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Abstract: Turbulence modeling remains an active area of research due to its signifi-
cant impact on a diverse set of challenges such as those pertaining to the aerospace
and geophysical communities. Researchers continue to search for modeling strategies
that improve the representation of high-wavenumber content in practical computa-
tional fluid dynamics applications. The recent successes of machine learning in the
physical sciences have motivated a number of studies into the modeling of turbu-
lence from a data-driven point of view. In this research, we utilize physics-informed
machine learning to reconstruct the effect of unresolved frequencies (i.e., small-scale
turbulence) on grid-resolved flow-variables obtained through large eddy simulation. In
general, it is seen that the successful development of any data-driven strategy relies on
two phases - learning and a-posteriori deployment. The former requires the synthesis
of labeled data from direct numerical simulations of our target phenomenon whereas
the latter requires the development of stability preserving modifications instead of a
direct deployment of learning predictions. These stability preserving techniques may
be through prediction modulation - where learning outputs are deployed via an in-
termediate statistical truncation. They may also be through the utilization of model
classifiers where the traditional L2-minimization strategy is avoided for a categori-
cal cross-entropy error which flags for the most stable model deployment at a point
on the computational grid. In this thesis, we outline several investigations utilizing
the aforementioned philosophies and come to the conclusion that sub-grid turbulence
models built through the utilization of machine learning are capable of recovering
viable statistical trends in stabilized a-posteriori deployments for Kraichnan and Kol-
mogorov turbulence. Therefore, they represent a promising tool for the generation
of closures that may be utilized in flows that belong to different configurations and
have different sub-grid modeling requirements.

iv



TABLE OF CONTENTS

Chapter Page

I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II A neural network approach for the blind deconvolution of turbulent
flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Extreme Learning Machine . . . . . . . . . . . . . . . . . . . 13

2.4 Blind Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Kraichnan Turbulence . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Kolmogorov Turbulence . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Stratified Turbulence . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

III Data-driven deconvolution for large eddy simulations of Kraichnan
turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Turbulence modeling equations . . . . . . . . . . . . . . . . . . . . . 59
3.4 Data-driven convolution and deconvolution . . . . . . . . . . . . . . 62
3.5 Training and a-priori validation . . . . . . . . . . . . . . . . . . . . . 66
3.6 A posteriori testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8 Modified truncation via mean filtering . . . . . . . . . . . . . . . . . 87
3.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV Sub-grid modelling for two-dimensional turbulence using neural
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Machine learning architecture . . . . . . . . . . . . . . . . . . . . . . 103
4.4 A-priori validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



4.5 Deployment and a-posteriori assessment . . . . . . . . . . . . . . . . 109
4.6 A-priori and a-posteriori dichotomy . . . . . . . . . . . . . . . . . . 115

4.6.1 Effect of eddy-viscosity inputs . . . . . . . . . . . . . . . . . 117
4.6.2 A-posteriori informed architecture selection . . . . . . . . . . 118
4.6.3 Stencil selection . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8.1 Hyper-parameter optimization . . . . . . . . . . . . . . . . . 124
4.8.2 Network training . . . . . . . . . . . . . . . . . . . . . . . . . 125

V Eddy-viscosity predictions through the machine learning of sub-
grid stresses for the large-eddy-simulation of turbulence . . . . . 129
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Data-driven closure modeling . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Stable projection of data-driven predictions . . . . . . . . . . . . . . 133
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 A-priori testing . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.2 A-posteriori testing . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

VI Sub-grid scale model classification and blending through deep learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5.1 Model classification . . . . . . . . . . . . . . . . . . . . . . . 158
6.5.2 Model blending . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6 Conclusions & significance . . . . . . . . . . . . . . . . . . . . . . . 171

VII Connecting implicit and explicit large eddy simulations of two-
dimensional turbulence through machine learning . . . . . . . . . 178
7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3 Turbulence modeling equations . . . . . . . . . . . . . . . . . . . . . 184
7.4 Non-linear Jacobian computation . . . . . . . . . . . . . . . . . . . . 186
7.5 Machine learning for scheme selection . . . . . . . . . . . . . . . . . 188
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.6.1 A posteriori deployment . . . . . . . . . . . . . . . . . . . . 193
7.6.2 Validation of learning . . . . . . . . . . . . . . . . . . . . . . 201

7.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

VIII Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . 205
8.1 Summary of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

vi



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A Data generation - Kraichnan turbulence . . . . . . . . . . . . . . . 227
1.1 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

1.1.1 Arakawa scheme . . . . . . . . . . . . . . . . . . . . . . . . . 227
1.1.2 Time integration scheme . . . . . . . . . . . . . . . . . . . . 228
1.1.3 Poisson solver . . . . . . . . . . . . . . . . . . . . . . . . . . 228

1.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1.3 Data sampling for learning . . . . . . . . . . . . . . . . . . . . . . . 231

B Data generation - Kolmogorov turbulence . . . . . . . . . . . . . . 232
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
2.2 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

2.2.1 Finite volume framework . . . . . . . . . . . . . . . . . . . . 234
2.2.2 Symmetric flux reconstructions: 6th order Central Schemes . 235
2.2.3 Treatment of viscous terms . . . . . . . . . . . . . . . . . . . 235

2.3 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
2.5 Data sampling for learning . . . . . . . . . . . . . . . . . . . . . . . 237

vii



LIST OF TABLES

Table Page

2.1 Cross-validation data sets for the proposed data-driven blind deconvo-

lution closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Mean-squared-error values for deconvolved and regularized fields ob-

tained from the proposed architecture. Data shown from the two-

dimensional Kraichnan turbulence test case. Note that the mean-

squared-error values are obtained from the vorticity magnitudes of the

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Mean-squared-error values for deconvolved and regularized fields ob-

tained from the proposed architecture. Data shown from the three-

dimensional Kolmogorov turbulence test case. Note that the mean-

squared-error values are obtained from the z component of the velocity

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Mean-squared-error values for deviatoric subfilter scale components

with respect to the true subfilter scale stresses for Kolmogorov tur-

bulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Mean-squared-error values for deconvolved and regularized fields ob-

tained from the proposed architecture. Data shown from the three-

dimensional stratified turbulence test case. Note that the mean-squared-

error values are obtained from the z component of the velocity field. . 42

2.6 Mean-squared-error values for deviatoric subfilter scale components

with respect to the true subfilter scale stresses for stratified turbulence. 42

viii



3.1 A summary of filter and deconvolutional notation . . . . . . . . . . . 61

6.1 Classification accuracy percentages for different grid-resolutions in a-

priori to illustrate how accurately our base learning can predict correct

labels. Accuracies are seen to drop when resolutions are coarsened rad-

ically. However, some learning is retained as evidenced by accuracies

greater than 33%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Classification percentages in a-priori and a-posteriori. One can see

deviation from trends due to numerical error accumulation (and greater

utilization of closure classifications for subsequent stabilization). . . . 165

ix



LIST OF FIGURES

Figure Page

2.1 A schematic of the proposed blind deconvolution strategy for a two-

dimensional test case where we aim to recover ω∗ from ω̄. Note that

each hidden neuron is associated with a unique bias. . . . . . . . . . . 19

2.2 A schematic of the spatial shifting strategy for a simplified two-dimensional

grid showing two different data sets. Several different data sets may

be constructed using this technique which are numerically different

physically similar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 A flow chart detailing the generation of cross-validation data sets using

the shifting operation as well as different perturbations. The network

is trained using Algorithm 1 and is then tested on test data 1, 2 and 3. 22

2.4 A-priori results of the kinetic energy spectra (left) and PDF of the

vorticity (right) for Kraichnan turbulence. Results for three different

deconvolution test data sets shown. . . . . . . . . . . . . . . . . . . 25

2.5 A-priori results of the kinetic energy spectra (left) and PDF of the

vorticity (right) for Kraichnan turbulence. Results for three different

regularization test data sets shown. . . . . . . . . . . . . . . . . . . . 26

2.6 A-priori results for vorticity recovery from low-pass spatially filtered

inputs for Kraichnan turbulence. Data shown for deconvolution test

data 1: (a) true coarse-grained fields, (b) coarse-grained fields with

Gaussian smoothing, and (c) coarse-grained fields reconstructed using

proposed framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

x



2.7 A-priori results for vorticity recovery from noisy perturbation inputs for

Kraichnan turbulence. Data shown for regularization test data 1: (a)

true coarse-grained fields, (b) coarse-grained fields with Gaussian noise,

and (c) coarse-grained fields reconstructed using proposed framework. 27

2.8 A-priori results of the kinetic energy spectra (left) and PDF of the z

component of velocity (right) for Kolmogorov turbulence. Results for

three different deconvolution test data sets shown. . . . . . . . . . . 31

2.9 A-priori results of the kinetic energy spectra (left) and PDF of the z

component of velocity (right) for Kolmogorov turbulence. Results for

three regularization different test data sets shown. . . . . . . . . . . 32

2.10 A-priori results for velocity field recovery from low-pass spatially fil-

tered perturbations for Kolmogorov turbulence. Isosurfaces for x-

component of the velocity colored by z-component are shown. Data

shown for deconvolution test data 1: (a) true coarse-grained fields (b)

coarse-grained fields with Gaussian smoothing, and (c) coarse-grained

fields reconstructed using proposed framework. . . . . . . . . . . . . . 33

2.11 A-priori results for velocity field recovery from noisy perturbation in-

puts for Kolmogorov turbulence. Isosurfaces for x-component of the

velocity colored by z-component are shown. Data shown for regular-

ization test data 1: (a) true coarse-grained fields, (b) coarse-grained

fields with Gaussian noise, and (c) coarse-grained fields reconstructed

using proposed framework. . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



2.12 A-priori results for Kolmogorov turbulence subfilter stress predictions

by the proposed architecture. Probability density functions for dif-

ferent subfilter stress components along with predictions by state of

the art structural closures. Our data-driven architecture performs in a

manner similar to these well established closure strategies without any

explicit definition of a low-pass spatial filter. . . . . . . . . . . . . . . 35

2.13 Evolution of density contours for the stratified turbulence problem

through time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 A-priori results of the kinetic energy spectra (left) and PDF of the

z component of velocity (right) for stratified turbulence. Results for

three different deconvolution test data sets shown. . . . . . . . . . . . 39

2.15 A-priori results of the kinetic energy spectra (left) and PDF of the

z component of velocity (right) for stratified turbulence. Results for

three different regularization test data sets shown. . . . . . . . . . . . 40

2.16 A-priori results for velocity field recovery from low-pass spatially fil-

tered perturbations for stratified turbulence. Data shown for deconvo-

lution test data 1. Isosurfaces for x component of the velocity colored

by z component are shown: (a) true coarse-grained fields, (b) coarse-

grained fields with Gaussian smoothing, and (c) coarse-grained fields

reconstructed using proposed framework. . . . . . . . . . . . . . . . . 41

2.17 A-priori results for velocity field recovery from noisy perturbation in-

puts for stratified turbulence. Data shown for regularization test data

1. Isosurfaces for x component of the velocity colored by z compo-

nent are shown: (a) true coarse-grained fields, (b) coarse-grained fields

with Gaussian noise, and (c) coarse-grained fields reconstructed using

proposed framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xii



2.18 A-priori results for stratified turbulence subfilter stress predictions by

the proposed architecture. Probability density functions for different

subfilter stress components along with predictions by state of the art

structural closures. Our data-driven architecture performs in a manner

similar to these well established closure strategies without any explicit

definition of a low-pass spatial filter. . . . . . . . . . . . . . . . . . . 43

2.19 A-priori results of the kinetic energy spectra (left) and PDF of the vor-

ticity (right) for Kolmogorov turbulence. Here we utilize DNS data for

the Taylor-Green vortex at Re = 1600 to reconstruct an approximation

to the true field for Re = 5000. . . . . . . . . . . . . . . . . . . . . . 46

2.20 A-priori results for the kinetic energy spectra (left) and PDF of the

vorticity (right) for Kolmogorov turbulence. Here we utilize high fi-

delity data from the Taylor-Green vortex at time t = 15 to obtain a

reconstruction for the same test case at time t = 20 for a Re = 1600. 47

2.21 A-priori results of the kinetic energy spectra (left) and PDF of the

vorticity (right) stratified turbulence. Here we utilize DNS data for the

Taylor-Green vortex at Re = 1600 to reconstruct an approximation to

the true field for the stratified turbulence test case generated from the

inviscid Euler equations. . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.22 A-priori results of the kinetic energy spectra (left) and PDF of the vor-

ticity (right) for Kolmogorov turbulence. Here we utilize high fidelity

data from the stratified turbulence problem to train a prediction for

the Taylor-Green vortex at Re = 1600. . . . . . . . . . . . . . . . . . 49

3.1 A schematic of our data-driven mapping for convolution and decon-

volution. Two separate ANNs are utilized for projection to and from

deconvolved variable space. . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



3.2 A schematic of our biasing and activation at each hidden layer neuron.

Assuming five inputs from previous layer. . . . . . . . . . . . . . . . . 66

3.3 The prediction ability of the use of both forward and inverse maps in

the calculation of the approximate underlying Jacobian ˜J(ω∗, ψ∗) for

Re = 32000 (left) and Re = 64000 (right). The true Jacobian J(ω, ψ)

is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 A visual assessment of the truncation of our numerical post-processing

during deployment given by Equation 3.15. Blue points indicate trun-

cated deployment for ensuring no negative viscosity and numerical sta-

bility. A-priori predictions for Re = 32000 (top) and Re = 64000

(bottom) shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 The a-posteriori performance of proposed framework for Re = 32000

in terms of energy spectra. At each step of sub-grid stress calculation,

both forward and inverse maps are used for convolution and deconvo-

lution in the estimation of the true underlying Jacobian. . . . . . . . 74

3.6 Visual quantification of the a-posteriori performance of proposed frame-

work for Re = 32000 with stabilized (top), under-resolved (middle) and

filtered DNS contours (bottom) for vorticity. . . . . . . . . . . . . . . 75

3.7 Performance comparison of proposed framework with co-efficient de-

pendant Smagorinsky model. One can observe that higher Cs values

lead to over-dissipative models. . . . . . . . . . . . . . . . . . . . . . 76

3.8 Performance comparison of proposed framework with co-efficient de-

pendant Leith model. One can observe that higher Cl values lead to

over-dissipative models. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Ensemble-averaged a-posteriori performance of proposed framework for

Re = 32000 in terms of energy spectra. This determines the general-

izability of proposed framework. . . . . . . . . . . . . . . . . . . . . . 78

xiv



3.10 The a-posteriori performance of proposed framework for Re = 64000

in terms of energy spectra. Training data limited to Re = 32000 only. 79

3.11 Visual quantification of the a-posteriori performance of proposed frame-

work for Re = 64000 with stabilized (top), under-resolved (middle) and

filtered DNS contours (bottom) for vorticity. Note: Training only with

Re = 32000 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.12 A comparison of the proposed framework with the Dynamic Smagorin-

sky and Dynamic Leith models for Re = 32000. One can see an opti-

mal solution being obtained by the data-driven formulation in a similar

manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.13 A comparison of the proposed framework with the Dynamic Smagorin-

sky and Dynamic Leith models for Re = 64000. One can see an opti-

mal solution being obtained by the data-driven formulation in a similar

manner. Training data limited to Re = 32000 only. . . . . . . . . . . 82

3.14 Sensitivity study for proposed framework number of layers at Re =

64000. Training data limited to Re = 32000 only and with 100 neurons

in each layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.15 Sensitivity study for proposed framework number of layers at Re =

64000. Training data limited to Re = 32000 only and with 1 hidden

layer only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.16 Sensitivity study for machine learning algorithm for training and test-

ing mean-squared-errors. These errors are shown for M2 optimization. 86

3.17 The performance of a linear estimator (LR) for convolutional and de-

convolutional maps in the proposed framework for Re = 32000. A

comparison to the default ANN is shown. . . . . . . . . . . . . . . . . 88

xv



3.18 The performance of a linear estimator (LR) for convolutional and de-

convolutional maps in the proposed framework for Re = 64000. A

comparison to the default ANN is shown. Training data limited to

Re = 32000 only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.19 Transfer function for truncation kernel to preserve statistical effects of

backscatter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.20 A visual assessment of the truncation of our numerical post-processing

during deployment given by the BS-1 framework. Blue points indicate

truncated deployment for ensuring no negative viscosity and numerical

stability. A-priori predictions for Re = 32000 (top) and Re = 64000

(bottom) shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.21 A comparison of the choice of a-posteriori truncation utilized in our

proposed framework. A statistical preservation of backscatter enforced

by our proposed kernel leads to a better agreement with the inertial

range statistics for Re = 32000. . . . . . . . . . . . . . . . . . . . . . 93

3.22 A comparison of the choice of a-posteriori truncation utilized in our

proposed framework. A statistical preservation of backscatter enforced

by our proposed kernel leads to a better agreement with the inertial

range statistics for Re = 64000. Training data limited to Re = 32000

only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Proposed artificial neural network architecture and relation to sampling

and prediction space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 A-priori performance of Smagorinsky and Leith models for varying

model coefficients for data snapshot at t = 2. Here, instances refer to

the probability densities of truth and prediction at different magnitudes.108

xvi



4.3 A-priori results for the probability density distributions of the true

and framework predicted LES source terms for Re = 32000 (left) and

Re = 64000 (right). Note that the training data was generated for

Re = 32000 only and prediction on Re = 64000 represents a stringent

validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 An a-priori assessment of the nature of truncation given by Equation

4.9 for t = 2 snapshot data at Re = 32000 (top) and Re = 64000

(bottom). The nature of this truncation is for the preservation of

viscous stability in a coarse-grained forward simulation. . . . . . . . . 110

4.5 A-posteriori results for the spatially-averaged kinetic energy spectra

for the proposed framework compared with DNS and UNS solutions.

Note that only Re = 32000 training data is used for both deployments

and network is applied spatially and temporally in a dynamic manner

until t = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 A-posteriori results for the spatially-averaged kinetic energy spectra

for the Smagorinsky model for different values of their eddy-viscosity

coefficients and for different Reynolds numbers at t = 4. One can

observe that the capture of lower-wavenumber energy and scaling is

heavily dependant on the value of these coefficients. . . . . . . . . . . 113

4.7 A-posteriori results for the spatially-averaged kinetic energy spectra for

the Leith model for different values of their eddy-viscosity coefficients

and for different Reynolds numbers at t = 4. One can observe that the

capture of lower-wavenumber energy and scaling is heavily dependant

on the value of these coefficients. . . . . . . . . . . . . . . . . . . . . 113

4.8 A-posteriori results for 24 ensemble-averaged simulations for Re =

32000 (left) and Re = 64000 (right). . . . . . . . . . . . . . . . . . . . 114

xvii



4.9 The deployment of our framework till t = 6 for Re = 32000 (left) and

Re = 64000 (right) showing that a sub-grid model has been learned for

utility beyond the training region. We note that the training region is

defined between t = 0 and t = 4 alone. . . . . . . . . . . . . . . . . . 115

4.10 A-posteriori results for the proposed framework showing vorticity fields

for Re = 32000 and Re = 64000 data using coarse-grained grids (top).

We also provide no-model simulations (middle) and filtered DNS con-

tours (bottom) for the purpose of comparison. . . . . . . . . . . . . 116

4.11 A-priori (left) and a-posteriori (right) effect of the utilization of eddy-

viscosity kernel inputs in training and deployment for a two-layer 50

neuron network with a 9-point stencil. The presence of these kernels

(intangible in a-priori error minimization) leads to constrained statis-

tical fidelity in a-posteriori deployment at Re = 32000. . . . . . . . . 118

4.12 A-priori (left) and a-posteriori (right) effect of the utilization of eddy-

vicsosity kernel inputs in training and deployment for a five-layer 50

neuron network with a 9-point stencil. The presence of these ker-

nels leads to higher training errors but viable statistical fidelity in

a-posteriori deployment at Re = 32000. . . . . . . . . . . . . . . . . . 119

4.13 A-priori (left) and a-posteriori (right) effect of the number of hidden-

layers in the proposed framework. While the two-layered ANN with a

9-point stencil leads to excellent a-priori results, the five-layered net-

work predicts k−3 scaling more accurately in deployment for an a-

posteriori simulaion at Re = 32000. . . . . . . . . . . . . . . . . . . . 120

4.14 A-priori (left) and a-posteriori (right) effect of the stencil size in the

2-layer, 50 neuron framework for a Re = 32000 simulation. While the

5-point stencil leads to similar a-priori training errors, an a-posteriori

deployment at Re = 32000 reveals its limitations. . . . . . . . . . . . 121

xviii



4.15 A-priori (left) and a-posteriori (right) effect of the stencil size in the

5-layer, 50 neuron framework for a Re = 32000 simulation. With

deeper architectures, the 5 and 9-point stencils show similar statistical

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.16 Quantification of hyper-parameter optimization shown for number of

layers (top) and number of neurons (bottom). An optimal network

architecture of two-layers and 50 neurons is chosen for our study. . . . 126

4.17 Learning rate of the proposed optimal model architecture. Note how

training and validation loss are correlated closely for this learning prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 A-priori statistical recovery of sub-grid stress distributions at t = 15

for Re = 5000. Note that this data is ‘out-of-range’ since our sampling

was done for t = 5 and t = 10 alone at a lower Reynolds number of

1600. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 A-posteriori testing of our proposed framework (ML) with energy dis-

sipation rate predictions (left) and spatially averaged kinetic energy

spectra (right) for Re = 5000 at N3 = 643 degrees of freedom. Note

that the network was optimized for predictions at Re = 1600 alone.

The dynamic Smagorinsky (DS) model is also shown for comparison. 137

5.3 A-posteriori testing of our proposed framework with energy dissipa-

tion rate predictions (left) and spatially averaged kinetic energy spec-

tra (right) for Re = 5000. Note that the network was optimized for

predictions at N3 = 643 degrees of freedom while it is deployed here

for N3 = 323. The dynamic Smagorinsky model is also shown for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xix



6.1 Visualization of the effect of Fourier cut-off filtering with DNS (left)

and corresponding FDNS (right). . . . . . . . . . . . . . . . . . . . . 150

6.2 Data-segregation for one-hot labeling. The a-priori eddy-viscosities

are projected onto a Gaussian distribution where data beyond 1.0% of

the standard-deviation is labeled as requiring structural (if negative)

or functional (if positive) modeling. The remaining data points are

classified as no-model cases. . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Neural-network training and validation loss for the proposed learn-

ing framework showing convergence at around 1500 epochs. The best

model was chosen according to lowest validation loss for reduced over-

fitting in forward deployments. . . . . . . . . . . . . . . . . . . . . . . 156

6.4 A posteriori kinetic-energy spectra (left) and compensated kinetic-

energy spectra (right) for Re = 32000 at t = 4 and at N2 = 2562

degrees of freedom. The proposed framework (deployed as a classifier)

balances the dissipative natures of the AD and the DS models. . . . . 159

6.5 A posteriori vorticity structure functions plotted against r (left) and

log(r) (right) for Re = 32000 at t = 4 and at N2 = 2562 degrees of

freedom. It is observed that AD performs better in the near-region

whereas the proposed framework behaves similar to the DS approach. 160

6.6 Time-histories for turbulent kinetic energy (left) and vorticity variance

(right) for Re = 32000 at N2 = 2562 degrees of freedom. The proposed

method can be seen to adapt between the behavior of the AD and DS

techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.7 A posteriori kinetic-energy spectra (left) and compensated kinetic-

energy spectra (right) for Re = 64000 at t = 4 and at N2 = 2562

degrees of freedom. This assessment displays closure effectiveness for

a Reynolds number not utilized in the training data. . . . . . . . . . 161

xx



6.8 A posteriori vorticity structure functions plotted against r (left) and

log(r) (right) for Re = 64000 at t = 4 and at N2 = 2562 degrees of free-

dom. It is observed that solely AD performs better in the near-region

whereas the proposed framework behaves similar to the DS approach.

The behavior is similar to that observed for within training data regime

deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.9 Time-histories for turbulent kinetic energy (left) and vorticity variance

(right) for Re = 64000 at N2 = 2562 degrees of freedom. The proposed

method can be seen to adapt between the behavior of the AD and

DS techniques and acts as an additional validation for deployment to

different Reynolds numbers. . . . . . . . . . . . . . . . . . . . . . . . 162

6.10 A posteriori kinetic-energy spectra (left) and compensated kinetic-

energy spectra (right) for Re = 32000 at t = 4 and at N2 = 1282

degrees of freedom. This assessment displays closure effectiveness for

a coarse-grained resolution not utilized in the training data. . . . . . 163

6.11 A posteriori vorticity structure functions plotted against r (left) and

log(r) (right) for Re = 32000 at t = 4 and at N2 = 1282 degrees of free-

dom. It is observed that solely AD performs better in the near-region

whereas the proposed framework behaves similar to the DS approach.

The behavior is similar to that observed for within training resolution

deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.12 Time-histories for turbulent kinetic energy (left) and vorticity variance

(right) for Re = 32000 at N2 = 1282 degrees of freedom. The proposed

method can be seen to adapt between the behavior of the AD and

DS techniques and acts as an additional validation for deployment to

similar coarse-grained resolutions. . . . . . . . . . . . . . . . . . . . . 164

xxi



6.13 The a-posteriori classification percentages of the various modeling hy-

potheses for our three forward deployments. In all deployments it is

observed that the utilization of AD and SM increases as the scale-

separation grows and saturates for the slow decay. Noticeably, the

deployment at N2 = 1282 necessitates a higher proportion of AD and

SM classifications for improved stabilization. . . . . . . . . . . . . . . 166

6.14 A posteriori contour results for Re = 32000 with the proposed clas-

sification framework shown top-left, DS shown top-right, UNS shown

bottom left and AD shown bottom right. These may be compared

against FDNS contours qualitatively (in Figure 6.1). . . . . . . . . . . 167

6.15 A posteriori kinetic-energy spectra (left) and compensated kinetic-

energy spectra (right) for Re = 32000 at t = 4 and at N2 = 2562

degrees of freedom. The proposed framework (deployed as a model

blending mechanism) behaves similar to the DS approach at the iner-

tial wavenumbers. We remind the reader that the blending is dynamic

between AD and SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.16 A posteriori vorticity structure functions plotted against r (left) and

log(r) (right) for Re = 32000 at t = 4 and at N2 = 2562 degrees of

freedom. It is observed that solely AD performs better in the near-

region whereas the proposed blending (once again) behaves similar to

the DS approach. We remind the reader that the blending is dynamic

between AD and SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.17 Time-histories for turbulent kinetic energy (left) and vorticity variance

(right) for Re = 32000 at N2 = 2562 degrees of freedom. The proposed

blending technique shows a varying TKE capture behavior due to its

adaptive dissipation. Note that the blending is dynamic between AD

and SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

xxii



6.18 A posteriori kinetic-energy spectra (left) and compensated kinetic-

energy spectra (right) for Re = 64000 at t = 4 and at N2 = 2562

degrees of freedom. The proposed framework (deployed as a model

blending mechanism) behaves similar to the DS approach at the iner-

tial wavenumbers. Note that the blending is dynamic between AD and

SM and training is performed using Re = 32000 data alone. . . . . . 171

6.19 A posteriori vorticity structure functions plotted against r (left) and

log(r) (right) for Re = 64000 at t = 4 and at N2 = 2562 degrees of

freedom. It is observed that solely AD performs better in the near-

region whereas the proposed blending (once again) behaves similar to

the DS approach. We remind the reader that the blending is dynamic

between AD and SM and training is performed using Re = 32000 data

alone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.20 Time-histories for turbulent kinetic energy (left) and vorticity variance

(right) for Re = 64000 at N2 = 2562 degrees of freedom. We remind

the reader that the blending is dynamic between AD and SM and

training is performed using Re = 32000 data alone. . . . . . . . . . . 172

6.21 A posteriori kinetic-energy spectra (left) and compensated kinetic-

energy spectra (right) for Re = 32000 at t = 4 and at N2 = 1282

degrees of freedom. The proposed framework (deployed as a model

blending mechanism) behaves similar to the DS approach at the iner-

tial wavenumbers. We remind the reader that the blending is dynamic

between AD and SM and training is performed using Re = 32000 and

N2 = 2562 data alone. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xxiii



6.22 A posteriori vorticity structure functions plotted against r (left) and

log(r) (right) for Re = 32000 at t = 4 and at N2 = 1282 degrees of

freedom. It is observed that solely AD performs better in the near-

region whereas the proposed blending (once again) behaves similar to

the DS approach. We remind the reader that the blending is dynamic

between AD and SM and training is performed using Re = 32000 and

N2 = 2562 data alone. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.23 Time-histories for turbulent kinetic energy (left) and vorticity variance

(right) for Re = 32000 at N2 = 1282 degrees of freedom. The proposed

blending technique behaves more dissipatively due to the reduced grid-

support. We remind the reader that the blending is dynamic between

AD and SM and training is performed usingRe = 32000 andN2 = 2562

data alone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.24 A posteriori contour results for Re = 32000 with the proposed blending

framework shown top-left, DS shown top-right, UNS shown bottom left

and AD shown bottom right. These may be compared against FDNS

contours qualitatively (in Figure 6.1). . . . . . . . . . . . . . . . . . . 175

7.1 Time evolution of the Kraichnan turbulence case with DNS (N2 =

20482) contours for vorticity of t = 1 (top-left), t = 2 (top-right), t = 3

(bottom-left), t = 4 (bottom-right). One can discern the dissipation of

vorticity as the system evolves. . . . . . . . . . . . . . . . . . . . . . 191

7.2 Hypothesis segregation and one-hot labeling for our proposed frame-

work. The learning predicts conditional probabilities for the three seg-

regated a-priori eddy-viscosity classes which are utilized for Jacobian

calculation decisions spatio-temporally. . . . . . . . . . . . . . . . . . 194

7.3 Learning rate and convergence of our classification framework training.

2000 epochs were sufficient for converged validation loss. . . . . . . . 195

xxiv



7.4 The a-posteriori performance of proposed framework (ML) for Re =

32000 and at t = 4 in terms of angle-averaged kinetic energy spectra.

Comparisons with DNS, the Arakawa scheme (UNS) and the upwinded

scheme (ILES) show that ML provides directed dissipation adequately. 197

7.5 Contours for the vorticity at LES resolution and at t = 4. In the top-

left, we have predictions from the ML approach. The top-right field

has been obtained using ILES, the bottom-left field is obtained from

UNS and the bottom right shows FDNS contours obtained by spectral

cut-off filtering of DNS. . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.6 A posteriori vorticity structure functions in x direction of our proposed

framework (ML), the Arakawa scheme (UNS) and the upwind scheme

(ILES) with statistics obtained from an FDNS snapshot at t = 4. It is

apparent that the ML method stabilizes the UNS result optimally. . . 199

7.7 A posteriori vorticity structure functions in y direction of our proposed

framework (ML), the Arakawa scheme (UNS) and the upwind scheme

(ILES) with statistics obtained from an FDNS snapshot at t = 4. It is

apparent that the ML method stabilizes the UNS result optimally. . . 200

7.8 The a-posteriori performance of proposed framework (ML) for Re =

64000 and at t = 4 in terms of energy spectra. This represents deploy-

ment of our learning at a different Reynolds number than that used

for generating training data. . . . . . . . . . . . . . . . . . . . . . . . 202

7.9 The a-posteriori performance of proposed framework (ML) for Re =

32000, t = 4 and at N2 = 1282 in terms of energy spectra. This

represents deployment of our learning at a different resolution than

that used for generating training data. . . . . . . . . . . . . . . . . . 203

A.1 Conjugate relations for the random phase function for the initial con-

ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

xxv



B.1 A validation of our direct numerical simulation (DNS) using reference

data from Van Rees et al. (2011), Bull and Jameson (2015), Hickel

et al. (2006) & DeBonis (2013). . . . . . . . . . . . . . . . . . . . . . 238

xxvi



CHAPTER I

Introduction

Turbulent flows are encountered in a variety of systems, both natural and engineer-

ing, involving a wide range of spatial and temporal scales. In order to capture all the

scales of a turbulent flow, all the scales are required to be resolved in a direct numer-

ical simulation (DNS), where the full spectra of turbulence are resolved down to the

Kolmogorov scale. However, the extreme computational and storage expenses associ-

ated with a DNS for any application of practical interest precludes their widespread

use for anything beyond the simplest of problems. Therefore a significant amount of

attention is devoted to the development of large eddy simulation (LES) techniques

which aim to capture the large energy containing motions of any energetic flow while

modeling sub-grid quantities (Lesieur and Metais, 1996; Pope, 2004; Sagaut, 2006).

LES hypothesizes the existence of solutions in a transformed space which is low-pass

spatially-filtered which consequently represent the large scale motions which contain

most of the energy in a turbulent flow. However, the numerical evolution of the

LES governing equations is fraught with inaccuracies associated with the discarding

of the finer scales due to the highly non-linear nature of turbulence with multiscale

interactions in wavenumber space. Therefore, a direct evolution of the LES equations

needs to be coupled with some measure of small-scale modeling. This dissertation

will investigate data-driven methods for estimating small-scale contributions in LES.

The chief interest in pursuing LES research is the greater insight it provides into

the physics of a particular flow phenomena as against the more widely-used Reynolds-

Averaged Navier-Stokes equations (RANS) which model almost all relevant scales of
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the flow. This is not to imply that RANS is ‘obsolete’: in most flows of engineering

interest RANS is almost always the tool of choice for the practitioner (Hanjalic, 2005)

and it is widely understood that a greater integration of CFD into an engineering

design workflow needs a leveraging of both RANS and LES approaches in a hybrid

fashion (Spalart, 1997; Fröhlich and Von Terzi, 2008). However, the main focus of

this research will be to develop novel closure strategies for LES.

There are two main ideologies in the turbulence modeling community. Both ap-

proaches are devised with the end goal of modeling sub-grid quantities. To be particu-

lar, the goal of these techniques is to model the effect of these unresolved quantities on

the larger scales as accurately as possible. This is in accordance with well-established

turbulence theory which has confirmed that there are strong non-linear interactions

between different scales through the formation of an energy cascade (Kolmogorov,

1941b,a; Orszag, 1970; Kraichnan, 1967). Therefore, the primary test for a sub-grid

model is whether it is able to faithfully reproduce the spectral scaling expected in

two- and three-dimensional turbulence. The functional approach to turbulence mod-

eling specifies the use of an eddy-viscosity as a function of grid-resolved variables and

is the predominant approach for LES in practical applications. Eddy-viscosity ap-

proaches are consistent with Kolmogorov’s ideas about the energy spectrum of three-

dimensional (3D) homogeneous isotropic turbulence where energy is injected into the

flows at large scales and is gradually transferred by a non-linear cascade to the smaller

scales until viscous dissipation becomes dominant (Frisch, 1995). Most functional sub-

grid models are derived from the oft-used Smagorinsky approach (Smagorinsky, 1963)

which computes an eddy-viscosity from the resolved strain-rate tensor and character-

istic length scales (generally determined by grid size) with the additional specification

of a Smagorinsky constant (Cs). However, while the Smagorinsky constant is proven

to have a particular value for homogeneous and isotropic turbulence (Cs ≈ 0.18), its

application to various practical flows has shown that it is not single-valued. This is re-
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peating phenomenon in many static eddy-viscosity models (for instance the popular

models specified in Vreman (2004) and Nicoud and Ducros (1999)) which necessi-

tate coefficient tweaking for good agreement with truth. Consequently there have

been several attempts to dynamically update the value of this constant (Germano

et al., 1991; Lilly, 1992) through the solution of a least-squares problem at each time

step between grid cut-off and a prespecified test-filter cut-off wavenumber by lever-

aging the concept of scale-similarity. We shall utilize comparisons to the dynamic

implementation of the Smagorinsky eddy-viscosity kernel. However, this introduces

another ad-hoc user defined parameter, namely, the choice of the filter and its charac-

teristic width. We must also note that the functional form relating Cs to a ‘turbulent

eddy viscosity’ has been generated from mixing length theory rather empirically. One

aspect of this dissertation shall provide a framework to bypass the restrictive empir-

ical assumptions involved in the calculation of the linear eddy-viscosity through the

extraction of trends from high-fidelity DNS snapshots.

