~ one notices that by (2. 3) L j is the cofactor of L ': 
a . J 

in the determinant of the covariant vectors and P. J is the cofactor of 
a. 
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lj in the same determinant. Hence L ~L; + 11_.e~ is the sum of the pro­

ducts of the elements of the i~th column by the cofactors of the corres .. 

ponding elements of the j-th column in this determinant. Since the 

value of this determiilant is one, (2. 4) follQws. 

In a restricted vector system one deals with. a symmetric matrix 

Aij as well as a basic system of 2n vectors. lf the matrix A ij is non':" 

singular one can form the matrix; Aij of normali~ed cofactors so that 

(2. 6) jk - k A A .. - 6 .. 1J . l 

The matrix Aij determines two positive integers p and q as i.n 

(1. 2) and (1. 3). Consider any set of p vectors M~. If this set of 

vectors satisfies the condition 

(2. 7) 

then it is said to be a non".'degenerate set. 

A non-parabolic, non.;degenerate vector system is a restricted 

vector system in which. Aij is. non .. singular, the L ~ are non .. degen.e~a.te 

and condition (2~8) is satisfied. 

(2. 8) 

h ab· d f' db. w ere g 1s e me . y 
. . 

(2. 9) ab_ AijLaLb g - . i •.• . J 
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The rules of indices for a non-parabolic, non.-degenerate system 

are derived next. Since the matrix gab is non-si:ng~ar, its inverse 

gab exists and satisfies the condition 

(2.10) be .s:. c_ 
g gab= u a 

Multiplying (2.10) by A.kL i and using (2.8) and (2. 6) one obtains the 
l C 

rule for lowering indices on Li. 
a 

( 2. 11) 

Multiplying (2.11) by Lk and using (2,la.) one obtains C . . 

( 2 .12) i j 
g b = A .. L Lb. a. 1J a 

In order to complete the rules of indices one de£ines the quantities 

ha, 13 and ha, l3 as follows: 

( 2 .13) 
i j 

(b} h P. = A ... .e.. J.P.. 
(1 I-' lJ (1 I-' 

If one multiplies (2.13a) by (2.13b), sums on a Greek index and then 

uses (2.4), (2. 6), (2.8), (2.11) and (2.1) there results 

(2.14) 

Introdudng the factor .e; or .e.f into (2.13a) or (2, 13b) respectively and 

using (2.4), (2.8), (2,11) and (2.1) one obtains 



c2 .1 s) 

or (b) 

Th.e relations (2.15), (2.11) and (2.8) constitute the A rules of indices 

for a non-parabolic, non ... degenera.te system. 

In order to derive Pythagorean identities for th.e non-parabolic, 

non ... degenerate system the following definitions are introduced, 

(2.16) 

a b 
(b) G .. :;:: g bL .Lj; lJ a 1 

(d) 

Starting from the de£init.ion of Hij and using various rules of indices 

as follows 

( 2, 17) 

k f3 :::: A.1Jr./·. 
· lA I" J 

k k a 
:;:: A.k(o .•L L .) 

· 1 J a J 

;:: A ...... g. bL biLcl; 
1J a J 

9 



one finds 

(2.18) A .. = H .. J+ G ... 
lJ 1 lJ 

In a similar fashion one obtains 

( 2. 19) 

Introducing the factor X,,X. into (2.19) and the factor XiXj into (2.18) 
1 J 

one obtains the Pythagorean identities, 

(2.20) 

ij ij . ij 
(a) A X.X. = H X.X.+G X.X. and 

1 J 1 J 1 J 

i . j i j i j 
(b) A .. X X = H .. X X + G .. X X . 

lJ lJ lJ 

The Hand G :rules of indices given below follow directly from 

the definitions (2.16) and the basic conditions (2.1). 

(a) HijL ~:::: O· (b) H,.Lj = O· 
J ' 1J a . ' 

( c) Hij £°'. = ha.l3£j· (d) H £j = h 13£~; 
J 131 ij a. a. 1, 

{ 2. 21) 

(e) Gij J.0.. 
J = O· , (f) G .. lj = 

lJ a. 
O· ' 

(g) G1jL~ = abLi (h) 
j b 

g . b; G .. L = g bL .. 
J 1J a a 1 

By calculations similar to the following, 

A ijH - A ijh Jo. £13 
ki - a.13 k i 

(2. 22) = h h f3'Y £a£ j 
ctj3 k '( 

= J.~£~ 

10 



( 2,. 22) continued 

one obtains the following relations between A and H and A and G .. 

(2.23) 

(a) 

(c) 

(d) 

ij 
A H .. = q 

1J 

r A JG.= p 
iJ 

Using (2.16d), (2.15a) and (2. 21£) one obtains the ~ollowing re ... 

lation between A, H, and G. 

(2.24) 

This completes the properties 0£ a non-parabolic, non.,..degenerate 

vector system as far as the needs of this paper are concerned, 

To show th.at it is possible to construct a non ... parabolic, non­

degenerate vector system when given t4e matrix Aij one could con­

sider the followin.g example. Since Aij is a.non-singular symmetric 

matrix there e~ists a proper orthogonal matrix c{ where i indicates 

row and j indicates column such that 

(2. 25) 

k lj where p are the characteristic roots of A . For the vectors L ~ 

one could cheose any p columns o.f the matr.ix cf and for the vectors 

t~ on.e could choo.se the remaining q columns of cf. 

11 



(2.26) 

Then 

( 2. 27) 

(a) 
a ja . 

Li ::; C1_ where Ja assumes any p values from 1 ton, 

(b) 
a. ja. -1.. • 
l. = Ci where j r J • 

1 ~ . a 

:ij a b L (a) A LiLj·~ 0 when a= band 

= 0 when a~ b, 

(b) A iji~t~ ¥, 0 when a. == j3 and 

= 0 when a. f:. 13, 

(c) 
ij a a. 

A L .J.j = O. . l . 

Having the covariant vectors one could determine the matrices gab and 

ha.j3 and then determine the matrices gab and hnj3 as their inverses. Then. 

the contra variant vectors could be d~fined by the following rela.tions, 

(2.28} 

(a) 

(b) 

L i.· - . AijLb ·d -gb jan a a.·· 

i _ ij 13 
l -h P.A l .. 

0. a.t-' J 

To s.how that this system of 2n vectors is a non--parabolic, non .... 

degenerate system one must show that the basic conditions (2.1) are 

satisfied, that gab is non-singular and that (2,8) :i.s satisfied. With 

this choice of Li and 1~ condition (2. le) is satisfied since c{ is a. pro ... 

per orthogonal matrix. Further the matrices gab and hnj3 are non.;. 

singular so one can. determine their inverses g b and h. P. Having a, a.I-'. 

these matrices. one can determine the Li and .l 1 by (2. 28). With the a a. . . 

Li and£. i determined m. this fashion the first four of conditions (2.1) a ~ . . . 



are satisfied as is demonstrated below. 

(a) i b ij C b . Cb b 
LL .• g A L.L,::: g g = 6a' a 1 ac J 1 ac· 

{b) t il ~ ::i h A ij iY t ~ = h h 'Y f3 ::: 6 f3 . 
o. 1 a:y j 1 O.'V a. 

( 2. 29) 
ia. ij ba. 

L .. L :::: g bA · L .l . :::: 0 . · a 1 a J. i 
(c) 

(d) ai. ijaf3 L .J. ::.: h A.A L .t ... = 0. 
1 a. · a I-' 1 ·J 

The last two ate zero by (2.27c). Condition (2~8) is satbfied as is 

demonstrated below. 

(2. 30) abL i _ ab AijLc _ s: aAijLc _ AijLa 
g . b -, g gbc j ..., u C . · j - j • 

As a consequence of this particul~r example one sees that. it is 

possible to choose the vector system so that the quadratic for;ms 

gabYaYb and h°'f3f1 a.11f3, are definite. This could he accomplished by 

choosing the L ~ as th~ columns of c{ corresponding to the p :positive 

characteristic roots of Aij and choosing for the 1~ the colum.as of c{ 
corresponding to the q negative characteristic roots of A ij. 

l3 



UI. POTENTIALS 

In general, potentials are solutions of the adjoint equ~tion (I.lb) 

which are functions of differences x1 = ,r,\.J/ where §i is any point. in .. 

terior to the region wh.ere the value of u is desil,'ed. In order tp con• 

struct the potentials desired here, one sel.ects a nQn,.pa:r:abolic, non• 

degenerate vector .sys.tem using th.e matrix Aij 0£ the coteUidettts of 

the second e>rder terms in the differential eq;uatic;m (l. la). The vect.er 

system chosen is such that the matrix hQ.·l3 is given by 

:0 1 0 0 . 0 

1 0 0 (') • . . 0 

0 0 .... 1 0 . .. . 0 
(3.1) ha.'13 = 

0 0 0 .. 1 • . . 0 

. 
O O O o. . .. 1 

To obtain a vector system in which condition (3. L) is satisfied one 

could proceed .in th,e followini manner. Since the ma.tr .... A1}:,i::S .no;n."' 
! 

singular one could determine ,its inverse Aij. Fl'om th.e matrix Aij 

one could determin.e an orthegonal matrix c} where i ip.dicates tow 

and j indicates column S'ti1.Ch that 

(3. 2) A C ic J .c iJ k m == pkubn 

where the pk are the ch.aracteristic roo.ts of Aij" No:yl p ei these 

14 
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.chara.cte::dstic roots are pos~tive and q of them are neg4.ti.ve. Gonsidet> 

any one of th.e positive ~oots and any q"'.1 of the negative roots. De:n.ote 

the posttive ro.ot by pk an,d the q-1 negative r:oot's by pk , pk , , ~., pk 
~ Z 3 ·~ 

Define the qu.wt.iUes o: as follows: 

(3. 3) 

Ci 
Di= kl 

vP~ 
ci 

1iie:.~ 
. a. II -pk 

for 1 <. a.Sq . 

