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Abstract

CrAssphage (cross-assembly phage) is a bacteriophage that was first discovered in human

gut metagenomic data. CrAssphage belongs to a diverse family of crAss-like bacteriophages

thought to infect gut commensal bacteria belonging to Bacteroides species. However, not

much is known about the biogeography of crAssphage and whether certain strains are asso-

ciated with specific human populations. In this study, we screened publicly available human

gut metagenomic data from 3,341 samples for the presence of crAssphage sensu stricto

(NC_024711.1). We found that crAssphage prevalence is low in traditional, hunter-gatherer

populations, such as the Hadza from Tanzania and Matses from Peru, as compared to indus-

trialized, urban populations. Statistical comparisons showed no association of crAssphage

prevalence with variables such as age, sex, body mass index, and health status of individu-

als. Phylogenetic analyses show that crAssphage strains reconstructed from the same indi-

vidual over multiple time-points, cluster together. CrAssphage strains from individuals from

the same study population do not always cluster together. Some evidence of clustering is

seen at the level of broadly defined geographic regions, however, the relative positions of

these clusters within the crAssphage phylogeny are not well-supported. We hypothesize that

this lack of strong biogeographic structuring is suggestive of an expansion event within

crAssphage. Using a Bayesian dating approach, we estimate that this expansion has

occurred fairly recently. Overall, we determine that crAssphage presence is associated with

an industrialized lifestyle and the absence of strong biogeographic structuring within global

crAssphage strains is likely due to a recent population expansion within this bacteriophage.
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Introduction

The virome harbors the most abundant and diverse set of genes on earth, with deep impacts

on host biology, including the very architecture of host genomes [1]. Often described as the

“dark matter” of biology [2], the virome has an underexplored role in human health [3]. Much

of the human gut virome is composed of double-stranded DNA bacteriophages [4], which are

argued to be the primary regulators of bacterial biomass [5]. Bacteriophages are hypothesized

to impact the human gut [4]; for example, through potentially transmitting bacterial antibiotic

resistance genes and facilitating bacterial carbohydrate utilization [6]. The majority of the bac-

teriophages found in the human gut belong to the families Microviridae, Siphoviridae, Podovir-
idae, and Myoviridae [7]; however, our knowledge of the true bacteriophage diversity is

limited [8]. While the human virome is a component of the human microbiome, it is not as

amenable to high throughput taxonomic characterization as the archaeal and bacterial subsets.

Specifically, viruses lack “universal” taxonomically diagnostic marker genes (for example, the

16S ribosomal RNA gene in archaea and bacteria), preventing characterization using current

amplicon-based sequencing strategies.

Recent advances in metagenomic sequencing and development of data mining tools now

allow for large-scale studies of human gut bacteriophage diversity using shotgun-sequencing

data from human fecal samples [8]. From such data, one particular DNA bacteriophage,

crAssphage, appears to be remarkably abundant in the human gut [9]. CrAssphage (cross-

assembly phage) was named after the crAss (cross-assembly) software originally used to dis-

cover the bacteriophage [9]. CrAssphage is prevalent in available gut metagenomic data from

the U.S. [10], comprising up to 90% of viral particle-derived metagenomes and up to 22% of

reads in a total fecal community from the U.S. National Institutes of Health’s Human Micro-

biome Project cohort [11]. Moreover, crAssphage is up to six times more abundant than all

other known bacteriophages that could be reconstructed from these publicly available meta-

genomes [9]. Bacteria belonging to phylum Bacteroidetes, which are commonly found gut

commensals, were predicted to be the host of this bacteriophage [9].

A recent study has shown that crAssphage, which is now referred to as crAssphage sensu
stricto, is actually a member of a diverse group of crAss-like bacteriophages [12]. The first iso-

lated member of this group, FCrAss001, shows podovirus-like morphology and infects the

bacterium, Bacteroides intestinalis [13]. In addition to the human gut, crAss-like phages are

found in nonhuman primate and termite guts, terrestrial and groundwater sources, and oce-

anic environments [12, 14–16]. Across metagenomic studies, crAssphage sensu stricto is nearly

exclusively associated with the human gut microbiome [9, 12] and has been proposed as a

potential biomarker for fecal contamination [16–20].