An alternative method of closure modeling focuses on bypassing the eddy-viscosity

hypothesis through structural arguments. A structural argument may be based on

scale-similarity (Bardina et al., 1980; Layton and Lewandowski, 2003) which attempts

to augment the quadratic non-linearity the LES governing equations with an explicit

low-pass spatial filtering procedure. Structural arguments may also be based on the

hypothesis that the LES space admits solutions that are continuous low-pass spatially

filtering counterparts of DNS. In this scenario, an inverse filter is assumed to exist

and is utilized for reconstructing the effect of the finer frequencies. This forms the

core assumption of the approximate deconvolution (AD) method proposed by (Stolz

and Adams, 1999). While there are limitations to the hypothesis utilized in struc-

tural arguments, the chief being the assumption of isomorphism between DNS and

LES spaces (necessitating a finer grid than what is required for the eddy-viscosity

techniques), they are attractive as they bypass the Bousinessq hypothesis (i.e., a tur-
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bulence stress tensor that is linear in the velocity gradient). In order to deploy the

structural methods accurately, one must specify a low-pass spatial filtering operator

with a specific transfer function. It is generally seen that the choice of this filter is cru-

cial for a-posteriori closure accuracy and requires tuning similar to that necessary for

functional coefficients. Traditional structural applications have prescribed Gaussian-

type filters for this iterative procedure which is a relatively strong (and often incor-

rect) assumption when homogeneous and isotropic turbulence is observed. Therefore,

the utilization of these methods in practical deployments necessitates coupling with

functional techniques (Habisreutinger et al., 2007; Chow et al., 2005) which damp

out errors from the previously mentioned Gaussian assumption. While this does not

eliminate the primary drawback we are attempting to address (i.e. the specification

of user-defined parameters or filters), it is often observed that the strengths of both

approaches complement each other to mitigate weaknesses. A significant component

of this research shall also study the devising of data-driven filters that are not limited

by the Gaussian assumption to engineer a bypass to the limitations of the isomorphic

assumption.

As mentioned in the previous paragraph - a widely utilized strategy for successful

closure modeling in LES is to combine structural and functional arguments. The

core argument for this method is that grid-support relevant losses may be accounted

for using functional arguments and areas of the flow field which are relatively well

resolved may be tackled by structural techniques. One can immediately notice a

limitation to this method. Basically, both methods are always active at any given

location in a flow field and therefore contaminate their underpinning hypotheses. This

gives us an opportunity to predict areas in a flow field that may be better suited to

a certain turbulence modeling strategy. This dissertation will also study the use of

classifiers to blend turbulence models adeptly. The chief promise in these studies

will be the advantage of using the large body of turbulence modeling literature as-is
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for complementing literature. In later chapters, we study techniques that switch as

well as blend between models for improved statistical predictions of two-dimensional

turbulence. We also utilize classifier based techniques to switch between central and

upwinded derivative calculations (with the latter utilized for imparting numerical

dissipation to the flow field). Note that the use of upwinded schemes for turbulence

modeling is denoted implicit LES and is another popular strategy for modeling the

(primarily) dissipative nature of the finer scales in a turbulent field (Grinstein et al.,

2007).

This brings us to the primary motivation for the undertaking of this research.

Over the past decade, advances in data collection and increasing access to compu-

tational resources have led to a revolution in the use of data-driven techniques for

the solution of intractable inverse problems. One such problem is that of turbulence

where the phenomenon of scale separation causes infeasible computational demands

even for the most simple systems. This behavior is shared by all non-linear partial

differential equations and necessitates the utilization of multiple modeling approxi-

mations such as sub-grid modeling for LES for tractable compute times. With this

contextual background, in this document, we introduce hybrid modeling (physics-

informed machine learning) methodologies for determining (or combining) sub-grid

models without any phenomenological assumptions (in the spirit of structural mod-

els). This is accomplished by the use of artificial neural networks (ANNs) to establish

data-driven maps between coarse-grained LES fields and truth extracted from associ-

ated DNS but without the use of any explicit filter or model-form coefficient. These

optimal maps between grid-resolved and sub-grid quantities (or between the former

and the optimal choice of turbulence model) are obtained by supervised learning from

sub-sampled direct numerical simulation (DNS) data and are deployed in both a-priori

and a-posteriori fashion for the LES of two-dimensional and three-dimensional tur-

bulence. The utilization of DNS data also conforms to the ideology of optimal LES
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based modeling strategies (Langford and Moser, 1999; Moser et al., 2009). To that

end, we have identified the following components of this research direction. In general,

the development of a data-driven closure is specified through

1. Generation of high-fidelity data snapshots through DNS. These snapshots are

highly sub-sampled in space and time to reflect measurement deficiences.

2. Synthesizing LES data that mimics the loss of grid-support in LES space through

spectrally accurate cut-off filtering. This data may be assumed to be that ob-

tained from a perfect closure.

3. Identifying a relationship conduit between the perfect closure and the grid-

resolved data. This is generally done through the identification of the commu-

tation error in the non-linear term. This error is recast into an eddy-viscosity for

functional models or a filter deficiency in structural techniques. This preserves

the physics-informed nature of these learning strategies in that we steer clear

of directly predicting an entire flow-field. Alternatively, we may also identify

the conditional-probability of the most appropriate dissipation strategy for this

synthetic data.

4. Using data-driven methods to learn a correction to this error. This may be

through the learning of a low-pass spatial filter that mimics the loss of grid-

support or the prediction of an effective eddy-viscosity. The learning may also

be utilized as a classifier for the most optimal model or gradient discretization

strategy among a series of choices.

5. Assessment through forward deployment of the learning in the presence of nu-

merical errors associated with LES governing equation evolution. Assessments

are generally made through statistical quantities such as probability density

functions, spatially-averaged kinetic energy spectra and structure functions.
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This dissertation will be devised with individual chapters corresponding to various

studies that implement our approach to closure development using machine learning.

Each chapter implements our ideology towards closure development in a standalone

fashion (i.e, the points in the aforementioned list are adhered to as far as possible).

One-line summaries of the various chapters in this document are given in the enu-

merated list below -

1. Chapter 2 assesses the utility of ANNs for estimating an effective inverse filtering

operation from coarse-grained data in an a-priori study.

2. Chapter 3 extends the techniques introduced in chapter 1 by deploying data-

driven forward and inverse filters in an a-posteriori study.

3. Chapter 4 studies the performance of deep ANN’s for direct prediction of a

perfect closure in both a-priori and a-posteriori studies.

4. Chapter 5 is similar to the previous chapter but the focus of the prediction is

an eddy-viscosity that mimics the contribution of a perfect closure to preserve

pressure, time and Galilean invariance.

5. Chapter 6 utilizes ANNs as classifiers for dynamically switching between AD,

static Smagorinsky and no-model deployments (where the latter choice indicates

no necessity for turbulence modeling) in a-posteriori assessments.

6. Chapter 7 is similar to chapter 6 but utilizes ANNs to dynamically switch be-

tween central and upwinded schemes for the quadratic non-linearity thereby

imparting a numerical dissipation in accordance with turbulence modeling re-

quirements.
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CHAPTER II

A neural network approach for the blind deconvolution of turbulent flows

2.1 Abstract

We present a single-layer feed-forward artificial neural network architecture trained

through a supervised learning approach for the deconvolution of flow variables from

their coarse-grained computations such as those encountered in large eddy simula-

tions. We stress that the deconvolution procedure proposed in this investigation

is blind, i.e. the deconvolved field is computed without any pre-existing informa-

tion about the filtering procedure or kernel. This may be conceptually contrasted

to the celebrated approximate deconvolution approaches where a filter shape is pre-

defined for an iterative deconvolution process. We demonstrate that the proposed

blind deconvolution network performs exceptionally well in the a-priori testing of

two-dimensional Kraichnan, three-dimensional Kolmogorov and compressible strati-

fied turbulence test cases and shows promise in forming the backbone of a physics-

augmented data-driven closure for the Navier-Stokes equations.

2.2 Introduction

In the past few decades, an exponential increase in computational power, algorith-

mic advances and experimental data collection strategies have seen an explosion in

modeling efforts which leverage information obtained from physical data. The ability

This chapter is adapted from Maulik and San, J. Fluid Mech., 831, 151-181.
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to learn from the physics of an experiment represents an attractive augmentation

to the laws that have been painstakingly developed from the first principles of fluid

mechanics (Schmidt and Lipson, 2009). As highlighted by Kutz (2017), data-driven

learning combined with well established governing laws represent an extraordinary

opportunity for the mitigation of the challenges faced by many modeling mechanisms

that are purely developed from first principles.

The use of machine learning techniques have traditionally been limited to the flow

control community (Lee et al., 1997; Milano and Koumoutsakos, 2002; Gautier et al.,

2015) but there has been recent interest in their utilization for sub-grid scale mod-

eling for high Reynolds (Re) number flows. For instance, artificial neural networks

(ANNs) have recently been utilized for the purpose of sub-grid scale model classifica-

tion (Gamahara and Hattori, 2017) and Reynolds stress anisotropy tensor prediction

(Ling, Kurzawski and Templeton, 2016; Wang, Wu and Xiao, 2017). Together with

other machine learning based techniques such as Gaussian process regression (Raissi

and Karniadakis, 2017, 2016; Zhang and Duraisamy, 2015; Wang et al., 2016), field

inversion (Duraisamy et al., 2015; Parish and Duraisamy, 2016), symbolic regression

(Weatheritt and Sandberg, 2016; Brunton et al., 2016) and several different algo-

rithms (Ling and Templeton, 2015; Ling, Jones and Templeton, 2016; Tracey et al.,

2013; Bright et al., 2013), data-driven approaches such as ANNs are poised to form

the backbone of the next great leap in closure modeling for non-linear conservation

laws.

A chief motivation for this research lies in the recent advances in the image process-

ing community which exploit the general body of machine learning techniques used

for the reconstruction of noisy or blurred images (Cichocki and Amari, 2002). In par-

ticular we endeavour to justify the implementation of ANN based machine learning

strategies for the purpose of subfilter scale recovery in turbulence closure modeling. In

this work, we have developed a single-layer feed-forward ANN to identify a non-linear
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relationship between the low-pass spatially filtered and coarse-grained (but unfil-

tered) field variables for settings in two-dimensional (2D) and three-dimensional (3D)

homogeneous isotropic turbulence as well as a stratified turbulence case exhibiting

moderate compressibility in the limit of infinite Reynolds numbers. A fundamental

basis for the selection of a single hidden layer is to reduce training durations and to

constrain the degrees of freedom of our trained network (by reducing the number of

weights). We emphasize that the performance demanded from our ANN is statistical

in nature and generalization is vital. Our trained ANN, once deployed, performs a

data recovery procedure utilizing the statistical relationship between filtered and true

data. Our argument for the choices presented above are given by the fact that a

successful implementation of the proposed idea would connect potential applications

across many different time and length scales.

The homogeneous and isotropic turbulence framework is chosen from the point

of view of a well established understanding of the energy cascade mechanism in the

inertial range. In essence, the statistical recovery of scaling behavior in the inertial

range shall represent our contribution from the first principles of fluid mechanics.

The compressible stratified turbulence test case serves a dual purpose. Not only is

it utilized to evaluate the performance of our proposed architecture in a perfectly

a-priori fashion, but it is also used for testing the suitability of the trained ANN for

deconvolution across different flow physics. To that end, we generate training data

sets from one of the 3D homogeneous isotropic or compressible stratified turbulence

simulations and test it on the other. This may be considered to be more challenging

than a purely a-priori analysis and would expose the universal nature of the training

in our data-driven framework. These tests reveal further information related to the

suitability of the data-driven closure across different physical regimes.

In addition to the various subfilter recovery analyses outlined above, the ability of

our proposed framework to stabilize aliasing error is also studied for the different test
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cases. For this purpose, we investigate the predictive performance of the proposed

procedure by solving a noisy data recovery problem in each setting. This noisy data

recovery problem requires the estimation of a relationship between inputs which are

perturbed by noise and their true counterparts to examine its suitability for coarse-

grained large eddy simulations which often exhibit severe aliasing error. Besides the

cross-validation within the framework of the different test cases for this noisy data

problem, we also utilize training and testing data from different flow physics (for

instance training between homogeneous isotropic and stratified turbulence test cases)

to test the universality of this regularization behavior.

In particular, the approach outlined in our study may be considered to be anal-

ogous to the approximate deconvolution methodology (Stolz and Adams, 1999) to

recover subfilter contributions of low-pass spatially filtered flow fields. The chief dif-

ference is the lack of assumption of any filtering kernel (Gaussian or otherwise); a fact

that necessitates the utilization of additional regularization in case of flows which may

exhibit distinctly non-Gaussian distributions (Stolz et al., 2001). A potential advan-

tage to emphasize here is that a data-driven closure could be incorporated to learn the

non-linear deconvolution procedure for challenging flows. This could, conceptually,

aid in a significant increase of the accuracy of reconstructed subfilter contributions

to the turbulence shear stresses. We propose this hypothesis since it has been rigor-

ously established that single and multilayered neural networks are capable of acting

as universal function approximators (Hornik et al., 1989) and could represent a con-

tinuous underlying ‘natural’ low-pass spatial filter shape effectively. We validate our

hypothesis by testing the ability of the trained ANN to capture inertial length scales

accurately (i.e., while respecting the Kolmogorov (1941b) and Kraichnan (1967) scal-

ing laws) and by examining the probability density functions of the true, distorted

(through low-pass spatial filtering or noise) and reconstructed field variables. Apart

from this, our approach is also cross-examined with state of the art structural clo-
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sures which require an explicitly specified low-pass spatial filter (Layton and Rebholz,

2012). A cross-validation strategy is also detailed and performed to ensure that the

performance of the proposed framework is physics-based and not an artifact of data-

localization.

2.3 Artificial Neural Networks

2.3.1 Architecture

The basic structure of the simple feed-forward ANN consists of layers possessing a

predefined number of unit cells called neurons. Each of these layers has an associated

transfer function and each unit cell has an associated bias. Any input to the neuron

has a bias added to it followed by activation through the transfer function. To describe

this process using matrix operations, we have for a single neuron in the lth layer

receiving a vector of inputs Sl from the (l− 1)th layer given by (Demuth et al., 2014)

Sl = WlXl−1, (2.1)

where Wl stands for a matrix of weights linking the l−1 and l layers with Xl−1 being

the output of the (l − 1)th layer. The output of the lth layer is now given by

Xl = f(Sl + Bl), (2.2)

where Bl is the vector of biasing parameters for the lth layer. Every node (or unit

cell) has an associated transfer function which acts on its input and bias to produce

an output which is fed forward through the network. The nodes which take the raw

input value of our training data set (i.e., the nodes of the first layer in the network)

perform no computation as they do not have any biasing or activation through a

transfer function. The output layers generally have a linear activation function with
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a bias which implies a simple summation of inputs incident to a unit cell with its

associated bias. In this investigation, we have used one hidden layer of neurons

between the set of inputs and targets with a Tan-Sigmoid activation function which

can be expressed as

f(a) =
1− e−2a

1 + e−2a
, (2.3)

where the transfer function f calculates the neuron’s output given its net input. In

theory, any differentiable function can qualify as an activation function (Zhang et al.,

1998), however, only a small number of functions which are bounded, monotonically

increasing and differentiable are used for this purpose.

2.3.2 Extreme Learning Machine

In this section we detail the extreme learning machine (ELM) approach to generalized

single-layer feed-forward ANN training. This methodology was proposed in Huang

et al. (2004) for extremely fast training of a single-layer feed-forward ANN based on

the principles of the least-squares approximation. We would like to note that the

ELM training approach has previously been utilized for image deblurring but using

the principles of classification in a classical deep convolutional network as against the

principles of regression utilized here (Wang et al., 2011). For the ease of description,

let us define a few matrices for the single-layer feed-forward network. This is a

generalization of the architecture introduced in Section 2.3.1. Our input matrix is

X0 =

[
x0

1 x0
2 . . . x0

ns

]
, (2.4)

where x0
i is the ith sample (out of a total of ns samples) of a multidimensional input

column vector. Our weights connecting the inputs to the middle (hidden) layer and
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the biases associated with the hidden layer are given by

W1 =



w1
1

w1
2

...

w1
Q


, B1 =



b1
1

b1
2

...

b1
Q


, (2.5)

where w1
i and b1

i represent row vectors corresponding to the weights and biases related

to the ith neuron (out of a total of Q neurons) in the hidden layer. These are initialized

to be small non-zero random numbers to enforce generalization. It is important to

remark here that the extreme learning machine methodology prescribes biases only

for hidden layer neurons (i.e., the output layer biases B2 = 0). The output of the

hidden layer neurons becomes

Hᵀ = f(W1X0 + B1), (2.6)

where f(X) implies a Tan-Sigmoid activation procedure on each element of a matrix

X and the superscript ᵀ implies a matrix transpose. The weight matrix of the second

layer may be given as

W2 =

[
w2

1 w2
2 . . . w2

Q

]
, (2.7)

where w2
i now refers to the column vectors related to the hidden layer neurons. Our

outputs of the ELM may thus be represented as

S2 = W2Hᵀ, (2.8)
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as there is a linear activation in the outer layer with no bias. This output must be

trained against a set of targets corresponding to each input vector given by

T =

[
t1 t2 . . . tns

]
, (2.9)

where ti is a column vector of the targets corresponding to the ith sample. The ELM

training mechanism is given as follows. In order to calculate the matrix W2, we must

recognize that its optimal solution should satisfy

W2
opH

ᵀ = T, (2.10)

or by taking a transpose of both sides

HW2ᵀ

op = Tᵀ, (2.11)

which leads us to the following expression for the optimal weights

W2ᵀ

op = H†Tᵀ. (2.12)

The weights W1 and biases B1 are generated initially using small random numbers.

The utilization of small random numbers promotes generalization and prevents over-

fitting (Demuth et al., 2014). The matrix given by H† is calculated using a generalized

Moore-Penrose pseudoinverse (Albert, 1972; Serre, 2002). Once the optimal weights

of the second layer are obtained, our network is trained for deployment. Due to the

random number values chosen for the weights in the first layer, our network is well

suited to highly effective generalization of the training process due to a smaller degree

of freedom of the overall ANN. The proposed direct training procedure substitutes

the gradient based iterative optimization algorithms such as the Bayesian regulariza-

tion method (MacKay, 1992; Foresee and Hagan, 1997) in favor of the calculation of
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a pseudoinverse for the least-squares solution of optimal weights. This gives us the

ability to obtain generalized predictive networks through training times which are

several orders of magnitude lower in comparison with standard iterative techniques

(Huang et al., 2006). Algorithms 1 and 2 describe the training and deployment pro-

cess for the single-layer ANN trained using ELM. Effectively, Step 4 in Algorithm 1

represents the computational expense related to our supervised training.

Algorithm 1 Extreme Learning Machine: Training

1: Given X0 and T . Given inputs and targets
2: Initialize W1 and B1 . Initialize non-zero random parameters
3: Calculate Hᵀ = f(W1X0 + B1) . Tan-Sigmoid activation
4: Calculate pseudoinverse H† . Moore-Penrose pseudoinverse
5: Calculate W2ᵀ

op = H†Tᵀ . Least-squares solution for optimal weights

Algorithm 2 Extreme Learning Machine: Deployment

1: Given X0
test . Given testing data

2: Given W1,B1 and W2
op . Given trained network from Algorithm 1

3: Obtain S1 = W1X0
test . Calculate input at Layer 1 neurons

4: Obtain X1 = f(S1 + B1) . Activate to obtain output of Layer 1 neurons
5: Obtain X2 = W2

opX
1 . Obtain output of the second layer: prediction

2.4 Blind Deconvolution

The primary motivation for the development of the aforementioned training and de-

ployment procedures for our ANN architecture is described in this section. We are

motivated by the approximate deconvolution framework (Stolz and Adams, 1999)

which uses an iterative resubstitution procedure known as the Van Cittert iterations

for reconstructing the contribution of subfilter scale content. This procedure may be

represented tensorially as:

τij = ūiūj − uiuj, (2.13)
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where we obtain an approximation of these subfilter stresses as (Germano, 2015)

τij = ūiūj − u∗iu∗j , (2.14)

in which the asterisk superscript indicates an approximately deconvolved variable. An

important caveat of this mechanism is a user-defined low-pass spatial filtering kernel.

While the general approach is to implement various versions of Gaussian blur kernel,

it is quite possible that complex flow configurations may actually exhibit natural filter

shapes which are much more contorted. Fortunately, the vast wealth of data that may

be collected by modern experimental techniques represents an opportunity for us to

bypass this user-defined heuristic stage. In essence, blind deconvolution refers to

the estimation of the underlying blur kernel without any knowledge or closed form

estimate of its true nature. We must emphasize here that while there exist several

algorithms that are truly blind in nature (for instance in Dabov et al. (2007)), this

investigation proposes a framework which is purely data-driven. To summarize, our

data may be considered to be an aid in implicitly estimating the shape of the blur

kernel through the form of a trained neural network.

Our supervised learning framework requires training data which encapsulates the

relationships between the coarsened true data and its perturbed versions. Note that,

as is common in data-driven strategies, we normalize all our data to a range between

-1 and 1. This choice of the normalized data range is due to the fact that the

Tan-Sigmoid activation function provides outputs between these limits as well. The

perturbation may be introduced through a low-pass spatial filtering procedure:

u′i = G(x;σ)ui, (2.15)

which utilizes the following Gaussian kernel with standard deviation σ (held at a
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default value of 1.0):

G(x;σ) =
1

(
√

2πσ)d
exp(−|x|

2

2σ2
), (2.16)

where d is the number of dimensions of the field being blurred. The use of a low-pass

spatially filtered field tests the ability of the proposed ANN architecture for inertial

range recovery and becomes a true test of the blind deconvolution ability of a neural

network.

Another perturbation which is examined in this investigation is the addition of a

normally distributed noise with an amplitude on the order of a tenth of the maximum

value of the field variable which can be expressed as:

u′i = ui + µκ, (2.17)

where κ is a normally distributed random number between -1 and 1 and the coefficient

µ (with a default value of 0.2) corresponds to the magnitude of the noise added to the

field. The purpose of training relationships between inputs with noisy perturbations

and the true solution is to test the stability of this approach for high wavenumber

energy accumulation. This is particularly important for coarse-grained large eddy

simulations which are susceptible to numerical overflow. Thus, our supervised learn-

ing framework utilizes u′i as our training inputs and ui are our targets. Note that we

train separate networks for each type of perturbation. The ELM training mechanism

leads to tractable training times even for cases with several hundred neurons in the

hidden layer. The results obtained in this study have employed 100 neurons for train-

ing and testing data obtained from different realizations of field values. A schematic

of the blind deconvolution methodology integrated into the one-layer ELM training

based ANN is shown for a two-dimensional test case in Figure 2.1.
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Figure 2.1: A schematic of the proposed blind deconvolution strategy for a two-
dimensional test case where we aim to recover ω∗ from ω̄. Note that each hidden
neuron is associated with a unique bias.

2.5 Cross-Validation

An important assessment of a data-driven modeling approach is a cross-validation

procedure to estimate the performance of the model for situations which it has not

been trained for. In other words, it is necessary to ascertain that the data-driven

model is not localized to the training data and provides a similar performance for dif-

ferent solution fields exhibiting similar physics but different numerical arrangements

or magnitudes. Therefore, it is vital to test the performance of the trained ANN on

a set of data which it has not seen previously (during training). For the purpose of

data generation, we utilize high-fidelity simulations for our previously mentioned test

cases so that their flow physics may be accurately resolved. Our 3D numerical exper-

iments are generated using 5123 degrees of freedom while our 2D case is generated

using 20482 grid points. A coarse-grained large eddy simulation is mimicked through

the subsequent subsampling of these high quality data sets. Our coarse-graining pro-

cedure leaves us with a subsampled field of 643 and 2562 degrees of freedom in the

3D and 2D test cases, respectively. Therefore, our coarse-graining procedure involves

the selection of every eighth grid point in the high-fidelity uniform grid data.
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Training data

Test data

Fine data

Figure 2.2: A schematic of the spatial shifting strategy for a simplified two-
dimensional grid showing two different data sets. Several different data sets may be
constructed using this technique which are numerically different physically similar.

We may devise several shifted data sets (each possessing 643 degrees of freedom

in 3D and 2562 degrees of freedom in 2D) but which continue to represent the physics

of the fine-grained dataset. Missing data points at boundaries may be reconstructed

through the use of the periodic boundary conditions for the given test cases. A simpli-

fied shifting schematic is shown in Figure 2.2 where a simple technique of generating

two coarse data sets from fine data is demonstrated. In a nutshell, the coarse-graining

and shifting procedures allow us to devise upto 63 and 511 completely different data

sets in two and three dimensions, respectively. For the purpose of cross-validation we

randomly choose any four of these multiple data sets for the generation of three sets

of testing data and one set of training data.

Once our four different randomly generated data sets are identified, we add per-

turbations corresponding to the type of behavior demanded of proposed artificial

neural network. To test the deconvolution ability of our network, our training data

(i.e., one of the four data sets) is filtered with an appropriate Gaussian smoothing

(for our inputs to the network) and unfiltered training data are utilized as outputs
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Deconvolution
Data set Filter radius (σ)

Training data 1.0
Test data 1 1.0
Test data 2 1.1
Test data 3 0.9

Regularization
Data set Noise (µ)

Training data 0.2
Test data 1 0.2
Test data 2 0.22
Test data 3 0.18

Table 2.1: Cross-validation data sets for the proposed data-driven blind deconvolution
closure.

to the network. Three testing data sets are generated in a similar manner with one

of these data being filtered with the same filter radius and the others being filtered

with a 10% larger and 10% smaller filter radius. The trained ANN is then utilized

to recover deconvolved approximations to the true field for these three test data sets.

This ensures that the trends of the trained network are not due to overfitting or ‘data-

memory’ but through an implicit learning of the inverse filtering. A similar procedure

is also utilized to cross-validate the regularization ability of the closure wherein the

randomly chosen data sets are perturbed through Gaussian noise. A table describing

the filter radii and magnitudes of noise for our training and testing data sets is shown

in Table 2.1. Note that these data sets are all generated from the same high fidelity

solution field and correspond to a perfectly a-priori analysis. A concise summary of

this cross-validation procedure is given in a flow chart in Figure 2.3.

In addition to the a-priori cross-validation outlined above, we also assess our pro-

posed architecture by utilizing training and testing data across different flow physics.

This procedure is carried out to test the universal nature of the learning for the pur-

pose of both deconvolution and regularization abilities. This may be assumed to be

another challenging tier for cross-validation. We elaborate this step in further detail

in Section 2.7.
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Figure 2.3: A flow chart detailing the generation of cross-validation data sets using
the shifting operation as well as different perturbations. The network is trained using
Algorithm 1 and is then tested on test data 1, 2 and 3.

2.6 Results

In this section, we outline the results of our proposed framework for three different

benchmark flows showing distinct differences in physics. Our test cases are given

by a two-dimensional homogeneous isotropic turbulent flow which exhibits a cascade

of enstrophy from its integral to dissipative length scales, a canonical Taylor-Green

decaying vortex corresponding to homogeneous isotropic turbulent flow with a cascade

of kinetic energy from integral to dissipative length scales and an inviscid three-

dimensional turbulent flow developed from stratified Kelvin-Helmholtz instability.

2.6.1 Kraichnan Turbulence

A periodic square domain is used to simulate a canonical flow configuration which

exhibits the characteristics of decaying, homogeneous and isotropic 2D turbulence

(San and Staples, 2012). We utilize 20482 degrees of freedom for high fidelity data

which is coarsened to 2562 grid points to mimic a considerably coarser large eddy sim-

ulation. A Reynolds number of Re = 32, 000 is utilized to ensure a considerable scale

separation and to display a prominent inertial range with its associated k−3 Kraich-
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nan scaling (Kraichnan, 1967). The 2D turbulence simulation is undertaken through

the implementation of the Navier-Stokes equations in their vorticity-streamfunction

formulation. The results shown here are obtained through the data-driven blind

deconvolution of the vorticity. Our ANN closure was implemented by training a

relationship between a nine point stencil consisting of the point at which the decon-

volution is desired along with its immediate neighbors (i.e., see Figure 2.1). Training

times were (on average) of the order of 0.01 seconds for approximately 65,000 data

samples.

Figure 2.4 shows the performance of the proposed methodology in terms of sta-

tistical assessments given by angle averaged kinetic energy spectra and probability

density functions (PDF) of the vorticity field when the deconvolution aspect of the

proposed framework is tested. For subfilter scale reconstruction assessment, it can

readily be observed that the proposed architecture manages to capture a far greater

region of the inertial range in accordance with the k−3 scaling. This may also be

observed from the PDF comparisons where the narrow distribution caused by the

low-pass spatial filtering is successfully flattened to its original spread. A similar

performance is exhibited when the testing data exhibits slightly different physics. As

mentioned previously, this is simulated through the utilization of slightly larger and

smaller filter radii to mimic physical behavior in a local neighboring range around the

training data. The proposed framework successfully displays a similar performance

for all the testing data versions thereby demonstrating a good generalization. Field

reconstruction attempts from noisy data display marginal benefits in terms of iner-

tial range capture (as shown in Figure 2.5) but the regularizing nature of the ELM

training ensures that the cut-off length scale pile up of energy (or aliasing error) is

successfully stabilized. This behavior is also replicated for different testing data. As

mentioned previously, this is very promising for coarse-grained large eddy simulations

particularly for non-conservative underlying numerical schemes.
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Kraichnan turbulence
Deconvolution

Dataset Filtered Deconvolved
Test data 1 1.02× 10−2 4.38× 10−3

Test data 2 1.14× 10−2 5.73× 10−3

Test data 3 9.11× 10−3 3.71× 10−3

Regularization

Dataset Noised Regularized
Test data 1 4.03× 10−2 1.26× 10−2

Test data 2 4.88× 10−2 1.38× 10−2

Test data 3 3.25× 10−2 1.14× 10−2

Table 2.2: Mean-squared-error values for deconvolved and regularized fields obtained
from the proposed architecture. Data shown from the two-dimensional Kraichnan
turbulence test case. Note that the mean-squared-error values are obtained from the
vorticity magnitudes of the field.

Figure 2.6 and Figure 2.7 visually represent the results of our proposed architec-

ture. The enhancement of smaller features (due to a higher retention of the inertial

range) in the case of the filtered inputs is clearly visible. On the other hand, a blurring

effect can be discerned for the noisy perturbations which correspond to the stabiliza-

tion effect of the framework. The distribution of normalized vorticity values seen in

the PDF diagrams show a significant reconstruction of the true trends using an opti-

mally trained ANN. A quantitative description of the performance of our data-driven

deconvolution and regularization architecture for the Kraichnan turbulence test case

is shown in Table 2.2 where mean-squared-error values of the perturbed and recon-

structed fields (with respect to the true field) are tabulated. It can be seen that the

proposed architecture performs remarkably well for the reduction of mean-squared-

error for all three testing datasets.

2.6.2 Kolmogorov Turbulence

To further validate our claims about the potential of the proposed approach, the

Taylor-Green vortex (TGV) problem was simulated in a periodic box l, following Bull

and Jameson (2015), to exhibit the properties of decaying isotropic homogeneous 3D
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(c) Test data 3

Figure 2.4: A-priori results of the kinetic energy spectra (left) and PDF of the vorticity
(right) for Kraichnan turbulence. Results for three different deconvolution test data
sets shown.
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Figure 2.5: A-priori results of the kinetic energy spectra (left) and PDF of the vorticity
(right) for Kraichnan turbulence. Results for three different regularization test data
sets shown.
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(a) True (b) Filtered (c) Recovered

Figure 2.6: A-priori results for vorticity recovery from low-pass spatially filtered
inputs for Kraichnan turbulence. Data shown for deconvolution test data 1: (a)
true coarse-grained fields, (b) coarse-grained fields with Gaussian smoothing, and (c)
coarse-grained fields reconstructed using proposed framework.

(a) True (b) Noisy (c) Recovered

Figure 2.7: A-priori results for vorticity recovery from noisy perturbation inputs for
Kraichnan turbulence. Data shown for regularization test data 1: (a) true coarse-
grained fields, (b) coarse-grained fields with Gaussian noise, and (c) coarse-grained
fields reconstructed using proposed framework.
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turbulence with the Kolmogorov scaling given by k−5/3 (Frisch, 1996). In a manner

similar to the 2D turbulence test case, high fidelity DNS data for Re = 1600 was

generated on a uniform grid with 5123 degrees of freedom from which coarser data at a

resolution of 643 grid points was extracted for our studies. Three networks are trained

for each velocity component and each network is trained using approximately 260,000

samples with inputs consisting of a stencil of 27 points (i.e., a three dimensional

version of the stencil described for Kraichnan turbulence) which represents a much

larger computational task than the previous test case. However, the ELM approach

is able to successfully train these three networks in under 10 seconds.

Figure 2.8 demonstrates our statistical assessments for the low-pass spatially fil-

tered test cases. As per our validation mechanism, we display results from three

different versions of testing data where similar results are obtained qualitatively. Our

proposed framework recovers a significant enhancement in the approximation of the

true inertial range in the spherically averaged kinetic energy spectrum. It can also

be seen that the peak and the tail of the true probability distribution function of the

z component of velocity is captured quite accurately from the modified distribution

obtained through low-pass spatial filtering. The PDF comparison between true and

recovered fields is another indication of the ability of the proposed ANN architecture

for reconstructing the true underlying trends from the filtered input data. It may be

observed that the proposed architecture performs better for test data 3 as against test

data 2 (although both trends are positive) since much more subfilter scale information

must be reconstructed than was trained for. This is possibly due to the data being

rather non-linear in physical space as against the linear parameter space we attempt

to explore. Essentially, increasing the filter radius by 10% leads to some physical

behavior that the framework has not fully been exposed to in training. Addressing

issues of predicting multiple perturbations using a singly trained network will require

in-depth investigation of sampling strategies. Vitally, the behavior exhibited by our
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proposed framework is consistent with our observations for the Kraichnan turbulence

test case.

When trained to estimate the relationship between noisy inputs and true outputs,

the proposed architecture demonstrates an exceptional generalization ability through

the reduction of high wavenumber content as shown in Figure 2.9. While inertial range

enhancement is once again marginal, a general improvement in the statistical trends

of the recovered variable is observed through the PDF where the peaks of the true

PDF are recovered accurately. However, it is seen that an accurate capture of the tails

of the PDF of the true field remains elusive for this particular architecture. Studies

are underway to determine if the architecture of the ANN may aid in improving

this inaccuracy since a larger number of neurons may offset the rather stringent

generalization behavior of its current implementation. This statistical generalization

ability is also observed in the 2D test case where tails of the PDF tend to be captured

with lower accuracy.

We clarify that the trends in the PDF of other primitive variables are similar.

The blind deconvolution ability of the proposed methodology is shown in Figure 2.10

where one can clearly observe the presence of finer structures in the reconstructed

field. Also, an examination of the noisy inputs in Figure 2.11 show a remarkable

reconstruction of data. It is apparent that the proposed approach proves adept at

a partial deconvolution of the field when trained for the relationship using filtered

inputs. This represents a viable opportunity for integrating data-driven closures into

mainstream LES methodologies in combination with knowledge from first principles.

In fact, it may even be possible to devise turbulence closures where phenomenological

or heuristic arguments can be eschewed completely in favor of data-driven subfilter

scale estimations. This holds promise for inhomogeneous flows where distinct devi-

ations are observed from Gaussian statistics in terms of the location of the integral

length scales. We may effectively let experimental data determine the shape of a
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Kolmogorov turbulence
Deconvolution

Dataset Filtered Deconvolved
Test data 1 9.56× 10−3 3.57× 10−3

Test data 2 1.16× 10−2 4.64× 10−3

Test data 3 8.10× 10−3 3.04× 10−3

Regularization

Dataset Noised Regularized
Test data 1 4.20× 10−2 8.28× 10−3

Test data 2 5.06× 10−2 9.18× 10−3

Test data 3 3.39× 10−2 7.58× 10−2

Table 2.3: Mean-squared-error values for deconvolved and regularized fields obtained
from the proposed architecture. Data shown from the three-dimensional Kolmogorov
turbulence test case. Note that the mean-squared-error values are obtained from the
z component of the velocity field.

particular filter in a particular region of the flow. Machine learning inspired blind

deconvolution may thus hold the key to a greater enhancement of the uniformity of

an applicable turbulence closure. Table 2.3 offers a quantitative insight into the per-

formance of the proposed closure where it is once again observed that the framework

is sufficiently capable in reducing the mean-squared-error of the perturbed fields for

all testing datasets.

A comparison of the proposed closure with the state of the art structural closure

models is shown in Figure 2.12 by using probability density functions for an assess-

ment of deviatoric subfilter stress recovery performance. For the purpose of bench-

marking we utilize a set of closures including the scale-similarity approach proposed

by Bardina et al. (1980) (denoted SS), the approximate deconvolution methodology

given by Stolz and Adams (1999) with 3 iterative deconvolutions (which forms the

conceptual analog of our proposed architecture and is denoted as AD3) as well as the

scale-similarity approach proposed by Layton and Lewandowski (2003) which may

be interpreted to be an approximate deconvolution methodology which simply one

iteration (and hence denoted AD1). We clarify that while the decision to utilize three

iterative deconvolutions for the approximate deconvolution approach (i.e., AD3) is
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(c) Test data 3

Figure 2.8: A-priori results of the kinetic energy spectra (left) and PDF of the z
component of velocity (right) for Kolmogorov turbulence. Results for three different
deconvolution test data sets shown.
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(a) Test data 1
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(b) Test data 2
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(c) Test data 3

Figure 2.9: A-priori results of the kinetic energy spectra (left) and PDF of the z com-
ponent of velocity (right) for Kolmogorov turbulence. Results for three regularization
different test data sets shown.
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(a) True (b) Filtered (c) Recovered

Figure 2.10: A-priori results for velocity field recovery from low-pass spatially filtered
perturbations for Kolmogorov turbulence. Isosurfaces for x-component of the velocity
colored by z-component are shown. Data shown for deconvolution test data 1: (a)
true coarse-grained fields (b) coarse-grained fields with Gaussian smoothing, and (c)
coarse-grained fields reconstructed using proposed framework.