Then 

(3. 4) 

but the product 

t .. 1 
0 0 1 

J2 7z . • . 
1 I 0 0 0 ~' •'• .. 

ffff 
. . 

(3. 5) 0 'O 1 . • 0 0 

. • . . ,. 
0 0 0 . . 1 0 

I a. 

1 0 0. • • 0 

.0 -1 O. .. .. 0 

0 _p -1 ... ~ 0 
. . . .• ' 
.• .• ·~: . . :, .. 
0 0 0 • ..i 

i 1 
0 0 . . . 0 ·.-rrvz 
... 1 0 0 

... 1 l 
" 

ff .. .p: 
0 ... 1 .. 0 Q 0 

•. . 
{ . I • 

0 0 . • .. ... 1 0 0 
·:, I 

0 •• 0 .!It . 

0 • 0 

1 ..•• 0 

. . . . 
0 . 1 

is e<\ual .to the matrix desired :or ha.'3 in (3. lb ~ence one could define 
i ' ,, 

the I. as follows p 
a. ' 



1 -1 vz {z 0 . 0 

1 1 ..a:· V2 0 • 0 

( 3. 6) 0 0 1 . • • 0 

• 
0 0 0 . 1 

i 
D 1 

Di 
2 

Di 
3 

16 

i and condition. {3.1) would be satisfied. The L could be chosen as the . a . 

remaining p columns of the matrix c} after adjustin~ the !l'l.agnitude to 

make the deter:rnin.tnt a£ the L~ and t! equal to one. The covariant vec ... 

tors could be defined in terms of these contra.variant vectors as follows: 

(3. 7) 

The proof that a vector system chosen in this fashion is a n.on."'pa.rabolic, 

non ... degenerat.e sys.tem is similar to the proc;>f given in section IT that the 

example given the:re is a non ... parabolic, non.~degen.erate system. 

The quant:i,t;l.es R, s. and T, related to the te.rms of the PythagQrean 

identity (2. ZOb), are defined by 
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( 3. 8) 

where j, J knd J are subject to j 2 = f'= j 2 = l and a.re chosen to :m.ake 

R, S and T real. The value of j depends on the position of t;h.e point 

xi relative to the characteristic cone with vertex at ~i. In a sim.Uax 

fashion the values 0'£ f and T depend on the position of the po.int x1 re~ 

lative to the cylinders Hijxix:1 = O and G1jxixj ::c: O. In thl,s paper the 

values of xi considered a.re su.ch that j = f = ... 7 = 1. so that the 

Pythagorean. identity (2. 2:0b) becomes 

(3. 9) 
2 2 2 

R = S .. T • 

The Green potentials are those solutions oi (Llb) which are 

exponentially damped functions of R alone. The retarded potentials 

are solut.ions of (I. lb) wW,ch a.re exponentj,ally damped functions of R 

and S. Since the potentials are £unctions of diffe:rences .a,:µ.d are ex.., 

ponentially damped one tries for a solution of (!.lb) of the form 
' ' 

(~.10) v= .-a.1· x1 ( . i> e '·c.ox. 

For a function of the form (3.10) equation (l. lb) becomes 

X' i i" . 
"'ll.f' Q . J, . 1 ., . J . e .1 A {a..a.j\ll,.,.a..@1 .... a..ffij+ ffiij,) ... B (-a..\ll+ ffi.)+Cffi = 0,. 

l J . l · 1 1 

Equat.io:n. (3. U). can be written 



{ 3 .12) 

In OI:"der to simplify (3.12} one defines con.stants a1 and tli as 

follows: 

(3.13) 

1 . 
a.. = ., -r-- A .. Bl, 

1 t:. 1) · 

1.8 

The symli>ol J is subject to J 2 = 1 and is. ch~sen to make .& re~l. With 

these constants (3.12) becomes 

(3.14) 
ij 2 _ 

A @ •• +Jo @ - 0. 
. lJ 

For a £unction @(R, S, T) equation (3 .14) 'becomes 

I 

(3.15) 

Using the de:fin.itions of R, S and T and various rules of .~ndices from 

section II one computes the sums appearing in (3.15). Different;ating 

the expressions for R 2, s2 and T 2 fro:rn. (3.8) with res.peet tox1 pne. 

obtains 

(3.16) 

(a) RRi = Aijxj 

(b) ss1 = H1jxj 

(c) TTi = i..GijxJ. 
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Usin.g (3.16) and rules of indices one obtains 

(a) (2. 6) 

(b) (2. 23a and 2. 21a) 

(c) ( 2. 23b and 2. 21b) 

( 3 .17) 

(d) {2. 6) 

(e) (2. 6) 

(f) (2. 24) 

To compute the sums involving second der.ivatives one uses the re .. 

sults on first derivatives. Differentiating the relations (3.16) with 

respect to J one obta:ins the following; 

(a) RR.j+R.R. = A .. 
l l J 1J 

(3.18) (b) SS .. +S.S.::: H .. 
lJ l,J lJ 

Using the relations in (3.18), (3,17) and rules of indices one obtciins 

the followhtg results £or second derivatives. 

(a. ) AijR· n .. 1 
ij ::!-r 

(3 .19) 
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(3 .19) continued 
(c} 

Ii one substitutes the results from (3.17) and (3 .19) mto equation (3.15) 

it becomes 

(3. 20) 

. ~RR+ q,SS ... ci;TT+ 2~ ~+Z iq>R T+ it1 WR+ '81 @S.; pi:'l q,T+ J6 2 9? = O · 

In the solutfons designated as the Green potentials and the re­

tarded potentials, the function q> has the form 

{ 3. 21) 

Since w does n.ot involve T explicitly @TT' @RT an.d q>T do not occur 

when. one us es this iorrn for q> in ( 3 ~ 20). Substituting the value for <1P 

given in (3, 21) into (3. 20) one obtains 

{ 3. 22) 
µ . µ. .. 2 sfJ. n ... 1 µ ·• .· fJ.'"" 2 . 2 

S F1'+µ(µ4)S F+2"1tµ.F'+-irs F'+(q .. l)µS .· F+Jo F=O 

where the prim.es indica.te differentiation with respect to R. Using 

the second and fifth terrns of the left :memher of {3. 22) to determine 

µ one ha.s the following eq,uatton for µ. 

(3. 23) µ(µ..-.1)+ (q ... 1) µ ::: 0 

from whichµ= 0 or µ = 2-q. 

After using the w8 and @85 terms. to determine µ one ls left with an 

ordinary differential equation £or Fas .:follows: 



(3. 24) 

In treating the differenti.al equation, 

(3. 25) 

if one makes the substitution 

(3. 26} 

then (3. 25) becomes 

(3. 27) 

where the primes indicate differentiation with. respect to p. From 

equation (3. 27) one sees that Z is a Bessel function of order (l-k)/2. 

Hence F(R)::: {6R)(l.,.k)/2z(l-k)/2(oR). The Bes,sel function is os­

cillating or non-oscillating according as J = 1 or J = -1 where J is 

determined :i.n. ( 3 .13). 
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Comparing equations (3. 24) and (3. 25) one sees that k = 2µ+n-1. 

Corresponding to each of the two values of µ. from (3. 23) one has a 

value of k. If µ. = 0 then k = n-1 and (l-k)/2 = (2-n)/2. I:f µ.::: 2-q 

then k = n .. 2q+ 3 and (l-k)/2 = (Zq .. n-2)/2. For these values of k one 

has 

(a) -(n-2)/2 
F{R) = {oR) z(n-Z)/z(oR) 

(3. 28) 

(b) F(R) = (0R)(Zq-n-Z)/2z . / (6R). 
(2q,~n ... 2) 2 
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The Green potentials are obtained by ul:ling (3. 28a), which corresponds 

to µ = 0, in (3.10). The retarded potentials are obtained by using 

( 3. 28b)~ which corresponds to µ = 2-q, in (3 .10) .. With these values 

of F andµ (3.10) becomes 

(a) 
v - e""a.iXi z(n-2)/2(0 R) 

- (oR){n-2)/2 ' Green; 

i (0R/2q ... n--2)/2z . (c5R) 
_ -a.iX ·.. . . (2q ... n-Z)/Z retarded. 

V - e . Sq-2 . ' 

(3.29) 

(b) 

The Green potentials are classified as first or second type according 
' 

as the Bessel function used is first or second type. When m is an 

odd integer the symbol Ym/2 means J ... m/2. The function«> for the 

Green potentials for the oscillating case is given below. 

Second type First type 

/ l )(n.,.2)/2 
(3 · 3o) \ 6 R J(n-2)/2( c5 R), 

(- 0 )(n ... 2)/ 2 
R y(n ... 2)/2(c5R). 

