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Abstract

Practical and accurate estimation of three-dimensional wind fields is an ongoing

challenge in radar meteorology. Multistatic (single transmitter / multiple receivers)

radar architectures offer a cost effective solution for obtaining the multiple Doppler

measurements necessary to achieve such estimates. In this work, the history and

fundamental concepts of multistatic weather radar are reviewed. Several develop-

ments in multistatic weather radar enabled by recent technological progress, such

as the widespread availability of high performance single-chip RF transceivers and

the proliferation of phased array weather radars, are then presented. First, a net-

work of compact, low-cost passive receiver prototypes is used to demonstrate a

set of signal processing techniques that have been developed to enable transmit-

ter / receiver synchronization through sidelobe radiation. Next, a pattern synthesis

technique is developed which allows for the use of sidelobe whitening to mitigate

velocity biases in multistatic radar systems. The efficacy of this technique is then

demonstrated using a multistatic weather radar system simulator.

xxi



Chapter 1

Introduction

Radar is among the most powerful and widely utilized technologies for remote ob-

servation of the atmosphere. However, it is not without limitations. Prominent

among these is the fact a single radar receiver is only capable of measuring the

component of scatterer motion projected onto a single vector in three-dimensional

space. For the most common case of a monostatic radar (a system in which the

transmitter and receiver are colocated), this single vector extends radially along the

pointing direction of the transmitter, giving rise to the familiar “radial velocity”

product. Atmospheric motion, however, occurs in three dimensions, all of which

are critical for understanding and predicting the weather. In order to completely

reconstruct the motion of a given scatterer, it is necessary to measure its velocity

along a minimum of three linearly independent vectors or to impose some additional

constraints on scatterer motion using fluid dynamics. The desire for complete three-

dimensional wind field reconstruction has, for this reason, given rise to the concept

of multiple Doppler observations, in which two or more radar systems observe a

volume of weather as simultaneously as possible in order to measure wind fields
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more directly and reduce dependence on theoretical constraints. One method of ob-

taining multiple Doppler observations is the use of a multistatic (single transmitter

/ multiple receiver) radar network. The ultimate goal of the work presented here

is to significantly decrease the expense and improve the practicality of these multi-

static networks through the development of new signal processing techniques. This

introduction seeks to contextualize that effort within the existing body of work on

multiple Doppler data and methods, and on the radar systems used to obtain these

types of measurements.

1.1 Multiple Doppler Observations With Monostatic

Radar

The concept of using a pulsed-Doppler radar for the purpose of measuring wind

speed was first documented in a brief 1960 Nature article by J.R. Probert-Jones [3].

This work merely notes the possibility that the radial component of wind velocity

can be measured. Work over the subsequent decade gradually generalized single-

radar wind field estimation using the concepts of Velocity-Azimuth Display (VAD)

[4] and Volume Velocity Processing (VVP) [5], which can be useful for determin-

ing the wind fields in the immediate surroundings of a single radar given certain

assumptions on the homogeneity of both the wind field and hydrometeor size / fall

speed in that area [6]. However, the problem of estimating the wind field in a region

remote to a radar system inevitably required the coordination of two or more sys-

tems. The first attempt at this problem was made by Lhermitte [7] for the simplified

case limited to two radars and an assumed negligible contribution of hydrometeor

fall speed to observed radial velocities. Armijo [8] expanded on this work by incor-

porating the continuity equation into a multiple Doppler analysis. This allowed for
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the assumption of known, rather than negligible, hydrometeor terminal velocities in

the two radar case, and imposed no such assumptions for the three radar case, for

which he also outlined an analysis procedure. Multiple Doppler wind field estima-

tion has continued to evolve in the years since the Armijo paper, however the basic

process remains recognizable. The radial velocities observed by a set of radars are

combined with information about hydrometeor terminal velocity (typically derived

from reflectivity) and/or the continuity equation. Innovation has come primarily

in the form of improvements in how the resulting systems of equations are solved

and in additional assumptions and constraints that can be added in order to reduce

error. The analytic solution developed by Armijo requires an integration of the con-

tinuity equation that is susceptible to undesirable levels of error accumulation [9].

In order to combat this effect, variational (least squares) methods have been em-

ployed. These allow for the solution of an overdetermined problem, meaning that

additional criteria such as smoothing constraints and multiple boundary conditions

can be used to fit an optimal wind field estimate [10]–[12]. Iterative techniques

have also been developed for the purpose of deriving solutions to these fitting prob-

lems that will satisfy the continuity equation in a Cartesian coordinate system [9].

While these methods have been useful in improving the accuracy of radar-based

wind field estimation, they do not address the fundamental challenges of temporal

variation and coordination between radars - both critical in the collection of useful

multiple Doppler observations.

Temporal variation in observed wind fields is problematic for multiple Doppler

analysis due to the fact that (typically) radial velocity measurements throughout

the analysis domain cannot be collected simultaneously. The wind field is evolv-

ing while the measurements are being collected, which poses particular problems

when attempting to apply the continuity equation or perform spatial interpolation

3



of sampled points onto a Cartesian grid. This effect is most dramatic between res-

olution volumes that are adjacent in elevation, due to the azimuth-first scanning

strategies of typical weather radars. This is a challenge even for the single-radar

variety of wind field estimation, but it is exacerbated in the case of multiple radars.

Not only should the data collected by each radar be contemporaneous with each

other, but simultaneity is also desired between the samples collected by each of the

different systems. While it is possible (although not necessarily simple) to coor-

dinate radar operation in such a way that differences in temporal synchronization

are minimized, exact agreement is quite impossible. Conical scans by two spatially

separated radars can only overlap to a limited extent, and the problem is only ex-

acerbated for larger networks. For this reason, advection correction techniques are

used to rectify mismatches in temporal sampling, both within and between radar

systems.

Chong et al. [13] suggest that temporal wind field variation associated with a

storm be thought of as having two components: intrinsic variation consisting of

evolution in the internal structure of the storm’s wind field, and advection con-

sisting of the storm’s translational motion due to some uniform background wind

field. Correction of the advection component is the most common and most readily

achievable way to reduce errors due to temporal variation in the wind field. How-

ever, sophisticated non-uniform advection correction methods have been developed

in recent years [14], [15] that seek to address the intrinsic variation of the wind

field. These techniques have been shown to improve advection correction perfor-

mance compared to simple correction of uniform translational motion. However,

they still suffer from limitations including sensitivity to the initial guess used to ini-

tialize the process of correction optimization, as well as the possibility of temporal

aliasing/non-uniqueness. In light of these limitations it is natural that engineering
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solutions to the temporal variation problem have been sought. The use of a single-

transmitter / multiple receiver radar network is one potential way to mitigate the

problem of inter-radar scan synchronization.

1.2 Multistatic Weather Radar

Bistatic radar systems, in which the distance between the transmitter and receiver

have a separation on the order of the target distance, have a long history in de-

fense applications [16]. Initially, a bistatic radar presented a less radical change

in architecture from a monostatic system as it does today, since the duplexer was

not invented until 1936 [16]. Transmitters and receivers were separate by neces-

sity until that point, even when colocated. Bistatic systems saw renewed interest

in the modern era due in no small part to the advantages they offer in the context

of electronic warfare. Most obviously, a transmitter inherently reveals its location,

making a colocated receiver vulnerable to directive jamming or physical attack. By

contrast, a bistatic receiver would remain hidden. Passive radar takes this concept a

step further. These systems consist solely of a receiver that observes targets using

signals transmitted by other radars or communications devices outside of its control.

Interestingly, these concepts were key to some of the earliest radar experiments,

which also had close ties to atmospheric science. The earliest experiments in radio

direction-finding conducted by Robert Watson-Watt utilized passive receivers to lo-

calize lightning strikes based on their associated microwave radiation [17]. When

the British government requested a proof of concept demonstration before autho-

rizing funding for the development of the first aircraft detection radar, Watson-Watt

showed that the idea was feasible through passive radar observations using radio

broadcast signals as an illumination source [18].

Interest in bistatic radar within the context of modern atmospheric radar be-
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gan in earnest in the late 60s. The original focus of research in this area was on

clear-air observations [19]. This is due to the fact that the reflectivity of a tur-

bulent medium has a strong positive dependence on forward scatter angle. This

allows clear-air observations using bistatic configurations at a much shorter wave-

length than what would be realizable using a monostatic system. Subsequent ex-

periments over the next few years produced bistatic measurements of scattering

intensity from the melting layer [20], as well as successful bistatic Doppler mea-

surements of precipitation [21]. The concept of using a single-transmitter / multiple

receiver network for the collection of multiple Doppler weather observations was

put forward in a 1993 paper by Wurman et al. [22]. The primary scientific advan-

tage of this methodology is that it solves the inter-radar scan simultaneity problem,

as the echoes from a given volume measured by each of the passive receivers orig-

inate from the illumination of that volume by the transmitter at a common instant.

This significantly reduces the complexity and potential for error introduced by the

advection correction schemes needed to perform wind field estimation. The second

major advantage of this architecture is economic; the cost of a multistatic network

is miniscule compared to that of a monostatic radar network with the same number

of sites. This is attributable to both the fact that the receivers do not need the elec-

tronics necessary to produce a powerful transmit signal, and that they do not need

the large antenna aperture necessary to form a highly directive beam.

The central problem of bistatic / multistatic radar design is how to achieve syn-

chronization and coherence between the transmitting and receiving systems. This

encompasses both carrier frequency synchronization, which must be extremely pre-

cise in order to obtain accurate Doppler information, as well as pulse timing syn-

chronization, which is necessary in order to accurately determine scatterer loca-

tions. There is a spectrum of approaches available for achieving this kind of syn-
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chronization. On one end of this spectrum is a set of cost and infrastructure inten-

sive hardware-based solutions. Due to the fact that two free-running local oscilla-

tors (LOs), which govern the carrier frequency at the transmitter and receiver, will

drift relative to each other at levels that can cause significant errors in Doppler ve-

locity estimation, some technique must be used to lock the LOs at the hardware level

or correct for this drift in post-processing. The more expensive hardware-based syn-

chronization solutions typically use GPS-disciplined oscillators in order to maintain

carrier frequency synchronization. This is often complemented by communication

of pulse-timing information over a dedicated communications channel between the

transmitter and receiver [22]. This type of approach has the advantage of simplicity,

precision, and low signal processing overhead. However, it has the disadvantages

of more expensive hardware, strict specifications on the transmitter and receiver

hardware, and potentially the need to tie receivers to a specific transmitter due to

the communications infrastructure. A less hardware intensive approach [23] may

involve using inexpensive hardware, for instance a free-running but high-quality

ovenized oscillator, that is capable of maintaining acceptable stability over some

temporary interval. The example in Wurman also eschews the use of a dedicated

communications channel and achieves pulse timing synchronization through a man-

ual tuning process in which the transmitting radar is pointed directly at the receiver

and a human operator adjusts both the pulse timing and frequency parameters. Used

in combination with a static pulse repetition time (PRT) at the transmitter, such a

system could have both the frequency and pulse timing synchronization manually

retuned at periodic intervals in order to ensure continued synchronization. This sys-

tem, while less restrictive than the first, still poses some non-trivial requirements on

hardware design and also requires significant human intervention, as well as con-

trol over the transmitter for the purposes of conducting this manual tuning process.
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Existing multistatic radars [22], [24]–[27] typically utilize the first technique which

relies on GPS disciplined oscillators.

While the advantages offered by multistatic weather radar in terms of scan si-

multaneity and system cost are undeniable, the architecture also presents some sig-

nificant challenges for the collection of scientifically useful data [22]. One of these

challenges is low sensitivity compared to monostatic radar. This problem arises

from the fact that multistatic weather radar receivers typically utilize low-directivity

antennas in order to allow for signal reception over a wide area without the need for

beam steering. In contrast, a monostatic weather radar will have the advantage of a

highly directive beam on both transmit and receive. The consequence of this is that

the area over which a multistatic receiver has adequate sensitivity for data collection

is relatively small. Another problem of multistatic networks is spatial variability in

both spatial resolution and Doppler resolution. For reasons that will be explained in

detail in Chapter 2, resolution in both space and Doppler frequency is significantly

degraded for each receiver near the baseline between itself and the transmitter. This

places a further limitation on the area over which a given receiver can collect use-

ful observations. These limitations are, however, not of particularly grave concern.

They are offset significantly by the extreme cost advantages offered by a multistatic

architecture. Receive modules are sufficiently inexpensive that both the sensitivity

and resolution concerns can be significantly mitigated merely through the instal-

lation of additional receivers. Sensitivity concerns can be mitigated through the

addition of receive modules at longer ranges from the transmitter, while resolu-

tion concerns can be mitigated by the strategic addition of receive modules within

the coverage area so as to achieve redundant coverage with non-overlapping trans-

mit/receive baselines.

A much more challenging and more frequently discussed problem is the issue
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of sidelobe contamination. An additional effect of low-directivity receiver antennas

is that the sidelobe levels will essentially be dictated by the one-way beam pattern

of the transmitter. This can lead to extreme sidelobe contamination (particularly

in areas of sharp reflectivity gradients) that can cause significant biases in velocity

measurements. The complex geometries involved in this problem make compensa-

tion through an increased number of receivers impractical. Some research on this

topic has focused on studying and quantifying the severity of the problem [28] in

order to allow for censoring based on contamination levels. Alternatively, Chong

et al. [29] has proposed a technique for variational correction of the measured ve-

locities based on precise knowledge of the antenna patterns. While this technique

appears to be reasonably effective, it would be preferable to remove the bias at its

source rather than through an approximate correction (much like correcting for tem-

poral variation in multiple Doppler observations). Kawamura et al. [30] suggest a

method to mitigate this effect with a receive antenna that has closely spaced narrow

grating lobes. This does reduce sidelobe effects, but greatly reduces the observable

area of the receiver to discrete non-contiguous angles. A more promising avenue

for mitigation of this issue is sidelobe whitening [28], [31] (which will be discussed

later), but this technique has been little studied up to this point.

1.3 Motivation

The objective of this work is to advance the state of the art in multistatic weather

radar through the development of signal processing techniques that allow receive

modules to automatically synchronize with any in-band coherent transmitter using

only the direct-path radiation and time-stamped pointing angles. This synchroniza-

tion method has a number of advantages over existing techniques that have relied on

some combination of expensive, highly stable oscillators and the ability to record
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and/or communicate information about precise pulse timings and transmit phases.

By removing restrictions on oscillator quality, it further reduces the cost associated

with receiver modules. More importantly, it removes many prohibitive restrictions

on what transmitter may be used. Most existing weather radar systems can serve

as viable candidate transmitters without any modification. This allows both further

cost savings, and the ability to utilize the receivers in conjunction with systems over

which one has limited or no access. To demonstrate this capability, the prototype

receivers developed over the course of the work detailed here utilize the WSR-88D

as the transmitter of opportunity. This capability has a number of implications.

It certainly offers an appealing avenue for multiple Doppler field research for in-

stitutions that may not have the considerable funding necessary to field multiple

monostatic radars of their own. The interchangeability offered by the relaxation of

requirements on transmitter hardware also makes this kind of system an intriguing

choice for use in large field campaigns involving many monostatic systems. Receive

units could theoretically switch seamlessly between transmitters involved in a given

campaign based on need. The freedom from bulky oscillators and communications

infrastructure also makes this type of receiver a good candidate for mounting on

drones or for permanent/semi-permanent installation in elevated positions. Both

of these strategies could be extremely useful for the collection of multiple Doppler

data in rough or cluttered terrain (such as the southeastern United States). The prac-

tical realities of beam blockage and locating feasible deployment locations in this

type of environment have historically made the collection of multiple Doppler data

in these areas extremely challenging.

One exciting possible application for this type of flexible synchronization tech-

nique is to enable studies of the sidelobe whitening method for the mitigation of

sidelobe contamination problem that has historically bedeviled multistatic weather
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radar. This technique was first proposed by Sachidinanda and Zrnić [31] for use in

monostatic systems and was subsequently identified as a promising avenue for mit-

igating the multistatic sidelobe problem by De Elia and Zawadski [28]. It involves

perturbing the sidelobes of the transmitting antenna beam pattern on each pulse in

order to decorrelate (and thereby mitigate) their contribution to Doppler velocity es-

timates. The challenge is, of course, that this kind of sidelobe perturbation is really

only practical for a phased array weather radar. Suitable prototype systems for im-

plementation of this type of technique are only now becoming available. Prominent

examples of suitable phased array radars include the Advanced Technology Demon-

strator (ATD) [32], Polarimetric Atmospheric Imaging Radar [33] (PAIR), and Ho-

rus [34]. If bistatic experiments demonstrating the efficacy of sidelobe whitening

could be carried out using one or more of these systems, it would mark a potentially

important development for multistatic weather radar. However, modification of the

transmit electronics of these complex systems in order to make them suitable for

use with more traditional multistatic weather radar hardware would be difficult or

impossible. This makes the technology described in this dissertation an ideal tool

for carrying out investigations into sidelobe whitening.

1.4 Outline

In Chapter 2, the fundamental theory of multistatic radars is outlined generally and

then extended to the case of distributed scatterers in order to describe the oper-

ation of multistatic weather radars. The signal processing scheme developed to

allow automated transmitter/receiver synchronization through sidelobe radiation is

described in Chapter 3. The hardware that comprises the prototype receiver mod-

ules that have been constructed and deployed in the Oklahoma City, OK metropoli-

tan area is also discussed in this chapter. Chapter 4 is dedicated to the presentation
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and discussion of weather observations using this prototype system. First, a set of

velocities measured by the prototype systems is checked for consistency agains the

radial velocities measured by KTLX, the nearest WSR-88D. Once this validation

is presented, several additional cases of more significant meteorological interest

are discussed. In Chapter 5, a new algorithm is described which makes the side-

lobe whitening principle applicable to multistatic applications. Then a multistatic

weather radar simulation framework is discussed and used to perform the first sim-

ulations of the possible benefits of sidelobe whitening for mitigation of sidelobe

contamination in multistatic weather radar networks. Finally, in Chapter 6, the con-

clusions of this work are summarized and a number of possible avenues for further

research are presented.
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Chapter 2

Multistatic Weather Radar

Fundamentals

A bistatic radar can be defined as a radar system in which the distance between

the transmitter and the receiver is on a similar order to the distance from a typical

scatterer to the receiver. A multistatic radar system is an extension of this concept

in which a group of at least two receivers with overlapping observation areas are

deployed in conjunction with a single transmitter. Alternatively, a multistatic sys-

tem can be implemented with a single receiver and multiple transmitters, but this is

not common for weather radar applications. Typically, data from a multistatic radar

network is processed by processing data from each transmitter / receiver pair, and

then using a synthesis process to extract additional information beyond what is ob-

servable by a single bistatic radar (such as three-dimensional velocity) and/or to use

the additional measurements to reduce error in estimates of scatterer properties. In

this chapter, descriptions of the fundamental physical properties and mathematical
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Figure 2.1: The fundamental geometry of a bistatic radar observation including the
transmitter range RT, receiver range RR, baseline length L, and bistatic angle β.
The arrows indicate the direction of radiation propagation along each path.

models of the multistatic radar observation process are provided.