Recent research suggests that crAssphage may be present in infants as early as one-month

after birth [21], which is partly explained by the fact that Bacteroides species are among the

most abundant members of the gut microbiomes of newborns [22]. It has also been suggested

that while most adults contain a single dominant crAssphage strain [21], a minority can carry

multiple (hundreds) crAssphage strains [16]. However, the means by which crAssphage is ini-

tially acquired [14, 21], strain variation within an individual [16], overall geographic distribu-

tion [16, 23], and prevalence in other environmental reservoirs has not been fully elucidated.

Although crAssphage has been detected globally using PCR-based assays [14, 16], a systematic

analysis of the strain biogeography of crAssphage is necessary, considering the diverse range of

currently reported crAssphage strains and the existence of other crAss-like phages in the

human gut [12] that may confound crAssphage detection using PCR-based assays.

Here, we report strain-level prevalence and diversity of crAssphage sensu stricto observed

across 3,341 gut metagenomic samples originating from globally distributed human
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populations (Table 1). In this study, we consider genetically non-identical crAssphage

sequences as different crAssphage strains [24]. Further, we evaluate crAssphage prevalence,

abundance, and strain diversity as a function of biogeography, human dietary lifestyle and var-

iables including age, sex, body mass index (BMI), and health status.

Results and discussion

CrAssphage screening

Publicly available gut metagenome data from 3,341 samples were screened for the presence of

crAssphage sensu stricto using a two-pronged approach: first, a direct reference-based mapping

to crAssphage (NC_024711.1) using Bowtie2 [37], and second, a de novo assembly using

MEGAHIT [38] followed by a protein-protein BLAST search (BLASTP) [39] against the

crAssphage proteins (see Methods). Mapping and assembly statistics are provided in S1 Table.

Using the reference-based mapping approach, we identified 614 samples wherein a high-

quality crAssphage strain could be reconstructed (>70% of the genome at>10-fold mean cov-

erage). However, this approach is suitable only for samples containing a single dominant

crAssphage strain. 60 samples showed more than 100 heterozygous sites (which corresponds

to 0.1% of the total genome), with the maximum being 1,118 heterozygous sites in a single

sample. In order to determine whether the samples comprised multiple crAss-like phages, we

performed a de novo assembly of each metagenome. We used BLASTP to query the predicted

open reading frames (ORFs) for each sample against the crAssphage reference (NC_024711.1)

proteins. The BLASTP hits were then filtered to include only those which showed 95% query

coverage and 95% identity to crAssphage proteins. These criteria were chosen to avoid false

positive hits from crAss-like phages, since the average pairwise identity between members of

the crAss-like phage family ranges from 20–40% [12, 40]. Using this approach, we identified

963 samples wherein at least one crAssphage protein was recovered (S2 Table). We were not

able to recover all 90 proteins from a single sample, with the maximum number of crAssphage

proteins recovered from a single sample being 67. We hypothesize that this is due to the limita-

tions of our de novo metagenomic assembly as well as the stringency of our BLASTP search

parameters, wherein our approach is likely biased towards avoiding false positive hits. How-

ever, our approach is not biased towards recovery of specific crAssphage proteins, since all 90

crAssphage reference proteins were recovered across all samples. Since we were only able to

Table 1. Publicly available gut metagenomic datasets used in this study.

Dataset Description Samples Individuals Accession Reference

BCK Urban mother-infant pairs from Sweden 400 200 ERP005989 [22]

CNA Urban individuals of Cheyenne, Arapaho, and non-native ancestry from

Oklahoma, USA

61 61 PRJNA299502 [25]

HAD Hadza hunter-gatherers from Tanzania 67 67 SRP056480, SRP110665 [26], [27]

HMP Urban individuals from USA 204 123 phs000228.v3.p1 [11]

ITA Urban individuals from Italy 11 11 SRP056480 [26]

ISR Urban individuals from Israel 950 851 PRJEB11532 [28]

KRL Urban individuals from Sweden 145 145 ERP002469 [29]

LIU Traditional pastoralists from Mongolia 110 110 SRP080787 [30]

MAT Matses hunter-gatherers from Peru 25 25 PRJNA268964 [31]

MHC Urban individuals from China 363 363 SRA045646, SRA050230 [32]

MHE Urban individuals from Sweden and Denmark 756 606 ERP003612, ERP004605,

ERP002061

[33], [34],

[35]

XIE Urban twin-pairs from the UK 249 249 ERP010708 [36]

https://doi.org/10.1371/journal.pone.0226930.t001
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recover a maximum of 67 proteins for a single sample, we decided to use a 50% coverage

threshold to call a sample “crAss-positive”, i.e. at least 33 crAssphage proteins had to be recov-

ered from the sample. Using this criterion, 719 samples were found to be crAss-positive.