(a) True (b) Noisy (c) Recovered

Figure 2.11: A-priori results for velocity field recovery from noisy perturbation inputs
for Kolmogorov turbulence. Isosurfaces for x-component of the velocity colored by
z-component are shown. Data shown for regularization test data 1: (a) true coarse-
grained fields, (b) coarse-grained fields with Gaussian noise, and (c) coarse-grained
fields reconstructed using proposed framework.
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Model τ11 × 10−5 τ12 × 10−5 τ13 × 10−5 τ22 × 10−5 τ32 × 10−5 τ33 × 10−5

ANN 8.00 3.60 3.51 7.77 3.64 6.82
SS 6.76 5.62 5.91 6.76 5.91 7.95
AD1 31.34 35.82 21.13 31.33 21.12 36.82
AD3 2.46 1.69 1.82 2.46 1.83 2.91

Table 2.4: Mean-squared-error values for deviatoric subfilter scale components with
respect to the true subfilter scale stresses for Kolmogorov turbulence.

rather arbitrary, past studies (Maulik and San, 2018) have shown that a choice of

the number of iterations between 3 and 5 is usually sufficient for satisfactory subfilter

recovery.

Our performance assessments indicate that the proposed architecture (denoted

ANN) performs in a similar fashion to other widely utilized structural subfilter mod-

eling strategies. The AD3 approach can be seen to perform better (on average) than

our proposed framework due to the fact that the specified filter utilized for the itera-

tive deconvolution is the same as the one used for convolving the field. In comparison,

we must emphasize that the proposed data-driven blind deconvolution performance is

quite exceptional since no spatial filter shape is assumed. In some cases, we can also

observe a slight improvement over the AD1 and SS a-priori implementations as well

(both of which require the specification of a low-pass spatial filter). A quantitative

characterization of the subfilter stress recovery is shown in Table 2.4 where it may be

seen that the proposed method results in mean-squared-errors with respect to true

subfilter stresses with values near those of the popular closure models examined in

this study.

2.6.3 Stratified Turbulence

Another three-dimensional test case is given by a stratified turbulence data set ob-

tained using 5123 degrees of freedom. The difference between this test case and the

Kolmogorov turbulence test case (TGV) is that this particular simulation is car-

ried out using an implicit large eddy simulation of the inviscid Euler equations (see
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Figure 2.12: A-priori results for Kolmogorov turbulence subfilter stress predictions by
the proposed architecture. Probability density functions for different subfilter stress
components along with predictions by state of the art structural closures. Our data-
driven architecture performs in a manner similar to these well established closure
strategies without any explicit definition of a low-pass spatial filter.
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Maulik and San (2017b) for details on numerics). It is well known that this frame-

work provides a good estimation for the Navier-Stokes equations in the limit of infinite

Reynolds numbers (Bos and Bertoglio, 2006; Zhou et al., 2014; Sytine et al., 2000).

Therefore this test case may be assumed to be representative of a different fluid

physics in comparison to the Kolmogorov turbulence problem.

Our stratified turbulence test case is obtained through the simulation of a 3D ana-

log of the study presented in Maulik and San (2017b) to generate a Kelvin-Helmholtz

instability (KHI) which eventually transitions through non-linear interactions to fully

developed compressible turbulence. Figure 2.13 displays density contours of the evo-

lution of the system from its initial condition to a completely turbulent field. The

system is evolved from a stratified initial condition with a denser fluid layer sand-

wiched between two lighter layers. The middle layer is given an initial velocity (in

the negative x direction) and the upper and lower layers are given an equal velocity

magnitude in the opposite direction. The shearing velocities in both layers are spec-

ified to ensure the characteristics of a moderately compressible turbulent field (i.e.,

initial aggregate Mach number values of 0.54 and 0.75 in double shear layers).

We perform assessments similar to our previous test cases with three sets of testing

data each for the examination of both deconvolution and noise reduction performance.

Figure 2.14 shows the deconvolution performance of the proposed framework where we

once again witness a notable recovery of the inertial range from the low-pass spatially

filtered test data. This is also consistently observed for the differently perturbed test

cases. PDF trends for the z component of the velocity are examined as previously and

reveal expected trends in high frequency recovery. We once again observe that the

proposed framework performs better for test data 1 and 3 as compared to test data

2 where capture of the tails of the PDF is marginal. We may attribute this to the

same reasons detailed in the previous subsection. We remark, however, that even for

test data 2 our closure captures the peak of the PDF and the bulk of its distribution
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(a) t = 0 (b) t = 1

(c) t = 3 (d) t = 5

Figure 2.13: Evolution of density contours for the stratified turbulence problem
through time.
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about the mean rather well (which leads to excellent inertial range capture).

The regularization performance of the proposed framework is tested for this par-

ticular test case with results described in Figure 2.15. Once again, we observe similar

trends to those observed before with marginal improvement in inertial range recov-

ery but effective capture of the peaks of the probability distribution function. The

regularization ability of the ELM training procedure however leads to the now fa-

miliar reduction in tail capture accuracy. Aliasing errors are effectively removed as

expected. Figures 2.16 and 2.17 qualitatively describe the deconvolution and regu-

larization performance of the proposed framework where it can be seen that good

recoveries of the true 3D field are obtained in both cases. A quantitative assessment

of the performance of the closure for this framework may be observed in Table 2.5

where trends similar to those observed for the Kraichnan and Kolmogorov test cases

are recovered.

We outline a comparison with other structural closures in Figure 2.18 where trends

similar to those observed in the Kolmogorov test case are witnessed. The AD3 ap-

proach performs in a superior manner as expected due to the prior specification of

the Gaussian filter for both smoothing and iterative deconvolution. The data-driven

closure, however, performs quite well in comparison to the chosen closure strategies

and validates its application for the purpose of adequate data-driven deconvolution.

A quantitative characterization of the subfilter stress recovery is shown in Table 2.6

where it is once again observed that the proposed method results in mean-squared-

errors with values near those of the popular structural closure models examined in this

study as observed in the Kolmogorov turbulence test case. We remark, once again,

that the observed results for our approach are significant due to no prior specification

of a filter kernel.
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(b) Test data 2
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(c) Test data 3

Figure 2.14: A-priori results of the kinetic energy spectra (left) and PDF of the z
component of velocity (right) for stratified turbulence. Results for three different
deconvolution test data sets shown.
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(a) Test data 1
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(b) Test data 2
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Figure 2.15: A-priori results of the kinetic energy spectra (left) and PDF of the z
component of velocity (right) for stratified turbulence. Results for three different
regularization test data sets shown.
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(a) True (b) Filtered (c) Recovered

Figure 2.16: A-priori results for velocity field recovery from low-pass spatially filtered
perturbations for stratified turbulence. Data shown for deconvolution test data 1.
Isosurfaces for x component of the velocity colored by z component are shown: (a)
true coarse-grained fields, (b) coarse-grained fields with Gaussian smoothing, and (c)
coarse-grained fields reconstructed using proposed framework.

(a) True (b) Noisy (c) Recovered

Figure 2.17: A-priori results for velocity field recovery from noisy perturbation inputs
for stratified turbulence. Data shown for regularization test data 1. Isosurfaces for
x component of the velocity colored by z component are shown: (a) true coarse-
grained fields, (b) coarse-grained fields with Gaussian noise, and (c) coarse-grained
fields reconstructed using proposed framework.
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Stratified turbulence
Deconvolution

Dataset Noised Regularized
Test data 1 4.03× 10−2 1.26× 10−2

Test data 2 4.88× 10−2 1.38× 10−2

Test data 3 3.25× 10−2 1.14× 10−2

Regularization

Dataset Noised Regularized
Test data 1 4.19× 10−2 1.09× 10−2

Test data 2 5.07× 10−2 1.18× 10−2

Test data 3 3.38× 10−2 1.00× 10−2

Table 2.5: Mean-squared-error values for deconvolved and regularized fields obtained
from the proposed architecture. Data shown from the three-dimensional stratified
turbulence test case. Note that the mean-squared-error values are obtained from the
z component of the velocity field.

Model τ11 × 10−5 τ12 × 10−5 τ13 × 10−5 τ22 × 10−5 τ32 × 10−5 τ33 × 10−5

ANN 6.02 2.60 3.12 3.82 1.82 5.15
SS 3.15 2.04 2.27 2.76 2.02 3.62
AD1 15.91 10.15 11.91 10.22 7.16 12.7
AD3 2.01 1.18 1.29 1.60 1.12 2.05

Table 2.6: Mean-squared-error values for deviatoric subfilter scale components with
respect to the true subfilter scale stresses for stratified turbulence.
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Figure 2.18: A-priori results for stratified turbulence subfilter stress predictions by
the proposed architecture. Probability density functions for different subfilter stress
components along with predictions by state of the art structural closures. Our data-
driven architecture performs in a manner similar to these well established closure
strategies without any explicit definition of a low-pass spatial filter.
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2.7 Universality

The true value of the implementation of a data-driven framework emerges from an

intelligent combination of our knowledge of physics from first principles with the

robust techniques inherent to data-driven modeling. One of the motivations of study-

ing homogeneous isotropic turbulence test cases in this investigation was to link the

universal nature of the physics (as evidenced in the k−5/3 scaling observed in the aver-

aged kinetic energy spectra) through our proposed framework across flows exhibiting

distinctly different physics. For instance, a great utility of any data-driven model-

ing framework would be to utilize training data from lower Reynolds numbers or

shorter (high-fidelity) simulations to devise data-driven closures for runs with higher

Reynolds numbers or longer simulations which are computationally intractable.

We first examine the ability of the closure modeling strategy by using training

data from a high-fidelity Taylor-Green vortex simulation at Re = 1600 to recover

true fields at Re = 5000 as shown in Figure 2.19. We observe that the framework is

successfully able to replicate closure performance as shown in previous test cases. It

tells us that the deconvolution (or regularization) ability has been learned without

violating (as it appears) the underlying physics of homogeneous isotropic turbulence.

Our next assessment shown in Figure 2.20 utilizes the closure modeling performance of

the framework when training data is utilized at time t = 15 for a Taylor-Green vortex

test case to obtain true field reconstructions at t = 20 (for the same simulation).

It can once again be observed that the closure recovery is exceptional with trends

similar to those exhibited by previous test cases.

Next, we present cross-validation results for different flows. Here, the proposed

blind deconvolution ANN closure is trained from a completely different simulation

data (i.e., testing with different flow configurations). Figure 2.21 demonstrates the

ability of the data-driven closure to predict subfilter terms for the stratified KHI tur-

bulence test case where TGV simulation data at Re = 1600 is utilized to train our
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ANN. In this case we highlight that the only link between training and testing data

is the k−5/3 cascade and the magnitude of perturbations to the coarse-grained field.

It can be seen that a remarkable inertial range recovery and regularization perfor-

mance is still observed for both the low-pass spatially filtered and noised testing data.

Analogously, in Figure 2.22, we invert our training and testing data with stratified

turbulence data being used to train the ELM which is further used for deconvolution

and regularization of an appropriately perturbed solution field given by a Taylor-

Green vortex simulation at Re = 1600. Once again, previously observed trends in

the output of the closure model are recovered. From the evidence provided above,

we may tentatively conclude that for flows exhibiting similar cascade characteristics,

subfilter recovery and high wavenumber regularization are reliant on the filter radius

and magnitude of high frequency perturbation alone. This allows for exciting possi-

bilities for 3D turbulence closures, for instance, to implicitly learn filter shapes from

physical experiments and reproduce accurate trends through coarse-grained numerical

simulations within a wide range of Reynolds numbers.

2.8 Concluding Remarks

An artificial neural network architecture is proposed for the data-driven deconvolution

and regularization of low-pass spatially filtered turbulence fields. Both 2D and 3D

test cases are examined with training data sets obtained through the coarsened and

perturbed versions of high fidelity simulations for canonical homogeneous isotropic

turbulence and stratified compressible turbulence problems. Two types of perturba-

tions are tested, one in which the true data is filtered using a Gaussian kernel and

the other which has a certain quantum of noise added to the field to represent high

wavenumber aliasing errors. Testing data sets are generated through a spatial shifting

procedure as well as through the utilization of slightly different magnitudes of filter

radius and noise. This ensures that deconvolution and regularization performance
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Figure 2.19: A-priori results of the kinetic energy spectra (left) and PDF of the
vorticity (right) for Kolmogorov turbulence. Here we utilize DNS data for the Taylor-
Green vortex at Re = 1600 to reconstruct an approximation to the true field for
Re = 5000.
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Figure 2.20: A-priori results for the kinetic energy spectra (left) and PDF of the
vorticity (right) for Kolmogorov turbulence. Here we utilize high fidelity data from
the Taylor-Green vortex at time t = 15 to obtain a reconstruction for the same test
case at time t = 20 for a Re = 1600.
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Figure 2.21: A-priori results of the kinetic energy spectra (left) and PDF of the
vorticity (right) stratified turbulence. Here we utilize DNS data for the Taylor-Green
vortex at Re = 1600 to reconstruct an approximation to the true field for the stratified
turbulence test case generated from the inviscid Euler equations.
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Figure 2.22: A-priori results of the kinetic energy spectra (left) and PDF of the
vorticity (right) for Kolmogorov turbulence. Here we utilize high fidelity data from
the stratified turbulence problem to train a prediction for the Taylor-Green vortex at
Re = 1600.
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of the proposed architecture remains localized to physics and not numerical artifact.

The proposed architecture is tested independently on Kraichnan, Kolmogorov and

stratified compressible turbulence test cases and is able to provide an estimate of the

deconvolved variable as examined through the energy spectra and probability density

functions of the recovered fields. For noisy data, the innate regularization of the ELM

training approach results in smoother predictions for the recovered variable. For our

training mechanism, the ELM approach is chosen due to its exceptional speed of

training in comparison with traditional gradient based methods as well as its excel-

lent generalization ability (which avoids the problem of overfitting). The ability of the

proposed approach for subfilter scale content recovery is benchmarked against several

popular structural closure modeling strategies. It is observed that our the data-driven

framework yields a similar deconvolution performance without the explicit specifica-

tion of a filter kernel. In addition, we also test the universality of our data-driven

closure by utilizing testing and training data sets from different simulations display-

ing the same classical Kolmogorov cascade. This leads to an exciting observation,

as described in Section 2.7, which tells us that the proposed framework may be uti-

lized to leverage our understanding of the cascade of energy in three-dimensional

turbulence to obtain reconstructions for flows across different physics. Indeed, the

blind deconvolution procedure appears to be linked across a wide range of physics

solely through the underlying filter radius that arises in LES flow computations due

to coarse-graining and implicit (or explicit) numerical dissipation.

A natural follow-up to this investigation is to test our proposed approach in a fully

a-posteriori analysis. One of our primary goals in subsequent investigations is also to

address the issue of sampling for training data. Sampling strategies must be devised

to ensure that the proposed framework is exposed to data from many physical regimes

(as opposed to indiscriminate selections in parameter regimes). This is an important

distinction that has significant implications on the performance of any proposed data-
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driven modeling framework. Basically, a data-driven model is only as good as the

data it has been trained on and can only reproduce physical behaviors similar to

those it has seen in training. In addition to sampling strategies, it is also important

to develop outlier identification systems for noisy data. Data preprocessing, an active

area of research in the data science community, must therefore be integrated into

our framework. From this point of view, the fast training times of the proposed

architecture suggest the use of multiple networks trained to act in a ‘committee’ for

aggregate subfilter predictions of flow datasets with variable spatial and temporal

characteristics. This ensures robustness towards outliers since aggregate predictions

are likely to be more accurate than those from solely one trained network.

Since, apart from its training data, an ANN’s performance is heavily dependant

on its architecture, it is necessary to estimate the performance of the proposed frame-

work for several different configurations in terms of network architectures (number of

inputs, number of outputs, number of neurons, activation functions etc). Fortunately,

the speed of training aids us in generating regularized network weights for extremely

large datasets with considerable ease. In conclusion, this work features a prelimi-

nary glimpse at an exciting avenue for the next generation in data-driven turbulence

closures.
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CHAPTER III

Data-driven deconvolution for large eddy simulations of Kraichnan

turbulence

3.1 Abstract

In this article, we demonstrate the use of artificial neural networks as optimal maps

which are utilized for convolution and deconvolution of coarse-grained fields to ac-

count for sub-grid scale turbulence effects. We demonstrate that an effective eddy-

viscosity is predicted by our purely data-driven large eddy simulation framework

without explicit utilization of phenomenological arguments. In addition, our data-

driven framework precludes the knowledge of true sub-grid stress information during

the training phase due to its focus on estimating an effective filter and its inverse

so that grid-resolved variables may be related to direct numerical simulation data

statistically. The proposed predictive framework is also combined with a statistical

truncation mechanism for ensuring numerical realizability in an explicit formulation.

Through this we seek to unite structural and functional modeling strategies for mod-

eling non-linear partial differential equations using reduced degrees of freedom. Both

a-priori and a-posteriori results are shown for a two-dimensional decaying turbulence

case in addition to a detailed description of validation and testing. A hyperparame-

ter sensitivity study also shows that the proposed dual network framework simplifies

learning complexity and is viable with exceedingly simple network architectures. Our

This chapter is adapted from Maulik et al., Phys. Fluids, 30(12), 125109
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findings indicate that the proposed framework approximates a robust and stable sub-

grid closure which compares favorably to the Smagorinsky and Leith hypotheses for

capturing the theoretical k−3 scaling in Kraichnan turbulence.

3.2 Introduction

Over the past decade, advances in data collection and increasing access to compu-

tational resources have led to a revolution in the use of data-driven techniques for

the solution of intractable inverse problems (Mitchell et al., 1990; Shen et al., 2017;

Guest et al., 2018; Duraisamy et al., 2019). One such problem is that of turbulence,

the multiscale nature of which causes infeasible computational demands even for the

most simple systems. This behavior is shared by all non-linear partial differential

equations and necessitates the utilization of multiple modeling approximations for

tractable compute times. One such modeling approach is that of large eddy simulation

(LES) (Sagaut, 2006), which attempts to simulate the evolution of lower wavenumber

modes of turbulence while the effects of higher wavenumber modes are modeled by

an algebraic or differential equation. The procedure of modeling the finer scales is

often denoted a closure due to the lack of knowledge about higher-order wavenumber

interactions in the coarse-grained flow (Berselli et al., 2006) and remains a critical

component of accurate computational modeling for many applications (Hickel et al.,

2014; Yu et al., 2016; Zhou et al., 2018). From an LES point of view, the closure

problem arises due to the fact that low-pass spatial filtering (due to coarse-graining

and discrete numerical approximations) does not commute with the non-linear term.

Within the context of the Navier-Stokes equations, it is generally accepted that the

finer scales are dissipative at the Kolmogorov length scales (Kolmogorov, 1941b) and

therefore, most turbulence models seek to specify a sub-grid viscosity which mimics

the dissipative behavior of the unsupported frequencies (Frisch, 1995). Most sub-grid

models can be traced back to the seminal work of Smagorinsky (Smagorinsky, 1963),
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where a model was proposed based on the concepts of an effective eddy viscosity

determined by an a-priori specified mixing length and a k−5/3 scaling recovery for

the kinetic energy content in the wavenumber domain. Similar hypotheses have also

been used for two-dimensional turbulence (Leith, 1968), for approximating the k−3

cascade in two-dimensional turbulence and generally have their roots in dimensional

analysis related to the cascade of enstrophy. The two aforementioned models may be

classified as functional due to the phenomenological nature of their deployment and

represent the bulk of LES related turbulence models used in practical deployments.

In contrast, the structural approach to turbulence modeling utilizes no explicit

specification of an eddy-viscosity and relies on an estimation of the low-pass spatial

filtering nature of coarse-graining. With this approximate knowledge of the filter,

arguments for scale-similarity (Bardina et al., 1980; Layton and Lewandowski, 2003)

or approximate-deconvolution (AD) (Stolz and Adams, 1999) are utilized to recon-

struct the true non-linear term. In case of scale-similarity, the non-linear interactions

of flow components are estimated by utilizing a forward filtering operation to the

grid-resolved variables, while in AD an inverse filter is estimated using iterative re-

substitutions. However, structural techniques are limited due to the fact that they

approximately recover sub-filter stresses alone and are not dissipative enough due to

the neglect of sub-grid considerations. Therefore, they require the specification of an

additional (usually functional) sub-grid model or the specification of a finer resolu-

tion where sub-grid terms are negligible (Germano, 2015). Further information about

turbulence models and whether they may be classified as functional or structural may

be found in Saugaut’s excellent text (Sagaut, 2006).

A common thread that connects both functional and structural models is the

a-priori specification of a model coefficient or a characteristic filter width or ratio.

Consequently, the choice of such parameters become crucial in the a-posteriori per-

formance of the deployed model. Crucially, literature has consistently shown that
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the choice of these coefficients are not single-valued, particularly for off-nominal flow

situations. One may refer to discussions by Galperin and Orszag (1993) and Canuto

and Cheng (1997) for examples for the effect of varying eddy viscosity. The effect of

characteristic filter widths and the order of deconvolution has also been explored by

San et al. (2015) and by Schneiderbauer and Saeedipour (2018). With this contextual

background, in this study, we introduce a hybrid modeling (physics-informed machine

learning) methodology for determining sub-grid models without any phenomenologi-

cal assumptions (in the spirit of structural models) but with sub-grid capture ability.

This is accomplished by the use of artificial neural networks (ANNs) to establish

data-driven maps between a-priori convolved and deconvolved fields but without the

use of any explicit filter.

In recent times, data-driven techniques have become extremely popular for the

spatio-temporal modeling of dynamical systems (Schmidt and Lipson, 2009; Bright

et al., 2013; Xiao et al., 2015; Brunton et al., 2016; Schaeffer, 2017; Raissi et al.,

2017; Mohan and Gaitonde, 2018; Raissi and Karniadakis, 2018; Rudy et al., 2018;

San and Maulik, 2018; Wan et al., 2018; Kim et al., 2018; Muravleva et al., 2018;

Jin et al., 2018). With respect to turbulence, some widely used strategies for infer-

ence include symbolic regression (Weatheritt and Sandberg, 2016, 2017a,b), where

functional model-forms for RANS deployments were generated through optimization

against high-fidelity data. Ma et al. (2015) utilized compressive-sensing based ma-

chine learning for closure of multiphase system.Gautier et al. (2015) utilized a genetic

algorithm was utilized for regression tasks in a close-loop separation control deploy-

ment of a turbulent mixing layer. Other techniques incorporating Bayesian ideologies

have also been used, for instance by Xiao et al. (2016) where an iterative ensemble

Kalman method was used to assimilate prior data for quantifying model form uncer-

tainty in RANS models. In Wang, Wu and Xiao (2017); Wang, Wu, Ling, Iaccarino

and Xiao (2017) and Wu et al. (2018a), random-forest regressors were utilized for
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RANS turbulence-modeling given DNS data. In Singh and Duraisamy (2016) and

Singh et al. (2017), an ANN was utilized to predict a non-dimensional correction

factor in the Spalart-Allmaras turbulence model through a field-inversion process.

The field-inversion process was utilized to develop optimal a-priori estimates for the

correction factor from experimental data. Bypassing functional formulations of a tur-

bulence model (a focus of this study) was also studied from the RANS point of view

by Tracey et al. (2015). Ling and Templeton (2015) utilized support vector machines,

decision trees and random forest regressors for identifying regions of high RANS un-

certainty. A deep-learning framework where Reynolds-stresses would be predicted

in an invariant subspace was developed by Ling, Kurzawski and Templeton (2016).

The reader is directed to a recent review by Duraisamy et al. (2019), for an excellent

review of turbulence modeling using data-driven ideas.

As shown above, the use of machine learning ideologies and in particular ANNs

has generated significant interest in the turbulence modeling community. This is mo-

tivated by the fact that a multilayered artificial neural network may be optimally

trained to universally approximate any non-linear function (Hornik et al., 1989).

Greater accessibility to data and the GPU revolution has also motivated the develop-

ment of advanced ANN architectures for constrained learning and improved physical

interpretability. Within the context of LES (and associated with the scope of this

paper) there are several investigations into sub-grid modeling using data-driven tech-

niques. In one of the first studies of the feasibility of mapping to unresolved stresses

using grid resolved variables by learning from high-fidelity data, Sarghini et al. (2003)

utilized ANNs for estimating Smagorinsky model-form coefficients within a mixed

sub-grid model for a turbulent channel flow. This may be considered similar to the

field-inversion procedure describe previously. ANNs were also used for wall-modeling

by Milano and Koumoutsakos (2002) where it was used to reconstruct the near wall

field and compared to standard proper-orthogonal-decomposition techniques. An al-
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ternative to ANNs for sub-grid predictions was proposed by King et al. (2016) where

a-priori optimization was utilized to minimize the L2-error between true and modeled

sub-grid quantities in a least-squares sense using a parameter-free Volterra series.

Maulik and San (2017a) utilized an extreme-learning-machine (a variant of a single-

layered ANN) to obtain maps between low-pass spatially filtered and deconvolved

variables in an a-priori sense. This had implications for the use of ANNs for tur-

bulence modeling without model-form specification. A more in-depth investigation

has recently been undertaken by Fukami et al. (2018) where convolutional ANNs

are utilized for reconstructing downsampled snapshots of turbulence. Gamahara and

Hattori (2017) utilized ANNs for identifying correlations with grid-resolved quantities

for an indirect method of model-form identification in turbulent channel flow. The

study by Vollant et al. (2017) utilized ANNs in conjuction with optimal estimator

theory to obtain functional forms for sub-grid stresses. In Beck et al. (2018), a variety

of neural network architectures such as convolutional and recurrent neural networks

are studied for predicting closure terms for decaying homogeneous isotropic turbu-

lence. A least-squares based truncation is specified for stable deployments of their

model-free closures. Model-free turbulence closures are also specified by Maulik et al.

(2019), where sub-grid scale stresses are learned directly from DNS data and deployed

in a-posteriori through a truncation for numerical stability. King et al. (2018) stud-

ied generative-adversarial networks and the LAT-NET (Hennigh, 2017) for a-priori

recovery of statistics such as the intermittency of turbulent fluctuations and spectral

scaling. A detailed discussion of the potential benefits and challenges of deep learning

for turbulence (and fluid dynamics in general) may be found in the article by Kutz

(Kutz, 2017).

While a large majority of the LES-based frameworks presented above utilize a

least-squares error minimization technique for constructing maps to sub-grid stresses

directly, this work represents a physics-informed implementation of sub-grid source
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terms through the learning of convolutional and deconvolution maps between grid-

resolved and unresolved fields. In other words, our framework is able to reproduce,

approximately, a map related to the convolution associated with insufficient grid-

support in LES implementations of the Navier-Stokes equations as well as its inverse.

These optimal maps are obtained by supervised learning from subsampled direct

numerical simulation (DNS) data and are deployed in an a-posteriori fashion for the

LES of two-dimensional turbulence. In this manner, we unite the advantages of

functional and structural modeling of turbulence in addition to precluding the use of

any phenomenological arguments. Through this, we also aim to achieve a harmonious

combination of first-principles based physics as well data-driven mechanisms for high

accuracy. A hybrid formulation leveraging our knowledge of governing equations and

augmenting these with machine learning represents a great opportunity for obtaining

optimal LES closures for multiscale physics simulations (Langford and Moser, 1999;

Moser et al., 2009; LaBryer et al., 2015; King et al., 2016; Pathak et al., 2018).

Therefore, this investigation represents an advancement of the concepts proposed

by the authors previously (Maulik and San, 2017a), where solely the deconvolutional

ability of artificial neural networks was investigated in an a-priori sense for sub-

filter stresses. The adaptations proposed in our current study are targeted towards

recovering the sub-grid component of the coarse-grained LES computation. In addi-

tion, we not only address the issue of a-priori sub-grid recovery with our proposed

closure, but also demonstrate its robustness in a-posteriori deployment with asso-

ciated numerical challenges. While the two-dimensional turbulence case is utilized

for a proof-of-concept as well as for its geophysical implications where improved clo-

sure development is still sought extensively, our generalized framework may easily

be scaled up to multiple dimensional non-linear partial differential equations. Our

results indicate that the proposed framework provides for a robust sub-grid model

with a dynamically computed effective eddy-viscosity within the structural modeling
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ideology.

3.3 Turbulence modeling equations

We proceed with the introduction of our framework by outlining the governing equa-

tions for two-dimensional turbulence. These are given by the Navier-Stokes equations

in the vorticity-streamfunction formulation. In place of a primitive variable formula-

tion, our decaying turbulence problem is solved for using the temporal evolution of

the following non-dimensionalized and coupled system of equations,

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω,

∇2ψ = −ω,
(3.1)

where the velocity vector components may be recovered as

∂ψ

∂y
= u

∂ψ

∂x
= −v.

(3.2)

The computational necessities of coarse-graining result in a grid-filtered system of

equations

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω + Π,

∇2ψ = −ω,
(3.3)

where overbarred quantities imply grid-resolved variables. A resulting unclosed term

is obtained, ideally represented as

Π = J(ω, ψ)− J(ω, ψ). (3.4)
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The second term on the right-hand side of the above equation represents the primary

target of approximation for the structural modeling mechanism. In contrast, the func-

tional modeling procedure is to represent Π as an effective eddy-viscosity multiplied

by Laplacian of the vorticity. In this study, we shall utilize a data-driven paradigm

for approximating

J(ω, ψ) ≈ ˜J(ω∗, ψ∗), (3.5)

where asterisked quantities are those obtained by data-driven deconvolution and the

tilde represents data-driven convolution. This procedure is similar to the AD mech-

anism which requires an a-priori low-pass spatial filter specification. Note that the

proposed methodology effectively aims to approximate the operations of Fourier cut-

off filtering and its inverse which is the primary reason why it blends the distinction

between sub-filter and sub-grid recovery. The former is a potential limitation of the

AD mechanism in its current implementation. Our approximate sub-grid model is

thus given by

Π̃ = J(ω̄, ψ̄)− ˜J(ω∗, ψ∗). (3.6)

For the purpose of comparison we also introduce the Smagorinsky and Leith models

which utilize algebraic eddy-viscosities for sub-grid stress calculation given by

Πe = ∇. (νe∇ω̄) , (3.7)

where for the Smagorinsky model we have

νe = (Csδ)
2|S̄|, (3.8)
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and the Leith hypothesis states

νe = (Clδ)
3|∇ω̄|. (3.9)

Note that |S̄| =
√

2SijSij and |∇ω̄| correspond to two commonly used kernels for

eddy-viscosity approximations. Here, δ is generally assumed to be the characteristic

mixing length taken to be the grid size. The online performance of our proposed

framework shall be compared to these simple, but robust closures. We remark here

that the standard procedure for closure in the vorticity-streamfunction formulation

(relevant to two-dimensional simulations) is based on sub-grid vorticity source term

modeling but our generalized procedure may be extended to the primitive variable

approach as a source term in the Navier-Stokes momentum equations. For the con-

venience of the reader we also tabulate some of the notation that will be widely used

in the rest of this article in Table 3.3. We note that the variables outlined in this

table are all defined on a coarse(i.e, LES) grid. Details regarding the preparation of

the data for our machine learning methods shall be outlined in subsequent sections.

Notation Category

ā Grid filtered (i.e, Fourier cut-off filtered) from DNS

ac Comb filtered (i.e, sub-sampled) from DNS

a∗ Data-driven deconvolved variable

ã Data-driven convolved variable

Table 3.1: A summary of filter and deconvolutional notation
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3.4 Data-driven convolution and deconvolution

The ANN, also known as a multilayered perceptron, consists of a set of linear or

non-linear mathematical operations on an input space vector to establish a map to

an output space. Other than the input and output spaces, a ANN may also contain

multiple hidden layers (denoted so due to the obscure mathematical significance of

the matrix operations occurring here). Each of these layers is an intermediate vector

in a multi-step transformation which is acted on by biasing and activation before the

next set of matrix operations. Biasing refers to an addition of a constant vector to

the incident vector at each layer, on its way to a transformed output. The process

of activation refers to an elementwise functional modification of the incident vector

to generally introduce non-linearity into the eventual map. In contrast, no activation

(also referred to as a linear activation), results in the incident vector being acted on

solely by biasing. Note that each component of an intermediate vector corresponds

to a unit cell also known as the neuron. The learning in this investigation is super-

vised implying labeled data used for informing the optimal map between inputs and

outputs. Mathematically, if our input vector p resides in a P -dimensional space and

our desired output q resides in a Q-dimensional space, the ANN establishes a map

M as follows:

M : {p1, p2, . . . , pP} ∈ RP → {q1, q2, . . . , qQ} ∈ RQ. (3.10)

In this study, we utilize two maps which relate to convolution and deconvolution

of fields with grid-resolved and sub-grid components respectively. We must caution

the reader here that the maps are not assumed to transform between isomorphic

spaces (considered a limitation of structural AD (Guermond et al., 2004; Germano,

2015)). This allows for the estimation of sub-grid loss due to coarse-graining the

degrees of freedom in an LES deployment. In equation form, our optimal map M1
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relates coarse-grained field stencils to their grid-filtered (i.e., Fourier cut-off filtered)

counterparts and is given by

M1 : {ωci,j, ωci,j+1, ω
c
i,j−1 . . . , ω

c
i−1,j−1 ∈ R9 → {ω̃} ∈ R1. (3.11)

where ω̃ represents an approximation for ω̄.

Our second map, relates grid-filtered field stencils to their coarse-grained counter-

parts given by

M2 : {ω̄i,j, ω̄i,j+1, ω̄i,j−1 . . . , ω̄i−1,j−1 ∈ R9 → {ω∗} ∈ R1. (3.12)

where ω∗ represents an approximation for ωc. Note that both maps are trained

for optimal prediction using normalized inputs. Our normalization (approximately)

rescales our data to zero mean and unit variance by using grid-resolved variable

quantities. Therefore, both inputs and outputs to maps are normalized by quantities

available dynamically and the deployment of the network does not require a-priori

storage of training parameters. For instance, the normalization of ω̄ may be obtained

by

ω̄n =
ω̄ − µ(ω̄)

σ(ω̄)
, (3.13)

where µ(a) and σ(a) refer to the mean and variance of a field variable a. Similarly

the normalization of ω∗ is given by

ω∗
n

=
ω∗ − µ(ω̄)

σ(ω̄)
. (3.14)

In this manner, no a-priori training coefficients may be recorded. Trained maps using

this normalization technique may thus be used for the convolution or deconvolution

of any coarse-grained variable. A key facet of our proposed methodology is that our
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trained maps are obtained only from vorticity data even though they need deployment

for the deconvolution of the streamfunction as well as the convolution of the Jacobian.

Successful sub-grid information recovery (described in the results section) shows that

this data-independence in training can be related to a true learning of the filtering

and deconvolution characteristics between coarse and fine grids.

The pseudocode for a deployment of our optimally trained maps is shown in

Algorithm 3 where it can be seen that each time step (or sub-step) of an explicit

flow evolution requires the specification of a data-driven approximation to the true

Jacobian J(ω, ψ). In subsequent sections, we shall comment on the final a-posteriori

constraining for ensuring numerical realizability. Figure 3.1 visually outlines the two

networks deployed in this study.

Algorithm 3 Proposed framework deployment

1: Given trained maps M1 and M2

2: Given ω and ψ

3: Normalize ω and ψ to get ωn and ψ
n

respectively

4: Use M2 to obtain deconvolved variables ωn
∗

and ψn
∗

5: Rescale to physical domain to get ω∗ and ψ∗

6: Calculate estimated coarse-grid Jacobian J(ω∗, ψ∗)

7: Normalize Jacobian J(ω∗, ψ∗) to get J(ω∗, ψ∗)n

8: Use M1 to obtain convolved variables ˜J(ω∗, ψ∗)n

9: Rescale ˜J(ω∗, ψ∗)n to physical domain to get ˜J(ω∗, ψ∗)

10: Deploy turbulence model Π̃ = J(ω̄, ψ̄)− ˜J(ω∗, ψ∗) subject to post-processing for

numerical stability given by Equation 3.15

As evident, implementation of the proposed framework requires multiple convo-

lutional and deconvolutional passes over the grid-resolved variables and therefore we

refer to this framework, from henceforth, as the data-driven convolutional and decon-

volutional closure (DCD). Both our networks utilize one hidden layer along with the
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Figure 3.1: A schematic of our data-driven mapping for convolution and deconvolu-
tion. Two separate ANNs are utilized for projection to and from deconvolved variable
space.
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Figure 3.2: A schematic of our biasing and activation at each hidden layer neuron.
Assuming five inputs from previous layer.

input and output layers. This hidden and output layers have a bias vector associated

with it. For faster training, we utilize rectified linear activation functions (ReLU)

for our hidden layer and a linear activation function for the output layer. Note that

input data is not activated as it enters the network. Our hidden layer utilizes 100

unit cells (i.e., neurons) which are acted on by the ReLU transformation and bias-

ing. The process of bias and activation at each neuron is displayed in Figure 3.2 and

every neuron is fully connected to its previous layer (i.e, with incident inputs from

all neurons from the previous layer). In subsequent sections, we outline a sensitivity

study of our proposed ideology for varying architecture depths where it is proven that

one-layered networks suffice for this particular problem.