The retarded potentials from (3. 29b) are classified as first or 

second type retarded potentials in the same manner as the Green 

potentials except for the first three values of n for each value of p. 

The function m for the retarded potentials for the oscillating case 

is given in (3. 31), 

n = 2p 

(3. 31) 

n = 2p+l 

First type 

s-{q-2)fi) Yl(c5R) 

s-(q-2) .1... Y ( c5 R) ( )
1/2 

R 1/2 
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(3. 31) continued First type (continued) 

n = 2p+2 s-<q~ 2) (!0(oR) - 1n oJ0(oR)] 

n~ 2p+ 3 
--( .... 2) ( R \ (2q-n .. 2)/2 

S q T) J(2q~n .. 2)/2(oR) 

Second type 

n = 2p s ... (q-2)~ oijJ1(0R) 

n = 2p+l 
•(q-2)/ l -)1/2 

S ·l.j:ioR Jl/z{oR) 

n = 2p+2 s"'(q ... z)J 0(o R) 

n> 2p+ 3 5 .. (q-2)(oR)(2q .. n-2)/2y . (c5R) 
(2q-n.;.2)/2 

When q = n-p = 2, which is the case for normal hype:t,"bolic n = 3 

and ultrahyperbolic n = 4, p = 2, the two solutions in (3. 29) are the 

same, For the desired results in this _Paper for n = 4, p = Z the se• 

cond type retarded potential is used: however, it may be .interesting 

to note that .for this case if one looks for a solution of the form . . 
2 

cI> = F(R) ln S + G(R) as is done in [s] one obtains cI> = ~ ln ~ when 
· . 2 R · · 

c5 = O. This is similar to the qu"tntity i ln ~- ·· used by Volterra for 

n = 3; normal hyperbolic and region of integration exterior to the cone. 

The following list of values of cI> for first type retarded poten. .. 

tials with o = 0 for small values of n and p may be of interest. 
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n p:::: 1 p = 2 p:::: 3 p = 4 p = 5 

2 s 
i7 

3 1 R 2 
R ln-g-

4 ln R 1 R 2 
-g- =-rln~ 

R 

5 R 1 

~ RS" 

6 
R2 ln R 1 

;r -:z--
R 2S s 

7 
R3 R 1 

s4 s5 RS 2 

8 
R4 R2 ln R 1 

s5 7 T R2S2 

9 
RS R3 R 1 

s° -;;- s4 RS 3 

10 
R6 R4 R2 ln R 1 

7 s° 7 7 R2S3 



IV,, i DISTRIBUTION OF POTENTIALS 

This secti.on is eonce:rned wi~h the pre'blem of integrating a re":' 

tarded potential over a portion o-f a:q-dimellJ;Jioniil subsp$.ce. The 

q .. dimensional subspace used is .the subspace whose eqU,ations a.re 

( 4.1) a -i 1:i L .(:x; .. .., ) = 0 
1 ,· 

where the L ~ are from the non ... paraboli<:; non•degenerate vector sys .. 

tern u.sed in the construction of the ;potential. The x1 a.re the current 

coordinates. The pom.on of this. q .. dimensional subsptlce llsed as the 

region o! integ.ratiQn is that part of (4.1) cut out by the two cones 

{a) A1/'ii., s1)(r1- sj} = 0 and 

-i i -i .i 
(b) A1/x.., x )(X'- r) = O. 

This region of integration .is designated by Qq. 

Except £0.r the cases n = 2p and n = 2p+ 2 the potential. which is 

dis.tributed over the q .. dimens.ional subspace is the !irs.t type re­

tarded potential without exp~ential damping. In these exceptic;,nal 

cases the potential which. is distributed over the q ... dinJle.n.sional sub ... 

space is the second type retarded potent;ia.l with.o.ut ex~on~l).U.al ds.m,l?: 

ing. In all cases the potenti.als are given, by 

2q.,n•2 
' - 2 

~ = s~<q~2>( {-J (4. 3) J (6R) 2q"":ll•2 · · · • 
2 

For the case n = 2p one must multiply the sec.Qnd type retard~d 
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potential given in ( 3. 31) by - o 2 to put it in the io:rm given in ( 4. 3) 

The q .. tuple integral is a weighted non-Euclidean area of the 

region Q ; the weight factor being the potential (4. 3). In the inte­
q 

grand the variables xi .. si in w are replaced by:,/ ... x1 so that the 

weighted area is given by 

(4. 4) 

In order to explain the !)arametric representation used in the 

region Q the quantities q 

(4. 5) 

(a) 

(b) 

( c) 

a. a. i -,-i 
~ · = J. i (x • X ) , 

and 

are introduqed. From (2.16d) Hi. = h ,l~.t~, hence H.j(.xi .. x1)(xJ.,. rl) 
J a...., 1 J 1. 

"'h .r:,.l.~.(xi- x 1)lf3.J(:,/ ... xJ). If one uses {3 .• 1) this becomes a. t-' l . 

(4. 6) 

where for convenience in writing, subscripts hctve been used on the 

X's. This practice of using subscripts is followed in the succeeding 

work on both the }\Vs and the t 1s. It can be shown th.at the .)._a. suffice 

for a parametric representation in Qq' however, for parameters in 

the q ... dimensional subspi1ce the 1uantities A-2, A 3, ..• l) ~q and µ are 

used. 

26 
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Smee the region of integration is boun.ded by the. cones (4.2) it is 

necessary to convert the equations of these loci into conditions on the 

parameters. If one uses (2.20b), (2.16b}, {4.5) and {3.8) .the two equa.­

tions ( 4. 2) yield 

(4. 7) 

(b) µ = T. 

Using (4. 6) t0 eliminate Ai from (4. 7a) and then multiplying the result 

by tz h.2 one has 

(4. 8) 

If one com_pletes .the squares in the terms of.the first line.of (4.8) and 

makes us·e of the re1ation s 2 ·~ 2tl t2-t;~t!.-. --~ -t! equation (4. 8) becomes 

(4. 9) 
22 2 2 22 2 

"'5 :>i..z+ tz(µ + s > >i..z '"'tzµ ·<tz>i..3-X.zt3) 

.(tzX.4..->..zt4) z ~ ••• ,,,(tz\l .. >i..2\;i_}2 = o. 

Thus the region of integration is hounded by (4. 9) and µ = T·. 

In order to express (4.4) as a repeated integral it is necessary 

to determine the Um.its of integration for the parameters, The limit.s 

for \i are found by sol v:ing (4. 9) for \:i ol)taining 
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{4.10) 

To determine the limits for X.q .. l one equates tlle discrimina.nt in. 

(4.10) to zero and solves for \ 1_1. This process is repeated to deter":' 

.mine the limits for X. from the limits for X. 1. One obtains 
r r+ 

(4.11) 

2 
The other limit for µ is obtained from the interse<::tion of X.z = t}:z . s 
and x.2 = t 2 . This yields µ. = S, hence the limits for µ. are 

(4.1.2) µ. = T and µ = S. 

The non ... Euclidean element 0£ q-dimensional area is given by 

( 4.13) dA=/iJhar,1 Jh~, d,idv2 ... dvq 

--i 
where the va are the parameters and h! = I.~~ [4]. 

·· .... 1 avP · 
and (4. 6) one finds 

Using {4. 5a) 



oAl OAl . . . oX.l µ 
ax.2 m; ax. Tz q 

~1 0 0 0 

0 -1 0 0 

(4.14) 1h;1 :=: = µ 
r· 2 

0 0 -1 0 

From p. l) one sees that I hal3 I is t 1, hence (4.13) is 

Using (4. Sb}, (3.8), (2.16b) and (4.1) the potential@ becomes 

2q-n .. 2 

(4.16) <P(xi .)) ~ µ·(q·Z{J µ2o_T2) 2 J Zqr-2 ( oJ / .T2 I 

= <I>(µ, T). 
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Collecting the results from (4.10), {4.11), (4.12), (4,15) and (4.16) 

the integral (4. 4) becomes 

( 4.17) 

where I and X. are used to denote the two branches of the surfaces 
r r 

(4.10) and (4.Ua}. 