crAssphage prevalence

To assess the prevalence of crAssphage among individuals from each study population as well

as potential associations with health, individuals were divided into categories based on health

status (Table 2). For some datasets (BCK, HMP, ISR, and MHE), multiple samples were avail-

able from the same individual; in this case, an individual was considered crAss-positive if at

least one sample from that individual was positive. None of the HAD and ITA samples,

acquired from Hadza individuals from Tanzania (N = 67) and urban Italians (N = 11), respec-

tively, were crAss-positive. For the MAT samples acquired from Matses individuals from Peru

(N = 25), only two were crAss-positive. The Hadza peoples from Tanzania as well as the Matses

from the Amazon jungle of Peru have a subsistence practice primarily based on hunting and

gathering [31, 41]. Among healthy, urban individuals leading an industrialized lifestyle,

crAssphage prevalence ranged from 14.0% among Chinese individuals from the MetaHIT

cohort (MHC; N = 185) to 35.7% among U.S. residents from the HMP cohort (N = 123).

CrAssphage prevalence showed no significant associations with human health status (Table 2).

Our findings suggest that crAssphage prevalence may be associated with an industrialized

lifestyle. A similar finding was reported in a manuscript that was published while our manu-

script was under review [16]. This latter study found that gut metagenomic data for rural

Malawi and Amazonas individuals from Venezuela [42] as well as the ~5300-year old Tyrolean

Iceman [43] show very low numbers of crAssphage sequences. The association of crAssphage

with industrialized practices can also be partially explained by its putative bacterial host, Bac-
teroides species [9]. CrAss-like phages can infect Bacteroides [13], although it is not known if

they are limited to this host genus [44]. Gut microbiome studies have shown that Bacteroides
tend to be more abundant in industrialized human populations as compared to traditional

peoples [45], and the Hadza and Matses individuals are consistent with this pattern [31, 41].

However, the two crAss-positive Matses individuals do not show higher relative abundance of

Bacteroides as compared to crAss-negative Matses individuals (S1 Fig).

Table 2. Association of health status with prevalence of crAssphage.

Dataset Total number of individuals Health Status

Healthy IGT T2D CD IBD UC Not specified

BCK 200 39 (200) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

CNA 61 14 (37) 0 (0) 11 (18) 0 (0) 0 (0) 0 (0) 2 (6)

HAD 67 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (67)

HMP 123 47 (123) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

ISR 851 185 (851) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

ITA 11 0 (11) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

KRL 145 15 (43) 12 (49) 20 (53) 0 (0) 0 (0) 0 (0) 0 (0)

LIU 110 11 (110) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

MAT 25 2 (25) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

MHC 363 37 (185) 0 (0) 23 (176) 0 (0) 0 (0) 0 (0) 1 (2)

MHE 606 87 (350) 0 (0) 0 (0) 2 (9) 7 (25) 12 (48) 53 (174)

XIE 249 64 (211) 0 (0) 5 (10) 0 (0) 0 (0) 0 (0) 12 (28)

Values indicate number of crAss-positive individuals (total number of individuals in the category). Health status categories refer to: IGT–Impaired Glucose Tolerance,

T2D –Type 2 Diabetes, CD–Crohn’s Disease, IBD–Inflammatory Bowel Disorder, UC–Ulcerative Colitis.

https://doi.org/10.1371/journal.pone.0226930.t002
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For healthy individuals, we also analyzed metadata, such as age, sex, and BMI, to study

potential associations with prevalence of crAssphage. The HAD, ISR, ITA, LIU, and MAT

datasets were excluded from this analysis due to unavailability of metadata or insufficient

number of crAss-positive individuals. There were no statistically significant differences in the

prevalence of crAssphage among individuals based on age, sex, or BMI (Table 3).

Phylogenetic analyses

To study the phylogenetic relationships between the crAssphage strains, we selected ten genes

which are present in all members of the crAss-like phage family [12]. These genes include

those encoding the five putative capsid proteins, a single-stranded DNA-binding protein, a

DNA-G family primase, a PD-(D/E)XK family nuclease, and two hypothetical proteins. We

then identified a subset of 232 samples wherein only one sample ORF matched these crAssph-

age reference proteins, suggesting the presence of a single strain of crAssphage in the samples.