3.5 Training and a-priori validation

For the purpose of generating our optimal maps discussed in the previous section,

we utilize two supervised learnings with sets of labeled inputs and outputs obtained

from direct numerical simulation (DNS) data for two-dimensional Kraichnan turbu-

lence. We have utilized a second-order accurate energy-conserving Arakawa scheme

for the non-linear Jacobian and second-order accurate finite-difference discretization
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schemes for the Laplacian of the vorticity. The Poisson update is performed using

a spectrally-accurate solver and the time-integration is performed by a third-order

accurate TVD Runge-Kutta explicit method. Further details on the problem setup

and the implementation of an energy and enstrophy conserving numerical method can

be found by the authors’ previous studies (San and Staples, 2012; Maulik and San,

2017c). Our grid-resolved variables (i.e., ω̄) are generated by a Fourier cut-off filter

so as to truncate the fully-resolved DNS fields (obtained at 20482 degrees-of-freedom)

to coarse-grained grid level (i.e., given by 2562 degrees-of-freedom). Our subsampled

variables (i.e., ωc) are obtained by a comb filtering procedure where every eighth data

point is retained.

We also emphasize on the fact that, while the DNS data generated multiple time

snapshots of flow evolution, data was harvested from times t = 0, 1, 2, 3 and 4 for the

purpose of training and validation. This represents a stringent subsampling of the

total available data for map optimization. Our DNS utilized an explicit formulation

with a constant timestep of 0.0001 implying potential generation of 40000 snapshots

out of which only 4 were selected at regular intervals for data harvesting. This repre-

sents a 0.01% utilization of total potential data during training which is particularly

challenging for this unsteady problem. The generation of data sets at the coarse

grained level is outlined in Algorithm 4.

We also note that the Reynolds number chosen for generating the training and

validation data sets is given by Re = 32000 while deployment is tested for a higher

Reynolds number of 64000 for both a-priori and a-posteriori assessment. We remind

the reader here, map training is performed solely on the vorticity field despite the fact

that trained maps are to be utilized for vorticity, streamfunction and the Jacobian.

The generation of data sets at the coarse grained level is outlined in algorithm 4.
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Algorithm 4 Data harvesting from DNS

1: Obtain DNS data for vorticity ωDNS at N2 = 20482

2: Comb filter to obtain ωc from ωDNS by sub-sampling every eighth point

3: Grid filter to obtain ω̄ from ωDNS

4: Normalize ω̄ to ω̄n using Equations 3.13

5: Normalize ωc to ωc
n

using Equation 3.14

6: ωc
n

and ω̄n are input and output pairs respectively for map M1 optimization,

where we assume true output ω̃n ≈ ω̄n according to Equation 3.5

7: ω̄n and ωc
n

are input and output pairs respectively for map M2 optimization,

where we assume true output ω∗
n ≈ ωc

n

Two-thirds of the total dataset generated for optimization is utilized for training

and the rest is utilized for test assessment. Here, training refers to the use of data

for loss calculation (which in this study is a classical mean-squared-error) and back-

propagation for parameter update. The test data, however, is utilized to record the

performance of the trained network on data it was not exposed to during training.

Similar behavior in training and test losses would imply a well-formulated learning

problem. The final ANN (obtained post-training) would be selected according to

the best loss on the test data after a desired number of iterations which for this

study was fixed at 50. The choice for a low number of iterations was observed by

Pearson correlation values reaching 0.99 for both training and test data sets. We

also note that the error-minimization in the training of the ANN utilized the Adam

optimizer (Kingma and Ba, 2014) implemented in the open-source neural network

training platform TensorFlow. We remark that while the networks may have learned

the target maps from the data they are provided for training and test, validation

would require an a-posteriori examination as detailed in the following section. We

note here that data preprocessing as well as architectural modifications (for instance

network depth, number of neurons and activation types) need further investigation
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for improved generalization.

We first outline an a-priori study for the proposed framework where the optimal

maps are utilized for predicting probability distributions for the true Jacobian i.e.,

J(ω, ψ). A pseudocode for the computation of this true Jacobian is outlined in Algo-

rithm 5. In other words, we assess the turbulence model for a one snapshot prediction.

This study is carried out for one of our data snapshots t = 2 but for both in and

out-of-training data sets. We remark that the maps have previously been exposed to

vorticity data from Re = 32000 only and our out-of-training data set is given by a

similar flow scenario but at higher Reynolds number given by Re = 64000. One can

thus make the argument for some transfer of learning between similar flow classes

but with slight difference in physics. The performance of the framework is shown

in Figure 3.3 where the framework predicts the density functions of the true Jaco-

bian accurately for both sets of data. We also note that this study solely utilized a

mean-squared-error minimization for the target variables without any physics-based

regularization. A future study involving loss-functions devised with intuition from

the Navier-Stokes equations would potentially aid in preserving invariance and sym-

metry properties between grid-resolved and deconvolved space. In addition, while the

localized stencil based sampling for map deployments proposed here is amenable to

deployment in structured grids, extension to arbitrary meshes would require the use

of interpolation or graph convolutional kernels for unstructured information injection

into the learning architecture.

Algorithm 5 True Jacobian J(ω, ψ) from DNS

1: Obtain DNS data for vorticity ωDNS and streamfunction ψDNS at N2 = 20482

2: Calculate Jacobian on DNS grid i.e., J(ωDNS, ψDNS)

3: Apply grid filter to J(ωDNS, ψDNS) in order to obtain J(ω, ψ) at N2 = 2562.
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Figure 3.3: The prediction ability of the use of both forward and inverse maps in the

calculation of the approximate underlying Jacobian ˜J(ω∗, ψ∗) for Re = 32000 (left)
and Re = 64000 (right). The true Jacobian J(ω, ψ) is also shown.

3.6 A posteriori testing

The ultimate test of any data-driven closure model is in an a-posteriori framework

with subsequent assessment for the said model’s ability to preserve coherent structures

and scaling laws. While the authors have undertaken a-priori studies with promis-

ing results for data-driven ideologies for LES (Maulik and San, 2017a), the results

of the following section are unique in that they represent a model-free turbulence

model computation in temporally and spatially dynamic fashion. This test setup is

particulary challenging due to the neglected effects of numerics in the a-priori train-

ing and testing. In the following we utilize angle-averaged kinetic energy spectra to

assess the ability of the proposed framework to preserve integral and inertial range

statistics. Theoretical comparisons with Kraichnan turbulence (Kraichnan, 1967) and

the expected k−3 cascade are also provided. In brief, we mention that the numeri-

cal implementation of the conservation laws are through second-order discretizations

for all spatial quantities (with a kinetic-energy conserving Arakawa discretization for
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the calculation of the non-linear Jacobian). A third-order total-variation-diminishing

Runge-Kutta method is utilized for the vorticity evolution and a spectrally-accurate

Poisson solver is utilized for updating streamfunction values from the vorticity. Our

proposed framework is deployed pointwise for estimating Π̃ at each explicit time-step

until the final time of t = 4 is reached. The robustness of the network to the effects

of numerics is thus examined. For the purpose of numerical stability we ensure the

following condition before deploying our framework

Π =


Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise.

(3.15)

where the truncation explicitly ensures no negative numerical viscosities due to the

deployment of the sub-grid model. We remind the reader that the Smagorinsky

and Leith hypotheses explicitly specify positive eddy-viscosities that are obtained

by absolute value quantities as given in Equations 3.8 and 3.9. An a-priori visual

quantification of the truncation is shown in Figure 3.4 where quantities in the first

and third quadrants are retained predictions and the others are discarded. A similar

behavior is seen for both Re = 32000 and Re = 64000 data. This image also highlights

the challenges of translating a-priori conclusions to a-posteriori implementations due

to the requirement of numerical stability.

Figure 3.5 displays the statistical fidelity of coarse-grained simulations obtained

with the deployment of the proposed framework for Re = 32000. Stable realiza-

tions of the vorticity field are generated due to the combination of our training and

post-processing. For the purpose of comparison, we also include coarse-grained no-

model simulations, i.e., unresolved numerical simulations (UNS) which demonstrate

an expected accumulation of noise at grid cut-off wavenumbers. DNS spectra are

also provided showing agreement with the k−3 theoretical scaling expected for two-

dimensional turbulence. Our proposed framework is effective at stabilizing the coarse-
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Figure 3.4: A visual assessment of the truncation of our numerical post-processing
during deployment given by Equation 3.15. Blue points indicate truncated deploy-
ment for ensuring no negative viscosity and numerical stability. A-priori predictions
for Re = 32000 (top) and Re = 64000 (bottom) shown.

grained flow by estimating the effect of sub-grid quantities and preserving trends with

regards to the inertial range scaling. Figure 3.6 visually quantifies the effect of the

stabilization imparted by the proposed framework. The reader may observe that the

proposed framework recovers an excellent scaling behavior. This is similar to the

performance obtained by deploying the Smagorinsky model at Cs = 0.2, a widely

utilized parameteric choice obtained through prior numerical experimentation. The

Leith performance at Cl = 0.2 is slightly under-dissipative. The reader may notice

that an arbitrary choice of Cs = Cl = 1.0 leads to overdissipative performance of

the eddy-viscosity closures. Our data-driven framework is thus more resistant to

unnecessary dissipation. Note that choice of a higher eddy viscosity coefficient for

two-dimensional turbulence has been detailed in previous literature (Cushman-Roisin

and Beckers, 2011). Another quantification of the perfomance of the DCD closure is

described in Figures 3.7 and 3.8 which juxtapose the varying performance of these
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parameter-dependant eddy-viscosity hypothesis (i.e., Smagorinsky and Leith respec-

tively) to the proposed data-driven approach. One can observe that an optimal se-

lection of parameters (after a-posteriori examination) given by Cl = 0.5 for the Leith

model recreates the performance of the proposed framework well as well. This implies

that the proposed framework has learned a similar dissipative nature through a-priori

optimization of a filter and its inverse. Indeed, the application of the Smagorinsky

model to various engineering and geophysical flow problems has revealed that the con-

stant is not single-valued and varies depending on resolution and flow characteristics

(Galperin and Orszag, 1993; Canuto and Cheng, 1997; Vorobev and Zikanov, 2008)

with higher values specifically for geophysical flows. In comparison, the proposed

framework has embedded the adaptive nature of dissipation into its map which is a

promising outcome. Before proceeding, we note that default parameteric choices for

the Smagorinsky and Leith models are given by Cs = Cl = 0.2.

For ensuring that the training is sufficiently generalized for this particular prob-

lem, we establish a suite of testing for the predictive performance and the numerical

stability of our proposed framework. We first perform multiple forward simulations

using the deployment of our proposed closure by utilizing a different random seed

in the random-number generation required for the initial conditions at Re = 32000

(Maulik and San, 2017c). This is to ensure that there is no data memorization by

our maps. We choose 24 random initial conditions and ensemble-average their kinetic

energy spectra at the completion of the LES for our model as well as the Smagorin-

sky, Leith and no-model (i.e., UNS) coarse-grid runs. We have also included ensemble

results from Smagorinsky and Leith deployments at higher values of Cs = Cl = 1.0 to

describe the loss of fidelity at the lower wavenumbers in case of incorrect parameter

specification. The resultant spectra are shown in Figure 3.9 where one can ascertain

that the prediction quality of our framework remains identical regardless of vary-

ing initial conditions. This is promising as it validates our hypothesis that it is the
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Figure 3.5: The a-posteriori performance of proposed framework for Re = 32000 in
terms of energy spectra. At each step of sub-grid stress calculation, both forward and
inverse maps are used for convolution and deconvolution in the estimation of the true
underlying Jacobian.

smaller scales which are primarily affected by the proposed closure. We also demon-

strate the utility of our learned map on an a-posteriori simulation for Re = 64000

data where similar trends are recovered as seen in statistical comparisons (Figure

3.10) and qualitative behavior (Figure 3.11). This also demonstrates an additional

stringent validation of the data-driven model for ensuring generalization.

We also seek to compare the performance of the proposed framework against the

dynamic formulation of the Smagorinsky and Leith models (Germano et al., 1991)

modified for the vorticity and streamfunction formulation as described by Maulik

and San (2017c) where a least-squares optimization problem is solved at two scales of

resolution for an optimal value of the Smagorinsky and Leith coefficients calculated in
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Figure 3.6: Visual quantification of the a-posteriori performance of proposed frame-
work for Re = 32000 with stabilized (top), under-resolved (middle) and filtered DNS
contours (bottom) for vorticity.
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Figure 3.7: Performance comparison of proposed framework with co-efficient de-
pendant Smagorinsky model. One can observe that higher Cs values lead to over-
dissipative models.
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Figure 3.8: Performance comparison of proposed framework with co-efficient depen-
dant Leith model. One can observe that higher Cl values lead to over-dissipative
models.
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Figure 3.9: Ensemble-averaged a-posteriori performance of proposed framework for
Re = 32000 in terms of energy spectra. This determines the generalizability of
proposed framework.
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Figure 3.10: The a-posteriori performance of proposed framework for Re = 64000 in
terms of energy spectra. Training data limited to Re = 32000 only.
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Figure 3.11: Visual quantification of the a-posteriori performance of proposed frame-
work for Re = 64000 with stabilized (top), under-resolved (middle) and filtered DNS
contours (bottom) for vorticity. Note: Training only with Re = 32000 data.
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Figure 3.12: A comparison of the proposed framework with the Dynamic Smagorinsky
and Dynamic Leith models for Re = 32000. One can see an optimal solution being
obtained by the data-driven formulation in a similar manner.

a dynamic fashion defining a test filter. We note that even the dynamic formulation

requires the specification of an a-priori characteristic filter-width ratio (i.e., a ratio

between test and grid filters), κ, which affects a-posteriori results. In this comparison,

we have utilized a filter-width ratio of κ = 2 with the use of an explicit trapezoidal

filter. The results of this comparison with our framework are shown for Reynolds

numbers of Re = 32000 and Re = 64000 in Figures 3.12 and 3.13 respectively.

One can observe that the performance of the dynamic implementations of our eddy-

viscosity hypotheses are recreated in a qualitative fashion. Our model may thus be

assumed to be both data-driven and dynamic in nature.

In terms of computational cost, we remark that the proposed framework adds a
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Figure 3.13: A comparison of the proposed framework with the Dynamic Smagorinsky
and Dynamic Leith models for Re = 64000. One can see an optimal solution being
obtained by the data-driven formulation in a similar manner. Training data limited
to Re = 32000 only.
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considerable computational expenditure (a-posteriori simulations led to 4 times the

computational cost of the dynamic formulation) in the serial formulation. However,

scalable deployments of the proposed framework in distributed environments are a

subject of ongoing investigation for reducing this cost. While the data-driven frame-

work promises more accuracy through exposure to multiple sources of turbulence data,

its scalable deployment remains an important open question for successful integration

into modern computational fluid dynamics solvers.

3.7 Sensitivity study

We investigate the robustness of our framework by ensuring that an optimal number

of hidden layers or neurons have been utilized through an a-posteriori sensitivity study

where a varying number of layers and neurons are tested for spectral scaling recovery.

By keeping the default network architecture as a one layer, 100 neuron network, we

investigate the effect of reduction or increase in neurons as well the effect of the

number of hidden layers. We note that our studies are performed for Re = 64000 as

an additional cross-validation.

Figure 3.14 shows the effect of varying network depths, where it can be seen that

a one-layered architecture performs sufficiently accurately to be considered optimal

for deployment. This hints at a simpler non-linear relationship between the inputs

and outputs which has been captured by our framework. Figure 3.15 shows the ef-

fect of the number of neurons, where once again, it is observed that reduced model

complexity does not impede performance. While this study utilized 100 neurons in

the single hidden layer, even 10 would suffice for accurate scaling recovery. These

observed behaviors imply that our framework allows for reduced network depths and

reduced neurons and their associated computational advantages during training and

deployment. However, we must caution the reader that greater amounts of data

would necessitate deeper architectures for more generalization. In particular, our ex-
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Figure 3.14: Sensitivity study for proposed framework number of layers at Re =
64000. Training data limited to Re = 32000 only and with 100 neurons in each layer.

pectation is that if multiple flow scenarios were to be learned, simple feed-forward

ANNs may prove to be inadequate. In particular, we note that our choice of local-

ized sampling, network architecture and training loss-function are chosen specific to

the resolution loss and physics at hand. Greater generalization (through improved

diversity of training data) would require revised hyperparameter study.

For our problem of choice, it is evident that a 10 neuron, 1 layer ANN is suffi-

ciently viable for estimating both M1 and M2. This lends evidence to the fact that

our dual network formulation may also allow for simpler learning algorithms (i.e.,

for this particular problem). We perform an a-priori sensitivity study for training

and test mean-squared-error measures for three other well-known statistical learning

algorithms such as a linear regressor (LR), a random-forest regressor (RF) (Liaw and
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Figure 3.15: Sensitivity study for proposed framework number of layers at Re =
64000. Training data limited to Re = 32000 only and with 1 hidden layer only.
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Figure 3.16: Sensitivity study for machine learning algorithm for training and testing
mean-squared-errors. These errors are shown for M2 optimization.

Wiener, 2002) and a decision-tree regressor (DT) (Safavian and Landgrebe, 1991).

We utilize the open-source scikit-learn machine learning library in python for stan-

dard implementations of these techniques. A quantitative training and testing mean-

squared-error performance for these techniques in comparison to the ANN is shown in

Figure 3.16 where it is observed that similar performance characteristics are observed

despite vastly different learning methodologies for M2 optimization. It can thus be

concluded that the utilization of our dual network framework has led to the simpli-

fication of a highly non-linear problem to one that is tractable for linear learning

methods.

The linear-regressor is also implemented in an a-posteriori manner as shown in

Figures 3.17 and 3.18 for Re = 32000 and Re = 64000 respectively. The kinetic en-

ergy spectra predictions of these linear relationships which estimate the convolutional

and deconvolutional relationships are slightly less dissipative in the inertial and grid

cut-off length scales for the Re = 32000 case. However, very similar performance is

obtained for Re = 64000. The slightly discrepancy in the performance of the linear
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implementations of the convolutional and deconvolutional maps may be attributed to

a lower generalizability of the simpler nature of its learning. However, we would like

to remark that this has positive implications for the utility of these techniques for the

preservation of the solenoidal constraint and frame-invariance in higher-dimensional

flows (Stolz and Adams, 1999) on structured grids. We would also like to note that

the utilization of the same data-local filter stencil in all locations of the specified

mesh ensures Galilean invariance (Razafindralandy et al., 2007). In addition, the

use of stencil inputs is philosophically aligned with Moser et al. (2009), where multi-

point input data are used for optimal LES formulations. However, further research is

necessary for importing concepts related to isotropization of these data-driven filter

and inverse kernels for application to general unstructured grids. It is also necessary

to explore the possibilities of ‘constrained-learning’ which may embed the preserva-

tion of the solenoidal constraint in higher-dimensions through penalties introduced

to the loss-functions (Raissi and Karniadakis, 2018). That is a subject of on-going

investigation.

3.8 Modified truncation via mean filtering

The truncation specified in Equation 3.15 and Figure 3.4 leads to an asymmetry in

the estimation of the dissipation by finer wavenumbers. To that end, we introduce

a modified truncation kernel based on a local-averaging for an added truncation of

positive eddy-viscosity predictions to ensure a balance with backscatter. This is

introduced through the concept of a locally-averaged eddy-viscosity prediction, for

instance, given by

νavi,j =
1

9

(
νei,j + νei,j+1 + νei,j−1 + . . .+ νei−1,j−1

)
, (3.16)
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Figure 3.17: The performance of a linear estimator (LR) for convolutional and de-
convolutional maps in the proposed framework for Re = 32000. A comparison to the
default ANN is shown.
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Figure 3.18: The performance of a linear estimator (LR) for convolutional and de-
convolutional maps in the proposed framework for Re = 64000. A comparison to the
default ANN is shown. Training data limited to Re = 32000 only.
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where

νei,j =
Π̃i,j

∇2ω̄i,j
. (3.17)

The averaging procedure in Equation 3.16 may also be represented by a mean-filtering-

kernel given as

νav =
νe

9


1 1 1

1 1 1

1 1 1

 . (3.18)

The transfer-function of this kernel may be visualized as shown in Figure 3.19 and

this averaging filter has the effect of eliminating localized pointwise values which are

unrepresentative of their surroundings.

The quantity νavi,j is basically the averaged dissipative (or energy-producing) na-

ture of the local stencil of prediction and the quantity νei,j is the local effective eddy-

viscosity prediction by our proposed framework. Our truncation scheme is then ex-

pressed as

Πi,j =


Π̃i,j, if νavi,j > νei,j

0, otherwise.

(3.19)

The effect of this modified truncation is described in Figure 3.20 where an increased

truncation is observed quite clearly. Our model formulation may thus be assumed to

preserve the statistical nature of the negative-eddy viscosities in a locally-averaged

manner.

A posteriori deployments of this modified truncation scheme are displayed in

Figures 3.21 and 3.22 where an improved capture of the inertial range is observed for

Re = 32000 and Re = 64000 respectively. This implies that the statistical fidelity of
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Figure 3.19: Transfer function for truncation kernel to preserve statistical effects of
backscatter.
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Figure 3.20: A visual assessment of the truncation of our numerical post-processing
during deployment given by the BS-1 framework. Blue points indicate truncated
deployment for ensuring no negative viscosity and numerical stability. A-priori pre-
dictions for Re = 32000 (top) and Re = 64000 (bottom) shown.

the prediction has been improved by the integration of a local backscatter estimate.

The combination of novel truncation strategies may further be studied in the context

of this data-driven framework for close agreement with theoretical scaling laws.

3.9 Concluding remarks

In this investigation, we have put forth and analyzed a physics-informed data-driven

closure modeling framework for non-linear partial differential equations. Our pro-

posal is to use two single-layer feed-forward artificial neural networks for mapping

transformations from grid-resolved variables with missing wavenumber content and

subsampled direct numerical simulation data in order to close the two-dimensional

Navier-Stokes equations. This investigation continues from the authors’ previous

work (Maulik and San, 2017a), which assessed the deconvolutional ability of neural

networks, by employing them for estimating sub-grid relationships from grid-resolved

variables.
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Figure 3.21: A comparison of the choice of a-posteriori truncation utilized in our pro-
posed framework. A statistical preservation of backscatter enforced by our proposed
kernel leads to a better agreement with the inertial range statistics for Re = 32000.
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Figure 3.22: A comparison of the choice of a-posteriori truncation utilized in our pro-
posed framework. A statistical preservation of backscatter enforced by our proposed
kernel leads to a better agreement with the inertial range statistics for Re = 64000.
Training data limited to Re = 32000 only.
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Our framework precludes the utilization of any phenomenological arguments or

model form constraints and relies, instead, solely on the approximation of the Fourier

cut-off filtering inherent in coarse-graining as well as its approximate inverse. We

remark that while there is truly no way to invert a Fourier cut-off filter, a-priori

exposure to samples from resolved and filtered fields are used to estimate the infor-

mation loss and reconstruct it. For the purpose of numerical stability, we also employ

two postprocessing strategies with the first ensuring no aggregate negative viscosities

in the computational domain and the second preserving backscatter in a statistical

sense. This ensures that the stochastic nature of the network predictions do not

trigger numerical instability amplification in an explicit flow computation.

Another important feature of this investigation is that, despite its data-driven

nature, our offline training phase necessitates no exposure to the true sub-grid stress

data and predictions are viable simply through the estimation of the nature of the

coarse-graining process in LES. Our sensitivity study reveals the benefits of this ap-

proach, where it is seen that increasing network complexity leads to no appreciable

improvement in the a-posteriori performance for this current test case. The need for

complicated network architectures (and their associated computational and memory

burden) is thus minimized due to the physics-informed nature of our formulation.

Comparison with other well-established linear statistical learning methods also

show that the novel dual network formulation presented here reduces the complexity

of learning considerably. In particular, the performance of a linear map represen-

tation of convolution and deconvolution operations ensures a direct enforcement of

the solenoidal constraint on the convolved and deconvolved fields for applicability to

higher dimensions. A posteriori realizations of the linear mappings between grid-

resolved and sub-grid space, show an exhibition of the bias-variance trade-off issue

where the simpler nature of the linear regressor leads to lower generalization for a

different data-set. However, an effective parameter and model-form free closure is
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readily obtained in this case as well.

We also note that the data-local nature of our framework with the combination of

solely one map (each for convolution and deconvolution) ensures that frame-invariance

is respected for the specified mesh. As a future direction, this framework shall be stud-

ied with the view of integrating physics-based constraints in the offline training phase.

These may be introduced through optimization penalties for continuity enforcement

and for isotropization on arbitrary meshes. These are necessary for the generalization

of this framework to higher-dimensional flows with arbitrary boundary conditions.

While the results of this study have proven promising for the development of

purely data-driven closures for LES, the true test of these ideologies would be to

develop generalized closures for a variety of flows. In terms of a long-term goal, the

preliminary results displayed here must translate to a situation where a-posteriori

closure is determined by a-priori exposure to a variety of flow classes. Additionally,

the stencil based formulation for a predictive map leads to a resolution dependence

of the trained relationships. This is because our LES to DNS ratio is fixed during the

specification of training data. An exposure to different levels of coarse-graining for

potential predictions would also increase the generalizability of this framework. With

that in mind, we remark that the framework proposed here represents the advantages

of implementing a data-driven paradigm from a physics-informed point of view with

consequent benefits for framework complexity and ease of deployment.
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CHAPTER IV

Sub-grid modelling for two-dimensional turbulence using neural networks

4.1 Abstract

In this investigation, a data-driven turbulence closure framework is introduced and

deployed for the sub-grid modelling of Kraichnan turbulence. The novelty of the

proposed method lies in the fact that snapshots from high-fidelity numerical data are

used to inform artificial neural networks for predicting the turbulence source term

through localized grid-resolved information. In particular, our proposed methodol-

ogy successfully establishes a map between inputs given by stencils of the vorticity

and the streamfunction along with information from two well-known eddy-viscosity

kernels. Through this we predict the sub-grid vorticity forcing in a temporally and

spatially dynamic fashion. Our study is both a-priori and a-posteriori in nature. In

the former, we present an extensive hyper-parameter optimization analysis in addi-

tion to learning quantification through probability density function based validation

of sub-grid predictions. In the latter, we analyse the performance of our frame-

work for flow evolution in a classical decaying two-dimensional turbulence test case

in the presence of errors related to temporal and spatial discretization. Statistical

assessments in the form of angle-averaged kinetic energy spectra demonstrate the

promise of the proposed methodology for sub-grid quantity inference. In addition, it

is also observed that some measure of a-posteriori error must be considered during

This chapter is adapted from Maulik et al., J. Fluid Mech., 858, 122-144
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optimal model selection for greater accuracy. The results in this article thus repre-

sent a promising development in the formalization of a framework for generation of

heuristic-free turbulence closures from data.

4.2 Introduction

The efficient computational modelling of energetic flows continues to remain an im-

portant area of research for many engineering and geophysical applications. Over the

past few decades, coarse-grained techniques such as Reynolds-averaged Navier-Stokes

(RANS) and large eddy simulation (LES) have proven promising for the statistically

accurate prediction of the grid-resolved scales of a turbulent flow. While RANS is

based on the modelling of turbulence in a temporally averaged sense, LES requires the

specification of a model for the finer scales and their effect on the grid-resolved quan-

tities. This modelling of the excluded wavenumbers in LES represents the classical

closure problem which has spawned a variety of algebraic or equation based techniques

for representing the effect of these discarded scales on the resolved ones (Berselli et al.,

2005; Sagaut, 2006). It has generally been observed that the choice of the sub-grid

model is physics dependant, i.e., that different flow phenomena require different ex-

pressions for sub-grid terms with a-priori assumptions of phenomenology (Vreman,

2004). We use this fact as a motivation for moving to an equation-free model for

the source term through the use of an artificial neural network (ANN). Our hope, in

addition to the formulation of a prediction framework, is to devise the formalization

of a ‘machine-learning experiment’ where a-priori model selection and a-posteriori

deployment are coupled to reveal information about the physical characteristics of a

particular flow class. This not only enables the selection of computationally efficient

predictive models but also reveals the importance of certain grid-resolved quantities

of interest from the flow characteristics. In accordance with the recent trends of

first-principles informed learning for physics inference in turbulence (Ling and Tem-
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pleton, 2015; Tracey et al., 2015; Xiao et al., 2016; Singh et al., 2017; Wang, Wu

and Xiao, 2017; Wang, Wu, Ling, Iaccarino and Xiao, 2017; Weatheritt and Sand-

berg, 2017b; Schaeffer, 2017; Wu et al., 2018a; Raissi and Karniadakis, 2018; Wan

et al., 2018; Mohan and Gaitonde, 2018), a major goal of this research is to study

the combination of the traditional learning framework (inherently data-driven) and

the physics-based prediction tool (based on the coarse-grained Navier-Stokes equa-

tions). We devote particular attention to the necessity for physical realizability as

well as the issues faced by learning frameworks and their interactions with numerical

discretization error.

Over the past decade, there have been multiple studies on the use of machine

learning tools for the reduced-order prediction of energetic flow physics. The study of

these techniques has been equally popular for both severely truncated systems such as

those obtained by leveraging sparsity in transformed bases (Faller and Schreck, 1997;

Cohen et al., 2003; Mannarino and Mantegazza, 2014; San and Maulik, 2018) as well

as for modelling methodologies for coarse-grained meshes such as LES and RANS

simulations (Maulik and San, 2017a; Wang, Wu and Xiao, 2017; Wu et al., 2018b).

Therefore they represent a promising direction for the assimilation of high-fidelity

numerical and experimental data during the model-formulation phase for improved

predictions during deployment. A hybrid formulation leveraging our knowledge of

governing equations and augmenting these with machine learning represents a great

opportunity for obtaining optimal LES closures for multiscale physics simulations

(Langford and Moser, 1999; Moser et al., 2009; King et al., 2016; Pathak et al., 2018).

From the point of view of turbulence modelling, we follow a strategy of utiliz-

ing machine learning methods for estimating the sub-grid forcing quantity such as

the one utilized in Ling, Kurzawski and Templeton (2016) where a deep ANN has

been described for Reynolds stress predictions in an invariant subspace. ANNs have

been also implemented in Parish and Duraisamy (2016) to correct errors in RANS
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turbulence models after the formulation of a field-inversion step. Gamahara and Hat-

tori (2017) detailed the application of ANNs for identifying quantities of interest for

sub-grid modelling in a turbulent channel flow through the measurement of Pearson

correlation coefficients. Milano and Koumoutsakos (2002) also implemented these

techniques for turbulent channel flow but for the generation of low-order wall models

while Sarghini et al. (2003) deployed ANNs for the prediction of the Smagorinsky

coefficient (and thus the sub-grid contribution) in a mixed sub-grid model. In Beck

et al. (2018), an ANN prediction has been hybridized with a least-squares projection

onto a truncated eddy-viscosity model for LES. In these (and most) utilizations of

machine learning techniques, sub-grid effects were estimated using grid-resolved quan-

tities. Our approach is similar, wherein grid-resolved information is embedded into

the input variables for predicting LES source terms for the filtered vorticity transport

equation.

We outline a methodology for the development, testing and validation of a purely

data-driven LES modelling strategy using ANNs which precludes the utilization of

any phenomenology. However, in our framework the machine learning paradigm is

used for predicting the vorticity forcing or damping of the unresolved scales, which

lends to an easier characterization of numerical stability restrictions as well as ease

of implementation. Our model development and testing framework is outlined for

Kraichnan turbulence (Kraichnan, 1967) where it is observed that a combination of

a-priori and a-posteriori analyses ensure the choice of model frameworks that are

optimally accurate and physically constrained during prediction. Conclusions are

drawn by statistical comparison of predictions with high-fidelity data drawn from

direct numerical simulations (DNS).

To improve the viability of our proposed ideas, we devise our learning using ex-

tremely sub-sampled data sets. The use of such sub-sampled data necessitates a

greater emphasis on physics-distillation to prevent extrapolation and over-fitting dur-
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ing the training phase. An a-priori hyper-parameter optimization is detailed for the

selection of our framework architecture before deployment. An a-posteriori prediction

in a numerically evolving flow tests the aforementioned ‘learning’ of the framework

for spectral scaling recovery which are compared to robust models utilizing algebraic

eddy-viscosities given by the Smagorinsky (Smagorinsky, 1963) and Leith (Leith,

1968) models. A hardwired numerical realizability also ensures viscous stability of

the proposed framework in an a-posteriori setting. Later discussions demonstrate how

the proposed framework is suitable for the prediction of vorticity forcing as well as

damping in the modeled scales. The proposed formulation also ensures data-locality,

where a dynamic forcing or dissipation of vorticity is specified spatio-temporally.

Following our primary assessments, our article proposes the use of a combined a-

priori and a-posteriori study for optimal predictions of kinetic energy spectra as well

as hyper-parameter selection prior to deployment for different flows which belong

to the same class but have a different control parameter or initial conditions. It is

also observed that the specification of eddy-viscosity kernels (which are devised from

dimensional analyses) constrain the predictive performance of the framework for the

larger scales. Results also detail the effect of data-locality, where an appropriate

region of influence utilized for sampling is shown to generate improved accuracy. The

reader may find a thorough review of concurrent ideas in Duraisamy et al. (2019). An

excellent review of the strengths and opportunities of using artificial neural networks

for fluid dynamics applications may also be found in Kutz (2017).

The mathematical background of sub-grid modelling for the LES of two-dimensional

turbulence may be summarized in the following. In terms of the vorticity-streamfunction

formulation, our non-dimensional governing equation for incompressible flow may be

represented as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (4.1)

101



where Re is the Reynolds number, ω and ψ are the vorticity and streamfunction

respectively connected to each other through the Poisson equation given by

∇2ψ = −ω. (4.2)

It may be noted that the Poisson equation implicitly ensures a divergence-free flow

evolution. The non-linear term (denoted the Jacobian) is given by

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (4.3)

A reduced-order implementation of the aforementioned governing laws (i.e., an

LES) is obtained through

∂ω̄

∂t
+ J(ω̄, ψ̄) =

1

Re
∇2ω̄ + Π, (4.4)

where the overbarred variables are now evolved on a grid with far fewer degrees of

freedom. The sub-grid term Π encapsulates the effects of the finer wavenumbers which

have been truncated due to insufficient-grid support and must be approximated by a

model. Mathematically we may express this (ideal) loss as

Π = J(ω̄, ψ̄)− J(ω, ψ). (4.5)

In essence, the basic principle of LES is to compute the largest scales of turbulent

motion and use closures to model the contributions from the smallest turbulent flow

scales. The non-linear evolution equations introduce unclosed terms that must be

modeled to account for local, instantaneous momentum and energy exchange between

resolved and unresolved scales. If these inter-eddy interactions are not properly pa-

rameterized, then an increase in resolution will not necessarily improve the accuracy

of these large scales (Frederiksen and Zidikheri, 2016; Frederiksen et al., 2013). Addi-
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tionally, most LES closures are based on three-dimensional turbulence considerations

primarily encountered in engineering applications. These LES models fundamentally

rely on the concept of the forward energy cascade and their extension to geophysical

flows is challenging (Eden and Greatbatch, 2008; Fox-Kemper et al., 2011; San et al.,

2013), due to the effects of stratification and rotation which suppress vertical motions

in the thin layers of fluid. In the following, we shall elaborate on the use of a machine

learning framework to predict the approximate value of Π in a pointwise fashion on the

coarser grid and assess the results of its deployment in both a-priori and a-posteriori

testing. Through this we attempt to bypass an algebraic or differential equation based

specification of the turbulence closure and let the data drive the quantity and qual-

ity of sub-grid forcing. We note here that the definition of the sub-grid source term

given in Equation 4.5 is formulated for the LES of two-dimensional Navier-Stokes

equations in the vorticity-streamfunction formulation but the framework outlined in

this article may be readily extended to the primitive-variable formulation in two or

higher dimensions (Mansfield et al., 1998; Marshall and Beninati, 2003).

4.3 Machine learning architecture

In this section, we introduce the machine learning methodology employed for the

previously described regression problem. The ANN, also known as a multilayered

perceptron, consists of a set of linear or non-linear mathematical operations on an

input space vector to establish a map to an output space. Other than the input

and output spaces, an ANN is also said to contain multiple hidden layers (denoted

so due to the obscure mathematical significance of the matrix operations occurring

here). Each of these layers is an intermediate vector in a multi-step transformation

which is acted on by biasing and activation before the next set of matrix operations.