The analytical treatment of the integral (4.17) is facili.tated by 

reducing it to a single integral. This is done in the succeeding work. 
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If one perfor:rns the >..q integration (4.17) becomes 

If one performs the "-q .. l integration (4.18) b.ecomes 

With each integration one loses the last term in the brackets, increases 

the exponent a£ the factor in the brackets by i• increases the exponent 

of t 2 in the denominator by 1. and mcltiplies the integral by a constant 

fac:;:tor. After r integrations one has fo.r q.-r ~ 3 

where C is given by the expressions following (4.20) with r:;;: q ... 2. 
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When q is odd one .has after the x.2 integration 

q'"'l. 
2<I"'2[q"'3]~ Tr--z- JS 1 q+l . .2 2 q;.l 

(.4. 22.) T = · · :-z--... . «i · ·( .. 1)-Z- q .. 2 s + µ. [< .. 1)·-z-. q,..3. {q.,z)! · µ + 2s · µ 

T 

q .. 3 2 2)2 q-5 2 2 4 
,.,1,-Z- q ... s(s '"JJ.. 1·. ( ... 1).--z-· q ... 1(s .-µ. ) 3.1 

+ ' 1 µ \" 2s ~ · · · µ 2s ft+ · • · 

2. 2 q .. s. . 2 2,q- 3 } 
+µ.2(S ~µ ) (q--6)(q .. 8) ••. 3 .• l .. (s -µ ·). · (q-4)(q .. 6) ••• 3~Jl d .• 

Zs (q .. s)(q .. 7), •• 4.Z r zs ,,, (q .. 3)(q ... s) .•• 4.~ µ 
\•,, 

Whem. q is even one has after the A.2 integration 

(4. 23) T 

q .. 6 2 2 3 q .. 8 . 2 2 5 
1 l)""T q"'6(S .~µ ) 2.··. ( l)-z- .· q ... 8(S '"JJ..) 4 .• 2 + ~"' µ zs 7+ ... · µ · zs '"5":'"!+ • • • 

2 2 q .... s .. 2 2 q.- 3 } .. µ2(s."'µ) (q:6Hq:8) .•• 4 •. 2+(s .... JJ..) (q .. 4)(q ... 6) ••• 4.2] dµ. 
Zs (q5Hq 7) .•. s.3 ZS (q-3)(q-5) ... 5.3 

In both (4. 22) a:nd (4. 23) the agreement is that the sum in th.e braces 

terminates with the term in which the exponent ofµ is .zero. Equations 

(4. 22) and {4.23) express the integral (4. 4) as a single integral which 

is the desired result :i.n this section. 



V. THE KERNEL 

Equations (4.22) and (4. 23) express the integral (4.4) as a single 

integral which is a transform of the potential ~. The kernel of the 

transform is given below in (5.1). The sum in the braces terminates 

as before with the term in which the exponent ofµ is zero. The con-

stant C 1 :i.s the same as the constant before the integral in the corres-

ponding case. 

(a) 
q odd 

{ 5 .1) 

K-CI 1 -l)-Z-q~2 S+JJ. .. r(·~l)-r q~3 ·(-l)-z- q~5(S -µ) 1. { 
q+l 2 2 q-1 q,,.3 . 2 2 2 

- µ ' · µ + ZS L µ + µ 2S '"Z 

q..,s . 2 2 4 2 2 q"' 5 
u 1i-Z- q~7(s -µ) 3.1 .. z(s -µ ·) (q--6)(q-8) .•.. 3.1 

+~""p µ 2s :;r.2+ .•• +µ zs (q-S)(q-7) ... 4.2 

2 2 q"' 3 } .,. (S --µ ·) (q-4Hq-6) •. o. 3.1] 
~ zs (q-3){q-5), .. 4.2 

{ 
q~Z . 2 2 q-4 2 2 

{b) K = ciµ {~,1.)--z- µq-2lnS+ S z1t [(-1)-z- µq-4(S 2f ) 
q even µ , 

q -6 2 2 3 q-8 . 2 2 5 
1.""li-Y q-6(S --µ ) 2. (· ...... 1)-z- q .. 8(S -µ . ) 4. 2 + ~ · 1 µ ZS 3+ · · µ ZS "S:"3'+ · ' • 

2 2 qFS 2 2 q~ 3 } 
2(s =µ ) (q ... 6Hq~8).,.4.z. (s -µ ·) (q-4)(9,-6) •.•• 4.2] 

=µ zS «q~s){q~7) ... s.3+ 2s (q--3)(q-5) ... 5.3 

In order to obtain a more compact form for the kernel, one first 

~akes the transformation given below. 

( 5. 2) 
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a 
µ == e ' 



(5. 2) cont.:inued 

2 2 s +µ. 
----· ~ cosh{t-a), ZSµ. 

2 2 s "'.µ. ZSµ = sinh(t ... a). 
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After making this subsU .. tution in (5~ 1), if .one diffel'.'entiat.es the result .. 

ing expressions with respect to t, one finds 

~ 
K -. -211' .· (q-l)a .. hq .. 2(t'.· ) t - .. _ 3 e sin . . ...a 

[~]~ 
f o:i;, q, odd a.nd 

( 5, 3) q-2 
zCi"'2 r.9, .. 4] trr-y 

K - . ~T ·.. . . (q-1).a 'nhq .. 2(t- ) t - . . (q,. 3)t e s1 . . .. a fo.r q even. 

Transforming back to the original v:aria'bl~s Sand µ. and using the 
Kt 

fact that KS = KttS = -g-· one obtain.a 

2 2 q .. z 
(5.4) Ks= c 11 f( 5 ? ) 

~ .. t'i·±J1 }? 
where CV. :c::. · .. j ·.· 3 when q is odd .and C 11, = ~ 3) 1 . when q is 

z<l"' [~]t · · · · ~... · 
even, Solving the &if£ er ential equ.ation (5. 4) subject to the condition 

K = 0 when S :a: µ o.ne has the following expression for K afte.r disca.rd .... 

ing a constant factor. 

( 5, 5) Is z z q-2 

K(S, µ) = ~c ;µ ) dB. 

µ. 

The chain of distributions developed in this paper is based on 

the integral 

( 5. 6) iJS •a: X JI = e :1 . K(S, µ.} «i(tJ., T} dµ. 

T 
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where K{S,µ} is given by (5.5) and <I>{µ, T) is given by (4.16). This inte.,. 

gral :i.s essentially the integral T of {4. 22) and ( 4. 23) multiplied by the 
xi 

exponential factor e ~ai . For such an exponentially damped function. 

of Sand T the adjomt operator takes the form 

i 
(5. 7) L*I::: L* [e ""aiX T{S, T)] 

., 2 xi 
::;; [A1J(D.+a,HD,+aj)+Jo J [e-ai T(S, T)] 

l l. J 

The operator .6 used; in the construction of the chain of distributions 

consists of certain terms of the adjoint operator as follows: 

( 5. 8) 
X i ., xi 

""IOI ' . lJ [ -a ' · a .6.e '1 · F{S) =: H (D,+ a. .. )(D,+a,) .e .1 F(S) 
1 1 J J 

i 
= e --aiX [Dss+ qSl nsJ F(S) 

i 
=a·X -

~ e 1 .:6.F(S) 

- . q=l 
where I::. :a: Dss+-s"DS. 

Be.forte:, proceeding to the discussion of the chain of distributions 

U :i.s necessary to develop some of the properties of the kernel K, 

First :i.t should be pointed out that except for a constant fact.or the 

kernel K reduces to the kernel given by Kainen [3] when q is replaced 

by :t1i=l wh:i.ch is the c;ase for the normal hyperbolic equij.tion. The ke:r-

n.el K satisfies the conditions 
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&. = O and K = O, KS = 1 :when µ. = S for q = 2. 

If one replaces q by n .. 1 in ( 5. 9) there results 

(5.10) 

and this is the same as the expression given by Kainen except for the 

factor 2(n ... 3). 

In order to compute higher orders of Am.Kone makes the ex .. 

ponent:i.al change of variable given by (5.2). The operator A becomes 

( 5 .11) 

and M<. in (5. 9) for q> 2 becomes 

(5.12) 

For reference the following rules for operators are given. 

+ . it + (t ... a) . y..;l (a) (D ... y)sinh (t .. a) = ye.. · s1nh (t .... a), 

(5.13) 

Using (5.13.a) .and well known rules for D operators one calculates 

-2 
!!:,. K as follows: 

{ 5.14) 
-2 ... zt a q-3 .. (t ... a) . A-3 LS K = e D(D+ q ... 2)2{q"'2)(2e ) · e · smh-.,, (t-a) 



( 5.14) continued 

a q ... 3 ... 3t+ a . . q-3 = 2{q .. 2H2e ) e (D-l){D+ q•3)sinh (t ... a) 

a q ... 3 ~3t+a t-a . q ... 4 = 2(q .,,z)(Ze ) e (D~l)(q-3)e · s1nh .· (t•a) 

a q~3 -2t q·-4 . = 2(q ..,z)(q,=3)(2e ) ·. e D sinh (t .. a). 

In a similar fashion one calculates 

A 3K :: 2(q ... ZHi=3Hq ... 4)(2ea)q-3 e - 3t-a(D .. l)(D+ l)sinh q '" 9(t-a), 

{5.15) 
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A 4k = 2(q .. 2Hq .. 3)(q'7'4)(q .,5){2e a)q;.; 3 e - 4 t"" 2a(D•2)D(D+ 2)si.n.hq"' 6(t .. a). 

By an inductio:o. process one obtain.$ the following expression for AmK. 

(5.16) 

AmK _ · 2, .. · zu 3) ( 1 . )( 2 a)q-3 ... mt-{m!-2)af(D). .nhq ... 2-m(t. ) 
L..l. - ,q- nq'"' ••• q ... "'.'m e e s1 . ..a 

[ 2 2][2 2] rz 2] · where f(D) = D D ... 2 D ... 4 ••• ~D -(m ... 2) for m even and greater 

[ 2 2]r,2 2] [2 .21 than 2 and f'{D) = D ... 1 L D !"'3 •• I •. D ... (m ... 2) J for m odd and great .. 

er than 1. 

One observes in (5.16) that when m = q-1 the expression for L:!..m.K 

has a zero £actor and so is zero. One can sharpen this stq.tement when 

q is even; in this case ~q/ZK = O. In verifying this, one notices that 

when m = q/2 {5.16) contains the factor 

2 q ... 4 

[02 .. {qz4) J sinh -r(t-a). 