Furthermore, we confirmed that these ORFs had similar depths of coverage to verify that they

represent the same viral genome. We also included the reference crAssphage genome

(NC_024711.1), resulting in a total of 233 taxa. A nucleotide alignment comprising these ten

genes contained 12,642 sites. A Maximum Likelihood (ML) tree of the 233 strains based on

this multi-gene alignment is given in S2 Fig.

According to the ML tree, crAssphage strains from the same individual cluster together.

While strains from individuals belonging to the same population/study dataset do cluster

together, many such crAssphage clusters are found in each population. Unfortunately, the rela-

tive positions of these clusters could not be well-established due to insufficient bootstrap sup-

port. Interestingly, we found that the strain from a crAss-positive Matses individual clusters

with crAssphage strains from European individuals from the MetaHIT cohort, suggesting that

it belongs to a widespread crAssphage clade.

To assess whether the lack of biogeographic structure in the multi-gene phylogeny was due

to lack of sufficient information for phylogenetic analysis, we identified a subset of 118 samples

fulfilling the following criteria: 1) according to the de novo assembly results, none of crAssph-

age proteins were matched by more than one sample ORF, and 2) according to the reference-

based mapping, more than 70% of the crAssphage genome was covered at least 10-fold. Fur-

thermore, we determined that these strains showed a range of 2–280 heterozygous sites (i.e. a

maximum of 0.3% of sites across the genome were heterozygous). Taken altogether, we

Table 3. Association of age, sex, and BMI of individuals with prevalence of crAssphage.

Dataset CNA HMP KRL MHC MHE XIE

Age

18–40 9 (23) 47 (123) 0 (0) 16 (74) 11 (35) 1 (4)

41–65 4 (12) 0 (0) 0 (0) 19 (103) 47 (215) 44 (134)

> 65 1 (2) 0 (0) 15 (43) 2 (7) 2 (19) 19 (73)

Sex

Male 5 (18) 30 (65) 0 (0) 19 (95) 31 (128) 0 (0)

Female 9 (19) 17 (58) 15 (43) 18 (90) 29 (142) 64 (211)

BMI

< 18.5 0 (0) 0 (0) 1 (1) 2 (17) 0 (3) 0 (4)

18.5–24.9 2 (13) 29 (68) 6 (18) 17 (104) 29 (130) 35 (108)

> = 25.0 12 (24) 18 (55) 8 (24) 18 (64) 58 (207) 29 (98)

Values denote number of crAss-positive individuals (total number of individuals in the category)

https://doi.org/10.1371/journal.pone.0226930.t003
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considered these samples to contain only one dominant crAssphage strain. The reference

crAssphage genome was also included. A multi-genome alignment comprising all 97,065

nucleotide sites was built and used to generate an ML tree (Fig 1). This phylogeny supports the

findings of our multi-gene analysis. CrAssphage strains from the same individual cluster

together, with high bootstrap support. Strains from individuals from the same study dataset do

not all necessarily cluster together; many such phylogenetically dissimilar strains are found in

individuals within a study population. At the level of broadly defined geographic regions,

some biogeographic structure is observed. However, even at phylogenomic resolution, due to

low bootstrap values, the relative positions of these clusters within the crAssphage phylogeny

cannot be well-defined.

CrAssphage population expansion

We hypothesized that the lack of strong biogeographic clustering could be explained by a

recent expansion event in crAssphage. To asses this, we used a Bayesian Evolutionary Analysis

Sampling Trees (BEAST) approach [46]. The analysis was performed using the multi-gene

alignment described previously. Because a substitution rate for crAssphage sensu stricto has

not yet been determined, we used a substitution rate recently estimated for the crAss-like

Fig 1. Phylogenomic analysis of crAssphage strains. The Maximum Likelihood tree was based on a multi-genome

alignment comprising 97,065 sites. The tree was built using the Generalized Time-Reversible model with gamma-

distributed rate variation and proportion of invariant sites. Bootstrap support was estimated from 100 replicates; only

values greater than 50% are shown. Strains are color-coded according to the geographic location: dark green–The

Americas, light green–Asia, light violet–Europe, and dark purple–Middle East (Israel). Symbols are used to denote

strains from the same individual.