Biasing refers to an addition of a constant vector to the incident vector at each

layer, on its way to a transformed output. The process of activation refers to an
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element-wise functional modification of the incident vector to generally introduce non-

linearity into the eventual map. In contrast, no activation (also referred to as ‘linear’

activation), results in the incident vector being acted on solely by biasing. Note that

each component of an intermediate vector corresponds to a unit cell also known as

the neuron. The learning in this investigation is supervised implying label data used

for informing the optimal map between inputs and outputs. Mathematically, if our

input vector p resides in a P -dimensional space and our desired output q resides in

a Q-dimensional space, this framework establishes a map M as follows:

M : {p1, p2, . . . , pP} ∈ RP → {q1, q2, . . . , qQ} ∈ RQ. (4.6)

A schematic for this map may be observed in Figure 4.1, where input, output and

hidden spaces are summarized. In equation form, our default optimal map is given

by

M : {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1,

ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1, |S̄|i,j, |∇ω̄|i,j} ∈ R20 → {Π̃i,j} ∈ R1.

(4.7)

where

|S̄| =
√

4

(
∂2ψ̄

∂x∂y

)2

+

(
∂2ψ̄

∂x2
− ∂2ψ̄

∂y2

)2

, |∇ω̄| =
√(

∂ω̄

∂x

)2

+

(
∂ω̄

∂y

)2

(4.8)

are eddy-viscosity kernel information input to the framework and Π̃ is the approxi-

mation to the true sub-grid source term. Note that the indices i and j correspond

to discrete spatial locations on a coarse-grained two-dimensional grid. The map rep-

resented by Equation 4.7 is considered ‘default’ due to the utilization of a 9-point

sampling stencil of vorticity and streamfunction (corresponding to 18 total inputs)

and two other inputs of the Smagorinsky and Leith kernels. The purpose of utilizing

the additional information from these well-established eddy-viscosity hypotheses may
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be considered a data pre-processing mechanism where certain important quantities of

interest are distilled and presented ‘as-is’ to the network for simplified architectures

and reduced training durations. The motivation behind the choice of these particu-

lar kernels is discussed in later sections where it is revealed that they also introduce

a certain regularization to the optimization. We note that all our variables in this

study are non-dimensionalized at the stage of problem definition and no further pre-

processing is utilized prior to exposing the map to the input data for predictions. The

predicted value of Π̃ is post-processed before injection into the vorticity equation as

follows:

Π =


Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise.

(4.9)

This ensures numerical stability due to potentially negative eddy-viscosities embedded

in the source term prediction and may be considered to be an implicit assumption

of Bousinessq hypothesis for functional sub-grid modelling. It is later demonstrated

that the presence of this constraint does not preclude the prediction of positive or

negative values of Π̃, which implies that the proposed framework is adept at predicting

vorticity forcing or damping at the finer scales respectively. The damping of vorticity

at the finer scales would correspond to a lower dissipation of kinetic energy (assuming

that vorticity dissipates kinetic energy in the sub-grid scales). Similarly, the forcing

of vorticity at the finer scales may be assumed to be an localized event of high kinetic

energy dissipation. In general, Equation 4.9 precludes the presence of a backscatter of

enstrophy for strict adherence to viscous stability requirements on the coarse-grained

mesh. Instead of the proposed truncation, one may also resort to some form of spatial

averaging in an identifiable homogeneous direction as utilized by Germano et al.

(1991). However, the former was chosen to remove any dependency on model-forms

or coefficient calculations. In what follows for the rest of this document, our proposed
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Figure 4.1: Proposed artificial neural network architecture and relation to sampling
and prediction space.

framework is denoted ANN-SGS. Details related to hyper-parameter selection and

supervised learning of the model are provided in the appendices.

4.4 A-priori validation

We first outline an a-priori study for the proposed framework where the optimal map

is utilized for predicting probability distributions for the true sub-grid source term.

In other words, we assess the turbulence model for a one snapshot prediction. Before

proceeding, we return to our previous discussion about the choice of Smagorinsky and

Leith viscosity kernels by highlighting their behavior for different choices of model co-

efficients (utilized in effective eddy-viscosity computations using mixing-length based

phenomenological arguments). The Smagorinsky or Leith sub-grid scale models may

be implemented in the vorticity-streamfunction formulation via the specification of
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an effective eddy-viscosity

Π̃ = νe∇2ω̄, (4.10)

where the Smagorinsky model utilizes

νe = (Csδ)
2|S̄|, (4.11)

while the Leith hypothesis states

νe = (Clδ)
3|∇ω̄|. (4.12)

In the above relations, δ refers to the grid-volume (or area in two-dimensional cases)

and νe is an effective eddy-viscosity. From Figure 4.1, it is apparent that the choice

of model-form coefficients Cs and Cl for the Smagorinsky and Leith models dictate

the accuracy of the closure model in a-priori analyses. Instances here refer to the

probability densities of truth and prediction at different magnitudes. We would also

like to draw the readers attention to the fact that ideal reconstructions of the true

sub-grid term are with coefficients near the value of 1.0, a value that is rather different

to the theoretically accepted values of Cs applicable in three-dimensional turbulence.

This dependance of closure efficacy on model coefficients continues to represent a non-

trivial a-priori parameter specification task for practical utilization of common LES

turbulence models particularly in geophysical applications. Later, we shall demon-

strate that a-posteriori implementations of these static turbulence models is beset

with difficulties for non-stationary turbulent behavior.

In contrast, Figure 4.3 shows the performance of the proposed framework in pre-

dicting sub-grid contributions purely through the indirect exposure to supervised data

in the training process. The figure shows a remarkable ability for Π reconstruction for
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Figure 4.2: A-priori performance of Smagorinsky and Leith models for varying model
coefficients for data snapshot at t = 2. Here, instances refer to the probability
densities of truth and prediction at different magnitudes.

both Re values of 32000 and 64000, solely from grid-resolved quantities. Performance

similar to ideal model-coefficients mentioned in the previous figure are also observed.

The Re = 64000 case is utilized to assess model performance for ‘out-of-training’

snapshot data in an a-priori sense. The trained framework is seen to lead to viable

results for a completely unseen data set with more energetic physics. We may thus

conclude that the map has managed to embed a relationship between sharp spectral

cutoff filtered quantities and sub-grid source terms.

We also visually quantify the effect of Equation 4.9 (described for the process

of numerical realizability) in Figure 4.4 where a hardwired truncation is utilized for

precluding violation of viscous stability in the forward simulations of our learning

deployment. One can observe that the blue regions of the figure, which are spatial

locations of sub-grid forcing (Π̃) and Laplacian ∇2ω̄ being the opposite sign, are

truncated. However, we must clarify that this does not imply a constraint on the

nature of forcing being obtained by our model - a negative value of the sub-grid

term implies a damping of vorticity and the finer scales whereas a positive value

implies production at the finer scales. Our next step is to assess the ability of this

relationship to recover statistical trends in an a-posteriori deployment. The fact that
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Figure 4.3: A-priori results for the probability density distributions of the true and
framework predicted LES source terms for Re = 32000 (left) and Re = 64000 (right).
Note that the training data was generated for Re = 32000 only and prediction on
Re = 64000 represents a stringent validation.

roughly half of the predicted sub-grid terms are truncated matches the observations in

Piomelli et al. (1991) where it is observed that forward and backscatter are present in

approximately equal amounts when extracted from DNS data. Studies are underway

to extend some form of dynamic localization of backscatter to the current formulation

along the lines of Ghosal et al. (1995).

4.5 Deployment and a-posteriori assessment

The ultimate test of any data-driven closure model is in an a-posteriori framework

with subsequent assessment for the said model’s ability to preserve coherent structures

and scaling laws. While the authors have undertaken a-priori studies with promising

results for data-driven ideologies for LES (Maulik and San, 2017a), the results of the

following section are unique in that they represent a model-free turbulence model

computation in temporally and spatially dynamic fashion. This test setup is partic-

ulary challenging due to the neglected effects of numerics in the a-priori training and

assessment. In the following we utilize angle-averaged kinetic energy spectra to assess

the ability of the proposed framework to preserve integral and inertial range statistics.

In brief, we mention that the numerical implementation of the conservation laws are

109



−4 −3 −2 −1 0 1 2 3 4
∇2ω̄ 1e4

−1000

−7̄0

−̄00

−2̄0

0

2̄0

̄00

7̄0

1000

Π̃

(a) Re = 32000

−4 −3 −2 −1 0 1 2 3 4
∇2ω̄ 1e4

−1000

−7̄0

−̄00

−2̄0

0

2̄0

̄00

7̄0

1000

Π̃

(b) Re = 64000

Figure 4.4: An a-priori assessment of the nature of truncation given by Equation 4.9
for t = 2 snapshot data at Re = 32000 (top) and Re = 64000 (bottom). The nature of
this truncation is for the preservation of viscous stability in a coarse-grained forward
simulation.
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through second-order discretizations for all spatial quantities (with a kinetic-energy

conserving Arakawa discretization (Arakawa, 1966) for the calculation of the non-

linear Jacobian). A third-order total-variation-diminishing Runge-Kutta method is

utilized for the vorticity evolution and a spectrally-accurate Poisson solver is utilized

for updating streamfunction values from the vorticity. Our proposed framework is

deployed pointwise for approximate Π at each explicit time-step until the final time

of t = 4 is reached. The robustness of the network to the effects of numerics is thus

examined.

Figure 4.5 displays the statistical fidelity of coarse-grained simulations obtained

with the deployment of the proposed framework for Re = 32000. Stable realiza-

tions of the vorticity field are generated due to the combination of our training and

post-processing. For the purpose of comparison, we also include coarse-grained no-

model simulations, i.e., unresolved numerical simulations (UNS) which demonstrate

an expected accumulation of noise at grid cut-off wavenumbers. DNS spectra are

also provided showing agreement with the k−3 theoretical scaling expected for two-

dimensional turbulence. Our proposed framework is effective at stabilizing the coarse-

grained flow by estimating the effect of sub-grid quantities and preserving trends with

regards to the inertial range scaling. We also demonstrate the utility of our learned

map on an a-posteriori simulation for Re = 64000 data where similar trends are re-

covered. This also demonstrates an additional stringent validation of the data-driven

model for ensuring generalized-learning. The reader may observe that Smagorinsky

and Leith turbulence model predictions using static model coefficients of value 1.0

(i.e., Cs = Cl = 1.0) lead to over-dissipative results particularly at the lower (inte-

gral) wavenumbers. This trend is unsurprising, since the test case examined here rep-

resents non-stationary decaying turbulence for which fixed values of the coefficients

are not recommended. Indeed, the application of the Smagorinsky model to vari-

ous engineering and geophysical flow problems has revealed that the constant is not
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Figure 4.5: A-posteriori results for the spatially-averaged kinetic energy spectra for
the proposed framework compared with DNS and UNS solutions. Note that onlyRe =
32000 training data is used for both deployments and network is applied spatially and
temporally in a dynamic manner until t = 4.

single-valued and varies depending on resolution and flow characteristics (Galperin

and Orszag, 1993; Canuto and Cheng, 1997; Vorobev and Zikanov, 2008) with higher

values specifically for geophysical flows (Cushman-Roisin and Beckers, 2011). In com-

parison, the proposed framework has embedded the adaptive nature of dissipation into

its map which is a promising outcome. Figures 4.6 and 4.7 show the performance of

the Smagorinsky and Leith models, respectively, for a Re = 32000 and Re = 64000

a-posteriori deployment for different values of the eddy-viscosity coefficients. One can

observe that the choice of the model-form coefficient is critical in the capture of the

lower wavenumber fidelity.

In particular, we would like to note that the choice of a coarse-grained forward

simulation using a Reynolds number of 64000 represents a test for establishing what

the model has learned. This forward simulation verifies if the closure performance of

the framework is generalizable and not a numerical artifact. A similar performance

of the model on a different deployment scenario establishes the hybrid nature of

our framework where the bulk behavior of the governing law is retained (through the

vorticity-streamfunction formulation) and the artificial intelligence acts as a corrector

for statistical fidelity. This observation holds promise for the development of closures
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Figure 4.6: A-posteriori results for the spatially-averaged kinetic energy spectra for
the Smagorinsky model for different values of their eddy-viscosity coefficients and
for different Reynolds numbers at t = 4. One can observe that the capture of lower-
wavenumber energy and scaling is heavily dependant on the value of these coefficients.
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Figure 4.7: A-posteriori results for the spatially-averaged kinetic energy spectra for
the Leith model for different values of their eddy-viscosity coefficients and for different
Reynolds numbers at t = 4. One can observe that the capture of lower-wavenumber
energy and scaling is heavily dependant on the value of these coefficients.
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Figure 4.8: A-posteriori results for 24 ensemble-averaged simulations for Re = 32000
(left) and Re = 64000 (right).

which are generalizable to multiple classes of flow without being restricted by initial

or boundary conditions. To test the premise of this hypothesis, we also display

ensemble-averaged kinetic energy spectra from multiple coarse-grained simulations at

Re = 32000 and at Re = 64000, utilizing a different set of random initial conditions

for each test case. In particular, we utilize 24 different tests for averaged spectra which

are displayed in Figure 4.8. We would like to emphasize here that the different initial

conditions correspond to the same initial energy spectrum in wavenumber space but

with random vorticity fields in Cartesian space. The performance of our proposed

framework is seen to be repeatable across different instances of random initial vorticity

fields sharing the same energy spectra. Details related to the generation of these

random initial conditions may be found in Maulik and San (2017c). In addition, we

also display spectra obtained from an a-posteriori deployment of our framework till

t = 6 for Re = 32000 and Re = 64000 , shown in Figure 4.9, which ensures that

the model has learned a sub-grid closure effectively and predicts the vorticity forcing

adequately in a temporal region that it has not been exposed to during training.

Figure 4.10 shows a qualitative assessment of the stabilization property of machine

learning framework where a significant reduction in noise can be visually ascertained

due its deployment. Coherent structures are retained successfully as against UNS
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Figure 4.9: The deployment of our framework till t = 6 for Re = 32000 (left) and
Re = 64000 (right) showing that a sub-grid model has been learned for utility beyond
the training region. We note that the training region is defined between t = 0 and
t = 4 alone.

results where high-wavenumber noise is seen to corrupt field realizations heavily. Fil-

tered DNS (FDNS) data obtained by Fourier cut-off filtering of vorticity data obtained

from DNS are also shown for the purpose of comparison. As discussed previously,

the stabilization behavior is observed for both Re = 32000 and Re = 64000 data.

We may thus conclude that the learned model has established an implicit sub-grid

model as a function of grid-resolved variables. We reiterate that the choice of the

eddy-viscosities is motivated by ensuring a fair comparison with the static Smagorin-

sky and Leith sub-grid models and studies are underway to increase complexity in

the mapping as well as input space.

4.6 A-priori and a-posteriori dichotomy

In the previous sections, we have outlined the performance of our proposed framework

according to the optimal model architecture chosen by a grid-search for the number

of hidden layers as well as the number of hidden-layer neurons. This a-priori hyper-

parameter selection is primarily devised on mean-squared-error minimization and is

susceptible to providing model architectures which are less resistant to over-fitting

and more prone to extrapolation. Our experience shows that an a-posteriori predic-
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Figure 4.10: A-posteriori results for the proposed framework showing vorticity fields
for Re = 32000 and Re = 64000 data using coarse-grained grids (top). We also
provide no-model simulations (middle) and filtered DNS contours (bottom) for the
purpose of comparison.
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tion (such as for this simple problem) must be embedded into the model selection

decision process to ensure an accurate learning of physics. We briefly summarize our

observations of the a-priori and a-posteriori dichotomy in the following.

4.6.1 Effect of eddy-viscosity inputs

By fixing our optimal set of hyper-parameters (i.e., a two-layer 50 neuron network),

we attempted to train a map using an input space without the choice of Smagorinsky

and Leith viscosity kernels. Therefore our inputs would simply be the 9-point stencils

for vorticity and streamfunction as shown in the mathematical expression given by

M : {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1,

ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1 ∈ R18 → {Π̃i,j} ∈ R1.

(4.13)

As shown in Figure 4.11, the modification of our input space had very little effect

on the training performance of our optimal network architecture. This would initially

seem to suggest that the Smagorinsky and Leith kernels were not augmenting learning

in any manner. However, our a-posteriori deployment of this model which mapped to

sub-grid quantities from the 18-dimensional input space displayed an unconstrained

behavior at the larger scales with the formation of non-physical large scale structures

(also shown in Figure 4.8). This strongly points towards an implicit regularization of

our model due to the selection of input dimensions with these kernels.

We undertook the same study for a 5-layer, 50 neuron ANN (one that was deemed

too complex by our grid-search) with results shown in Figure 4.12. Two conclu-

sions are apparent here - the utilization of these kernels in the learning process has

prevented a-priori reduction of training error at a much higher value and that the

deployment of both networks (i.e., with and without input viscosities) has led to a

constrained prediction of the k−3 spectral scaling. Large scale statistical predictions

remain unchanged and indeed, a better agreement with the DNS spectrum can be
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Figure 4.11: A-priori (left) and a-posteriori (right) effect of the utilization of eddy-
viscosity kernel inputs in training and deployment for a two-layer 50 neuron network
with a 9-point stencil. The presence of these kernels (intangible in a-priori error
minimization) leads to constrained statistical fidelity in a-posteriori deployment at
Re = 32000.

observed with the deeper network with the use of the kernels.

4.6.2 A-posteriori informed architecture selection

While a-priori hyper-parameter tuning is classically utilized for most machine-learning

deployments, the enforcement of physical realizability constraints (such as those given

by Equation 4.9) and the presence of numerical errors during deployment may of-

ten necessitate architectures which differ significantly during a-posteriori deployment.

This article demonstrates the fact that while constrained predictions are obtained by

our optimal two-layer network (obtained by a grid-search), the utilization of a deeper

network actually leads to more accurate predictions of the Kraichnan turbulence spec-

trum as shown in Figure 4.13. This despite the fact that the deeper network displays

a great mean-squared-error during the training phase (which was the root-cause of

it being deemed ineligible in the hyper-parameter tuning). Figure 4.12 thus tells us

that it is important to couple some form of a-posteriori analysis during model-form

selection before it is deemed optimal (physically or computationally) for deployment.

We note that both networks tested in this subsection utilized the Smagorinsky and
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Figure 4.12: A-priori (left) and a-posteriori (right) effect of the utilization of eddy-
vicsosity kernel inputs in training and deployment for a five-layer 50 neuron network
with a 9-point stencil. The presence of these kernels leads to higher training errors
but viable statistical fidelity in a-posteriori deployment at Re = 32000.

Leith eddy-viscosities in their input space.

4.6.3 Stencil selection

Another comparison is made when the input dimension is substantially reduced by

choosing a 5 point stencil (instead of the aforementioned 9 point stencil). In this

architecture, vorticity and streamfunction values are chosen only for the x and y

directions (i.e., ω̄i,j, ω̄i+1,j, ω̄i−1,j, ω̄i,j+1, ω̄i,j−1 for vorticity and similarly for stream-

function). The input eddy-viscosities given by the Smagorinsky and Leith kernels are

also provided to this reduced network architecture. Mathematically, this new map

may be expressed as

M : {ω̄i,j, ω̄i,j+1, ω̄i,j−1, ω̄i+1,j, ω̄i−1,j

ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, ψ̄i+1,j, ψ̄i−1,j, |S̄|i,j, |∇ω̄|i,j} ∈ R12 → {Π̃i,j} ∈ R1.

(4.14)

Figure 4.14 shows the performance of this setup in training and deployment where it

can once again be observed that a-posteriori analysis is imperative for determining a

map for the sub-grid terms. While training errors are more or less similar, the reduced

stencil fails to capture the non-linear relationship between the resolved and cut-off
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Figure 4.13: A-priori (left) and a-posteriori (right) effect of the number of hidden-
layers in the proposed framework. While the two-layered ANN with a 9-point stencil
leads to excellent a-priori results, the five-layered network predicts k−3 scaling more
accurately in deployment for an a-posteriori simulaion at Re = 32000.

scales with consequent results on the statistical fidelity of the lower wavenumbers.

We perform a similar study related to this effect of data-locality on a deeper network

given by 5 layers and 50 neurons to verify the effect of the deeper architecture on

constrained prediction. The results of this training and deployment are shown in

Figure 4.15 where it is observed that the increased depth of the ANN leads to a similar

performance with a smaller stencil size. This implies that optimal data-locality (in

terms of the choice of a stencil) leads to a reduced number of hidden layers. Again, the

a-priori mean-squared-error is not indicative of the quality of a-posteriori prediction.

The main take-away from this section thus becomes the fact that optimal archi-

tectures and maps for sub-grid predictions require a careful a-priori and a-posteriori

study for tractable computational problems (such as the Kraichnan turbulence case)

before they may be deployed for representative flows. The effect of realizability con-

straints and numerical errors often leads to unexpected a-posteriori performance and

some form of lightweight deployment must be utilized for confirming model feasibility.
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Figure 4.14: A-priori (left) and a-posteriori (right) effect of the stencil size in the
2-layer, 50 neuron framework for a Re = 32000 simulation. While the 5-point stencil
leads to similar a-priori training errors, an a-posteriori deployment at Re = 32000
reveals its limitations.
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Figure 4.15: A-priori (left) and a-posteriori (right) effect of the stencil size in the 5-
layer, 50 neuron framework for a Re = 32000 simulation. With deeper architectures,
the 5 and 9-point stencils show similar statistical performance
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4.7 Conclusions

In this investigation, a purely data-driven approach to closure modelling utilizing

artificial neural networks is detailed, implemented and analysed in both a-priori

and a-posteriori assessments for decaying two-dimensional turbulence. An exten-

sive hyper-parameter selection strategy is also performed prior to the selection of

an optimal network architecture in addition to explanations regarding the choice of

input space and truncation for numerical realizability. The motivation behind the

search of a model-free closure stems from the fact that most closures utilize empiri-

cal or phenomenological relationships to determine closure strength with associated

hazards of insufficient or more than adequate dissipation in a-posteriori utilizations.

To that end, our proposed framework utilizes an implicit map with inputs as grid-

resolved variables and eddy-viscosities to determine a dynamic closure strength. Our

optimal map is determined by training an artificial neural network with extremely

sub-sampled data obtained from high-fidelity direct numerical simulations of the de-

caying two-dimensional turbulence test case. Our inputs to the network are given by

sampling stencils of vorticity and streamfunction in addition to two kernels utilized in

the classical Smagorinsky and Leith models for eddy-viscosity computations. Based

on these inputs, the network predicts a temporally and spatially dynamic closure

term which is pre-processed for numerical stability before injection into the vorticity

equation as a potential source (or sink) of vorticity in the finer scales. Our statistical

studies show that the proposed framework is successful in imparting a dynamic dis-

sipation of kinetic energy to the decaying turbulence problem for accurate capture of

coherent structures and inertial range fidelity.

In addition, we also come to the conclusion that the effects of prediction trun-

cation (for numerical realizability) and numerical error during forward simulation

deployment necessitate the need for a-posteriori analyses when identifying optimal

architectures (such as the number of hidden layers and the input spaces). This con-
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clusion has significant implications for the modern era of physics-informed machine

learning for fluid dynamics applications where a-priori trained learning is constrained

by knowledge from first principles. Our conclusions point toward the need for cou-

pling a-posteriori knowledge during hyper-parameter optimization either passively

(as demonstrated in this article) or through the use of custom training objective

functions which embed physics in the form of regularization. Our study basically

proposes that data-driven spatio-temporally dynamic sub-grid models may be devel-

oped for tractable computational cases such as Kraichnan and Kolmogorov turbulence

through a combination of a-priori and a-posteriori study before they may be deployed

for practical flow problems such as those encountered in engineering or geophysical

flows. Studies are underway to extend these concepts to multiple flow classes in

pursuit of data-driven closures that may prove to be more universal.

While this article represents the successful application of a proof-of-concept, our

expectation is that further robust turbulence closures may be developed on the guide-

lines presented in this document, with the utilization of more grid-resolved quantities

such as flow invariants and physics-informed hyper-parameter optimization. In addi-

tion, network-embedded symmetry-considerations are also being explored as a future

enhancements for this research. Dataset pre-processing for outlier identification, not

utilized in this study, is also a potential avenue for improved a-posteriori performance

and more efficient hyper-parameter selection. Our ultimate goal is to determine maps

that may implicitly classify closure requirements according to inhomogeneities in a

computational domain (through exposure to different flow classes) that may then be

ported as predictive tools in multiscale phenomenon with complex initial and bound-

ary conditions. The results in this document indicate a promising first step in that

direction.
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4.8 Appendix

4.8.1 Hyper-parameter optimization

In this appendix, we detail the process of a-priori architecture selection before train-

ing and deployment. Our hidden layers have neurons which are activated by the

rectified-linear (ReLU) function. The choice of the ReLU activation was made for effi-

cient optimization of the network architecture by bypassing the problems of vanishing

gradients inherent in sigmoidal activation functions (Ling, Kurzawski and Templeton,

2016).

For the purpose of optimal network architecture selection, we utilize a grid-search

selection coupled with a 3-fold cross-validation implemented in the open-source li-

brary Scikit-learn. In essence, a parameter space given by a grid is coupled with

three trainings, tests and validations for each network through three partitions of

the total training data. We first undertake our aforementioned optimization for the

number of layers by utilizing a total of 1000 epochs for determining the optimal depth

of the network. Each network with a particular choice of the number of layers (rang-

ing between 1 to 8) is optimized three times using a 3-fold cross-validation strategy

and utilized for prediction on the test and validation partitions not used for weight

optimization. The three networks for each hyper-parameter are then assigned a mean

cost-function score which is used for selection of the final model depth. We observe

that a two-layer model outperforms other alternatives during this grid-search as shown

in Figure 4.16. We note that the number of neurons in this first grid-search is fixed at

50 although similar trends are recovered with varying specifications between 10 and

a 100. Our mean cost index is given by the following expression for each location on

the grid

Mean cost index =
1

K

K∑
i=1

∣∣∣∣∣∣Πtrue
K − Π̃K

∣∣∣∣∣∣
2

(4.15)
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where K refers to the training fold chosen for gradient calculation in the backpropa-

gation within the same dataset.

A second grid-search is performed with a fixed number of layers (i.e., two obtained

from the previous tuning) and with a varying number of neurons. The results of this

optimization are observed in Figure 4.16 which shows that an optimal number of neu-

rons of 50 suffice for this training. We note however, that the choice for the number

of neurons in the two-layer network does not affect the tuning score significantly. We

clarify here that the model optimization may have been carried out using a multi-

dimensional grid-search for the optimal hyper-parameters or through sampling in a

certain probability distribution space, however our approach was formulated out of

a desire to reduce offline training cost as much as possible. The final network was

then selected for a longer duration of training (5000 epochs) till the learning rate is

minimal as shown in Figure 4.17. Details of our network optimization and dataset

generation are provided in the next section.

4.8.2 Network training

For the purpose of generating an optimal map discussed in the previous section, we

utilize a supervised learning with sets of labeled inputs and outputs obtained from

direct numerical simulation data (DNS) for two-dimensional turbulence (San and Sta-

ples, 2012; Maulik and San, 2017c). Our grid-resolved variables (which we remind the

reader, are denoted as overbarred quantities) are generated by a Fourier cut-off filter

so as to truncate the fully-resolved DNS fields (obtained at 20482 degrees-of-freedom)

to coarse-grained grid level (i.e. given by 2562 degrees-of-freedom). Therefore, this

procedure is utilized to generate input-output pairs for the process of training our

ANN map. We also emphasize on the fact that, while the DNS data generated multi-

ple time snapshots of flow evolution, data was harvested from times t = 0, 1, 2, 3 and

4 for the purpose of training and validation. This represents a stringent sub-sampling
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Figure 4.16: Quantification of hyper-parameter optimization shown for number of
layers (top) and number of neurons (bottom). An optimal network architecture of
two-layers and 50 neurons is chosen for our study.
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of the total available data for map optimization. To quantify this sub-sampling, we

note that we had potential access to 40000 space-time snapshots of DNS data out

of which only 5 were chosen for training and validation data generation (0.0125 %

of total data). We also note that the Reynolds number chosen for generating the

training and validation data sets is given by Re = 32000 alone.

Two-thirds of the total dataset generated for optimization was utilized for training

and the rest was utilized for validation assessment. Here, training refers to the use

of data for loss calculation (which in this study is a classical mean-squared-error)

and backpropagation for parameter update. Validation was utilized to record the

performance of the trained network on data it was not exposed to during training.

Similar behavior in training and validation loss would imply a well-formulated learning

problem. The final ANN (obtained post-training) would be selected according to the

best validation loss after a desired number of iterations which for this study was fixed

at 5000. We also note that the error-minimization in the training of the ANN utilized

the Adam optimizer (Kingma and Ba, 2014) implemented in the open-source ANN

training platform TensorFlow. Figure 4.17 shows the learning rate of the proposed

framework with very similar behavior between training and validation loss implying

a successfully optimized map. We remark that while the network may have learned

the map from the data it has been provided for training and validation, testing would

require an a-posteriori examination as detailed in the following section.
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Figure 4.17: Learning rate of the proposed optimal model architecture. Note how
training and validation loss are correlated closely for this learning problem.
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CHAPTER V

Eddy-viscosity predictions through the machine learning of sub-grid

stresses for the large-eddy-simulation of turbulence

5.1 Introduction

In recent times, there has been a widespread interest in the potential of data-driven

techniques for potentially improving turbulence modeling in Reynolds-averaged Navier-

Stokes and large eddy simulations (LES) (Duraisamy et al., 2019). Most studies are

oriented around the specification of a turbulence closure by leveraging information

from high-fidelity experimental or computational data sets. Some notable examples

of closure modeling using machine learning techniques include (King et al., 2016)

where a priori optimization was utilized to minimize the L2-error between true and

modeled sub-grid quantities in a least-squares sense using a parameter-free map uti-

lizing a Volterra series. The study in (Vollant et al., 2017) has utilized artificial neural

networks (ANN) for computing sub-grid quantities from filtered direct numerical sim-

ulation (DNS) data (in a manner similar to that described in the following article).

In the study described in (Beck et al., 2018), a variety of neural network architectures

such as convolutional and recurrent neural networks are studied for predicting closure

terms for decaying homogeneous isotropic turbulence.

In this note, we outline preliminary results for a data-driven turbulence model

devised to predict closure terms for the large eddy simulation (LES) of decaying

This chapter is adapted from Maulik et al., under review for publication as a short note at AIAA
J.
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isotropic turbulence. Our data-driven framework is given by a multi-layered artificial

neural network devised to predict outputs according to a localized query of grid-

resolved quantities. Our outputs are given by the components of the sub-grid stress

tensor from which an isotropic data-driven eddy-viscosity is calculated using a least-

squares averaging and truncation for stability (the latter inspired by Beck et al.

(2018)). Training data for our ANN is generated by employing a spectrally-sharp filter

on Taylor-Green vortex (TGV) DNS data at Re = 1600. Our model is assessed by a

deployment at Reynolds number (Re) 1600 and 5000, the latter case proving as a test

for generalizability. Note, however, that the use of spectrally sharp filtering requires

a-posteriori postprocessing which we perform through a least-squares projection and

truncation to obtain an averaged eddy-viscosity model.

The proposed formulation is therefore aligned with the philosophy of optimal

LES which attempts to predict defects from direct numerical simulation (DNS) data

(Moser et al., 2009) and results in a spatio-temporally dynamic closure which predicts

the spatially-averaged kinetic energy spectra and energy-dissipation rates with good

accuracy.

5.2 Data-driven closure modeling

As mentioned previously, our machine learning philosophy of choice is a deep artificial

neural network that estimates a map between our flow resolved variables and the sub-

grid tensor. Our framework, also known as a multilayered perceptron, consists of a

set of linear and non-linear mathematical transformations of a vector in input space

to a result in output space. The purpose of training this network lies in estimating

the nature of these transformations in an offline fashion for posterior deployment.

As such these transformations manifest themselves in several stages (or layers) of

matrix operations. Each layer is an intermediate vector in this multi-step transforma-

tion and is subjected to another local transformation called a biasing and activation
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before the next matrix operation is performed. Biases are a constant vector for each

substage or layer which are added to the incident vector on its way to a transformed

output. In this study, we utilize a rectified linear activation for imparting non-linearity

to the transformation between inputs and outputs. Note that each component of an

intermediate vector corresponds to a unit cell called a neuron. At the final (or output)

layer, a biasing and activation leads to the desired output vector which may serve

the purpose of classification or regression. The learning in this study is supervised

implying labeled benchmark output data for the purpose of characterizing model ac-

curacy. Mathematically, if our input vector p resides in a P dimensional space and

our desired output q resides in a Q dimensional space, our DNN is used to establish

a map M as follows:

M : {p1, p2, . . . , pP} ∈ RP → {q1, q2, . . . , qQ} ∈ RQ. (5.1)

This map M is stored in the form of weight matrices and bias vectors which operate

on the input vector. Note that it is generally accepted that multilayered perceptrons

may be considered universal function approximators for appropriately chosen activa-

tion functions (Hornik et al., 1989). The map for our proposed model may thus be

summarized as

M1 : {ūi,j,k, ūi+1,j,k, . . . , ūi−1,j−1,k−1, v̄i,j,k, v̄i+1,j,k, . . . , v̄i−1,j−1,k−1,

w̄i,j,k, w̄i+1,j,k, . . . , w̄i−1,j−1,k−1} ∈ R81 → {τANN11 , τANN12 , . . . , τANN33 } ∈ R6,

(5.2)

where (u, v, w) are the coarse-grained velocity components in three-dimensions, i, j, k

are spatial indices on a discrete grid and the components of τANN are a data-driven

approximation to the true sub-grid scale tensor given by

τ sgsij = ūiūj − uiuj. (5.3)
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and where a is a coarse-grained projection of a field variable a and i, j now correspond

to tensor indices. We note that our training and testing data (for map optimization

and assessment) is generated by assuming that the coarse-grained projection for any

variable may be obtained by a spectral cut-off filter and thus precludes errors due to

discretization based filtering. One may also utilize a Gaussian type filtering for gen-

erating this data. We note that the proposed mapping corresponds to the utilization

of a box stencil (i.e. the 27 nearest neighbor grid points in three dimensions) around

the point of prediction with each grid point contributing three quantities of interest

given by their flow components for a total of 81 inputs.

In terms of the data utilized for network optimization, we utilize primitive vari-

ables from DNS snapshots of the TGV problem at t = 5 and t = 10 representing a

transitional and fully turbulent realization of the unsteady physics of this test-case.

This data set was generated from a full-order forward simulation of the TGV problem

at Re = 1600 and at N3 = 5123 and the coarse-grained quantities were generated

by a degree-of-freedom reduction in the wavenumber domain using a spectrally-sharp

cut-off filter. This lets us compute coarse-grid resolved quantities such as u and the

sub-grid tensor τ at the reduced resolution of N3 = 643. Our snapshots at time

t = 5 and t = 10 display a Kolmogorov length scale of η ≈ 0.0619 and η ≈ 0.048

respectively. A coarse grained resolution of N3 = 643 corresponds to a grid size of

approximately 0.1 which shows that a sub-grid closure is necessary. The Taylor mi-

croscale based Reynolds number for these snapshots correspond to Reλ ≈ 194.93 and

Reλ ≈ 67.40 respectively as computed from the DNS.

The ANN is trained for optimal predictions by monitoring mean-squared-error

values of training and validation data sets for total of 500 epochs (or total sweeps

of the data) after which assessments of performance are carried out. Our network

architecture is specified by five hidden layers and 100 neurons in each hidden layer.

The choice of this architecture was through investigation of optimal combinations to
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get Pearson correlation coefficient values of R2 > 0.75 for the training loss (Gamahara

and Hattori, 2017).

5.3 Stable projection of data-driven predictions

Conventional turbulence models utilize algebraic or differential equation based speci-

fications for an eddy-viscosity (νe) where we shall attempt to approximate these con-

tributions through our trained ANN during a-posteriori simulations. However, these

predictions require some postprocessing for stability due to the inherent stochastic

nature of the ANN as well as the assumptions on filter specification during a-priori

LES data generation from DNS. In addition, a-posteriori deployments must be ro-

bust to numerical errors during flow evolution for which it is necessary to project our

predictions to a stable space. We project the outputs of our ANN to a stable space

for forward deployments via the combination of a truncated least-squares ideology as

well as the essence of the eddy-viscosity hypothesis. This is described in the following

paragraph. Note that the nearly imcompressible case considered here allows us to fix

our turbulent Prandtl number estimation for the sub-grid heat flux. We introduce

the following notation to simplify our future derivations with

Πij =
∂ūi
∂xj

+
∂ūj
∂xi
− 2

3

∂ūk
∂xk

δij (5.4)

being linear terms based on the grid-resolved strain rate and where δij is the Kronecker

delta. Also, the grid-resolved terms utilized to compute Πij are individially calculated

at cell faces of our finite volume formulation. We now introduce a truncated-least-

squares procedure to obtain a stable data-driven eddy viscosity which is predicted

by our trained network by way of approximations to τmn. We first formulate a least-

133



squares error minimization problem given by the following objective function

J(νe) =
3∑
i=1

3∑
j=1

(τANNij − νeΠij)
2. (5.5)

where there are only six summation terms due to the symmetry of τANNij and Πij. A

least-squares minimization based calculation of eddy-viscosity gives us

νe =
3∑
i=1

3∑
j=1

τANNij Πij

ΠijΠij

. (5.6)

This predicted value of an effective eddy viscosity νe is truncated between [0, 10
Re

] in a

manner similar to that proposed in (Beck et al., 2018) for viscous stability of the pro-

posed framework and to ensure consistency with the second-law of thermodynamics.