I£ one uses formula (5.13b) to evaluate (5.17) one has y ;:, c in the 

.:formula, hence the ef!ec::t of perfol,"m:i.ng the operation indicated in 

{5.17) is simply to bring in a constant factor and decrease the exponent 
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of sinh(t=a) by 2. After performing this operation one has the factor 

( 5 .18) 

in (5.16). This is the same type of operation as (5.17), hence suc­

cessive applications of (5.13b) lead either to the factor n[fqZ4)t] when 

q/2 is even or to the factor [n2-i2] smh(t,-a) when q/2 is odd. In view 

of the preceding argument one has the following results: 

b.mK = 0 for m> q ... 1 when q is odd and 

{ 5.19) 

fimK = 0 form~ q/2 when q is even. 

If one collects factors in (5.16) it becomes 

(5.20) 
q-2 

AmK _2 {q-2)! (q-1-m)a -mtf(D) . hq-2-m{t-- ) 
L.l - {. 2 )' e e sm a q- -m. 

where f{D) is given following (5.16). 

To obtain another form of timK one makes use of the following 

d:i..fferential expressions for Legendre and Tschebyscheff polynomials 

given in [6]. 

( 5. 21) 

PX.(cosh t) = ·>.. (ZX.)! ZX. D(D 2-22) ... [n2 -(µ-X.-1) 2] sinhµ+ X.t 
µ 2 µHµ .. x.) ~sinh t 

(-1/2>-..X.~ 2 2 [ 2 2] . µ-X. 
(µ .. >.,)t(Z>-..H D(D -2 ) • • • D .. (µ+ x_ ... 1) smh t, 

(µ~>.. = 3, 5, ... ); 

X. {2>..)! 2 2 . 2 2 r 2 2] µ•X. 
P (cosh t) ::: "- ZX. (D .... 1 )(D -3 ) .•. LD -(µ-X.-1) sinh . t, 

µ 2 X.~(µ-A.)~sinh t · 

\! 
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(JJ.""A. = z, 4, ••• ), 

u.""lg h . ' ff2u.,;l\~ h -pr ,cos -- t 1 :::::: _ --~ f'r. 1." CQS - t; 
µ 2µ (µ•ijl 

Pµ{ cosh t) = (Zµ .. lH . 
µ zJJ.""1<· 1) 1 -µ... • 

(µ .. }.. = 3, s, ... ), k#, O; 

T >..u h_t\ µ.2>,.-l{}..~1n 'Dz lzHDz 32) [nz ( -' l)z] , . h-µ+ x. .. 1" 
_ \COS . p ::: • . - '*zt-l \ · - ·H - ... . • • • .. IJ."'A.'" $:1,ll ~, 

11 {µ .. >,.)~si:nh - t -
(µ.FA. = 2, 4, ••• ) , X. =/= O; 

11-l 11 .. 1 
Tr · (cosh t) :;;: zr µ!cos.ht; 

µ . 

In (5. 21) PX. and TA. indicate derived polynomials, for instance PX. is 
µ µ µ. 

the X.=th derivative of P • µ . 

If one uses (5. 21) equation (5. 20 b~comes 

{5.22) 2 2 q,.1 .. zm q"".1""2m 2_ 2 
{_a) .6~ = C __ µ. (2Su)q~Z ... m(S -.µ ) p 2 (SJ + fiL _ ) - a8 q .. 2 r-· isµ q .. 3 zsµ . -z-

1 ~ m ~ (q -1)/2, 'l odd; 

Zm.--q+l 2 2 
-~- µ__ _ q-z.,.m z (s +µ. ) 

~b) A . - cbsq~2 (ZSµ) pqi3 : 2Sµ 

(q-1)/2 ~m ~ ,. .. 2, q odd; 



( 5. 22) 

where 

continued 
q~l 

C = z-2-(m-l)t(q-2)~ [q-122m J ~ 
a (q~2-m)~(q-l-2m)~ 

2m-q-l q-1 
2 -2-

c = (-1) . 2 (2m-q+l)~(q-2)~ and 
b [ Zm-q+IJ 1 2 . 

4m-q+ 4 

C :::: 
C 

2 2 (m-I)~(q-3)~ 

( -2- )' [q-Z-Zm1, . q m. 2 :.J. 

Another form of 25:mK is obtatned by replacing the hyperbolic 

function in (5. 20) by exponentials and then expanding by the binomial 

theorem. The result is given below in (5.23). 
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If one arranges f(D) in the form (D .. m+ 2)(D-m+4) .... (D+m .. 4)(D+m-2) 

and performs the differential operations in (5. 23) one has 

( 5. 24) 

AmK - 2m(q-2)~ a ... (q-Z)t(D-. 4)(D-. 6) 
£..). - I 2 ) i e e q+ q+ .. • \q- .,,m • 

aq- -m.,.1 1 q~-2--m(q-2-mJ 2 2 . 2 , 
(D-q+ 2m-2)(D-q+ 2m) i (-e ) (e 1 

.• q-2.-m. 2 ,. q- -m m 2 · (q ... 2)~ a ~(q~Z)t . . 
= ( 2 )' e e ! ( . (21-q+ 4)(21-q+ 6) •• -~ 

q= -m . i:::O i 

. . 2a q ... 2-m-i 2t i 
(21.+ 2m-q-2)(21+ 2m-q)(-e ) (e ) 

r·m(q~Z-m) m . ·2 . 2 (q .... 2)' q- -m .. 1 . . . 
= { 2 . )f- . . (-1) (21-q+ 4)(21-q+ 6) ••• 

q= -m • i=O i 

( 2.:· 2 . Z)( 2 . _.,_. ) (2q-3-2m,-2i)a (2i-q+ 2)t 1+ m.-q... 1+ <.,J;u-q e e · • 



vr. THE CHAIN OF DISTRIBUTIONS 

The chain of distributions is based on the integral (5. 6) which is 

repeated here, 

( 6.1) iJS -a.iX · I(S, T) ::: e K(S, µ) \I!(µ, 

T 

T) dµ. 

In the construction of the chain of distributions one uses the operator 

b,. given in (5. 7). The first link in the chain of distributions is th.e in-

tegral (6.1). The second link in the chain is obtained by applying the 

operator b,. to the first link. The third link is b..2I and the r-th link~ 

is b,.r~ll. The last link is b,.q-ll. 

For the case n = 2p+ 1, the integral (6.1) is improper; however, 

the differentiation processes used here can be justified in this case. 

For the case q = 2, the kernel is such that K 8 (s, S) = 1 and so is not 

included in the general case. For q = 2 the chain of distributions con-

sis ts of the two links given below in (6. 2). 

(6. 2) 

If one multiplies the expression for & in (6. 2) by~ then it becomes 
· i 5 

e-a.iX(-5
1R)J1(5R) which is, for this case, the first type Green potential 

given in (3. 30) since for q = 2, ri must be 4 for ultrahyperbolic equations. 

For the ;Purpose of illustrat;i.ng certain properties of the chain of 
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distributions, th~ result 0£ the proces.s of successive applications of 

the operator tJ.. to the integral I is given below for two cases. Fo:r;: th.e 

poten.,tials one is referred t.o (5.9). Th.e kern.el is obtained from (5.6) 

bu.t it is arranged here fer co.m:parison with (5.1). 

(6. 3) 

n. = 7 

p=2 

q= 5 

iJS =a·X I = e l K(S, µ) c»(µ, T) cl.µ 

T ir , 
Al = e .. aiX ~(Saµ.)«?{µ, T) dµ 

T . 

. . i 5/2 . 
ii4I= 48 e""a.3.X ,({) Y 5; 2(6R.) 

, 

(6. 4) 

n.= 8 

p = 2 

q :::·6 

.s. s + µ . . . . -µ. .· . . ""JJ. .. 
{ 

4 2 2 [ z ~s· 2 2) (S2 2 )
3 2.~} 

K(S, µ.) = 6µ µ ~+ 2s . . -µ . . ZS ; + •- ZS . '! 

z . . A J . ~·' 
1 ·µ --T Z .•Z 

<Ii(µ, T) ~;tc i; ) J1(6.,/µ ~T ) 



(6. 4)' continued 

.. aiXiJS 
I = e K(S, p.) <I?{µ, T)dµ 

T 

AI= e •«1Xi l &s:(S, µ)<l>(µ, T)dµ 

T 
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In the two examples, (6. 3) and (6.4), one should notice first that 

q-1 applications of the operator A to the integral I results in the first 

type Green potential for n even and the second type Green potential 

for n odd. Another property of the chain of distributions is that for 

q odd the first. {q+ 1)/2 links of the chain consist of integrals only and 

that for q even the first q/2 links of the chain consist of integrals only. 

Another characteristic of the chain of distributions is that the integral 

disappears with the {q/2) "'th application of the operator A when q is 

even but does not disappear until the last application of the oper.ator 

when q is odd. This last property is a consequence of the property of 

the kernel given in ( 5 .19). 

The remainder of this paper is concerned with the problem bf 

writing expressions for the links of the chain of distributions for the 

general case and with demonstrating that the q ... th link is the Green 



potential which. is the principal result of thi,s :paper. 