2.1 Bistatic Radar Range Equation

In order to build an understanding of multistatic radar operation, it is useful to be-

gin with a discussion of how an individual transmitter/receiver operates. Figure 2.1

shows a representation of bistatic radar geometry in the bistatic plane. It also intro-

duces some key geometric variables that will be referenced frequently throughout

this work. L is the baseline length, or the distance between the transmitter and
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receiver. The transmitter range RT is the distance between the transmitter and the

scatterer under observation. Similarly, the receiver range RR is the distance be-

tween the receiver and the scatterer. Finally, the bistatic angle β is defined as the

angle between transmitter and receiver with a vertex located at the scatterer. The

bistatic range, defined as RB = RT + RR, is another fundamental geometric pa-

rameter which appears frequently in mathematical models of bistatic systems and

signals.

In a perfect analog to monostatic radar systems [35], a bistatic radar range equa-

tion may be derived which relates the power emitted by the transceiver to that re-

ceived by the receiver. The power density incident upon the scatterer is given by

Ss =
PTGTf

2
T(θs

T, φ
s
T)

4πR2
T

(W/m2), (2.1)

Where PT is the transmitted power, GT is the transmit antenna gain in the relative

direction of the scatterer, and f 2
T(θs

T, φ
s
T) is the power pattern of the transmitter

antenna evaluated at the angular position (θs
T, φ

s
T) of the scatterer with respect to

the transmitter . The radiated power is then reflected from the scatterer toward the

receiver. The total scattered power in the direction of the receiver is

Ps = Ssσbi W, (2.2)

Where σbi is the bistatic radar cross-section (RCS). This is a scatterer-specific prop-

erty determined by the composition and geometry of the scatterer. For a given

scatterer, this value will vary dependent on the relative angular positions of the

transmitter and receiver, as well as the polarization of the incident radiation. The
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power density at the receiver will then be

Sr =
Ps

4πR2
R

(W/m2). (2.3)

Given an effective antenna area Ae, the power measured by the receiver from a

scatterer located at its main beam peak is:

Pr = AeSr W. (2.4)

However, in the bistatic case, the relative position of the scatterer is unknown. This

received power is therefore scaled by f 2
R(θs

R, φ
s
R), the power pattern of the receiver

antenna evaluated at the angular position (θs
R, φ

s
R) of the scatterer with respect to the

receiver, yielding:

Pr = AeSrf
2
R(θs

R, φ
s
R) W. (2.5)

An antenna’s effective aperture can be related to its gain GR and operating wave-

length λ by Ae = λ2GR/4π. Substituting that expression and equations (2.1)-(2.3)

into (2.5), Pr can be expressed as:

Pr =
PTGTGRf

2
T(θs

T, φ
s
T)f 2

R(θs
R, φ

s
R)λ2σbi

(4π)3R2
TR

2
R

W. (2.6)

2.2 Spatial Resolution

Because the focus of this work is on multistatic weather radar, it is desirable to

generalize this radar range equation for point scatterers into a form appropriate for

distributed scatterers, once again in a manner exactly analogous to the manner in

which the same transformation is performed in the monostatic case. This is done

by integrating the equation for point scatterers over some volume determined by
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Figure 2.2: An example of the transmitter and receiver locations as the focii of an
ellipse of constant range (shown in purple). This ellipse is a cross-section of the
three-dimensional constant-range ellipsoid along the bistatic plane. For a scatterer
located at any point on this ellipse, the bistatic rangeRB = RT+RR will be constant.

the transmitter and receiver antenna patterns and the range resolution correspond-

ing to the transmitted waveform bandwidth [36]. However, due to the additional

geometric complexity of a bistatic system, the bistatic weather radar equation does

not lend itself to a simple closed form expression (even with such simplifications

as Gaussian beam patterns). In order to understand why this is so, it is necessary to

discuss the characteristics of bistatic radar resolution volumes. The range quantity

directly measured by a bistatic receiver is RB. This is obtained through the relation-

ship RB = c∆t where ∆t is the time delay between the instant a pulse is emitted

by the transmitter and when the echo from the scatterer arrives at the receiver. The

instant that the pulse is emitted is known through either dedicated communications

infrastructure between the transmit and receive sites, or through monitoring of the

direct path signal from from the transmitter. Using only the known value of RB, it

can be determined that the scatterer which produced the observed echo is located

somewhere on an ellipsoid with its focii at the transmitter and receive locations and

17



Figure 2.3: The range and beamwidth boundaries that form a resolution volume
in a typical bistatic weather radar. The concentric ellipses correspond to constant
bistatic range ellipses. The translucent cones represent the main beam widths of the
transmitter and receiver. The resolution volume formed by the intersection of the
transmit beam with the ellipses is highlighted by a black dashed line.

a major axis of RB. Figure 2.2 shows a cross-section of such an ellipsoid along the

bistatic plane (the plane passing through the scatterer, transmitter, and receiver lo-

cations). The three-dimensional ellipsoid corresponds to a revolution of this ellipse

about its major axis. Methods of determining the scatterer’s precise location on that

ellipsoid will be discussed in Section 2.3. However, precisely as in the monostatic

case, a given waveform only offers finite range resolution. Generally, this resolution

is
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∆r =
c

2βw
m, (2.7)

where βw is the bandwidth of the transmitted pulse. For a single-frequency, unmod-

ulated pulse, this resolution is

∆r =
cτ

2
m, (2.8)

where τ is the temporal length of the pulse. This means that a resolution cell is

bounded in range by two concentric ellipsoids representing two constant bistatic

ranges with a difference of cτ/2. One notable feature is that the “thickness” of

the shell formed by region between the constant range ellipsoids (measured along

the direction of the bistatic bisector) is not constant, but rather depends on bistatic

angle. There is not a convenient analytic expression for this variation although an

exact but implicit solution exists. That solution is derived in [35] along with the

following useful approximation:

∆R =
∆r

cos(β/2)
m. (2.9)

This varying resolution cell thickness can be observed in the constant-range ellipses

shown in Figure 2.3.

The cross-range boundaries of a resolution cell are defined by the antenna pat-

terns of the transmitter and receiver. Because a typical multistatic weather radar

architecture (including the one described in this work) uses a highly directive trans-

mit antenna and a receive antenna with a broad non-directive beam, the simplifying

assumption that the cross-range boundaries are defined exclusively by the transmit

antenna pattern is reasonable. An illustration of the geometry of such a resolution

volume is shown in Figure 2.3. It is important to note again that this representation

is merely a cross-section. In reality, the resolution volume is formed by the inter-
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section of the conical transmit beam with the space between the two constant range

ellipsoids determined by the range resolution associated with the transmitted wave-

form. At this point, it may become evident where the difficulty lies in converting the

bistatic radar equation to a distributed scattering form. In order to perform this con-

version, the radar cross section σbi is replaced with an integral of reflectivity η over

the resolution volume weighted by the normalized transmit and receive antenna pat-

terns f 2
T(θT, φT), f 2

R(θR, φR), as well as the range response |W (r)|2 associated with

the receiver transfer characteristic and transmitted waveform

σeff =

∫
V

f 2
T(θT, φT)f 2

R(θR, φR)|W (r)|2ηdV m2, (2.10)

where θT , φT and θR, φR are the angles associated with spherical coordinate sys-

tems centered at the transmitter and receiver, respectively. For the monostatic case

it is simple to make some reasonable approximations and arrive at a closed form

expression for this quantity in terms of η. This is because the resolution volume is

simple to represent in terms of spherical coordinates with the origin located at the

radar. Here, the antenna patterns are best represented by different spherical coor-

dinate systems centered on the transmitter and receiver, while the range weighting

function is best described by an elliptical coordinate system. The size and shape of

the resolution volumes also changes dramatically depending on range and bistatic

angle. This precludes the calculation of a convenient closed form solution for this

integral in terms of η, so this quantity will be represented as σeff(η, θT, φT, Rb). This

gives the bistatic weather radar equation the following form:

PR =
PTGTGRλ

2σeff(η, θT, φT, Rb)

(4π)3R2
TR

2
R

W. (2.11)

In the monostatic weather radar equation, the transmit portion of PR dependency
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on range is effectively canceled by the corresponding increase in resolution volume

size (while incident power density at the scatterers decreases as r2, the volume size

increases as r2). The same general effect does, in fact, occur here; the solid angle

of the isorange ellipsoidal shell intercepted by the transmitter beam is increasing

with distance. However, the mathematical expression of this effect is not so clean

as in the monostatic case. This is because the angle of incidence onto the shell is

also dependent on bistatic range, which affects the size of the intercepted volume.

However, the effect of this angular change approaches zero as the bistatic range

goes to infinity. It is important to recognize that even though the RT variable cannot

be precisely cancelled, bistatic weather radars are not somehow exempt from the

general effects of increasing volume size on distributed scatter.

In order to extract calibrated values of η, the meteorological quantity of inter-

est, from received power measurements using this range equation, the most viable

avenue would be numerical computation due to the complex resolution volume

geometries. However, the remainder of this work focuses almost exclusively on

Doppler measurements, so this will not be discussed in detail. However, this dis-

cussion of bistatic resolution volume variation and how it contributes to received

power will be helpful in understanding some of the experimental measurements of

received power shown in Chapters 3-4, as well as the simulation results in Chap-

ter 5. A final aspect of this resolution volume variation that can be inferred from

the discussion thus far, but deserves spatial mention, is the way that the resolution

volume size degrades appreciably in regions near the baseline between the transmit-

ter and receiver. This occurs due to loss of orthogonality between the beamwidth

boundaries and the range boundaries. Along the baseline, this reaches its most ex-

treme form. The entire baseline falls within a single resolution volume; this makes

sense as there is no change in bistatic range regardless of where an object falls
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Figure 2.4: Example of a degenerate resolution volume geometry in which the near
bistatic range boundary is defined by the system baseline and the far bistatic range
volume does not come into play, as the exterior volume edges are defined by the
transmit and receive beampatterns.

along that line. An example of the kind of resulting degenerate geometry that can

result from this effect is shown in Figure 2.4. In radar observations this will typi-

cally manifest as a roughly elliptical distorted “blob” caused by the presence of any

scatterers in the region subject to severe resolution volume degradation.

2.3 Echo localization

The simplest method by which to localize a received echo in a multistatic radar

system is to employ a highly directive antenna at either the transmitter or receiver,

and combine knowledge of the pointing angle of that antenna with the measured

bistatic range. The point at which the directive antenna’s beam intersects the el-

lipsoidal shell corresponding to the measured bistatic range is the target location.

Assume a three-dimensional Cartesian coordinate system in which the scattering
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Figure 2.5: Diagram of the geometric quantities used to calculate Cartesian scatterer
coordinates in (2.12)-(2.14).
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particle is located at (x, y, z), a non-directive receiver is located at (L, 0, 0), and

a highly directive transmitter is located at the origin. In this scenario, the particle

location can be expressed as [22]:

x =
R2

B − L2

2[RB − L cos(p)]
sin(aT) cos(eT), (2.12)

y =
R2

B − L2

2[RB − L cos(p)]
cos(aT) cos(eT), (2.13)

z =
R2

B − L2

2[RB − L cos(p)]
sin(eT), (2.14)

where aT and eT are the azimuth and elevation of the scatterer with respect to the

transmitter and p is the angle between the transmitter pointing direction and the

baseline between the transmitter and receiver. These quantities are illustrated in

Figure 2.5. The drawback of this technique is that processing cannot be performed

without timestamped pointing angles from the transmitter. Using the WSR-88D

as a transmitter of opportunity eliminates the possibility of real-time processing; it

must wait until the WSR-88D data are publicly released. There does exist a tech-

nique known as multilateration [35] which is used to localize scatterers observed

by a multistatic network without any knowledge of the radiation pattern or point-

ing angle of the transmitter. This technique, however, is not viable for use in the

observation of distributed scatterers.

To demonstrate why, first consider Figure 2.6, which depicts the observation of

a single scatterer by a multistatic network. Each receiver is capable of measuring

a constant-range ellipse corresponding to the scatterer location. The places where

these ellipses intersect represent candidate target locations. However, each pair of

ellipses intersects twice. One of these locations corresponds to the actual scatterer,

whereas the other is a spurious “ghost” target location. This ambiguity is resolved

through the use of three simultaneous ellipses. The only location at which all three

24



Figure 2.6: Echo localization through multilateration in a network consisting of a
single transmitter and three receivers. The purple ellipses represent isorange con-
tours corresponding to detection of the actual scatterer by each receiver. If only
two receivers are used, there will be two candidate detection locations where the
isorange contours intersect: one at the location of the actual scatterer and a “ghost”
represented by a white triangle. The third receiver is necessary for disambiguation.
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Figure 2.7: Complications of multilateration when multiple targets are present.
Ghost targets are represented by white triangles. The especially problematic ghost
target at which three ellipses intersect is indicated in red.

ellipses intersect is the true scatterer location. An alternative technique to resolve

these ambiguities is by checking for consistency in the Doppler information mea-

sured by each transmitter / receiver pair. This type of technique can work well

in the observation of a small number of discrete targets. However, there arises a

problem of target association that renders this method increasingly impractical as

the number of target-containing resolution volumes increases. A common weather

scenario in which distributed scatterers filling an area of hundreds or thousands of

contiguous resolution volumes represents an extreme case of this problem, which is

why it is necessary to rely on information about transmitter pointing angle for the

purposes of the system described in this work. Figure 2.7 depicts an illustration of

this association problem in the simplest possible two-scatterer case.

Additional ghost targets are created by intersections between the isorange con-
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tours corresponding to different scatterers. More problematically, it is even possible

to have locations where three contours can intersect to create a ghost, making it sig-

nificantly harder to distinguish from an actual scatterer. This issue is exacerbated

by the fact that real systems have only finite range resolution, as discussed in Sec-

tion 2.2, which means that the ellipses do not need to perfectly intersect to introduce

ambiguity. The number of these ambiguities increases combinatorially with an in-

crease in the number of scatterers present. Clearly, the presence of scatterers in tens

of thousands of adjacent resolution volumes, as one might expect to see in weather

radar applications, presents a completely intractable problem. Thus, we must rely

on pointing angle knowledge for the localization of echoes from distributed scatter-

ers.

2.4 Velocity Estimation

One feature that distinguishes bistatic from monostatic systems is the geometry

involved with the measurement of Doppler velocities. It is well known that the

Doppler velocity measured by monostatic systems is a radial velocity, or the pro-

jection of the scatterer velocity vector onto the vector which represents the pointing

angle of the radar system. Rather than measuring velocity along a radial corre-

sponding to either the transmitter or receiver, bistatic systems measure velocity

along the bistatic bisector. This is the vector bisecting the angle formed by the

transmit and receive lines of sight to the scatterer. The Doppler frequency shift fd

measured by a bistatic system is, as in the monostatic case, the first time deriva-

tive of the path length traveled by a pulse divided by its wavelength (assuming

that acceleration over the observation interval is negligible). However, the separate

transmit and receive paths must be accounted for in developing an expression for
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Figure 2.8: Relevant geometric quantities for modeling Doppler velocity measure-
ments using a bistatic radar.

that quantity:

fd =
1

λ

[
d

dt
(RR +RT)

]
Hz (2.15)

=
1

λ

[
dRR

dt
+

dRT

dt
)

]
Hz, (2.16)

where λ is the operating wavelength of the transmitting radar. Consider then the

geometry defined by Figure 2.8. Here, vs represents the total velocity of the scat-

terer, vbi is the projection of that velocity onto the bistatic bisector, and δ is the

angle between the scatterer’s direction of motion and the bistatic bisector. The time

derivatives of RR and RT can be calculated by projecting vs onto the transmitter and
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receiver lines of sight [35]:

dRR

dt
= vs cos

(
δ +

β

2

)
ms−1, (2.17)

dRT

dt
= vs cos

(
δ − β

2

)
ms−1. (2.18)

Substituting these quantities into (2.16) yields

fd =
vs

λ

[
cos

(
δ − β

2

)
+ cos

(
δ +

β

2

)]
Hz, (2.19)

=
2vs

λ
cos(δ) cos

(
β

2

)
Hz. (2.20)

To describe what this equation represents conceptually, it is useful to consider it

in three pieces. vs cos(δ) is the projection of the scatterer velocity onto the bistatic

bisector. 2/λ accounts for the two-way path length change and converts the velocity

in m/s to a frequency in rad/s through the division by λ. Finally, the cos(β/2)

is a scaling factor to account for spatial variation in the amount of path change

produced by a given movement along the bistatic bisector. The necessity of this

term is best illustrated through a consideration of the limiting cases. For a bistatic

angle of 0◦ in which the scatterer is colinear with the transmitter and receiver (but

does not lie between them), an infinitesimal scatterer movement by a distance dr

along the bistatic bisector results in a path length change of 2dr. However, given a

bistatic angle of 180◦ in which the scatterer lies on the baseline between transmitter

and receiver, the bistatic bisector is orthogonal to the transmit and receive lines

of sight. This means that a movement of dr along the bisector will produce no

path length change whatsoever. This fact can be generally summarized by stating

that the larger the bistatic angle becomes, the smaller the frequency shift induced
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by a given vbi. By extension, the larger the bistatic angle becomes, the larger the

unambiguous Doppler velocity becomes, as the unambiguous Doppler frequency

remains constant. However, because the frequency resolution of the receiver also

stays constant, this means that the velocity resolution of the system degrades for

large bistatic angles. This will occur in the region near the baseline, which is also

the area subject to severe loss of spatial resolution due to loss of orthogonality

between the isorange contours and transmitted beam.

2.5 Polarimetric Considerations

Another aspect of multistatic weather radar that must be considered is how polar-

ization affects scattering behavior. While there has been some interest in bistatic

weather radar polarimetry [37] for the purpose of discriminating and characterizing

hail, the system described herein is single-polarization and designed specifically for

wind field estimation. However, this aspect of bistatic weather radar is still impor-

tant to the design of the system as it is desirable to design the polarization of the

receive module antenna so as to optimize system performance. It has been shown

[38] that the scattering behavior of liquid precipitation can be accurately modeled

by assuming that each raindrop behaves as an electrically small dipole with a mo-

ment vector oriented along the polarization direction of the impingent radiation.

The consequences of this behavior are illustrated in Figure 2.9.