We also note that a purely positive eddy-viscosity ensures time irreversibility which

is a desired characteristic of linear eddy-viscosity models Carati et al. (2001). The

culmination of this framework to an averaged linear eddy-viscosity model also implies

that time, pressure and generalized Galilean invariance is preserved. However, the

data-driven calculation of the eddy-viscosity leads to a loss in reflectional and rota-

tional invariance Silvis et al. (2017). This deployment provides stable and accurate

predictions for the sub-grid source terms.

5.4 Results

5.4.1 A-priori testing

In this sub-section, we assess the statistical fidelity of a-priori predictions from our

trained ANN for snapshots outside the training data set. Statistical assessments

are represented in the form of probability density functions (PDFs) of the six true

and predicted components (the latter denoted ML) of the sub-grid tensor (i.e., τ sgs

and τANN respectively). Since our tensor considers the deviatoric contribution of
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the sub-grid term, all PDFs are centered at a mean value of zero. In general, it is

observed that the predictions are sufficiently well correlated with the truth as shown

in Fig. 5.1 where the trained map is deployed for TGV DNS data at Re = 5000

and t = 15 which is utilized as a test data set for out of training range prediction

assessment. We remind the reader that the snapshot data used for training was

for TGV DNS data at Re = 1600 and at t = 5 and t = 10. For the purpose

of comparison we also display the performance of the Dynamic Smagorinsky (DS)

closure in this a-priori assessment. In terms of L2-norm comparisons, the machine

learning framework provided errors of [10.38, 7.06, 6.82, 10.44, 6.77, 10.10] whereas

the dynamic Smagorinsky technique provided [10.77, 7.75, 7.23, 10.77, 7.23, 10.32]

for the tensor components [τ11, τ12, τ13, τ22, τ23, τ33].

5.4.2 A-posteriori testing

The ultimate test of any data-driven closure model is in an a-posteriori framework

with subsequent assessment for the said model’s ability to preserve coherent structures

and scaling laws. While the authors have undertaken a-priori studies with promising

results for data-driven ideologies for LES (Maulik and San, 2017a), the results of the

following section are promising in that they represent a sub-grid model computation in

temporally and spatially dynamic fashion. This test setup is particulary challenging

due to the neglected effects of numerics in the a-priori training and assessment. In the

following we utilize angle-averaged kinetic energy spectra to assess the ability of the

proposed framework to preserve integral and inertial range statistics. In addition, we

also track the averaged kinetic energy dissipation rate for our forward deployments

(a classical measure of the quality of a TGV computation). All our assessments are

compared with no-model simulations and the dynamic Smagorinsky model (Germano

et al., 1991) for the TGV test-case which is a prototype problem which models the

transition to and decay of isotropic, homogeneous and turbulent periodic vortical
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Figure 5.1: A-priori statistical recovery of sub-grid stress distributions at t = 15 for
Re = 5000. Note that this data is ‘out-of-range’ since our sampling was done for
t = 5 and t = 10 alone at a lower Reynolds number of 1600.
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Figure 5.2: A-posteriori testing of our proposed framework (ML) with energy dissi-
pation rate predictions (left) and spatially averaged kinetic energy spectra (right) for
Re = 5000 at N3 = 643 degrees of freedom. Note that the network was optimized for
predictions at Re = 1600 alone. The dynamic Smagorinsky (DS) model is also shown
for comparison.

flows. Details related to the numerics of these assessments may be found in Rahman

et al. (2018).

Figure (5.2) shows an a-posteriori deployment of the proposed idea for a Re = 5000

simulation of the TGV test case at N3 = 643 degrees of freedom. We have also shown

results from our high fidelity DNS runs (at N3 = 5123 degrees of freedom) as well

as the performance of the dynamic Smagorinsky model. One can observe that the

proposed framework is capable of recovering the energy dissipation rate trends of the

dynamic Smagorinsky approach. In addition it is also seen that the proposed model

captures the k−5/3 scaling expected in the TGV test case adequately in comparison

to the no-model simulation which shows some high wavenumber aliasing error. We

remind the reader that the proposed approach utilizes no test-filtering strategy for

calculation of a dynamic Smagorinsky coefficient and calculates an equation-free dy-

namic eddy viscosity spatio-temporally. We note that the filter to Kolmogorov length

scale ratio for this unsteady problem peaks at approximately 4.0 and that the network

is not exposed to Re = 5000 data during map optimization.

Figure (5.3) shows the deployment of our trained ANN and least-squares pro-
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Figure 5.3: A-posteriori testing of our proposed framework with energy dissipation
rate predictions (left) and spatially averaged kinetic energy spectra (right) for Re =
5000. Note that the network was optimized for predictions at N3 = 643 degrees of
freedom while it is deployed here for N3 = 323. The dynamic Smagorinsky model is
also shown for comparison.

jection method for a further coarsened grid of N3 = 323 where it is seen that the

predictive nature of the framework is superior to the no-model simulation by way of

assessing the energy spectra. In addition, the proposed framework also provides more

accurate estimates for the energy dissipation rate and the kinetic energy spectra than

the DS approach which proves to be slightly more dissipative. However, it is seen to

be more stable than the no-model results which show considerable noise accumula-

tion at grid cut-off wavenumbers. The filter to Kolmogorov length scale ratio for this

test-case peaks at approximately 8.0.

5.5 Conclusions

The primary focus of this investigation is to develop a data-driven strategy to learn

and stabilize the non-linear sub-grid scale source terms required for closing the coarse-

grained Navier-Stokes equations to be utilized in an LES. Our framework relies on the

use of an ANN to map the highly non-linear relationship between the inputs, given

by the resolved flow variables and the outputs given by the sub-grid stresses. Our

supervised learning procedure requires labeled data which is generated in an a-priori
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fashion through low-pass filtering DNS snapshots with a spectrally sharp cut-off filter

to reduce degrees of freedom. Our framework is trained, by way of a mean-squared-

error loss function on just two snapshots of the artificially generated coarse-grained

data obtained from the full-order simulation fields for the Taylor-Green vortex test

case at t = 5 and t = 10. Our framework is thus able to recover a spatio-temporally

dynamic closure for decaying isotropic turbulence.

Our model is tested in both a-priori and a-posteriori assessments for grid resolu-

tions and Re values which it has not been exposed to during learning. This validates

the generalizability and robustness of the learning for unsteady deployment. Stability

in a-posteriori is ensured through an intermediate truncated least-squares-projection

to predict an effective eddy-viscosity. For this purpose we follow the recommenda-

tions outlined in (Beck et al., 2018) which ensures stability of the inherently stochastic

nature of the predictions. In particular, our a-posteriori deployment is performed for

a filter length scale that is up to 8 times that of the Kolmogorov length scale. It

is observed that the framework recovers a performance similar to the classical dy-

namic Smagorinsky turbulence model. This is a promising development, since the

proposed framework requires no test-filtering strategy and no functional form for the

eddy-viscosity.

Our studies in this article have shown that ANNs may be utilized for parameter

free turbulence models through the specification of appropriate constraining strate-

gies in a-posteriori. Although a-priori optimal architecture selection in the form of

optimal layers or neurons remains an open question, we are provided with promising

results from the point of view of a long term goal for adaptive closures that generalize

over various sub-grid physics. The future development of the ideas in this note rely

on the inclusion of reflectional and rotational invariance properties and symmetry

considerations into sub-grid predictions which may potentially obviate the need for

truncation (for instance through tensor-basis networks as shown in Ling, Kurzawski

139



and Templeton (2016)). Our goal is to utilize the learnings from this preliminary

study as a benchmark for further improvement in the accuracy and understanding of

machine learning based sub-grid modeling of turbulence.
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CHAPTER VI

Sub-grid scale model classification and blending through deep learning

6.1 Abstract

In this article we detail the use of machine learning for spatiotemporally dynamic tur-

bulence model classification and hybridization for the large eddy simulations (LES)

of turbulence. Our predictive framework is devised around the determination of local

conditional probabilities for turbulence models that have varying underlying hypothe-

ses. As a first deployment of this learning, we classify a point on our computational

grid as that which requires the functional hypothesis, the structural hypothesis or no

modeling at all. This ensures that the appropriate model is specified from a-priori

knowledge and an efficient balance of model characteristics is obtained in a particular

flow computation. In addition, we also utilize the conditional probability predictions

of the same machine learning to blend turbulence models for another hybrid closure.

Our test-case for the demonstration of this concept is given by Kraichnan turbulence

which exhibits a strong interplay of enstrophy and energy cascades in the wave num-

ber domain. Our results indicate that the proposed methods lead to robust and stable

closure and may potentially be used to combine the strengths of various models for

complex flow phenomena prediction.

This chapter is adapted from Maulik et al., under review for publication in J. Fluid Mech.
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6.2 Introduction

Turbulence is an active area of research due to its significant impact on a diverse set of

challenges such as those pertaining to the aerospace and geophysical communities. In

recent decades, computational fluid dynamics (CFD) has proven to be useful for low-

cost realizations of flow phenomena for critical decision making processes. However,

CFD is still fairly limited in terms of accuracy due to the exceptional computational

expense involved in high-fidelity simulations of turbulence. ‘True’ numerical exper-

iments require the use of a direct numerical simulation (DNS) of the Navier-Stokes

equations. DNS is only possible if a discretized domain can resolve all possible fre-

quencies in a flow and is therefore out of reach of the vast majority of engineering

and geophysical applications for the foreseeable future. Large eddy simulations (LES)

(Sagaut, 2006) have proven to be a promising strategy for resolving a greater num-

ber of scales in a flow but require the specification of a model which represents the

interactions of the higher frequencies with the mean flow. This sub-grid scale (SGS)

model, also known as a closure, is usually specified in the form of an algebraic or

differential equation and is generally flow category specific (Vreman, 2004). This im-

poses a caveat on the applicability of a SGS model if no a-priori information of the

flow category is known. As such, the basic premise of LES is extendable to many

partial differential equation systems with quadratic non-linearities. In this paper, we

explore the utilization of machine learning for dynamically inferring regions where a

particular turbulence modeling hypothesis is applicable with the goal of improving

predictive capabilities of turbulence dynamics for a wide range of problems.

The multi-scale nature of turbulence requires the use multiple modeling approx-

imations for the higher wavenumbers which remain unsupported by computational

degrees of freedom (a case for most flows of any practical interest). The procedure of

modeling these smaller scales is often denoted closure due to insufficient knowledge

about higher-order wavenumber interactions with the coarse-grained system (Berselli
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et al., 2006) and remains vital for the accurate computation of many applications

(Hickel et al., 2014; Yu et al., 2016). From an LES point of view, the closure problem

may be considered to be dominated by commutative errors in the calculation of the

non-linear term as well as the defects associated with commutative errors stemming

from the dynamic term. In this study, we focus on the former.

Explicit LES argues for the utilization of sub-grid models specified as algebraic

or differential equations for the unresolved scales. These are built on an intuitive

reasoning of how the losses of coarse-graining the Navier-Stokes equations may be

incorporated into an LES deployment. Some of the most notable sub-grid closure

strategies are those given by the linear eddy-viscosity hypothesis, which models the

sub-grid stress tensor through the Bousinessq approximation. Within the context

of the Navier-Stokes equations, it is generally accepted that the vorticity dominated

smaller scales are dissipative (Kolmogorov, 1941b) and therefore, most turbulence

models seek to specify a sub-grid dissipation (Frisch, 1995). Many functional sub-grid

models can be traced back to Smagorinsky (1963), where an effective eddy-viscosity

was determined by an a-priori specified mixing length and a k−5/3 scaling recovery for

the kinetic energy content in the wavenumber domain. Similar hypotheses have also

been used for two-dimensional turbulence (often utilized as a test-bed for geophysical

scenarios, for instance see Pearson et al. (2017); Pearson and Fox-Kemper (2018)), for

approximating the k−3 cascade and generally have their roots in dimensional analysis

related to the cascade of enstrophy (Leith, 1968). These models may also be classified

as functional due to the phenomenological nature of their deployment and comprise

the bulk of explicit LES turbulence models used in practical deployments. Explicit

LES closures may also be specified through the specification of a low-pass spatial filter

to account for the unresolved scales (Bardina et al., 1980; Stolz and Adams, 1999;

Layton and Lewandowski, 2003; Mathew et al., 2003; San and Vedula, 2018) where

phenomenology is bypassed but ansatz are provided for the bulk dissipative nature
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of the smaller scales through the control of a characteristic filter-width. In either

scenario, (i.e., whether structural or functional), the choice of the phenomenology

(or dissipation control parameter) plays a key role in the successful calculation of

accurate a-posteriori statistics.

The past few years have seen a rapid increase in the use of machine learning for var-

ious scientificand engineering applications. For turbulence, some widely used strate-

gies for prediction and inference include symbolic regression such as in Weatheritt

and Sandberg (2016, 2017a,b), where functional model-forms for Reynolds-averaged

Navier-Stokes (RANS) deployments were generated through evolutionary optimiza-

tion against high-fidelity data. Other techniques incorporating Bayesian ideologies

have also been used, for instance in Xiao et al. (2016) where an iterative ensemble

Kalman method was used to assimilate prior data for quantifying model form uncer-

tainty in RANS models. In Wang, Wu and Xiao (2017); Wang, Wu, Ling, Iaccarino

and Xiao (2017) and Wu et al. (2018a), random-forest regressors were utilized for

RANS turbulence-modeling given direct numerical simulation (DNS) data. In Singh

and Duraisamy (2016) and Singh et al. (2017), an ANN was utilized to predict a

non-dimensional correction factor in the Spalart-Allmaras turbulence model through

a field-inversion process using experimental data. Bypassing functional formulations

of a turbulence model was also studied from the RANS point of view by Tracey et al.

(2015). Ling and Templeton (2015) utilized support vector machines, decision trees

and random forest regressors for identifying regions of high RANS uncertainty. A

deep-learning framework where Reynolds-stresses would be predicted in an invari-

ant subspace was developed by Ling, Kurzawski and Templeton (2016). Machine

learning of invariance properties has also been discussed in the context of turbulence

modeling by Ling, Jones and Templeton (2016). The reader is directed to a recent

review by Duraisamy et al. (2019), for an excellent review of turbulence modeling

using data-driven ideas.
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As shown above, the use of data-driven ideologies and in particular artificial neu-

ral networks (ANNs) has generated significant interest in the turbulence modeling

community for addressing long-standing challenges (also see Sotgiu et al. (2018); Zhu

et al. (2019); Zhang et al. (2019) for recent examples). A multilayered ANN may

be optimally trained to approximate any non-linear function (Hornik et al., 1989)

and the large data sets involved in turbulence research couple with ever-improving

computing capabilities has also motivated the study of ANN based learning. Within

the context of LES (and associated with the scope of this paper) there are several

investigations into sub-grid modeling using data-driven techniques. In an early study

of the feasibility of using learning from DNS, Sarghini et al. (2003) deployed ANNs

for estimating Smagorinsky model-form coefficients within a mixed sub-grid model

for a turbulent channel flow. ANNs were also used for wall-modeling by Milano and

Koumoutsakos (2002) where it was used to reconstruct the near wall field and com-

pared to standard proper-orthogonal-decomposition techniques. An alternative to

ANNs for sub-grid predictions was proposed by King et al. (2016) where a-priori op-

timization was utilized to minimize the L2-error between true and modeled sub-grid

quantities using a parameter-free Volterra series. Maulik and San (2017a) utilized

an extreme-learning-machine (a variant of a single-layered ANN) to obtain maps be-

tween low-pass spatially filtered and deconvolved variables in an a-priori sense. This

had implications for the use of ANNs for turbulence modeling without model-form

specification. A more in-depth investigation was recently undertaken by Fukami et al.

(2018) where convolutional ANNs were utilized for reconstructing from downsampled

snapshots of turbulence. Maulik et al. (2018) also deployed a data-driven convo-

lutional and deconvolutional operation to obtain closure terms for two-dimensional

turbulence. Gamahara and Hattori (2017) utilized ANNs for identifying correlations

with grid-resolved quantities for an indirect method of model-form identification in

turbulent channel flow. The study by Vollant et al. (2017) utilized ANNs in conjuc-
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tion with optimal estimator theory to obtain functional forms for sub-grid stresses.

In Beck et al. (2018), a variety of neural network architectures such as convolutional

and recurrent neural networks are studied for predicting closure terms for decaying

homogeneous isotropic turbulence. A least-squares based truncation is specified for

stable deployments of their model-free closures. Model-free turbulence closures are

also specified by Maulik et al. (2018, 2019) and Wang et al. (2018), where sub-grid

scale stresses are learned directly from DNS data and deployed in a-posteriori assess-

ments. King et al. (2018) studied generative-adversarial networks and the LAT-NET

Hennigh (2017) for a-priori recovery of statistics such as the intermittency of turbulent

fluctuations and spectral scaling.

While a large majority of the LES-based frameworks presented above utilize a

least-squares error minimization technique for constructing maps to sub-grid stresses

directly for theoretically optimal LES (Langford and Moser, 1999; Moser et al., 2009;

LaBryer et al., 2015), this work is novel in that it utilizes sub-grid statistics (pre-

computed from DNS data) to train a classifier. Our trained intelligence utilizes the

most appropriate turbulence modeling modelling hypothesis (i.e., either structural or

functional) from a-priori experience to close the LES governing equations. It is also

deployed to blend turbulence models linearly at each point during flow evolution for a

novel hybrid closure. In this manner, we are able to co-deploy models having funda-

mentally different underlying hypothesis for turbulence parameterizations in a stable

manner. This is similar to the study employed in Ling and Kurzawski (2017) where

machine learning is utilized for adaptive error corrections in RANS deployments. In

the rest of this article, we discuss the governing equations of decaying Kraichnan tur-

bulence, introduce our machine learning architecture and its optimization and detail

its a-priori and a-posteriori performance through statistical assessments.
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6.3 Governing equations

We proceed by outlining our Kraichnan turbulence test-case which (alongwith quasi-

geostrophic turbulence) is an important prototype for geophysical flow-phenomenon

with high aspect ratios and for which turbulence model research remains highly active

(Pearson et al., 2017). The governing equations of motion for Kraichnan turbulence

are given by the two-dimensional Navier-Stokes equations in a periodic domain. The

non-dimensionalized version of these equations may be expressed in the vorticity (ω)

and stream function (ψ) formulation as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω,

x, y ∈ [0, 2π], t ∈ [0, 4],

(6.1)

where we define the Jacobian (or the nonlinear term as)

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (6.2)

and the conservation of mass is enforced by

∇2ψ = −ω. (6.3)

A measure of multi-scale behavior in this system is given by the Reynolds number

(Re). A high value of Re combined with a coarse-grid projection of these equations

results in insufficient support for the finest structures in the flow evolution, leading

to noise accumulation at grid cut-off and potential floating point overflow of the nu-

merical evolution of this problem. A sufficiently coarse-grained representation of the
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governing equations introduced previously are given by the LES governing equations

∂ω̄

∂t
+ J(ω̄, ψ̄) =

1

Re
∇2ω̄ + Π,

∇2ψ̄ = −ω̄,
(6.4)

where Π may be assumed to be the perfect closure given by

Π = J(ω̄, ψ̄)− J(ω, ψ). (6.5)

When adequately simulated, the Kraichnan turbulence test cases results in the clas-

sical k−3 scaling of the energy spectra (Kraichnan, 1967). In practice, this perfect

estimation of loss is never available in a numerical deployment and must be estimated

by either an algebraic or differential equation. We focus on two competing ideologies

for estimating closure. The first is given by the functional hypothesis and may be

expressed as

Π = νe∇2ω̄ (6.6)

where the Smagorinsky approximation to the eddy-viscosity νe is given by

νe = (Csδ)
2|S̄|,

|S̄| =
√

4(
∂2ψ̄

∂x∂y
)2 + (

∂2ψ̄

∂x2
− ∂2ψ̄

∂y2
)2.

(6.7)

A successful application of this closure necessitates a dynamic calculation of the

Smagorinsky coefficient Cs that requires the specification of a test-filter and a spatial-

averaging for stabilized deployment. This approach is the well-known dynamic Smagorin-

sky (DS) closure (Germano et al., 1991) and its two-dimensional abstraction for

Kraichnan turbulence has been presented by San (2014).

A competing ideology is given by the structural (or scale-similarity) hypothesis
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which assumes that the LES equations are projections of the Navier-Stokes equations

to a smoother space where an inverse-filtering operator may be utilized to recover the

finer scales that are lost. Mathematically,

Π = J(ω̄, ψ̄)− ˜J(ω∗, ψ∗) (6.8)

where ω∗ and ψ∗ are approximately deconvolved variables obtained through an inverse-

filtering procedure and a Gaussian-type filter kernel (given by the G(a) = ã) is an

approximation of the projection to the LES space. However, these techniques are

limited due to the underlying assumption of isomorphism between the LES and the

Navier-Stokes equations (Germano, 2015). In practice, this implies that structural

hypotheses are appropriate only if finer structures are sufficiently well-resolved on a

particular grid. As such, this diminishes their benefit for practical flows where grid

cut-off wave numbers are generally much smaller than the largest wave number in the

flow. The breakdown of structural closures manifests itself in the form of stability is-

sues. For this reason, many successful closure deployments utilize linear combinations

of structural and functional models (Habisreutinger et al., 2007). In this work, we

implement approximate-deconvolution (AD) (Stolz and Adams, 1999) which utilizes

an iterative application of the trapezoidal filter kernel for inversion of filtered grid-

quantities and utilize three iterative resubstitutions to deconvolve our grid-resolved

variables.

6.4 Machine learning

We now turn to procedure of utilizing DNS data for learning when to switch between

one of three closure scenarios. Of these three options, two are given by the choice of

the functional hypothesis and AD. The third option is that of a no-model scenario

where our learning determines that closure-modeling is unnecessary. The third sce-
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Figure 6.1: Visualization of the effect of Fourier cut-off filtering with DNS (left) and
corresponding FDNS (right).

nario is retained since there is a possibility for localized areas in a flow resolution to

have adequate grid-support so that the contributions of the sub-grid scale become

negligible. This switching between scenarios is spatio-temporally dynamic. Before

proceeding, we note that the functional deployment eschews the dynamic procedure

and simply sets a Cs = 1.0 for the calculation of the eddy-viscosity as utilized in

the standard Smagorinsky model (Smagorinsky, 1963) as is common in geophysi-

cal scenarios (Cushman-Roisin and Beckers, 2011). This ensures that the proposed

framework remains computationally tractable, easily interpretable and deployable.

We proceed by outlining our learning strategy through the utilization of DNS data.

Five snapshots of DNS data at Re = 32000 and at 20482 degrees of freedom (from

40000 available snapshots) are utilized to compute the grid-filtered variables (herein

denoted by FDNS) at 2562 degrees of freedom through the application of a spectral

cut-off filter. Perfect closure values (Π) are then obtained (the reader is directed to

(Maulik et al., 2019) for details related to the calculation of these quantities). Figure

6.1 visually quantifies the effect of the spectral domain filtering where the FDNS of

a snapshot of vorticity is shown. We then introduce the a-priori eddy-viscosity given

150



by

νae =
Π

∇2ω̄
(6.9)

where all the terms on the right-hand side of the above equation are available through

calculation from the DNS snapshots. The a-priori eddy viscosity is centered at a

value of zero (corresponding to a region where closure modeling is unnecessary) and

has tails in the negative and positive directions (a hallmark of isotropic turbulence).

A core component of the hypothesis in this work stems from the fact that struc-

tural hypotheses are not limited to positive eddy-viscosity predictions alone. The

reader may note that models utilizing the functional hypothesis always lead to posi-

tive eddy-viscosities. The a-priori eddy viscosities calculated from the DNS data are

then projected onto a Gaussian distribution where values lying at a distance of 1%

of the standard-deviation from the mean (of zero) are labeled as those requiring no

closure (due to the low strength of the a-priori eddy-viscosity). Values lying beyond

this range are labeled as functional or structural, depending on if they are positive

or negative, respectively. This information is encoded in one-hot labeling for a clas-

sification deployment and a corresponding schematic for this hypothesis segregation

is shown in Figure 6.2. It is observed that the a large portion of the available data

lies within the first standard deviation of the mean eddy-viscosity. This leads to the

potential of turbulence modeling classification being considered from outlier detec-

tion point-of-view. A factor which motivates the choice of the Gaussian distribution

is the nature of Kraichnan turbulence (which is isotropic in nature with Gaussian

statistics). However, we note that machine learning algorithms are also capable of

classifying data belonging to complex distributions and that this hypothesis segrega-

tion may be tuned for better accuracy. Also, the choice of the 1% hyper-parameter

is also motivated by observing a-posteriori training accuracies where it is noticed

that a relatively simple architecture (mentioned next) is efficiently able to discern
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the varying hypothesis. Values greater than 1% for model delineation led to reduced

learning accuracies indicating that a physical delineation potentially exists in this

projection and categorization. Further study for adding complexity to the hypothesis

segregation is necessary.

Each label for the a-priori eddy-viscosity is also associated with an input kernel

of grid-resolved quantities. This kernel is given by a stencil of 9 inputs of vorticity

and stream function each (for a total of 18 input variables). These 9 inputs of each

field are given by a query of the field quantity at a point on the coarse grid, the 4

adjacent points in each dimension and the 4 diagonally adjacent points. Each sample

of our training data thus consists of 18 inputs of vorticity and stream function and

outputs given by one-hot labels for the choice of closure modeling strategy. In this

article, we have leveraged the fact that the mean of vorticity and streamfunction

are both very close to zero and do not necessitate normalization. In addition, the

non-dimensionalized formulation of the governing equations implies that our inputs

are all dimensionless. However, we note that for practical deployments of any local-

kernel based machine learning queries, grid-resolved quantities must be normalized

and non-dimensionalized.

Mathematically, if our input vector p resides in a P -dimensional space and our

desired output q resides in a Q-dimensional space, this framework establishes a map

M as follows:

M : {p1, p2, . . . , pP} ∈ RP → {q1, q2, . . . , qQ} ∈ RQ. (6.10)

Accordingly, the framework utilized in this article leads to the following relation:

M : {p} ∈ R18 → {P (q|p)} ∈ R3, (6.11)
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where our input and output spaces are given by

pi,j = {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1, ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1},

qi,j = {P (Πk
i,j|pi,j)},

(6.12)

where i, j refer to the spatial indices on the coarse-grid (i.e., the point of deployment)

and k refers to the choice of closure scenario (i.e., structural, functional or no closure).

We note here that the choice of the local stencil for ANN query reflects the discretiza-

tion of the governing equations (with second-order accurate stencils requiring a ±1

query) and the use of the trapezoidal filter in AD. Also, note that our choice of input

space is given by raw variable queries rather than derivatives (or other such engineered

terms). This is motivated by an aversion to specify bias towards any particular quan-

tity that may otherwise by learned implicitly by the network. However, we note that

the classification workflow may benefit significantly from the inclusion of a feature

engineering step prior to optimization. This is a subject of ongoing investigation.

Our optimal map M is then trained by the following loss-function

E(w) = −
N∑
n=1

K∑
k=1

{tnk log(ynk) + (1− tnk) log(1− ynk)}, (6.13)

where w are the tunable weights and biases of the network, N is the total number

of samples and K = 3 is the total number of closure scenarios. Here, tnk refers to

the target (or true) label of class k and sample n and ynk refers to its corresponding

prediction. Note that one-hot encoding ensures that tnk values are always binary

Bishop (2006). For reference, our architecture is trained using the open-source deep

learning software Tensorflow and is optimized with the use of ADAM, a popular

gradient-descent based optimizer.

Our learning architecture is given by a 5 hidden-layer deep neural network with 40

neurons each for calculating the conditional probabilities of the three closure scenarios
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Figure 6.2: Data-segregation for one-hot labeling. The a-priori eddy-viscosities are
projected onto a Gaussian distribution where data beyond 1.0% of the standard-
deviation is labeled as requiring structural (if negative) or functional (if positive)
modeling. The remaining data points are classified as no-model cases.

pointwise in space and time. The hidden layer neurons employ a rectified-linear

activation and the output-layer gives us softmax probabilities for the three classes.

The scenario with the highest conditional probability is then deployed for model

classification i.e.,

ΠML
i,j = Πk

i,j s.t. argmax
k

P (Πk
i,j|pi,j) (6.14)

where ΠML
i,j refers to the machine learning based turbulence model computation at a

point. In the case of model blending, the conditional probabilities for closure scenar-

ios are used to find a linear combination of the standard Smagorinsky and the AD

closures. In other words,

ΠML
i,j = P (ΠAD

i,j |pi,j)ΠAD
i,j + P (ΠSM

i,j |pi,j)ΠSM
i,j (6.15)

where ΠAD
i,j and ΠSM

i,j are AD and Smagorinsky predictions for the turbulence model
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at a point. We note that the same learning framework is deployed in these two

conceptually different scenarios.

The framework is trained using the previously mentioned categorical cross-entropy

error minimization for the one-hot encoded targets. A three-fold cross-validation is

utilized with a grid search for the number of layers (between 1 to 8) and number of

neurons (between 10 to 100 at intervals of 10) to arrive at the optimal architecture

mentioned previously. This optimal network is then trained for 2000 epochs to arrive

at a classification accuracy of 79% for training and approximately 68% accuracy for

validation. Convergence in validation loss was observed at around 1500 epochs as

shown in Figure 6.3. We note here that our validation data (amounting to one-

third of the total training data set) was not exposed to the network during gradient

calculation in the back-propagation based training procedure. Effectively, our learning

is derived from two-thirds of the total training data while our best-model is chosen

from that with the lowest validation loss. This is to ensure that the chances of

network extrapolation are minimized. The optimal learning is then deployed into a-

posteriori evolution of the Kraichnan turbulence test case where a pointwise closure

deployment is performed for a variety of test cases. We also note that our labeled

data is pre-processed to ensure that an equal number of samples are available from

each classification regime to prevent our learning from prioritizing one outcome over

the other two.

6.5 Results

We proceed by examining the performance of our framework for various a-posteriori

deployments which act as a rigorous testing of our learning for both classification and

blending. We remind the reader that a-posteriori deployments of learning frameworks

imply performance assessments in the presence of challenging numerical errors and

represent the ultimate test of a data-driven framework. Briefly, the Kraichnan turbu-
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Figure 6.3: Neural-network training and validation loss for the proposed learning
framework showing convergence at around 1500 epochs. The best model was chosen
according to lowest validation loss for reduced over-fitting in forward deployments.

lence problem is specified by periodic boundary conditions on a rectangular domain

and an initial condition which is given by an energy spectrum in wave number space.

In this two-dimensional problem very fine scales are developed quickly and this leads

to the classical k−3 scaling of the kinetic energy spectra which is a characteristic of

the cascade of enstrophy in two-dimensional turbulence. The turbulence then decays

gradually over time and thus represents an unsteady closure modeling assessment for

our proposed framework.

We assess the viability of the proposed framework through energy spectra calcu-

lations of various reduced-order deployments as well as vorticity structure functions

obtained from the same. Time histories of the turbulent kinetic energy (denoted

TKE) and the variance of vorticity (denoted σ2(ω̄)) are also plotted for forward de-

ployments. Detailed explanations of the numerical schemes and energy spectra calcu-

lations utilized for this problem may be found in Maulik and San (2017c). Briefly, all
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our spatial numerical schemes are second-order accurate and our time-integration is

third-order total-variation diminishing. Our vorticity structure function calculations

are given by Grossmann and Mertens (1992):

Sω = 〈|ω̄(x+r)− ω̄(x)|2〉, (6.16)

where the angle-brackets indicate ensemble averaging and x indicates a position on

the grid with r being a certain distance from this location. Our turbulent kinetic

energy is given by

TKE = µ(u2
f + v2

f ), (6.17)

where uf and vf are fluctuating quantities given by

uf = ū− µ(ū) (6.18)

vf = v̄ − µ(v̄), (6.19)

and where µ(a) implies the spatial mean of a field variable a. We note that the

components of velocity u, v are computed by second-order accurate central finite-

difference implementations of

ū =
∂ψ̄

∂y
, v̄ = −∂ψ̄

∂x
. (6.20)

In a similar manner the variance of vorticity, at each time step, is computed using

σ2(ω̄) = µ
(
(ω̄ − µ(ω̄))2

)
. (6.21)

In all the following assessments, the proposed framework is denoted as ML (and

specified to be deployed as a classifier or a blender) and it is compared to the AD and
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DS models. We remind the reader that the framework utilizes the static Smagorinsky

model (denoted SM) with Cs = 1.0 within its formulation but is assessed against the

DS approach. The reader may note that the value of Cs = 1.0 proves over-dissipative

for this particular test case as shown in Maulik et al. (2019).

6.5.1 Model classification

In this section, we deploy our learning framework as a classifier which spatio-temporally

switches between three closure modeling hypotheses during flow-evolution. Figure 6.4

shows the performance of our proposed framework for the forward deployment of the

Kraichnan turbulence problem in the form of energy spectra predictions at t = 4.

For comparison, no-model results (denoted UNS), the DS method and AD are also

shown along with DNS spectra. One can observe that the classifier balances the dis-

sipative natures of the SM and AD hypothesis to obtain a performance similar to

the that of the DS approach. While at the lower wavenumbers, the AD procedure

seems to be more accurate in statistical capture, the higher wavenumbers are stabi-

lized adequately by the classifier. We would like to note that that SM hypothesis

with Cs = 1.0 is highly dissipative and this results shows that the classifier avoids its

deployment to a large degree for improved a-posteriori performance. We clarify that

for spectral cut-off filtering, FDNS spectra and DNS spectra are identical till the grid

cut-off wave number (Maulik et al., 2018).

Figure 6.5 details vorticity structure function assessments in our domain where

assessments with FDNS show that the proposed framework is adequately capable of

stabilizing turbulence correlations at t = 4. We note that the structure functions are

predicted more accurately by AD at low values of r whereas the proposed classifier

behaves similar to a DS implementation thereby indicating a dynamic dissipation on

the grid. It may be so that the adaptive dissipation prioritizes noise removal and

thus introduces errors at low values of r as seen through stable structure functions
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Figure 6.4: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 32000 at t = 4 and at N2 = 2562 degrees of freedom. The
proposed framework (deployed as a classifier) balances the dissipative natures of the
AD and the DS models.

at saturation (i.e., at higher values of r). A further assessment is deployed in the

form of time-histories of TKE and σ2(ω̄) as shown in Figure 6.6. Once again, the

classifier is seen to have a varying trend in TKE predictions compared to the AD

and DS techniques indicating varying dissipation strengths. The vorticity variance

predictions are also seen to be balanced between that of the DS and AD models

indicating the balance of dissipative tendencies.

We proceed by performing a thorough validation of our learning framework by

assessing its performance for prediction tasks that it has not been exposed to in

training. This is established by testing closure efficiency for a Reynolds number

of 64000. We remind the reader that map optimization was performed solely for

Re = 32000 and this represents an additional validation of the learning. Kinetic

energy spectra for this experiment are shown in Figure 6.7 where it is observed that

the classifier performs in a very similar fashion to the Re = 32000 test-case with

AD performing more efficiently at the lower wavenumbers of the inertial range but

the ML approach stabilizing high-wavenumber noise effectively. This indicates that

the learning has generalized, atleast on the current degree of coarse-graining. We

also perform additional assessments such as those shown in Figure 6.8 and Figure
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Figure 6.5: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) for Re = 32000 at t = 4 and at N2 = 2562 degrees of freedom. It is
observed that AD performs better in the near-region whereas the proposed framework
behaves similar to the DS approach.
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Figure 6.6: Time-histories for turbulent kinetic energy (left) and vorticity variance
(right) for Re = 32000 at N2 = 2562 degrees of freedom. The proposed method can
be seen to adapt between the behavior of the AD and DS techniques.
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Figure 6.7: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 64000 at t = 4 and at N2 = 2562 degrees of freedom. This
assessment displays closure effectiveness for a Reynolds number not utilized in the
training data.

6.9. The former shows the vorticity structure function trends for this out-of-training

range learning assessment and the latter shows the time-histories of TKE and σ2(ω̄).

Very similar trends for both these assessments are obtained when compared to the

Re = 32000 test-case with time varying trends in TKE and vorticity variance capture.

While the aforementioned test-cases validated the learning of the classifier on

different control parameters (and flow evolutions) given by the Reynolds number.