For q odd the first (q+l)/2 links of the chain and for q· even the 

first q/2 !:inks of the chain a,re given by 

(6. 5) 

wher:e m ~ (q,..1)/2 when q is odd and greater than one, and where 
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m ~ (q .... 2)/2 when q is even and greater than two, This is proved by 

mathematical indu.ction. That (6. 5) is true for m = 1 follows from the 

fact that K(S, S) = K.3 (S, S) = O. Assuming that (6. 5) is true for m. = r-1 

one has the following expression for l!J.r I. 

'· ( 6. 6) 

s 
l!.r I = l!.e ,u.ixi I ,i;r-~{S, µ.) ~(µ, T)dµ 

T 

To determine the value of the right member of (6, 6) one needs 

s 
(6 .. 7) .·a;Xi Ds I l!,.r-~{S, µ)~(µ., T)dµ 

T 

i s 
· ... a.·X I ....;.:r-1 = e l n8 1:1 · K,(S, µ) ~(µ., T)dµ + 

i 
""a.ix e [ -r ... 1 ( 1 1::.. K(S, µ.) g) .IJ., T)J 

T µ=S 

That the last term on the right in (6. 7) is zero for r ~ (q;,,l)/2 when q 

is odd .and for r ~ {q-2)/2 when q is even follows from,the fact that 

-r ... L- . (S2 2 q~Zr+l f , · (S zz ) d ti. ~ conta1ns · "!'µ ) as a .. actor as 3,s seen 1.n . • a an 

{5. 22c). In addition to (6. 7) one needs the value of. the secon¢1. derivative 
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of the integral in (6. 6}. 

That the last term in the right member of (6. 8) is zero for r .C:.. (q ,.,1)/Z 

when q is odd and for r c:::. (q,,.2)/2 when q is even follows from the ob"" 

servation :made following (6. 7). For the values of r conside.red here 1 

q,,.Zr+ 1 ~ 2 and so n8 [Ar'""1K{S, µ)] contains the £actor s2 .. µ 2 which is 

zero for µ = S. In view of the preceding arguments there are nC>. con-

tributions from the limits of integration in the first or second deriva­

tives of the integral. The operator A is n88+ q5l n 8 , hence if the first 

derivative is multiplied by (q-1)/S and added to the second deriv<1.tive 

one has 

{6. 9) 
ifs r ... a, •X ..,..r 

6 I = e 1 · 8 K(S, µ) Q?(µ, T)dµ 

T 

where r is subject to fae restrictions following (6. 7). Therefore (6. 5) 

is true. 

In the consideration of 6ml form-> {q+l)/2 when q is odd and for 

m 2:;. q/Z when q is even the expressions are quite different .for q even 

and q odd, consequently the cases are considered separately. The case 

of q even is presented first. · 
I 

In preparation for the 6 operation on 
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q"'2 . S q .... 2 

(6.10} t,.-y--1: e·o.;X'J ,i---y-K(S, i,.)<I){µ., T)dµ 

T 2 q-
. -~ 

one Considers the following fo-rm of 1::.. K obtained from (5. 24) by re ... 

placing ea byµ, et by Sand :tn by (q .. 2)/2. 

(6.11) 

2 -2 
q=2 ¥ . ...2) q .. 2-2i :--r z .. zt _q z ~ K = .. ~q~ · ) 'L(~ .... 1) (2i--q+ 4)(2i .. q+ 6) ••• 

~]! . b:o 1 

(2i ... 4)(2i-2)µ«1""L·· 21s21~q+ 2 

q .. 4 

Now (2i"'CJJ.+ 4H2i""q+ 6} ••• {2i ... 4)(2i;.2.) = 2-Z-(i ... qi4Hi,.. '-z6) ••• (i,..2)(~-1) 

so (6.11) c~ be written 

(6.12) 

q":2 
-:-T q .. 2 ... 21 

2<l""3{q<P2ny---_·_ .. (qiZ)'-l) 2 · .. ·( ... q~4)('-q"'6) ('-Z)('·.·_l) _q~l .. _2i8zi ... q+2 ""2 . .. \ l -r l. ·-z- .... 1 .. . 1• µ • 
[ q ] ' . . . 
-Z- · i= o 1 

From (6.12) it is seen that th,e only terms in the sum which are not 

h f · . 0 d' lii"" 2 zero are t. e te:rms or 1 = · an 1 = --z-· Therefore 

{ 6 .13) 

. z<1-Zu. _· 3)~ µ t5'1-2 q"'2) ,a: . ,q..,. .-=---r \ . ..µ . • 
. ~-~ . 
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Using the results from (6.13) and performing the ~ operation on 

(6.10) one has 

(6.14) Jz . z(oR). q-n-
2 

~i 
The integral disappears in this step because ~ K(S, µ) = O wh,en q is 

even by ( 5 .19). 

m 
In the following work with higher orders of ~ I the following 

notation is used, 

(6.15) 

The r on the left is simply a symbol for identification and does not 

represent an exponent. In performing further ~ operations on (6 .14) 

one needs the following rules for differentiation. 

(a) 

(6.16) 

(b) 

... a·Xi q-2 
Because of the repeated occurrence of the factor e · l 2 {q-Z)l 

in the following work:, this factor is replaced by the symbol E for con .. 

venience in writmg. If one introduces the notation of ( 6 .15) into ( 6 .14) 

and then applies the ~ operator to the result using (6.16) one has 

{ 6 .17) 

2 2q~n~6 2q~n~4 

~ q~ I :;a E [F .. · .. 2 "' ( q -4) F .... ·· . 2 . . J ... 
q-4 5q-z ' s 



(6.17) continued 

+ . . sq-4 

. 2 .. Zq .. n..,8] 
... (q ... $)(q ... 6)(t .. 4)F .. · .... ·· • 

sq .. 

q+ 2k 

The foregoing leads to the general expression £or A -z-I. 

( 6 .18) 
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q+ 2k k 2q-n .. 4k+ 21 .. 2 

A--r- I = E ~. ·(~) (-l)i (q -2k .. 4)(q ... 2k-2) ... (q .. 2k+ 2i•4)F . ·. .· , 
. / . . 1 . · (q .. zk-4> sci·Zk+ 21-2 

i= 0 

To prove (6 .18) one again uses mathematical induction. Assum .. 

ing that (6.18) is true fork= r-1 one has 

( 6. 19) 

2( . 1) · l ·. Zq .... n .. 4r+2i+ 2 q+ r... r- ·. 
A . 2 I= E~ .. (r. -1)( ... i/ (q-2r.2)(q""2r) .•• (q ... 2r+ 2i .. 2)F . . . ·. . . . ' 

'/ ... \i (q .. zr-2) 5 cq .. zr+ Zi 
i = o 

Applying the operator A to (6.19) and using (6.16) one has 

(6. 20) 

[ 
1 2q ... n..,4r+ zi ... 2 q+.Zr r,., . . · · · · · 

~ -Y-1 = E D~r~.1)< ..-l}1 (q-2r-2)(q-2r) •• ~ (q-Zr+ 2i ... 2)F 
I I 1 . (q .. 2r ... Z) gCJ.•Zr+ zf ... z 
~ . . . 
l= u 
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( 6. 20) continued 

r-1 I 

T{r ,..1··(-l)i( ..,z "i)(Z-2 . 2··) {q ;o.2r.;.2)(q-2r) •. • . + . . . ·<\. r+ "" . r+ 1 ( 2 .. Z) . . . ·· 1. q~ r~ 
i= 0 I . . 

! 

In combining l.ike terms in the right member of (6. 20). o:rie notices th.at 

there is no term to combine with the first term of the ijrst sum and 

that the second term of .the first sum combi,nes with the first term 

qf the second sum. These first two terms qf A{\+ Zr)/~I a.re 

(6. 21) t 2.q.'.".n .... 4r.•2 . 2.q,.· .. n.·.:..4.r J· . 2 · 2 · 
E F . .. r (q"'2r .. 2)F . . . . • 

5q .. zr ... z . Sq,.zr 

In general the k .... th term of the first sum c-omb:i,n.es with th" (k ... l) .. th 

term of the second sum, and the (k .. 2) .-th term of the third $ij.m. To 

obtain the next r .. z terms of A(<(+ 2.r)/2.l one cQnsiders the following 

terms of (6.~ 20). 

( 6. 22) 
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The sums in (6. 2.2} can be written 

(6. 23) 

z,,..n ... 4.r:t ?i~Z 

+ (r•l) .. 2 ... ~r+ 2i] (q•Z~·4)(q•2•·2), "(q,2<+ Zi•'.l)F .. : ... 
· i~Z CiJ. .. zr,..z (q"'zr,..4) s'l .. zr+ z.1.,.z 

Considering .the fa;ctor in (6.23) immediately following ( ... 1)1 one has 
' ' ' 

(6. 24) 

= (.f). l ,,, 

If one uses (6. 24) then (6. 23) Ca.Jl be written 

.r .. 1· 2q.-n,-,.4r+ 2i,:'"4 ' ' ' 2 ' 
E ) .... ·'(r) ("'l)i (q ... zr~4)(q ... 2r .... 2) ••• (q .,zr+ 21 ... ~)F .. 