If the radiation is polarized along the z-axis, the RCS will be proportional to

sin2(θ) in a spherical coordinate system. In other words, the raindrop will have

nulls in its bistatic RCS on the axis corresponding to the polarization of the im-

pingent wave, and it will be omnidirectional about that axis. For the shallow ele-

vation angles at which most weather observations are carried out, this means that

H-polarized radiation will produce nulls in the scattered wavefront at 90◦ in azimuth
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(a)

(b)

Figure 2.9: Three-dimensional bistatic RCS of raindrop with impingent radiation
polarized along (a) the z-axis (V polarization) and (b) the y-axis (H polarization).
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relative to the transmitter direction, as illustrated in Figure 2.9b. Any receivers lo-

cated near those null angles will have degraded signal-to-noise ration (SNR) due to

the weak scattering. This is undesirable, as such geometries produce excellent spa-

tial and good Doppler resolutions, so it is not desirable to create blindness at those

angles. By contrast, V-polarized radiation creates nulls directly above and below

the raindrop. For most applications this is much more desirable, as scattering from

the raindrop can be observed well by a receiver at any azimuthal position.

2.6 Wind Field Estimation

Once measurements of vbi have been obtained, additional processing must be per-

formed to obtain an estimate of the observed wind fields in Cartesian coordinates.

The basic process is to utilize some objective analysis method to interpolate the

observations obtained by each radar system to a common grid and then to solve a

system of equations to obtain each component of the wind vector at every point.

While sophisticated techniques for wind field estimation such as those discussed

in Chapter 1.1 can be applied to multistatic observations as readily as they may be

applied to monostatic multiple Doppler data, such methods are beyond the scope of

this work, which uses essentially the same simple techniques outlined in [22].

Objective analyses are used to take data obtained by multiple instruments on

differing and irregularly spaced grids and estimate the state of those variables at

common, regularly spaced points. This is a key stage in the pre-processing of data

not only for wind field estimates such as those of interest here, but also for numeri-

cal weather prediction and corresponding data assimilation processes. While mod-

ern numerical weather prediction techniques typically use complex methods based

in optimum control theory [39] to perform these estimates, several of the earliest

and simplest interpolation-based techniques, such as the Barnes [40] and Cressman
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Figure 2.10: One-dimensional Cressman weighting function for Ri = 1.

[41] techniques, are still widely used for multiple-Doppler analyses. The process-

ing scheme used to obtain wind fields from multistatic observations collected for

this work utilizes the Cressman technique. In this method, the value interpolated to

each desired grid point is a weighted average of the available observations within

some radius of influence Ri. The Cressman weighting function is

W (d) =
R2
i − d2

R2
i + d2

, (2.21)

where d is the distance between the desired grid point and the observation being

weighted. The unit-radius Cressman weighting function in one dimension is shown

in Figure 2.10.

Once the Cressman method or another objective analysis scheme has been used

to interpolate the observations from each receiver to a common grid, the next step

is to solve for the Cartesian velocity components at each point. For a monostatic

radar system, the measured radial velocity vr can be expressed in terms of the zonal

velocity component u, the meridional component v, and the vertical component w
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as follows [22]:

vr = u sin(aT) cos(eT) + v cos(aT) cos(eT) + wp sin(eT) ms−1. (2.22)

A similar relationship exists for a bistatic velocity:

vbi =
sin(aR) cos(eR) + sin(aT) cos(eT)

2 cos(β/2)
u+

cos(aR) cos(eR) + cos(aT) cos(eT)

2 cos(β/2)
v +

sin(eR) + sin(eT)

2 cos(β/2)
w ms−1. (2.23)

It is clear that in either the monostatic or multistatic case (or a combination), at

least three independent velocity measurements are necessary to solve for the three

components of the wind field. For a multistatic network consisting of a single trans-

mitter (with accompanying receiver allowing it to function as an independent mono-

static radar) and multiple receivers, the corresponding system of equations can be

represented in matrix format as:



sin(a1) cos(e1)+sin(aT) cos(eT)
2 cos(β1/2)

cos(a1) cos(e1)+cos(aT) cos(eT)
2 cos(β1/2)

sin(e1)+sin(et)
2 cos(β1/2)

sin(a2) cos(e2)+sin(aT) cos(eT)
2 cos(β2/2)

cos(a2) cos(e2)+cos(aT) cos(eT)
2 cos(β2/2)

sin(e2)+sin(eT)
2 cos(β2/2)

...
...

...
sin(aN ) cos(eN )+sin(aT) cos(eT)

2 cos(βN/2)
cos(aN ) cos(eN )+cos(aT) cos(eT)

2 cos(βN/2)
sin(eN )+sin(eT)

2 cos(βN/2)

sin(aT) cos(eT) cos(aT) cos(eT) wp sin(eT)




u

v

w



=



vbi1

vbi2

...

vbiN

vr


, (2.24)
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where an and en are the azimuth and elevation relative to the nth receiver, vbin

is the bistatic velocity measured by each of the receivers, βn is the bistatic angle

corresponding to the nth receiver, and N is the total number of receivers in the net-

work. Note that Equation 3 in [22] conflicts with this result, erroneously omitting

the βn dependency. A proof of the equation presented here is given in Appendix A.

This system of equations can be solved through direct matrix inversion for the two-

receiver / one-transmitter or three-receiver cases; however, the overdetermined sys-

tem in which there are more than three available observations can also be solved in

the least-squares sense using the Moore-Penrose pseudoinverse. Wurman et al. [22]

showed that additional observations beyond the minimum of three help to reduce

error levels in the resulting wind field estimates. For typical network geometries in

which the receivers are distributed near ground level and have their antennas ori-

ented at shallow elevation angles, this error level reduction not only improves data

quality generally, but extends to lower altitudes the height at which vertical velocity

estimates will meet a given quality metric. As in the monostatic case, the vertical

velocity estimates are typically lower quality than the horizontal velocities, as the

shallow observation angles make them more sensitive to error. This is due to the

fact that at low altitudes, the vertical motion is nearly orthogonal to the bistatic

bisector at most azimuth angles (those not near to the system baseline).

The fundamental aspects of multistatic radar operation and performance laid

out in this chapter form the foundation for the remainder of this work. They are

necessary to understand and interpret the observations, both experimental and sim-

ulated, presented to demonstrate the system designs and signal processing tech-

niques discussed here. Furthermore, they add context in the sense that they provide

an understanding of the limitations and challenges that still remain for multistatic

weather radar data quality, even provided that such problems as sidelobe contami-
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nation can be significantly mitigated. Having provided this groundwork, it is now

possible to discuss a prototype multistatic weather radar network that has been de-

signed and deployed to demonstrate the feasibility of passive transmitter / receiver

synchronization.
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Chapter 3

Design of a Multistatic Weather

Radar Receiver

The drawbacks in cost and logistics associated with the use of a monostatic radar

network for multiple-Doppler data collection can be mitigated through the adoption

of a multistatic network architecture. However, these systems must address the key

challenge in the engineering of any multistatic radar: precise synchronization in

both carrier frequency and pulse timing between the transmitter and the distributed

receivers. Frequency synchronization is critical for accurate Doppler velocity es-

timation, while the pulse timing synchronization is needed to accurately localize

received echoes. Existing systems [24], [27], [28], [42], [43] use a combination of

GPS-disciplined oscillators and communications infrastructure linking the transmit-

ter and receivers to achieve this synchronization. While this is a simple and effective

way to achieve precise synchronization, it has disadvantages in the form of expense

and inflexibility. Byrd et al. [45], [46] proposed a passive radar module constructed
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Figure 3.1: This satellite image [44] shows the locations of the two passive receivers
at the Radar Innovations Lab (RIL) and University of Oklahoma Health Science
center (OUHSC), as well as the location of KTLX, the WSR-88D being utilized as
a transmitter of opportunity and also operating as an independent monostatic radar.
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using inexpensive components that achieves synchronization through monitoring of

the direct-path signal between the transmitting radar and the receiver. This type of

architecture significantly reduces the cost of a multistatic network by obviating the

need for a highly accurate oscillator and allowing the use of any in-band transmit-

ter as a radiator without modification or the establishment of any communications

infrastructure. The only cooperation necessary from the transmitting radar is the

availability of time-stamped pointing angle information. This feature is essentially

necessary even for monostatic weather radars. In addition to its favorable impact on

system cost, this also allows for an exceptional degree of flexibility. Receive mod-

ules of this type can be installed virtually anywhere and could be easily redeployed

to new locations or used with new transmitters. A two-receiver network comprised

of the modules described by [46] has been constructed by the Advanced Radar Re-

search Center (ARRC) at the University of Oklahoma and deployed in the southern

Oklahoma City, OK metropolitan area at the locations shown in Figure 3.1. These

receivers utilize KTLX, a nearby WSR-88D, as a transmitter of opportunity. The

operating parameters for KTLX are summarized in Table 3.1.

In order to obtain high-quality measurements using synchronization through

sidelobe radiation there were three signal processing challenges that had to be over-

come:

• Accurate frequency estimation of a small duty cycle signal in a strong multi-

Table 3.1: KTLX operating parameters.

Carrier Frequency 2.91 GHz
Peak Transmit Power 700 kW

Pulse Widths 1.57 and 4.71 µs
Bandwidth 637 and 212 kHz
Beamwidth ≈ 1◦

Peak Sidelobe Level -29 dB

39



path environment

• Robust quality control of estimated direct-path pulse locations in the presence

of both clutter and weather

• Adaptation to special transmit schemes used by the WSR-88D, specifically

Sachidinanda/Zrnić (SZ-2) phase coding and batch pulse repetition frequen-

cies (PRFs)

Section 3.1 reviews the signal processing methods that resolve these issues. Sec-

tion 3.7 describes the hardware design of the receiver module. Section 4.1 discusses

the radar network and presents a validation of its velocity measurements by eval-

uating the consistency of a retrieved two-dimensional wind field with the radial

velocity measurements of the WSR-88D.

3.1 Passive Radar Signal Processing

The process of synchronizing each receiver with the transmitting radar takes place at

three levels. First, there is the coarse synchronization needed to correctly calculate

the transmitter pointing angle associated with any detected echoes. This is achieved

by combining time-stamped pointing angle information from the transmitter with

measurements of direct-path pulse power collected by the receiver. The next level

of synchronization is pulse timing. The timing of each transmitted pulse’s arrival

at the receiver must be known to separate the data into intervals corresponding

to a single PRT and correctly determine the bistatic range associated with each

detected echo. Finally, carrier frequency synchronization must be achieved. This

is necessary to accurately calculate the Doppler velocities associated with observed

scatterers. The synchronization process is complicated by several special transmit

modes utilized by WSR-88D, the SZ-2 phase coding and batch PRF modes. The
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Figure 3.2: Flowchart depicting an overview of the signal processing scheme used
to translate the passive radar time-series into wind field estimates. CFAR detection
is followed by a quality control process based on PRF-fitting. The frequency offset
between transmitter and receiver is removed, and then estimates of power and ve-
locity are calculated and localized to Cartesian coordinates. Finally the estimates
are interpolated to a common grid and wind-field estimation is performed. Special
WSR-88D transmit modes (batch PRF and SZ-2 coding) are detected and handled
appropriately.

basic workings of this synchronization process were outlined in [46], but they will

be discussed in more exhaustive detail here. Once the synchronization process is

complete, bistatic velocity estimates are calculated and the data are localized to

Cartesian coordinates. Finally, the data are censored based on SNR and bistatic

angle and then interpolated to a uniform grid using Cressman analysis [41], at which

point it may be utilized for wind-field retrieval. Figure 3.2 shows a basic outline of

the complete signal processing scheme. It should be noted that the existing radar

network carries out this signal processing scheme offline, due to lack of availability

of real-time timestamped pointing angles from the WSR-88D, as well as the fact

that the software currently exists as a relatively slow MATLAB prototype.
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Figure 3.3: The approximate matched filter used to process the received time series
data. It was derived from experimental measurements of WSR-88D pulses. The
half-power width of the approximate filter is consistent with the 1.57µs nominal
pulse length. The index n assumes a sampling rate of 5 MSPS.

3.2 Coarse Time Alignment and CFAR

The first step in the signal processing chain is a coarse synchronization of the times-

tamped pointing angles provided by the transmitting radar with the timestamped

beam pattern measured by the receiver using the direct-path signal. The system

time available to the internet-connected receivers is typically within about a second

of the time indicated by the WSR-88D timestamps. However, that fraction of a

second of potential inaccuracy can result in significant errors in localizing echoes

and complicates the quality control process used for pulse-timing synchronization.

In order to mitigate this source of error an initial constant false alarm rate (CFAR)

detection is carried out on the time-series data collected by the receiver. Prior to

CFAR detection the data are passed through an approximate matched filter shown
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Figure 3.4: In this segment of data collected from a transmitted WSR-88D signal,
the rising edge of a direct-path pulse is located near sample 400. Note the drastically
higher power levels due to ground clutter and weather after the pulse in contrast to
the samples collected prior. This severity of the issue is more striking given the
context that the pulse itself is only about 8 samples long (1.57 µs at a 5 MSPS).

Parameter Value
Reference Samples 500
Guard Samples 10
Nominal PFA 1e-6
Minimum Pulse Samples 9
Window Type Lagging
Algorithm Cell-Averaged

Table 3.2: CFAR Parameters

in Figure 3.3.

The CFAR detector (see Table 3.2 for key parameters) uses a lagging window

to favor the detection direct-path pulses over strong close-in ground clutter that will

likely follow it in the received time-series, as illustrated in Figure 3.4. In short, this

is because any echoes originating from the transmitted pulse must arrive after the

direct path signal as they have a longer propagation path. Therefore, the samples

collected immediately before the arrival of a direct path pulse correspond to dis-

tant bistatic ranges from the preceding pulse. At those distances, the main beam /
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near-sidelobe heights will be large, and therefore ground clutter influence will be

minimal, and significant weather contributions are also less likely. Combined with

the reduced sensitivity of the multistatic receiver due to its low-gain antenna, this

means that these samples will typically represent near-pristine thermal/atmospheric

noise. In contrast, the samples immediately following the pulse represent low beam

heights at which ground clutter signals will be relatively strong. This will strongly

bias any estimate to determine a noise level using these samples. Therefore, to avoid

missed direct-path pulse detections, it is strongly desirable to use only the samples

preceding the sample-under-test to estimate noise. As the data collected are sig-

nificantly oversampled for the purposes of the frequency estimation process, each

direct-path pulse (as well as clutter and weather) will result in chains of detections.

The next processing step is to sift through the detector output and group each chain

of consecutive detections into a “pulse” with an associated time and peak power

level. A minimum length threshold is set to add a layer of protection against false

detections. Plotting the peak power vs. pulse time results in a series of consecutive

approximate beam pattern cuts taken across varying elevations, as shown in Fig-

ure 3.5. These patterns have not yet been quality controlled, so they contain some

missed pulses and false detection. The missed pulses are generally due to insuffi-

cient received energy for detection due to nulls in the transmitter antenna pattern,

while “false” detections are due to ground clutter or even weather. Additionally,

these pattern measurements are subject to saturation at the highest power levels,

which is why no main beam is clearly visible, even at the lowest elevation cuts.

Note that this saturation will destroy the phase information needed for frequency

offset removal, but this happens only near the transmitter / receiver baseline, where

any recorded data would be of dubious value anyway due to the degraded spatial

and Doppler resolution associated with that region. The saturation and ground clut-
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Figure 3.5: Measurements of direct-path pulse power over time. These pulses form
a repeating measurement of the WSR-88D beam pattern at changing elevation cuts
based on the mechanical tilt of the transmitter.
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Figure 3.6: This 0.44◦ elevation beampattern cut is taken from the same dataset
used to produce Figure 3.5. Note the saturation of the main beam as well as the
apparent irregularities in the sidelobe topography caused by strong ground clutter.

ter effects are clearly visible in the detailed beampattern cut shown in Figure 3.6.

Despite these flaws, this raw CFAR output is, however, sufficiently accurate for use

in the coarse synchronization step.

Each repetition of the measured beam pattern represents one azimuthal rotation

of the WSR-88D. The time-stamped pointing angles provided by the WSR-88D are

used to construct an approximation of the beam pattern that should be measured at

the receiver over the observation period. The cross-correlation between this theo-

retical pattern and the realized pattern is then used to estimate the delay between

the timestamps of the transmitter and the receiver. This delay is then corrected.
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Figure 3.7: High-level outline of the PRF fitting process used to quality control the
pulse locations estimated by the CFAR detector.

3.3 Standard PRF Fitting

As mentioned above, the output of the CFAR detector will contain false direct-

path pulses due to clutter and weather, as well as missed pulses due to nulls in the

transmitting radar beam pattern. In order to produce final products of acceptable

quality, it is essential to correct these errors. This is achieved through a process

(outlined in Figure 3.7) by leveraging some minimal knowledge about the operation

of the WSR-88D. The only real assumption needed is that the WSR-88D transmits

using either 1 or 2 PRFs at each elevation angle. It takes some additional knowledge

to deal with the two-PRF case, which will be discussed later; the single-PRF case

will be addressed presently. The basic guiding principle is to seek the sequence of

regularly spaced pulse locations that best fits the observed data. Once this is done,

detections that do not fit the sequence can be discarded as false, while locations

in the sequence that are not associated with nearby detections can be identified as

misses. The first step in this process is to make some initial guess at the number
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of receiver samples M ′ in each transmitter PRT. This is done by looking at the

observed distribution of delays between successive pulses and taking the peak of

that distribution (if there are 2 peaks, the data must be processed using the multiple

PRF method). This assumes that a significant proportion of the PRT intervals will

contain no false detections. This could potentially be violated by a sufficiently

cluttered environment, but such an instance has not yet been identified within the

several hours of weather observations collected by the network. Error in M ′ can be

measured by the function δ[n] = t[n] mod M ′, where t[n] is the vector of detected

pulse timestamps and n is the pulse index. A perfect estimate of M ′ would result

in δ[n] manifesting as a constant value (with some noise due to false detections and

misses), representing the scalar delay between the actual pulse train with period M ′

and a pulse train with period M ′ that has its first pulse located at n = 0. An error in

M ′ will give δ[n] the form of a noisy sawtooth wave with the following equation:

δ[n] = fn−M ′
⌊
fn

M ′

⌋
+ v[n], (3.1)

f =
M

M ′ − 1, (3.2)

where M is the actual number of samples-per-PRT, and v[n] is a function repre-

senting the errors introduced by misses and false detections. An actual measured

example of such a function is shown in Figure 3.8. It is evident through inspection

that the value of M could be obtained if the slope f of this sawtooth wave could

be accurately measured. However, this is rendered difficult by both the noise com-

ponent v[n] and the wrapping behavior. The task is rendered much easier through

conversion to a problem of frequency estimation. This is achieved by scaling δ[n]

to an amplitude of 2π, yielding a phase function φ[n]. This, in turn, can be used to

generate a complex exponential with frequency 2πf/M ′ and some amount of phase
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noise:

φ[n] =
2π

M ′ δ[n], (3.3)

g[n] = exp(jφ[n])

= exp

(
j

2π

M ′ (fn+ v[n])

)
.