We proceed by assessing the performance and stability of the classifier on a reduced

degree-of-freedom evolution given by N2 = 1282. This test was to examine if the

classifier could retain a viable learning for deployment on slightly different grid sup-

port. Figure 6.10 shows the kinetic energy spectra for a deployment at this reduced

degree-of-freedom at a Reynolds number of 32000. It is observed that the proposed

classifier is able to avoid inaccuracies related to AD’s lack of dissipation. Indeed, it is

well-known that AD requires a sufficiently fine resolution in comparison to the eddy-

viscosity hypothesis based models for appropriate utilization of their inverse-filtering

(Germano, 2015; Guermond et al., 2004). A similar trend may also be observed in

Figure 6.11 with the vorticity structure functions where once again the AD technique

proves accurate at lower distances in comparison the the DS and the ML methods.
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Figure 6.8: A posteriori vorticity structure functions plotted against r (left) and log(r)
(right) for Re = 64000 at t = 4 and at N2 = 2562 degrees of freedom. It is observed
that solely AD performs better in the near-region whereas the proposed framework
behaves similar to the DS approach. The behavior is similar to that observed for
within training data regime deployment.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

TK
E

DNS
UNS
ML
DS
AD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

50

100

150

200

250

σ2
(ω̄

̄

Figure 6.9: Time-histories for turbulent kinetic energy (left) and vorticity variance
(right) for Re = 64000 at N2 = 2562 degrees of freedom. The proposed method can
be seen to adapt between the behavior of the AD and DS techniques and acts as an
additional validation for deployment to different Reynolds numbers.
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Figure 6.10: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 32000 at t = 4 and at N2 = 1282 degrees of freedom. This
assessment displays closure effectiveness for a coarse-grained resolution not utilized
in the training data.

The ML classifier however is slightly more accurate than the DS approach. The

time-histories for TKE and vorticity variance, shown in Figure 6.12, display a greater

amount of variation in the classification framework with TKE values oscillating but

remaining close to the DNS results. It must be noted that the no-model and AD

hypothesis prevent the classifier from going into a fully SM deployment which is

highly dissipative. This explains the similarity with DS results in terms of spectra

and vorticity-variance.

In addition to the test-case with a slightly reduced grid-resolution in comparison to

training data generation. We also perform a grid-dependence check on the accuracy

of our classification framework as shown in Table 6.1. We perform a hypothesis

segregation (as introduced previously) to label all points on a coarse-grid with an

optimal closure hypothesis and assess if the learning at N2 = 2562 is able to categorize

them appropriately. It can be seen that accuracies around the same resolution as

that of the training data are approximately similar to validation accuracy during

network optimization. However, on intense coarse-graining, accuracies are seen to

drop significantly. However, we note that even at the coarsest resolution of N2 = 322,

accuracies greater than 33% indicate some form of learning retention.
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Figure 6.11: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) for Re = 32000 at t = 4 and at N2 = 1282 degrees of freedom. It
is observed that solely AD performs better in the near-region whereas the proposed
framework behaves similar to the DS approach. The behavior is similar to that
observed for within training resolution deployment.
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Figure 6.12: Time-histories for turbulent kinetic energy (left) and vorticity variance
(right) for Re = 32000 at N2 = 1282 degrees of freedom. The proposed method can
be seen to adapt between the behavior of the AD and DS techniques and acts as an
additional validation for deployment to similar coarse-grained resolutions.

Time N2 = 5122 N2 = 2562 N2 = 1282 N2 = 642 N2 = 322

t = 1 65.77 63.04 56.51 52.17 47.65
t = 2 60.89 60.47 61.02 55.62 41.99
t = 3 68.05 65.08 61.54 53.32 46.29
t = 4 63.93 66.04 60.24 48.33 48.54

Table 6.1: Classification accuracy percentages for different grid-resolutions in a-priori
to illustrate how accurately our base learning can predict correct labels. Accuracies
are seen to drop when resolutions are coarsened radically. However, some learning is
retained as evidenced by accuracies greater than 33%.
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Time A priori A posteriori
AD SM No-model AD SM No-model

t = 1 22.43 21.69 55.87 29.94 26.34 43.72
t = 2 22.31 21.08 56.60 29.17 25.37 45.45
t = 3 21.37 20.84 57.78 28.68 25.07 46.25
t = 4 19.49 22.56 57.94 28.45 25.38 46.17

Table 6.2: Classification percentages in a-priori and a-posteriori. One can see de-
viation from trends due to numerical error accumulation (and greater utilization of
closure classifications for subsequent stabilization).

We also determine the effect of network deployment in the presence of numerical

errors as shown in table 6.2 where it can be seen that a significant difference in

hypothesis choices are observed. In particular, the a-posteriori deployment of the

classifier is seen to utilize a greater proportion of the turbulence closure hypotheses,

in comparison to the no-model ones. This may be considered as proof of the classifier

detecting greater stabilization requirements due to numerical error build-up. It is

observed that the AD approach shows a greater increase in deployment than SM.

This may be to offset the rather large inaccuracies of the lower wavenumbers in

the exceptionally dissipative SM approach. Understanding the nature of classifier

adaptation in the presence of numerical errors is an interesting subject of future

research that may aid in improved decision making frameworks. We complement the

data in table 6.2 by outlining the classification percentages of different hypotheses

plotted against time for our three a-posteriori deployments in Figure 6.13. One may

notice that the deployment of the framework at the coarser resolution of N2 = 1282

requires a higher degree of SM and AD classifications for successful stabilization.

All experiments are seen to show a gradual increase in closure requirement as scale-

separation grows with subsequent saturation in the gradual decay.

As a final qualitative analysis of our classifier, we plot a posterior contours from

forward deployments at N2 = 2562 and Re = 32000. In Figure 6.14, vorticity contours

from the ML, DS, AD and UNS simulations are shown to assess the stabilization effect
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(a) Re = 32000, N2 = 2562
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(b) Re = 64000, N2 = 2562
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Figure 6.13: The a-posteriori classification percentages of the various modeling hy-
potheses for our three forward deployments. In all deployments it is observed that
the utilization of AD and SM increases as the scale-separation grows and saturates
for the slow decay. Noticeably, the deployment at N2 = 1282 necessitates a higher
proportion of AD and SM classifications for improved stabilization.
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Figure 6.14: A posteriori contour results for Re = 32000 with the proposed classifica-
tion framework shown top-left, DS shown top-right, UNS shown bottom left and AD
shown bottom right. These may be compared against FDNS contours qualitatively
(in Figure 6.1).

of the different frameworks. The classifier can be seen to stabilize high-wavenumber

noise adequately, in a manner similar to DS as previous statistics have reflected. The

AD approach may be observed to be contaminated with noise that may potentially

be harmful for long-time integration.

6.5.2 Model blending

In this section, we deploy our learning in a different manner by utilizing their out-

puts (i.e., the conditional probabilities of each hypothesis) as a pre-multiplier of the

prediction of each modeling hypothesis. We utilize this formulation instead of the
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direct prediction of sub-grid contribution coefficients by observing that a greater de-

gree of stability is imparted to the flow-evolution. Indeed, direct regression with

sub-grid quantities has been seen to require a-posteriori post-processing for stabil-

ity due to energy accummulation in the super-grid (when negative eddy-viscosities

are predicted effectively)(Maulik et al., 2018, 2019). We recognize (as a limitation),

that the utilization of a conditional-probability outputs to linearly combine turbu-

lence modeling predictions from different hypotheses digresses from the core idea of

a categorical cross-entropy error minimization. However, as results shall show, the

proposed method acts as an effective instrument for blending models in a-posteriori

with the requirement of any truncation for stability. We would also like to emphasize

here that the same learning is applicable for both classification and blending. We

perform a similar set of assessments as outlined in the section 6.5.1.

Figure 6.15 shows the performance of the blending formulation for a Reynolds

number of 32000 and at t = 4 with N2 = 2562 degrees-of-freedom with kinetic energy

spectra. It is observed that the proposed procedure recovers a dissipative behavior

that is very similar to the DS approach. It does this by balancing the coefficients of

the AD and SM predictions which adapt to the dynamic dissipation requirement of

the flow. Overall, it is observed that the framework behaves in a similar manner to

the classifier presented previously with dissipation preventing the accummulation of

high-wavenumber errors but causing a mismatch in the inertial range spectra capture.

However, the dissipation is dynamic and it prevents the overwhelming damping of the

SM deployment by balancing with the AD predictions adaptively. This is reflected

in Figure 6.16 as well where the vorticity structure functions once again show that

the AD method is more accurate at lower values of r but the blending allows for

a prediction akin to the DS technique. Figure 6.17 shows the time-histories of the

TKE and the σ2(ω̄) for the proposed framework compared to DS, AD and UNS. The

vorticity-variance shows a trend close to the DS approach as expected but the TKE
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Figure 6.15: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 32000 at t = 4 and at N2 = 2562 degrees of freedom. The
proposed framework (deployed as a model blending mechanism) behaves similar to the
DS approach at the inertial wavenumbers. We remind the reader that the blending
is dynamic between AD and SM.

trends are once again not uniform.

In a fashion similar to that employed in section 6.5.1, we deploy assessments of

the blending method to out-of-training predictions for validation. We start with an a

poseirori deployment at Re = 64000 and N2 = 2562 degrees-of-freedom and observe

that the learning is sufficiently generalizable. This is observed from Figure 6.18 where

kinetic energy spectra show an aligned prediction to the previous test-case. Vorticity

structure functions and time-histories, shown in Figures 6.19 and 6.20 respectively

show a similar behavior to the one observed for Re = 32000. This implies that the

learning, whether utilized as a classifier or a blending mechanism, is generalizable.

We also deploy the blending framework at a different degree-of-freedom (N2 = 1282)

to assess it is stable to a slightly different grid support and trends similar to the

classifier are observed wherein the framework focuses on dissipation to stabilize the

higher wavenumbers in contrast with AD. This is observed in Figure 6.21 for kinetic

energy spectra and Fig 6.22 for the vorticity structure functions. Figure 6.23 shows

time-series quantities for this test-case with both TKE and vorticity-variance trends

resembling the DS method closely. This also echoes with the performance of the
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Figure 6.16: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) for Re = 32000 at t = 4 and at N2 = 2562 degrees of freedom. It
is observed that solely AD performs better in the near-region whereas the proposed
blending (once again) behaves similar to the DS approach. We remind the reader
that the blending is dynamic between AD and SM.
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Figure 6.17: Time-histories for turbulent kinetic energy (left) and vorticity variance
(right) for Re = 32000 at N2 = 2562 degrees of freedom. The proposed blending
technique shows a varying TKE capture behavior due to its adaptive dissipation.
Note that the blending is dynamic between AD and SM.
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Figure 6.18: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 64000 at t = 4 and at N2 = 2562 degrees of freedom. The
proposed framework (deployed as a model blending mechanism) behaves similar to
the DS approach at the inertial wavenumbers. Note that the blending is dynamic
between AD and SM and training is performed using Re = 32000 data alone.

classifier where a coarser-grid resolution led to a performance that was observed to be

biased towards the eddy-viscosity hypothesis. However, further studies are necessary

to quantify how the model orients itself to compensate for loss of grid-resolution or

anisotropies in the flow configuration in a-posteriori deployment.

To conclude this section we show qualitative results from the vorticty contours

at the final time of the numerical experiments for our proposed framework and their

benchmark counterparts in Figure 6.24. This examination gives us an intuition of

the stabilization effect of the proposed framework and it is seen that the predictions

are very closely aligned with the DS results. This, once again, validates our dynamic

dissipation hypothesis.

6.6 Conclusions & significance

In this article we have proposed a novel data-driven strategy to dynamically assess

the utility of a turbulence modeling hypothesis in an LES framework. This strat-

egy is built on the hypothesis that DNS data may be utilized to assess areas where

structural or functional models may be more appropriate in an LES deployment. Our
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Figure 6.19: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) for Re = 64000 at t = 4 and at N2 = 2562 degrees of freedom. It
is observed that solely AD performs better in the near-region whereas the proposed
blending (once again) behaves similar to the DS approach. We remind the reader
that the blending is dynamic between AD and SM and training is performed using
Re = 32000 data alone.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

TK
E

DNS
UNS
ML
DS
AD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

50

100

150

200

250

σ2
(ω̄

̄

Figure 6.20: Time-histories for turbulent kinetic energy (left) and vorticity variance
(right) for Re = 64000 at N2 = 2562 degrees of freedom. We remind the reader
that the blending is dynamic between AD and SM and training is performed using
Re = 32000 data alone.
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Figure 6.21: A posteriori kinetic-energy spectra (left) and compensated kinetic-energy
spectra (right) for Re = 32000 at t = 4 and at N2 = 1282 degrees of freedom. The
proposed framework (deployed as a model blending mechanism) behaves similar to the
DS approach at the inertial wavenumbers. We remind the reader that the blending
is dynamic between AD and SM and training is performed using Re = 32000 and
N2 = 2562 data alone.
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Figure 6.22: A posteriori vorticity structure functions plotted against r (left) and
log(r) (right) for Re = 32000 at t = 4 and at N2 = 1282 degrees of freedom. It
is observed that solely AD performs better in the near-region whereas the proposed
blending (once again) behaves similar to the DS approach. We remind the reader
that the blending is dynamic between AD and SM and training is performed using
Re = 32000 and N2 = 2562 data alone.
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Figure 6.23: Time-histories for turbulent kinetic energy (left) and vorticity variance
(right) for Re = 32000 at N2 = 1282 degrees of freedom. The proposed blending
technique behaves more dissipatively due to the reduced grid-support. We remind
the reader that the blending is dynamic between AD and SM and training is performed
using Re = 32000 and N2 = 2562 data alone.

hypothesis segregation and subsequent training culiminates in a learning that may

deployed as a classifier of turbulence models at each point on the LES grid as well

as a blending technique for balancing turbulence models with different dissipative

strengths. When deployed as a classifier, our proposed framework may also predict a

‘no-model’ situation wherein no sub-grid source-term is deployed. When deployed as

a blending mechanism, the learning linearly combines the AD and static Smagorin-

sky hypothesis premultiplied by their respective conditional probabilities to obtain

another hybrid dissipation mechanism. Both frameworks utilize the same learning

and are assessed through similar experiments in a-posteriori.

We have rigorously assessed the deployment of our machine learning strategy

through the utilization of a Kraichnan turbulence test case. Our assessments are

made for Reynolds number values both within and outside that utilized in training

to ensure that a generalizable turbulence closure has been developed. In addition, we

have also assessed if the proposed closure can be deployed on a coarser grid than one it

was trained for. The dissipative and scale-content capture of the proposed framework

is compared to the AD and DS techniques through the use of kinetic-energy spectra,
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Figure 6.24: A posteriori contour results for Re = 32000 with the proposed blending
framework shown top-left, DS shown top-right, UNS shown bottom left and AD
shown bottom right. These may be compared against FDNS contours qualitatively
(in Figure 6.1).

175



vorticity structure functions and time-histories of TKE and vorticity-variance show-

ing a dynamic dissipation akin to the DS. In particular, the statistical fidelity of the

data-driven frameworks is seen to be inferior to the AD technique, which provides

better estimates of the kinetic energy spectra at lower wavenumbers and also pro-

vides most accurate estimates of the vorticity structure function. However, the focus

on high-wavenumber noise attentuation leads to no grid cut-off error accummulation

and the statistical results of the ML models are very similar to DS in all assessments.

Also, it is observed that the data-driven closure (whether deployed as a classifier or

a blending instrument) adequately captures the k−3 scaling expected for the kinetic

energy spectra for the Kraichnan turbulence case and attempts to strike an opti-

mal balance between the dissipative functional kernel and the noise-prone structural

kernel. This behavior is interesting as the model classifies solely between AD and

the static Smagorinsky hypothesis indicating the extreme dissipation of the latter

at Cs = 1.0 is effectively alleviated by the spatiotemporal blending. Our closure,

thus, attempts to blend the strengths of both modeling strategies to overcome their

individual weakness while attempting to preserve trends from DNS.

In terms of future opportunities for this idea, the data-driven element of closure

identification lends to the potential development of closures that may discern the

physical characteristics of different flow scenarios. However, some challenges asso-

ciated with progress in this research include considerations of invariance properties,

which we have identified as a next step. While the computational costs of the pro-

posed framework have not been studied in detail, an efficient deployment of the pro-

posed framework would need graphical processing unit integration of any practical

CFD simulation. The latter would lead to efficient learning queries since all the spa-

tial domain information would be available to the common memory. Another future

direction identified in this research is the exposure of different two-dimensional turbu-

lence physics to the classification framework to identify if closure choices can ralso be
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influenced by the training data regime. Success in that regard would allow for ‘train

and forget’ closures in problems that have unsteady physics that span fundamentally

different turbulence modeling requirements.
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CHAPTER VII

Connecting implicit and explicit large eddy simulations of

two-dimensional turbulence through machine learning

7.1 Abstract

In this article, we utilize machine learning to dynamically determine if a point on the

computational grid requires implicit numerical dissipation for large eddy simulation

(LES). The decision making process is learnt through a-priori training on quantities

derived from direct numerical simulation (DNS) data. In particular, we compute

eddy-viscosities obtained through the coarse graining of DNS quantities and utilize

their distribution to categorize areas that require dissipation. If our learning de-

termines that closure is necessary, an upwinded scheme is utilized for computing the

non-linear Jacobian. In contrast, if it is determined that closure is unnecessary, a sym-

metric and second-order accurate energy and enstrophy preserving Arakawa scheme

is utilized instead. This results in a closure framework that precludes the specifica-

tion of any model-form for the small scale contributions of turbulence but deploys

an appropriate numerical dissipation from explicit closure driven hypotheses. This

methodology is deployed for the Kraichnan turbulence test-case and assessed through

various statistical quantities such as angle-averaged kinetic energy spectra and vor-

ticity structure functions. Our framework thus establishes a direct link between the

use of explicit LES ideologies for closure and numerical scheme-based modeling of

This chapter is adapted from Maulik et al., under review for publication in Phys. Fluids

178



turbulence leading to improved statistical fidelity of a-posteriori simulations.

7.2 Introduction

Over the past decade, advances in data collection and increasing access to computa-

tional resources have led to a revolution in the use of data-driven techniques for the

solution of complex inverse problems. One such problem is that of turbulence, the

multiscale nature of which causes extreme computational demands for most practical

systems. As a result, turbulence requires the use multiple modeling approximations

for the higher wavenumbers which remain unsupported by computational degrees of

freedom. One such modeling approach is that of large eddy simulation (LES) (Sagaut,

2006), which attempts to simulate the evolution of the smaller wavenumbers while the

unresolved frequencies are modeled by an algebraic or differential equation. As such,

the basic premise of LES is extendable to many partial differential equation systems

with quadratic non-linearities. The procedure of modeling these smaller scales is often

denoted closure due to insufficient knowledge about higher-order wavenumber inter-

actions with the coarse-grained system (Berselli et al., 2006) and remains vital for the

accurate computation of many applications (Hickel et al., 2014; Yu et al., 2016; Zhou

et al., 2018). From an LES point of view, the closure problem may be considered to

be dominated by commutative errors in the calculation of the non-linear term as well

as the defects associated with commutative errors stemming from the dynamic term.

In this study, we focus on the former.

There are two main schools of thought when it comes to the LES of the Navier-

Stokes equations. The first of these promotes the use of explicit closures. Explicit

LES argues for the utilization of closures in the form of sub-grid models specified as

algebraic or differential equations for the unresolved scales. These are built on intu-

itive reasoning of how the losses of coarse graining the Navier-Stokes equations may

be incorporated into an LES deployment. Some of the most notable sub-grid closure
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strategies are those given by the eddy-viscosity hypothesis. Within the context of the

Navier-Stokes equations, it is generally accepted that the finer scales are dissipative

at the Kolmogorov length scales (Kolmogorov, 1941b) and therefore, most turbulence

models seek to specify a sub-grid dissipation (Frisch, 1995). Most sub-grid models

can be traced back to the seminal work of Smagorinsky (Smagorinsky, 1963), where a

model was proposed based on the concepts of an effective eddy-viscosity determined

by an a-priori specified mixing length and a k−5/3 scaling recovery for the kinetic en-

ergy content in the wavenumber domain. Similar hypotheses have also been used for

two-dimensional turbulence (Leith, 1968) (often utilized as a test-bed for geophysical

scenarios, for instance see Pearson and Fox-Kemper (2018) and Pearson et al. (2017)),

for approximating the k−3 cascade in two-dimensional turbulence and generally have

their roots in dimensional analysis related to the cascade of enstrophy. These models

may also be classified as functional due to the phenomenological nature of their de-

ployment and represent the bulk of explicit LES turbulence models used in practical

deployments. Explicit LES closures may also be specified through the specification

of a low-pass spatial filter to account for the unresolved scales (Bardina et al., 1980;

Stolz and Adams, 1999; Layton and Lewandowski, 2003; Mathew et al., 2003) where

phenomenology is bypassed but ansatz are provided for the bulk dissipative nature

of the smaller scales through the control of a characteristic filter-width. In either

scenario, (i.e., whether structural or functional), the choice of the phenomenology (or

dissipation control parameter) plays a key role in the successful calculation of accu-

rate a-posteriori statistics. In contrast, the implicit LES (or ILES) approach utilizes

numerical dissipation to model the unresolved scales in a turbulent flow (Grinstein

et al., 2007; El Rafei et al., 2017; Margolin, 2018). In essence, the predominantly

dissipative effects of the smallest scales are replicated through an artificial numerical

dissipation via a biased discretization used in the calculation of the non-linear advec-

tive term (Thornber et al., 2007; DeBonis, 2013). The ILES approach is popular due
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to reduced algorithmic complexity and represents a union of turbulence modeling and

shock capturing mechanisms but is often criticized due to the difficulties involved in

quantifying the correct amount of dissipation in a turbulent flow evolution. This re-

sults in ILES methods often proving robust and stable but overly dissipative. In this

work, we propose a machine learning algorithm to enable selective dissipation within

an ILES deployment through the use of explicit LES concepts during the training of

the learning framework.

The past few years have seen a rapid increase in the use of data-driven techniques

for the spatio-temporal modeling of dynamical systems (Schmidt and Lipson, 2009;

Bright et al., 2013; Xiao et al., 2015; Ma et al., 2015; Gautier et al., 2015; Brunton

et al., 2016; Schaeffer, 2017; Raissi et al., 2017; Mohan and Gaitonde, 2018; Raissi and

Karniadakis, 2018; Rudy et al., 2018; San and Maulik, 2018; Wan et al., 2018; Kim

et al., 2018; Muravleva et al., 2018; Jin et al., 2018). When it comes to turbulence,

some widely used strategies for inference include symbolic regression (Weatheritt

and Sandberg, 2016, 2017a,b), where functional model-forms for RANS deployments

were generated through evolutionary optimization against high-fidelity data. Other

techniques incorporating Bayesian ideologies have also been used, for instance by Xiao

et al. (2016) where an iterative ensemble Kalman method was used to assimilate prior

data for quantifying model form uncertainty in RANS models. In Wang, Wu and Xiao

(2017); Wang, Wu, Ling, Iaccarino and Xiao (2017) and Wu et al. (2018a), random-

forest regressors were utilized for RANS turbulence-modeling given DNS data. In

Singh and Duraisamy (2016) and Singh et al. (2017), an ANN was utilized to predict

a non-dimensional correction factor in the Spalart-Allmaras turbulence model through

a field-inversion process using experimental data. Bypassing functional formulations

of a turbulence model (a focus of this study) was also studied from the RANS point

of view by Tracey et al. (2015). Ling and Templeton (2015) utilized support vector

machines, decision trees and random forest regressors for identifying regions of high
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RANS uncertainty. A deep-learning framework where Reynolds-stresses would be

predicted in an invariant subspace was developed by Ling, Kurzawski and Templeton

(2016). The reader is directed to a recent review by Duraisamy et al. (2019), for an

excellent review of turbulence modeling using data-driven ideas.

As shown above, the use of data-driven ideologies and in particular artificial neural

networks (ANNs) has generated significant interest in the turbulence modeling com-

munity for addressing long-standing challenges. One motivation for the popularity of

ANNs is that a multilayered ANN may be optimally trained to universally approx-

imate any non-linear function (Hornik et al., 1989). In addition, the deployment of

ANNs is amenable to integration within existing computational frameworks. Greater

accessibility to data and ever-improving computing capabilities has also motivated the

development of advanced ANN architectures for large-scale learning of complicated

physical phenomena such as turbulence. Within the context of LES (and associated

with the scope of this paper) there are several investigations into sub-grid modeling

using data-driven techniques. In one of the first studies of the feasibility of using

learning from DNS based high-fidelity data, Sarghini et al. (2003) utilized ANNs for

estimating Smagorinsky model-form coefficients within a mixed sub-grid model for

a turbulent channel flow. ANNs were also used for wall-modeling by Milano and

Koumotsakos (Milano and Koumoutsakos, 2002) where it was used to reconstruct

the near wall field and compared to standard proper-orthogonal-decomposition tech-

niques. An alternative to ANNs for sub-grid predictions was proposed by King et al.

(2016) where a-priori optimization was utilized to minimize the L2-error between

true and modeled sub-grid quantities in a least-squares sense using a parameter-free

Volterra series. Maulik and San (2017a) utilized an extreme-learning-machine (a

variant of a single-layered ANN) to obtain maps between low-pass spatially filtered

and deconvolved variables in an a-priori sense. This had implications for the use of

ANNs for turbulence modeling without model-form specification. A more in-depth
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investigation was recently undertaken by Fukami et al. (2018) where convolutional

ANNs were utilized for reconstructing from downsampled snapshots of turbulence.

Maulik et al. (2018) also deployed a data-driven convolutional and deconvolutional

operation to obtain closure terms for two-dimensional turbulence. Gamahara and

Hattori (2017), utilized ANNs for identifying correlations with grid-resolved quan-

tities for an indirect method of model-form identification in turbulent channel flow.

The study by Vollant et al. (2017) utilized ANNs in conjuction with optimal esti-

mator theory to obtain functional forms for sub-grid stresses. In Beck et al. (2018),

a variety of neural network architectures such as convolutional and recurrent neural

networks are studied for predicting closure terms for decaying homogeneous isotropic

turbulence. A least-squares based truncation is specified for stable deployments of

their model-free closures. Model-free turbulence closures are also specified by Maulik

et al. (2018, 2019) and Wang et al. (2018), where sub-grid scale stresses are learned

directly from DNS data and deployed in a-posteriori assessments. King et al. (2018)

studied generative-adversarial networks and the LAT-NET (Hennigh, 2017) for a-

priori recovery of statistics such as the intermittency of turbulent fluctuations and

spectral scaling. A detailed discussion of the potential benefits and challenges of deep

learning for turbulence (and fluid dynamics in general) may be found in the article

by Kutz (Kutz, 2017).

While a large majority of the LES-based frameworks presented above utilize a

least-squares error minimization technique for constructing maps to sub-grid stresses

directly for theoretically optimal LES (Langford and Moser, 1999; Moser et al., 2009;

LaBryer et al., 2015), this work is novel in that it utilizes sub-grid statistics (pre-

computed from DNS data) to train a classifier. This classifier determines whether a

location requires dissipation or not through a-priori experience in the learning phase.

Once classified, the non-linear term at this particular point is evaluated using one

of two schemes. If it is determined that the point requires no sub-grid closure, a
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symmetric and second-order accurate, energy and enstrophy conserving Arakawa-

scheme (Arakawa and Lamb, 1981) is utilized for the non-linear term computation.

If dissipation is necessary, an upwinding scheme is utilized instead. Therefore this

study may be interpreted as a machine learning framework for devising hybrid schemes

for non-linear term computation with a view to reconstructing turbulence statistics

in a superior fashion. We note that the classification framework devised in this

study is also deployed in an aligned work to switch between explicit LES hypotheses

spatio-temporally thus proving that high-fidelity DNS statistics may be qualitatively

utilized to inform modeling strategies through conditional probability predictions.

The article shall describe how the proposed framework is effective in moderating

the larger dissipation of an upwinded-scheme through assessments on the Kraichnan

turbulence test-case.

7.3 Turbulence modeling equations

The governing equations for two-dimensional turbulence are given by the Navier-

Stokes equations in the vorticity-stream function formulation. In this formulation,

our non-dimensional governing equation for incompressible flow may be represented

as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (7.1)

where Re is the Reynolds number, ω and ψ are the vorticity and stream function

respectively connected to each other through the Poisson equation given by

∇2ψ = −ω. (7.2)

184



It may be noted that the Poisson equation implicitly ensures a divergence-free flow

evolution. The non-linear term (denoted the Jacobian) is given by

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (7.3)

The stream function and the two-dimensional velocity components are related as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (7.4)

A reduced-order implementation of the aforementioned governing laws (i.e., an

LES) is obtained through

∂ω̄

∂t
+ J(ω̄, ψ̄) =

1

Re
∇2ω̄, (7.5)

where the overbarred variables are now evolved on a grid with far fewer degrees of

freedom. Due to the reduction in supported frequencies, the non-linear Jacobian fails

to capture inter-eddy interactions at different wavenumbers. If it is assumed that the

finer scales of vorticity are generally dissipative in nature for two-dimensional tur-

bulence (based on Kraichnan’s cascade of enstrophy (Kraichnan, 1967)), dissipative

models may be embedded into the coarse-grained evolution of the vorticity evolu-

tion equation to recover some portion of the effect of the finer scales Explicit LES

closures embed dissipation into the vorticity evolution in the form of eddy-viscosity

phenomenology or through structural arguments of scale-similarity. However ILES

manipulates the computation of the non-linear Jacobian term to add numerical dis-

sipation to mimic that of the unresolved frequencies. The latter framework, while

numerically robust, suffers from difficulties associated with directed dissipation where

it is often very easy to be over-dissipative in regions where sub-grid dissipation may

not be as pronounced. In this article, we introduce a hybrid ILES framework that
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focuses upwinding at areas where high probability of sub-grid dissipation necessity is

detected.

7.4 Non-linear Jacobian computation

The study utilizes two types of non-linear term computation schemes. Our first choice

is symmetric, second-order accurate and conserves energy and enstrophy to minimize

numerical dissipation. This is given by the well-known second-order Arakawa scheme

(Arakawa and Lamb, 1981) as detailed below. The non-linear term in Equation 7.5

may be numerically calculated on a coarse grid using

JA(ω̄, ψ̄) =
1

3

(
J1(ω̄, ψ̄) + J2(ω̄, ψ̄) + J3(ω̄, ψ̄)

)
(7.6)

where JA(ω̄, ψ̄) will henceforth refer to the Arakawa discretization. The individual

terms on the right hand side of the above equation are given as

J1(ω̄, ψ̄) =
1

4∆x∆y

[
(ω̄i+1,j − ω̄i−1,j)(ψ̄i,j+1 − ψ̄i,j−1)

−(ω̄i,j+1 − ω̄i,j−1)(ψ̄i+1,j − ψ̄i−1,j)
]
,

(7.7)

J2(ω̄, ψ̄) =
1

4∆x∆y

[
ω̄i+1,j(ψ̄i+1,j+1 − ψ̄i+1,j−1)

−ω̄i−1,j(ψ̄i−1,j+1 − ψ̄i−1,j−1)− ω̄i,j+1(ψ̄i+1,j+1 − ψ̄i−1,j+1)

+ω̄i,j−1(ψ̄i+1,j−1 − ψ̄i−1,j−1)
]
,

(7.8)

J3(ω̄, ψ̄) =
1

4∆x∆y

[
ω̄i+1,j+1(ψ̄i,j+1 − ψ̄i+1,j)

−ω̄i−1,j−1(ψ̄i−1,j − ψ̄i,j−1)− ω̄i−1,j+1(ψ̄i,j+1 − ψ̄i−1,j)

+ω̄i+1,j−1(ψ̄i+1,j − ψ̄i,j−1)
]
.

(7.9)
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The aforementioned scheme is utilized when our proposed classifier recognizes that

no dissipation is necessary.

A numerically dissipative computation of the non-linear term allows for that sta-

bilization of noise accumulation at the grid cut-off wavenumbers. Although there are

many different methodologies for upwind based dissipation with varying degrees of

complexity, in this article, we utilize a conventional upwind-biased scheme as detailed

in the following. Our ILES Jacobian is computed as

J I(ω̄, ψ̄) =ūi,j
ω̄i+1,j − ω̄i−1,j

2∆x
+

1

2
(ū+ω̄−x + u−ω̄+

x )

+ v̄i,j
ω̄i,j+1 − ω̄i,j−1

2∆y
+

1

2
(v̄+ω̄−y + v̄−ω̄+

y ),
(7.10)

where

ū− = min(ūi,j, 0), ū+= max(ūi,j, 0), (7.11)

v̄− = min(v̄i,j, 0), v̄+ = max(v̄i,j, 0). (7.12)

In addition,

ω̄−x =
ω̄i−2,j − 3ω̄i−1,j + 3ω̄i,j − ω̄i+1,j

3∆x
,

ω̄+
x =

ω̄i−1,j − 3ω̄i,j + 3ω̄i+1,j − ω̄i+2,j

3∆x
,

ω̄−y =
ω̄i,j−2 − 3ω̄i,j−1 + 3ω̄i,j − ω̄i,j+1

3∆y
,

ω̄+
y =

ω̄i,j−1 − 3ω̄i,j + 3ω̄i,j+1 − ω̄i,j+2

3∆y
.

(7.13)

Note that velocity components are recovered using

ūi,j =
ψ̄i,j+1 − ψ̄i,j−1

2∆y

v̄i,j = − ψ̄i+1,j − ψ̄i−1,j

2∆x
,

(7.14)
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where the second-order accurate reconstruction of the velocity leads to overall second-

order accuracy for non-linear Jacobian reconstruction using the upwinded procedure

outlined above. We also note that our Poisson equation given by Equation 7.2 is

solved using a spectrally-accurate scheme.

With the choice of one of the two aforementioned schemes, a point in space-time

may or may not have an artificial dissipation imparted to it numerically. However,

we mention the caveat that switching between these two schemes would mean that

the kinetic energy and enstrophy preserving property of the Arakawa scheme is lost.

7.5 Machine learning for scheme selection

We now discuss the procedure of utilizing DNS data for learning to classify one of

the two dissipation scenarios. Of these two options, one is given by the choice of the

Arakawa scheme and the other by our upwinded computation of the Jacobian (i.e.,

when the classification framework has determined that the point does not require

sub-grid dissipation or vice-versa respectively). This switching between scenarios is

spatio-temporally dynamic. We proceed by outlining our training strategy through

the utilization of DNS data. Five equidistant snapshots of DNS data at Re = 32000

(i.e., at t = 0, 1, 2, 3, 4) and at N2 = 20482 degrees of freedom (from 40000 available

snapshots) are utilized to compute the grid-filtered variables (denoted FDNS) (at

N2 = 2562 degrees of freedom) through the application of a spectral cut-off filter.

Perfect closure values

Π = J(ω̄, ψ̄)− J(ω, ψ) (7.15)

are then obtained (the reader is directed to Maulik et al. (2019) for details related to

the calculation of these quantities). Note here, that the Kraichnan turbulence problem

is transient with the evolution of vorticity represented in Figure 7.1 representing
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different closure needs over time evolution.

We proceed by introducing the a-priori eddy-viscosity given by

νae =
Π

∇2ω̄
(7.16)

where the right-hand side of the above equation may be calculated from DNS snap-

shots. The a-priori eddy-viscosity is centered at zero (corresponding to where closure

modeling is unnecessary) and spreads out in the negative and positive directions (a

hallmark of isotropic turbulence). We segregate this a-priori estimate of sub-grid ef-

fects into three categories as follows. The a-priori eddy-viscosities calculated from the

DNS data are compared with a Gaussian distribution where values lying less than a

distance of 1% of the standard-deviation from the mean (which is zero) are labeled as

those requiring no dissipation (due to the low strength of the a-priori eddy-viscosity).

For posterity, we label these points as k = 1. Positive values lying beyond this range

are labeled as those requiring sub-grid dissipation and are labeled k = 2. Negative

values less than 1% of the standard-deviation are also considered to require no dissi-

pation and are labeled k = 3. This three-category segregation stems from a learning

hypothesis that seeks to identify regions in a flow evolution that require structural,

functional or no-closure modeling hypothesis. We link labels of negative or nearly-

zero eddy-viscosities to the Arakawa classification and positive eddy-viscosities to the

upwinded classification. The positive eddy-viscosity prediction would indicate that

the sub-grid term at a point is predominantly dissipative in nature at which point the

numerical dissipation of the upwinded scheme would be utilized. We note here that

the concept of an a-priori eddy-viscosity lies firmly within the explicit LES hypothe-

sis. The classifier is therefore instrumental in moderating ILES deployments through

a decision making process that recognizes the dissipative (or forcing) nature of the

sub-grid quantities.

We note that the choice of 1% as the decision parameter for switching between
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hypothesis is motivated by a sensitivity study that showed the highest classification

accuracy for the ANN framework. Larger choices of this hyper-parameter would re-

sult in a classifier that would be prone to classify most points in the ‘no-model’ zone.

However, we clarify that the choice of this value is also correlated with the archi-

tecture of the ANN. A potential extension of the proposed hypothesis is to combine

architecture search algorithms with varying value of the decision hyper-parameters

for larger classification accuracies. In addition, the three-category framework is de-

rived from an aligned study (the reader may refer to the previous chapter) where

sub-grid models are determined according to negative, positive and nearly-zero a-

priori eddy-viscosities and utilizes the same learning. This enables use to determine

a unified framework for switching between turbulence model hypotheses as well as

numerical dissipation scenarios. However, we would like to emphasize that, for the

purpose of switching between the Arakawa and upwinded Jacobian computation, a

simple two-class framework would also suffice.