https://doi.org/10.1371/journal.pone.0226930.g001
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family of bacteriophages [47]. Our Bayesian Skyline plot (S3 Fig) shows that crAssphage strains

underwent a recent expansion event, sometime within the past hundred years. We stress the

uncertainty of this estimate given the limitations of our Bayesian dating approach–namely, the

lack of appropriate external calibration points and a substitution rate specific to crAssphage

sensu stricto. However, we note that our analysis shows that this population expansion

occurred recently, i.e. within the past few hundred years, consistent with the advance of indus-

trialization, as opposed to having occurred thousands of years ago. Given the recent successful

propagation of crAss001, a member of the crAss-like family of phages, in culture [13], the cul-

turing of crAssphage and determination of its substitution rate has become a possibility. Fur-

ther investigation using a crAssphage-specific substitution rate will provide a more robust

estimate of the timing of the population expansion.

CrAssphage acquisition and persistence

Acquisition and persistence of crAssphage strains in the human gut was evaluated using data

from studies focusing on 1) mother-infant pairs, 2) twin-pairs, and 3) longitudinal sampling of

individuals. We assessed the potential to identify vertical transmission of crAssphage using the

BCK dataset [22], which comprises samples from healthy Swedish mothers (N = 100) and their

infants (N = 100) at birth, 4-months, and 12-months of age. CrAssphage prevalence among

the healthy mothers was 23%. None of the samples from newborns were considered crAss-pos-

itive. Most of the samples from newborn infants showed no reads mapping to crAssphage and

no crAssphage proteins recovered from the de novo metagenomic assembly approach (S2

Table), with the exception of the infants from Family 549 and Family 263, who showed

Fig 2. Relationships of crAssphage strains recovered from the same individual and twin-pairs. The Maximum

Likelihood tree was based on the multi-gene alignment comprising 12,642 nucleotide sites. Sites with missing data

were eliminated. The tree was built using the Generalized Time-Reversible model with gamma-distributed rate

variation and proportion of invariant sites. Bootstrap support values estimated from 100 replicates are given; only

values greater than 50% are shown. CrAssphage strains recovered from multiple samples from the same individual are

color-coded accordingly (MHE, ISR, HMP, and BCK datasets). Symbols are used to denote crAssphage strains

recovered from the same twin-pair (XIE dataset).

https://doi.org/10.1371/journal.pone.0226930.g002
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presence of three and five crAssphage proteins, respectively, at birth. The mothers from both

families were also crAss-positive. The infant from Family 263 was determined to be crAss-pos-

itive at the four- and 12-month stages, whereas the infant from Family 549 was not considered

crAss-positive according to our criteria. At the four-month stage, a total of three infants were

crAss-positive, all of whom remained crAss-positive at the 12-month stage as well. A total of

16 infants were crAss-positive at the 12-month stage, suggesting that by the end of the first

year of life, crAssphage prevalence among infants was similar to that in mothers (chi-

square = 1.5608; p-value = 0.2115, α = 0.05). Interestingly, in nine out of 16 mother-infant

pairs, the 12-month old infants were crAss-positive whereas mothers were completely crAss-

negative (no crAssphage proteins were recovered from the samples from the mothers). This

supports the hypothesis that crAssphage may be acquired by means other than vertical trans-

mission, as recently reported by [21].

To study concordance of crAssphage prevalence among twin-pairs, we screened the XIE

dataset comprising samples from twin-pairs from the UK (N = 124 pairs). We found 15 cases

wherein both twins were crAss-positive and 57 cases wherein both twins were crAss-negative.

There were 51 twin-pairs with discordant crAss-positive status. CrAssphage strains from only

two crAss-positive twin-pairs could be included in our phylogenetic analyses: in one case,

the strains from twin-pair P98 clustered together, whereas those from twin-pair P122 did not

(Fig 2).

Additionally, we looked for signatures of crAssphage strain continuity among individuals

using the BCK, HMP, and MHE datasets. As seen in Fig 2, crAssphage strains recovered at dif-

ferent time-points from the same individual cluster together, as also reported by [16]. In cer-

tain individuals (for example, MHE_O2.UC40), crAssphage strains from different time-points

are a 100% identical, suggesting persistence of a single crAssphage strain. In others (for exam-

ple, MHE_O2.UC22), the strains are closely related but not identical, suggesting that at differ-

ent time-points, different crAssphage strains might be dominant in an individual. Similar

findings have been reported for crAss-like phages by a recent longitudinal study of gut virome

diversity [47].