(3.4)

The function g[n] can then be resampled to a uniform interval so that its fast Fourier

transform (FFT) may be calculated. The peak frequency of the resulting spectrum

corresponds to the phase function slope 2πf/M ′, from which the value of M can

be extracted. This is used to then recalculate a set of theoretical pulse locations with

the first pulse located at n = 0. An offset is then applied to minimize the distance

between each theoretical pulse location and the nearest detected pulse. This yields

the final set of estimated pulse locations. False detections may now be discarded

and missed pulses flagged. This information is then used to break the recorded

stream of time-series data into a matrix in the familiar fast time / slow time format in

preparation for the next step of frequency synchronization. An attentive reader may

note that the slope of the sawtooth wave could also be calculated by directly taking

its Fourier transform. This would, however, yield a spectrum symmetric about zero

with peaks at both the positive and negative frequencies corresponding to the slope.

Determining the sign of the slope would require disentangling the effects of time

delay on the phase of the obtained spectrum. It is simpler (and adequate) to convert

the wave to a complex sinusoid.
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3.4 Batch PRF Fitting

Batch PRF mode is utilized to gain both long-range surveillance data and close-

range unambiguous Doppler data within the same scan. Within each dwell, the

WSR-88D transmits a fixed number of slow PRF pulses followed by a larger, flexi-

ble number of fast-PRF pulses. The number of fast pulses is flexible due to the fact

that the rotation rate of the WSR-88D’s pedestal is not perfectly constant. There-

fore, to keep the angle traversed by the radar within each dwell constant, the WSR-

88D will add or remove pulses from the dwell as necessary according to the re-

alized rotation rate measured by its angular position sensor. This adds a unique

challenge to the problem of quality control through PRF estimation. This section

will detail two different solutions to this challenge, the version used for initial sys-

tem validation using stratiform precipitation observations, and a more robust but

computationally intensive method developed later.

3.4.1 Original Method

The first step in overcoming this challenge is to precisely align the receiver and

transmitter timing beyond what is achievable using only timestamped pointing an-

gles and the measured radiation pattern of the transmitter. This is done by identify-

ing the instants at which the received pulses transition from the slow to the fast PRF.

This metric is then converted to dwell length by taking the first difference of the time

samples in this vector. This measure of dwell length over time is then resampled to

a uniform time axis. This process is then repeated using the time stamps provided

by the WSR-88D, which are used to estimate dwell lengths and then resampled to

the same time axis as that used to process the receiver data. Thus, we have a mea-
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surement of the dwell lengths detected by the receiver xd(t), and those transmitted

by the WSR-88D xref(t), measured on a common time axis. A fine time align-

ment can then be achieved by calculating the cross-correlation function of these

two measurements and using the peak of the resulting signal to identify the delay

necessary to align the signals. However, there is an issue with this approach; gaps in

the received data caused by missed pulses can cause large measured dwell lengths

that severely bias the estimated cross-correlation. Therefore, rather than utilize a

traditional cross-correlation, the weighted normalized cross-correlation (WNCC)

method is used [47]. This allows the contribution of outliers in dwell length esti-

mate to be censored. A weight vector w(t) is assigned a value of 0 for all dwell

lengths above some threshold and 1 for all dwell lengths below the threshold. The

WNCC C(τ) is calculated as follows:

C(τ) =

[
w(t) · x̂d(t)

]
∗ x̂ref(t)√

w(t) ∗ x̂2
ref(t)

[
w(t) · x̂2

d(t)
] , (3.5)

x̂d(t) = xd(t)− x̄d, (3.6)

x̂ref(t) = xref(t)− x̄ref, (3.7)

where ∗ is the convolution operator and x̄d and x̄ref are the sample means of xd(t)

and xref(t), respectively. The offset between the receiver time axis and that recorded

by the WSR-88D is estimated by finding the lag corresponding to the peak of C(τ).

This offset is then removed such that the axes are aligned. Once this process is

complete, a theoretical pulse train Tref[n] is constructed based on the WSR-88D

timestamps. First, the number of slow pulses in each dwell S (which does not

change over the observation period) is estimated based on the peaks of the ob-

served distribution of delays between pulses. Starting with the first timestamp, S
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theoretical pulse timestamps are added to Tref[n] at intervals corresponding to the

longer of the two PRTs detected in the observed pulses. At this juncture, pulses are

added at an interval corresponding to the shorter of the two PRTs are added until

the next WSR-88D timestamp is exceeded. Then slow pulses are again added and

the process repeats. This continues until the pulses corresponding to all available

WSR-88D timestamps have been incorporated into Tref[n]. Because we are inter-

ested in the collected data primarily for Doppler analysis, the long PRT pulses are

of little use, and are therefore discarded. Due to limitations on the precision of the

WSR-88D timestamps, the first and last short PRT pulses within each dwell are

unreliable and are also discarded. The remaining short PRT pulses are then used to

calculate an error vector δbatch[n] as follows:

δbatch[n] = Td[n]−Nref{Td[n]}, (3.8)

where Td[n] is the vector containing timestamps of all detected pulses and the oper-

ator Nref denotes finding the nearest neighbor for all input values within the vector

Tref. This will produce a sawtooth wave structure similar to that produced in the

single PRT case, but in the time domain rather than the sample index domain. This

sawtooth wave will have the following form:

δbatch[n] = fTd[n]− T ′s
⌊
fn

Ts

⌋
+ v[n], (3.9)

f =
Ts
T ′s
− 1, (3.10)
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Figure 3.9: Rxample of measured pulse-to-pulse phase rotation distributions after
decoding using each of the 8 possible delays. A delay of 2 samples is clearly the
correct option, as shown by the low variance of the resulting phases.
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where Ts is the actual fast PRT and T ′s is the current estimate of the fast PRT. This

signal is converted into a noisy complex sinusoid as follows:

φ[n] =
2π

T ′s
δ[n], (3.11)

g[n] = exp(jφ[n])

= exp

(
j

2π

T ′s
(g[n] + v[n])

)
,

(3.12)

The estimated true value of Ts is then retrieved using Fourier analysis and the re-

ceived sample indices are corrected accordingly.

3.4.2 Improved Method for Precise Time Alignment

Although the precise time alignment technique using the WNCC method is ade-

quate in many cases, it can break down when there are particularly large numbers

of false detections due to weather and/or clutter. An elevated number of false de-

tections can lead to failures in identifying the intervals when the transmitter transi-

tions from fast to slow PRF. If enough of these transitions are missed, the WNCC

technique will have an insufficient amount of accurately measured dwell lengths

available, and will produce inaccurate results.

In order to rectify this problem, a more computationally expensive but robust

technique can be used. In this method, the theoretical timestamp vector Tref[n] is

constructed prior to any time alignment. The proper time delay ∆t with which to

correct Tref[n] is then estimated through the following optimization problem:

min
∆t

N∑
n=1

[
(Tref[n]−∆t)−Nd{Tref[n]−∆t}

]2
. (3.13)

In other words, a time delay ∆t is sought which minimizes the sum of the squared
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distances between each theoretical timestamp and its nearest detected counterpart.

It should be noted that as error in the initial PRF estimates has not yet been removed,

the total error will most likely not closely approach zero. Once this optimal time

offset has been determined, the process of batch PRF processing may proceed as

previously specified from (3.8).

3.5 Phase Decoding and Frequency Offset Removal

The other special WSR-88D transmit case is SZ-2 phase coding [48]. In this tech-

nique, a pulse-to-pulse phase code is applied to the transmitted signal to decorrelate

second-trip echoes, mitigating contamination of radial velocity estimates. SZ phase

codes are specified by two parameters M and n. The phase rotation applied to the

kth pulse is given as follows:

φk =
k∑

m=0

nπm2

M
, (3.14)

k = 0, 1, 2, ...,M − 1. (3.15)

In the case of the WSR-88D, n = 8 and M = 64. It is simple to replicate this phase

code for use in the decoding process, but before it can be removed from the received

pulses the correct delay for the code (i.e., what value of k corresponds to each pulse)

must be determined. This is accomplished by testing the set of possible delays and

finding the solution that minimizes pulse-to-pulse phase variance in the decoded

signal. Fortunately, this code has the property that when shifted by M/n pulses,

it will produce a constant phase shift across all pulses. As we do not care about

the absolute phase shift between the transmitter and receiver, this is an acceptable

result. Therefore, we only need to test 8, rather than 64, possible delays. Figure 3.9
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shows some representative results of this decoding process. Once the signal has

been successfully decoded, frequency synchronization may proceed.

Accurate frequency synchronization is critical: a 1-ppb error in synchronization

between the transmitter and receiver corresponds to a 0.15 m/s error in Doppler ve-

locity estimation for a monostatic radar operating at 3 GHz. The most direct method

for estimation of the frequency offset between the transmitter and the receiver is to

take the Fourier transform of the received signal and estimate the peak frequency.

However, due to multipath effects, this will result in intolerable errors in frequency

estimation. Fortunately, by exploiting our knowledge of the signal properties, the

effects of aliasing, and some minimal assumptions on the stability and accuracy of

the transmitter and receiver LOs, we find that the use of pulse-pair processing to es-

timate the frequency offset produces acceptably accurate results through a process

that is massively more computationally efficient than FFT processing.

To understand this conclusion we must first develop a mathematical model for

our received signal spectrum. First assume a transmitter sending a pulsed signal to

a receiver over an infinite time interval. The signal amplitude and link gain is unity

and there is an angular carrier frequency offset of ω′ between the two systems. This

yields the following model for the received baseband signal:

f(t) = exp(−jω′t)
∞∑

n=−∞

rect
(
t− nTs

τ

)
, (3.16)

where Ts is the transmitter PRT and τ is the pulse width. The Fourier series repre-
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sentation of this signal is as follows:

f(t) = D
∞∑

n=−∞

sinc
[
τ

2π
(nω0 + ω′)

]
exp(nω0t), (3.17)

sinc(x) =
sin(πx)

πx
, (3.18)

D =
τ

Ts
, (3.19)

ω0 =
2π

Ts
. (3.20)

This yields the following amplitude spectrum:

|F (ω)| = D
∞∑

n=−∞

sinc
[
τ

2π
(nω0 + ω′)

]
δ(ω − nω0). (3.21)

This spectrum has the form of a sinc function, centered at ω′, with a bandwidth

corresponding to the reciprocal of τ and sampled at intervals of 2π times the PRF

of the signal. However, any real signal we measure will be of finite length L. As-

suming we use a unit amplitude rectangular window, the final amplitude spectrum

will have this form:

|F (ω)| = DL
∞∑

n=−∞

sinc
[
τ

2π
(nω0 + ω′)

]
sinc

[
L

2
(ω − nω0)

]
. (3.22)

This results in each of the sample impulses being replaced by a sinc function with

a width inversely proportional to the length of the observation window (generally

on the order of 10−6 times the width of the sinc function corresponding to the pulse

bandwidth). Observe that the frequency offset could be accurately estimated by

calculating the position of the spectrum’s peak. Now, consider the effect of a catas-

trophic multipath scenario. Figure 3.10 shows a simulated pulse train signal both

with and without a strong multipath component at a range delay of 450 m. The mul-
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Figure 3.10: Example of a simulated pulse train spectrum, both with and without a
strong multipath interferer. Note that the peak of the macroscopic spectrum shown
in the top plot shifts significantly due to the change in mainlobe shape induced by
the multipath signal, but the locations of the individual “samples” visible at the
finer scales shown in the lower two plots are virtually unaffected. This compares
favorably with the measured data in Figure 3.11.
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Figure 3.11: Example of two consecutive measured pulse train spectra with varying
multipath. It shows the same effect as in the simulations of Figure 3.10: significant
peak movement at a macroscopic scale but extreme consistency at finer scales. Note
that the smoothing and rapid rolloff of the expected sidelobes in the spectrum are
due to low-pass filtering within the transceiver.
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tipath changes the shape of the spectrum main lobe, causing it to become bimodal

with peaks that no longer have a known relationship to the underlying frequency

offset. However, an examination of the spectrum on a finer scale shows that the lo-

cations of the “sample” peaks have shifted by only a negligible amount due to their

extremely small width relative to the gradient of the distortion induced by the mul-

tipath, as shown in the bottom two plots of Figure 3.10. Figure 3.11 demonstrates

this same phenomenon using data actually measured by one of the receivers.

This property, that the “samples” remain essentially stationary in the presence

of multipath, is exploited to acheive robust frequency offset estimation. The sam-

ples exist at the frequencies ω′ ±mω0 where ω0 is the PRF in radians per second.

Accurately estimating the location of any one of these samples is equivalent to esti-

mating the correct frequency offset plus or minus some integer multiple of the PRF.

This error carries over directly to estimation of the Doppler frequency. However,

we know due to aliasing that an error of some exact integer multiple of the PRF

will result in all Doppler velocities aliasing back to their correct values. Therefore,

the location of any spectrum sample could be estimated and used to obtain correct

Doppler velocities. The only drawback to choosing the “wrong” sample is a that

the matched filter will now be mismatched by some frequency offset. Fortunately,

the actual offsets between the receiver and transmitter LOs are in practice small (on

the order of 10 kHz) compared to the bandwidth of the pulse (on the order of 1

MHz). Figure 3.12 shows the relationship between sensitivity loss and frequency

estimation error for a 1.57 µs pulse, the most common pulse length utilized by the

WSR-88D. It is evident that errors of the magnitude that are observed in practice

lead to negligible sensitivity loss. This allows us to estimate the location of a sam-

ple within the frequency range of ±ω0/2 and use that for processing. This can be

accomplished through pulse pair processing, using effectively the same expression
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conventionally used to calculate Doppler frequency:

ω′ =
1

Ts
arg R̂(Ts), (3.23)

R̂(Ts) =
1

N

N−1∑
n=0

V ∗[n]V [n+ 1], (3.24)

where V [n] is the IQ signal measured at the receiver over a single dwell, N is the

number of pulses in the dwell, and R̂(Ts) represents the estimated autocorrelation

of the received signal at a lag of Ts.

There is one final step to obtain an accurate estimate of the frequency offset

between the the transmitter and the receiver. The frequency estimate that has been

obtained at this point contains an undesirable component that must be removed

before the correction is applied to the time-series data: the Doppler shift caused by

the rotation of the antenna. This motion will cause a sinusoidally varying apparent

Doppler shift in the direct-path signal. However, it does not affect the weather echo

frequency (as the main beam is always orthogonal to the motion of the antenna),

so it should not be part of our correction. To correct for this effect, the rotational

Doppler shift must be calculated at each azimuth and removed from our estimate

of the frequency offset. The distance from the WSR-88D phase center to its axis of

rotation is approximately 4.8 m [49], [50], and its angular velocity and position are

determined by the time stamped pointing angles used elsewhere in the processing

scheme. Once the rotational Doppler shift has been compensated, the frequency

offset is estimated and removed from the time series data corresponding to each

pulse. At this point, the data are ready for pulse pair processing to obtain Doppler

velocity estimates.

Once the synchronization process has successfully been carried out, the time

series is organized using the estimated pulse locations into slow time/fast time for-
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Figure 3.13: Example azimuthal pattern of the X-band proxy antenna used to study
the effects of pattern phase on velocity estimation biases.

mat. Using the WSR-88D timestamped pointing angles, the fast-time vectors are

then grouped into dwells corresponding to a traversal of the 1◦ beamwidth of the

transmitter. Estimates of received power and Doppler frequency are retrieved from

each range bin within a given dwell using basic pulse-pair processing [36]. These

estimates are then localized in Cartesian space (relative to the transmitter) using

(2.12)-(2.14).

3.6 Transmit Antenna Pattern Phase Effects

One theoretically possible source of frequency error is the phase of the antenna pat-

tern. The significance of this effect has been noted in other phase-sensitive weather
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applications such as the estimation of refractivity gradients using ground clutter

observations [51]. Antenna radiation patterns do not merely change in amplitude

with angle, but also change in phase. This will introduce some unknown error into

the signal measured by the receiver that could only be corrected with relatively pre-

cise knowledge of the antenna pattern characteristics. This frequency estimate error

will take some combination of two possible forms. The first possibility is frequency

bias, caused by some non-zero average rate of antenna pattern phase change over

the frequency estimation interval. The second possibility is spectrum broadening

caused by zero-mean variation in the rate of antenna pattern phase change. This

will not bias frequency drift estimates, but rather will increase their variance. In

addition to the characteristics of the antenna pattern, the exact nature of the phase

errors will also be influenced by the mechanical rotation rate of the transmitting an-

tenna. For instance, in the case of a zero-mean, but slowly varying transmit antenna

phase-modulation, the rotation rate could be slow enough that even though phase is

zero-mean over the entire antenna pattern, the particular subsection of the pattern

captured in a single observation could introduce a significant frequency estimation

bias.

The favorable results of the system validation using weather measurements de-

scribed in Chapter 4.1 suggest that this is not a major source of error. Ideally, this

could be verified through measurements of an actual WSR-88D antenna. However,

this is difficult in practice. Accurate antenna phase measurements require coher-

ence between the transmitter and receiver. Such measurements for the WSR-88D

are not publicly available, and there is no way to separate antenna phase effects

from the LO frequency drift that we are trying to measure using passive receiver.

As a proxy for a study of the actual WSR-88D antenna, measurements of an X-band

parabolic dish antenna with a similar electrical size to that of a WSR-88D were col-
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across the measureed antenna pattern range.

65



lected at the RIL. An example pattern measurement from this antenna is shown in

Figure 3.13 These measurements were then used to simulate the errors in frequency

estimation that would result from antenna pattern phase over a range of rotation

rates and elevation angles used operationally by the WSR-88D. The results of this

study are shown in Figure 3.14.

The study assumed an 0.5 s data collection interval and the velocities shown

correspond to a bistatic angle of 0◦. The plotted points correspond to the worst-

performing measurement interval across the available antenna pattern range. The

obtained values are well within acceptable error levels for multiple Doppler mea-

surements. While these velocity error values will scale inversely with cos(β/2), the

bistatic angle would have to become quite large before these errors are seriously

detrimental. At such large bistatic angles, the spatial resolution degradation would

likely be a larger concern for measurement accuracy than these antenna pattern

phase errors. This finding is consistent with the favorable system validation results

presented in Chapter 4.1

3.7 Receiver Module Hardware

The presented bistatic radar hardware places an emphasis on simplicity, low cost,

and a compact form factor. The primary components of the radar system are an

antenna, a radio frequency (RF) front-end, a transceiver, and a small processing

computer. As in existing multistatic weather radars, this system uses a fixed, rel-

atively non-directive antenna. Currently, the systems use a series-fed V-polarized

microstrip patch array. The beampattern, shown in Figure 3.16, has an azimuthal

3 dB width of approximately 47.5◦ and a width in elevation of approximately 17.5◦.