1
• • , ••·• m i (q,..zt,;;4) ' g'i~zr+ 21 .... z 

(6. 25) 

. 
The last term of 8(q,+ Zr)/ll is obtaJ,p.ed by combi,ning the term .. fu the 

s.econd sum in (6. 20) for which i = r ... 1 and the .te1m in the third sum 

.in (6, ZO) for which i ::;: r"'.'2, This term is 

(6. 26) 

That. th.e term of the third sum in (6. 20) for which i == r .. l, is .z-er.o is 

· seen by <:>bs.e:ntin.g that the £actor (z,..zr+ 2i) i.s .zero for i = l'"'l~ .1£ one 

cc,mhines the results from (6. 21), (6.25) and (6.2.6) one .has th.e 
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following expression .for L.\(q+ Zr)/21. 

( 6. 27) 

2 Zq .... n~4r+.zi.,z q+ r r 
L.\--z-1 = E \. . (~.) { .. 1}i (q ... zr ... 4)(q .. 2r .. z) ••• (q--Zr+ Zi--4)F .. · ·.. . . 

'(. 1 · (q-.zr-4) 8q ... zr+ z1.,.z 
.1:;:; 1) 

In view of the preceding arg~ent (6.18) is true, 
···' 

If one sets k = (q ... 2)/2 in (6.18) only the first term in the sum 

contributes and one has after replacing E and F by the.ir equivalents 

Converting the negative index on the Bessel function into a positive 

index one has 

( 6. 29) n ... z 
n .... z . -...,-

. . 1 ( ) c.. -1 . -Z- ·.· ... 2 .. a, X 
Aq I= ( ... J) zq :(q,..z)te i · i Jn_.z(oR.), n even. 

-z-

The symbol J used in (6. 29) before the expression for the case of n 

even is the same a.s the symbol J determined in (3.13). The expressions 

in (6, 29) are the .final li:nk in the c.hain of distributions for q even. O;n.e 

should notic::e that they are, except for a constant factor, the first type 

Green potentials for n even and the second type Green potentials when 

n is odd. This is the desired resµlt. 

The consideration of b.ml for m.2=, (q+l)/2 for the case of q odd 

follows. As was pointed out previously, in this case the integritl does 

not disappear until the last A operation because of the pr.oper.ty 0£ the 



kernel given in (5 .19). Because of.this, the treatment of I),~ is ex"' 

pedited by the det.ermination of a formula for the & operation applied 

to the integral at any stage. To obtain this formula one needs an ex. .. 

pression £or 2S:~(S~ µ.) evaluated at µ. = S. If one sets µ = Sin the 

formula (5. 22b) it becomes 
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2miq+1
2
3q-§m·5(. . Zm-q+l 

(6. 30) .[8 ~(S,µ)] = ( ... I) .zm-q+IH(q--Z)~p 2 (I) 
[ zm ... q+IJ· 2 3 · · 

µ=S . 2 ! S m""q+l ca·• -z-

By using certa:i,n :recurrence relations for Legendre polynomials :from 

[6] one has 

( 6. 31) 

Using (6. 31) in (6. 30) oae has the desired formula for 4.mK. 

2m ... q+l 
z · 2q .... 2m ... 3( 

[ 8 rn.K(S, µ)] = ( .. 1) . . . z .····· . . .. zm ... q+ 1)\(q-2J!{tn~l)I . 

µ::;S (czm2q+l}) (q-.m-Z)~ 8ztn ... q+l 

( 6. 32) 

To determine the formula for t::,, applied to the integr.al at any 

stage one needs the value of the derivative of the integral. This is 

(6. 33) 

s 
n8 J ,:,."'x(s, µ)<1;(~. T)dµ = 

T 

s J n5 ,:,."':K(s, µ) <J;(µ, T)dµ 

T 

+ [ .6.~(S, µ) ij?( µ, T)] . 
µ=S 

In addition one needs the value of the second de:dvative of the integral. 

Preparatory to this computation one determines the value of 

[n8 ~mK(S, µ.)ij?(µ, T)] and D 8 {c~~(S9 µ)q?(µ, T)] .} • The first o;f 
µ~S µ=S 



these is found below using (5.22b). 

( 6. 34) 

Zm-q+l q_ ... l 
( 2 2. -Z- ) ( .. q ... 2-m -1) .· {2m ... q+l~.q·ZHµ.(2µ.)· . 

[zm .. q+l J' 2 • 
~ zm ... q+l ( 2 ) "".m P 2 s +µ. 
5m+ 1 qi3 · ZSµ .. 

+ 1 s •µ. p 2 . ~· + µ . . z 2 zm .. q+ 3t 2 21~ 
5m+ 1 ZSµ. · q23 ZSJJ. 

hence [ ......:m. . ]. m [-m · J DgA K(S, µ.) w(µ., T) = '"s ·D. K(S, µ.)q,(µ., T) • 
µ.=S µ..:S 

If one uses (6. 32) and the F notation introduced in (6.15) the second 

expression mentioned above is 

(6. 35) DS {[~K(S, JJ,)@ 1(µ., T)] . } = 
µ.=S 

· [ Z.,. •n~2 ] 2 
F D . -:' s 8 2m. .. 1 -
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2m-q+l 2o .. 2m .... 3 . 
(""l) . · 2 "II, .· (Zm-q+l)·~(q.-Z)Hm•lH 

2q,-,n.,z 
! 2. 

(-Zm+ l)F. 

Zq ... n-4 
F 2. 

zm ... +l ( 

I . ) 2 . . 
[ 2 q J~ ("! "m .. zH 

. 8 2m . . + -s"""z ..... m-........ ~-· 

.,.zm+l c-m.... ] c-m . ] = S · A K(S, µ.)w (µ., ';I'} + . A K(S, µ.) 
. µ.=S µ=S 

Using the results from (6. 33), (6. 34) and (6. 35) one find$ the following 

expref!!sion for the second derivative of the integral. 
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(6. 36) Js Is 
Dss T ~K(S, µ)@(µ., T)dµ = T Dss.6mK(S, p.)c»(µ, T)dp. 

+ ... 3S+l [8mK{S, µ)c»{µ, T)] + [~~(S, µ)] 

2q .. n .. 4 
2 F . 

µ= s µ= s 

Multiplying (6. 33) by the factor (q-1)/S and adding (6. 36) to it one has 

the formula for 8 applied to the integral at any stage. In the formula 

given for this below use has been made of (6. 32). 

(6 .. 37) fl Is !l"'K(s, µ),1;(µ, T)dµ: JS llm+1xcs, µ),1;(µ, T)dµ 

T · T 

Zni1-q+ 1 l 2q-n-4 Zq ... n ... z} 
' 2 zq .. zm-3 · z · z · 

+ ( .. 1) . .. . 2 . · ... (2m ... q+ l)!(q"'. 2)Wm .. 1)! F .... (3m-q)F . 

( ~2.tnzq+1]~ (q•m•Z)\ . SZm-Z SZm 

Preparatory to writing a gene.ral expression for .6(q+ Zk"".l)/ZI a 

few cases are given below. These expressions are based on (6. 5) 

with m = (q .... 1)/2 and are computed by using the differentiation :formulae·.· 

q•2 -a.·Xi . 
(6.16) and (6. 37). The symbol Eis again used for 2 (q .. Z)!e 1 

(6. 318) JS 1t [ 2q"".n .. 4 2q•n~t] q+ i · q+ . · 2 . 2 · · 
-Z- •a.·X - 7. . F 1 (a ... 3)F · 8 I = e 1 . 8 K(S, µ.) @(µ, T)dµ + E · ;_3 ..... ~ J: ·. , 1 •. · ·· · , 

T . sq "' sq-

q+ 3 . Is q_+ 3 ·~ 2q•;-s . Zq"r6 
.6-ZI = e ""'a.iX1

. . 3.-,;-K(S, µ.) @(µ, T)dµ + E F ·· · ,.. 3 (q .. S)F · · 
sq~S ~ s~~3 

T 



( 6. 38) continued S q+S . 