Conclusions

The geographic distribution of crAssphage is global [14, 16], but as observed here, the preva-

lence of crAssphage is lower within samples from more traditional, hunter-gatherer popula-

tions such as the Hadza from Tanzania and Matses from Peru. The overall picture from the

data presented here is that crAssphage prevalence is associated with an industrialized lifestyle/

diet, but with no associations to health, age, sex, or body-size variables. CrAssphage strains

from the same individual tend to cluster together phylogenetically. Overall, crAssphage shows

limited biogeographic clustering as seen in cases of a recent population expansion event. We

estimate that this expansion occurred approximately within the past few hundred years; how-

ever, the mechanism behind this expansion remains uncertain. Alternatively, this pattern can

be attributed to a passive effect of a population expansion within its bacterial host(s) rather

than an active expansion event within the bacteriophage. Future research elucidating what

bacterial species serve as hosts of crAssphage sensu stricto will open avenues for exploring such

hypotheses regarding host-bacteriophage co-evolution.

Methods

Data acquisition and processing

Gut metagenomic data for a total of 3,341 samples from were downloaded from the Sequence

Read Archive or European Nucleotide Archive (Table 1). Shotgun data were processed using
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AdapterRemoval v2 [48] to remove reads with ambiguous bases (‘N”), trim at low-quality

bases (Q<30), and merge overlapping read-pairs. Processed reads longer than 30 base pairs

(bp) were retained for downstream analysis. These “analysis-ready” reads were then screened

for the presence of crAssphage.

Reference-based mapping

The analysis-ready reads were mapped to the reference crAssphage genome (NC024711.1)

using Bowtie2 [37] with the “no-unal” option to discard unmapped reads. The resulting SAM

files were processed using SAMTools v1.3 [49], converted into BAM files, quality-filtered at

Phred threshold 37, and duplicate reads were removed using rmdup. SAMTools mpileup and

VarScan v2.4.3 [50] were used to generate a VCF file with the following parameters: minimum

coverage: 10, minimum coverage of variant allele: 3; minimum average quality: 30, minimum

variant allele frequency: 0.2, minimum frequency for homozygotes: 0.9, p-value: 1, and strand

filter: 0. This VCF file comprised both variant and invariant sites present in the reference

crAssphage genome, resulting in a total of 97,065 sites. A custom perl script was used to gener-

ate a FASTA file containing the complete genome of the crAssphage strain from the VCF file.

The number of heterozygous sites was used to assess presence of one or multiple crAssphage

strains in the sample.

De novo metagenomic assembly

For each sample, the analysis-ready reads were independently assembled into contigs using

MEGAHIT [38]. Depth of coverage was calculated by mapping analysis-ready reads to assem-

bled contigs using Bowtie2 [37], followed by processing of resulting alignment files using

SAMTools [49] and custom R scripts. Open reading frame (ORF) prediction was carried out

using Prodigal [51]. A custom BLAST database was created using the collection of 90 proteins

previously predicted from the crAssphage reference genome (NC_024711.1) [12]. The pre-

dicted ORFs (amino acid) from each shotgun metagenome were queried against this custom

database using BLASTP [39], and matches were identified using the following criteria: 1)

query coverage (length of alignment / query length)� 95%, 2) percent identity� 95%, and 3)

E value < 1e-5. A sample was considered crAss-positive if matches were recovered for at least

33 reference crAssphage proteins.

Association of crAssphage prevalence with metadata variables

Individuals were grouped on the basis of 1) health status, 2) age: < 18 years, 18–40 years, 41–

65 years, and> 65 years, 3) sex: male and female, and 4) BMI: underweight (BMI< 18.5), nor-

mal (BMI 18.5–24.99), and overweight (BMI� 25), according to the World Health Organiza-

tion recommendations. Associations between the prevalence of crAssphage and health status,

age, sex, and BMI categories were assessed using the Chi square test in R [52].

Gut bacterial taxonomic profiles

For the MAT dataset [31], analysis-ready reads for each individual were mapped to the Green-

genes database of 16S rRNA gene sequences [53] using Bowtie2 [37]. Unmapped reads were

removed using the—no-unal option. The resulting SAM files were converted to BAM files,

sorted, and duplicates were removed using SAMTools v1.3 [49]. The sequences of the reads

mapping to the Greengenes database were obtained from the BAM files. These sequences were

clustered into Operational Taxonomic Units (OTUs) using vsearch [54], employing the clus-

ter_fast algorithm and comparing to the GreenGenes database. Other parameters used

Biogeographic analysis of global human crAssphage strains

PLOS ONE | https://doi.org/10.1371/journal.pone.0226930 January 15, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0226930


included a minimum sequence length of 70 bp and 97% similarity for clustering. The resulting

OTU table was rarefied to a depth of 10,000 sequences per sample and singleton OTUs were

removed using QIIME [55]. Taxonomic summaries were generated at the phylum- and genus-

levels. Relative abundances of genus Bacteroides in individuals were determined and plotted

using R [52].