It should be noted that the 3 dB beamwidth is not any sort of practical limit on

the region in which useful data can be measured, particularly in azimuth where the
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Figure 3.15: Block diagram of the passive radar hardware.

beampattern rolloff is gradual. Echoes from well beyond the 3 dB points can be

measured with sufficient SNR for high quality velocity measurements. Affixed to

the back of the antenna is a weatherproofed enclosure containing the low-noise am-

plifier (LNA) and a bias tee. The LNA is separated from the rest of the RF front-end

to be as close as possible to the antenna, maximizing SNR. The bias tee allows the

LNA to receive power over the RF cable used to carry the received signal back to

the main electronics enclosure.

The main enclosure is weatherproofed and climate controlled. It is outfitted with

an ethernet port for system control and data transfer, as well as a 120 VAC power

input, and two type-N ports that lead to the two channels of the RF transceiver.

Within the box is the remainder of the RF front-end, consisting of a second bias

tee used to transmit direct current to the LNA, a bandpass filter, a limiter, and an

attenuator (to ensure that the maximum power output of the limiter could not dam-

age the digital transceiver). After the limiter, the signal passes into the two-channel
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Figure 3.16: Normalized radiation patterns of the receiver antenna measured in the
ARRC far-field chamber. As the antenna is V-polarized, the E-plane corresponds to
elevation, and the H-plane corresponds to azimuth.

digital transceiver. The transceiver is based on the Analog Devices 9361 integrated

circuit and was developed at the Advanced Radar Research Center. This transceiver

is, in turn, controlled by an Udoo x86 Ultra single board computer. A simplified

schematic of this system is shown in Figure 3.15 and an example is shown in Fig-

ure 3.17 as installed on the roof of the Radar Innovations Laboratory at the Uni-

versity of Oklahoma. The total cost of this system, even when produced in small
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Figure 3.17: An installed system on the roof of the Radar Innovations Lab at the
University of Oklahoma.
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quantities, is less than $7,000. There is significant margin for improvement on this

figure. $5,000 of the total cost is the RF transceiver, which was chosen based on

the facts that it was developed in-house, removing the need to deal with vendors for

purchasing or support, and that suitable software for performing data collections

had already been developed. Use of a commercially available software defined

radio, while necessitating some significant software development efforts, could sig-

nificantly drive down the price (as well as the size) of the receiver. One promising

alternative, for example, is the bladeRF 2.0 micro [52] at a cost of as little as $480.

In its current form the main electronics enclosure has a size of 14”x11”x5”, which

could be reduced not only by a more compact transceiver, but by integration of the

discrete RF and power supply components into purpose-built printed circuit boards.
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Chapter 4

Weather Observations With a

Multistatic Network

4.1 Experimental Validation of Velocity Measurements

On April 6, 2019 the prototype passive receiver network was used to collect obser-

vations of stratiform precipitation as it passed through the viable observation region

of the network. Figure 4.1 shows the SNR and bistatic radial velocities measured

by each of the receivers, as well as the radial velocity and reflectivity measured by

KTLX. A few important features of these data should be noted. First, both spatial

resolution and velocity resolution degrade with proximity to the baseline between

the transmitter and the receiver. This leads to the high reflectivity “blobs” along

these baselines with accompanying unstable velocity estimates. Clutter near these

baselines is particularly troublesome, as it spreads out across ellipses of constant

bistatic range, and is harder to filter without destroying the weather signal due to

the degraded velocity resolution. This effect is particularly salient in the OUHSC

data. Additionally, it should be noted that returns are visible over what might be a
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Figure 4.1: Raw estimates of range-corrected power (not reflectivity) and bistatic
Doppler velocity obtained by the passive receivers, along with reflectivity and radial
velocity estimates from KTLX for comparison. The black contour illustrates the
region selected for analysis based on the censoring criteria described in Section 4.1.
The data shown were collected using a 4◦ elevation KTLX scan on April 6, 2019 at
16:11 UTC. Note that a ground clutter filter has not yet been applied to these data,
in order to more clearly show the logic behind the censoring boundaries.
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Figure 4.2: Retrieved horizontal wind vectors over the analysis region.

surprisingly large area despite antennas with fixed pointing directions (north from

the RIL and south from OUHSC). This is due to the extremely gentle rolloff of

the antenna pattern beyond the nominal 47.5◦ beamwidth. The poor front-to-back

isolation of the antenna even allows clear echoes to be received from the backlobes

(although much of this, particularly near the radar, will be badly contaminated by

ground clutter as the antenna has a mechanical elevation tilt of about 9◦ that points

the backlobes into the ground).

In order to validate the velocity measurements collected by the passive radars,

an experiment similar to those carried out in [53] was conducted. The two passive

radars were used to carry out a horizontal dual-Doppler analysis, with the assump-

tion that at low elevations, the contribution of vertical velocity to measured radial

velocities would be small. The resulting horizontal wind vectors were then pro-

jected onto the vectors representing the radial velocities measurable by KTLX. This
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Figure 4.3: Actual KTLX radial velocity field and the estimate of the KTLX radial
velocity obtained by projecting the retrieved horizontal wind field onto the vectors
representing the pointing direction of KTLX at each point.
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was then compared to the radial velocities that KTLX actually measured.

The first step in this process was to select a region of the available data suitable

for analysis, as shown by the black contours in Figure 4.1. This was determined

by three primary criteria: SNR (minimum of 3 dB), bistatic range (minimum of

25 km for the RIL receiver and 34 km for the OUHSC receiver), and antenna ori-

entation (all points in the backplanes of the receiver antennas are censored). The

reason for the SNR criterion (more specifically the minimum SNR at a given point

between the two passive receivers) is straightforward. Low SNR would preclude

accurate velocity estimation. This criterion most strongly influenced the western

and northern boundaries of the censored region. The bistatic range criterion is used

to eliminate the areas of poor spatial and Doppler resolution near the baselines, as

well as to assist in rejecting problematic ground clutter. It should be noted that the

OUHSC baseline was censored out to a larger bistatic range; this is due to the fact

that its region of problematic ground clutter happens to extend further (the final ring

of ground clutter used to determine this boundary is visible primarily in the veloc-

ity data). The bistatic range criterion is responsible for the ellipsoidal boundaries

along the eastern edge of the analysis region. Finally, data in the backplane of each

antenna was excluded to avoid the necessity of sorting what areas are too contami-

nated by the ground to be salvageable. The influence of this criterion is seen in the

relatively straight southern border of the analysis region.

After the data were censored, the points within the analysis region were pre-

processed. The data from KTLX and each receiver were first passed through a

two-dimensional median filter in order to remove any speckle-like noise in the ve-

locity images. The data were then interpolated to a uniform grid using a Cressman

average with a radius of influence of 0.8 km. At this point the the two-dimensional

velocity retrieval was performed by solving the following the two dimensional ana-
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log of (2.24) for u and v at each point in the analysis region:

 sin(a1) cos(e1)+sin(at) cos(et)
2 cos(β1/2)

cos(a1) cos(e1)+cos(at) cos(et)
2 cos(β1/2)

sin(a2) cos(e2)+sin(at) cos(et)
2 cos(β2/2)

cos(a2) cos(e2)+cos(at) cos(et)
2 cos(β2/2)

u
v

 =

vbi1

vbi2

 (4.1)

This calculation yields the horizontal wind field depicted by the quiver plot in

Figure 4.2. While qualitatively consistent with the observed storm motion during

the data collection period, the wind field does not provide any quantitative insight

into the accuracy of the retrieved velocities. In order to obtain a real metric of accu-

racy, the estimated wind vector at each point is projected onto the along-beam direc-

tion of KTLX to obtain an estimate of the radial velocity that the WSR-88D should

have measured. That estimated radial velocity is shown in Figure 4.3 alongside the

measured KTLX radial velocity. Again, these results look qualitatively reasonable,

but it is difficult to assess the magnitude of the differences between the two sys-

tems, particularly along the zero isodop. These error magnitudes are shown clearly

in Figure 4.4. The root squared error (Figure 4.4a) falls below 1 ms−1 through much

of the analysis domain, rising to 3-3.5 ms−1 in some regions. Within the main body

of the analysis region, these errors appear to correlate with gradients in reflectivity,

which is consistent with expectations; it is in these areas that varying spatial res-

olution and higher sidelobes in the passive systems are likely to cause the largest

differences in velocity estimates. The root mean squared error over the analysis do-

main is 1.25 ms−1. The scatterplot in Figure 4.8b offers an alternative visualization

of the error. This error has non-negligible components of both bias (0.78 ms−1)

and variance (0.94 m2s−2). The bias is most likely driven primarily by sidelobe

contamination effects as discussed in Section 4.3. These error levels are similar to

those obtained in [54] using a multistatic weather radar synchronized through direct
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Figure 4.4: Results of the KTLX radial velocity retrieval are depicted here as (a)
spatial map of the root squared error in the retrieved estimate and (b) scatterplot of
the relationship between the measured and retrieved values. The blue line in (b)
represents a theoretical exact match between retrieved and measured values.
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communication between transmitter and receiver. Note that if one looks closely, it

is possible to notice some evidence of clustering or coherence within the scatterplot.

This is attributable partially to the fact that the spatially sampled points are not in-

dependent; the data were oversampled initially (to varying degrees due to varying

bistatic resolution volume size), and the Cressman averaging process uses overlap-

ping regions of influence. Even amongst samples that are far enough apart to have

a reasonable degree of independence, but are still located in the same general area,

they are likely to have relatively similar radial velocities and similar biases due to

experiencing sidelobe contamination originating from the same areas. This will,

again, lead to the appearance of coherence within the scatter plot. It also appears

that there is some dependence of bias on the measured KTLX velocity. Note, for

example, the region of positive bias between -5 and 0 m/s. This is, however, mis-

leading. What is actually occuring is that both the measured velocity and the level

of bias depend on the spatial region being observed. Therefore, if a given spatial re-

gion is suffering from some sort of bias due to sidelobe contamination, for instance,

then the range of radial velocities associated with that region will be biased.

4.2 Convective Observations

The observations discussed above were extremely useful for their intended pur-

pose of verifying the validity of the experimental transmit/receive synchronization

method used in the multistatic network. Stratiform rain subject to relatively uniform

advection represents a near-best-case scenario in terms of avoiding serious sidelobe

effects. This is because large gradients in both reflectivity and radial velocity are

largely absent from the phenomena under observation. The observations presented

in this section place that aspect of system performance under a higher degree of

stress.
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Figure 4.5: Raw estimates of range-corrected power (not reflectivity) and bistatic
Doppler velocity obtained by the passive receivers, along with reflectivity and radial
velocity estimates from KTLX for comparison. The black contour illustrates the
region selected for analysis based on the censoring criteria described in Section 4.1.
The data shown were collected using a 4◦ elevation KTLX scan on May 25, 2019
at 2:58 UTC. Note that a ground clutter filter has not yet been applied to these data,
in order to more clearly show the logic behind the censoring boundaries.
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Figure 4.6: Retrieved horizontal wind vectors over the analysis region.

On May 25, 2019 observations of a system of scattered convection were col-

lected as it passed through the multistatic network observation area. Figure 4.5

shows data collected by KTLX and by each of the passive receivers during a 4◦ ele-

vation scan at 2:58:05 UTC. This elevation was chosen to match that of the dataset

used for the system validation discussed in Section 4.1, so as to facilitate as direct

a comparison as possible. As in Figure 4.1, the black contours in Figure 4.5 repre-

sent the analysis region selected for study, based on the exact same geometric and

SNR-based criteria utilized for the previous dataset. The differences in the weather

within the two observation regions are most easily discerned through examination

of the KTLX data, which lends itself to much more intuitive interpretation than the

raw bistatic observations from the two passive receivers. The relevant differences

between the two scenarios are increased variation in both reflectivity and velocity

in the convective case.
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On a large scale, both the stratiform and convective data sets contain moderate

reflectivity gradients. For the stratiform data, these gradients are likely produced

primarily by the melting layer, as evidenced by the distribution of an elevated reflec-

tivity region in an arc about the transmitter location (with an interior edge distance

that would correspond to a reasonable melting layer height of approximately 2 km).

The western edge of the analysis region captures some of this bright band. One

feature of particular interest is the area of weak echoes within this band centered at

approximately -5 km meridional / -30 km zonal distance in the KTLX data shown

in Figure 4.1. This represents the area of the analysis region most susceptible to

sidelobe contamination, which will be discussed in more detail later in the section.

Within the convective data, by contrast, reflectivity variation is produced by the

distribution of convective cells and the space between. This, in turn, has produced

more widespread reflectivity gradients, although it is not as intuitively obvious what

areas are likely to be subject to particularly severe contamination problems.

Large scale examination of the KTLX radial velocity data suggests roughly uni-

form advection, as evidenced by the approximately linear geometry of the 0 m/s

isodop. The greatest deviation from this structure is apparent in the bight-like north-

ward incursion of the negative velocity region toward the western edge of the analy-

sis region (which happens to roughly coincide with the aforementioned area of weak

echoes). The non-uniformity of the velocity field captured in the convective data-

set is immediately obvious through the extreme non-linearity of the 0 m/s isodop.

Significant non-uniformity is also apparent within the analysis region, where radial

velocities tend to become significantly more negative with decreasing radial dis-

tance to the transmitter in the southern portion of the analysis region and exhibit a

roughly north/south gradient in the northern portion.

Precisely the same analysis procedure was carried out on the convective case
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Figure 4.7: These plots show the actual KTLX radial velocity field as well as the
estimate of the KTLX radial velocity obtained by projecting the retrieved horizontal
wind field onto the vectors representing the pointing direction of KTLX at each
point.
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Figure 4.8: Results of the KTLX radial velocity retrieval are depicted here as (a)
spatial map of the root squared error in the retrieved estimate and (b) scatterplot of
the relationship between the measured and retrieved values. The blue line in (b)
represents a theoretical exact match between retrieved and measured values.
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as was used for the stratiform data. After median filtering and Cressman averag-

ing, the simplified wind field estimation procedure was carried out, the results of

which are shown in Figure 4.6. As predicted based on the raw KTLX radial ve-

locity data, this wind field is much less heterogeneous, making it generally more

likely that any sidelobe contamination will actually result in velocity biases. The

estimated and actual KTLX radial velocities, are shown in Figure 4.7. Again, good

general agreement is demonstrated. As in the stratiform case, however, the color

scale makes it difficult to quantify differences visually. The differences (errors)

between the estimated and actual KTLX radial velocities are shown in Figure 4.8.

As expected, the estimated and actual velocities are highly correlated, with a root

mean squared error of approximately 1.8 m/s. Note that the scatterplot shown in

Figure 4.4 exhibits more obvious evidence of local error coherence, likely due to

sidelobe contamination playing a more dominant role as a root cause of error. This,

as previously mentioned, can produce correlated velocity errors even between grid

points that should represent statistically independent samples based on the Cress-

man average radius. While still within an acceptable range, this does represent an

increase in RMSE of approximately 50% over the stratiform case. Higher error lev-

els in this instance are concentrated in the northern part of the analysis region, which

is somehwhat counterintuitive, as more convective activity and associated gradients

are found in the southern portion of the analysis region. However, a closer analysis

of the KTLX reflectivity observations and the range-corrected received power from

the passive receivers makes a convincing case that the primary culprit for the local

regions of elevated error in both analyses is, in fact, sidelobe contamination.
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4.3 Discussion of Sidelobe Contamination in Collected

Data

The simplest technique for the identification of regions of potential sidelobe con-

tamination in bistatic receiver data is a comparison between the range-corrected

power structures observed by the receiver to the reflectivity structures observed by

the transmitting radar. It is obvious from a cursory examination of these data in Fig-

ures 4.1 and 4.5 that differences between the two passive systems and KTLX are

significant. The first and most obvious reason for this is that range-corrected power

and reflectivity are not the same quantity. To convert range-corrected power to re-

flectivity at the bistatic receiver would require correction for the receiver antenna

pattern and for the resolution volume size at each point in the observed weather

field. While this would be possible in principle, it would require detailed mea-

surements of each individual receiver antenna to perform accurately. As accurate

reflectivity measurements were not a primary interest of this work, that task was

not undertaken. However, the effects of the receiver beam shape should be small

within the central portion of the main beam, where its gradients are small. The next

factor is varying spatial resolution, which is significant primarily near the trans-

mitter receiver baseline. At favorable bistatic angles, this factor should not have a

large effect on the shape of observed reflectivity structures. The final factor that can

significantly affect the observed reflectivity fields is sidelobe contamination.

Based on these facts about the possible causes of reflectivity / received power

structure differences between the transmitter and the passive receivers, it can be

reasonably stated that major differences in structure that occur a) reasonably far

from the system baseline and b) well within the main beam of the receiver can

confidently be attributed to sidelobe contamination. As such, these regions will
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therefore be susceptible to velocity measurement biases. It bears repeating that

whether and to what degree these biases actually materialize is entirely dependent

on how different the Doppler spectrum of the integrated sidelobe signal is from

that of the main beam signal. Both the convective and stratiform datasets serve to

illustrate these effects.

Figure 4.9 shows magnified versions of the reflectivity and range-corrected

power observations from the stratiform dataset with an overlay of the constant-range

ellipses corresponding to each transmitter/receiver pair. Notice that the primary

structural difference between the KTLX images and each of the passive receiver

images is the absence of the weak echo region in the western half of the analysis

region. This area meets the general criteria of having a small-moderate bistatic an-

gle and being located in the central portion of the observation region. It is therefore

reasonable to assume that the “filling in” of this area in the passive data is due to

sidelobe contamination. This idea can be further tested for plausibility through the

examination of the bistatic range contours for each system. Sidelobe contamination

in a given volume must originate from the same constant-range ellipsoidal shell

as the resolution volume being contaminated. It can be readily observed that the

bistatic range contours for both systems which pass through the weak echo region

continue on through the bright band / melting layer to both the north and south.

This creates strong reflectivity gradients within the constant range shell, leading to

significant sidelobe contamination. There are also significant structural differences

along the southern edge of the analyis region in the data collected by the RIL re-

ceiver. This likely reflects the fact that this area is at an extremely steep elevation

angle relative to the receiver. Therefore, signals from this area are attenuated some-

what due to the receiver pattern. The RIL receiver contours which run through this

region are largely filled with weather, which is sufficient to significantly contam-
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inate the attenuated signal collected from the area of interest by the RIL receiver.

The most significant areas of sidelobe-induced velocity error are therefore expected

to occur through the western and southern regions of the analysis area. Referring

back to Figure 4.4, it is evident that this is, in fact, the case. Note, however, that

even though the sidelobe contamination is quite severe, the consequences for veloc-

ity estimation are relatively mild thanks to the homogeneity of the observed wind

field.