. q+ 5 i I ----z:- . 
A Z I = e -a.iX TA K(S, µ) qi(µ, T)dµ + 

Zq-n-8 
2 

Zq-n-6 
2 + 15 (q-7)(q-5)F 

s sq ... 3 
5 (q-7)(q-5)(q-3)F 

-Tb. · · 8 q-1 
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_ 5 (q-7)(q-5)(q.,;3)(q-l)F 2 _ 3 (q-7){q-5)(q-3)(q-1)(9,+l)F 2 .. 
Zq-n-4 Zq-n-2] 

rrs sq+ ~ sq+ 3 • 

One should recognize the binomial coefficients for fractional exponent& 

in the preceding expressions. These expressions lead to the general 

expression for A(q+ Zk-l)/ZI. 

q+ Zk-1 . . i J• S q+ Zk-1 
(6. 39) A 2 I= e-niX. . A Z K(S, µ)qi(µ, T)dµ 

T Zq -n-4k+ Zi 
Zk.,l ·. z 

E\.~Zk-..1) (-l)i (q-2k-3)(q-2k-l} .. (q.-2k+Zi-3)F . 
+ / -Y- (q ... Zk-3) 5q-2k+ Zi-1 .. · 

1= 0 i 

In proving (6. 39) one uses mathematical i:r:i.duction. Assuming 

that ( 6. 39) is true for k = r .. 1 one has 

q+ zr,,,3 , Is q+Zr .. 3 

( 6. 40) t,. z I ~ e -a.;X' ! . z " K(St µ) <i;f 1': T,)dµ 

Zr- 3 zq,.n-4r+ 2it4 

E\. (Zr-3~· (-l)i (q.,2r--l)(q.-2r+l) ..• (q-2r+2i-l)F 
+ · /. . ~ (q-Zr-1) 5 q ... 2r+ 2i+1 · 

Go l 

Applying the operator Ato (6.40) and then using (6.16) and (6. 37) 

one has 



( 6. 41) 
q+ Zr-1 . JS q+2r,-l 

2 X l 2 . ' 
t::. I = e •ni - t::. K(S, µ) ill (µ., T)dµ. 

T 
2q .. n-2 

Zq;!). .. 4 rq+6r ... 9]F 2 
-F t 2 

. 5 +---------g<i+ zr.. sq+ zr-3 
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2r=3 _ Zq ... n-4r+ 2i+ Z 

+ \ /-2'{~ l ( •l) i+l( . _ 4r .4i Z) ( q •Zr "l)( q•Zr71). • • ( q-~r+ 2\ •I) F . . 
/ _ \ i j -- q + + (q--Zr-1) 5q .. zr+Zl+ 1 
i = o 
2r-3~r-_31 

+ L ~ (-l)i( - .. z -_z· 1· )(3 2 2-') (q-2:i;- .. l)(q .. Zr+l) ••• _ . . _ a .. r+ 1+ .,. r+ 1 ( 2 I) 
i = 0 i "' - - q• r-

s<l'·· Zr+ Zi+ 3 - - · 

The combinatio!). of Uke terms j,n the :right member of (6. 41) takes place 

in a manner similar to the case of q even, except tha_t: the expression 

in braces immediately 1ollowing the integral in (6. 41) must be ~en 

into consideration. These two terms contribute -to the last two terms 

in the fli.nal result. If one considers the three sums in brackets one 

sees that there is no term to combine with the first term of the first 

sum and that the second term of the first sum and the £irst term of. 

the second sum combine to form the second tel;'m of the £in.al result. 

h f . - f -h - · th . £ A(q+ Zr,i/.l)/21 T ese irst two terms o t e sum 1n e expression or ~ - are 

~ 2q".'i+-4r _ .2q .. n .. 4r+2J z .. z 
6 E F _ _ _ .. Zr-1 (q-2~~1)F _ . 

( · 42) 9q., .. zr .. t -r 5q-Zr+I 



In general the k .. th term of the first sum combines with the (k-1)..th 

term of the second sum and the (k-2)-th term of the third sum. To 

obtain the next 2r .. 4 terms of the sum in the expression for 

A(q+ zr .. l)/ZJ[ one considers the following terms of (6. 41). 

(6. 43) E )_.... ~2't~l (.l)i (q•2r-l)(q-2r+!J. •• (q-Zr+ ZH)F . z [ 

3 Zq .. n ... 4r+ Zi 

r;:;""2 \ i j (q-2r-1) sq-2r+2i-1 
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2r :"4 Zq ... n-4r+ Zi+ 2 

\. . . ~Zr237 (-l)i.+l(. _4, 4; Z) (q-Zr-l)(q-Zr+l) ••• (q.Zr+ Zi-l)F 
+ / .. · . · q + + 1q-2r-1) · · 8q--2r+ zi+I 

i :a: 1 1 · . 

zr .. s(2 •7 3 
+ ~. -z-_ r.- · { .. l)\q-.2r+2i+ 1)(3-Zr+ Zi) (q-Zr:l)(q ... Zr+ 1) • • • 'f i · (q-Zr..-1) 

i= o · 

. · 8q .. zr+ Zi+ 3 • 

The sums in {6. 43) can be written 

(6. 44) E tr·3H)i [~zi_-37 q-Zr+Zi-1 + (·~_z-3) q-4r+4i•2 
. q-Zr-1 1-l q--Zr-1 

:i.i'"2 1 .. · 

Zq ~n-4r+ .2.i1.·· · 
+(Zrz 3) .,,zr+Zi'"'l] (q .. 2r-3)(q .. zr-l) .•. (q.-2r+2i-3)F . 23_ ... 

i .. 2 q,,,zr .. 1 [q-2r-3) - ··•· 8q .. zr+ 21 ... 1 

Considering the £actor in (6. 44) immediately following (-1/ one has 

( 6. 45) (
2r ... 3] 2 2 . 1 (2r-3J 4 4 . 2 (zr ... 3)_ . -z-_ q ... r+ 1"". + --z-__ ·. q~ r+ 1.. + --z--_ · .. zr+ Zi-1 

. q-zr .. l . 1 q-zr.;.l . 2 q..;zr ... 1 
1 · · 1 _;.. l -
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{6. 45) continued 

_ (Zr"".j - -y. 
i 

If one uses (6~ 45) th.en (6. 44) can be writ.ten 

z __ r ... J _ . Zq"".n,-4;r+Zi 

(6. 46) r-._ .(zr.,,~ ( 3. 1 . 2 E. ( ... 1)1 -z- ~p2r.,. .)(q ... 2r ... ) .•. (q ... zr+ 21.3-)F' . -- .. --
. - . (q-Zr-3) 8 q,-2r+ Zi•I • 

..._...... l . . 
l :::" G 

The next to last term of th.e sum in -6.(q+ Zr-l)/ZI comes from the first 

term in. the br.a.ces immediately following the integral in (6. 41), the 

term of the second sum in (6. 41) £or which i = zr,..3 and the term of the 

third sum in (6. 41) for w_hich i = zr ... 4. These ter~s are 

(6. 47) 

= E/-2rz1_\ [~- {q:- Zr-SHZr-3) +J9.+4r -10)(2r ... z) 
\2r ... 2} (q-Zr"'lHZr-1) (q-zr ... l) tzz ... 13 
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. (q+Zll'"'l)/2 . . . The last term. of the sum 1n A · · I com.es from the second te.rm 

in the braces immediately following th.e integral in (6. 41) an.d the term 

Combining the results from (6.42), (6. 46), (6. 47) and (6. 48) one 

has the following express.ion for .6.(q+ Zr-l)/21. 

(6. 49) 
2 . ...0,·X · - Z 

q+ 2:1;' .. l if S q+ Zr-1 

i::l I ~ e l T i::l K(S, µ)~ (µ., T)dµ. 

, 2q-.n•4r+ Zi 

( ... l)i(2z"'7{9.~2rl3)(q-.2r ... 1).~~(q .. 2r+2i-~)F .... · 2 , 
· . fq ... Zr .. 3) 8q-.Zr+ 21 .. I 

. l . 
I 

In vie~ of the preceding argwnent (6. 39) is true~ 

If one sets k = ((l-1)/2 in (6.39) the integral drops 0.ut because 

Aq-IK{S, µ.):::: O, and with this value ~£ k, only the first term in the sum 

contributes. Hence one has after replacing E and F l;>y their equivalents. 

{ 6. 50) 
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Converting the negative index on the Bess el function into a positive 

index one l1as 

{ 6. 51) 

These expressions are of the same type as those given in (6. 29). 

They are the final Hnk in the chain of distributions for q odd. They 

are~ except for a constant factor, the first type Green potentials for 

n even and the second type Green potentials for n odd. 

Reviewing the results of this chapter one sees that the desired 

chain of distr·i.bmtious is given by the equations listed below. 

q even 
t 

q odd 

( 6 .1) ( 6 .1) 

{ 6. 5) ( 6. 5) 

( 6 .14) 

{6. 18) (6.39) 

(6. 29) ( 6. 51) 



VIL SUMMARY 

In th.is. paper certain as pee ts of a theory .of distributiQns fo.r 

ultrahy_p.erbolic equations have been developed. First, a baste vector 

system was defined and some pf the properties for such a. vector sys,,; 

tem were developed. A£ter the work on the basic vector syste.m a 

non-parabolic, non .. degenera.te vector system wa.s defined •nd some 

properties of this system were developed. Rules 0£ .indices and 

Pythagorean identities for a non-parabolic, non-degenerate sys.tem 

were derived. 

A non .. pa.rabolic, non-degener.a.te vector system was chosen and 

certain SQlutfons 0£ the a.dJoint eq,uati<m were determined. These sol:u. ... 

tions were classified as retarded potentials and Green potenti,als. A 

retarded poten.tial was integrated 0ver a portion of a q-dimen.$ional 

subsp.ac:e determined by .the vector system chosen. The q ... tup1e inte .. 

gral was reduced to a single integral which is in the nature of a trans­

form of the retarded potential~ From thia single integral the kernel 

of the trans.(orm. w~s, determined and some properties of the kernel 

were dtweloped •. · From the single integral a cha.in of dis:t:ributiQns was 

const.ru..cted by repeated applications of an opera.tor 1:1 condsting of 

certain terms Q.f the .adjoint operator. Some properties of the chain 

of distributions we~e discu.ssed; in particular it was shown that q ... l 

appl:i.ca tit;,ns of the operator A red~ces the single integral to eith~r the 

first or second type Green potential according aa the nwnber of dimen ... 

sions. is even or odd. Thus the chain of distributions links the trans ... 

iQrm of the retarded potential to the Green potentia.~s. 

60 
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