Multi-gene phylogenetic analysis

For each assembled metagenome, the number of unique ORFs matching each crAssphage ref-

erence protein was calculated from the BLASTP results (S2 Table). Only samples identified as

containing one unique ORF matching each crAssphage reference protein were selected for

phylogenetic analysis. Depth of coverage information was used to verify that identified ORFs

were representative of the same viral genome.

A previously published study demonstrated the use of putative capsid proteins (genes 75,

76, 77, 78, and 79) to document diversity among crAss-like phages [12]. Multi-gene phyloge-

netic analyses were conducted using these capsid protein-encoding genes, as well as five other

genes found in members of the crAss-like phage family. These included genes encoding hypo-

thetical proteins (gene 20 and gene 23), single-stranded DNA-binding protein (gene 21),

DNA-G family primase (gene 22), and PD-(D/E)XK family nuclease (gene 85). A subset of 232

samples and the reference crAssphage genome was included in this analysis. The gene

sequences were aligned separately using MUSCLE v.3.8.31 with default parameters [56] and

concatenated together. Sites with missing data and gaps were completely removed. A Maxi-

mum Likelihood (ML) tree was built using RAXML v8.2.4 [57], using the Generalized Time-

Reversible model with gamma-distributed rate variation and proportion of invariable sites

(GTR+G+I). Bootstrap support was estimated from 100 replicates.

Genome-based phylogenetic analysis

A subset of 118 samples determined to carry only one crAssphage strain was selected. A

whole-genome alignment of all strains was used as input for RAXML [57], and a ML tree was

generated using the GTR+G+I model and 100 bootstrap replicates.

Timing of crAssphage population expansion

To estimate the timing of a potential population expansion among crAssphage sequences, the

multi-gene alignment was used as input for BEAST v1.8.4 [46]. We used a mean substitution

rate of 6 x 10−4 substitutions per site per year, with a standard deviation of 5.1 x 10−4, as esti-

mated for the crAss-like family of bacteriophages [47]. We used a GTR+G+I model of nucleo-

tide substitution, an uncorrelated lognormal clock model with uniform rate across branches,

and a Bayesian Coalescent Skyline plot tree prior. One Markov Chain Monte Carlo (MCMC)

run was carried out with 100,000,000 iterations, sampling every 10,000 steps. The first

10,000,000 iterations were discarded as burn-in. Tracer [58] was used to visualize the results of

the MCMC run and generate a Bayesian Skyline Plot.

Supporting information

S1 Table. S1 Table contains a list of all 3,341 samples included in this study, associated

meta-data, and results of the crAssphage screening using reference-based mapping and de
novo metagenomic assembly.
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S2 Table. S2 Table shows the hits for all crAssphage reference proteins across the samples.

(XLSX)

S1 Fig. Relative abundance of genus Bacteroides among Matses individuals. Boxplot denot-

ing percentage relative abundance of Bacteroides sp. among Matses individuals. Values corre-

sponding to crAss-positive individuals are denoted in red.

(PDF)

S2 Fig. Multi-gene phylogenetic analysis of 233 crAssphage strains. The Maximum Likeli-

hood tree was based on the multi-gene alignment comprising 12,642 nucleotide sites. Sites

with missing data were eliminated. The tree was built using the Generalized Time-Reversible

model with gamma-distributed rate variation and proportion of invariant sites. Bootstrap sup-

port values estimated from 100 replicates are given; only values greater than 50% are shown.

Strains are color-coded according to the geographic location: dark green–The Americas, light

green–Asia, light violet–Europe, and dark purple–Middle East (Israel). The differentially-col-

ored symbols next to the taxa names are used to denote strains from the same individual.

(PDF)

S3 Fig. Bayesian Skyline Plot of crAssphage strains. The X-axis denotes time in years before

present (YBP) and Y-axis denotes estimated effective population size. The blue shaded region

denotes the 95% Highest Posterior Density interval.

(PDF)
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