Similarly, Figure 4.10 shows magnified versions of the reflectivity and range-

corrected power observations from the convective dataset with an overlay of the

constant-range ellipses corresponding to each transmitter/receiver pair. Here there

is actually relatively little structural difference throughout the image corresponding

to the OUHSC receiver. The RIL receiver, however, has some significant differ-

ences. The most significant of these occurs at the northern end of the analysis

region. Here, any reflectivity structure is masked by contamination from the con-

vection to the west of the analysis region. Note that a similar effect in the OUHSC

data was likely mitigated by the fact that the contaminating weather region lies at

an extreme elevation angle and partially in the backplane relative to the receiver,

and its bistatic range contours do not pass through as much high-reflectivity area

as those of the RIL receiver. The RIL receiver suffers from another contamination

region at the southeastern edge of the analysis area. Here, the region of interest is

again attenuated due to its extreme elevation angle relative to the receiver, while the

contaminating weather lies closer to the center of the main beam. Based on these

observations, there are possibilities of significant velocity error at both the northern

and southeastern edges of the analysis area. Referring to Figure 4.8, there is heavy

error at the northern end, but the southwestern region gave relatively unblemished

wind retrieval results. Figure 4.6 can shed some light as to why this area escaped

87



(a) (b)

(c) (d)

Figure 4.9: a) KTLX H-polarized reflectivity with analysis region outline and
bistatic range contours corresponding to the RIL receiver b) KTLX H-polarized
reflectivity with analysis region outline and bistatic range contours corresponding
to the OUHSC receiver c) RIL receiver range-corrected power with correspond-
ing bistatic range contours and analysis region outline d) OUHSC receiver range-
corrected power with corresponding bistatic range contours and analysis region out-
line. See Figure 4.1 for a wider view of the same observation set.
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significant consequences of contamination. Note that the retrieved wind vectors

are near orthogonal to the RIL/KTLX bistatic bisector, aligning much more closely

with the OUHSC/KTLX bisector. This is supported by the much larger velocity

measured in this area by the OUHSC receiver, as shown in Figure 4.5. Therefore,

the wind vector estimate here was dominated by the relatively pristine data collected

at the OUHSC receiver.

In summation, the data collected by this prototype network certainly demon-

strates that the experimental transmit/receive synchronization method outlined in

Chapter 3 works effectively, as even small synchronization errors would result in

catastrophic errors in velocity measurements that are clearly not present here. How-

ever, as is expected, observations of both stratiform and convective weather systems

exhibit convincing evidence of the presence of significant sidelobe contamination.

The next chapter looks to the future and examine a potential technique for mitigat-

ing this effect in future multistatic networks.
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(a) (b)

(c) (d)

Figure 4.10: a) KTLX H-polarized reflectivity with analysis region outline and
bistatic range contours corresponding to the RIL receiver b) KTLX H-polarized
reflectivity with analysis region outline and bistatic range contours corresponding
to the OUHSC receiver c) RIL receiver range-corrected power with correspond-
ing bistatic range contours and analysis region outline d) OUHSC receiver range-
corrected power with corresponding bistatic range contours and analysis region out-
line. See Figure 4.5 for a wider view of the same observation set.
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Chapter 5

Sidelobe Whitening Simulation and

Analysis

As documented in prior work on multistatic weather radar [28], [42], as well as in

Chapter 4 of this work, sidelobe contamination is a major contributer to velocity

estimation error using multistatic systems. One potential method of mitigating this

error is sidelobe whitening, which was proposed for use in multistatic applications

in [28], but was first developed for monostatic systems by Sachidananda and Zrnić

[31], [55]. The basic idea of the Sachidananda/Zrnić (SZ) sidelobe whitening al-

gorithm is to synthesize a pair of array patterns with equal mainlobe phases, but

with sidelobe phases that are 180◦ out of phase with each other. By then switching

between these array patterns according to a pseudorandom phase code, the Doppler

spectrum contribution of sidelobe signals is whitened, but signals from the main-

lobe retain their original degree of coherence. Thus, while sidelobe leakage will

still make a significant contribution to the level of received power, the induced
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Doppler velocity bias will be greatly reduced. It is worth noting that this concept

bears some similarities to sidelobe manipulation techniques developed later for the

purpose of secure communications, which seek to send a desired sequence of bits

in the direction of one or more intended receivers while broadcasting a distorted or

scrambled sequence elsewhere. One general technique for acheiving this goal is to

transmit two independently weighted signals simultaneously: an “information” sig-

nal with a traditional directive beam pattern pointed toward the intended receiver,

and an “interference” signal with a pattern having a null in the intended receiver

direction and a roughly uniform power level elsewhere [56], [57]. This technique

does not offer the kind of precise sidelobe phase control offered by the technique

presented in this chapter. More importantly for the multistatic radar application,

it also relies on an array architecture which allows for the injection of two signals

with independent spatial weighting, which is not a typical feature in PAWRs. An-

other similar method is directional modulation [58], [59], which manipulates array

weight phases in order to produce a desired bit sequence in one or more directions

of interest while maximizing bit error rate in some number of undesirable direc-

tions. Not only does this technique not offer the precise sidelobe control given by

the sidelobe whitening algorithm, but it does not guarantee any particular shape

for the transmitted power pattern. While this is not necessarily a problem in many

communications applications, it is not acceptable for most radar use-cases. A vari-

ation on this idea is presented by Snow and Chappell [60], who perform directional

modulation through the transmission of independent waveforms on each element of

an array, producing a decorrelation of sidelobe contributions at the matched filter

output. The use of such a system assumes the ability to transmit independent wave-

forms at each element, which, like the ability to inject an independently weighted

signal, is not a common feature (although at least one forthcoming PAWR, Horus
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Figure 5.1: High-level summary of the proposed pattern synthesis technique.

[34], would be capable of implementing this method). It also would result in sensi-

tivity issues, as again the power pattern is not controlled (varying in this case over

the pulse duration).

However, the SZ algorithm has limits to the achievable level of sidelobe phase

control, requiring a two-way pattern to achieve the necessary 180◦ phase modula-

tion for a binary-coded whitening scheme. For a multistatic application, only the

transmit pattern is available for modulation, presenting a problem to which this

chapter offers a solution. The details of the new pattern synthesis process are laid

out in Section 5.1.

5.1 Pattern Synthesis for Sidelobe Whitening

The additive beamforming weight perturbation calculated using the SZ technique

will shift the sidelobe phases on each side of the mainlobe by ±45◦. The two-

way sidelobe phases are therefore shifted by ±90◦ relative to the main lobe. A
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pulse-to-pulse phase shift of 180◦ in the two-way sidelobes can then be achieved by

reversing the order of the weights across the array on successive pulses. It would, in

principal, be possible to follow a similar approach to the monostatic problem. One

could seek an additive component to one particular set of conventional weights that

would cause a 180◦ difference between the sidelobes on each side of the mainlobe.

However, a major drawback of this approach is that it is unnecessarily overcon-

strained. By seeking an additive perturbation to a single fixed set of weights, one

is specifying not only the desired sidelobe phases and amplitudes, but their precise

locations and shapes (as dictated by the initial set of weights). These unnecessary

constraints lead to significant degradation in pattern synthesis performance. In [31]

this problem was mitigated by using non-uniform array spacings to create initial

array factors with sidelobe topography more conducive to the whitening process.

However, using such a technique experimentally would require a purpose-built ar-

ray, which is often not practical. This concern motivated a search for a new, less

constrained approach that would allow satisfactory whitening results using a uni-

form array.

The pattern synthesis technique proposed here for multistatic sidelobe whiten-

ing is a variation on the method of alternating projections [61]–[63]. The basic

concept of this method is to take an initial set of element excitations, and transform

it to a beampattern. The beampattern is then minimally adjusted such that every

point falls within some desired maximum amplitude envelope. A new set of ex-

citations is then calculated by finding the values that best approximate the pattern

in a least-squares sense. If there are any constraints on the element excitations,

such as a maximum phase difference between adjacent excitations, the excitation

vector is adjusted to meet those requirements. This process is then repeated itera-

tively until converging to a solution that meets all constraints (insofar as possible)
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in both the excitation and beampattern domains. What differentiates the technique

proposed here from a typical application of this method is an additional set of phase

constraints in the beampattern domain. The modified technique is outlined in Fig-

ure 5.1 and described in detail throughout the remainder of this section.

The first step in implementing the alternating projections technique is to estab-

lish a set of linear equations linking the element excitations to the beampattern. For

the purposes of this chapter, it is assumed that the desired beampattern (and there-

fore the corresponding excitation vector) is symmetric, which has the convenient

effect of reducing the number of independent variables in the system of equations

by a factor of two. Given this symmetry, the excitations and beampattern for a uni-

form linear array (ULA) with 2N elements can be completely described as follows:

F(k) = Cx(k), (5.1)

C =


cos(ψ1u1) . . . cos(ψNu1)

... . . . ...

cos(ψ1uL) . . . cos(ψNuL)

 , (5.2)

ψn =
π(2n− 1)d

λ
, (5.3)

ul = sin(θl), (5.4)

where F is an L× 1 vector containing sampled beampattern values, x is an N × 1

vector containing element excitations, L is the number of sampled angles in the

beampattern, n is the element index, l is the sample angle index, θ is the sampled

angle of incidence measured from broadside, d is the element spacing, λ is the

operating wavelength of the array, and (k) denotes the iteration index within the

alternating projections algorithm. Due again to the symmetry assumption, sample

values of u for all results produced in this paper were chosen as dense uniformly
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Figure 5.2: Example whitening pattern synthesis results for a 152 element λ/2-
spaced ULA. The mask used is an approximation of the WSR-88D azimuth pattern
at 0◦ elevation. Coding phase is the phase difference between the two synthesized
patterns to be used in the binary whitening scheme. Note that there is some devia-
tion from ideal results (0 in the mainlobe and π elsewhere), particularly within the
first sidelobe and in the pattern nulls.

spaced points on the interval [0, 1].

5.1.1 Phase and Amplitude Constraints

Once the excitation vector has been transformed to a beampattern, that pattern must

then be modified to fit the phase constraints necessary for whitening, and the ampli-

tude constraints imposed by some specified radiation pattern envelope. The phase

constraints are imposed first. In considering what these phase constraints should

be in order to achieve the desired whitening effect, first note that the ith sidelobe

phases of a typical (e.g., real-valued, symmetric, and non-negative) array taper are:

φ(i) = π[1 + (−1)|i|]. (5.5)

In other words, it alternates symmetrically between 0 and π, beginning with a phase

of π in the first sidelobe. The SZ binary algorithm synthesizes a pattern in which the
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sidelobe phases of the one-way pattern in the positive u direction are rotated by π/4

radians, while those in the negative u direction are rotated by −π/4 radians. The

sidelobe amplitude remains unaffected. This yields the following sidelobe phases:

φ′a(i) =


π[1 + (−1)|i|] + π

4
, i > 0

π[1 + (−1)|i|]− π
4
, i < 0

, (5.6)

where the sign of i indicates whether the sidelobe lies in the negative or positive u

direction relative to the mainlobe. The two-way sidelobe phases are then given as:

φ′a2(i) =


2π[1 + (−1)|i|] + π

2
, i > 0

2π[1 + (−1)|i|]− π
2
, i < 0

(5.7)

=


π
2
, i > 0

−π
2
, i < 0

. (5.8)

The excitation function corresponding to this beampattern will be designated xa(n),

while the beampattern will be designated Fa(u). Consider the excitation function

xb(n) = xa(−n). By the time-reversal property of the Fourier transform, we know

that its frequency response will be Fb(u) = Fa(−u). The phases of its two-way

sidelobes will then be:

φ′b2(i) =


−π

2
, i > 0

π
2
, i < 0

. (5.9)

Thus, the phase difference between the two-way sidelobes of Fa(u) and Fb(u)

at any point has a magnitude of π, as is desired for a binary whitening scheme. In

order to implement a similar algorithm for the purposes of multistatic whitening,
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a pattern pair must be synthesized that has a one-way sidelobe phase difference

magnitude of π. This will be achieved through the synthesis of a beampattern with

the following sidelobe phases:

φc(i) = (−1)|i|
π

2
. (5.10)

From the corresponding excitation function xc(n) and beampattern Fb(n), and uti-

lizing time reversal and complex conjugation properties of the Fourier transform,

we can create a new excitation function xd(n) = x∗c(−n) which will have frequency

response Fd(n) = F ∗c (n). This corresponds to sidelobe phases of:

φd(i) = (−1)|i|−1π

2
, (5.11)

which produces a phase difference of magnitude π at each point in the sidelobe re-

gions. As we have already constrained the excitation vectors to be even-symmetric,

the calculation of the second excitation vector can be simplified even further to

xd(n) = x∗c(n). The selection of an even-symmetric rather than an odd-symmetric

(as in the SZ method) sidelobe phase modulation bears some discussion. Firstly,

the odd-symmetric phase modulation would not allow symmetry assumptions on

the excitation vector and would therefore increase the dimension of the alternating

projections optimization problem. Secondly, the even-symmetric modulation re-

sults, in practice, in smaller residual phase gradients across the central portion of

the main beam compared to the odd-symmetric modulation. These gradients result

in some small, but nevertheless undesirable, spectral spreading effect on signals

within the main beam.

In order to impose the phase constraint described by (5.10), the beampattern

samples in vector F are broken into segments with boundaries defined by local min-
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ima in amplitude. Given sufficiently dense pattern sampling, these minima should

correspond to beampattern nulls. The first segment (assuming samples of u range

from zero to 1) will contain the mainlobe region and should be discarded, as its

phase should not be modulated. For each of the remaining segments, every indi-

vidual sample in the ith segment is adjusted in phase to φc(i) while preserving its

amplitude. The amplitude constraints are defined by some L × 1 mask vector M,

containing the maximum beampattern amplitude for each value of ui. This defines

both the desired main beam shape and sidelobe amplitude. This can be specified

arbitrarily; however, specifications that exceed the limits of what is physically re-

alizable (e.g., a main beam narrower than that of a uniformly weighted array) will

yield poor results. Each element of F with an amplitude greater than the corre-

sponding element of M has its amplitude adjusted to the maximum specified by

M. Together, application of these constraints allows us to construct a modified

beampattern vector G(k):

G
(k)
l =



F
(k)
l , |F (k)

l | ≤ |Ml| and i = 0 (mainlobe)

F
(k)
l

|Ml|
|F (k)

l |
, |F (k)

l | > |Ml| and i = 0

F
(k)
l exp

[
j(φc(i)− ∠F (k)

l )
]
, |F (k)

l | ≤ |Ml| and i 6= 0

F
(k)
l exp

[
j(φc(i)− ∠F (k)

l )
] |Ml|
|F (k)

l |
, |F (k)

l | > |Ml| and i 6= 0

(5.12)

where G(k)
l , F

(k)
l , and Ml represent the lth elements of G(k), F(k), and M re-

spectively.
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5.1.2 Least-Squares Excitation Retrieval

Once the adjusted beampattern vector G(k) has been generated, it is next necessary

to retrieve the excitation vector that most nearly reproduces the desired pattern in a

least-squares sense. However, an unweighted least-squares solution will generally

yield unsatisfactory results. Typical beampatterns for radar applications have suf-

ficiently low sidelobe levels relative to the mainbeam that an unweighted solution

will tend to focus on accurate reproduction of the mainbeam shape at the expense

of unacceptable inaccuracy in meeting target sidelobe levels. It is desirable to be

able to tune this performance tradeoff, which can be accomplished through the use

of a weighting matrix:

W = diag(M)α. (5.13)

The mainbeam/sidelobe tradeoff is adjusted through the scaling parameter α, where

more negative values of α place more emphasis on meeting amplitude and phase

specifications in the sidelobes at the expense of main beam shape fidelity. For the

examples provided here, an α of -0.485 was used. Using this weighting matrix, our

least squares solution for the excitation vector can be formulated as:

x(k+1) = (C′WC)−1WG
(k)
. (5.14)

The new excitation vector can then be converted to its corresponding beampattern

using (5.1), and this process can be repeated until x converges to a stable solution.

In this implementation of the algorithm, convergence is declared when the criterion

ε drops below some specified threshold:

ε =
(x(k+1) − x(k))H(x(k+1) − x(k))

x(k)Hx(k)
(5.15)
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Figure 5.3: Evolution of the convergence criterion ε during the synthesis of the
pattern shown in Figure 5.2. It crosses the threshold value of 1 × 10−12 after 80
iterations.

5.1.3 Modified Two-Dimensional Implementation

The final modification that will be proposed here for the SZ algorithm is for the

extension of the whitening technique to two dimensions. The method suggested

in [31] is to simply implement the coding along a single dimension of the array,

while leaving the taper along the orthogonal direction constant from pulse to pulse.

This whitens the principal sidelobes along the dimension with the coded taper, and

also whitens the non-principal sidelobes in the four quadrants of the array pattern,

but leaves the principal sidelobes along the dimension of the unperturbed taper un-

whitened. This is suboptimal, as large gradients in reflectivity are possible across

both azimuth and elevation. It is possible, however, to achieve whitening through-
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out the entire sidelobe region of a two dimensional array. This can be achieved by

encoding the tapers along the two array dimensions using two uncorrelated pseu-

dorandom whitening codes cu and cv. For the simulations that follow, Gold codes

[64] were used, as they have excellent auto-correlation properties, as well as the

property that the exclusive OR of two Gold codes is also a Gold code. In this way,

every area in the sidelobe region of the two-dimensional array will experience one

of three possible codes (cu,cv,cucv), each of which is an effective whitening code.

This is illustrated in Figure 5.4.

Figure 5.4: Map showing which of the three possible whitening codes is applied to
each sidelobe region of a sample two-dimensional array pattern.
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Figure 5.5: Results of a 64 point whitening code used in conjunction with the syn-
thesized pattern. Doppler spectrum peak attenuation is the reduction in the max-
imum Doppler spectrum value for an impingent clutter signal at each angle. As
expected, near zero attenuation occurs in the mainlobe.

5.2 Whitening Algorithm Results

The algorithm described in Section 5.1 was used to synthesize a pair of whitening

patterns using a mask based on an approximation of a 0◦ elevation cut of the WSR-

88D radiation pattern. The array manifold used to synthesize the pattern is a 152-

element λ/2 spaced ULA. This number of elements was chosen because a 152×152

element square array has a total aperture of 57.76 m2. This is the closest possible

approximation to the WSR-88D aperature of 57.16 m2 achievable using an even

number of elements, an attribute that becomes relevant for the simulations discussed

in Section 5.3. This mask, the resulting pattern amplitude, and the achieved phase

difference between the two synthesized patterns are all showin in Figure 5.2. The

behavior of the convergence criterion ε throughout the synthesis process is shown

in Figure 5.3.