A one-hot labeling of our eddy-viscosity classes is utilized for a classification de-

ployment and a schematic for this hypothesis segregation and labeling is shown in

Figure 7.2. The labels indicate the conditional probability of a point belonging to

each possible class. As such, the training labels are given by a value of 1 for the par-

ticular class that a point belongs to and zeros for other choices. This is because there

is no ambiguity in the class a training sample belongs to. Each label for the a-priori

eddy-viscosity is also associated with a corresponding input kernel of grid-resolved

quantities. This kernel is given by a local stencil of vorticity and stream function.

There are 9 inputs each for vorticity and stream function given by a query of the

field quantity at a point on the coarse grid, 4 adjacent points in each dimension (x, y)

and the 4 diagonally adjacent points. Each sample of our training data thus consists

of 18 inputs of vorticity and stream function and outputs given by one-hot labels

for the choice of closure modeling strategy. We then utilize an ANN to establish a

190



0 2 4 6
x

0

1

2

3

4

5

6

y

0 2 4 6
x

0

1

2

3

4

5

6

y

0 2 4 6
x

0

1

2

3

4

5

6

y

0 2 4 6
x

0

1

2

3

4

5

6

y

−25.00 −19.44 −13.89 −8.33 −2.78 2.78 8.33 13.89 19.44 25.00

Figure 7.1: Time evolution of the Kraichnan turbulence case with DNS (N2 = 20482)
contours for vorticity of t = 1 (top-left), t = 2 (top-right), t = 3 (bottom-left), t = 4
(bottom-right). One can discern the dissipation of vorticity as the system evolves.

191



relationship between these inputs and outputs. Mathematically, if our input vector P

resides in a P -dimensional space and our desired output Q resides in a Q-dimensional

space, this framework establishes a map M as follows:

M : {P1,P2, . . . ,PP} ∈ RP → {Q1,Q2, . . . ,QQ} ∈ RQ. (7.17)

Accordingly, the framework utilized in this article leads to the following relation:

M : {p} ∈ R18 → {P (q|p)} ∈ R3, (7.18)

where

pi,j = {ω̄i,j, ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1,

ψ̄i,j, ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1}
(7.19)

is our input vector for each query of the machine learning framework and where

P (q|p)i,j = {P (Jk(ω̄, ψ̄)i,j|pi,j)}, (7.20)

is the conditional probability of a Jacobian computation (given by a connection to the

explicit closure hypothesis). Note that i, j refer to the spatial indices on the coarse-

grid (i.e., the point of deployment). The indices k = 1 and k = 3 refer to the Arakawa

non-linear Jacobian computation and k = 2 refers to the upwinded computation

instead (see Figure 7.2). Our optimal map M is then trained by minimizing the

categorical cross-entropy loss-function

E(w) = −
N∑
n=1

K∑
k=1

{tnk log(ynk) + (1− tnk) log(1− ynk)}, (7.21)

where w are the variable weight and bias parameters of the network, N refers to the
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total number of samples and K = 3 is the total number of classification scenarios (i.e.,

negative, positive or nearly-zero a-priori eddy-viscosities). Here, tnk refers to the true

label of class k and sample n and ynk refers to a corresponding prediction of the learn-

ing framework. One-hot encoding ensures that tnk values are always binary (Bishop,

2006) and the outputs of the ANN may be interpreted as conditional-probabilities.

Our optimal architecture is given by five 40-neuron hidden layers (obtained via grid-

search hyper-parameter tuning). All hidden layers utilize ReLU units to impart non-

linearity to the layer-wise transformations. For reference, our architecture is trained

using the open-source deep learning software Tensorflow and is optimized with the

use of ADAM, a popular gradient-descent based optimizer (Kingma and Ba, 2014).

Figure 7.3 shows the progress to convergence for our framework with our optimally

trained network displaying approximately 79% accuracy in classifying points to their

correct labels. To summarize this section, we train a deep ANN to estimate probabil-

ities of negative, positive or nearly-zero eddy-viscosities which are utilized to decide

the choice of the Jacobian computation. We clarify that the decision to deploy a

particular hypothesis is obtained by utilization of the classification scenario which

has the highest conditional probability.

7.6 Results

7.6.1 A posteriori deployment

In this section, we detail the results from an a-posteriori deployment of the classifi-

cation framework (denoted ML henceforth) for the Kraichnan test-case. In the LES

evolution of the problem, a considerably coarser grid is used (at N2 = 2562). We

remark that the forward deployment of our framework needs to overcome the chal-

lenge of numerical errors and is a robust test of the generalizability and robustness

of our learning. Our LES results are assessed using angle-averaged kinetic energy

spectra and through structure functions of vorticity. In addition, qualitative com-

193



Figure 7.2: Hypothesis segregation and one-hot labeling for our proposed frame-
work. The learning predicts conditional probabilities for the three segregated a-priori
eddy-viscosity classes which are utilized for Jacobian calculation decisions spatio-
temporally.
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Figure 7.3: Learning rate and convergence of our classification framework training.
2000 epochs were sufficient for converged validation loss.
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parisons are also provided through visual examinations of the vorticity contours. We

remark that the LES deployment is performed from t = 0 to t = 4 which spans the

training regime data obtained from DNS. In what follows we note that DNS refers

to a high-fidelity evolution of the governing equations (i.e., at N2 = 20482 degrees of

freedom), UNS refers to results obtained using the Arakawa scheme alone and ILES

refers to a simulation where the non-linear Jacobian at all points in space and time are

upwinded. Figure 7.4 shows the a-posteriori performance of the proposed framework

at Re = 32000 in terms of energy spectra predictions. The reader may find an exact

definition of the kinetic-energy spectra in Maulik and San (2017c). We note that the

training data was obtained for the same Reynolds number as well. The prediction of

the proposed framework is seen to agree remarkably well with DNS. It is apparent

that the switching of schemes using the classifier has obtained an optimal balance

between both techniques.

Vorticity contours for LES resolution assessments are shown in Figure 7.5, where

it is apparent that the proposed framework optimally balances the energy-conserving

and dissipative natures of the Arakawa and upwinded schemes respectively. This

is verified by qualitative examination with FDNS contours obtained by spectrally

filtering the DNS snapshot for Re = 32000 at t = 4.

A second statistically significant quantity of interest studied in this investigation

is the vorticity structure function (Grossmann and Mertens, 1992) given by

Sxω = 〈|ω(x+ r, y)− ω(x, y)|2〉 (7.22)

Syω = 〈|ω(x, y + r)− ω(x, y)|2〉, (7.23)

where the angle-brackets indicate ensemble averaging and x, y indicate a position on

the grid with r being a certain distance from this location. Figures 7.6 and 7.7 show

the structure functions obtained from a-posteriori deployments of the UNS, ILES

196



100 101 102
k

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E(
k)

DNS
UNS
ML
ILES
k−3

Figure 7.4: The a-posteriori performance of proposed framework (ML) for Re = 32000
and at t = 4 in terms of angle-averaged kinetic energy spectra. Comparisons with
DNS, the Arakawa scheme (UNS) and the upwinded scheme (ILES) show that ML
provides directed dissipation adequately.
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Figure 7.5: Contours for the vorticity at LES resolution and at t = 4. In the top-left,
we have predictions from the ML approach. The top-right field has been obtained
using ILES, the bottom-left field is obtained from UNS and the bottom right shows
FDNS contours obtained by spectral cut-off filtering of DNS.
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Figure 7.6: A posteriori vorticity structure functions in x direction of our proposed
framework (ML), the Arakawa scheme (UNS) and the upwind scheme (ILES) with
statistics obtained from an FDNS snapshot at t = 4. It is apparent that the ML
method stabilizes the UNS result optimally.

and ML frameworks compared against those obtained from the final time FDNS

snapshot. It is clear that the proposed framework balances between UNS and ILES

deployments well to recover appropriate trends. We can thus claim that our learning

is appropriate for hybrid deployments of dissipative and conservative frameworks for

two-dimensional turbulence. Before moving on, we would like to point out to the

reader here that the proposed methodology for closure does not require any post-

processing prior to deployment in the forward simulation as utilized in several data-

driven turbulence modeling studies (Beck et al., 2018; Maulik et al., 2019).
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Figure 7.7: A posteriori vorticity structure functions in y direction of our proposed
framework (ML), the Arakawa scheme (UNS) and the upwind scheme (ILES) with
statistics obtained from an FDNS snapshot at t = 4. It is apparent that the ML
method stabilizes the UNS result optimally.
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7.6.2 Validation of learning

In this section, we proceed with a rigorous validation of our learning for deployment in

regimes that are not a part of the training data. This is to ensure that the framework

has truly learnt a classification based on the underlying physical hypothesis used for

data segregation and is not memorizing data. This ensures that our classifier can

be used in a more generalizable fashion. Figure 7.8 shows kinetic energy spectra

obtained from the forward deployment of the ML framework for a Re = 64000 which

represents a classification task that the framework has not previously seen (although

the physics of the test-case remains similar). As observed, the proposed method

performs quite well in this out-of-training data range as well. We note that a similar

resolution (N2 = 2562) is utilized for this deployment. In contrast, Figure 7.9 shows

the performance of the ML technique for a reduced resolution of N2 = 1282 but

utilizing the same Reynolds number of 32000. The kinetic energy spectra show a

successful stabilization of the flow evolution at this reduced resolution although some

forcing to the large scales is observed. This suggests that the classification framework

may be improved by sampling from different resolutions.

7.7 Concluding remarks

In this article, we have proposed a neural network based classifier that enables us

to take decisions on the choice of non-linear term computation in the LES evolution

of the Kraichnan turbulence test-case. The classifier outputs conditional probabil-

ities for the presence (or absence) of eddy-viscosities within three different ranges

during deployment and is used to switch between the Arakawa and upwind compu-

tation of the non-linear Jacobian for a hybrid upwinded deployment that optimally

directs dissipation on the coarse-grained flow field. Our machine learning framework

is trained by calculating a-priori eddy-viscosities which are projected onto a Gaussian

distribution and segregated into three categories. Each category is devised to cap-
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Figure 7.8: The a-posteriori performance of proposed framework (ML) for Re = 64000
and at t = 4 in terms of energy spectra. This represents deployment of our learning
at a different Reynolds number than that used for generating training data.

202



100 101 102
k

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E(
k)

DNS
UNS
ML
ILES
k−3

Figure 7.9: The a-posteriori performance of proposed framework (ML) for Re =
32000, t = 4 and at N2 = 1282 in terms of energy spectra. This represents deployment
of our learning at a different resolution than that used for generating training data.
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ture a unique behavior of the underlying sub-grid terms with negative and nearly-zero

eddy-viscosity classes signifying absence of sub-grid dissipation. An optimally trained

classifier is then utilized to identify if a point requires sub-grid dissipation based on

if it is placed in the positive eddy-viscosity category. If so, the upwind Jacobian is

calculated for imparting numerical dissipation.

We perform a-posteriori assessments on the Kraichnan turbulence test-case through

statistical quantities such as the angle-averaged kinetic energy spectra and the vor-

ticity structure functions. It is observed that the proposed framework is successful

in balancing the dissipative nature of the upwind scheme and the energy-conserving

Arakawa scheme to give excellent agreement with DNS statistics. Validation for out-

of-training regimes also indicate that the framework is able to learn the link between

grid-resolved quantities at a coarse resolution and the nature of the sub-grid forcing.

Our conclusions therefore point toward the possibility of using classifiers for the

unified deployment of numerical schemes with varying dissipation through the decision

making process described above. A key strength of our hypothesis stems from the

fact that an ILES deployment is moderated by concepts drawn from the explicit LES

ideology (i.e., that of an a-priori eddy-viscosity). The successful deployment of our

method thus points towards the possibility of deploying directed numerical dissipation

that preserves the statistics of turbulence without sacrificing the shock-capturing

ability of many non-oscillatory schemes. Our future work lies in that particular

direction.
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CHAPTER VIII

Conclusions and future work

In this chapter we summarize the major facets of this study and outline some potential

research that may emerge from our results.

8.1 Summary of study

We have developed and analyzed several data-driven strategies for the representation

of the sub-grid forcing using various physics-informed machine learning strategies.

This is motivated by our understanding of the limitations of phenomenology, which

necessitates a-priori specification of model coefficients or low-pass spatial filter trans-

fer functions which are generally correlated poorly with underlying sub-grid closure

requirements. The various formulations we have explored in this subject suggest that

certain learning problems can be formulated from sparsely sampled data through a hy-

bridization with first-principles based knowledge of governing equations. Essentially,

turbulence source terms may be predicted from grid-resolved data which are evolved

according to the filter Navier-Stokes equations with associated benefits (in terms of

the ability to choose slightly different initial conditions and physical regimes). In

addition, we have also framed a machine learning methodology for enabling optimal

hybridization of different closure techniques. Through this, we demonstrate that a

learning may be utilized to switch between closure modeling hypothesis (or discretiza-

tion techniques) for directed dissipation according to perfect closure requirements.

Some of our conclusions through the course of this research may be outlined in

the following -
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1. Data-driven closures are able to predict flow fields with statistical trends that

mimic those obtained from high-fidelity simulations without the use of user-

defined coefficients or filter transfer functions (when deployed for the purpose

of calculating a perfect closure requirement). In addition, they are also capable

of learning an optimal classifer to switch between dissipation scenarios and

obtain DNS aligned results. This was the core motivation at the start of these

investigations.

2. We also observe that network architectures may be simplified significantly if our

understanding of the fundamental nature of turbulence is leveraged for instance

through the use of the dual maps defining our convolution and deconvolution op-

erators or the use of grid-resolved eddy-viscosity information. These simplified

architectures result in reduced computational and memory costs.

3. A-posteriori deployment of machine learning predictions for the purpose of ex-

plicitly calculating the closure necessitates post-processing for stability. This

limitation stems from the use of grid-filtering to synthesize the perfect LES data.

While a perfect LES is generated through this procedure, it fails to account for

numerical stability in this process. The loss of information due to this post-

processing may restored (in aggregate fashion) through the use of averaging ker-

nels as shown in chapter 3. The deployment of these strategies necessitates the

understanding of the dichotomy of a-priori and a-posteriori statistical recovery.

Optimal architecture selections (from traditional hyper-parameter assessment

techniques in machine learning) must thus be paired with deployment-based

checks on canonical problems such as Kraichnan or Kolmogorov turbulence be-

fore they may be utilized in unseen cases. This opens up another avenue for

machine learning architectural analyses through canonical flow investigations.

4. One of the core advantages of formulating the data-driven closure problem as
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a classification task is the obviation of post-processing requirements since the

data-driven closure is spanned by a basis of stable modeling strategies which

compete only through their underlying hypotheses.

5. Computational assessments for the models developed in this study indicate

that there is a non-trivial increase in overall cost due to the additional floating

point operations involved in neural network queries. As such, the next phase of

these modeling strategies depends on successful scaling up to multiprocessing

environments.

8.2 Future Work

The studies described in this document give rise to some interesting questions and

may be built on for the following future research

1. The first step in extending these modeling platforms for practical use in the

broader turbulence community is to assess their ability to recognize different

classes of flow problems. While most of our studies here have utilized decaying

isotropic turbulence, a data-driven framework that may adapt closure require-

ments according to the anisotropies it has been exposed to in a-priori holds

immense potential for accurate practical deployments.

2. While the linear eddy-viscosity framework preserves time, pressure and Galilean

invariance for three-dimensional closure modeling, the incorporation of transla-

tional and rotational invariance requires predictions that are spanned in a fixed

space of grid-resolved quantities (generally functions of the strain-rate and rota-

tion tensor). This would require a modified neural architecture (as against the

simpler deep network described in chapter 5). In addition, the effect of mod-

ified loss-functions may also be studied to improve robustness in deployment

and potentially remove the need for a-posteriori post-processing.
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3. The concept of a model classifier, while successful in stable recovery for isotropic

fields may be tested across physical scenarios. There is a potential that anisotropic

turbulence modeling requirements may be identified and predicted by this clas-

sifier in an accurate manner.

4. As mentioned in the conclusions section, the successful deployment of the pro-

posed models in a cost-effective fashion would require their porting to dis-

tributed environments to minimize overhead.

To conclude, this work has explored the feasibility of turbulence closure strategies

being developed from data for the purpose of improved a-posteriori statistical fidelity

in comparison with classical large eddy simulation closures which rely on a-priori

coefficient tuning and phenomenology that may or may not be suited to the simulation

requirements. Our results indicate that the techniques studied here hold promise for

the development of machine learning closures that may be trained on different flow

scenarios and then be deployed in cases that may be considered to be combinations

of the aforementioned flow components. Our future studies will be aligned in that

direction.
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APPENDIX A

Data generation - Kraichnan turbulence

1.1 Numerical schemes

The following section outlines the various numerical schemes used in this investigation
for the calculation of derivatives, nonlinear terms, solution of the Poisson equation
and spatial filtering operators for DNS generation in our two-dimensional turbulence
test-case.

1.1.1 Arakawa scheme

For our nonlinear Jacobian calculations, we utilized the Arakawa scheme for its con-
servative properties. It was proposed by Arakawa Arakawa (1966) that the conser-
vation of energy, enstrophy and skew symmetry is sufficient to avoid computational
instabilities arising from nonlinear interactions in the Jacobian. The Jacobian in the
governing equations for 2D turbulence is defined as

J(ψ, ω) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
(1.1)

The second-order Arakawa scheme for the Jacobian is given by

JI(ω, ψ) =
1

3
(J1(ω, ψ) + J2(ω, ψ) + J3(ω, ψ)) (1.2)

where the discrete parts of the Jacobian are

J1(ψ, ω) =
1

4hxhy
[(ωi+1,j − ωi−1,j)(ψi,j+1 − ψi,j−1)

−(ωi,j+1 − ωi,j−1)(ψi+1,j − ψi−1,j)]

(1.3)

J2(ψ, ω) =
1

4hxhy
[ωi+1,j(ψi+1,j+1 − ψi+1,j−1)

−ωi−1,j(ψi−1,j+1 − ψi−1,j−1)− ωi,j+1(ψi+1,j+1 − ψi−1,j+1) (1.4)

+ωi,j−1(ψi+1,j−1 − ψi−1,j−1)]
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J3(ψ, ω) =
1

4hxhy
[ωi+1,j+1(ψi,j+1 − ψi+1,j)

−ωi−1,j−1(ψi−1,j − ψi,j−1)− ωi−1,j+1(ψi,j+1 − ψi−1,j)

+ωi+1,j−1(ψi+1,j − ψi,j−1)] .

(1.5)

1.1.2 Time integration scheme

An optimal third-order-accurate total variation diminishing Runge-Kutta scheme
(TVDRK3) is used for explicit advancement in time. In order to implement this
scheme the model equations are cast in the following form

du

dt
= £(u) (1.6)

where £(u) encompasses the spatial derivatives including the nonlinear convective
terms,the linear diffusive terms and the source terms modeling the subgrid scale
stresses. Assuming that the numerical approximation at a time level n+ 1 is known
and our time step is given by ∆t, our time stepping scheme becomes Gottlieb and
Shu (1998)-

u(1) = un + ∆t£(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t£(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆t£(u(2)).

(1.7)

The TVDRK3 scheme has been shown to predict slightly more accurate results than
some of the other third order Runge-Kutta schemes for incompressible flow problems
San and Staples (2012) and has been extensively used in hyperbolic conservation laws
Shu and Osher (1988); Gottlieb et al. (2001); Hu et al. (2010); Kara et al. (2011).

1.1.3 Poisson solver

The elliptic equation obtained for the relationship between the streamfunction and
vorticity is solved by a FFT-based Poisson solver. The low-pass spatial filtered version
of the elliptic equation can be written in the form of ∇2u = f . The compact fourth-
order discretization with nine point stencil can be written as Wang and Zhang (2009)

aui,j + b(ui+1,j + ui−1,j) + c(ui,j+1 + ui,j−1)

+ d(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)

= e(8fi.j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1),

(1.8)

where the coefficients are a = −10(1 + γ2), b = 5 − γ2, c = 5γ2 − 1, d = (1 +
γ2)/2, e = h2

x/2 with γ being the mesh aspect ratio defined as the ratio of grid
discretization lengths hx/hy. In our case γ = 1 for which this scheme becomes the

228



famous Mehrstellen scheme Tsukerman (2006); San (2015). The presence of periodic
boundary conditions in both directions suggests the use of the Fourier transform
approach as against a finite sine or cosine transform. First we perform and inverse
transform for the source term to get

f̂ =
1

NxNy

Nx−1∑
i=0

Ny−1∑
j=0

fi,je
−i(kxxi+kyyj) (1.9)

where kx = 2πm/Lx and ky = 2πn/Ly. Our elliptic equation in the Fourier space is
given by

(−k2
x − k2

y)ûm,n = −f̂m,n (1.10)

This equation may now be solved for the unknown ûk,l. Once this is achieved, a
forward Fourier transform into the real domain is obtained by

ui,j =

Nx
2
−1∑

m=−Nx
2

Ny
2
−1∑

n=−Ny
2

ûm,ne
i(kxxi+kyyj). (1.11)

For the purpose of transforming to and back from the Fourier domain, we use the
FFT algorithm given in Press et al Press et al. (1992).

1.2 Initial conditions

The Kraichnan turbulence problem involves an initial energy spectrum which decays
through time and we examine this decay by studying the evolution of vortices through
time. In this study, we compare the energy spectra developed at the end of our sim-
ulation (i.e., t = 4) in order to quantify the performance of the SGS closures. The
spectra are compared to the theoretical scaling expected from a perfectly homoge-
neous case of 2D turbulence given by KBL theory. The initial energy spectrum of the
problem is given by (Orlandi, 2012)

E(k) = Ak4 exp
(
−(k/kp)

2
)

(1.12)

where

A =
4k−5

p

3π
(1.13)

and k = |k| =
√
k2
x + k2

y. The maximum value of the energy spectrum is designed
to occur at wavenumber kp which is assumed to occur at kp = 10 in this study.
The magnitude of vorticity Fourier coefficients related to the assumed initial energy
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spectrum becomes

|ω̃(k)| =
√
k

π
E(k). (1.14)

The initial vorticity distribution in Fourier space is then obtained through the intro-
duction of a random phase

ω̃(k) =

√
k

π
E(k)eiζ(k) (1.15)

where the phase function is given by ζ(k) = ξ(k) + η(k), where ξ(k) and η(k) are
independent random values chosen in [0, 2π] at each coordinate point in the first
quadrant of the kx − ky plane. Their behavior in the other quadrants are given
by conjugate relations as shown in Fig. A.1. Once the randomization process is

Figure A.1: Conjugate relations for the random phase function for the initial condi-
tions.

completed, the initial vorticity distribution in the physical domain is obtained through
an inverse FFT. It must be noted here that the randomization process is identical
for each run (whether LES or DNS) for the purpose of comparison. The initial
condition for vorticity is chosen to ensure a divergence free vorticity field. A timestep
of ∆t = 5 × 10−4 is selected to ensure that the DNS remains independent of errors
associated with temporal discretization (i.e., negligible with respect to the spatial
discretization errors).

In order to quantify the benefits of each SGS model combined with a particular
solver, we define a statistical measure based on the energy spectrum in the wavenum-
ber domain which is defined as

Ê(k, t) =
1

2
k2|ψ̂(k, t)|2 (1.16)

230



and the angle averaged energy spectrum is

E(k, t) =
∑

k− 1
2
≤|ḱ|≤k+ 1

2

Ê(ḱ, t). (1.17)

As mentioned previously, the result of the angle averaged energy spectrum for a run
is compared to the classical KBL theory scaling which approaches k−3 in the limit of
infinite Reynolds number.

1.3 Data sampling for learning

In the following we discuss how snapshot data is utilized from DNS results for the
purpose of data-driven closure modeling. For studies undertaken on the Kraich-
nan turbulence test-case, we utilze 5 snapshots of data at non-dimensional times of
t = 0, 1, 2, 3, 4 out of a potential 40000 snapshots of explicit DNS time-integration.
This accounts for 0.0125% of the total snapshot data available for the purpose of data
set generation. The motivation behind the extreme temporal sub-sampling of DNS
data is to mimic learning data generation specific constraints such as extreme input-
output costs when running full-order models on distributed computing environments.
The choice of t = 0, 1 ensures that the learning has some experience of the initial
and transitionary phases of this unsteady problem where closure needs are particu-
larly different. We note that the non-dimensionalization of the Kraichnan turbulence
problem is obtained through the usual identification of a relevant length scale given
by the side length of the square-periodic domain.
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APPENDIX B

Data generation - Kolmogorov turbulence

2.1 Governing equations

We shall utilize the three-dimensional Navier-Stokes equations in their conservative
dimensionless form as our underlying governing laws for fluid flow evolution. These
can be expressed as

∂q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
=
∂F v

∂x
+
∂Gv

∂y
+
∂Hv

∂z
(2.1)

where

q =


ρ
ρu
ρv
ρw
ρe

 , F =


ρu

ρu2 + P
ρuv
ρuw
ρuH

 , G =


ρv
ρuv

ρv2 + P
ρvw
ρvH

 , H =


ρw
ρuw
ρuv

ρw2 + P
ρwH

 (2.2)

are the inviscid contributions to the governing laws and the viscous contributions are
given by

F v =


0
τxx
τxy
τxz

uτxx + vτxy + wτxz − qx

 , Gv =


0
τyx
τyy
τyz

uτyx + vτyy + wτyz − qy

 ,

Hv =


0
τzx
τyz
τyz

uτzx + vτzy + wτzz − qz

 .
(2.3)

Here ρ, P, u, v and w are the density, pressure and velocity components in the x, y
and z Cartesian directions. Also, H is the total enthalpy, e is the total energy and
both are linked to each other and the pressure by

H = e+ P/ρ, P = ρ(γ − 1)

(
e− 1

2
(u2 + v2 + w2)

)
, (2.4)
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where γ = 7/5 is chosen as our ratio of specific heats. The viscous contributions can
be described as

τxx =
2

3

µ

Re

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
τyy =

2

3

µ

Re

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
τzz =

2

3

µ

Re

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
τxy = τyx =

µ

Re

(
∂u

∂y
+
∂v

∂x

)
τxz = τzx =

µ

Re

(
∂u

∂z
+
∂w

∂x

)
τyz = τzy =

µ

Re

(
∂v

∂z
+
∂w

∂y

)
qx = − µ

RePrMa2(γ − 1)

∂T

∂x

qy = − µ

RePrMa2(γ − 1)

∂T

∂y

qz = − µ

RePrMa2(γ − 1)

∂T

∂z

(2.5)

where Re, Pr and Ma are the non-dimensional Reynolds, Prandtl and Mach numbers
respectively and where Sutherland’s law is used to evolve our dimensionless molecular
viscosity

µ =
T 1.5(1 + S/Tref )

T + S/Tref
(2.6)

where S = 110.4K and Tref = 300K. The convective flux Jacobian matrices for our
conservation laws can be described as (Laney, 1998)

A =
∂F

∂q
=

 0 1 0 0 0

−u2 + γ−1
2

(u.u) (3− γ)u −(γ − 1)v −(γ − 1)w γ − 1
−uv v u 0 0
−uw w 0 u 0

−(γe− (γ − 1)u.u)u γe− γ−1
2

(2u2 + u.u) −(γ − 1)uv −(γ − 1)uw γu

 , (2.7)

B =
∂G

∂q
=

 0 0 1 0 0
−uv v u 0 0

−v2 + γ−1
2

(u.u) −(γ − 1)u (3− γ)v −(γ − 1)w γ − 1
−vw 0 w v 0

−(γe− (γ − 1)u.u)v −(γ − 1)uv γe− γ−1
2

(2v2 + u.u) −(γ − 1)vw γv

 , (2.8)
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C =
∂H

∂q
=

 0 0 0 1 0
−uw w 0 u 0
−vw 0 w v 0

−w2 + γ−1
2

(u.u) −(γ − 1)u −(γ − 1)v (3− γ)w γ − 1

−(γe− (γ − 1)u.u)w −(γ − 1)uw −(γ − 1)vw γe− γ−1
2

(2w2 + u.u) γω

 , (2.9)

where u is the three-dimensional velocity vector. Each Jacobian matrix also has a
similarity transformation given by

LAARA = ΛA ⇒ RAΛALA = A

LBBRB = ΛB ⇒ RBΛBLB = B

LCCRC = ΛC ⇒ RCΛCLC = C

(2.10)

The reader is directed to Bidadi and Rani (2015) for an elaboration of the right
and left eigenvectors as well as the eigenvalues for each Jacobian matrix.

2.2 Numerical schemes

2.2.1 Finite volume framework

The semi-discrete form of the governing equations can be written as

dqi,j,k

dt
+

1

∆x

(
Fi+1/2,j,k − Fi−1/2,j,k

)
+

1

∆y

(
Gi,j+1/2,k −Gi,j−1/2,k

)
+

1

∆z

(
Hi,j,k+1/2 −Hi,j,k−1/2

)
=

1

∆x

(
F vi+1/2,j,k − F

v
i−1/2,j,k

)
+

1

∆y

(
Gvi,j+1/2,k −G

v
i,j−1/2,k

)
+

1

∆z

(
Hv
i,j,k+1/2 −H

v
i,j,k−1/2

) (2.11)

with qi,j,k being the cell-averaged vector of dependant variables, Fi±1/2,j,k representing
the cell face flux reconstructions in the x direction, Gi,j±1/2,k representing the cell face
flux reconstructions in the y direction and Hi,j,k±1/2 representing the cell face flux
reconstructions in the z direction. The method of lines may be used to represent our
system of PDEs as an ODE through time. Our system may be expressed as

dqi,j,k
dt

= £(qi,j,k). (2.12)

The right hand side of the above equation is representative of the combined effect of
the various inviscid and viscous spatial derivatives in the conservation equations. A
third-order Runge Kutta scheme (TVDRK3) (Gottlieb and Shu, 1998) is implemented
for explicit time advancement as follows:

q
(1)
i,j,k = q

(n)
i,j,k + ∆t£(q

(n)
i,j,k)

q
(2)
i,j,k =

3

4
q

(n)
i,j,k +

1

4
q

(1)
i,j,k +

1

4
∆t£(q

(1)
i,j,k)

q
(n+1)
i,j,k =

1

3
q

(n)
i,j,k +

2

3
q

(2)
i,j,k +

2

3
∆t£(q

(2)
i,j,k)

(2.13)
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with a time step ∆t that is prescribed through a CFL criterion as

∆t = min

(
η

∆x

max(|ΛA|)
, η

∆y

max(|ΛB|)
, η

∆z

max(|ΛC |)

)
. (2.14)

where η = 0.5 is is selected as the default value for this investigation.

2.2.2 Symmetric flux reconstructions: 6th order Central Schemes

This approach relies on a traditional finite volume formulation for calculating the den-
sity, energy and velocities at the cell interfaces following which the cell face fluxes are
calculated as a function of these reconstructed variables. The following 6-point sten-
cil symmetric non-dissipative scheme is used for face reconstruction of the conserved
quantity (Hyman et al., 1992)

qi+1/2 = a(qi+1 + qi) + b(qi+2 + qi−1) + c(qi+3 + qi−2) (2.15)

where the stencil coefficients are given by

a = 37/60; b = −2/15; c = 1/60. (2.16)

Once the relevant face quantities are determined from the nodal values, the fluxes
may be calculated for use in Eq. (2.11).

2.2.3 Treatment of viscous terms

In this section, we describe the stencil used for the construction of viscous fluxes.
Since viscous fluxes are functions of the primary flow quantities’ derivatives, we can
represent them in an abstract form as follows

F v
i+1/2 = F(q′i+1/2), (2.17)

where the superscript prime denotes the first order derivative for any quantity. A
general stencil for the cell face derivative of any quantity q can be given by

q′i+1/2 = g (a(qi+1 − qi) + b(qi+2 − qi−1) + c(qi+3 − qi−2)) . (2.18)

While it is common practice to use an interpolation type approach (similar to the
method of finite differences) based on the Taylor series expansion which gives us the
following values for the stencil coefficients for sixth order accuracy:

g =
1

128
, a =

150

∆x
, b = − 25

2∆x
, c =

3

3∆x
, (2.19)

we, however, utilize the reconstruction method more suited to finite volume repre-
sentation of conservation laws (Hyman et al., 1992; Shu, 2009) where our stencil
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coefficients are given by

g =
1

180
, a =

245

∆x
, b = − 75

2∆x
, c =

10

3∆x
. (2.20)

This is because the interpolation of cell center values to obtain cell face quantities
followed by the inherently central approach to flux calculation at the cell centers leads
to second order accuracy.

2.3 Problem definition

In order to quantify the accuracy of a proposed LES model, a problem must be chosen
that displays the fundamental mechanism of isotropic and homogeneous turbulence
where an enhancement of vorticity is observed through vortex stretching and the
subsequent production of small eddies. The classical cascade of energies from the
smaller wavenumbers (or larger scales) to higher wavenumbers (or smaller scales)
must also be observed according to the celebrated Kolmogorov (Kolmogorov, 1941b)
scaling law. The Taylor-Green vortex is a prototype problem which models the decay
of isotropic, homogeneous and turbulent periodic vortical flows by demonstrating
the aforementioned physical phenomenon. The initial condition of this problem is
defined on a computational domain comprised of a cubic box with periodic boundary
conditions in all directions and an edge length of 2π. These initial conditions may be
expressed as

ρ(x, y, z, t = 0) = 1.0

u(x, y, z, t = 0) = sin(x) cos(y) cos(z)

v(x, y, z, t = 0) = − cos(x) sin(y) cos(z)

w(x, y, z, t = 0) = 0.0

p(x, y, z, t = 0) =
1

γMa2
+

(cos(2x) + cos(2y))(cos(2z) + 2)

16
.

(2.21)

Our study fixes the Reynolds number at 1600 and uses N3 = 5123 as the resolution
of the high fidelity results (reference values for Prandtl and Mach numbers are also
set as Pr = 0.72, and Ma = 0.08). At this considerably high Reynolds number
(Re = 1600), a large amount of scale separation is observed as well as the formation
of very fine structures. This represents a comparatively greater challenge for our
LES models. One of the turbulence statistical quantities chosen for LES evaluation is
given by the total kinetic energy of the solution field obtained by spatially averaging
the instantaneous kinetic energy at all points

E(t) =
1

V

∫ ∫ ∫
E(x, y, z, t)dxdydz, (2.22)

where V is the volume of the physical domain and E(x, y, z, t) is the instantaneous
kinetic energy per unit mass at a particular point in the solution field (i.e., E =
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1/2(u2 + v2 + w2)). Thus our integral may also be expressed as

E(t) =
1

NxNyNz

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

1

2

(
u2
i,j,k(t) + v2

i,j,k(t) + w2
i,j,k(t)

)
(2.23)

where we have cell centered values for our velocity components. Another measure of
comparison can be obtained from averaged kinetic energy spectral scaling which may
be calculated using the following definition

ˆE(k, t) =
1

2
|û(k, t)|2 (2.24)

where û(k, t) is the Fourier transform of the velocity vector in the wavenumber space.
Eq. (2.24) may also be written as

ˆE(k, t) =
1

2

(
|û(k, t)|2 + |v̂(k, t)|2 + |ŵ(k, t)|2

)
(2.25)

where the fast Fourier transform algorithm given in Press et al. (1992) has been
used for forward and inverse transforms to and from wavenumber space. An angle
averaging of the spectra is then carried out

E(k, t) =
∑

k− 1
2
≤|ḱ|<k+ 1

2

Ê(ḱ, t) (2.26)

2.4 Validation

For the purpose of a validation of our benchmark numerical methods, our DNS results
are compared with those available from certain famous investigations of the Taylor-
Green vortex problem as shown in Fig. (B.1) where the energy dissipation rate is
compared. Among the reference data shown here, Bull and Jameson (2015) have
implemented a flux reconstructed spectral difference (or FR-SD) scheme at N3 =
2563 for their highest resolution, Van Rees et al. (2011) have used a pseudo-spectral
simulation at N3 = 7683 for their highest fidelity data, Hickel et al. (2006) have
used DNS data from the spectral simulations implemented by DeBonis (2013) have
used a 13-point dispersive relation preserving (DRP) scheme at N3 = 5123 for their
baseline solutions. It can be seen that our high fidelity data captures the trends of
the reference data well and can thus be used as a benchmark solution.

2.5 Data sampling for learning

In a manner similar to the Kraichnan turbulence test case, any learning which utilizes
full-order runs from the TGV test case uses snapshots at times t = 5 and t = 10 for
the purpose of learning. This selection of snapshots ensures that the ML architecture
is exposed two different closure modeling regimes. The forward deployment in a-
posteriori therefore allows for greater flexibility in closure predictions. Snapshots at
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(a) Energy dissipation rate

(b) Close-up for the peak dissipation rate

Figure B.1: A validation of our direct numerical simulation (DNS) using reference
data from Van Rees et al. (2011), Bull and Jameson (2015), Hickel et al. (2006) &
DeBonis (2013).
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t = 15 and t = 20 are utilized for a-priori assessments but are not utilized for teaching
a framework for a-posteriori deployment. We note that the forward deployment of
closures was performed till t = 10 for consistent assessment. This problem is non-
dimensionalized as well in a manner similar to that described for the Kraichnan
turbulence test-case.
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