While the synthesized pattern fits the specified envelope reasonably well, the fit
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is not perfect. These imperfections are primarily due to compromises in beamwidth

and sidelobe level made in order to meet the phase constraints. This fact can be

demonstrated through comparison with a set of pattern synthesis results that use the

same envelope but do not impose any phase constraints. The pattern synthesized

without phase constraints stays within the envelope to within 0.01 dB at all points,

and has a 3 dB beamwidth of 0.898◦. By contrast, the whitened pattern shown in

Figure 5.2 has a beamwidth of 0.997◦. Figure 5.2 also shows the imperfections

in the final phase behavior. Ideally, the phase difference between the two patterns

synthesized for the binary whitening process (indicated in the figure as “Coding

Phase”) would be 0 within the mainlobe and π elsewhere. However, this is not re-

alized perfectly. There is some deviation from a phase of 0 within the mainlobe,

the magnitude of which is less than 0.038 radians within the 3 dB beamwidth. The

phase at the first sidelobe peak is -2.2 radians, while the phases of the remaining

sidelobe peaks vary about a median value of approximately 2.8 radians. There are

phase gradients across each sidelobe and erratic phase behavior near nulls where the

pattern amplitude is extremely low, and therefore an insignificant contributor to sys-

tem performance. Figure 5.5 shows the achieved whitening performance across the

synthesized pattern. The metric used to characterize performance is Doppler spec-

trum peak attenuation. To calculate this metric, a 64-point Doppler power spectrum

is calculated corresponding to a stationary point target (similar to ground clutter)

at every angle in the beampattern, both with and without application of a whiten-

ing code. Doppler spectrum peak attenuation is the ratio of the maximum value

of the unwhitened spectrum to the maximum value of the whitened spectrum. As

expected, signals within the mainlobe are virtually unattenuated, with measured at-

tenuations of less than 0.001 dB across the 3 dB beamwidth. Attenuation in the first

sidelobe is approximately -6.4 dB, while the sidelobes beyond that have attenua-
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Figure 5.6: Several examples of the clutter signal Doppler spectra produced using
the 64 point code (calculated with a Hamming window). As anticipated based on
the peak attenuations in Figure 5.5, the mainlobe spectrum receives virtually no
spectral spreading, although the sidelobes are slightly perturbed relative to an or-
dinary Hamming window spectrum. The far sidelobe is extremely well whitened,
with DC no longer having a dominant peak, and the first sidelobe spectrum lies
between these extremes.
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tions of approximately -12.9 dB. Attenuation near pattern nulls is naturally erratic,

but this is both expected based on the coding results and of little consequence.

Figure 5.6 shows examples of the Doppler spectra corresponding to a DC (clutter-

like) signal incident through a sidelobe in each of these regions. The spectra have

been normalized such that their total power is equal (i.e. the effects of relative

beampattern power have been eliminated). A Hamming window was applied to

the time series samples for sidelobe reduction prior to spectrum calculation. The

spectrum peak due to the stationary point target is distinguishable in all three spec-

tra at varying levels. As expected, the peak is strongly dominant for the mainlobe

case, with the only clear evidence of the main beam phase imperfections being the

irregular perturbation of the sidelobes from the topography that would be expected

from an unmodulated Hamming window. A significant whitening effect is achieved

within the first sidelobe, with the spectrum peak only exceeding the next highest

spectrum peak by approximately 5.5 dB. In the far sidelobes, sufficient whitening

has been achieved such that the DC peak is no longer the global maximum.

5.3 Weather Radar System Simulations

5.3.1 Simulator Description

In order to examine what effects sidelobe whitening might have in a realistic weather

observation scenario, a simple multistatic weather radar time-series simulator was

developed. The simulator uses a Monte Carlo framework similar to the simulation

architectures described in [65], [66]. A high level outline of the simulator structure

is shown in Figure 5.7. The first step in the simulation process is the population of

the observation domain with scattering centers (SCs). These are point targets, each

of which represents some small volume of precipitation. These point targets are
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Figure 5.7: High-level view of the simulation process. The receiver-related portion
of the radar range equation calculation, as well as the sorting of scattering centers
into range bins, are done prior to calculation of the transmitter-related weighting
contributions. This structure maximizes the efficiency of the simulation process.
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(b)

.
(c)

Figure 5.8: Gain patterns for each simulated transmitter scenario. Since the one-
dimensional array factors of the two binary whitening patterns are identical, this
means that the two-dimensional power pattern will remain constant during the
whitening process and is also identical to that of the unwhitened array pattern.

108



placed throughout the domain according to a uniform random distribution. Based

on the position of each SC, it is assigned a reflectivity, and a three-dimensional

velocity, using quad-linear interpolation from a set of regularly gridded numerical

weather prediction data as described in [65].

The eventual goal of the simulation process is to calculate the signal formed

by summing the (complex) radar range equation over all the SCs for every sam-

ple instant, transmitter pointing angle, range bin and receiver, requiring a set of

nested for-loops. The order of these loops, as well as which calculations are made

at each level of the nested structure, can affect the computational efficiency of the

simulation process by orders of magnitude. This is particularly true when a few

simplifying conditions are applied to the simulation architecture. The most sig-

nificant of these simplifications is that advection between transmitter dwells (i.e.

transmitter pointing angles) is ignored. While this assumption does somewhat re-

duce the realism of the simulator output, and would make it unsuitable for certain

studies (evaluation of advection correction techniques, for example) it has no bear-

ing on the study carried out here. This simplification allows the portion of the radar

range equation dictated by receiver location and antenna pattern to be pre-calculated

such that it does not need to be calculated separately for each individual transmitter

pointing angle. This portion of the equation can be written (for the mth scattering

center) as:

w(m)
rx =

frx(u
(m)
rx , v

(m)
rx )λ(σ(m))1/2

(4π)1/2r
(m)
rx

exp

(
−2πj

r
(m)
rx

λ

)
, (5.16)

where frx(θ, φ) is the complex radiation pattern of the receiver evaluated at the uv

coordinate position corresponding to each scatterer and σ(m) is the effective radar

cross-section (RCS) of the scattering center. Antenna patterns within the simulator

exist as lookup tables, from which the values corresponding to each scatterer are
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determined through two-dimensional interpolation.

The RCS σ can be calculated as:

σ(m) = Z(m)
v γ(m)v̄, (5.17)

where Z(m)
v is V-polarized reflectivity, v̄ is the average spatial volume represented

by each SC, calculated by dividing the total simulation domain volume by the num-

ber of SCs, and γ represents an angle-dependent loss factor induced by the bistatic

scattering behavior of a raindrop. It has been shown that raindrops can be accu-

rately modeled as reradiating incident energy as infitesimal dipoles with a moment

vector aligned along the polarization direction of the incident wave [67], an effect

described in greater detail in Section 2.5. This means that in a coordinate system in

which the scatterer system lies at the origin, with the incident polarization oriented

along the z-axis, γ = sin2(θrx), where θrx indicates the location of the receiver in

spherical coordinates. However, the simulator uses a coordinate system with the

transmitter located at the origin, and an xy-plane that lies tangent to the earth’s sur-

face at the transmitter location. It is therefore necessary to translate between these

two coordinate systems in order to calculate γ.

Making the simplifying assumption that the transmitting antenna exhibits ideal

polarization behavior in the Ludwig II sense [68], the polarization direction of the

incident wave at each scatterer will lie along the θ̂ direction. The coordinate system

can be rotated and translated to position the scatterer at the origin and the polariza-

tion of the incident wave along the z-axis using the following steps:

1. Perform a rotation about the z-axis by −φs to position the scatterer in the

xz-plane (in the positive-x half-plane).

2. Perform a rotation about the y-axis by 90◦−θs to position the scatterer on the

110



positive x-axis. The polarization vector is now aligned along the z-axis.

3. Translate the scatterer along the x-axis to the origin.

The calculations corresponding to this process are as follows:


x′

y′

z′

 = Ry(90◦ − θs)Rz(−φs)


x

y

z

−

rtx

0

0

 , (5.18)

Rz(−φs) =


cos(−φs) − sin(−φs) 0

sin(−φs) cos(−φs) 0

0 0 1

 , (5.19)

Ry(90◦ − θs) =


cos(90◦ − θs) 0 sin(90◦ − θs)

0 1 0

− sin(90◦ − θs) 0 cos(90◦ − θs)

 , (5.20)

where xyz and x′y′z′ represent the receiver position in the transmitter-centered and

scatterer-centered Cartesian coordinate systems, respectively, and θsφs represent the

angular position of the scatterer in transmitter-centered spherical coordinates. The

loss factor γ can then be calculated as:

γ = sin2(θrx) (5.21)

= sin2

[
cos−1

(
z′√

x′2 + y′2 + z′2

)]
(5.22)

= 1− cos2

[
cos−1

(
z′√

x′2 + y′2 + z′2

)]
(5.23)

= 1− z′2

x′2 + y′2 + z′2
. (5.24)

In addition to the calculation of the receiver pattern weights, all of the scattering
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centers are pre-sorted into range bins for each receiver, prior to the transmitter-

dependent portion of the radar range equation calculations. Assuming that the sam-

pling time t0 relative to pulse transmission is measured from the pulse center, the

bounds of the range bin measured at t0 are given by:

ct0
2
− cτ

4
≤ rbi ≤

ct0
2

+
cτ

4
. (5.25)

After this sorting process is carried out across all scattering centers for each

receiver, final radar range equation calculations begin. For each transmitter pointing

angle, the following transmitter-dependent weight is calculated across all SCs:

w
(m)
tx =

ftx(u
(m)
tx , v

(m)
tx )

4πr
(m)
tx

exp

(
−2πj

r
(m)
tx

λ

)
, (5.26)

where ftx(u
(m)
tx , v

(m)
tx ) is the complex transmitter radiation pattern value evaluated

at the uv coordinate position corresponding to each scatterer. Then, for each range

bin / receiver combination, the receive weights corresponding to the SCs within that

range bin are retrieved, and the final calculation to obtain a time series point at the

receiver is carried out:

V (t0) =
M∑
m=1

w
(m)
tx w(m)

rx , (5.27)

where M is the total number of SCs in the range bin.

Once the receiver voltage for every range bin / receiver / transmit angle com-

bination has been calculated, the simulator advances to the next time series point.

The scatterer positions are updated based on their velocities, and new time series

points are calculated. However, the scatterers’ parameters (velocity/reflectivity) are

not recalculated at their new positions. This simplifies the necessary calculations

for the scatterer update, and is reasonable for the simulator’s intended application

of providing single frames of radar data with dwell times spanning only 10s of

112



milliseconds. If the simulator was intended to accurately capture the evolution of

weather over time, these parameters would need to be updated at each time step.

Also, as realistic spectrum widths are not particularly important for this applica-

tion, the scatterer positions are deterministic. Thus, the only significant contributor

to spectrum width is wind shear.

Once the time-series V (t) has been simulated, Gaussian white noise of power

N0 is added, where:

N0 = k(Trx + TA)B. (5.28)

Here k is Boltzmann’s constant, Trx is receiver noise temperature, TA is antenna

noise temperature, and B is receiver bandwidth.

Simulated Scenarios

In order to test the proposed whitening scheme, and provide some reference to

levels of sidelobe contamination that would be expected from currently available

transmitters, four different systems were simulated. The radiation patterns of each

of these simulated systems are shown in Figure 5.8. The first of these systems is

designed to be a parabolic dish with characteristics similar to the WSR-88D. This

pattern was constructed by first using the theoretical expression [69]:

S(u) =
48J3(u)
u3

+ 0.32J1(u)
u

1.16
, (5.29)

where Jn denotes a Bessel function of the first kind with parameter n. This ex-

pression, however, is highly idealized and does not capture the effects of the feed

structure or diffraction and spillover around the dish edges. It provides a fairly

accurate model for the main beam shape. However, the sidelobes are much too

optimistic. Therefore, the sidelobe amplitudes of the pattern produced by the theo-
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Figure 5.9: Constant-altitude slice of the NWP data grid used to produce the sim-
ulation results. Reflectivity is shown in (a) while (b) and (c) show the zonal and
meridional wind field components, respectively. The receiver and transmitter lo-
cations are also indicated, as well as a dashed line indicating the boundary of the
observation region shown in Figures 5.10-5.11.
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Figure 5.10: Doppler velocity fields measured by each reciever for each simulated
transmitter. There are significant errors due to sidelobe contamination in each im-
age, primarily along areas of sharp reflectivity and velocity gradients. Note also
regions of degraded spatial resolution along the transmitter/receiver baselines.
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Figure 5.11: Differences between the dish, unwhitened array, and whitened array
simulations and the sidelobe-free ideal simulation. There are significant reductions
in bias prevalence and magnitude between the dish and either of the arrays. Whiten-
ing provides a noticeable improvement compared to the unwhitened array.
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retical expression were adjusted to levels which approximate those observed in the

0◦ elevation pattern cuts in [69]. In order to produce a two-dimensional pattern it

is then assumed that these sidelobe levels are radially symmetric. This property of

radial symmetry is a simplifying approximation. Sidelobe levels (particularly for

a center-fed dish like the WSR-88D) are not uniform. The most pronounced non-

uniform property is that there will be several ridges of raised sidelobes correspond-

ing to the radial positions of the spars supporting the feed. For the WSR-88D, the

0 degree cut actually lies along one of these ridges, so the sidelobe envelope which

is radially symmetric here is actually “several dB” [69] higher than the sidelobes

of the WSR-88D away from the elevated ridges. This cut was used primarily due

to a dearth of available high-quality published measurements of WSR-88D patterns

along cuts less affected by the feed spars.

The second simulated system is a 7.6 m square array as described in Section 5.2.

Here, the array taper was designed using the method described in Section 5.1. The

resulting taper was then applied across both dimensions of the array. However, no

whitening codes are applied to the array. It is immediately noticeable that this pat-

tern has drastically lower sidelobes than the simulated dish away from the principal

planes of the array (much lower than the “several dB” by which WSR-88D patterns

may improve away from the elevated sidelobe ridges). One might ask why this ar-

ray factor has total sidelobe energy that is so much lower than that of the simulated

dish, which has a nearly equal total aperture area. This is a result of the fact that we

are assuming a well-calibrated array, but the WSR-88D pattern includes all of the

effects of the feed structure and dish edges. It is possible, however, to construct dish

antennas using strategies that greatly mitigate these effects, which can then achieve

levels of total sidelobe energy that approach those of a ideal values much more

closely. One of these strategies is the use of an offset feed to reduce sidelobe per-
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turbations due to the feed structure and its supports [70], which has actually already

been demonstrated with significant success at CSU-CHILL [71]. Another is the use

of edge treatments to reduce the effects of diffraction [70]. As such, a comparison

between the results obtained by the unwhitened array and those obtained by the

simulated dish should not be viewed primarily as a comparison between dishes and

phased arrays, but rather a measure of what might be achieved with more efficient

use of the aperture sizes already being used for long-range weather radars, which

might be achieved with an upgraded dish design as well as a phased array. The

simulated array is mechanically scanned in azimuth, a configuration that is gaining

some recognition as a possible future configuration for a phased array replacement

[72].

The third pattern has an identical power pattern to the unwhitened array, but bi-

nary pattern switching is enabled during the simulation as described in Section 5.1.3.

This means that four different two-dimensional antenna patterns are actually used,

however they all have precisely the same amplitudes, with the only difference being

in phase. The final pattern is an “ideal” antenna, which has the same main beam

shape and amplitude as the dish, but has no sidelobes. This is used as a reference in

order to isolate the effects of the sidelobes in the simulation results.

The NWP data used are from a WRF simulation of the May 31, 2013 tornadic

storm in El Reno, Oklahoma using the parameterizations described in [73]. This

provides an excellent test case due to the extreme velocity and reflectivity gradients

present in severe weather. A visualization of the section of WRF data used is shown

in Figure 5.9. Figure 5.9 also shows the locations of the simulated transmitter and

receivers. Table 5.1 provides a list of the key simulation parameters used.
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Table 5.1: Simulation Parameters

Parameter Value
Transmit Gain 45.5 dBi
Receive Gain 18 dBi
Transmit Power 375 kW
Pulse Length 1.57µs
PRT 0.78 ms
Transmit Elevation 1◦

Receiver Bandwidth 570 kHz
Receiver Noise Figure 3 dB
Receive Antenna Noise Temp. 63.36 ◦ K

5.3.2 Results

The simulated Doppler velocity observations are shown in Figure 5.10. There are

several unique aspects of bistatic Doppler velocity measurements that are important

to understand these results. First, bistatic Doppler velocities do not measure the

velocity along radials relative to the receiver, but rather the velocity component

along the bistatic bisector, the vector bisecting the angle formed by the transmitter,

scatterer, and receiver with the scatterer at the vertex. Second, the spatial resolution

of bistatic systems degrades along the baselines between the transmitter and each

receiver. This effect causes the distorted “blob” artifacts along the northern edge of

each image for receiver 1, and along the eastern edge of each image for receiver 2.

There are two conditions that must be met for velocity biases due to sidelobe

contamination to occur. First, there must be a significant velocity gradient tangent to

the transmitted beam within a given bistatic range bin. If no velocity gradient exists,

then sidelobe power will still contaminate the measurement, but it will not induce

biases. Second, the scatterers contributing to the sidelobe contamination must have

high enough reflectivity, and be distributed over a large enough solid angle that their

total power contribution is able to overcome the sidelobe attenuation and contribute

a significant amount of power to the received signal compared to the power incident
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through the main beam. There are several locations in the simulated measurements

where these conditions are obviously met. Specifically, this occurs in and around

the two weak reflectivity “holes” in the central part of the simulation domain, as

well as along the southwestern fringes of the storm. Anomalies in these areas are

visible in the velocity images as differences between the “ideal” images (which

suffer no sidelobe contamination) and the other simulated systems. However, due

to the large dynamic range of the velocity measurements, it is difficult to observe

these differences with accuracy in the velocity images. Figure 5.11 shows these

differences much more clearly. Each of the plots in this figure shows the difference

in estimated velocity between the simulated system indicated in the title and the

“ideal” mainbeam-only system.

It is evident that the highest error levels relative to the “ideal” system occur for

the simulated dish. Significant errors here occur not only in the aforementioned

areas where severe reflectivity and velocity gradients are evident, but are spread

throughout large areas of the simulation domain. This is to be expected, as the

dish has an integrated sidelobe power that is dramatically higher than either of the

simulated arrays. It has sidelobe levels equal to those along the worst-case cuts

of the array pattern distributed across a much larger area. As mentioned in Sec-

tion 5.3.1, this does not reflect a particular advantage of phased arrays, but rather a

more efficient use of a given aperture size.

The errors in both the whitened and unwhitened array data are much more

tightly concentrated near areas of severe gradients. As expected, the whitening

process causes clear reductions in both the area affected by velocity biases and in

the bias magnitudes within those areas. An example of the Doppler spectra within

a contaminated resolution volume for the unwhitened, whitened, and ideal arrays

is shown in Figure 5.12. All three simulations show significant peaks near -300
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Figure 5.12: Examples of the unwhitened, whitened, and ideal spectra from the
simulation results shown in Figure 5.10. The sidelobe leakage visible in the un-
whitened results is spread throughout the whitened spectrum, resulting in a closer
match to the ideal results.

Hz. The unwhitened array spectrum shows a spurious peak due to sidelobe leakage

near 100 Hz. The whitening process successfully attenuates this peak, spreading

its energy throughout the spectrum and resulting in a mean frequency estimate that

more closely matches that obtained from the ideal array. There are limits to the

potential improvements in Doppler frequency estimates available through whiten-

ing. Most significantly, if the peaks of the whitened sidelobe power spectrum are

still large relative to the spectral peaks corresponding to power incident through the

main beam, then estimates will still exhibit poor performance. This is the reason

for the residual frequency estimation error in the central low-reflectivity region and

along the southwest border of the storm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The use of multistatic radar networks for the collection of multiple-Doppler data has

unquestionable advantages over the use of multiple monostatic systems in terms of

cost and inter-radar synchronization. However, research into this technology has

slowed over the last two decades. The primary goal of this work is to reexam-

ine the potential of this system architecture in the context of recent technological

developments. The research presented in Chapters 3-4 is dedicated to the develop-

ment of a compact, low-cost passive receiver with accompanying signal processing

techniques that allow for automated synchronization with a minimally coopera-

tive transmitter. This was enabled by the recent widespread availability of highly

integrated commercial off-the-shelf transceivers (such as the AD9361 used in the

prototype systems) brought about principally by developments in the telecommu-

nications industry. Systems like these have the potential to significantly decrease

the barrier of entry into multistatic weather radar research through reduced cost and

improved flexibility in choice of transmitter. The greatly reduced size and weight

compared to past multistatic receivers also opens up a wide range of deployment
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possibilities.

These receivers were used as platforms for the development of a set of tech-

niques that allow for accurate pulse-timing and frequency synchronization via side-

lobe radiation between a radar transmitting a typical weather radar signal and a re-

mote receiver. These methods offer effective solutions to the problems of frequency

estimation of a short duty cycle signal in strong multpath environments and of ro-

bust direct-path signal detection and quality control. Additionally, modifications

to these techniques are shown which allow compatibility with specialized trans-

mit schemes utilized by the WSR-88D. The validity of these techniques is shown

through the presentation of a set of actual weather measurements, with accuracy

verified through their consistency with the radial velocity measurements obtained

by KTLX. This set of signal processing methods offers advantages in terms of both

the cost and flexibility of the receiver modules used in a multistatic network. It

eliminates the need for GPS-disciplined oscillators as well as the need for the trans-

mitting radar to measure, store, or transmit any information on pulse timing or

phase. This means that almost any existing weather radar could be used as a trans-

mitter with little or no modification, as virtually every existing weather radar is

capable of recording timestamped pointing angle information.

The second portion of this work, presented in Chapter 5, was devoted to an

exploration into the use of pattern synthesis methods to mitigate the problem of ve-

locity bias due to sidelobe contamination, possibly the most vexing problem facing

practical applications of multistatic weather radar technology. While the theoret-

ical / simulation studies carried out for this work could have been carried out at

any point, they are more relevant now than ever due to the proliferation of PAWR

systems within the research community, and the strong possibility that the eventual

replacement for the WSR-88D will be a PAWR.
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The pattern synthesis technique developed is a modified version of the alter-

nating projections algorithm capable of producing near-180◦ sidelobe phase mod-

ulation in the one-way beam pattern, as required for the multistatic application. It

also allows for the specfication of an arbitrary beamwidth and sidelobe topography.

A weather radar system simulation was used to demonstrate that this whitening

technique is capable of achieving significant improvements in Doppler velocity es-

timation accuracy in problem areas of observed weather fields (those with large

cross-beam gradients in velocity and reflectivity within a bistatic range bin).

An additional illuminating result of the simulation process was the considerable

improvement in velocity bias achievable merely through the more efficient use of

antenna apertures with sizes similar to those in many existing long-range weather

radar systems such as the WSR-88D. In the simulations carried out here, this was

achieved through the use of a well-calibrated array, but similar results should be

achievable through the use of an offset feed and / or improved edge treatments.

The possibility of improved data quality merely through improved transmitter an-

tenna design has received little attention in prior research into the bistatic sidelobe

contamination problem.

6.2 Future Work

The signal processing techniques developed for transmitter / receiver synchroniza-

tion, as well as the prototype multistatic network itself, offer several interesting ap-

plication possibilities, including the ability to flexibly use these radars with multiple

transmitters as part of field campaigns or simply to augment WSR-88D installations

as was done in this study. Both of these applications offer particularly exciting pos-

sibilities in environments where setting up multiple Doppler measurements with

monostatic mobile radars is difficult or impossible due to terrain and beam block-
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age issues (typified by the southeastern United States). The extreme low cost of

these systems may also make them particularly attractive to research institutions

with limited budgets that may not have the resources to obtain multiple monostatic

radars in order to carry out multiple Doppler studies.

One particularly intriguing use-case for this technology is installation on air-

borne platforms. While the current form factor of the system is not yet suitable

for this application, there is still considerable room for size and weight reduction

as discussed in Chapter 3. This would provide a number of advantages. Airborne

platforms would have the advantage mentioned above of virtually eliminating prob-

lems of beam blockage. Further, they would enable greater vertical spatial diversity

in the network, which could prove helpful in establishing favorable geometries for

the collection of high-quality vertical velocities at low altitudes. Finally, one chal-

lenge of a fixed multistatic network is the limited observation area, due in part to

the reduced sensitivity of multistatic observations and fixed receiver antenna point-

ing directions. Airborne platforms, by contrast, would be able to relocate to track

the advection of phenomena of interest. Furthermore, the positions of each receiver

could be easily optimized to create the most favorable multistatic geometries for

specific regions of interest within a storm. In theory, these last objectives could also

be attempted through the use of ground-based mobile platforms. However, practi-

cal difficulties of navigation, coordination, and availability of suitable observation

locations would make this an extreme challenge.

Future research plans also involve the expansion of the Oklahoma City network

to include a greater number of receivers for the purpose of improving coverage and

reducing error through the use of redundant observations from multiple systems.

Such an expansion would likely also entail some improvements to the receiver de-

sign, such as the installation of a positioner to allow for remote adjustment of the an-
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tenna pointing direction. The network will be used in conjunction with WSR-88Ds

and the ARRC’s mobile radars in order to conduct some of the first long-duration,

long-domain, multiple-Doppler observations of supercells and MCSs.

The presented sidelobe whitening technique also offers promising avenues for

future research. In addition to the primary motivating application of multistatic

radar, the ability to perform sidelobe whitening using only the one-way beampat-

tern makes possible the use of this technique for receive-side beamforming in data

collected using imaging radars, such as the Atmospheric Imaging Radar [74] or its

forthcoming successor the Polarimetric Atmospheric Imaging Radar [33]. Veloc-

ity bias due to sidelobe contamination, particularly from ground clutter, is also a

significant issue for these systems that may be improved through the use of this

method.

While this work establishes the potential of the sidelobe whitening technique to

effect improvements in Doppler velocity estimation quality, it is limited to a small

number of promising examples. Future research should seek to explore how to best

optimize that potential and explore its limits. In other words, such studies should

seek to determine what combinations of beamwidth, sidelobe envelope, and pres-

ence / absence of whitening produce the highest quality Doppler velocity estimates

across a range of weather and ground-clutter scenarios. This kind of work would be

complemented by more rigorous simulation work that considers the practical limits

of what kind of sidelobe performance can be achieved using improved parabolic

dish designs and what levels of phased array calibration accuracy might be neces-

sary to achieve parity with those designs.

These two lines of research come together with the possibility of future exper-

iments in the practical application of multistatic sidelobe whitening using any of

the several existing or forthcoming phased array weather radars operated by the
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University of Oklahoma (e.g., Horus [34] and PAIR [33]) or the National Weather

Service (e.g., the ATD [32]). The prototype network would be ideal for this pur-

pose as its sidelobe synchronization capabilities will avoid any need for burdensome

hardware modifications to these systems. Such experiments would be invaluable in

experimentally verifying the potential of sidelobe whitening suggested by the sim-

ulation results presented here, as well as allowing for experimental exploration of

the general multistatic transmitter optimization problem previously mentioned in

this section.
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Appendix A

Derivation of the Relationship

Between Scatterer Velocity and

Multistatic Velocity Measurements

Begin by assuming a three-dimensional Cartesian coordinate system with a scatterer

positioned at the origin, and a bistatic transmitter and receiver each positioned at

arbitrary points. The transmitter and receiver locations can be described by the

following set of position vectors:

rr =


xr

yr

zr

 , (A.1)

rt =


xt

yt

zt

 , (A.2)
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where rr corresponds to the receiver and rt corresponds to the transmitter. The

scatterer has a velocity vector v:

v =


u

v

w

 , (A.3)

where u,v, and w are the components of the scatterer velocity along the x, y, and z

directions respectively. The Doppler velocity measured at the receiver vbi is the neg-

ative scalar projection of v onto a bistatic bisector, which is some vector bisecting

the angle between rr and rt. This can be expressed as:

vbi = −b̂ · v, (A.4)

where b̂ is the unit magnitude bistatic bisector. Note that the negative sign is nec-

essary to make the result consistent with the standard sign convention for velocity

in weather radar (a positive sign corresponding to a positive change in propagation

path length). b̂ can be calculated as follows:

b̂ =
b

||b||
, (A.5)

b = RTrr +RRrt, (A.6)

RT = ||rt||, (A.7)

RR = ||rr||. (A.8)
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The expression for b can be expanded:

b =


RTxr +RRxt

RTyr +RRyt

RTzr +RRzt

 , (A.9)

which, in turn, gives the following expansion for ||b||:

||b|| =
√
R2

T(x2
r + y2

r + z2
r ) + 2RTRR(xrxt + yryt + zrzt) +R2

R(x2
t + y2

t + z2
t )

(A.10)

=
√
R2

TR
2
R + 2RTRR(rr · rt) +R2

RR
2
T (A.11)

=
√

2R2
TR

2
R + 2R2

TR
2
R cos β (A.12)

= 2RTRR

√
1 + cos β

2
(A.13)

= 2RTRR cos

(
β

2

)
, (A.14)

β = cos−1

(
rt · rr
RTRR

)
. (A.15)

Note that β is the angle between rt and rr, commonly referred to as the bistatic

angle. Substituting (A.9) and (A.14) into (A.5) gives:

b̂ =
1

2RTRR cos(β/2)


RTxr +RRxt

RTyr +RRyt

RTzr +RRzt

 , (A.16)

=
1

2 cos(β/2)


xr
RR

+ xt
RT

yr
RR

+ yt
RT

zr
RR

+ zt
RT

 . (A.17)
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Next, consider the relationship between the Cartesian coordinates that have been

used thus far and the corresponding spherical coordinate system:

x = r sin θ cosφ, (A.18)

y = r sin θ sinφ, (A.19)

z = r cos θ, (A.20)

r = ||r||, (A.21)

r =


x

y

z

 . (A.22)

Minor rearrangement yields:

x

r
= sin θ cosφ, (A.23)

y

r
= sin θ sinφ, (A.24)

z

r
= cos θ, (A.25)

(A.26)

which, when substituted into (A.17), gives:

b̂ =
1

2 cos(β/2)


sin θR cosφR + sin θT cosφT

sin θR sinφR + sin θT sinφT

cos θR + cos θT,

 , (A.27)

where θR, φR are the spherical coordinate angles corresponding to the receiver posi-

tion and θT, φT are the spherical coordinate angles corresponding to the transmitter

position.
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It is desirable to next perform a change of variables such that the equation is

written in terms of the scatterer position relative to the transmitter and receiver,

rather than in terms of the transmitter and receiver positions relative to the scatterer.

This conversion has two steps. The first is conversion to spherical coordinates ref-

erenced to the transmitter / receiver. The second is conversion of the result from

spherical into azimuth / elevation format. Given the scatterer-referenced spherical

coordinates θ, φ of some object, the object-referenced spherical coordinates of the

scatterer θ′, φ′ are calculated:

θ′ = π − θ, (A.28)

φ′ = φ+ π. (A.29)

This is obtained by assuming a linear translation of the coordinate system such that

its origin is translated from the scatterer to the object in question. These coordinates

must then be converted to azimuth / elevation angles. The elevation angle e is

defined as the angle from the xy plane in the object-centered coordinate system to

the scatterer. The azimuth angle a is the angle moving clockwise from the y axis

to the scatterer’s xy position (corresponding to the scatterer’s compass bearing,

assuming the y axis points due north). These angles are calculated:

e =
π

2
− θ′ (A.30)

= θ − π

2
, (A.31)

a =
π

2
− φ′ (A.32)

= −φ− π

2
. (A.33)

(A.34)
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This allows the following substitutions for the trigonometric functions in (A.27):

cos θ = − sin(e), (A.35)

sin θ = cos(e), (A.36)

cosφ = − sin(a), (A.37)

sinφ = − cos(a), (A.38)

yielding:

b̂ =
1

2 cos(β/2)


− cos(eR) sin(aR)− cos(eT) sin(aT)

− cos(eR) cos(aR)− cos(eT) cos(aT)

− sin(eR)− sin(eT)

 , (A.39)

where eR, aR are the elevation and azimuth angles of the scatterer with respect to

the receiver and eT, aT are the elevation and azimuth angles of the scatterer with

respect to the transmitter.

Substitution of (A.3) and (A.39) into (A.5), and reformatting of the dot product

as a matrix product yields:

[
cos(eR) sin(aR)+cos(eT) sin(aT)

2 cos(β/2)
cos(eR) cos(aR)+cos(eT) cos(aT)

2 cos(β/2)
sin(eR)+sin(eT)

2 cos(β/2)

]
u

v

w


= vbi (A.40)

Using this expression and the fact that the corresponding result for the monos-

tatic case can be obtained by setting aR = aT, eR = eT, and β = 0, the system of

equations relating scatterer velocity to measured velocities for a multistatic network
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is:



cos(e1) sin(a1)+cos(eT) sin(aT)
2 cos(β1/2)

cos(e1) cos(a1)+cos(eT) cos(aT)
2 cos(β1/2)

sin(e1)+sin(eT)
2 cos(β1/2)

cos(e2) sin(a2)+cos(eT) sin(aT)
2 cos(β2/2)

cos(e2) cos(a2)+cos(eT) cos(aT)
2 cos(β2/2)

sin(e2)+sin(eT)
2 cos(β2/2)

...
...

...
sin(aN ) cos(eN )+sin(aT) cos(eT)

2 cos(βN/2)
cos(aN ) cos(eN )+cos(aT) cos(eT)

2 cos(βN/2)
sin(eN )+sin(eT)

2 cos(βN/2)

cos(eT) sin(aT) cos(eT) cos(aT) sin(eT)




u

v

w



=



vbi1

vbi2

...

vbiN

vr


, (A.41)

where vbin are the velocities measured by the nth receiver along its bistatic bisector,

an and en are the azimuth and elevation of the observation location relative to the

nth receiver, βn is the bistatic angle corresponding to the nth receiver, vr is the

measured radial velocity at the transmitting radar, and N is the total number of

receivers in the network. Note that this result differs consequentially from that

presented by Wurman et al. [22]; (3) of that paper has erroneously omitted all

cos(βn/2) terms.
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Appendix B

List of Symbols
Ae Effective antenna area

aR Azimuth relative to receiver

aT Azimuth relative to transmitter

B Bandwidth

C Matrix relating excitations to beampat-

tern

cu Horizontal whitening code

cv Vertical whitening code

F Vector of beampattern values

d Distance from grid point

D Transmitter Duty Cycle

eR Elevation relative to receiver

eT Elevation relative to transmitter

f Error function slope

fd Doppler frequency

fR Normalized receive antenna pattern

fT Normalized transmit antenna pattern

F Vector of beampattern values
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GR Receive antenna gain

GT Transmit antenna gain

G Adjusted beampattern vector

j
√
−1

L Transmitter-to-receiver baseline length

M Pattern synthesis mask vector

N0 Receiver Noise Power

p Angle from transmit beam to baseline

PR Received power

PS Scattered power

PT Transmit power

SR Receive power density

ST Transmit power density

Ri Radius of influence

R̂(Ts) Estimate of time series autocorrelation

RB Bistatic range

RR Transmitter-to-receiver range

RT Transmitter-to-scatterer range

r Range

t Time

Ts PRT

Trx Receiver noise temperature

Ta Antenna noise temperature

u Zonal component of velocity

V Volume

V [n] Received time series

v Meridional component of velocity
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vbi Bistatic velocity

vr Radial velocity

w Vertical component of velocity

wrx Rx component of SC weight

wrx Tx component of SC weight

w Vertical component of velocity

W (d) Cressman weighting function

W (r) Range weighting function

W Weighting vector

xp Scatterer x coordinate

x Vector of excitation values

yp Scatterer y coordinate

zp Scatterer z coordinate

α Weight tuning factor

β Bistatic angle

βW Pulse bandwidth

γ Polarization loss factor

∆R Range resolution

∆r Minimum/monostatic range resolution

∆t Time delay from pulse transmission to

reception

δ Angle between scatterer velocity vec-

tor and bistatic bisector

δ[n] Pulse position error function

ε Convergence criterion

η Reflectivity
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θR Spherical coordinate θ relative to re-

ceiver

θT Spherical coordinate θ relative to trans-

mitter

φR Spherical coordinate φ relative to re-

ceiver

φT Spherical coordinate φ relative to trans-

mitter

λ Operating wavelength

σ RCS

τ Temporal pulse length

ω0 PRF
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Appendix C

List of Acronyms and Abbreviations
ARRC Advanced Radar Research Center

ATD Advanced Technology Demonstrator

CFAR Constant False Alarm Rate

GPS Global Positioning System

LO Local Oscillator

MCS Mesoscale Convective System

NWP Numerical Weather Prediction

OUHSC University of Oklahoma Health Sci-

ence Center

PAIR Polarimetric Atmospheric Imaging

Radar

PAWR Phased Array Weather Radar

PRF Pulse Repetition Frequency

PRT Pulse Repetition Time

RCS Radar Cross-Section

RIL Radar Innovations Laboratory

SNR Signal-to-Noise Ratio

SZ Sachidananda/Zrnić
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ULA Uniform Linear Array

VAD Velocity Azimuth Display

WSR-88D Weather Surveillance Radar - 1988

Doppler

152


